
/DESIGN OF AN
EASY-TO-USE , HOST-INDEPENDENT

DATA ACQUISITION SYSTEM^

by

DURWIN DUANE NIGUS

B.S., Kansas State University, 1987

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

ELECTRICAL AND COMPUTER ENGINEERING

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by:

Major Professor

I'D

t

-jH AllEOfl 1.17117

££££ TABLE OF CONTENTS

1 9 8*1 CHAPTER PAGE

. , ONE INTRODUCTION 1-1

TWO THE DEVELOPMENT OF THE DAS

2.1 Introduction 2-1

2.2 Host-to-DAS Interface Development 2-1

2.3 Development of the DAS's
Internal Structure 2-3

2.4 Communication with the System 2-10

2.5 Conclusion 2-13

THREE THE SYSTEM FRONT-END AND SYSTEM BUS

3.1 Introduction 3-1

3.2 The System Front-end: A User's
Perspective 3-3

3.3 The System Bus and Bus Drivers 3-7

3.4 Algorithms for System Bus Control 3-13

3.5 The Circuits of the System Front-end:
A Technician's Perspective 3-19

FOUR THE ANALOG-TO-DIGITAL BOARD

4.1 Introduction 4-1

4.2 The User's Perspective of the A/D
Board 4-4

4.3 The A/D from a Programmer's
Perspective 4-9

TABLE OF CONTENTS (cont.)

CHAPTER PAGE

4.3.1 The A/D Board
Register Set 4-9

4.3.2 Algorithmic
Control of the A/D
Board 4-25

4.4 The Circuitry for the A/D Board 4-34

4.4.1 The Analog Signal
Circuits 4-36

4.4.2 Timing
Considerations and
the Controlling
Sequence for the
Analog Circuit 4-52

4.4.3 The Digital
Controller
Section 4-58

4.4.4 A/D Board Circuit
Schematics and
Parts List 4-82

FIVE SUGGESTED SYSTEM CONTROLLER ALGORITHMS

5.1 Introduction 5-1

5 .

2

Algorithm Format for the System
Controller 5-3

5.3 I/O-Board Command Implementation 5-16

SIX SUMMARY 6-1

ii

TABLE OF CONTENTS (cont.)

APPENDIX PAGE

A USING THE DAS WITH SYSTEM CONTROLLER SIMULATOR

A.l Introduction A-l

A. 2 Simulating the System Controller A-2

A. 3 Using the System with the PC
Controller A-5

A. 4 Calibrating the A/D board A-15

B THE PROPOSED COMMAND SET FOR THE DAS B-l

C DESIGN OF ADDITIONAL BOARDS

C.l Introduction C-l

C.2 The Board Design Procedures C-l

D CIRCUIT CONSTRUCTION CONSIDERATIONS AND
COMPONENT LAYOUT

D.l Construction of the system front-end . . D-l

D.2 Construction of the A/D board D-3

E HARDWARE MODIFICATIONS FOR THE 68HC11EVB . . . E-l

F ALGORITHMS FOR SYSTEM TESTING AND MAINTAINENCE
OF PC-BASED SOFTWARE F-l

iii

LIST OF FIGURES

FIGURE PAGE

2.3.1 The block diagram of a DAS consisting of
removable I/O boards 2-4

2.3.2 The DAS including the system front-end
and system bus 2-6

2.3.3 Block representation of the I/O board . . 2-7

2.3.4 A block representation of the I/O-board
bus interface 2-9

2.4.1 Operations performed by system
controller software 2-12

3.2.1 The connections to the system controller
board: the 68HC11EVB 3-3

3.2.2 Top-view of the bus-driver board 3-5

3.5.1 The components of the DAS front-end . . . 3-20

3.5.2 Timing associated with the bus driver
circuit when used with the 68HC11EVB as
the system controller 3-22

3.5.3 A block representation of the bus
driver 3-24

3.5.4 A block representation of the system
clock controller 3-25

3.5.5 A block representation of the system bus
trigger control and interface 3-26

4.2.1 The front panel of the A/D board 4-5

4.2.2 The A/D board address selection switch . . 4-8

4.3.2.1 Examples of data storage during pre-
trigger sample retention 4-30

4.4.1 Block diagram of the A/D board 4-35

iv

LIST OF FIGURES (cont)

FIGURE PAGE

4.4.1.1 The arrangement of the analog signal
components 4-37

4.4.1.2 The arrangement of signal routing relays
between the analog signal components . . . 4-39

4.4.1.3 The operation of the protection circuit
with an overloading signal 4-42

4.4.1.4 A block representation of the non-
intrusive protection system used on the
A/D board 4-43

4.4.1.5 A block representation of the on-board
anti-aliasing filter and its associated
circuitry 4-48

4.4.2.1 Timing diagram for single sample
conversion 4-53

4.4.2.2 Timing diagram for beginning of
acquisition sequence 4-55

4.4.2.3 Timing diagram for the end of an
acquisition sequence 4-57

4.4.3.1 A block representation of the on-board
sample period generator and the sample
clock selector 4-59

4.4.3.2 Block representation of the A/D board's
trigger circuit 4-62

4.4.3.3 A block representation of the conversion
control logic circuit 4-65

4.4.3.4 A block representation of the A/D
board's on-board memory 4-66

4.4.3.5 A block representation of the on-board
address generator 4-67

5.2.1 The allocation of system controller ROM
and RAM 5-7

v

LIST OF FIGURES (cont)

FIGURE PAGE

5.2.2 The software modules which comprise the
system controller 5-9

5.2.3 Operations performed by the system
controller: (a) the interrupt routine
which handles a character when it is
received, and (b) waiting for a
character to be sent from the host 5-11

5.2.4 The sequence of operations performed by
the command dispatcher 5-13

5.3.1 The code space for an I/O-board, as it
is arranged on the board's EPROM 5-19

A. 2.1 The necessary timing when the bus driver
circuit is used with the PCPI and the
interface circuit shown in Fig. A.l ... A-4

A. 4.1 View of the A/D board for location of
calibration components A-19

D.l.l Top view of the system front-end D-2

D.2.1 Top view of the analog circuit board of
the A/D board D-5

D.2.2 Top view of the digital control board of
the A/D board D-8

D.2.3 Component placement details for the A/D
digital board D-10

E.l The wiring modification necessary at the
68HC24 PRU socket aboard the 68HC11EVB
(the 68HC24 is removed) E-2

vi

LIST OF TABLES

TABLE PAGE

3.1.1 Specifications for the DAS system front-
end 3-2

3.3.1 The lines available on the system bus . . 3-7

3.3.2 A summary of the bus driver ports and
their address with respect to the
68HC11EVB 3-9

3.3.3 The assignments for the address and data
bus driver ports 3-10

3.3.4 The bit-wise assignment of bus driver
port A002 3-11

3.3.5 The bit-wise assignment of bus driver
port A004 3-11

3.3.6 Configuration values for bus ports A003
and A007 3-12

3.5.1 The pin out of the system bus, as viewed
from the connecter edge 3-34

4.1.1 Specifications for the A/D board 4-2

4.3.1.1 Register assignments for the A/D board . . 4-10

4.3.1.2 Bit-wise assignment of register o 4-11

4.3.1.3 Bit-wise assignment of register 1 4-12

4.3.1.4 Bit-wise assignment of register 2 4-13

4.3.1.5 Assignments for the A/D board status
register 4-16

4.3.1.6 Bit-wise assignment of register 4 4-18

4.3.1.7 Bit-wise assignment of register 6 4-21

4.3.1.8 Bit-wise assignment for register 11 ... 4-23

LIST OF TABLES (cont.)

TABLE PAGE

4.3.1.9 Bit-wise assignment for register 12 ... 4-23

4.3.2.1 A summary of pre-acquisition controls . . 4-27

4.3.2.2 The data acquisition modes for the A/D
board 4-27

4.3.2.3 Signal sources appropriate for single
conversions 4-33

4.4.1.1 Signal routing logic for the analog
signal 4-40

4.4.1.2 Procedure for nulling I. A. (AD624)
offset errors 4-47

4.4.3.1 The two on-board oscillators and their
respective range of sampling
frequencies 4-61

4.4.3.2 Truth table for sample counter
controller 4-64

4.4.3.3 The conversion control logic truth
table 4-66

4.4.3.4 A/D board register mapping of the
control/status port 4-71

4.4.3.5 The 82C54-2 internal register summary . . 4-75

4.4.3.6 Comparison of sampling frequency, f
s ,

with respect to various crystal
frequencies 4-77

4.4.3.7 Available sampling frequencies, f
s , for

the CS7008 with the 2.4576 MHz crystal
installed on the prototype 4-77

5.2.1 Memory allocation for the 68HC11EVB
(following modifications listed in
Appendix E) 5-5

A.l PCPI/DAS: Routines exclusive to the
DAS/PCPI test routine A-

7

vm

LIST OF TABLES (cont.)

TABLE PAGE

A. 2 PCPI/DAS commands: System controller . . . A-8

A. 3 PCPI/DAS commands: A/D Board commands
for conversion control configuration . . . A-8

A. 4 PCPI/DAS commands: A/D Board commands
for conversion control A-9

A. 5 PCPI/DAS commands: A/D board status
query and data retrieval A-9

A. 6 PCPI/DAS commands: auxiliary commands
for test program A-10

B.l Data acquisition system command summary . B-2

C.l The pin out of the system bus, as viewed
from the connecter edge C-5

D.2.1 Digital board to analog board connector
pin assignments D-ll

ix

LIST OF SCHEMATICS

SCHEMATIC PAGE

3.1 The system controller interface circuit . . . 3-29

3 .

2

The bus driver for data and register/board
addresses 3-30

3 .

3

The bus driver for 16-bit memory addresses and
bus control 3-31

3.4 Interface and control for (a) the system bus
clock, and (b) the system bus trigger 3-32

3.5 System power supply conditioning and
regulation 3-3 3

4.1 The instrumentation amplifier and the overload
detector 4-84

4.2 The on-board anti-aliasing filter and its
associated circuitry 4-85

4 .

3

The signal selection relays and the signal
level trigger detector 4-86

4.4 The sample-and-hold amplifier and the analog-
to-digital converter 4-87

4.5 The on-board sampling period generator, and
the sampling clock selector 4-88

4.6 The trigger source selector and trigger
detection circuit 4-89

4 .

7

The sample counter for the conversion
controller 4-90

4 .

8

The convert-enable circuit and the conversion
pulse generator 4-91

4 .

9

The on-board memory control , including the
data buffer controllers and write-pulse
generator 4-92

LIST OF SCHEMATICS (cont.)

SCHEMATIC PAGE

4 . 10 The on-board memory data source selection
circuit 4-93

4.11 The on-board memory address generator circut 4-94

4 . 12 The on-board memory address source selector
and trigger-address capture latches 4-95

4.13 The on-board memory devices: addresses $0000
-$7FFF 4-96

4.14 The on-board memory devices: addresses $8000
-$FFFF 4-97

4.15 The A/D board status and control registers . 4-98

4.16 The conversion mode decoder and the signal
route decoder 4-99

4.17 The input signal isolation relay control
circuit 4-100

4.18 The logic circuitry and drivers associated
with the signal routing relays 4-101

4 . 19 The gain decoder and drivers associated the
gain control relays 4-102

4.2 The board-error status register and the reset-
pulse generator 4-103

4.21a A/D board front panel LED drivers 4-104

4.21b A/D board front panel LED drivers 4-105

4.22 The digital interface for the 82C54-2 triple
binary counter 4-106

4.2 3 The digital interface for the on-board anti-
aliasing filter 4-107

4.2 4 The board address decoder and board address
selector 4-108

xi

LIST OF SCHEMATICS (cont.

)

SCHEMATIC PAGE

4.25 The read/write control logic for the A/D
board 4-109

4.26 The data buffers between the system data bus
and the A/D board data bus 4-110

4.27 The address buffers between the system data
bus and the A/D board 16-bit memory address
bus 4-111

4.28 The A/D board EPROM circuit 4-112

4.29 The bus power connection for the A/D board . 4-113

4.30 Power supply regulation for the analog signal
board 4-114

A.l The PCPI-to-DAS interface circuit A-3

C.l The suggested circuit for board address
decoding C-6

C.2 The suggested circuit for register read/write
address decoding C-7

C.3 The suggested circuit for buffering the data
from the bus C-8

C.4 The suggested circuit for buffering the 16-bit
address lines from the bus C-9

C.5 The suggested circuit for board presence
identification and board EPROM connection . . C-10

C.6 The suggested method of retrieving power from
the system bus C-ll

xii

ACKNOWLEDGEMENTS

There are numerous people that I must acknowledge.

First, I wish to acknowledge my major professor, Dr.

Stephen A. Dyer, who was responsible for finalizing the

specifications for this project and assisting with its

design throughout its development.

I also wish to thank Dr. Richard R. Gallagher and

Dr. Gale G. Simons for being on my committee.

Two other people in particular deserve

acknowledgement: Ken Boyer and Terry Hull. Mr. Boyer's

assistance with numerous design aspects and Mr. Hull's

suggestions for bus-design and protocol were

indispensable

.

And acknowledgement is certainly in order for my

father, Duane Nigus. My interest in electronics and my

decision to pursue electrical engineering as a career

stems from the many, many hours we spent discussing

electronics when I was young.

And what set of acknowledgements would be complete

without mentioning one's spouse? Special thanks are in

order to my wife, Pamela, whose patience and understanding

during the development of this project made the whole

thing possible.

CHAPTER ONE

INTRODUCTION

The EECE department at Kansas State University

frequently has a need for signal data acquisition.

However, there are few data acquisition systems in the

department. Of the systems presently available, their use

is limited to one type of computer. This is fine when the

data is to be analyzed on the same computer which was

used to acquire it. However, when the data is to be

analyzed on a computer other than the one used to acquire

it, the data must be transferred, which is sometimes a

cumbersome task.

One solution is to outfit every computer in the

department with its own data acquisition system (DAS)

.

However, the cost of this solution is prohibitive.

Another solution is to obtain a DAS that can be used with

any computer. Unfortunately, a flexible, high-quality DAS

of this nature is not commercially available. Therefore,

the purpose of this thesis is to present the design of a

DAS that can be used with many different types of

1-1

computers.

There are many steps involved between the proposal of

the DAS and its use. These steps include:

1) System proposal.

2) Hardware-level design of the system.

3) Construction of the prototype.

4) Testing of the prototype circuit.

5) Development of system control software.

6) Use of the system.

7) Design of additional boards to augment the

system's capabilities.

This thesis covers steps 1 through 4 , and includes

suggestions for algorithms used in step 5.

Before giving a description of the steps taken during

the design of the system, a brief explanation of the

"name" of the system is in order. Throughout this thesis

the data acquisition system is referred to as, for lack of

a better name, the DAS. Strictly speaking, a data

acquisition system and its acronym, DAS, refer to a system

whose function is limited to acquiring data. However,

this system's specifications (which will be presented

shortly) indicate that the system is capable of both

acquiring and generating data which is analog or digital

in nature. Therefore, one must keep in mind that though

the system is called a DAS, the system has many

capabilities beyond what the name implies.

1-2

The first step of this thesis project was the system

proposal. This proposal consisted of a list of desireable

commands and features, which included:

* The DAS must be able to be used with several host

computers (i.e. be host-independent);

* All commands for the DAS, such as, setting sample

rate, selecting triggers, and selecting sample

size, must be able to be provided by the host

computer

.

* The DAS's operating status must be available to

the host computer. This status is to include

information about the presence of a board,

whether the board is waiting for trigger, or

whether the board is ready to send its acquired

data.

* All communication to and from the DAS must be in

7-bit ASCII, and include some means of error

detection.

* The DAS must be expandable in the sense that

additional input/output (I/O) boards, such as

digital-to-analog (D/A) conversion and parallel

I/O, could be used with this system. This

expansion must require a minimum of effort.

* The system should be able to support as many as

16 boards simultaneously.

A proposed set of commands for the system are listed in

Appendix B.

Once the specifications were established in the first

step, the design of the hardware was considered. It was

1-3

important that the hardware design encompassed the

features proposed in the first step, while remaining

flexible enough to permit additional features to be added

later. Chapter 2 of this thesis presents an overview of

the system's hardware-level design, including a discussion

concerning the rationale of the design selected.

The third step of the design was the construction of

the circuits designed in step 2. This step involved

determining the availability of parts, acquiring these

parts, and assembling the circuits. Chapters 3 and 4

provide information about the circuits that were

constructed—Chapter 3 covers the system controller, and

Chapter 4 covers the analog-to-digital conversion board.

In addition, instructions covering the use of the system

are included as Appendix A. Appendix D includes

information about the construction of the prototype

circuit.

The fourth step of the development of the DAS required

testing the prototype circuit. Routines used for these

tests are included as Appendix F.

The remaining steps of the DAS implementation were not

within the scope of this thesis. However, Chapter 5 of

this thesis contains suggestions for algorithms that must

be generated as part of step 5.

1-4

In the event that additional capabilities are desired

for the system, boards may be constructed to facilitate

these needs. A general procedure for board-design is

described in Appendix C.

It is very important to note that the DAS described

herein has many capabilities. The purpose of this thesis

is not to present an exhaustive list of the system's

capabilities, but rather to provide sufficient information

about the system to permit these capabilities to be

utilized.

1-5

CHAPTER TWO

THE DEVELOPMENT OF THE DAS

2 . 1 Introduction

The purpose of this chapter is to describe the

simplest elements of the DAS, and to elaborate on the

rationale of the design chosen. This chapter is divided

into two sections, where the first section describes the

relationship of the system with the host computer, and the

second section describes the inner-workings of the DAS

.

2.2 Host-to-DAS Interface Development

The first important design criterion was that the DAS

was physically independent of the host computer e.g. the

DAS must be housed in an enclosure other than the host

computer. Physical independence also means the DAS is

responsible for its own power supply needs. Therefore,

the only connection between the host computer and the DAS

is a communication link.

The communication link between the host computer and

the DAS serves two purposes. First, the host sends

2-1

messages to the DAS by way of the communication link.

These messages might be commands for the DAS , or they

might be digital data to be converted to an analog signal.

The second purpose of the communication channel is to send

data from the DAS to the host computer. Examples of data

sent from the DAS include: system status information and

data generated during an analog-to-digital conversion

sequence. Hence, the communication link must be

bidirectional

.

The selection of the bidirectional communication link

was very important in order to fulfill the host-

independence requirement of the DAS. Although there are

several excellent bidirectional communication links

available, the one selected for this system was the RS-

232. While certainly not the fastest communication link,

the RS-232 is available on many computers that might serve

as host, including most PC compatibles and the EECE

department's VAX 11/7 50.

Another important design goal specified that the size

of the host computer's DAS controlling software be as

small as possible. This is important when the DAS is

transferred from one type of host computer to another

type: the smaller the host's DAS controller software

demands are, the quicker the DAS can be implemented with a

2-2

new host computer. The duties of the DAS controlling

software is to both compose messages sent to the DAS and

to decipher responses received from the DAS. Therefore,

the size and complexity of the DAS controlling software is

directly related to the complexity of the messages to and

from the DAS.

One way to reduce the complexity of the messages

between the host and DAS was to delegate the duties of

message deciphering to the DAS itself. This reduces the

software duties of the host to composing mnemonic commands

that the DAS can decipher and implement.

The design of the DAS to this point can be summarized

as follows. The DAS is physically independent of the host

computer, such that the only connection with the host

computer is an RS-232 communication link. In order to

reduce the complexity of the host computer's DAS control

software, the duty of deciphering and implementing the

commands was delegated to the DAS.

2.3 Development of the DAS's Internal Structure

The development of the DAS's internal structure took

into account many of the design goals. One of the design

goals specified that signal I/O (both digital and analog)

be handled by removable boards. This permits boards of

varying function and specification to be installed in the

2-3

DAS as they are needed. Specifying that the boards be

removable permits additional boards to be constructed and

used with the DAS as needed. Fig. 2.3.1. illustrates the

design of a system consisting of removable boards and a

communication link with a host computer.

Communication
Link (RS-232)

Data Acquisition System (DAS)

! Board

I/O Board

signal

input

signal

output

Figure 2.3.1 The block diagram of a DAS consisting of
removable I/O boards.

The design depicted in Fig. 2.3.1 requires each I/O

board in the DAS to be responsible for many things,

including:

communication with the host;
decoding command messages;
controlling board-specific-circuitry;
retaining data until retrieved;
assembling return messages to host;
provide power supply conditioning.

2-4

All of these duties could be handled on each board under

the direction of a microprocessor. However, this results

in a good deal of redundancy between boards e.g. the

microprocessor and the RS-232 interface circuit. One way

to reduce this redundancy between boards is to delegate

many of these duties to a central controller. The central

controller, or more specifically the "system front end",

would be responsible for the following:

communication with the host;
decoding command messages for each board;
controlling each board;
assembling and returning messages to host.

In other words, the system front-end is responsible for

receiving commands from the host computer and sending the

appropriate control signals to the I/O boards. The link

between the system front-end and each of the boards is

called the system bus. The system bus consists of data,

address, and other lines necessary to communicate with

each of the boards. A block diagram of the DAS including

the system front-end and the system bus is shown in Fig.

2.3.2.

The DAS includes one or more I/O boards. These

boards are responsible for digital and analog functions,

such as A/D conversion, D/A conversion, and parallel

digital I/O. The I/O boards are controlled by setting

2-5

Host

Computer

Communication
Link (RS-232)

Data Acquisition System (MS)

System
Front-end

System Bus

J I/O Board *

I/O Board

signal

input

signal

output

Figure 2.3.2 The DAS including the system front-end
and system bus.

registers on the boards, and monitored by reading the

board's status registers. Rather than sharing buffer

memory among the boards, memory needed for a particular

board's operation is located on the board itself.

As shown in Fig. 2.3.3, the I/O boards each consist

of three main parts: the bus interface, control and status

registers, and the board-specific circuitry.

The control and status registers provide control and

monitoring of the board-specific circuitry. For example,

the status register on an analog-to-digital (A/D) board

includes status bits corresponding to "trigger received"

2-6

1/0 Board

system
bus

bus
interface

il II

board-specific circuitry

D/A output

Parallel I/O

A/D input

Figure 2.3.3 Block representation of the I/O board,

and "enable acquisition." The control register on an A/D

board has control bits that include "enable trigger" and

"select bus clock."

The board-specific circuitry depends upon the

function of the board. For example, the A/D board has the

necessary circuitry associated with analog-to-digital

conversion and digital circuitry needed to control it.

All I/O boards used with this DAS must have a system

bus interface. This bus interface serves several

functions. First, it acts as a buffer between the bus and

the digital circuitry on the board. Second, it provides

board address decoding. The third function of the bus

2-7

interface is to provide power supply regulation for the

analog circuitry and to provide over-voltage protection

for the digital power. A block diagram of the bus

interface is shown in Fig. 2.3.4.

Since the boards are controlled by the system front-

end, each board's command set must be resident in the

system front-end while the board is in use. It is

unreasonable to require the system front-end control

program to be rewritten every time a new board is

constructed. Therefore, a board's command set is stored

on that board in an EPROM. The contents of this EPROM

must be copied into the system front-end's memory prior to

the using the board. When copied, the board's command set

is joined with the command sets from the other boards

installed in the DAS, and becomes a part of the system's

command repertoire.

Though the "EPROM-copy" routine may seem awkward,

this approach has many advantages. First, all commands

native to a board are stored in that board's EPROM. If

additional commands are to be added to a board, then the

board's EPROM could be removed and reprogrammed to include

the new command. In a similar manner, existing commands

could be modified. Another advantage to the "copy"

approach is that existing programs would not need to be

2-8

system bus

'

t

board
!
address

board-address

comparator

= D Q D D
—

-

data

READ

4-bit DIP switch

board address selection

16-bit data

_, (tri-state when board
is not selected)

~y~$ dat

bidirectional

La buffer

WRITE
read

write

data
direction

memorv addr .

,

t>reeister addr
,

address buffer

I CLOCK

TRIGGER

16-bit memory address

4-bit register address

_p. system clock

-* system trigger

+ 5 (reg)

DGND

-•- -5 vdc digital power

]_ digital ground

! analog

I

voltage

]

regulators

(optional)

"~T~"

-* +v

anaiog power

analog ground

Figure 2.3.4 A block representation of the I/O-board
bus interface.

2-9

modified when a new board was added to the DAS. The new

board's command set would be placed on an EPROM and

installed on that board. The new board would then be

ready to be used in the DAS.

2

.

4 Communication with the System

Commands issued by the host are ASCII characters.

Each command is composed of two characters (A-Z) followed

by any necessary control parameters. A semi-colon (;) is

used as the command terminator. A check sum character is

also appended to the command instruction to identify the

occurrence of an error during transmission. After the

host sends a command to the DAS, the host must wait for an

acknowledgement string (terminated by a semicolon and a

check sum character) from the DAS. If the command sent to

the DAS was a request for I/O-board status, the

acknowledgement string will consist of information

pertaining to the I/O board's status. In the same sense,

if the command sent to the is a configuration command, a

"command receipt" acknowledgement will be returned.

Messages received from the host are stored in a

system front-end memory buffer. After favorable comparison

with the check sum, the first two characters of the

command are compared with the instruction list in the

controller's memory. Once a match is found, the routine

2-10

corresponding to the instruction is executed. After

completing the routine, a return-message is assembled and

sent back to the host. The return-message might be a

simple acknowledgement that the command was received, or

it may be composed of information pertaining to the status

of an I/O board. This sequence of operations is shown in

Fig. 2.4.1.

2-11

(Start)

;

Wait for

j
message

Fill buffer with

incoming message.
The message will

terminate with ".

Evaluate check sum.

If check sum is correct

continue:
else

request resend;

no error
'

Match the received

2-chr command code
with the corresponding

routine

Execute the

appropriate routine

request resend

Assemble a

return message

Generate check sum I

, Send message to user

Figure 2.4.1 Operations performed by system controller
software.

2.5 Conclusion

A data acquisition system has been described which

fulfills many of the design goals that were listed in

Chapter 1. The DAS is controlled by command messages that

are sent from the host computer over an RS-232

communication link. The mnemonic nature of the DAS's

command set reduces the software complexity of the host

computer's system control program. The DAS itself is

composed of a system front-end and I/O boards, all of

which are interconnected by the system bus. The system

front-end is responsible for many things, including

communications with the host computer and I/O board

control. The command set pertaining to a particular I/O

board is stored on that board in an EPROM. Before the

board can be used, this command set is copied into the

system front-end's memory. This command set is then

accessed when a command for that board is received by the

system.

2-13

CHAPTER THREE

THE SYSTEM FRONT-END AND SYSTEM BUS

3.1. Introduction

As described in Chapter 2 , the data acquisition

system consists of a system front-end and removable I/O

boards. The purpose of this chapter is to describe the

system front-end. The specifications for the system

front-end developed for the DAS are presented in Table

3.1.1.

This chapter presents the system front-end in the

following manner. First, the system front-end is

described from a user's perspective. This section is

followed by description of the system bus and a

description of the bus drivers. Following this,

algorithms are presented for bus control. The last part

of this chapter presents the circuits that make up the

system front-end.

3-1

Table 3.1.1 Specifications for the DAS system front-end.

Communication: RS-232, 7-bit, software
handshake, adjustable baud rate

System power: +8 vdc, 2A max.
+20 vdc, 2A max.
-20 vdc, 2A max.
(all power sources may be
unregulated)

Maximum number
of boards supported
simultaneously

:

16

other features: Power for 68HC11EVB is
available on a terminal strip
(+5V, +12V)

;

BNC connectors for system clock
and system trigger;

Over-voltage protection for the
+5 volt bus power;

Bus logic levels: TTL

Bus connectors

:

36/72 (0.1"), Vector part
number R63 6-1

Bus power: +5 volts (regulated)
ground for +5V
+19 volts (unregulated)
-19 volts (unregulated)
ground for ±19V supply

Features: The bus clock and bus trigger
provide means for synchronized
actions between boards.

3-2

3.2. The System Front-end: A User's Perspective

From the user's perspective, the system front-end is

the interface device between the host computer and the I/O

boards. The connection from the host computer to the DAS

is by way of a DB-25 connector, as shown in Fig. 3.2.1.

The system controller board (68HC11EVB) is connected to

Unused DB-25
connector

Reset switch Power for 'EVES

JO pins should be
exposed on this side

68HC11EVB

(component side)

position connector over

first pin on this side **

RS-232 DB-25 connector
to host computer

50-conductor cable

to bus driver

Figure 3.2.1 The connections to the system controller
board: the 68HC11EVB.

the bus-driver board by way of a 50-conductor cable, where

the proper orientation of this connector on the 68HC11EVB

socket is also shown in Fig. 3.2.1. Fig. 3.2.2 shows a

3-3

top view of the bus-driver board, on which the I/O boards

are connected to the system via edge-card connectors.

Power for the system is connected by four color-coded

banana-style connectors. The power supply connection is

made as follows:

RED = +5V
BLACK = GND
YELLOW = +20V
GREEN = -2 0V

Power may be supplied to the system by any power supply

(or supplies) capable of the above listed voltages. The

amount of current needed for the system depends upon the

type and number of boards installed in the system. For

most cases (one and two boards installed) , the Hewlett-

Packard 6236B triple output power supply will suffice. It

is very important that the I/O boards are not installed or

removed while the system power is on.

Power for the 68HC11EVB is supplied by a compression-

type connector on the bus-driver board, where each

numbered connector on the bus-driver board is connected to

its respectively numbered connector on the 'EVB.

An important thing to verify when using more than one

board is that all installed boards have unique addresses.

If two boards have the same address, neither of the boards

will function properly, and damage to the boards is

3-4

w

c
_ >
-S M

— a> o
o

O CD

nn
D, CO

—
o—
>—

<J —

i

a;
•—

'

a u
a ffi

o CO

C
OT

n
o—
X
UJ

!Z> a
p M

CC
X!

M
a)

>H
M
0

a 3

c X!

C) a
p

B
a>— 3
m
>, >m a

ft

M
u [N

0)
11:

tafl m
ti

^ 3~ 0>

O CO

3-5

likely.

Two special bus signals are controllable from BNC

connections made on the system controller: the system

clock and system trigger. The system clock, when enabled,

supplies a clock that can be shared by several boards.

The system trigger provides a means to trigger several I/O

boards simultaneously. Both the system clock and system

trigger signals must be TTL compatible.

3-6

3.3. The System Bus and Bus Drivers

An important part of the DAS is the system bus. As

described in Chapter 2 , all communication between the

system front-end and the boards installed in the system

are made via the system bus. The lines available on the

bus are listed in Table 3.3.1.

Table 3.3.1 The lines available on the system bus.

Bus lines number of bits

board address 4

register address 4

memory address 16
data 16
read/write control 2

bus clock 1

bus trigger 1

power: +5V, +19V, -19V, and numerous grounds

The 4-bit board address permits up to sixteen boards

to be connected to the system simultaneously. The 4-bit

register address permits up to sixteen registers on each

board to be immediately addressable from the bus.

Sixteen bits of memory address are also provided on

the bus. This is useful when addressing on-board memory.

3-7

Memory on a board has its own register (addressed by the

"register address") , and the "memory address" simply sets

the address of the memory accessible from the memory's

register.

Data between the system front-end and the boards is

carried by the 16-bit data lines. This data is written to

or read from the selected board register by appropriate

controls from the read/write control lines. The

read/write control lines consist of a read-strobe and a

write-strobe line. Bus trigger and bus clock both provide

a means for synchronized activity between the boards. And

finally, power for the boards is available on the system

bus. This includes regulated +5V (for digital

applications) , and unregulated +19V (for analog

applications)

.

Each of the bus lines are controlled by the system

controller via read/write operations to the bus driver

ports. A summary of the bus driver ports and their

addresses (with respect to the 68HC11EVB) is given in

Table 3.3.2. The following is a description for each of

these ports

.

The 16-bit data lines and 16-bit address lines on the

system bus are controlled by ports $A000, $A001, $A005,

and $A006. Table 3.3.3 presents the assignments for these

3-8

Table 3.3.2 A summary of the bus driver ports and their
address with respect to the 68HC11EVB.

Address Description

SAOOO
$A001 The "16-bit data" ports.

$A002 The board address and register address
port.

$A003 The configuration port for bus driver
ports addressed at $A000-$A002.

$A004 Bus control lines, including read, write,
and system clock/trigger control

$A005
SA006 The "16-bit address" ports.

$A007 The configuration port for bus driver
ports addressed at $A004-$A006.

ports.

The board address and register address lines are

controlled by bus driver port $A002. Table 3.3.4 shows

how the bits in this port are assigned.

The control lines for the system clock, system

trigger, and the read/write strobe lines are accessed via

bus driver port $A004. The bit-wise assignment for port

$A004 is given in Table 3.3.5. Bits and 1 of bus driver

port $A004 are the read and write strobe, where the

respective line is made active during a read or write

operation to a board register.

3-9

Table 3.3.3 The assignments for the address and data
bus driver ports.

Bit Description

D0-D7 Port $A000: the 16-bit
significant byte;

bus data most

D0" D
7

Port $A001: the 16-bit
significant byte.

bus data least

D0"D7 Port $A005: the 16-bit
significant byte;

bus address most

D0"D
7

Port $A006: the 16-bit
significant byte.

bus address least

note: D for each port
significant bit of that

is the least
byte.

3-10

Bits 4 and 5 of bus driver port $A004 control the bus

trigger line. Bit 4 selects the source of the bus

Table 3.3.4 The bit-wise assignment of bus driver
port $A002

.

Bit Description

The 4-bit board address, D„ is the
least significant bit;

The 4-bit register address, D
4
is the

least significant bit.

note: D„ and D, are the least
significant bits of each 4-bit address.

trigger: when HIGH, the trigger source is the external

trigger connector, and when LOW, the source is bit 5, the

system trigger.

Table 3.3.5 The bit-wise assignment of bus driver
port $A004.

Bit Description

D
o

bus write line, active LOW
D

1
bus read line, active LOW

D
2
-D

3
unused (reserved)

D
4

select external trigger, active HIGH
D
5

system trigger (internal control)
D
6

select external clock, active HIGH
°7 unused (reserved)

3-11

Bit 6 of bus driver port $A004, if HIGH, connects the

external clock signal to the bus clock line. When bit 6

is LOW, the bus clock line floats HIGH.

The bus driver devices must be configured as a part

of initializing the DAS, where ports $A003 and $A007 are

the bus driver configuration ports. The operating mode of

the bus driver devices is determined by the value written

to these ports, and these values are listed in Table

3.3.6.

Table 3.3.6 Configuration values for bus ports $A003
and $A007.

Configuration description value

port $A003 : bus-data
direction = READ form board $92

port $AOoi: bus-data
direction = WRITE to board $80

port $A007: all conditions $80

Note: the bus drivers are inoperative
until ports $A003 and $A007 are
assigned.

NOTE: When ever the bus data direction is changed (bus

port $A003 is written to) , the board and register address

lines are altered and need to be refreshed.

3-12

3.4. Algorithms for System Bus Control

The purpose of this section is to present information

that is important to consider when generating algorithms

for the system front-end. All algorithmic references are

with respect to programs implemented in the system

controller. Please refer to Chapter 5 for information

about the proposed system controller algorithms.

Initialize the bus drivers

Before the bus drivers will function properly, they

must be configured as described in Table 3.3.6.

Initializing the bus drivers is simply a matter of

executing the three following steps (note: order is

important)

.

Step 1: Write $92 to $A003.

Step 2: Write $80 to $A007.

Step 3: Write $3 to $A004.

This initialization routine configures the data lines in

the "read" direction.

Read/Write operations with the data bus

The following is a description of the sequences that

must be performed during a read and write operation with a

3-13

board on the data bus.

Read data from board .

Note: the first three steps listed below are

optional if the addresses have all ready been

set (as is the case during multiple operations

to the same board)

.

Step 1: Set the data direction to READ (write $92 to

$A003)

.

Step 2: Set the 4-bit board address (D„-D
3
of $A002)

.

Step 3: Set the 4-bit register address (D
4
-D7

of $A002)

.

Step 4: Set the 16-bit address line to the memory

address desired ($A005, $A006)

.

Step 5: Set the "bus read" line, D, of $A004, to active

(LOW)

.

Step 6. Read the 16-bit data from the bus data ports

(MSB from $A000 , LSB from $A001)

.

Step 7. Reset the "bus read" line, D, of $A004, to

inactive (HIGH)

.

*** The read operation is complete. ***

Write data to board .

Note: As with the read operations, the first

three steps listed below are optional if the

addresses have all ready been set (as is the

case during multiple operations to the same

board)

.

3-14

Step 1: Set the data direction to WRITE (write $80 to

$A003)

.

Step 2: Set the 4-bit board address (D -Dj of $A002) .

Step 3: Set the 4-bit register address (D
4
-D

7
of $A002)

.

Step 4: Set the 16-bit address line to the memory-

address desired ($A005, $A006)

.

Step 5. Write the 16-bit data to the bus data ports (MSB

to $A000, LSB to $A001)

.

Step 6: Set the "bus write" line, D of $A004, to active

(LOW) , then reset it to inactive (HIGH) . If

necessary, a pause may be inserted before

returning the "bus write" line to inactive,

though in most circumstances no pause is

necessary.

*** The write operation is complete. ***

The system clock

As noted in Table 3.3.1, one of the system bus lines

is the system clock. A BNC-connector aboard the system

front-end provides a means to connect a TTL-compatible

signal to the system clock line. The system-clock bus

line is controlled directly by the signal when D
6
of bus

port $A004 is HIGH; otherwise, set this control bit LOW.

When D
6
of $A004 is LOW, the system bus clock either (1)

floats HIGH (unaffected by the signal at the signal

connected to the system clock connector, or (2) controlled

3-15

by a board connected to the system bus.

The system trigger

A line on the system bus called the system trigger is

useful for simultaneously triggering several boards. The

trigger source for this line may be one of three places,

including: (1) any of the boards connected to the bus;

(2) the system controller; (3) a signal connected to the

system trigger connection on the system controller board.

The operation of the system trigger line is

controlled by two lines addressable from bus driver port

$A004. The following is a description of the steps that

must be taken when the trigger source is one the three

listed above.

system trigger source: an I/O board

The configuration of the system trigger circuitry

permits any open-drain device connected to the system

trigger line to control it. This configuration is

facilitated by the following steps.

Step 1: Set D
4
of bus port $A004 to LOW.

Step 2: Set D
5
of bus port $A004 to HIGH.

system trigger source: the system controller

Using the system controller as the system trigger

source is possible by the following steps.

3-16

Note: Before performing any of the following

steps, all boards must be in a "standby" mode to

prevent premature triggering.

Step 1: Set D
4
of bus port $A004 to LOW.

Step 2: Set D
5
of bus port $A004 to:

LOW if activation-edge is rising edge;

HIGH if activation-edge is falling edge.

Step 3: "Arm" all boards on which triggering is desired.

The trigger sensitivity on each board must be

set in accordance with that selected in Step 2.

Step 4: When the trigger is desired, toggle D
5
of bus

port $A004

.

system trigger source: external signal

The third source for the system trigger is an

external source. This external source is connected to the

system trigger connector on the system controller board.

Note: Before performing any of the following

steps, all boards must be in a "standby" mode to

prevent premature triggering. In addition, the

trigger source must be connected to the system

trigger connection.

Step l: Set D
4
of bus port SA004 to LOW.

Step 2: Set D
5
of bus port $A004 to:

LOW if activation-edge is rising edge;

HIGH if activation-edge is falling edge.

Step 3: "Arm" all boards on which triggering is desired.

The trigger sensitivity on each board must be

set in accordance with that selected in Step 2

.

3-17

Step 4: Set D
4
of bus port $A004 to HIGH. The external

trigger source is now connected to the bus

trigger line, and the occurrence of the edge

selected in Step 2 will trigger each of the

boards.

3-18

3.5. The Circuits of the System Front-end: A Technician's
Perspective

To facilitate the many duties of the system front-

end, it was divided into four sections: the system

controller, the bus driver, the bus trigger/bus clock

circuitry, and the system power supply. These four

sections are collectively responsible for I/O with the

host computer and the digital signals and power present on

the bus. Fig. 3.5.1 illustrates the arrangement of these

components within the DAS front-end, and the following is

a description of each component.

The system controller

A small, single board computer — Motorola's

68HC11EVB — was selected to serve as the system

controller. The 68HC11EVB is an evaluation board for

Motorola's 68HC11 8-bit microcomputer unit (MCU) . This

board has an on-board RS-232 communication port (for host

communication) and sufficient parallel I/O to control the

bus driver. This board also has sufficient memory space

for the controller software [1]. Information about the

system controller algorithms is given in Chapter 5.

Unfortunately, the 68HC11EVB does not have address

and data lines directly available on its expansion

connector. Therefore, modifications shown in Appendix E

were necessary before the 68HC11EVB could be used as the

3-19

ih

S3 >

I

o

2
a

-a ?,

3 -
a r

>1

1 1
3 £

<*)(* <U-
> > > o
O o cc: z:

a
c
0)

I

iJ

c

u

c
(1)

c

a,

S
o
o

0)

A
B

a)

K -J

3-20

system controller.

The interface circuit used to join the 68HC11EVB to

the bus drivers is shown in Schematic 3.1. When the

68HC11EVB is addressing memory between $A000 - $AFFF, the

bus driver is enabled (this address is hard-wired via Ul

and part of U2) . The 3-bit port address is attained from

the three least significant bits of the data when clocked

by the AS line (see Fig. 3.5.2). The port-address latch

(U4) is enabled when EVB_sense is pulled HIGH. An

alternate method to supply the port address is to use

lines marked AO, Al, and A2 — and disable the port-

address latch by pulling EVB_sense LOW. A0-A2 were used

in the prototype circuit described in Appendix A.

The bus drivers

The bus driver is the second component of the system

front-end. Fig. 3.5.3 illustrates the components of the

bus driver in a block-diagram format. Each group of bus

signals is supplied by their own data latch. Data I/O

with the these latches is by way of the 8-bit bus driver

data from the system controller. When a value is being

assigned to a group, the value for the signal group is

latched (or "read from" in the case of the 16-bit data

lines) via the 8-bit bus driver data lines from the system

controller.

3-21

R/W

X

A12 - A15

READ X VALID

ADDRESS/DATA
(multiplexed)

IfRlTE)C

k- 20

3d

)-
100 20

1 t
VAU~ X

~

Notes: 1. These drawings are NOT TO SCALE.

2. All times are in nanoseconds, and should be

reguarded as mimmums

Figure 3.5.2 Timing associated with the bus driver
circuit when used with the 68HC11EVB as the
system controller.

3-22

Signals on the bus are controlled by the system bus

driver. As shown in Schematics 3.2 and 3.3, the system

bus driver is composed of a pair of 82C55A parallel

peripheral interfaces (U5, U6) . These devices each have

three bidirectional 8-bit ports. A reset circuit (Rl, C2)

ensure that the bus drivers reset properly at power up.

All bus lines are high- impedance from the time the system

power is applied until the ports are configured otherwise.

Therefore, 10 kohm pull-up resistors (RN1-RN6) were

connected to each of the bus lines to protect CMOS

circuitry connected to the bus that would otherwise float

with a high-impedance source.

The first 82C55A (U5) bus driver is responsible for

the 16-bit bus data (BD0-BD15) , the 4 -bit board address

(BD_ADR0-BD_ADR3) , and the 4-bit register address

(REG_ADR0-REG_ADR3) . The second 82C55A (U6) bus driver is

responsible for the 16-bit memory address (BA0-BA15) , and

assorted bus control signals.

Bus trigger and clock control

The bus clock and bus trigger circuitry are the third

component of the system front-end. Fig. 3.5.4 illustrates

the duties of the system clock controller.

3-23

dat 3 at c les

W 16-bit system

bus driver

bus data

>
16— bit svstem
bus address

D>
4 — bit board
address

D>
4-bit register

address

D>

svstem clock &
trigger control

bus driver

control register
to from
system .

controller

(6BHCUEVB)

data

Figure 3.5.3 A block representation of the bus driver.

3-24

When the clock connected to the system clock connection is

the desired system clock, this clock signal is connected

to an open-drain gate which puts the signal on the bus

clock line. An open-drain device was used since it

enables other sources on the bus to provide the system

clock (when the system clock connection is not being

used)

.

connect system
clock to bus

system clock

connection f

+5V-f—

t bus clock

open-drain
output

Figure 3.5.4 A block representation of the system clock
controller.

Schematic 3.4(a) shows the circuitry used for the

system bus clock control. An external oscillator (TTL

compatible) may be used as the system clock by connecting

it to the system clock BNC connector (Jl) . This signal is

clamped by a pair of diodes (Dl, D2) to protect the

remainder of the circuit from improper signal amplitudes.

The inverted clock signal is gated by an open-drain NAND

gate (U3c) such that the external oscillator is not

present on the system bus clock line, BUS_CLK, unless

3-25

SEL_EXT_CLK is active. This open-drain gate is pulled

high by a 10 kohm pull-up.

A block diagram for the system bus trigger is shown

in Fig. 3. 5. 5. The control and interface shown in Fig.

3.5.5 enables two triggers sources for the system trigger:

(1) the external system trigger connection, and (2) the

trigger signal from the system controller. Whichever

source is selected, it is connected to the bus trigger by

an open-drain gate. As with the bus clock, the bus

trigger uses an open-drain gate as the bus driver to

permit other boards on the bus to be the source of the bus

trigger.

+ 5V-
system trigger

selection

system trigger

connection

system trigger

t-u.

Rpu

bus trigger

open-drain
from system 1 -±- output
controller

Figure 3.5.5 A block representation of the system bus
trigger control and interface.

As shown in Schematic 3.4(b), a signal (TTL-

compatible) to be used as the system trigger is connected

to the system by way of the system trigger BNC connector

(J2) . As with the clock input, the system trigger input

3-26

is clamped by a pair of diodes (D3, D4) . A multiplexer

implemented in NAND gates (U7c, U7d, U3b) selects between

two trigger sources: (1) the external trigger and (2) the

system controller. The external trigger source is

selected when SEL_EXT_TRIG is active, and the system

controller trigger line, SYSJTRIG, is selected otherwise.

An open-drain NAND gate (U3d) sets the system bus trigger,

TRIG_BUS, to the logic level of the selected trigger

source.

System power supply

The DAS power supply is the fourth component of the

system front-end. This power supply is responsible for

providing power to the system bus, as well as power for

the 68HC11EVB. Voltages available on the bus include +5

volts (regulated) accompanied by a digital ground, and ±18

volts (unregulated) accompanied by an analog ground. The

68HC11EVB requires ±12 and +5 volts.

As shown in Schematic 3.5, +20 volts and -20 volts

are supplied to the system via two banana jacks (J3, J4)

.

Since the power to the system is provided by the user with

banana connectors there exists a chance for reverse

polarity. Therefore, a bridge rectifier (BR1) was placed

between the power supply connections and the system bus to

ensure proper polarity despite user negligence. The ±19

3-27

volt system bus power are the outputs of this bridge

rectifier.

As mentioned, the system controller (68HC11EVB)

requires three different voltages, ±12 and +5 volts.

The +12 volt supply is provided by a 7812 regulator (U8)

,

and the -12 volt supply is provided by a 7912 regulator

(U9) , both of which are regulated from the ±19 volt supply

on the system bus. The +5 volts is provided by the system

bus's +5 volt supply.

The system's +5 volt power source is supplied by an

LM323 regulator (U10) , which regulates an external power

source (V
jn

> 8 volts) down to 5.0 volts. A crowbar

circuit (for overvoltage protection) is provided on the

output of the LM323. The crowbar circuit is composed of a

2-amp fuse (Fl) , a 5.6 volt zener diode (D5) , and a

sensitive-gate SCR (SCR1) . When the voltage at the output

of the LM3 2 3 exceeds 5.6 volts, a voltage appears at the

SCR's gate, thus latching the SCR. The short circuit on

the LM323's output results in a high current through the

fuse which breaks the circuit.

Schematics of the front-end circuitry

The circuits which make up the system front-end are

shown in the following schematics. Also, the connections

to the bus are shown in Table 3.5.1. Following the

schematics is the parts list for these circuits.

3-28

u 1JE3

o
u
to

•u
u
0)

*J

c

o

*J

c
o

a

•p

IB

>.
0)

g
4=

-P
IB

E
0)

-C
o
tn

3-29

CI
*5V

_t.

SC.RD-
f)

SC_WR- 3fi1

SC_AO 9
3C_A1 8

SC DO 34
5C_D1 33
SC_D2 32
SC_D3 31
SC_D4 30
SC_D5 29
SC_D6 28
SC.D7 27

>H

GND Vcc

CS»

RD"
WR»

AO
Al

DO

Dl
D2
'):')

D4
D5
D6
D7

U5

RESET

+ 5V -

C2 P 1 uF

Rl

35

AO
Al
A2
A3
A4
A5
A6f
A7t

BOf
Bi '

32'

B3
B4
B5

4

^B

22_

24_

37-

CO
CI

C2
C3
C4
C5
C6
C7

UL

RN2-RN4

10k

-•- to RESET on L'6

BD8
BD9
BD10
BD11
BD12
BD13
BD14
BD15

BDO
BD1
BDZ
BD3
BD4
BD5
BD6
BD7

BD ADRO
BD ADR1
BD ADR2
BD ADR3
REG ADRO
REG ADR1
REG ADR2
REG ADR3

Schematic 3.2 The bus driver for data and
register/board addresses.

3-30

+ 5V

C3

r
U2e

SC^RD- 5 .

SC^WR- 3fi

SC_AO 9
SC_A1 8

SC_DO 34
SC_D1 33
SC_D2 32
SC_D3 31
SC_D4 30
SC_D5 29
5C_D6 28

»—#-
SC_D7 27

+ 5V

3 ,,

2

1

40
39
38
37

18

19

20

21

22 "

23
24

25

14

15

16

17

13

12

11

10

RN4-RN6

BUS TO*
BUS.RD*
(nc)

(nc)

SEL EXT TRIG

SYS.TRIG
SEL EXT CLK
(nc)

BA8
BA9
BA10
BAH
BA12
BA13
BAH
BA15

BAO
BA1
BA2
BA3
BA4
BA5
BA6
BA7

from reset circuit shown

with U5

Schematic 3.3 The bus driver for 16-bit memory
addresses and bus control

.

3-31

(a) the system bus clock circuit

SYSTEM
CLOCK
CONNECTION

Dl

+ 5V

4_
f5V

R3 K4

R2
Jl (9 wv • |

1

—

{
100 I

D2
i

10k .

U7a U3c £ 1Qk

sel_extj:lk —

a >>
3

BUS_CLK

(b) the system bus trigger circuit

SYSTEM
TRIGGER
CONNECTION

+ 5V

D3I *
I 10k

R5
R6 U7c

100
I

D4 5

U7d

i0k>R7

SEL EXT TRIG -

U3d TRIG BUS

U7b

Schematic 3.4 Interface and control for (a) the system
bus clock, and (b) the system bus
trigger.

3-32

-20V

(1A, max)

Common Ground

loj

1 I) 1 3

BBHC11FVB
7812 U8 power terminal

0.1

J5 —

C6'

o l _

U9
7912

CONE

i-lZ V

GND

-12 V

e5V

Fl LM323 1N4734

J6 2A. fast C8 C9 5V. 3A CIO 5 6 V, 1W gCR1
«—»- +5V reg

A to bus
+ 8V

(3A, max

I.M323

Vin n 1 Q Vout

GND

0.1 0.1

S20S0R \[°]

[_ D5J S2060B *

]

-

R7 l Jen
68 ohm>

DGND

ease = GND

Schematic 3.5 System power supply conditioning and
regulation.

3-33

Table 3.5.1 The pin out of the
system bus, as viewed
from the connecter edge.

DGND 1 72 DGND
AGND 2 71 AGND
+19V 3 70 + 19V
AGND 4 69 AGND
-19V 5 68 -19V
AGND 6 67 AGND
DGND 7 66 DGND
BD ADRO 8 65 BD ADR1
BD ADR2 9 64 BD ADR3
REG ADRO 10 63 REG ADR1
REG ADR2 11 62 REG ADR3
BAO 12 61 BA1
BA2 13 60 BA3
BA4 14 59 BA5
BA6 15 58 BA7
BA8 16 57 BA9
BA10 17 56 BA11
BA12 18 55 BA13
BA14 19 54 BA15
DGND 20 53 DGND
BDO 21 52 BD1
BD2 22 51 BD2
BD4 23 50 BD4
BD6 24 49 BD6
BD8 25 48 BD8
BD10 26 47 BD10
BD12 27 46 BD12
BD14 28 45 BD14
DGND 29 44 DGND
BUS CLK* 30 43 (reserved)
RD* 31 42 (reserved)
WR* 32 41 BUS TRIG*
DGND 33 40 DGND
+5V (REG) 34 39 +5V (REG)
+5V (REG) 35 38 +5V (REG)
DGND 36 37 DGND

3-34

Parts list for System Controller Board

BR1 100 PRV Bridge Rectifier, 2A

CI 0.1 uF monolithic capacitor, 50V
C2 1.0 uF tantalum, 35V
C3 0.1 uF monolithic capacitor, 50V
C4,C5 47 uF electrolytic capacitor, 35V
C6,C7 0.1 uF monolithic capacitor, 50V

C11-C13 0.1 uF monolithic capacitor, 50V

D1-D4 1N4148 switching diode
D5 1N4734 5.6V zener diode, 1W

Fl Fuse, 2A fast-blow

J1,J2 BNC (chassis-mount female)
J3-J6 banana (female)

(all resistors 1/4 W, 5% unless otherwise noted)

Rl 100 ohm
R2,R3 10 kohm
R4 100 ohm
R5,R6 10 kohm
R7 68 ohm

RN1-RN6 10 kohm x 9 resistor network

SCR1 S2060B sensitive-gate SCR, 4A

Ul 74HC08 quad 2-input AND
U2 74HC04 hex inverter
U3 74HC03 quad 2-input NAND, open-drain
U4 74HC573 octal latch
U5,U6 82C55A PPI
U7 74HC00 quad 2-input NAND
U8 7812, +12V regulator, 1A
U9 7912, -12V regulator, 1A
U10 LM323, +5V regulator, 3A

3-35

CHAPTER FOUR

THE ANALOG-TO-DIGITAL BOARD

4.1. Introduction

One of the design goals of the DAS project was to

design and construct an I/O board suitable for analog-to-

digital conversion. The purpose of this chapter is to

describe the board designed for this purpose: the A/D

board. The specifications for the board described in this

chapter are presented in Table 4.1.1.

The presentation of the A/D board is divided into

several sections. The first section provides a user's

perspective of the A/D board. The second section gives

information pertaining to programming the A/D board: a

programmer's perspective. The third section presents the

circuits that compose the A/D board: a technician's

perspective.

4-1

Table 4.1.1 Specifications for the A/D board.

SIGNAL-RELATED SPECIFICATIONS

signal type: bi-polar differential

maximum signal amp-

litude (gain = 1): ± 5.000 volts

Input:

resistance

capaci tance

10
9
ohm

10 pF

gain selections: 1, 10, 100, 200, 500

Bandwidth limitations

(small signal = -3dB) 100 kHz

(gain = 200)

50 kHz

(gain = 500)

CMRR: >120 dB a 60 Hz

additional signal-related features:

* on-board programmable anti-aliasing filter (the Crystal CS7008

8th-order swi tched-capacitor filter)

* signal input overload protection

ANALOG-TO-DIGITAL CONVERSION

resolution: 12-bit, 2's compliment

max. conversion rate: 150,000 samples/second

CONVERSION CONTROL

three trigger sources:

signal trigger: signal-level sensitive, where the trigger level is

front-panel adjustable. Trigger may be configured

to occur when signal is negative- or positive-

going.

bus trigger: edge- sensitive (rising or falling)

front-panel

trigger: TTL- compatible (input is protected); edge-sensitive

(rising or falling)

4-2

Table 4.1.1 Specifications for the A/D board (cont)

.

CONVERSION CONTROL (cont.

)

three clock sources:

bus clock: conversion occurs on the falling edge of the bus

clock; the frequency of the bus clock must not

exceed 150 kHz.

front panel

clock: TTL-compatible (input is protected); conversion

occurs on the falling edge of the clock; the

frequency of the front panel clock must not exceed

ISO kHz.

on-board

clock: selectable from two clocks: one for conversion

rates 0.2 - 100 Hz, and the other for rates 100 -

150 kHz. Each clock is adjustable by way of a 16-

bit binary counter.

conversion modes: convert immediately, convert on trigger, convert on

trigger with pre-trigger sample retention

ON-BOARD MEMORY

memory size: 6AK x 16-bit

(Note: The sum of pre -trigger and post-trigger samples may not

exceed 64K.)

BUS INTERFACE

Compatible with the DAS interface described in chapter 3.

POWER REQUIREMENTS

+5V, regulated, 1A maximum;

+19V, unregulated, 600 mA maximum;
-19V, unregulated, 600 mA maximum.

4-3

4.2. The User's Perspective of the A/D Board

The A/D board provides analog-to-digital conversion

for the DAS described in Chapter 3 . This board

encompasses all of the features listed in Table 4.1.1.

Using the A/D board is simply a matter of installing the

board in an unused bus connector and commanding the board

by way of commands issued by the host computer. A

suggested list of commands for the A/D board are listed in

Appendix B.

Care of the A/D board

Before installing the A/D board, please consult

Chapter 3 for instructions regarding board insertion and

removal. The A/D board is precision electronic equipment

and should be handled with care at all times, especially

when installing and removing it from the system front-end.

When the A/D board is not in use, it should be removed

from the system and stored in a safe place, preferably in

an anti-static package.

A/D board front panel description

A survey of the A/D board's front panel, shown in

Fig. 4.2.1, reveals many of the board's features. The

components of the A/D board front panel are described as

follows.

ADJ1 A triggering option is "signal level", and ADJ1

provides an adjustment for this level. The

4-4

C0N1

ADJ1

signal input

waiting for trigger Q
acquisition

in progress Q -^7""

complete O "

downloading Q -

+FS

external trigger

signal trigger >

level adjust . Q-

external clock

LEDl

LED2

LED3

LED4

LED5

LED6

LED7

LED8

C0N2
LED9

C0N3

C0N1

Figure 4.2.1 The front panel of the A/D board.

signal trigger level is variable from the most

negative (-FS) to the most positive (+FS)

measurement in the converter's range.

The signal which A/D conversions are to be made

is connected to the isolated BNC connector,

CON1. To obtain conversions of the highest

caliber, use high-quality cables suitable for

differential measurements.

4-5

C0N2 External TTL-level trigger sources unique to the

A/D board are connected to the BNC connector,

C0N2. The ground of this connector is common to

the system digital ground.

C0N3 The external TTL-level clock sources are

connected to the BNC connector, C0N3 . As with

C0N2, this connector's ground is connected to

the system digital ground.

LED1 Illumination of LED1 indicates one of two

things: the board is not properly configured,

or the signal at C0N1 has overloaded the board's

conversion circuit. If this LED illuminates

while data is being acquired, the user must

reset the A/D board from the host computer

before conversion will continue.

LED2 LED2 indicates the board is in a non-conversion

mode.

LED3 This LED illuminates when C0N1 is enabled i.e.

the signal present at C0N1 is coupled to the

conversion circuitry.

LED4 LED4 indicates the board is "armed" i.e. waiting

for a trigger. This LED extinguishes once the

trigger is received.

LED5 The acquisition sequence is in progress while

LED5 is illuminated.

LED6 LED6 illuminates when the acquisition sequence

is complete.

LED7 This LED flickers while data is being retrieved

from the A/D board's memory.

4-6

LED8 LED8 illuminates when the trigger source is the

external trigger connected to C0N2

.

LED9 LED9 illuminates when the clock connected to

C0N3 is the conversion clock for the board.

The effects of circuit protection on data acquisition

The amplifier to which the external signal is

connected is very sensitive to overloads, and is therefore

equipped with an overload sensor. When the sensor is

activated, the signal is disconnected from the amplifier

and ceases the acquisition sequence. This disconnection

occurs when the external signal's magnitude exceeds TWICE

the full scale range. If a signal has a good deal of

transients, the sensor may be deactivated (via software

control) , however, this leaves the input amplifier

completely at the mercy of the user.

Setting the board address of the A/D board

The board address of the A/D board is determined by

the setting of the 4-station DIP switch on the A/D board.

Fig. 4.2.2 illustrates the orientation of the board

4-7

. .

ON
i

X X

V X X

4 3 2 1

Switch Value

<== "1" 1 2°

<== "0"
2 2

3 2
Z

4 2
3

As shown

,

the address
is

2
3 + 2

1 = 10 dec.

Figure 4.2.2 The A/D board address selection switch.

address switch. As shown in Fig. 4.2.2, if the switch is

in the "off" position, that bit is counted (see example in

Fig. 4.2.2). As mentioned in Chapter 3, it is very

important that no two boards installed in the system share

the same board address, as this would result in damage to

the boards.

4-8

4.3. The A/D from a Programmer's Perspective

The purpose of this section is to present various

aspects of programming the A/D board. This includes the

A/D board register set and considerations that should be

made when composing control algorithms.

4.3.1. The A/D Board Register Set

The A/D board is controlled and monitored by

register-oriented operations. The purpose of this section

is to describe each of the A/D board's registers and their

function.

Like all other boards compatible with the DAS, I/O

between the system controller and the A/D board is via

register operations. The A/D board has ten of sixteen

possible registers. Table 4.3.1.1 lists the A/D board

registers and their address. The description of each of

the A/D board registers follows.

4-9

Table 4.3.1.1 Register assignments for the A/D board.

Address Register Name Data
Direction

A/D board EPROM
and board presence
indicator.

read

1 On-board sample memory read/write

2 Counter register read/write

3 Board status read

4 Board control #1 read/write

5 Trigger address read

6 On-board programmable
filter

read/write

7 A/D single conversion
register

read/write

11 Control/status chip
configuration register

read/write

12 Board control #2 read/write

This
board's

register is reserved on all boards for the
EPROM and board presence indicator.

Register 0: A/D board EPROM and board presence indicator

In accordance with the system specifications,

register has two purposes. First, the presence of the

board can be verified by reading the most significant bit:

a LOW means a board is present. Second, reading the least

4-10

Table 4.3.1.2 Bit-wise assignment of register 0.

Data Bits Description

EPROM data

(reserved)

board presence indicator ("0"
= "board present")

significant byte retrieves data from the board's program

EPROM, where the controlling programs for the A/D board

are stored. The bit-wise assignment of register is

given in Table 4.3.1.2.

To verify presence of the board:

1) read the most significant byte (D
8
-D

15) of

register ;

2) if D
15

is LOW ("0"), the board is present.

To load A/D board controlling programs from the

board's EPROM:

1) set the "bus memory address" to the memory

address that is to be read;

2) read the EPROM data—the least significant byte

(D -D
7) of register 0.

3) repeat steps 1 and 2 until the complete set of

control programs has been read.

Register 1: On-board memory access

The purpose of on-board memory is to store acquired

samples during the acquisition sequence until they can be

4-11

retrieved by the host. Retrieval of the samples is

accomplished by reading the sample data from register 1.

Additionally, on-board memory may be written to via

register 1. This permits other boards to utilize the A/D

board's memory, and it enables the on-board memory to be

tested. The bit-wise assignment of register 1 is given in

Table 4.3.1.3.

Table 4.3.1.3 The bit-wise assignment of register 1.

Data Bits Description

On-board memory

Note: When A/D converter data
is stored in D -D

15
; D -D

3

are always "0".

The 16-bit "memory address lines" on the bus set the

address of the memory that register 1 is accessing.

NOTE: ATTEMPTS TO WRITE TO REGISTER 1 WHILE THE

BOARD IS IN A NON-STANDBY MODE ARE IGNORED BY

THE A/D BOARD.

Register 2 : interval timer/post-trigger sample counter

Three 16-bit counters are used on the A/D board, and

control of each is accessible via register 2. Register 2

is actually a multi-purpose register, where the counter

being written to (or read from) is determined by "counter

selector" found on control #2 (register 12) . The bit-wise

data assignment for register 2 is given in Table 4.3.1.4.

4-12

The following section details the procedure for

reading from or writing to a counter via register 2

.

1) Set the "counter selector" on control #2 to the

"counter control register".

Table 4.3.1.4 The bit-wise assignment of register 2.

Data Bits Description

Do"D7

D8-D
15

(reserved)

8-bit counter data

2) Depending upon which counter is being addressed,

write the appropriate value to register 2 given

in the following list:

counter name write value

sample period generator $14
digital one-shot $52
post-trigger sample counter $90

3) Set the "counter selector" on control #2 to the

counter being addressed.

4) Write (read) the least-significant-byte (LSB) of

the counter to (from) register 2.

5) Set the "counter selector" on control #2 to the

"counter control register".

6) Depending upon which counter is being addressed,

write the appropriate value to register 2 given

in the following list:

4-13

counter name write value

sample period generator $24
digital one-shot $62
post-trigger sample counter $A0

7) Set the "counter selector" on control #2 to the

counter being addressed.

8) Write (read) the most-significant-byte (MSB) of

the counter to (from) register 2.

Each counter has a unique function. The 16-bit value

written to a counter is determined in the following

procedures

.

1. Sample Period Generator

The purpose of the sample period generator is to

divide the A/D board's internal clock to provide a

desired sampling frequency. The 16-bit binary value

written to the sample period generator is the closest

integer given by

value = ...(4.1)

samp

where f is the frequency of the on-board

oscillator, DIV is the oscillator pre-divider, and

f is the desired sampling rate, in Hertz. The

4-14

value for DIV in Eq. 4.1 is determined by the clock

selected in control #1, where DIV is given by

Clock selected DIV

internal, hi-speed 2

internal, lo-speed 1024

2 . Digital one-shot

The purpose of the digital one-shot is to generate a

pulse for the conversion circuitry. The width of

this pulse is controlled by this counter, which is

given by

n

Vs. =
1

(seconds)
5 * 10*

where n is the 16-bit binary value stored in the one-

shot counter, and t
lse

is the pulse width, in

seconds. The value for this counter is usually

assigned when the A/D board is initialized.

3 . Post-trigger sample counter

The purpose of this counter is to count the number of

conversions that are made, and to stop the conversion

sequence when the requested number of samples have

4-15

been acquired. Therefore, the value assigned to this

counter is given by

N = Samples - 1

where Samples is the number of post-trigger samples,

and N is the number assigned to the counter.

Register 3 : status

Information concerning the status of the A/D board

may be obtained by reading register 3 and comparing the

contents of the register with the bit-level descriptions

as described in Table 4.3.1.5.

Table 4.3.1.5

BIT SIGNAL

seq_end*

Assignments for the A/D board status
register.

ACTIVE SIGNAL DESCRIPTION

bd error* LOW this signal becomes active
when:

1) power is first applied
to the board,

2) power is absent from the
board,

3) signal input is severely
overloaded.

LOW this signal becomes active
when the acquisition
sequence is completed i.e.
the desired number of
samples have been acquired.

4-16

trig_recvd* LOW this signal becomes active
when the trigger has been
received. The trigger
selection parameters are
determined by the control
registers.

mem_cycle* LOW

a/d_eoc

unused

This signal becomes active
when the on-board memory
has recycled while waiting
for the trigger. This is
useful for determining the
starting address of a pre-
trigger acquisition data
sequence

.

HIGH This signal is a duplicate
of the analog-to-digital
(A/D) converter status bit.
This signal is useful when
data acquisition is managed
by an external controller.
The A/D is finished
converting when this signal
is active.

n/a Reserved.

Register 4: control #1

Register 4 is the first of two control registers on

the A/D board (control #2 is register 12) . As the name

implies, the contents written to this register control

various aspects of the A/D board. The bit-wise assignment

for register 4 is given in Table 4.3.1.6. Follows is a

description of each of the controls accessible via control

#1.

4-17

Table 4.3.1.6 Bit--wise assignment for register 4

.

Data Bits Description

D0"D
7

VD
15

Control #1 data (register 4)

(reserved)

Conversion Mode

Value Description

standby (no conversion activity)

1 convert immediately

1 convert on trigger (no pre-trigger
acquisition)

1 1 convert on trigger (with pre-trigger
acquisition)

On reset, the board mode is set to standby.

4-18

Trigger selection

Value Description

select SIGNAL trigger input for trigger
source

select SIGNAL trigger input for trigger
source -AND- pull down bus trigger
simultaneously

select BUS trigger input for trigger
source

select PANEL trigger for trigger source

On reset, the trigger mode is set to SIGNAL trigger.

Trigger edge selection

If a trigger dependent conversion mode is selected (via

board mode) this bit selects the appropriate edge on which

conversion will occur.

Value Description

trigger on POSITIVE GOING edge

1 trigger on NEGATIVE GOING edge

On reset, the trigger edge is set to POSITIVE going edge.

4-19

Clock source selection

Value Description

internal, hi-speed (100 Hz - 150 kHz
sampling)

1 internal, low-speed (0.18 Hz - 100 Hz
sampling)

1 Bus clock.

1 1 Front panel clock.

On reset, the clock select is set to internal hi-speed
clock.

Filter enable

This control bit determines whether or not the on-

board anti-aliasing filter is in the analog signal path.

Removal of the anti-aliasing filter may be desireable if

an external filter is being used.

Value Description
D7

filter is removed from signal path

1 filter is included in signal path

On reset, the filter is removed from the analog signal
path.

4-20

Register 5: trigger address

The 16-bit address of the sample acquired when the

trigger occurred is determined by reading register 5.

Retrieval of the contents of this register permits the

address of the beginning of the pre-trigger samples to be

calculated.

Register 6: on-board filter

Register 6 is the on-board anti-aliasing filter

configuration register. Programming the filter requires

the placement of coefficients in the filter's

configuration memory. Details for programming the filter

are given in [2]. The on-board filter configuration

memory may be both written to and read from. Reading the

filter configuration registers is useful for verifying the

receipt of the coefficients. The bit-wise data

assignment for register 2 is given in Table 4.3.1.7.

Table 4.3.1.7 The bit-wise assignment of register 6.

Data Bits Description

(reserved)

6-bit filter coefficients

(reserved)

4-21

The address to which the coefficients are written is

determined by the six least-significant-bits of the 16-bit

bus address lines, A^ - Aj.

Register 7: A/D single conversion register

The purpose of register 7 is to permit immediate data

conversion by the A/D converter (while the A/D board is in

the standby mode) . The procedure is as follows:

1. Initiate an analog-to-digital conversion by writing

to register 7 (value written is unimportant) . This

causes a conversion to occur.

2. When the end-of-conversion flag (present in the

status register) becomes active, the converted data

may be retrieved by reading register 7. The A/D

conversion value is a 2's compliment, 12-bit value

spanning the full 16-bit data lines, D -D
15 , where the

sign bit is D
15

. D -D
3
are always zero.

Register 11: Control/status register configuration

The control registers and status register are all

elements of a common electrical component on the A/D

board: an 82C55A Parallel Peripheral Interface. The

nature of the 82C55A necessitates that when it is powered-

up, it must be configured before the control registers are

operational. Register 11 is the register to which the

configuration control word is written, and the bit-wise

arrangement of this register is given in Table 4.3.1.8.

4-22

Table 4.3.1.8 Bit-wise assignment for register 11.

Data Bits Description

configuration register

(reserved)

The configuration control word for the control/status

register is $82. This value is in accordance with

information found in [3].

Register 12: control #2

Register 12 is the second of two control registers on

the A/D board (control #1 is register 4) . As with control

#1, the contents written to this register control various

aspects of the A/D board. The bit-wise assignment for

register 12 is given in Table 4.3.1.9. Follows is a

Table 4.3.1.9 Bit-wise assignment for register 12.

Data Bits Description

Control #2 data (register 12)

(reserved)

description of each of the controls accessible via

control #2

.

4-23

Signal source selection

Value Description
D, D„

external signal removed, instrumentation
amplifier's inputs are shorted

1 external signal

1 (reserved)

1 1 signal trigger level

On reset, the external signal is removed.

Gain selection (control register bits 2. 3. 4)

Value Description

gain =1 (± 5.000 V)

1 gain = 10 (± 500 mV)

10 gain = 100 (± 50 mV)

11 gain = 200 (± 25 mV)

10 gain - 500 (± 10 mV)

On reset, the gain is set to 1.

4-24

Counter selector for register 2

Register 2 descriptionValue
D
6 °5

1

1

1 1

sample period generator (counter 0)

digital one-shot (counter 1)

post-trigger sample counter (counter 2)

counter control register

On reset, register 2 is the sample interval timer.

Overload protection enable/disable

This control bit determines whether or not the

overload protection circuit is activated. This protection

should always be in place except when occasional

transients are known to be of short duration.

Value Description
D7

protection circuit activated

1 protection circuit defeated

On reset, the protection circuit is activated.

4.3.2. Algorithmic Control of the A/D Board

This description of controlling the A/D board is

divided into four sections: initializing the board, pre-

acquisition set-up, acquisition of data, and retrieval of

data.

4-25

Initializing the A/D board

The A/D board must be initialized prior to its use.

This initialization consists of the following steps:

1) Write the configuration value register 11 ($82).

2) Switch the conversion mode (control #1) to

"convert immediately" and switch back to "standby"

.

This clears the board error status.

3) Load the counters with the following values:

counter initial value

sample period generator 2500 (dec)
one-shot 4

sample counter 1000 (dec)

This sets the board for 1000 samples at a sampling

rate of 1 kHz, and an 8 00 ns conversion pulse width.

Following this initialization, the board is ready to be

set-up for data acquisition.

Pre-acouisition set-up

There are numerous controls that may be adjusted

prior to an acquisition sequence. Table 4.3.2.1 lists the

controls and identifies the control register on which they

are located. Another pre-acquisition control which must

be set is the pre-trigger sample counter. In addition, if

the on-board anti-aliasing filter must be programmed if it

is to be used.

4-26

Table 4.3.2.1 A summary of pre-acquisition controls.

pre-acquisition control control register

on-board filter enable/disable
sampling clock
overload protection

circuit enable/disable
signal gain
signal selection = "external"

Acquisition of data

Data may be acquired in four different modes. These

four modes are presented and described in Table 4.3.2.2.

Table 4.3.2.2 The data acquisition modes for the A/D
board.

conversion mode description

immediate acquire the number of samples
specified by the sample
counter immediately

on-trigger same as immediate, except
acquisition begins at the
receipt of trigger from the
selected source

on-trigger w/
pre-trigger acquisition begins immediately

and does not stop until the
number of post-trigger samples
equals the number of samples
specified by the sample
counter

single sample one conversion is made

4-27

The A/D board's conversion mode is established by the

value written to the "conversion mode" field of control

register #1.

The status of the acquisition sequence is indicated

by two status bits in the status register. If the

conversion mode is trigger dependent, the "trig_recvd*"

status bit becomes active when the trigger is received.

When the "samp_ser_end*" status bit becomes active, the

acquisition sequence is completed—the data is ready to be

retrieved.

retrieval of data

The final step of the conversion process is the

retrieval of the acquired data. Retrieving the data is

simply a matter of reading the data directly from the A/D

board's on-board memory via register 1. The steps

required for data retrieval are as follows:

1. set the board conversion mode to "standby";

2

.

determine the starting address for the samples

(this procedure is described following this list)

;

3

.

set the 16-bit address on the bus to the starting

address

;

4

.

read register 1 . . . this 16-bit number is the

sample value;

5. increment the 16-bit address on the bus and

repeat step 4 until the total number of samples

requested have been retrieved.

4-28

If the conversion mode was "immediate" or "trigger (not

with pre-trigger) " , the starting address is always 0001.

Calculating the starting address for the pre-trigger

acquisition mode requires a few more steps. Fig. 4.3.2.1

provides an illustrative example of the three different

situations that can occur when acquiring pre-trigger

samples. As shown in Fig. 4.3.2.1, samples acquired prior

to the receipt of the trigger are stored sequentially

throughout the sample memory e.g. samples are stored in

(hexadecimal addresses) FFFE, FFFF, 0, 1 The

acquisition sequence ends after the number of post-trigger

samples have been acquired following the receipt of the

trigger. The procedure for calculating the starting

address for the pre-trigger acquisition mode is done in

the following sequence:

1) retrieve the memory address of the sample that

was acquired at the same time the trigger was

received (read this value from register 5 and call

this value trig_addr) ;

2) Call the number of pre-trigger samples requested

num_pre_trig ;

IF trig_addr > num_pre_trig

THEN, from Fig. 4.3.2.1, case 1 has

occurred. The starting address of the

first pre-trigger sample is given by

4-29

If the number of samples requested is

pre-trigger = 1000
post-trigger = 1000

one of these three conditions can occur:

case 1

sample
memory ooo

start _

c ase Z case 3

sample

:__

memory cycle = ?

pre-trigger = 1000
post-trigger = 1000

memory cycle - NO
pre-trigger = 500
post-trigger = 1000

memory cycle = YES
pre-trigger = 1000
post-trigger * 1000

!

:'

;

• ../ -1 pre-trigger samples g|§§|§|] post-trigger samples

x—

*

location where trigger occured

memory cycle is a condition flag that indicates the sample
memory has recycled while waiting for the trigger

start is the place where pre-trigger samples begin.

Figure 4.3.2.1 Examples of data storage during pre-
trigger sample retention.

4-30

addr_pre_trig = trig_addr - num_pre_trig

where addr_pre_trig is the address of

the first pre-trigger sample.

IF trig_addr < num_pre_trig

THEN, from Fig. 4.3.2.1, case 2 or 3 has

occurred. First, determine if memory

has cycled by examining the status

register's memory cycle flag (D
3
of

register 3)

.

If memory has NOT cycled (D
3
=

INACTIVE) , case 2 has occurred, and

addr_pre_trig = 0001.

Note that the actual number of pre-

trigger samples is NOT the number

reguested, but is instead given by

num_pre_trig = trig_addr.

Otherwise, if memory has cycled (D
3
=

ACTIVE) , case 3 has occurred, and the

starting address of the pre-trigger

samples is given by

addr_pre_trig = trig_addr - num_pre_trig

.

4-31

The single-sample conversion mode

A special mode of conversion is the single-sample

conversion mode. An acquisition of a single sample is

useful for several purposes, including: retrieval of

signal-trigger level, obtaining an offset measurement for

the analog circuit, and A/D conversions requested by

another board. A single sample is acquired in the

following manner:

1. Verify A/D board conversion mode is "standby".

2. Select appropriate signal for conversion. The

signal source for the conversion is determined by the

"signal route" control bits. Therefore, the route

must be set according to the purpose of the single

sample conversion. Table 4.3.2.3 presents the

appropriate signal source for the different

acquisition purposes.

4-32

Table 4.3.2.3 Signal sources appropriate for single
conversions.

purpose of acquisition route

convert trigger level trigger level

obtain offset ext. signal removed

convert signal ext. signal

*Route refers to "signal route " field, control
register #2.

Initiate the conversion. As given in the

register 7 description, a "write" to register 7

while the A/D board is in "standby" conversion

mode results in a single conversion.

Retrieve converted data. When the status bit

"A/DEOC" becomes active, the data may be

retrieved by reading the 16-bit data from

register 7, where the sign bit is D
15 , and D -

D, are zeros.

4-33

4.4 The Circuitry for the A/D Board

The A/D board is composed of many circuits that

enable it to fulfill the specifications listed earlier in

this chapter. Fig. 4.4.1 presents a block diagram

perspective of the board, on which the major circuit

elements are identified.

As shown in Fig. 4.4.1, the A/D board circuity is

divided into two sections: the signal handling components

(across the top) , and the digital control components.

Fig. 4.4.1 is described as follows. The signal is

input to an instrumentation amplifier, filtered, then

undergoes 12-bit analog-to-digital conversion. This data

is routed through the data source selector and retained in

the on-board memory. Conversions are directed by the

trigger-conversion control section. This section monitors

the selected trigger source, the selected clock source,

and also counts the number of conversions performed. The

A/D board is controlled by writing appropriate control

values to the control register; the operating status of

the A/D board is determined by reading the status

register. In addition, the A/D board has its own memory

address generator which permits it to acquire data

completely independent of the system bus.

4-34

«
o
a
a

I

o

I

s
•H

!
H
m

2

4-35

The A/D board circuitry is presented throughout the

remainder of this chapter in the following manner. First,

the design of the analog signal handling circuitry and the

analog-to-digital conversion circuitry is presented.

Second, the digital circuits that control the conversion

circuitry are presented. Included with the digital

circuits is the circuity used to interface the A/D board

to the system bus.

The end of this chapter (section 4.4.4) contains the

schematics and other relevant information about the

circuits. This information includes parts lists and

descriptions of labels used in the schematics. Specific

information about the construction of the A/D board and

the parts layout are presented in Appendix D.

4.4.1. The Analog Signal Circuits

The signal-related specifications for the A/D board

were obtained by the judicious selection of electrical

components for the analog circuitry. The arrangement of

the major analog signal components is shown in Fig.

4.4.1.1.

As shown in Fig. 4.4.1.1, the external signal is

connected to an instrumentation amplifier (I.A.). The

selection of the I. A. was very important to ensure the

performance of the A/D board would attain the design

4-36

signal input

+\
I.A

-/1

digital output

+
Anti-
aliasing

filter

* SHA ^ ADC V)

— gain control

Figure 4.4.1.1 The arrangement of the major analog
signal components.

specifications. Many devices were examined in catalogs

with the Analog Devices AD624C being selected. This I.A.

has pin-programmable gain and a common mode rejection

ratio (CMRR) of 130 dB (gain=500)

.

An on-board programmable anti-aliasing filter was

included in the design. The filter selected for this

purpose was the CS7008 , manufactured by Crystal

Semiconductor, Corp. The CS7008 is a digitally

configurable switched-capacitor filter capable of

providing a filter of eighth order or below. The filter's

configuration is determined by coefficients stored in the

filter's configuration memory. This filter has a 72 dB

dynamic range, thus making it useable in a 12-bit analog-

to-digital circuit [4].

The analog-to-digital (A/D) converter selected for

this circuit was Analog Devices AD578K. This A/D

converter generates 12-bit 2's compliment conversion

4-37

values via the successive approximation technique. This

converter also has a maximum conversion time of 3.0

microseconds which permits conversions at the rate of 150

kHz.

Since the analog-to-digital converter selected for

use with this circuit employs a successive approximation

technique, a sample-and-hold amplifier (SHA) was used in

the circuit. The important consideration when selecting a

SHA for this circuit was the aperture time of the device.

The aperture time is the time required for the SHA to

switch from sample to hold — a limiting factor to the

overall throughput rate of the data acquisition system.

The SHA selected for this circuit was the Analog Devices

AD346J, which has an aperture time sufficient for 97 kHz

signals being digitized with 12-bit resolution [5],

4-38

Signal routing within the analog circuit

'A.)

input input
isolation short

signal-trigger
m

level

signal

input

digital output

- ADC

Figure 4.4.1.2 The arrangement of signal routing relays
between the analog signal components.

Two features that were included on the A/D board

were: (1) conversions made with the filter removed from

the circuit and (2) a provision to "measure" the

adjustable signal trigger level. These features were

incorporated by using signal routing as depicted in Fig.

4.4.1.2.

Routing of the signals within the analog circuit was

4-39

accomplished by controlling the switches as shown in Table

4.4.1.1.

Table 4.4.1.1 Signal routing logic for the analog
circuit.

Signal Source INPUT SHORT
Switch

1 2 3

isolate
signal
trig level

OFF ON
ON OFF
OFF ON

FIL is "ON"
circuit.

ON
OFF
ON

if the f

FIL
FIL
OFF

ilter

FIL*
FIL*
OFF

is in-

A method of switching the signal was needed in the

analog circuit. Since the input impedance of the AD346

SHA is low (3 kohm, CMOS analog switches were not

practical. Therefore, a mechanical relay was used. The

relay selected for all switching applications was the

Clare MSS4. This relay was selected for three reasons:

1) it has mercury-wetted contacts; 2) it is mounted in a

low-profile single in-line package (SIP) ; 3) its solenoid

is designed for 5-volt operation. The control of these

relays is detailed in the digital control section (later

in this chapter)

.

The instrumentation amplifier circuit

Schematic 4.1 shows the circuit details for the I. A.

The differential analog signal is input by way of a BNC

4-40

connector (J100) . Since the AD624C must not have a signal

applied to its inputs during the absence of power supply

voltage, isolation relays (REL100, 101) were placed

between the signal input and the input of the I. A. These

relays are the same type as those used for signal routing.

Additionally, a relay (REL102) is used to short the inputs

of the I. A. This shorting relay serves two functions.

First, the shorting relay eliminates I. A. output drift

caused by no return path for the input bias current [6].

Second, the shorting relay provides a convenient "shorted-

input" reference for DC offset measurements.

Input overload protection . Unfortunately, the AD624C must

be protected from signal input overload. The method

suggested by Analog Devices consists of current limiting

resistors in series with each input to the I. A. However,

this method seriously degrades the performance of the I. A.

in terms of common mode rejection and noise. Therefore, a

non-intrusive input protection method was designed.

Fig. 4.4.1.3 illustrates the operation of the non-

intrusive input protection circuit. The full scale

conversion range of the analog circuit causes a ±5 volt

swing at the output of the I. A. Therefore, when the

output of the I. A. has an excursion outside ±10 volts, it

is safe to assume that the inputs of the I. A. are far

4-41

maximum output
of I.A.

. overload sense
voltage, V overload

the LA. inputs are
disconnected as V, a out

crosses V over |oad

clipping during

conversion

Figure 4.4.1.3 The operation of the protection circuit
with an overloading signal.

enough outside the operating range and need to be

disconnected. A block diagram of the protection circuit

is shown in Fig. 4.4.1.4.

During normal operation the input isolation relays are

controlled by the control line which either opens or

closes these relays. However, when an overload condition

exists, the overload comparator senses this condition and

commands the input relay controller to open up the

isolation relays. The relays remain open until the relay

controller is reset. The user is informed of the overload

condition by means of an error status LED (LED201) on the

4-42

instrumentation
mplifier, AD624

signal

isolation

relay

Comparator

V > +10V?
V < -10V?

isolation

relay

control

overload

control (on/off)

reset

Figure 4.4.1.4 A block representation of the non-
intrusive protection system used on the
A/D board.

board's front panel.

value was selected for the following reasons. The region

for values of V„, is given by

where V
full .,c, le

is approximately 5.0 volts, V,
A output rating

is

given to be 10 volts (with the power supply voltage used

in this circuit) , and V
overload

is the voltage at which the

circuit is sufficiently overloaded to warrant the I. A.

inputs being disconnected. It was important to select a

value for V
ovcrload such that the circuit is not interrupted

by signals with "normal" overloads as this would render

4-43

the board useless if the signal had occasional transients.

Therefore, V
overload

set to ±10.0 volts provides a sufficient

overload margin but is still a value attainable by the

AD624 I. A.

The overload signal comparison circuit is shown in

Schematic 4.1. An LM319 dual-comparator (U101) is used as

an "absolute value" magnitude comparator whose output is

determined by

IF
l

v
.». out I

> vovenoad THEN overload* = active

where overload* is the comparator output, V,
s out

is the

I. A. output voltage, The +10 volt and -10 volt

comparison voltages are obtained by resistive voltage

dividers (R5-R8)

.

This protection method has two drawbacks. First,

occasional transients with magnitudes greater than 2 *

v
fuit-scaie "ill cause the signal inputs to be interrupted.

Second, this method of protecting the amplifier is "after-

the-fact" i.e. the I. A. is overloaded prior to the sensing

of the overload condition, and must remain overloaded

until the input isolation relays (REL100, REL101) can be

disconnected (approximately 1.5 msec). However, this

short duration of overload should cause no harm to the

AD624 I. A. The control circuit for these relays is

4-44

described later in the digital control section.

Gain Selection

Gain control for the A/D board is provided as part of

the AD624 I. A. The gain of the AD624 is set by connecting

a gain-select pin to one of several pins which correspond

to gains of 100, 200, 500, and 1000. In addition, an

extra pin is provided to permit a user-selectable gain

setting (via a resistor)

.

The connection of the gain selection components is

shown in Schematic 4.1. Relays (the same type of relays

used for signal routing) are used to select the desired

gain. Closing a relay selects connects the G
sclcct

pin of

the AD624 to a corresponding gain selection pin: g=100,

g=200, g=500, and G
ext

(for externally adjustable gain) .

Control of these relays is described later in the

description of the digital control section.

Gain = 10 is obtained by using G
ext

in series with a

external resistor. The appropriate value for gain = 10

was given by

40,000
Gain = 10 = 1 + ± 20%

4-45

where gain is the gain of the AD624C I. A. and R,. is the

series gain resistance, in Ohms. Solving this equation

for R
G
yields a value bounded by 3 . 6 kohm and 5.7 kohm.

In the circuit, R
G

is composed of a 3.65 kohm fixed

resistance (R103) in series with a 2.0 kohm variable

resistance (R104) . Gain = 10 is attained by adjusting the

variable resistance until xlO gain is obtained.

Input offset and output offset adjustment . To optimize

the operation of the AD624, adjustments are available to

null input and output offset bias errors. Although the

circuit could be adjust for zero offset at the time of

construction with fixed resistors, aging of the I. A. and

changes in the I.A.'s ambient temperature will cause the

offsets to change. Having both input and output offset

null adjustment is important. At low gains the effects of

the output offset dominate; at high gains the input offset

dominates. The procedure for nulling the offset errors

are presented in Table 4.4.1.2. The adjustments for input

offset null (R101) and output offset null (R102) are shown

in Schematic 4.1. Additional details for nulling offset

errors are presented in Appendix A.

4-46

Table 4.4.1.2 Procedure for nulling I. A. (AD624)
offset errors. [Source: Linear Products
Databook, Analog Devices, 1988, p. 4-

55.]

Input offset null adjustment

1) short I. A. signal input
2) set gain to maximum (G=500)
3) adjust the input offset

nulling resistor until
output equals zero.

Output offset null adjustment

1) set gain to 1

2) adjust output offset
nulling resistor until
output equals zero.

The on-board anti-aliasing filter

The anti-aliasing filter selected for use with this

circuit has a few limitations when used in this circuit.

First, the frequency response of the filter is band-

limited between 5 Hz and 20 kHz, which is somewhat lower

than the design specifications for the A/D board (0-75

kHz) . Therefore, this filter can only be used for "audio

band" signals. Second, since the switched capacitor

filter is a sampled data system, it requires two external

filters: an anti-aliasing filter (at the input) and an

anti-image filter (at the output) . Another limitation of

4-47

the CS7008 (when used in this circuit) is the maximum

peak-to-peak signal amplitude (±3.0 volts) at the filter's

input, thus necessitating a gain-matching network to make

the filter useable.

In order to use the CS7008 filter in the A/D board

analog circuit, additional circuitry adjacent to the

filter was necessary as shown in Fig. 4.4. 1.5. Before the

signal from the instrumentation amplifier can be applied

to the CS7008, it must first be passed through an anti-

aliasing filter. The filter selected for this application

was a 2-pole Butterworth lowpass with f
c
= 20 kHz. This

value for f
c
was selected since the response of the CS7008

is limited to 20 kHz.

signal from
instrumentation amp

ANTI-ALIASING
FILTER

control

_u
CS7008

Switched -Capacitor
Filter

2-pole Butterworth
f
e
= 20 kHz

gain = 3/5

filtered

signal \

ANT1 -IMAGE
FILTER

2-pole Butterworth

f
c
= 20 kHz

gain = 5/3

Figure 4.4.1.5 A block representation of the on-board
anti-aliasing filter and its associated
circuitry.

4-48

An attenuator was implemented prior to the anti-

aliasing filter to match the instrumentation amplifier's

full scale signal deviation to the CS7008. The gain of

this stage was set at 3v / 5v, or gain = 0.6. The anti-

image filter selected for this application was a filter

with identical characteristics as the anti-aliasing

filter. Full scale signal deviation (±5 volts) was

restored following the anti-image filter with an amplifier

with gain 5v / 3v, or gain = 1.67. This gain-

compensation arrangement between the anti-aliasing filter

and the anti-image filter makes the overall gain of this

filter stage equal to the gain as given by the transfer

function implemented on the CS7008

.

The circuit for the on-board anti-aliasing filter is

shown in Schematic 4.2. The signal from the

instrumentation amplifier is attenuated (gain = 3/5) by an

inverting amplifier (U102a) circuit. The output of the

attenuator is clamped by a 4-volt signal clamp composed of

two 3.6-volt zener diodes (D101, D102) in series with

switching diodes (D103, D104) . This clamp is necessary to

protect the CS7008 from signal magnitudes exceeding 5.3

volts.

Once the signal has been clamped, it is filtered by

the 2-pole Butterworth, 20 kHz, anti-aliasing filter. The

4-49

filter is implemented in a Sallen and key configuration,

using the input operational amplifier (U103a) on the

CS7008.

The CS7008 (U103b) is the programmable anti-aliasing

filter for the A/D board. Both of the CS7008's power

supply pins are decoupled by the parallel combination of a

1 uF tantalum electrolytic and a 0.1 uF monolithic

capacitor. The signal output of the CS7008 is fed to the

anti-image filter, composed of the uncommitted operational

amplifier mounted on the CS7008 (U103c) . The anti-image

filter's characteristics are the same as the anti-aliasing

filter used prior to the CS7008. The output of the anti-

image filter is then amplified by an operational amplifier

circuit (U102b) with a gain of 1.67. This amplifier makes

the gain of the anti-aliasing filter network equal to 1

when the CS7008 is configured in an all-pass mode. The

digital interface circuitry for the CS7008 will be

presented later in this chapter.

The signal-level comparator

One of the required trigger sources for the analog-

to-digital board was the signal level. The method of

generating this trigger is shown in Schematic 4.3. The

signal at the input of the sample-hold amplifier is

compared with a voltage between -FS and +FS volts, where

4-50

FS is the full scale values (±5 volts) . This comparison

voltage is user-adjustable by a variable resistor (R120)

.

This comparison is made with an LM311N comparator (U105)

.

The comparator's output is used later in the trigger

selection circuit. A hysteresis network (R122, C118) was

installed between the comparator's output and input to

prevent oscillations during transitions. The comparator's

power supply pins are decoupled by 0.1 uF capacitors.

The sample-and-hold amplifier and analoq-to-diaital
converter

The sample-hold amplifier (U105) is shown in

Schematic 4.4. The SHA selected for this circuit was the

AD346. The SHA is switched into the "hold" mode when

"A/D_EOC" is not active (low) . When power is first

applied to the board, the ADC's EOC* signal may not become

active until the board is reset. To prevent the output of

the SHA from drifting to a power supply rail voltage while

the board is waiting to be reset, a digital circuit

(U150b, U152d) ensures that the SHA hold mode may be

active only while the "board error" signal is not active

("board error" is active from the time power is first

applied to the board until the board is initialized) . The

connection of the AD578K analog-to-digital converter

(U106) is straight forward. The AD578K is connected in a

manner to facilitate bipolar conversion, and by connecting

4-51

the signal from the SHA to pin 27 (10V span), the full-

scale input range is ±5.000 volts. Adjustments for

bipolar offset are made available to the user by way of

two multi-turn variable resistors (R124, R125) . Details

for making these adjustments are in Appendix A.

The conversion time for the AD578K is controlled by a

resistor (R123) between the "clock adjustment" pin and the

clock in/out pins. In order to take full advantage of the

fast conversion rate of the K-version AD578, a 3.32 kohm

1% resistor was used as per instructions in [7].

All power supply leads on the AD578K are decoupled

with a 6.8 uF tantalum capacitor in parallel with 0.1 uF

monolithic capacitor. Additionally, the common connecting

point for the digital and analog ground on the A/D board

is at the analog ground pin on the AD578 (pin 30)

.

4.4.2. Timing Considerations and the Controlling
Sequence for the Analog Circuit

The purpose of this section is to present the timing

considerations made with respect to controlling the analog

circuitry. Timing considerations are present in two

forms: timing of the A/D converter during data

conversion, and the timing associated with acquiring

multiple samples.

The timing diagram in Fig. 4.4.2.1 illustrates the

timing sequence for the AD578L A/D converter. At the

4-52

a
?
0)

?

!

H
a

c

Bil 1

to to X

4-53

receipt of a start-conversion pulse, the A/D begins its

conversion. While the A/D is in a conversion mode, the

"end of conversion" signal from the A/D causes the sample-

hold amplifier (SKA) to "hold" the signal. Approximately

3 microseconds following the rising edge of the start-

conversion pulse, the "end of conversion" signal becomes

active which means the converted data may be retrieved

from the A/D.

The controlling sequence from the digital

controller's standpoint is divided into two sections.

Fig. 4.4.2.2 illustrates the transition that occurs when

there is a transition between "standby" mode to a

conversion mode, at which time "standby" is no longer

active. When the conversion mode is selected, two things

occur within the circuit: (1) the on-board memory address

generator resets to address 0000; (2) board-error, memory-

cycle, and trigger-received status flags are reset to non-

active.

In this example, the conversion mode is "convert

immediately" which means the "acquisition enable" line

4-54

o £
"

c
•H
c
c
-H
Bl
(1)

a
u
o

B

S
en

c

u

•H

4-55

becomes active immediately. As soon as the "time for

sample" line becomes active, the A/D conversion pulse is

generated, thus initiating the analog-to-digital

conversion sequence shown in Fig. 4.4.2.1. Other things

that occur at the receipt of the "time for sample" signal

include: the sample counter is decremented; the memory

address generator is incremented.

At the receipt of the rising edge of the "end of

conversion" signal, the data is latched into the on-board

memory at the address pointed to by the memory address

generator. As soon as "time for sample" becomes active,

this acquisition process begins anew until the desired

number of samples has been acquired.

The end of the conversion sequence is indicated when

the "end of sample sequence" line becomes active, as shown

in Fig. 4.4.2.3. The "end of sample sequence" indicates

that the desired number of samples has been acquired. The

last sample acquired is much like all other samples, with

the exception that the "end of sample sequence" becomes

active as soon as the sample counter is decremented, thus

inhibiting future sample requests.

If the conversion mode was "convert at receipt of
trigger", the "acquisition enable" line would become
active at the receipt of the trigger thus enabling the
conversion process.

4-56

4-57

4.4.3. The Digital Controller Section

The purposes of the digital controller section of the

A/D board include:

* control the data acquisition process (as

detailed in section 4.4.2);

* retention of samples in on-board memory and

making these samples available to the system

controller;

* reporting the status of the acquisition process

to the system controller.

The digital controller section is composed of several

major sections, including the conversion control

circuitry, the on-board sample memory, the control and

status registers, as well as the system bus interface.

Conversion control

The circuit which commands the A/D converter to

acquire samples at the appropriate time is the conversion

control circuit, as was shown previously in Fig. 4.4.2.2

and 4.4.2.3. The conversion control circuit is composed

of several sections, including the conversion rate

selector, the trigger sensor and selector, and the sample

counter. Each of these sections work together to

establish the time when sampling is to begin, the period

of the sampling interval, and the total number of samples

in the acquisition sequence.

4-58

The conversion rate controller . The first important

component of the conversion control circuit is the

conversion rate controller. This circuit selects the

sampling period for the conversion sequence. The

configuration of this circuit is shown in Fig. 4.4.3.1.

10 MHz
on-board
oscillator

divide by
5 MHz

interna] clock
selector

divide by 2

front panel ,—
clock input (ft

9.766 kHz

bus clock

divide value

u
16-bit

programmed
divider

sampling
clock

o selector

Figure 4.4.3.1 A block representation of the on-board
sample period generator and the sample
clock selector.

Fig. 4.4.3.1 illustrates that the conversion rate

controller is made up of two sections: the sampling clock

selector and the on-board sample rate generator.

The sampling clock selector provides a means to

choose the sampling clock from three sources: 1) the bus

clock, 2) the front-panel sampling clock input, and 3) the

on-board sample rate generator. The bus clock is useful

for synchronized acquisition with another board in the

4-59

system (see chapters 2 and 3 for details about the bus

clock) . The front-panel clock is useful for making

conversions at a rate determined by an external

oscillator.

The other selectable clock source is the on-board

sample rate generator. The specifications for the board

state that the conversion rate must be programmable from

0.2 to 150,000 samples per second in reasonably fine

steps. The method by which this sampling frequency is

obtained is by a clock divider. The sampling frequency is

thus determined by

f
osc

F„m ,„ = Hz

where F._.
^r

is the sampling frequency, F^ is the

frequency of the on-board oscillator, and n is the clock

divider value. The counter chip selected for this circuit

was the Intel 82C54-2, which has three programmable 16-bit

counters. This is convenient since there were three

counters used in the A/D board design. Unfortunately, 16-

bits is not enough to cover the desired range of

conversion rates. Therefore, two internal oscillator

frequencies were made available: 5 MHz for fast sampling

rates, and 9.776 kHz (10 MHz / 2
10

) for slower sampling

rates. Each of these frequencies may be divided by the

4-60

16-bit counter. The selection between the two internal

oscillator frequencies depends on the desired sampling

rate. The range of useful sampling frequencies for each

internal oscillator frequency are presented in Table

4.4.3.1.

Table 4.4.3.1 The two on-board oscillators and their
respective range of sampling
frequencies.

Oscillator
frequency

useful sampling frequency range
minimum maximum

9.77 kHz
5.0 MHz

0.15 Hz 100 Hz
100 Hz 150 kHz

The conversion rate controller circuit is shown in

Schematic 4.5. The primary oscillator (from which the 5

MHz and 9.776 kHz frequencies are obtained) is composed of

a 74HC04 inverter (U200) with a 10 MHz crystal (X200)

.

The two frequencies are obtained by dividing the 10 MHz

signal with a 74HC4040 clock divider (U201) . The

selection between the 5 MHz and the 9.776 kHz clock is

made by a 4-to-l multiplexer (U202a) where the clock

selected by the multiplexer is used by the 16-bit binary

counter (U203a) . The control of this counter is described

later. Finally, a 4-to-l multiplexer (U202b) is used to

select the sampling clock from the internal-clock, the bus

clock, and the front-panel clock.

4-61

The connection for the front-panel clock is also

shown in Schematic 4.5. The external clock is connected

to a BNC-connector (J200) . A clamping network (R201,

D200, D201) ensures that the clock signal provided to the

multiplexer (U202b) is TTL-compatible.

Trigger selector and identifier circuit . Fig. 4.4.3.2

illustrates the duties of the trigger circuit on the A/D

board. As shown, one of three different trigger sources may

trigger source edge selector
selector —

\

front panel *o .o—* jigger edge ^^^ trigger

received

signal leve

front pane

bus trigger

Figure 4.4.3.2 Block representation of the A/D board's
trigger circuit.

be selected: signal-level trigger, the front-panel

trigger connection, and the bus trigger. The source

selected by the trigger source selector is then provided

to the trigger edge detection circuit. This circuit

identifies either a rising or falling edge.

The trigger circuit used on the A/D board is shown in

Schematic 4.6. The three trigger sources are input to a

4-to-l multiplexer (U204) where the source is selected by

two control register lines (trig_sel_0, trig_sel_l) . One

of these trigger sources is the external trigger which is

4-62

connected to the front-panel BNC trigger connector (J2 01)

.

The external trigger is clamped (R203, D202, D203) to

protect the A/D board circuitry from non-TTL level

signals.

The trigger edge of the selected trigger source is

detected by an edge-sensitive flip-flop (U205a) . An

exclusive-OR gate (U252c) is used to make the flip-flop

rising or falling edge sensitive. At the beginning of an

acquisition sequence, the flip-flop is cleared by a pulse

(rst_before_acq*) and its outputs (trig_recvd*,

trig_recvd) becomes active when the selected edge is

detected.

The last part of the trigger circuit provides a means

for the A/D board to activate the bus trigger. When the

trigger selection is "signal with bus control" and a

trigger from the signal is sensed, an open-drain gate

(U262b) pulls the bus-trigger line low, thus triggering

other boards monitoring the bus trigger.

The sample counter . Once the conversion sequence begins,

the system must stop acquiring samples when the desired

number of samples has been acquired. Therefore, a 16-bit

binary counter was used to count post-trigger samples.

Note that not all conversions are counted. Two exceptions

are: 1) conversions made prior to a trigger reception (in

4-63

the pre-trigger acquisition mode) , and 2) acquisitions

requested when the board is in the STANDBY mode (this

results from a "write" operation to register 7) . The

truth table for the sample counter controller is shown in

Table 4.4.3.2.

Table 4.4.3.2 Truth table for sample counter
controller.

Conversion Trigger Sample counter

mode received? clock enabled?

Standby X NO
convert immediately X YES
conv. w/trigger modes NO NO
conv. w/trigger modes YES YES

X = don't care

Schematic 4.7 shows the sample counter circuit and

the count-enable circuit. The 16-bit binary counter used

is the second of three counters on the 82C54-2 (U203b)

.

The count-enable circuit (an implementation of the truth

table in Table 4.4.3.2) provides clock pulses to the

sample counter. When the number of pulses received by the

counter equals the number of samples requested, the sample

counter indicates the sequence is complete (samp_ser_end

becomes active)

.

The number of desired samples plus one (N+l) is

converted to a 16-bit binary number and loaded into the

counter via register 2. After N pulses have been

4-64

received, the output of the counter becomes active. Once

active, the conversion sequence ceases and the

"acquisition sequence completed" status bit becomes

active.

Conversion control logic . As shown in Fig. 4.4.3.3, the

signals generated by the sampling clock, the trigger

sensor, and the sample counter are all used by the

conversion logic unit. The conversion logic unit

number of samples

finished

trigger

received •

sampling
clock

16-bit
sample
counter

conversion

control

logic

H
control

convert

Figure 4.4.3.3 A block representation of the conversion
control logic circuit.

implements the truth table given in Table 4.4.3.3.

The conversion control circuit shown in Schematic 4.8

fulfills the logic requirements depicted in Table 4.4.3.3.

When it's time for a sample (time_for_sample* active) , a

rising edge is present at the gate of the digital one shot

(U203c) . This digital one-shot then generates the

conversion request pulse (a/d_conv*) , where the duration

4-65

Table 4.4.3 3 The conversion control logic truth table.

conversion trigger a ing e sample end of samp e board conversion

mode received? requested? sequence? error? request

X X NO NO NO NO

X X YES X X YES

X X HO X YES HO

X X NO YES X NO

immediate X NO NO NO TFS

on trigger so NO NO NO HO

on trigger res NO NO NO TFS

pre-trigger X NO NO NO TFS

X = don't care

TFS = time_for sample s igna (f om sampll ng clock generator)

of this pulse is 800 ns (as outlined in section 4.4.2:

analog circuit control timing)

.

On-board sample memory

One of the requirements for the A/D board is that it

has its own on-board memory. This on-board memory

provides temporary storage of conversion values until the

system front-end can retrieve them and send them to the

host. Fig. 4.4.3.4 shows a simplified block diagram of

on-board memory and its associated control circuitry.

A/D converter
output

16-bit data
(from system
bus)

control

u on-board
- address generatoron-board

memory
16-bit memory

address source
selector

address (from bus)

Figure 4.4.3.4 A block representation of the A/D
board's on-board memory.

4-66

The data source for the on-board memory is selected

by two source selection switches. When the A/D board is

in a conversion mode, the data source is the A/D

converter, and when the A/D board is in the "standby"

mode, the data source is the system data bus. The

arrangement of the data selection switches at the input of

the on-board memory makes it possible to put the A/D data

directly on the system data bus.

The address source for the on-board memory, like the

data source, is dependent upon the board's operating mode.

While the board is in a "conversion" mode, the address

source is the internal address generator. When the board

is in the "standby" mode, the address source is the memory

address lines from the system bus.

As shown in Fig. 4.4.3.5, the on-board address

generator has two control lines: clear and increment.

clear

increment

on-board
address
generator

16-bit address
(to address selector)

Figure 4.4.3.5 A block representation of the on-board
address generator.

Before a sampling sequence begins, the address generator

is cleared, and as samples are stored in memory, the

address generator is incremented. Since the maximum

number of samples to be retained in the on-board memory is

64K, the address generator is simply a 16-bit binary

counter.

Schematic 4.9 shows the circuit used for the on-board

memory control. A one-shot implemented in a pair of flip-

flops (U2 07) generates a 4 00 ns write pulse when the A/D

converter completes a conversion (a/d_eoc active) . An

"OR" gate (U2 51c) permits the source of the memory write

request to originate from the pulse generator or a write

to register 1 (on-board memory register) . An "AND" gate

(U264a) disallows writes to on-board memory from the bus

while the A/D board is in a non-standby mode.

Two additional gates (U257c, U263b) provide data buffer

control

.

The circuit shown in Schematic 4.10 is the memory

data switches. Two octal latches (U208, U209) capture the

data from the A/D converter when the conversion is

completed (a/d_eoc becomes active) . Pull up resistors are

installed on the inputs of these latches to protect the

latches in the event the circuit is powered up while the

A/D converter is removed. A pair of octal transceivers

(U210, U211) constitute the data switch between the data

bus and the on-board memory.

4-68

As shown in Schematic 4.11, the on-board address

generator is composed of two cascaded 8-bit binary

counters (U212, U213) . The 16-bit address is reset to

0000 prior to a conversion sequence (rst_before_acq

pulse) , and the memory address is incremented when a

conversion is requested (a/d_conv* pulse) . A flip flop

circuit provides the status concerning whether or not

memory has cycled during a conversion sequence. The flip

flop (U214a) is cleared prior to the acquisition sequence

(rst_before_acq* pulse) and becomes active on the falling

edge of the most significant address bit (when the address

goes from $FFFF to $0000)

.

The memory address selector for the on-board memory

is made up of four octal transparent latches. While the

A/D board is in a "conversion" mode, the latches shown in

Schematic 4.12 (U215, U216) are enabled, thus making the

address source the on-board address generator. When the

A/D board is in "standby" mode, the 16-bit memory address

lines from the system bus provide the on-board memory's

address. This address source is connected by latches

shown in Schematic 4.12 (U217, U218)

.

Schematic 4.12 also has a pair of clocked 8-bit

latches (U219, U220) . These latches record the memory

address when the trigger is received (for pre-trigger

4-69

sample location calculations) , where upon this 16-bit

address is made available to the data bus during a "read

register 5" operation.

The memory elements selected for the A/D board were

four 43256, 32Kx8 bit static RAM devices (U221-U224) since

they were readily available during the board's design.

This configuration of memory devices provides a memory

space of 64Kxl6 bits. Schematic 4.13 shows the memory

components responsible for the lower half of 64K sample

memory (addresses $0000 - $7FFF) , and Schematic 4.14 shows

the memory components for the upper half (addresses $8000

- $FFFF)

.

Control and status registers

There are numerous control and status lines on the

A/D board. A convenient way to accommodate these signals

was to use an 82C55A triple 8-bit parallel peripheral

interface (U225) , as shown in Schematic 4.15. The 82C55A

permits two 8-bit registers to be configured as an

"output" (control) and the remaining 8-bit register

configured as an "input" (status) . Registers on the

82C55A that are configured as "outputs" (the control

lines) can be read, thus enabling the settings of the

control lines to be examined by reading that control

register.

4-70

When power is first applied to the board,

POWER_ON_RESET causes all I/O lines on the 82C55A to be

configured as "inputs." 10 kohm pull-up resistors are

connected to the control output lines (RN209 and RN210) to

pull the control lines HIGH until the 82C55A is properly

configured. Configuration of the 82C55A is made by

writing a control code byte ($92) to register 11 (usually

as part of the A/D board initialization routine)

.

Bus related I/O with the register on the 82C55A are

performed by register 3 and 4 read/write operations in

conjunction with the register address lines RA1 and RA3

,

resulting in the mapping of the 82C55A ports as shown in

Table 4.4.3.4.

Table 4.4.3.4 A/D board register mapping of the
control/status port.

A/D board register 82C55A port description
(decimal)

3 status register
4 control register #1

11 82C55A configuration reg.
12 control register #2

Additional control related signals are generated by

the circuit shown in Schematic 4.16. The conversion mode

and signal selection lines from the control registers are

each decoded by a 74HC139 dual l-of-4 decoder (U226a and

4-71

U226b)

.

Relay control circuits

The relay control circuits are, in general,

controlled directly by the control registers. These

relays include those for input isolation, signal routing,

and gain control. The power requirements for a relay

solenoid is 10 mA, thus permitting the relay to be

switched directly by a 74HC03 open-drain NAND gate.

The schematic for the isolation relay control circuit

is shown in Schematic 4.17. A 2-input NOR gate (U152b)

ensures that the isolation relays are not activated while

a board error condition is present. When the "external

signal" is the selected signal source, the shorting relay

is opened, and, after a short delay, the input isolation

relays (REL100, REL101) are closed. A 15 millisecond

delay is inserted between the opening and closing of the

relays to prevent the signal source from being shorted.

This delay is generated by a dual one-shot (U107)

.

Schematic 4.18 shows the circuit used to implement

the signal routing logic given earlier in Table 4.4.1.1.

The circuit which controls the gain selection relays is

shown in Schematic 4.19. The gain control circuit has two

jumpers which ease instrumentation amplifier offset error

adjustment. JMP102, when installed, disables the gain

4-72

selection decoder, thus forcing the gain to 1.0. This is

useful for OUTPUT offset error adjustments. JMP103, when

installed, turns the "gain = 500" relay "on". This is

useful for INPUT offset error adjustments. In both cases,

the jumper shown in schematic ISO_IN , JMP101, must be

installed to ensure the instrumentation amplifier inputs

are shorted. The procedure for adjusting the I. A. offset

is given in Appendix A.

The error status generator and reset pulse generators

A power-up reset pulse is made available to the A/D

board by way of the circuit shown in Schematic 4.20. An

RC-circuit in conjunction with a pair of Schmitt-trigger

inverters provides a sufficiently long reset pulse when

power is freshly applied to the board. Also shown in

Schematic 4.2 is the "board-error status" generator. A

board-error status can arise from two conditions: (1)

power has been freshly applied to the circuit, or (2) the

signal has overloaded the input amplifier. The board-

error status signal originates from a flip-flop (U214b)

where the outputs become active at the receipt of an error

(U263a has an active output) . The board-error status is

reset when the board's conversion mode transfers from

STANDBY to a conversion mode (at which time the

rst_before_acq* signal pulses)

.

4-73

The outputs of the signal overload comparator (U101,

Schematic 4.1) is buffered by a 20 milliseocnd delay

circuit (U150c,d and R128, C130) . This delay circuit

prevents false triggering of the board-error circuit by

requiring the duration of the overload to be at least 2

milliseconds before board-error is activated. An OR-gate

(U264b) enables or disables the overload protection

function; the overload protection circuit is enabled when

protect* is active (LOW)

.

The circuit which generates the rst_before_acq

pulse is also shown in Schematic 4.20. When the A/D board

is switched to a conversion mode, "standby" becomes

inactive, resulting in a 4 00 nanosecond pulse generated by

a single-pulse generator (U227, U254a)

.

The LED control circuit

The LED driver circuits and associated logic are

shown in Schematics 4.21a and 4.21b. Transistors (Q201-

Q2 09) were used to switch the LED power since the LEDs

require 25 mA for full illumination.

The 82C54-2 fU2031 digital interface

Schematic 4.22 illustrates the data bus connections

for the 82C54-2 triple counter (U203) . The 8-bit counter

I/O is by way of register 2 on data lines D8-D15. The

82C54-2 has four internal registers, where the register

4-74

being addressed is selected TIMER_CONT_0 and TIMER_C0NT_1

.

The internal registers of the counter device are

summarized in Table 4.4.3.5.

Table 4.4.3.5 The 82C54-2 internal register summary
and associated control values.

TIMER_CONT_n 82C54-2 internal register

1 description

counter #0: sample-period
generator

1 counter #1: digital one-shot

1 counter #2 : sample counter

1 1 82C54-2 config. register

Digital considerations for the CS7008 switched-capacitor
filter

The characteristics of the CS7008 anti-aliasing

filter (U103) used in the analog circuit are determined by

coefficients written to the filter's configuration memory.

Therefore, the CS7008's memory is accessible from the

system bus via I/O operations with register 6.

As shown in Schematic 4.23, data for the CS7008 is

present on D8-D13, or the six least-significant-bits of

the most-significant-byte of data. The filter's address

lines are present on A0-A6. The filter's chip select line

becomes active whenever a read or write request is made to

4-75

the filter. The value of the R/W* line is held steady by

a 74HC75 bistable transparent latch (U112) while the chip

select is active; this prevents data contention during

read/write transitions. Protection from a loss of the

CS7008's address and data signals (for whatever reason) is

provided by 10 kft pull-up resistors (RN101, RN102)

.

Selection of the CS7008 crystal

The sampling frequency for the CS7008 is given by

(Hz)

where f
s
is the CS7008's sampling frequency, fosc is the

crystal (X100) frequency (in Hz) , and cdc is the clock

division code stored, filter coefficient address $1E,

where cdc is 0,1,..., 7. Table 4.4.3.6 shows the sampling

frequencies attainable using crystals from 1 to 4 MHz.

Crystal specifies that f
s

< 250 kHz, and fosc < 4.0 MHz.

Therefore, inspection of Table 4.4.3.6 reveals that a

crystal frequency of between 1.0 MHz and 1.5 MHz provides

the most flexibility with respect to setting the sampling

frequency. However, a low-profile crystal (body style

HC18) was not readily available within this range.

Therefore, a 2.4576 MHz crystal was used. Table 4.4.3.7

presents the sampling frequencies which are available on

the prototype.

4-76

Table 4.4.3.6
with respect to various crystal
frequencies.

^(.(External XTAL frequency) in MHz

cdc* 1 . 1.5 2.0 2.5 3.0 3.5 4.0

166.7 250.0 333.3 416.7 500.0 583.3 666.7
1 83.3 125.0 166.7 208.3 250.0 291.7 333.3
2 41.7 62.5 83.3 104.2 125.0 145.8 166.7
3 20.8 31.2 41.7 52.1 62.5 72.9 83.3
4 10.4 15.6 20.8 26.0 31.2 36.5 41.7
5 5.2 7.8 10.4 13.0 15.6 18.2 20.8
6 2.6 3.9 5.2 6.5 7.8 9.1 10.4
7 1.3 2.0 2.6 3.3 3.9 4.6 5.2

clock d Lvision code (address $1E of the f] Iter
register)

Note: All frequencies in thi s table are in kHz.

Table 4.4.3.7 Available sampling frequencies, f
s , for

the CS7008 with the 2.4576 MHz crystal
installed on the prototype.

cdc* sampling frequency, f
s

(kHz)

409.6
1 204.8
2 102.4
3 51.2
4 25.6
5 12.8
6 6.4
7 3.2

clock division code (address $1E of the filter
register)

.

4-77

One obvious consequence of using the 2.4576 MHz

crystal is that a zero cdc-value is illegal since f
s

> 250

kHz, though the next step down, cdc = 1, permits a

sampling frequency over 200 kHz.

Bus interface

The A/D board's bus interface consists of the

following components: the board address decoder, data and

address buffers, and the board's command interpretation

EPROM. Details concerning the system bus and the generic

I/O board interface are given in Chapter 3

.

Board address decode . The board address lines on the bus

(BD_ADR0-3) select the board with whom bus communication

is requested. As shown in Schematic 4.24, the board

address comparator circuit consists of a 74HC85 4-bit

magnitude comparator (U228) and a four station DIP switch

(SW200) by which the board address is selected. Upon

favorable equality comparison BD_SELECT* becomes active.

Register read/write control . Schematic 4.25 shows the

circuit used for register address decoding. The register

address lines on the bus (REG_ADR0-3) , and the bus write

and read strobes (BUS_WR* and BUS_RD) are buffered by a

74HC573 tri-stateable transparent buffer (U229) . This

buffer is transparent ONLY when the board is being

addressed, and tri-stated during all other conditions

4-78

(thus locking out all register I/O with the A/D board when

it is not selected) . These signals are tri-stated when

the board is not selected to reduce digital activity on

the A/D board when another board on the bus is being

addressed. While the buffer is tri-stated, each of the

buffered lines is pulled high by 10 kohm pull-up

resistors.

When the board is selected, these buffered signals

are provided to a pair of 74HC138 3-to-8 decoders: one

for "write" (U230) and "read" (U231) . An exclusive-OR

gate (U252b) ensures that both decoders are disabled until

READ* and WRITE* are opposite, as is the case during a bus

read or bus write, at which time the appropriate decoder

is enabled.

Two other signals are generated by the register

read/write control circuit which control the data buffers.

The data direction of the bus data (D0-D15) , as determined

by the action of the BUS_RD* signal, is provided to the

data bus buffers as DATADIRRD* . Additionally, an enable

line, DATA_BUF_EN* , is provided to the data buffers. This

signal is active during valid bus read/write activity

(determined by U252b)

.

16-bit bus data buffer . Schematic 4.26 shows the 16-bit

bus data buffers. Data to and from the A/D board is

4-79

buffered by a pair of 74HC245 octal transparent tri-

stateable transceivers (U232 and U233) . The data

direction is controlled by DATA_DIR_RD* , and the buffer

outputs are enabled by DATA_BUF_EN* . To avoid floating

lines between read/write operations, the A/D board data

lines (D0-D15) are pulled high by 10 kohm pull-up

resistors.

16-bit memory address buffers . 16-bit memory address

signals (BA0-BA15) present on the bus are also used by the

A/D board. Schematic 4.27 to a pair of 74HC573 octal

transparent buffers with tri-stateable outputs (U234 and

U235) . The address lines on the A/D board side (A0-A15)

are copies of BA0-BA15 when the board is selected

(BD_SELECT* is active) , and pulled high by 10 kohm

resistors otherwise. Tri-stating the address line while

the board is not being addressed reduces digital activity

on the A/D board while another board is being addressed.

EPROM and board presence . As mentioned in Chapter 3, all

I/O boards must have an EPROM containing command

implementation programs for the board's commands. The A/D

board is no exception. As shown in Schematic 4.28, an

8Kx8 EPROM (U236) is located on the A/D board. As shown,

the address lines A0-A12 selects the memory position, and

4-80

the 8-bit data from the EPROM is placed on data lines D0-

D7 during a read from register 0.

Board presence is indicated when a read from register

is requested and the most significant bit (D15) is

pulled LOW by an open-drain NAND gate (U262c) .

A/D board power supplies

All power for the A/D board is supplied by the system

bus. The +5 volt power for the digital components has all

ready been regulated at the system front end, and

therefore needs only to have a moderate sized filter

capacitor on the A/D board. The analog signal components

need ±5.0 and ±15.0 volts, and this is regulated from the

±19 volts available on the bus.

Schematic 4.29 shows the power as it is taken from

the system bus. The ±19 volts for the analog components

is connected directly to a connector (CON203) which

supplies the analog board. The +5 volt supply is filtered

by a 47 uF electrolytic capacitor (C204) , and the power

supply pins on each of the digital logic chips aboard the

A/D digital board are decoupled by way of a 0.1 uF

monolithic capacitor (C205-C252)

.

The power needs for the analog board satisfied by the

circuit shown in Schematic 4.30. Power from the digital

board connector (CON203) is connected to a connector on

4-81

the analog component board (CON103). An LM325 tracking

regulator (U113) provides the ±15 volt supply, and an

LM341/LM320 pair provide the ±5 volt supply for the analog

signal components. The +5 volts for the digital

components is first filtered by a 6.8 uF tantalum (C134)

,

and all power supply pins of the analog board logic

devices are decoupled by 0.1 uF monolithic capacitors

(C135-C143)

.

4.4.4. A/D Board Circuit Schematics and Parts List

The following pages are the schematics for the A/D

board. Each schematic was described in an earlier section

of this chapter. A list of the parts used in these

circuits follows the schematics. Part numbering was

determined by the physical position of the component,

where components numbered from 100-199 are located on the

analog signal board, and components numbered 200-299 are

located on the digital control board. Further information

concerning the placement of the components is presented in

Appendix D.

The following notes apply to the schematics:

1) Ground symbols. The A/D board employs two

distinct grounds, an analog and digital ground.

To distinguish these grounds in the schematics,

the digital ground is represented with the

traditional 3 parallel lines, and the analog

ground is represented by a triangle.

4-82

2) +5V power. Two distinct +5-volt power

sources are used on the A/D board: the +5V used

by the analog signal components (supplied by

U114), and the +5V used for the digital

components (supplied directly from the bus)

.

These two sources are distinguished by the label

(analog) for the +5V analog power source. A +5V

reference, when unaccompanied by the before

mentioned label, implys that the supply is

intended for the digital components.

3) All signal names in the schematics with a "*"

suffix indicate that the signal is "negative-true"

e.g. a LOW logic level = TRUE.

4) All wire connections in these schematics are

shown with a "solid dot". Wires which cross without

a solid dot are not connected.

An "inter-figure signal" description list follows the

schematics. This alphabetical list is useful when tracing

signals from one schematic to another: it provides both a

description of the signal and information concerning the

schematic on which it originates and the schematics on

which it is used.

4-83

a
o
0)

4J
0)

o
H
U

>

0)

a

T3
£
a

0>

a
S
(0

c
o
•H
*>
a
4J

C
a)

i3
6
4J
01

c

0>

uH
P

0)

4-84

to

I

i

4-85

o
tfs

u H>
r-
' o
U m

U

as ~ -LZ !

— .2

oo •

(3

> /\ , >
in

CNJ CO

CO

u

£
3
V
<D

-a

M
C 0)

Oi
ctj Oi

l_
£ P
t) H
~ 0)

<u >
ac 0)

r -c
r-l

rH
~a> 10
> c
O)

OiH
*s 01

.2P m
"<w a

4J

J TS
C
(0

01

><
a
H
M

c

H
*J

u
a)

^H
g)

"i 01

o
_ — H
a- — 10
> (W c

5H
5 " 01

ftfl 3J 0)

B M £
S

u

-P

I
ta

4-86

id

T3
I

v
i

0>
o
H
IB

C
a

£

TS
c

01

s
Id

o

I

c
<0

I
01

I

H
P

en

4-87

X
a
o

EP
c

a
B
(0

a

p
a
c
10

u
o
p
10

Ij

0)

c
a)

CP

a
o
-H
M
a)

a

c
•H
rH

a
B
is

<j)

T3
M
(0

O
i5 i

i

C -P

J) rH

Eh w

(0

CO

4-88

3 «J £

10 S3
"^ -J

c c M c
OH QD 3 O

o o — —

4<H"

— i=; ^
^ — ?

v o

4-89

o
M

1
U

§H
01

u
0)

1

h
o
<u

I

10

0)

I

•H
4J

3
0]

4-90

n
CJ

Oa

1 A in

/ \ 3
o "u
- — o
> i) ^*™

4-91

400 ns "write sample to memory" pulse generator

1/9-RN202

A/D.EOC -H-(k)

U254d

elk 2.5M

standby

(note: non-inverted]

EN_A/D_BUF'

U263b

Schematic 4.9 The on-board memory control, including
the data buffer controllers and write-
pulse generator.

4-92

/ \\\\\\\ \
en rr

o
O a — a n -1 o a

en *-'
Q Q

-S ID

3 CO r- ro in ~ N — 3 cc r- ^c « CO

1 > «
O lO

a +
w
o O>

CD CO CO CQ CO CO 22 CO pmmpmaom
>

Q m
o

22
O
<

O — C\) CO "•?• iD CO >
O
2
Oo CJ <<<<<<<< - e

-> rt tT m «3 ^- CO 03 N to V m CD r- C2 03

H" "

OS
— C\ f

¥' .-

cr <T

r r C c :z 12 -2

^ s 3 s S s s :e s Zi -- ^ 2> -
T \ \

l

\'\\V'\
l

\ wwwv
in co

QiQiO

© — wco-^in<or- *
cr o1 0" o* O" cr o* o* &J

o

-3 W a — WCO-WOCO^- z '— 'nccaoaa© --

O — OJ CO
t— t— e— E—< < < <Q Q O O
o' o1 a1

o!WW
< < < <

i i i i i

i

rr in co r- CO en '

B- E- t- E- E- H '

< < -- - '

a a :

q'o'q'q' o'a'o iWW \W
< < < < < < <

§
•H
P
o

o
in

a)

u

3

03

73

>i

e
a
e

(0

o
a

i

c
o

OJ

a

I

u

4-93

J
•H
3

2

: <n < -

« -pvw-| *T
ja s

c s

X-J— ' ' ' .
i T rrC — OJ CO T UO CD P- * — — '

cr o- o- cy o- cy o- o- gj : | - g

< ^ cd m
is: f- F ^
_; < in co _j
u tu cr a: o

H

U
rd

U
CD

C
<D

tr

01

If]

<D

(J

d
0
ra

o
e
a)

B

>-i

(0

o

I

c
o

0)

E-<

u
•H
P
ro

e
0)

r
u
CO

4-94

/
o _ fQ a a a o .- r a

u
OS— a SG r* CO U! V r-. eg —

'

i > « , o — wn-vinsor- • _ _
>

QrororQrQr<yor<y
oQ "*"

o
O CiQCiQQOQCl <

1

W cz -r irt CD r- cc C5

-H" CSJ h
C, CN

3n (N r — \r ffl r-< < < < < < < «f

S ^ 2 a >. ^ i ^

oicor^^DiD'J-rjw

C*3 - lO CO x- X £»

09
<
3
<

pi

<
3

CD

<
3

-r

<
a
<

CO OS — — —

vv
o —
< <
2 3

< < •

3 s :

— i* f

Hi

z
1

, '////

'// _

r U3 co > co oi

'////

\~

01

n
0)

s^

T3
TJ
a
i

u

%
0i
•H
SJ

•U

T3
C
to

o
-p

0)

u
3
O
01

01

0!

ID

U
T3
a

>1

o
e •

a ta

e a

T3 O
H-U
l« IB

O rH

fa.
c u
O 3
P

di a
£ IB

10

i
(1)

o
CO

4-95

ft&C Q Q Ql G
S SJ S| 2! S

J " 17 l. T UJ W I' ^ WJ ™ ^ -^ ™ — LAJ ~- (7J

a — oj n

S2SSS2S -

o S y

J
C <:<<<<!<<:tfi CO p- cc en -

O — N C? TT!__- — — _-

_ „
CO > CO m ^r n W WW

1"

w cy

f\ n- ir u; T*- CC< «f < •< < < < <
s i? > a 3 s 2 a a - 2 1l ^ -i

II

fa

0>

o
o
o
to-

ol

0)

0)

n

s

1(0

01

g>

•H

i

o

1
I

E
IB

o

I

c
o
0)

0)

4-96

//////
- r c a "- - --,

i ± i Z=- i a 2
- N w inlco r- =0

5 o-NnviniDMCO);<<<<<<<<<<<<<<:•«

!X1
< «C

o
o
o
CO

<J>

V)

01

Ul

Ul

0)

J-l

T3
TJ
10

01

<D

O
•H
>
111

•a

o
E
CD

e

(0

o
ja

i

c
o

0)

J3

1

4-97

RN209

BD SELECT

RD REGS*
RD_REG4' .

WR REG3
WR REG4- A

DO-DT (data)

DO 34

Dl 33
D2 32

D3 31

L1-] 30

D5 29
D6 28

power_on_reset

bd^error*
samp_ser_end'
tng_recvd*
mem_cycle*
A/D_eoc
(ncj

(nc)

(nc)

sig_se]_0

sigjseM
gain_0

gain.
gain_2
timer_cont_0
timer_cont_l
protect"

RN210

> control £

t5V

Schematic 4.15 The A/D board status and control
registers.

4-98

+ 5V

conv_md_0
conv md 1

sig_sel_0

sig_sel_l

U258e

standby
10

standby*
convnow*
conv_on_trig*

conv_pre_trig*

(nc)

sig_rt_l*

(nc)

•* sig_rt_3*

Schematic 4 . 16 The conversion mode decoder and the
signal route decoder.

4-99

u
p
c
o
u

&

10

I

c-f

4J
(0

I
JC

CO

4-100

I

0)

5

1
-p
idH
o

m
a
9
DO

g
(1)

>
•H
M8
-o

i

&
+j •

H 01

P 10
b *
og
•H CJ1M
rH jj

(1) 3

gK

1

s
I

en

4-101

10k

gam.O i

gainj <

gain 2 i

RN100

Ul 10

AO
Al

- E2

EO*
El*

YO
Yl

Y2
Y3
Y4
Y5
Y6
Y7

15

14
(nc)

13

GND Vcc

12

(nc)

(nc)

I8 16

JMP102'
(short during

output offset test)

Ul 1 la REL106
gain - 10

10

pTm-

Dill

Ul lib REL103
gain = JOOn e

— \e . I

Dl 12

Ulllc REL104
gam - 200 o e

Dl 13

12

13

Ullld REL105
gain = 500 3

11

pTTtr^

Dl 14

£J JMP103
(short during

input offset test)

Schematic 4 . 19 The gain decoder and drivers associated
the gain control relays.

4-102

U

*>
id

U
a
c
m

i

p
01

in

01

U

0)

£
P
T3
C
10

u
0)

p
01

•H
<Jl

01

14

in

3
4J
10

•P

u
o
B
M
0)

I

a
u
<o

o
A
0)

JC
H

p

I

CO

4-103

+ 5V

R205

1.5k

bd_error » *V\\—

LED201 220

-A/W-

1/5-RN212 5
~S

Q201

U265d R206 LED202
v

standby »-

rdreg]* +-

12r—-.
1.5k

13 V-W

1/9-RN213

220

-A/W •

input_en

1/5-RN218

R207

1.5k

—\t\n—*-

10k

standby

Q202

1/9-RN213

LED203
v 23C

l/5-RN212O0k

1/9-RN213

^ signai input enabled

Q203

conv mdl

trig recvd*

U265c R208 LED204 *
,
.

2Z0

m vw
1/9-RN213

wail for trigger mode

^ Q204

i

Schematic 4.21a A/D board front panel LED drivers.

4-104

+ 5V

acq_enab]e

R209

1 5k

Wv-

LED205
* 220

1/5-RN212

sample _ser_ end

R210

1.5k

• \AAr-

acq jn progress

Q205

LED206 *
.

1/9-RN213

220

-VW-

1/5-RN212

K 1/9-RN213
|^_ acq complete

i Ok Q206

R212

R2i:
rdreg] *

10k

47k Q207

download In progress

> R213

LED207
-V\A/
220

U265a R214 LED208
>V

,.
22 °

j H—

"

vVv~

trig.sel.0 —i-p-w ^k
^ Y 1/9-RN213

trig_sel _1 »——I
^J I ext trig selected

1/5-RN218
Q208

U265b R215 LED209
v

clk_se]_0 —i-

clk sel 1 » 5

1.5k

1/5-RN218

1/9-RN213
e.v/ clock selected

1
Q209

_

Schematic 4.21b A/D board front panel LED drivers.

4-105

+ 5V

-D15 (dala)

\

D8

timer_cont_0
timer_cont_l

RD_REG2*
WR_REG2*

BD SELECT*

\ D9 7
x D10 6

\ Dll 5

\ D 1

2

4

\ D13 3

\ D14 2

\ D15 1

19

20

22,

,

21,

Schematic 4.22 The digital interface for the 82C54-2
triple binary counter.

4-106

Hah

-aaM-

^/ ,,-

z

S -KAAA-+n
tD CO

4-107

I
uH
u

C

H
4J

U
01

* • *t 1' ^
H_

O ro !

c\2
!£
:

\ \

...

\ \

_:

to

CO ' EC

4
1 AAA j

£ i
uO*~ ^£

3— o
iTJ

2:
Cc

3 n L--

" — ~ CO

CD— o
>

c -
: < <co

CC
2 3 CO CO CD

O - - C\J CD II V A° m ca K CO S. SL <E

_ *T

Hi'
OS — ~* — C3 tv T

K X PS >.
fc

!~
—. — o iD

< <. < < +
2i* o 1

c Q
32 03

1

CQ CC

S m —

£co K CO C3 CO

0=>
». CD

n
oo

<d

g
a

(0

M

U

01

I

0)

t

IN

UH
*>

I
u
01

4-108

— oj n tt cc r--

u u o (J ccu u u w wi;

i cr 12: es: c: Hcccr£ s •£ s s c:s s

UOOUUUUO
c: d: ix k q: d: a: n:

— N D
OS 1^

,, A * * A 4

W CT C\) — O
—. — —. — — Gi >

< <

1 i

^W

a- Of o-c c Qf <y <x

DCQDDDDC
c^n^rm^ov-coa

~=5

i i * i

d»

1
Q

a
M
o

B
1

2
p
c
o
u

<D

P
-H

(H
3

£
10

in

u
•H
4J

en

4-109

SYSTEM
BUS

21 BDO 2

52 . .
BD1 3

99 BD2 4

51 « BD3 5

23 .. BD4 6

50 . .
BD5 7

24 BD6 8

49 .. BD7 9

U232

DATA DIR RD*

U233

25 .. BD8 9

48 ., BD9 8

26 .. BDIO 7

47
>

.

BD11 6

27
.

.

BD12 5

46 .. BD13 4

28 .« BD 14 3

45 .. BD15 9

f5V

120 10 k

GND
Al

A2

A3

A4

A5

A6

A7

A8 B8
JAtoB OE»

Vcc
Bl

B3

B4

B6

B7

10

ii.

12

19

DATA EN"

AtoB

A8

A7

A6

A5

A4

A3

A2

Al
GND

OE-
B8

B7

B6

B5

B4

B3

12

13

JA_

16

20

^V

RN214

DO

17 Dl

16 D2

D3_

D4

Dp

D6

:.'?

D9

DIP

Dll

D12

D13

D14

D15

m RN215

10k

t5V
DO-15 (data)

Schematic 4.2 6 The data buffers between the system
data bus and the A/D board data bus.

4-110

+ 5V

SYSTEM
BUS

12 BAO 2

6]

BA1 3

13 BA2 4

60 HAM 5

14 BA4 6

59 BA5 7

15 BA6 8

58 BA7 9

IP.

19

54

U234

4-5V-

U235

BA9

BA10

BA11

BA12

BA13

BAH
BA15

Q3

GND Vcc

19

5V

hRN216
? 10k

AO

18 Al

17 A2

16 A3

15 A4

14 A5

13 A6

12 A7

BD SELECT-

AS

A9

A10

All

A12

A15

AO- 15 (address)

RN217

10k

(-5V

Schematic 4.27 The address buffers between the system
data bus and the A/D board 16-bit
memory address bus.

4-111

U258f

(board-present identifier)

U262a

RDREGO" 13 >°-

A 0-13 (address)

AO 10

Al 9

A2 8

A3 7

A 4 6

A5 5

A6 4

A 7 3

,A8 25
A9 24

A10 21

All 23

A12
A 1 3 26

RDREGO

OE

(open dram)

D15

D 0-15 (data)

11 DO
12 Dl

13 D2~
15 D3
16 D4
17 D5
18 D6
19 D7

Schematic 4.28 The A/D board EPROM circuit.

4-112

03
C5
i-

W
n z
OS z
<fl oo u
m >-

o
o

-

0.

< _j

7, UJ

< as
Ud
s
O
ex

a »
'5

1 c -

o 3 .Sf

73

CD

E-

5-
72

3

U

CO
C

3 -a

O O O O O CV2

Z
+ o 5 z

o
C
u Hi-

Th^-

o
c_>

ci

•

Hh•

>

1

>
OS

+

Q
Z
o
<

>
U0
+-

+ Q
Bt. Z

- s

m CO
CO CO

a
CO t- CO

10 CO CTI

CO CO CO _<
CO r-- C\2

3

5

c
o
H
P
ai

g

8

M
(1)

w

5

e

»

g
a
a
u
to

4-113

ANALOG BOARD
POWER SUPPLY CONNECTOR

(viewed from the bottom)

-19 (unregulated)

^19 (unregulated)

AGND
(nc)

+ 5 digital

CON103

LM341 and
LM320 pinout

C135 i-
+

68 T

tracking regulator

-Vin *Vout

U113

LM325

-Vin -Vout

+ 15V

C131
10

h '°T
15V

C132

LM341
Ul 14

J— v v. i -2-
m out

+-5V (analog)

X-l

o.i

C133

C134
-5V (analog)

Ul 15
LM320MP

C136-C144 + 5V to digital

circuits on

the analog board

0.1 0.1

DGND

Schematic 4.30 Power supply regulation for the analog
signal board.

4-114

A/D BOARD PARTS LIST

ID # part # description

(note: all capacitors are 35V, 20% unless
otherwise noted)

C101-C104
C105
C106
C107
C108,C109
C110
Clll
C112
C113,C114
C115
C116,C117
C118
C119,C120
C121
C122
C123
C124
C125
C126
C127
C128
C129,C130
C131,C132
C133,C134
C135
C136-C144

0.1 uF monolithic capacitor
2000 pF, 50V ceramic (matched with Clll)
1000 pF, 50V ceramic (matched with C112)
0.1 uF monolithic capacitor
1.0 uF tantalum
0.1 uF monolithic capacitor
2000 pF, 50V ceramic (matched with C105)
1000 pF, 50V ceramic (matched with C106)
0.1 uF monolithic capacitor
0.01 uF ceramic, 50V
0.1 uF monolithic capacitor
100 pF ceramic, 50V

uF monolithic capacitor
uF tantalum
uF monolithic capacitor
uF tantalum
uF monolithic capacitor

8 uF tantalum
1 uF monolithic capacitor
8 uF tantalum
33 uF ceramic
1 uF monolithic capacitor
uF tantalum

1 uF monolithic
8 uF tantalum
1 uF monolithic

C201 20 pF ceramic, 50V
C202 (unused)
C203 l.o uF tantalum
C204 47 uF electrolytic
C205-C252 0.1 uF monolithic capacitor

4-115

A/D Board Parts List (continued)

CON101, CON102 right angle flat cable connector (26-pin)
CON103 5-pin Waldom modular connector

CON201,CON2 02
CON203

right angle flat cable connector (26-pin)
5-pin Waldom modular connector

D101,D102 1N5227 3.6V, 1/2 watt zener diode
D103-D114 1N4148 diode

D200-D203 1N4148 diode

J101 isolated right-angle female BNC
connector

J101,J102 chassis mount female BNC connector

JMP101-JMP103 5-station jumper header, 0.1" centers

LED201-LED209 25 mA LED (red)

Q200-Q206 2N2222 general purpose npn
Q207 2N3906 general purpose pnp
Q208 2N2222 general purpose npn

(note: all resistors 1/4 watt, 5% unless otherwise noted)

R101,R102 10 kohm variable resistor
R103 3.65 kohm, 1%
R104 2.0 kohm, 15T linear-taper potentiometer
R105 10 kohm
R106 20 kohm
R107 10 kohm
R108 20 kohm
R109 20 kohm (matched with R118)
RHO 12 kohm (matched with R117)
Rill 7.5 kohm
R112 24 ohm
R113-R116 5.6 kohm
R117 12 kohm (matched with R110)
R118 20 kohm (matched with R109)

4-116

A/D Board Parts List (continued)

R119 7 . 5 kohm
R120 10 kohm
R121 1.0 kohm
R122 100 kohm
R123 3.32 kohm, 1

R124, R125 100 ohm, 15T
R126, R127 510 kohm
R128 100 kohm

R200 2 . 2 kohm
R201 100 ohm
R202 10 kohm
R203 100 ohm
R204 10 kohm
R205-R210 1 . 5 kohm
R211 4 . 7 kohm
R212 10 kohm
R213 220 ohm
R214, R215 1 . 5 kohm
R216 2 . 2 kohm
R217 3 . 6 kohm
R218 1 Mohm

linear-taper potentiometer

linear-taper potentiometer

REL100-REL109 SPST Hg wetted relay, normally open
(Clare MSS41A05)

RN100
RN101,RN102

RN200-RN204
RN205
RN206-RN209
RN210
RN211,RN212
RN213
RN214-RN217

RN218

9-element, 10 kohm
7-element, 10 kohm

9-element,
5-element,
9-element,
7-element,
5-element,
9-element,
9-element,

5-element,

10 kohm
10 kohm
10 kohm
10 kohm
10 kohm
220 ohm
10 kohm

10 kohm

SIP resistor network
SIP resistor network

SIP resistor network
SIP resistor network
SIP resistor network
SIP resistor network
SIP resistor network
SIP resistor network
SIP resistor network

SIP resistor network

SW2 00 4 -STATION DIP SWITCH

4-117

A/D Board Parts List (continued)

U100 AD624C

U101 LM319
U102 AD712
U103 CS7008

U104 LM311N
U105 AD34 6J

U106 AD578KN

U107 74HC221
U108,
U109 74HC03
U110 74HC238
Dill 74HC03
U112 74HC75
U113 LM325
U114 LM320
U115 LM341
U116 741

U150 74HC14
U151 74HC08
U152 74HC02

(note: U116-U14

U200 74LS04
U201 74HC4040
U202 74HC153
U203 82C54-2
U204 74HC153
U205 74HC74
U206
U207 74HC74
U208,
U209 74HC574
U210,
U211 74HC245
U212,
U213 CD4520
U214 74HC74

instrumentation amplifier with pin-
programmable gain (Analog Devices)
dual comparator
dual op-amp (Analog Devices)
switched-capacitor filter +

two aux. op-amps (Crystal)
comparator
sample-and-hold amplifier (Analog

Devices)
12-bit analog-to-digital converter

(Analog Devices)
dual monostable multivibrator

quad open-drain 2-input NAND
l-of-8 decoder
quad open-drain 2-input NAND
bistable transparent latch
±15V tracking regulator
+5 V regulator, 0.5A, TO-221 style
-5 V regulator, 0.5A, TO-221 style
general purpose operational amplifier

hex Schmitt-trigger inverter
quad 2-input AND
quad 2-input NOR

U116-U149 are unused part numbers)

hex inverter for oscillator
clock divider
dual 4-to-l MUX
triple 16-bit counter
dual 4-to-l MUX
dual D Flip-flop, rising edge trig.
(unused)
dual D Flip-flop, rising edge trig.

octal clocked latch

octal data transceiver

dual
dual

4-bit binary counter
D Flip-flop, rising edge trig.

4-118

A/D Board Parts List (continued)

U215,
U216,
U217,
U218 74HC573
U219,
U220 74HC574
U221,
U222,
U223,
U224 43256
U225 82C55A
U226 74HC139
U227 74HC74
U228 74HC85
U229 74HC573
U230,
U231 74HC138
U232,
U233 74HC245
U234,
U235 74HC573
U236 27C64

U250 74HC14
U251 74HC08
U252 74HC86
U253 74HC00
U254 74HC02
U257 74HC11
U258 74HC04
U262 74HC03
U263 74HC08
U264 74HC32
U265 74HC08

(note:

octal transparent latch

octal clocked latch

32KX8 SRAM, 150 ns version (CMOS)
parallel peripheral interface
dual l-of-4 decoder
dual D Flip-flop, rising edge trig.
4-bit magnitude comparator
octal transparent latch

l-of-8 decoder

octal data transceiver

octal transparent latch
8KX8 EPROM (150 ns version)

hex Schmitt-trigger inverter
quad 2 -input AND
quad 2-input exclusive-OR
quad 2-input NAND
quad 2-input NOR
triple 3-input AND
hex inverter
quad 2-input open-drain NAND
quad 2-input AND
quad 2-input OR
quad 2-input AND

U206, U237-U249, U255, U256, U259-U261 are
unused part numbers)

X100
X200

2.4576 MHz crystal (HC-18)
10 MHz crystal (HC-18)

4-119

Signal
name

Interfigure signals for A/D board schematics

Description Schematic
from to

A/0_DAT 0-11

A/D_E0C

BA 0-15

00 0-15

B0_ADR 0-3

B0 ERROR

BUS _CLK

BUS _RD*

BUS _UR*

CLK 2.5M

16-bit memory address present on A/D board

active when all conditions for data acquisition

are satisfied e.g. desired triggers have been

received, acquisition series has not been

completed

pulse when conversion is to occur; conversion

occurs at the end of the pulse (rising edge). The

width of this pulse is determined by counter #2 of

the 82C54-2 (U203).

12-bit 2's compliment value from A/D converter

Active when analog-to-digital converter has

completed making a conversion

16-bit system bus memory address, TTL-level

16-bit system bus data, TTL-level

4-bit, TTL-level, specifies which board is being

addressed

an inverted version of BD ERROR*

active for one of two reasons: 1) the +5V digital
power has been recently applied; 2) signal

overload has been sensed. This signal is reset by
the transition from "standby" mode to a "non-

standby" mode e.g. "conv_now."

active when the board address on the bus matches
the value set by the board address DIP-switch

TTL-level clock available on the bus

bus read strobe (active low), TTL-level

bus write strobe (active low), TTL-level

A 2.S MHz clock signal (1/4 the crystal
frequency): 400 ns period

4.12

4.22

4.28

4.8 4.4

4.7

4.11

4.4 4.10

4.4 4.9

4.10

4.15

BUS 4.27

BUS 4.26

BUS 4.24

4.20 4.4

4.17

4.21a

4.20 4.8

4.15

4.15

4.23

4.25

4.27

4.5

BUS 4.25

BUS 4.25

4.5 4.9

4.20

4-120

Signal
name

Interfigure signals for A/D board schematics (cont)

Description Schematic
from to

CLK_5.0M

CLK_SEL_0

CI.IC_SH._1

CONV_MO_0

CONV HO 1

C0NV_0N_TR1G*

CONV PRE TRIG*

DATA BUF EN*

A 5.0 HHi clock signal (1/2 the crystal

frequency): 200 ns period

the least-significant-bit of clock select

the most-significant-bit of clock select

the least-significant-bit of conversion mode

the most-significant-bit of conversion mode

"convert now" mode when active

"convert on trigger" mode when active

"convert with pre-trigger sample retention" mode
when active

16-bit data present on A/D board

active when data buffer may be enabled; this is

when RD is not equal to UR and the board is

selected.

sets the direction of the bus data buffer,
determined by the bus RD* signal

4.5 4.8

4.5

4.21b

4.15 4.5

4.21b

4.15 4.16

4.15 4.7

4.16

4.21:

4.16 4.7

4.8

4.16 4.8

4.16 4.8

4.26 4.10

4.12

4.15

4.22

4.23

4.28

4.25 4.26

4.25 4.26

EN_MEM_BUS*

FLTRJXIT*

GAIN_0

GAINJ

GAIN 2

enables latched A/0 converter data to be read by 4.9 4.10
on-board memory (during conversion sequence) or
the system bus (read REG 7)

enables the on-board memory to data bus 4.9 4.10
transceiver

disengages filter from analog signal path when 4.15 4.18
active

the least-significant-bit of gain selection 4.15 4.19

gain selection 4.15 4.19

the most-significant-bit of gain selection 4.15 4.19

4-121

Signal
name

Interfigure signals for A/D board schematics (cont)

Description Schematic
from to

INPUT_EN

HA 0-15

OVERLOAD*

POST_FILTER

P0WER_0N_RESET

PROTECT*

RA 1, 2

single-ended analog signal from the

instrumentation amplifier

active when the signal input relays are engaged

16-bit on-board sample memory address

16-bit on-board sample memory data

active when the sample memory has recycled while

waiting for the trigger

enables on-board memory during a memory read or
memory write operation

pulled low when an overload is sensed by the I. A.

overload sense circuit

the analog signal following on-board filtering

a short pulse active at power-up

active enables overload protection

buffered versions of the bus register address
lines, used for selecting registers on the
control/status register

active during a read from register 0, the
configuration EPROH and the board-present
identification bit

active during a read from register 1, the on-board
memory

active during a read from register 2, the
interval-timer/counter chip

active during a read from register 3, status
register (con/stat configure register)

active during a read from register 4, control
register #1 (control #2)

active during a read from register 5, the trigger
address register

4.11 4.13

4.12 4.14

4.10 4.13

4.14

4.11 4.15

4.9 4.13

4.14

4.2 4.3

4.20 4.15

4.15 4.20

4.25 4.15

4. 25 4.28

4.25 4.9

4.13

4.14

4.21a

4.21b

4.25 4.23

4.25 4.15

4.25 4.15

4.25 4.12

4-122

Signal
name

Interfigure signals for A/D board schematics (cont)

Description Schematic
from to

REG_ADR 0-3

RST_BEFORE_ACQ

RST_BEFORE_ACQ*

SAHP_SER_END

SAHP_SER_END*

SIG_RT_1*

SIG_RT_3*

SIG_SEL_0

8IGJSELJ

STANDBY

TIHE_FOR_SAMPLE

TIMER_CONT_0

TIMER_C0NT_1

T0_SHA

TRIG_BUS

TRIG_RECVD

TRIG RECVD*

active ckjring a read from register 6, the on-board

filter

active during a read from register 7, the latched

data from the A/D converter

4-bit, TTL-level, specifies which register is

being addressed

a 400 nsec pulse that occurs prior to an

acquisition sequence

an inverted version of RST_BEF0RE_ACQ

an inverted version of SAHP_SER_END*

active when the desired number of post-trigger
samples has been acquired

"1st" output of signal route decoder

"3rd" output of signal route decoder

the least-significant-bit of signal selection

the most-significant-bit of signal selection

active when operating mode is set to "standby"

an inverted version of STANDBY

active at the end of the sample-period counting
series indicating anther sample should be taken

the least-significant-bit of the counter address

the most-significant-bit of the counter address

analog signal selected for SHA input

TTL-level signal which serves as system trigger

an inverted version of TRIG_RECVD*

active when the selected trigger is received; is

reset by RST_BEF0RE_ACQ*

4.20 4.6

4.11

4.7 4.21b

4.7 4.

a

4.15

4.16 4.17

4.16 4.18

4.15 4.16

4.15 4.16

4.16 4.9 <2>

4.11

4.20

4.21a

4.16 4.9 (2)

4.12

4.15 4.23

4.15 4.23

4.3 4.4

BUS 4.6

4.6 4.7

4.6 4.8

4.15

4.21

4-123

Signal
name

Interfigure signals for A/D board schematics (cont)

Description Schematic
from to

TRIG_RISE*

TRIG_SEL_0

TRIG_SEL_1

TRIG S1G

UR_REG1*

URJ1EG2*

UR_REG3*

URJ!EG4*

WR_REG6*

UR REG7*

trigger circuit is sensitive to rising edge when

active

the least-significant-bit of trigger selection

the most-significant-bit of trigger selection

makes the appropriate transition as the signal

amplitude traverses the trigger level

pulse when data is to be latched into on-board
memory; the data may originate from the A/D
converter or the system bus

register 1, the on-board sample memory

active during a write to register 2, the interval-
timer/counter chip

active during a write to register 3, status
register (con/stat configure register)

active during a write to register 4, control
register #1 (control register #2)

active during a write to register 6, the on-board
filter

active during a write to register 7, used to
initiate a conversion by the A/D converter

4.15 4.6

4.15 4.6

4.21b

4.15 4.6

4.21b

4.9 4.13

4.14

4.25 4.9

4.10

4.25 4.23

4.25 4.15

4.25 4.15

4.25 4.22

4.25 4.8

4-124

CHAPTER FIVE

SUGGESTED SYSTEM CONTROLLER ALGORITHMS

5 . 1 Introduction

The purpose of this chapter is to describe the

software for the system controller and the generic I/O

board. Since the scope of this thesis does not include a

detailed account of the system front-end control

algorithms, only a proposal will be made concerning how

these might be organized. The feasibility of the

algorithms listed in this chapter is unknown — they are

provided as a starting place for those who develop the

actual routines.

As mentioned in Chapters 2 and 3 , the board selected

for the system controller was the Motorola 68HC11EVB: an

evaluation board for the M68HC11 microcontroller. This

board is ideally suited for the task of system controller

since it is equipped with: an RS-232 communication port,

on-board ROM and RAM, and accessible address and data bus.

The algorithms described in this chapter enable the

68HC11EVB to receive commands from the host via the RS-232

5-1

link, decipher the commands, dispatch these commands to

the appropriate board, and, at the completion of these

steps, send a return message to the host computer.

An excellent source of information for algorithm

implementation on the 68HC11EVB is the M68HC11EVB

Evaluation Board User's Manual . When purchased, the

68HC11EVB was supplied with the BUFFALO ("Bit User's

Friendly Aid to Logical Operation") monitor program. This

program contains many useful routines that might be useful

for the system controller algorithms described later in

this chapter. Chapter 3 of the 'EVB manual contains

information about these routines, and the 'EVB manual's

Appendix B has the complete source code for the BUFFALO

monitor program. Review of this material is highly

recommended before undertaking the composition of the

system controller algorithms.

A good programming reference for the M68HC11 is

M68HC11 HCMOS Single-Chip Microcontroller Programmer's

Reference Manual . This book provides information

concerning the M68HC11 instruction set, as well as

information about its addressing modes.

The material from this chapter is presented in the

following manner. First, the duties of the system

controller are fully described. This includes each of the

5-2

routines that make up the system controller software.

Second, the software specifications for an I/O board are

presented. This includes suggestions for the arrangement

of the program stored on the board's EPROM.

5.2 Algorithm Format for the System Controller

As far as the host computer is concerned, the data

acquisition system behaves much like any peripheral device

connected to an RS-2 3 2 port e.g. a plotter or printer,

where the communication sequence between the host computer

and the peripheral is much like the following:

1) the host computer sends a command to the

peripheral in the form of ASCII characters;

2) once the termination character is received,

the peripheral deciphers the command and takes

the appropriate action (execution of the

appropriate routine)

;

3) the peripheral returns an acknowledgement of

the receipt of the command. If the command sent

by the host requested the peripheral to return

information, this acknowledgement would contain

the information requested.

Since the system controller is responsible for all

communication with the host computer, it is responsible

for all of the duties of the peripheral listed above.

This is made possible if the system controller is a

finite-state machine, where some of its duties include:

5-3

1) receive an ASCII command string from the host (via

the RS-232 communication link)

;

2) compute a check sum for the received command and

take appropriate actions if an error exists;

3) delegate command to the appropriate command

module

;

4) return a message to the host;

5) copy a board's command set from the board's EPROM

into system controller memory.

The system controller algorithms are all implemented

on a 68HC11EVB. The memory allocation of this 8-bit

microcomputer board is listed in Table 5.2.1.

5-4

Table 5.2.1 Memory allocation for the 68HC11EVB
(following modifications listed in Appendix
E).

Description Address

Internal RAM (MCU reserved) $0000 - $00FF
Not used $0100 - $0FFF
(reserved) $1000 - $17FF
Not used $1800 - $3FFF
Flip-Flop decode $4000 - $5FFF
Optional RAM (8K) $6000 - $7FFF
Not used $8000 - $97FF
Terminal ACIA $9800 - $9FFF
Bus driver ports $A000 - $AFFF
Not used $B000 - $B5FF
EEPROM $B600 - $B7FF
Not used $B800 - $B7FF
RAM (8K) $C000 - $DFFF
System controller EPROM (8K) $E000 $FFFF

As shown in Table 5.2.1, 8K of memory space is

available for the system controller routines, and a total

of 16K of RAM is available for other needs.

An important aspect of the system controller is the

use of the system controller's memory. Fig. 5.2.1

illustrates one possible allocation of the system

controller memory. Functions which pertain to the system

controller are stored in the ROM (EPROM) . These routines

include host-communication, the command dispatcher, memory

management, system bus control, and system controller

5-5

command implementation. The system controller RAM is

where all board routines are stored, as well as the

location where communication queues are maintained.

Fig. 5.2.2 shows the arrangement of the system

controller routines, and the remainder of this section

discusses the initialization of the system, the command-

handling routines, and other assorted routines that are

performed by the system controller.

System controller reset/initialization

When power is freshly applied to the 68HC11EVB (or

when the "reset" push button is pressed) , the system is

reset and the routine pointed to by the power-up vector

($FFFE-$FFFF) is executed. The system controller ignores

all commands until it receives a command instructing the

system to initialize (this is the "si" command listed in

Appendix B)

.

The system-initialize command causes the system to

prepare itself for a data acquisition session. This

consists of the following steps being taken:

1) Initialize the memory control parameters;

2) Configure the bus driver control ports as

specified in section 3.4 (initialization of the bus

drivers)

;

5-6

system controller functions;

communication routines;

memory management;
command dispatcher

scratch-pad memory;
board-routine address
jump table;

system configuration info;

communication queues

These routines
are copied

from the board's
EPROM when the

board is initialized.

Board #1 routines

Board #2 routines

3oard #n routines

unused memory

ROM

RAM

Figure 5.2.1 The allocation of system controller ROM and
RAM.

5-7

3) Return a "system initialized" message to the

host.

At the completion of this initialization routine, the

system controller is ready to receive and execute

commands

.

The message receiver

Characters are received from the host by way of the

RS-232 communication link joining the host computer with

the DAS. When a character is received from the host, an

interrupt is generated, thus causing the sequence of

operations shown in Fig. 5.2.3(a) to be executed. The

received character is retrieved from the RS-232 "received

character" register and is stored in the "received-message

queue" . The received character is compared with the

message termination character (;) and the "message end"

status flag is set accordingly. The routine then returns

from the interrupt.

The command dispatcher

As shown in Fig. 5.2.3(b), the system controller

waits for a command to be sent, and the receipt of a

complete command is indicated when the "message end"

status flag goes active. The system controller then

calculates a check sum value for the received command and

compares it with the check sum received as part of the

message. If the check sums do not compare favorably, the

5-8

3 5

— -n Wi

s Eo -
J3 C E E

at

^

S
en

-
_

cu

H
O
u

i

gg

>.
n

a)

toH

£
o

•C

•H
a
3

5
o
s

a)

j-i

<o

3
4J
*4
O
m

CN

ai

H

5-9

system controller returns a "transmission error" message

to the host, otherwise, the command is deciphered by the

command dispatcher.

The operation of the command dispatcher is simply a

matter of executing the routine which corresponds with the

command received from the host. As specified in Appendix

B, the command's identity is determined by the first two

characters, and if necessary, the board address is the

number following these two letters. As shown in Fig.

5.2.4, the routine corresponding to the command is found

by first searching the list of system controller commands,

and, if necessary, searching the command list of the

specified board. Once the command is found, its

associated routine is executed as a subroutine by the

command dispatcher. At the completion of the routine,

control is returned to the command dispatcher. The

command dispatcher then signals the "message transmitter"

to transmit the return message to the host computer.

5-10

w
>

, -5: g

SI
charade

-232

regi

queue

_4> £

° _ v w c ~
w E

o> .E

JE
CO aj

£5

si- - Oi

'

z

'

T

J P « :

2

5-11

Return message transmission

During the execution of a command implementation

routine, messages to be sent to the host computer are

stored in the "return message queue" . When signalled by

the command dispatcher, the message transmitter sends the

message in the return message queue to the host. As with

messages sent to the DAS, each message sent to the host is

terminated by a semi-colon (;) . After the return message

has been sent, the system controller waits for another

command from the host. Note: Contents of the return-

message queue preserved until a routine stores a fresh

return message — this facilitates the capability of a

message resend.

Utility routines and subroutines

Numerous routines are also made available as a part

of the system controller. These routines include:

Bus driver routines . The bus driver routines

facilitate bus-related I/O with the boards. These

routines manage data to/ from I/O-board registers, and

all memory-, register-, and board-related addressing.

Board initialization. Before an I/O board can be

used during a data acquisition session, it must be

initialized. The following steps are performed

5-12

The command dispatcher
>

Compare the received

command with "SI"

Execute the
command.

(compare with the rest of

the system controller

command set . . .)

Command was not a

system command
Examine the board
address in the command.

Is the board present

Compare the received

command with each of

the comands for the
specified board.

COMMAND
NOT PRESENT

yReturn to (bEGIN^

and wait for p—
next command.

Place "board not

present" in return
message queue.

Execute the

command.

Place "invalid

command" in return
message queue.

I Send the message in
j

J the return message -

queue to the host.

Figure 5.2.4 The sequence of operations performed by the
command dispatcher.

5-13

during board initialization:

1) Verify the board is present [A board is

present if D,
5
of register is LOW] .

2) Read the first two bytes of the board's

EPROM and determine the memory requirements

for this board's routines [EPROM data is

read from the LSB of register 0]

.

3) If sufficient system controller memory is

available, the system controller sets up a

place in its RAM and invokes the "board

command-set copy routine" i.e. the board's

EPROM is copied into system controller RAM.

4) Upon completion of the copy routine, the

board's own initialization routine is

executed (this was one of the routines that

was just read from the EPROM)

.

5) Report the successful board initialization

to the host.

Memory management. The purpose of the memory

management routine is to supervise the allocation of

the system controller's RAM. The memory manager is

responsible for positioning an I/0-board's routine

set when it is copied from the board's EPROM. In

addition, the memory manager must maintain a board-

routine jump-address table.

5-14

Other subroutines . Other subroutines are included

within the system controller that may be used by the

I/O-board command implementation routines. These

include BCD-to-binary conversion, binary-to-BCD

conversion, and other routines which may be useful to

many boards.

5-15

5.3 I/O-Board Command Implementation

The purpose of this section is to present a set of

guidelines for I/O-board command implementation. These

guidelines include rules for software and organization on

the I/O-boards' EPROMs, and some assembly language

techniques that might be useful when composing the I/O-

board programs.

One way to minimize the complexity of the system

controller software is to require that all I/O-board

command-implementation routines to be organized in the

same manner. The following rules are suggested for each

of the I/O -board routines.

RULE 1: All coding in the board's EPROM start

at address 0000, and the first two

bytes of this code indicate the length

of the code stored in the EPROM.

A method is needed to inform the system controller

the length of the code for a particular board. This

permits the routine which copies the code to determine two

things: 1) if there is sufficient room for the code in

the system controller memory, and 2) when to stop copying

the code during the copy routine.

RULE 2: All code written for the I/O-board

must be relocatable.

5-16

Rule 2 is necessary since the contents of the board's

EPROM are copied into system controller RAM at a position

that is unknown at the time of code compilation.

RULE 3 : The command look-up table for each

board must begin in a standard

position (for example, beginning at

the first byte following the "length

of code" information mentioned in RULE

1).

This rule simplifies memory management and command

dispatch routines.

RULE 4: All buffers, variables, and constants

for a particular board must reside

within the EPROM-code address bounds.

Any memory that a board needs for variables, scratch-

pad memory, or other applications must be addressed within

that board's code-space. This rule reduces the complexity

of the memory manager that would otherwise be responsible

for allocating, protecting, and deallocating the memory

between the boards. Although this rule is not

particularly memory efficient, it does reduce the

complexity of the memory management routine.

RULE 5: Routines for an I/O board may NOT

alter memory outside of its code-

space.

5-17

This is a natural extension of rule 6: limiting the

addressable space for each board to its own code-space

reduces the complexity of the memory manager.

RULE 6: A command for a board may not have the

same two-letter identification as any

of the system controller commands.

However, boards may share two-letter

command identifiers.

As described in section 5.2, the command dispatcher

assumes that the received command is a system controller

command, and only after an unfavorable survey of the

system controller commands does the dispatcher determine

the address of the board to which the command is intended.

The I/O-board EPROM memory map

Another way that system controller software

complexity can be reduced is to reguire the placement of

software on the I/O-board 's EPROM to be stored in a

standardized manner. One possible way is shown in Fig.

5.3.1. The following material in this section describe

the I/O-board command organization shown in Fig. 5.3.1.

End-address ident i f i <»r . The purpose of the end-address

identifier permits the system controller to know the space

reguired to load the I/O-board 's code, and so the system

controller knows the last address it needs to copy during

the EPROM-copy routine. The method of identifying the

5-18

§

%
&
c
rfl

Hu
<o

n
u

o

I

O

C
10

u
o

o •

£
(0 o
0,&
m a.

<ii

•o w
-

O TS

C
41 Q
a o
Eh XI

5 -

2

s

5-19

last address could be done in many ways. One way is to

use an FDB compiler instruction which places the 16-bit

"end" address within the assembly code at compile time.

This assembly code might appear as follows:

ORG $0000 * All code is stored
* in the EPROM
* beginning at address
* 0000.

FDB #END_BYTE * The 16-bit address
* of the last byte
* of the assembly
* code is placed in
* the first two bytes
* at compile time.

END_BYTE EQU * * The last byte
* of code.

For the case shown above, the system controller reads

the 16-bit number at EPROM address 0, where this 16-bit

number is the address of the last byte of code.

Command look-up t.ahlp.. The second section of the I/O-

board code space is the command look-up table. This table

is accessed when a command for the board is received. The

system controller's command dispatcher compares the two

ascii characters in the look-up table with the command

received. If a match is made, the routine pointed to by

the "branch address" is executed as a subroutine. The end

of the command look-up table is marked by a special "end

5-20

flag" value to alert the command dispatcher that the

command look-up table has ended. An example of the

assembly code for the command look-up table is shown

below.

FCC ' rs

'

FDB #RET_SAMP

FCC 'sc'

FDB #ST CONV

"Retrieve sample"
command identifier.
The branch address
of "retrieve
samples" routine
The next command
and its
branch address.

FDB #END_TABLE * The end-of-table
* identifier.

Command implementation routines . The next section of the

I/O-board's code space is the routines which implement the

commands. Each of these routines are called as

subroutines by the command dispatcher, where the branch

address was given in the command look-up table. An

example of the assembly code for the command

implementation routines is shown below.

5-21

RET_SAMP EQU * * The branch address
* of the RET_SAMP
* routine is defined.

: : * The code for the
: : * routine.
RTS * Return from the

* subroutine.
ST_CONV EQU * * The branch address

* of the next routine.

Subroutines. Routines that are shared by the command

implementation routines are included in the section called

"subroutines". The routines included in this section are

useful for this particular I/O board, but are not included

in the routines resident in the system controller

subroutines.

Scratch-pad memory . This section of the I/O-board's code

space is the region reserved for storing information

pertaining to the board, or used for any other general

purpose variable storage. The size of this memory space

may be large or small, depending upon the needs of the I/O

board

.

5-22

CHAPTER SIX

SUMMARY

A design has been presented for a host-independent

data acquisition system. This acquisition system has the

advantage of being usable by virtually any computer that

has an RS-232 port. The motivation for the system's

development was to reduce the cumbersome interface

problems frequently encountered when moving an acquisition

system from one host computer to another.

This thesis has described a prototype of a system

that is modular in the sense that it is composed of a

system controller and up to sixteen removable I/O boards,

all of which are interconnected by a system bus. The

system controller receives mnemonic commands from the host

computer by way of an RS-232 communication link, whereupon

the command is deciphered and the appropriate actions are

taken. An important goal during the design of this system

was to minimize complexity of the host computer's system-

controlling software, thus reducing the development time

6-1

when the system is used with a new host.

In addition, the design of an analog-to-digital

conversion board for use with the system was presented.

Among this board's numerous features is its 150 kHz

sampling rate and its 64K sample on-board memory.

A good deal of work remains for those who compose and

implement the controlling algorithms for the system.

These algorithms will determine the ease with which the

system can be used. The DAS design presented in this

thesis places as few restrictions as possible on those who

develop the controlling algorithms, and those who design

and construct additional I/O boards which are compatible

with the system.

6-2

REFERENCES

M68HC11EVB Evaluation Board User's Manual . Phoenix,
AZ: Motorla, Inc., 1986.

Crystal 1988 Data Book . Austin, TX: Crystal
Semiconductor, p. 9-10.

Intel Microsystem Components Handbook, Volume II
(1986) . Santa Clara, CA: Intel Corporation,
p. 6-335.

Crystal 1988 Data Book . Austin, TX: Crystal
Semiconductor, p. 9-3/9-21.

Data Conversion Products Databook (1988) . Norwood,
MS: Analog Devices, p. 6-5.

Linear Products Databook (1988) . Norwood, MS:
Analog Devices, p. 4-56.

Data Conversion Products Databook (1988) . Norwood,
MS: Analog Devices, p. 3-84.

APPENDIX A

USING THE DAS WITH SYSTEM CONTROLLER SIMULATOR

A . 1 . Introduction

The purpose of this appendix is to provide

instructions to the user of the Data Acquisition System

(DAS) . This includes setting up the system and using it

with the PC-interface. In addition, this Appendix

includes instructions for making adjustments on the A/D

board.

A. 2. Simulating the System Controller

Since the system controller (68HC11EVB) was not

implemented with this system, some means of testing the

system without the controller was necessary. Therefore, a

PC equipped with an 8-bit parallel interface (PCPI) was

used to simulate the controller board [1]. In addition to

the data bits, this interface had the appropriate number

of control lines for the bus driver circuit. The PC also

had a C-language source code compiler thus enabling system

test routines to be implemented.

A-l

In order to use the PCPI with the system front-end, a

small interface circuit was needed. This circuit is shown

in Schematic A.l. The operation of this circuit is

straight forward: a small circuit simulates the E and

R/W* signals from the 68HC11EVB based on the three data

control lines from the PCPI (BD_SEL*, RD*, and WR*)

.

Additionally, address lines AO - A2 provide bus driver

port selection. The timing diagram for the PCPI-to-bus

driver interface is shown in Fig. A. 2.1.

A-2

PCPI
connector

+5v from C0N2 connector

GND from C0N2 *-° sys tem
front-end,

CON1

5 A2

i ^

^VvrTi^^/L^^f

10

42

sc-°<
. . 38

sc-m . - 37

36

3L
(AS) 47
(A13) 14
(A 15) 16
(A12) 13

1 (AI4) 15

J
(EVB sense) 25

Schematic A.l The schematic for the PCPI-to-DAS
interface circuit.

A-3

BDSEL*

RD*

AO - A2

DATA (READ)

VALID

VALID

k- 10 mm, 75 max

•\ 3 -STATE

BDSEL 1

WR*

DATA (WRITE).

T

VALID

Notes: 1. These drawings are NOT TO SCALE
2. All times are in nanoseconds, and should be

reguarded as mmimums.

Figure A. 2.1 The necessary timing when the bus driver
circuit is used with the PCPI and the
interface circuit shown in Schematic
A.l.

A-4

A. 3. Using the System with the PC Controller

Using the system is simply a matter of following

these instructions:

1. Setting up the system

A. Verify all power to the system is OFF. If the PC

power is on, execute the PI_DAS program and disable
the interface.

2. Carefully install the desired boards into the
card sockets on the system front-end board.

3. Connect the 26-conductor ribbon cable from the
PCPI board (in the PC) to the system controller
interface board.

4. Connect the power supply to the system with
banana connectors on the side of the system base-
board. All power should be energized simultaneously.
The Hewlett-Packard 6236B triple output power supply
in one possible power supply candidate. Although
this supply is only capable of 7V (for the +8V
source) , it will work with this system.

IMPORTANT: Before installing or

removing a board from the system, make
sure the system power is OFF!

5. Execute the PI_DAS.EXE program on the PC.

6. The system must now be initialized. Type "si"
for system initialization. This routine will enable
the PCPI board interface, prompt the user for the
board address of the A/D board, and initialize the

A-5

board. The address of the A/D board is set with the

4-station DIP switch, SW200 (see Fig. D.2.2, Appendix

D).

The system is now ready to be used.

2. Using the system test routines

The commands recommended for the system (listed in

Appendix B) are implemented in the test program,

PI_DAS.EXE. The commands available from the test program

are listed in Tables A.l through A. 5. Please refer to

Appendix B for descriptions of these routines.

A-6

Table A.l PCPI/DAS: Routines exclusive to the
DAS/PCPI test routine.

Command Description

help

gv

mt

sb

quit

step

trace

Comment. Type the comment
immediately following the ' ;

'

.

Presents a help screen for the
user of the PCPI_DAS.

Get value produced by A/D
conversion — select source,
initiate conversion, then
display the value.

Toggle session logger "on" or
"off."

Memory test for on-board
memory

.

Set board address to which all
board related commands are
routed. This command is
automatically executed during
system initialization.

Terminate session and close the
session-log file.

Toggle the step-by-step
execution of bus read/write
operations.

Toggle the screen dump of bus
read/write operations.

A-7

Table A. 2 PCPI/DAS commands: System controller.

Command Description

si SYSTEM INITIALIZE

bi BOARD INITIALIZE

ct CONFIGURE SYSTEM TRIGGER

cc CONFIGURE SYSTEM CLOCK

bw <reg> WRITE TO BOARD REGISTER

br <reg> <value> READ FROM BOARD REGISTER

dr DISPLAY BUS DRIVER PORT VALUES

Table A.

3

PCPI/DAS commands: A/D Board commands
for conversion control configuration.

Command Description

ts TRIGGER SELECT

cs CLOCK SELECT

fs FULL SCALE SIGNAL RANGE

fi FILTER CONTROL

fc FILTER CONFIGURE

sr SET SAMPLE RATE

cl CALIBRATE

A-8

Table A.

4

PCPI/DAS commands: A/D Board commands
for conversion control.

Command Description

be

sc

BEGIN CONVERSION

STOP CONVERSION

Table A. 5 PCPI/DAS commands: A/D board status
query and data retrieval.

Command

gs

rs

Description

GET STATUS

RETRIEVE SAMPLES

A-9

Table A. 6 PCPI/DAS commands: auxiliary commands
for test program.

Command Description

d Disable PCPI interface.

e Enable PCPI interface.

i Toggle both initialization
lines -MRESET and -BDINIT
either "on" or "off."

ia Activate -MRESET and -BDINIT.

ib Activate -BDINIT.

id Deactivate -MRESET and -BDINIT.

im Activate -MRESET.

P Plot contents of data buffer on
graphics display.

PP Plot contents of data buffer on
pen plotter.

=reg> Read the contents of register
<reg>, where <reg> =0, ... ,

7.

<reg> <value> Write the value <value> to
register <reg>, where <reg> =
0, ... , 7. and <value> can
be given in decimal (default)

,

binary, octal, or hexadecimal.

Example: A decimal 23 can be
entered as

Decimal
Binary
Octal
Hex

23 or 23d
10111b
27o
17h

A-10

Each of these commands simulate the commands described in

Appendix B. The only difference is that commands

implemented by the test program prompt the user for all

necessary parameters (the command structure given in

Appendix B require the parameters to be part of a command

string)

.

Many commands from the original PCPI control program

are also available with the PCPI_DAS control program.

These commands are listed in Table A. 6.

3> A description of a data acquisition session

The following is a key-by-key description of a

typical session with the DAS in conjunction with the PCPI

and Zenith PC.

1. Turn the power to the computer ON, and turn the power
ON to the Selanar graphics terminal.

2. From the C:\E747\DDN directory, execute the pi_das
program.

3. Once the pi_das program prompts for a command, turn
the power ON to the DAS prototype circuit.

Note: To receive assistance with commands
available with the prototype test circuit, type
help at the command prompt. This will display a

list of the commands with a brief description of
each.

A-ll

4. Issue the "initialize system" command, si, and answer

the prompt concerning the board address based on the

board-presence survey at the beginning of the

initialize system routine.

Note: If power to the prototype circuit needs

to be disconnected following the previous step,

the "disable interface" , d, command should be

issued.

The remaining steps in this description are for data

acquisition with the A/D board: 1) setting up the

acquisition parameters, 2) initiating the acquisition

sequence, and 3) retrieving and displaying the acquired

data.

5. Setting up the A/D board acquisition parameters:

Selecting the clock : type cs and select the

appropriate clock source. In this simple example,

select the internal clock followed by an acquisition

rate of 10000 Hz. The frequency set on the A/D board

is then displayed on the PC monitor. (Note: the

sample rate may also be set by the sr command.)

Selecting the trigger : type ts and select the

appropriate trigger.

Selecting the full-scale range of the input

amplifier : type the "full-scale" command, fs,

followed by the desired gain. For this example,

select gain = 1.

A-12

6. Initiating the acquisition sequence.

Connect the signal source to the signal-input

BNC-connector on the A/D board front-panel. The

signal source for this example might be a periodic

function with a fundamental frequency an order of

magnitude less than the sampling frequency e.g. a 4

V„ . 100 Hz sine wave.p-p

Type the "begin conversion" command, be, and

answer the prompts. For this example, use the

Immediate conversion mode, which means conversion

begins as soon as all prompts in this command are

answered. Answer the number of samples with 2 00, and

use signal input protection.

The status of the board may be obtained in two ways: 1)

observing the LEDs on the A/D board front panel, or 2)

executing the "get status", gs, command.

7. Retrieving the acquired data.

As soon as the A/D board has completed the data

acquisition sequence, the data is ready to be transferred

from the A/D board memory to the host computer. This is

accomplished in the following manner:

(1) return the A/D board to the "standby" condition

by issuing the "stop conversion", sc, command.

A-13

(2) retrieve the samples by issuing the "retrieve

samples", rs, command. This will tell how many

samples were acquired and prompt for the number

of samples to be retrieved . . . answer with

200, and begin with the first sample. Once the

samples have been retrieved, save the data to a

disk-file.

(3) display the acquired data on the Selanar

graphics terminal. Issue the "plot", p,

command, and plot all 200 points. The data

should then appear on the graphics terminal.

This example sequence is complete. Type quit to exit the

program. Once the PC returns to the DOS prompt, turn the

power to the prototype circuit OFF.

A-14

A. 4. Calibrating the A/D board

The purpose of this section is to delineate the

procedure for calibrating the A/D board. The specific

adjustments that are made available to the user are:

Instrumentation Amplifier:

input offset null for I. A.
output offset null for I. A.
xlO gain adjustment

Analog-to-Digital Converter:

bipolar offset
gain adjust

The specific instructions for each of these adjustments is

detailed in the following sections. For each adjustment,

full power should have been applied to the system for one

half hour, while the system is at the same temperature of

the environment which the measurements will be made.

Please refer to Fig. A. 4.1 for location of test points,

adjustments, etc. when using the following instructions.

Adjustments pertaining to the Instrumentation Amplifier

Input offset null:

1. At the host computer, set the board's mode to
STANDBY by issuing the stop conversion (sc)

command

.

2. Connect one lead of a DVM to TP100 and the other
lead to TP101. Adjust the DVM to the lowest DCV
scale available (at least 2 mV full scale)

.

A-15

3. Referring to Fig. A. 4.1, place a jumper on JMP101

and JMP103.

4. Referring to Fig. A. 4.1, adjust R101 until the

magnitude of the voltage measured by the DVM is

minimized.

5. Remove the jumpers and place them back on JMP 104

and JMP105. Remove the DVM connectors.

Output offset null:

1. At the host computer, set the board's mode to

STANDBY by issuing the stop conversion (sc)

command

.

2. Connect one lead of a DVM to TP100 (next to the

I. A.) and the other lead to TP101. Adjust the DVM to

the lowest DCV scale available (at least 2 mV full

scale)

.

3. Referring to Fig. A. 4.1, place a jumper on JMP101

and JMP102.

4. Referring to Fig. A. 4.1, adjust R102 until the

magnitude of the voltage measured by the DVM is

minimized.

5. Remove the jumpers and place them back on JMP 104

and JMP105. Remove the DVM connectors.

xlO gain adjustment:

1. From the host computer, issue the calibrate (cl)

command

.

A-16

2. Obtain a steady voltage source with an output
between 250 mV and 500 mV; measure its output
voltage; connect it to the A/D board signal input.

3. Connect a DVM to TP100 and TP101 and adjust the
scale of the DVM to permit measurement of 2 vdc to 10

vdc.

5. From the host, execute the "calibrate" routine,

select the "xlO gain adjust routine".

6. While monitoring the DVM, adjust R104 until the
meter reads exactly ten times the value of the signal
source.

7. Remove the DVM and cancel the calibration routine
(press the <enter> key)

.

Adjustments pertaining to A/D converter [2]

:

1. From the host, execute the calibrate (cl)

routine.

2

.

Obtain a stable voltage source that can be
adjusted to 4.9988 volts and 4.9963 volts. Connect
this source to the signal input for the A/D board.

3. Connect a 5-1/2 digit DVM to TP102 and TP100.

NOTE: The "positive" lead of the DVM must be
connected to TP102. Set the DVM's scale to measure
approximately 5 volts.

4. From the host, execute the "A/D converter
adjustment" routine.

5. While, watching the DVM, adjust the input signal
until the voltage is exactly -4.9988 volts (if
positive voltage is being measured, reverse the

A-17

polarity of the voltage source: restart this

adjustment routine from step 1)

.

6. While watching the host computer's monitor,

adjust R124 until the follow transition occurs:

10000000 00000000 > 10000000 00010000.

7. From the host computer, turn the calibrate

routine off by responding "0" to the number of

conversions prompt.

8. Reverse the polarity of the voltage source.

9. While, watching the DVM, adjust the input signal

until the voltage is exactly +4.9963 volts (if

negative voltage is being measured, reverse the

polarity of the voltage source: restart this

adjustment routine from step 7)

.

10. While watching the host computer's monitor,

adjust R125 until the follow transition occurs:

01111111 11100000 > 01111111 11110000.

11. From the host computer, cease the calibrate
routine.

A-18

m

c

!

c
o
•H
4J
10

U
,0

<0

u

w

c
o
•H
•u
IT]

u
o

in

B
10

o

A-19

APPENDIX A REFERENCES

S. Dyer, "The PCPI - A Personal Computer Parallel
Interface," Dept. of Electrical and Computer
Engineering, Kansas State University, (unpublished)
1989.

Analog Devices, Data Conversion Products Handbook
1988, p. 3-84.

A-20

APPENDIX B

THE PROPOSED COMMAND SET FOR THE DAS

The purpose of this appendix is to present the

proposed command set for the final version of the DAS.

Whether these commands are used or not, the material in

this appendix lists some of the commands that might be

useful.

The material in this appendix is presented in the

following manner. Following a summary of the commands, an

explanation for the command-format is presented. The

remainder of the appendix is a detailed list of the

commands

.

Table B.l presents a summary of the proposed

commands

.

B-l

Table B.l Data acquisition system command summary.

System Controller Commands

general purpose commands

NULL COMMAND
SYSTEM INITIALIZE
RESEND LAST MESSAGE
BOARD INITIALIZE
CONFIGURE/ACTIVATE SYSTEM TRIGGER
CONFIGURE SYSTEM CLOCK
BOARD REMOVE

board testing commands

BOARD REGISTER WRITE
BOARD REGISTER READ

A/D Board Commands

conversion con figuration/system calibration

TRIGGER SELECT
CLOCK SELECT
FULL SCALE SIGNAL RANGE
FILTER CONTROL
FILTER CONFIGURE
SET SAMPLE RATE

conversion control

BEGIN CONVERSION
STOP CONVERSION

board status guerv/data retrieval

GET STATUS
SEND SAMPLES
GET DATA HEADER

B-2

Command Format

Each of the commands are composed of 7-bit ASCII

characters in the following format:

command {board number) [optl, , opt n] terminator

where

command is composed of exactly two alphabetic
characters (A-Z)

;

{board number) is the decimal characters for the
board to whom the command is directed
. . . this is omitted when the command
is directed to the system controller;

[options] are command-related parameters (the
use of which is functionally
dependant) . . . all parameters are
separated by commas (,) ;

terminator A semi-colon (;) terminates all
commands (both to and from the
system)

.

All spaces (ASCII 32 decimal) within commands are ignored.

Each of the commands listed in Table B.l are described

throughout the remainder of this appendix in the format of

the following command description.

B-3

An example command description

BI (n); <== instruction format (as sent by user character-by-

character)

Command

:

BOARD INITIALIZE <= cc—and mm

Purpose

:

This instructs the system controller
to load the routines from the
board's ROM into system controller
RAM.

Parameters: n is the number identifying the
board.

Return

:

ACK; normal return <== (character-

by-character

response from DAS)

BNP; error, board not present;
IM; error, insufficient system

controller memory to load
the board's command set.

B-4

The proposed command set

NOTE: In the event of an error, the system may return the

following code as a response to any command:

NACK; error in transmission, possible
extraneous characters were
received prior to the receipt of
the (;)

System controller functions

Command

:

Purpose:

Return

:

NULL COMMAND

This command has no purpose other than to
flush the system's message que e.g. to
reset the received-message buffer in the
system controller. This command is useful
if a command has been sent but the system
fails to respond. If the system is failing
to respond due to a communication error
that occurred during the transmission of
the failed command, the null command should
forces the system to make some form of
return to the host, and consequentially
clear the message que (thus making the
system ready for a new command)

.

ACK;

SI;

Command

:

Purpose:

Return

:

SYSTEM INITIALIZE

This instructs the system controller to
initialize the bus and format the
controller's RAM.

ACK;

B-5

RM;

Command

:

Purpose:

Return

:

RESEND LAST MESSAGE

This instructs the system controller to
resend the most previous message sent to
the host computer.

[The most previous message] ;

BI bd_num;

Command

:

Purpose:

Parameters

:

Return:

BOARD INITIALIZE

This instructs the system controller to
load the routines from the board's ROM to
system controller RAM.

bd_num is the number identifying the
board.

ACK; if board initialization went without
flaw,

BNP; error: board not present,
IM; error: insufficient system

controller memory to load
the board's command set.

B-6

CT control;

Command

:

Purpose:

Parameter:

CONFIGURE/ACTIVATE SYSTEM TRIGGER

This instruction configures the bus trigger
(from the system controller)

.

Additionally, this routine permits set-up
of the external system trigger.

control = D for trigger deactivation;
SR pre-set for RISING-edge

trigger activation;
SF pre-set for FALLING-edge

trigger activation;
A for activation of system

controller trigger
activation;

CE connect to EXTERNAL trigger
source

;

CI connect to INTERNAL trigger
source.

Return: ACK; normal return.

CC source;

Command:

Purpose

:

Parameters

:

Return

:

CONFIGURE SYSTEM CLOCK

This instruction selects between the
internal 3 . MHz clock and the external
clock connection on the front panel of the
controller.

source = I for internal, E for external.

ACK;

B-7

BW bd_num, register, value;

Command: WRITE TO A SPECIFIC REGISTER ON A BOARD

Purpose

:

Parameters:

Return

:

This command enables a register on a board
to be written to directly. This command is

especially useful during board testing.
This function does not verify the board is

present before writing.

bd_num is the board's number, 0-15,
register is the register to which the
value is to be written, 0-15,
value is the number to be written to the
specified register, 0-65535 (16-bit range)

.

ACK;

BR bd_num, register;

Command: READ THE CONTENTS OF A SPECIFIC REGISTER ON
A BOARD

Purpose: This command enables a register on a board
to be read from directly. This command is
especially useful during board testing.
This function does not verify a board is
present before reading.

Parameters: bd_mun is the board's number, 0-15,
register is the register from which the
value is to be read, 0-15.

Return: The number read from the register (in
decimal ASCII format)

.

B-8

A/D board commands

The following commands are proposed for use with the A/D
board.

TS bd_num, source, edge;

Command: TRIGGER SELECT

Purpose:

Parameters

:

Select the appropriate trigger and assign
the appropriate signal edge: rising or
falling. The sources include the board's
front panel trigger, the bus trigger, or
the signal (in the same manner as an
oscilloscope) . The edge may be rising or
falling.

bd_num is the board's number, 0-15,
source = B for Bus, P for panel, S for

signal, SB for signal with
simultaneous bus trigger
activation,

edge= R for rising edge, F for falling.

Return: ACK;

BNP;

normal return,

error: board not present.

CS bd_num, source;

Command: CLOCK SELECT

Purpose:

Parameters

:

Return:

Select the appropriate clock for
conversion. Selections for source include
the bus clock , and the board's front panel
clock input. The clock signal employed by
the board is slowed down by a counter,
where the counter value is set by the count
parameter.

bd_num is the board's number, 0-15,
source = B for Bus, P for Panel.

ACK; normal return,

BNP;
PE;

error:
error:

board not present,
parameter error.

B-9

FS bd_num, gain value;

Command

:

Purpose:

Parameters:

Return

:

FULL SCALE SIGNAL RANGE

Set the voltage gain of the board's front-
end amplifier, depending upon the
instrumentation amplifier selected.

bd_num is the board's number, 0-15,
gain value may be 5V, 500MV, 50MV, 25MV,
10MV.

ACK; normal return,

BNP; error: board not present,
PE; error: parameter error.

FI bd_num, control;

Command: FILTER CONTROL

Purpose

:

Parameters:

Return:

This instruction inserts or removes the on-
board anti-aliasing filter.

bd_num is the board's number, 0-15,
control = I for "filter in", for "filter
out" .

ACK; normal return,

BNP;
PE;

error:
error:

board not present,
parameter error.

B-10

FC bd_num, base_addr, n, byte_l, byte_2. byte_n ;

Command

:

Purpose:

FILTER CONFIGURE

Set up the on-board anti-aliasing filter
with the given coefficients. The order of
the bytes is not known at this time.
(Note: if non-consecutive filter registers
are to be written to by this configuration
instruction, one may use adjacent commas
with non character between, i.e.

. . . byte_l , byte_2 , , byte_4 , byte_5 . . .

the third register was skipped.)

The configuration data for the filter
is contained in byte_l through byte_n.
These configuration data must be in the
following format:

MSB LSB

1 D5 D4 D3 D2 Dl DO

where D5 through DO compose the six-bit
configuration data. The most significant
bit must be set (this most significant bit
is ignored)

.

Parameters: bd_num is the board's number, 0-15,
base_addr is the filter register address in
which byte_l is stored,
n is the number of bytes in the
configuration

,

byte_i are the n-bytes sent to the filter.

Return: ACK;

BNP;
PE;

normal return,

error:
error:

board not present,
parameter error.

B-ll

SR bd_num, period;

Command: SET SAMPLE RATE

Purpose: Set the sample clock register to provide
the specified sampling rate. The period of
the sampling rate must be an integer.

Parameters: bd_num is the board's number, 0-15,
period is the sampling frequency period in
milliseconds.

Return: ACK; normal return,

BNP; error: board not present,
PE; error: parameter error.

B-12

BC bd_num, cont, #_pre_trigger_samples ,

#_post_trigger_samples ;

Command

:

Purpose

:

Parameters:

BEGIN CONVERSION

This instruction initiates conversion. The
control parameter selects between
"immediate conversion" or "wait for
trigger". In addition, this instruction
sets the pre- and post- trigger
configuration. The board will determine
whether or not the configuration is legal
i.e. whether or not the total number of
samples is less than or egual than board
memory.

bd_num is the board's number, 0-15,
cont is I for immediate, W for wait for
trigger.
#_pre_trigger_samples is the number of pre-
trigger samples,
#_post_trigger_samples is the number of
post-trigger samples reguested,

(note: the sum of post- and pre- trigger
samples must not exceed the number of
samples on the board. Behavior of the
board when given erroneous parameters is

unknown
.

)

Return

:

ACK; normal return,

BNP; error: board not present,
PE; error: parameter error.

SC bd_num;

Command

:

STOP CONVERSION

Purpose: This instruction stops conversion
immediately. Samples taken prior to
receipt of this instruction are retained on
board.

Parameters: bd_num is the board's number, 0-15.

Return: ACK; normal return,
BNP; error: board not present.

B-13

GS bd_num;

Command:

Purpose

:

Parameters:

GET STATUS

This instruction retrieves the status of
board bd_num. Status is returned in the
format specified by that board. A
description of the status message follows
this list of functions.

bd num is the board's number, 0-15.

Return

:

The ASCII header as shown on the page
entitled "Status Query",

BNP; error: board not present.

B-14

RS bd_num, nth_sample, m_samples;

Command: RETRIEVE SAMPLES

Purpose: This instruction requests m data sample
data be sent, starting with the nth-sample.
In the case of pre-triggering, retrieval of

all data requires m = pre + post, where pre
and post are the number of samples taken
for each case. Also, in the case of pre-
triggering, the 1st sample is the first
sample taken before receipt of the trigger.

Parameters

:

Return:

GH bd_num;

Command:

Purpose:

Parameters:

Return

:

bd_num is the board's number, 0-15,
nth_sample is the starting place in the
sample series for the retrieval,
m samples is the number of samples to be
retrieved.

The return sequence begins with

ACK, samp, , samp
2 , , sampn ;

Each of the samples are in decimal
format separated with commas (,) and
the entire sequence is terminated with
a semi-colon (;)

.

BNP;
PE;

error:
error:

board not present,
parameter error.

GET DATA HEADER

Instructs the board to send the ascii data
header.

bd_num is the board's number, 0-15.

ACK; normal return,

BNP; error: board not present.

B-15

STATUS QUERY

When the GET STATUS command is sent to an A/D board,
information for each of the parameters listed below are
returned to the host. The information will be the
appropriate option listed below.

parameter

ACQUISITION
MODE:

TRIGGER SOURCE:

options

1 . Standby
2. Waiting for trigger
3. Waiting for trigger w/pre-trigger

acquisition
4. Acguisition in progress
5. Acquisition complete
6. BOARD ERROR — INPUT MAY BE OVERLOADED

1. Signal level = xxxx % full scale
2. Signal level with simultaneous bus

trigger activation
2. External (front panel of board)
3. Bus

TRIGGER SELECT:

CLOCK SELECT:

SIGNAL INPUT:

SAMPLE RATE:

ON-BOARD
FILTER:

1. Positive (rising) edge
2. Negative (falling) edge

1. Internal
2. External (front panel of board)
3. Bus (front panel of system controller)

1. Isolated— input removed
2

.

Input selected

(the sampling period and frequency of the
internal clock)

1. Filter in circuit
2

.

Filter removed from circuit

FULL SCALE
SIGNAL INPUT
RANGE:

1. 5 V
2. 500 mV
3. 50 mV
4. 25 mV
5. 10 mV

PROTECTION

:

Protection enabled
protection disabled

B-16

APPENDIX C

DESIGN OF ADDITIONAL BOARDS FOR THE DAS

C. 1 . Introduction

One of the most important design objectives of this

system is that additional boards can be designed,

constructed and used with the system with a minimum of

difficulty. The purpose of this appendix is to delineate

the procedure that should be followed during the design of

a board to be used with this system.

As noted in Chapter 2 , the generic I/O board can be

divided into three parts: the bus interface, the

control/status register, and the board specific circuitry.

The design of the bus interface and control/status

registers used for the A/D board design (presented in

Chapter 4) should suffice for most designs.

C.2. The Board Design Procedures

Given that a special purpose board is to be

constructed for use with the system, the following

procedure should be followed.

C-l

1. decide on a list of specifications for the

board;

2. compose a list of commands to be used with the

board

;

3. design the board-specific circuitry;

4

.

generate high-level algorithms that manage the

board-specific circuitry in order to implement

the commands;

5. determine the circuitry and logic necessary to

control the board specific circuitry, keeping in

mind the commands associated with the board;

6. determine the signals required to both monitor

and control the board;

7

.

make register assignments to the bus I/O

registers

;

8. after making refinements to the high-level

command algorithms (taking into account

concessions made during the design of the

control circuitry) convert them into assembly

code for the system controller (in the language

appropriate for the system controller

microprocessor)

;

9. "burn" the assembly code into an EPROM;

10. construct the board;

11. test the board with the register read/write

operations (from the system command set) to

verify operation of algorithms;

C-2

12. Install the EPROM and test the board and make

corrections to the command algorithms on the

EPROM if errors exist.

All boards used with the system must have a bus

interface to connect to the system bus. The pin out of

this bus is shown in Table C.l. This bus interface must

perform several things, including board address

comparison, register I/O address decoding, address/data

buffering, and provide an EPROM at register 0. The

remainder of this appendix presents a recommended circuit

to be used as the bus interface for a board.

The board's address and address recognition circuit

is shown in Schematic C.l. A 4-bit identity comparator in

conjunction with a 4-station DIP switch permits the board

address on the bus to be decoded. When the board address

is recognized, BD_SELECT becomes active.

An 8-register I/O decoding circuit is shown in

Schematic C.2. All register address lines are buffered

and then provided to a pair of l-of-8 decoders (one for

write and one for read requests) . Additional circuitry

shown in this circuit is for the data buffer controls.

Schematics C.3 and C.4 are the circuits used to

buffer the 16-bit bus address lines and the data lines.

The board's EPROM is connected as shown in Schematic C.5,

C-3

and the board's power is retrieved from the bus as shown

in Schematic C.6.

C-4

Table C.l The pin out of the
system bus, as viewed
from the connecter
edge.

DGND 1 72 DGND
AGND 2 71 AGND
+19V 3 70 +19V
AGND 4 69 AGND
-19V 5 68 -19V
AGND 6 67 AGND
DGND 7 66 DGND
BD ADRO 8 65 BD ADR1
BD ADR2 9 64 BD ADR3
REG ADRO 10 63 REG ADR1
REG ADR2 11 62 REG ADR3
BAO 12 61 BA1
BA2 13 60 BA3
BA4 14 59 BA5
BA6 15 58 BA7
BA8 16 57 BA9
BA10 17 56 BA11
BA12 18 55 BA13
BA14 19 54 BA15
DGND 20 53 DGND
BDO 21 52 BD1
BD2 22 51 BD2
BD4 23 50 BD4
BD6 24 49 BD6
BD8 25 48 BD8
BD10 26 47 BD10
BD12 27 46 BD12
BD14 28 45 BD14
DGND 29 44 DGND
BUS CLK* 30 43 (reserved)
RD* 31 42 (reserved)
WR* 32 41 BUS TRIG*
DGND 33 40 DGND
+5V REG) 34 39 +5V (REG)
+5V REG) 35 38 +5V (REG)
DGND 36 37 DGND

C-5

-3 .c

is I

e w CT3

-144-'
t- E-

\\ \ \ to B"

o' c
m tr

1

L
. . 1 rr

O
U A/

~

3 CO c: in
-1

SO

CO

o
u>

a
o

c - w nin
< < < < CO

O

o - w n iv.

CD CO CD 03 L

co ca co
II V A
< < <

Hi'
3

OS

<

-r

Q<

CO
as

<

CD co T

1

>
in

E E CO.

—
22

i i
,

fc

iT ~ T

gH
?
0)

B
n
a

2

10

M
o
mi

I
gg

I
I

I

1

tfl

C-6

uuuuuooo
r.' r.] r-i f- T rTi [y; r.i TilKKKKXKKHi

O — NO t0(0>OOOUUUUO

C-7

SYSTEM
BUS

52
.

.

BD1 3

22 BD2 4

51 .. BD3 5

23 .. BD4 6

50 . .
BD5 7

24 . .
BD6 8

49 .. BD7 9

21

74HC245

BDO 2

5V

10 20

GND
Al

A2

A3

A4

A5

A6

A7

AB
AtoB Q

DATA D1R RD'

25

74HC245

BD8 9

ia BD9

BD10

47 BD11

BD12

!G BD13

BD14

[5 BD15

AtoB
4 A8

A7

A6

A5

A4

A3

A2

Al
GND
10

n_
16

Bl

B2

B3

B4

B5

B6 ua_

B7U2-

15

14

11

10k

DATA EN-

19

OE-

Lib

B5

B4

33

Bl
Vcc

16

IT

:i0

DO

Dl

D2

D3

D4

Do

D6

D7

D8

D9

13 D10

14 Dll

15 D12

D13

D14

D15

10k

+5V

Schematic C.3 The suggested circuit for buffering the
data from the bus.

C-8

SYSTEM
BUS

16

56

19

54

f5V + 5V

74HC573 10 20

12
.

8A0 2

61
.

BA1 3

13 ,

BA2 4

60 ,

BA3 5

14 ,

BA4 6

59 ,

BA5 7

15 ,

BA6 8

5? BAT 9

BA8

BA9

BAH
bai:

BA14

BA1;

GND

Dl

D2

D3

04

D5

JD6

D?

D8

LE'

1 I

LE*
Dl

D2

D3

:>;

D5

D6

D7

D8

10

Vcc

Q3

Q4

Q5

Q6

Q7

88

10k

AO

-. BD SELECT*

OE'
Ql

Q4

Q5

Q8

74HC573

_19

J'

17

16

GND Vcc

13

12

A8

A9

A12

:0k

AO- 15 (address)

18 Al -

17 A2

16 A3

15 A4 ,

14 A5 ,

13 A6

12 A7

A10

All

A13

A15

-5V +5V

Schematic C.4 The suggested circuit for buffering the
16-bit address lines from the bus.

C-9

RD.RECO'

A 0-13 (address)

(board-present identifier)

74HC04 74HC03

RD^REGO-

f5V

AO 10

Al 9

A2 8

A3 7

A4 6

,A5 5

A 6 4

A7 3

A8 25

A9 24

A10 21

All 23
A12 2

A13 26

28 1 27

Vcc Vpp PGM*

AO DO
Al Dl

A2 D2
A3 D3
A 4 D4
A5 D5
A6 D6
A7
A8
A9

27C64/
27C128

D7

A10
All
A12
(A13)

OE- CE» GND
20T

1

D 0-15 (data)

(open drain)

DO
.: Dl

13 D2
15 D3
16 D4
17 D5
18 D6
19 D7

Schematic C.5 The suggested circuit for board presence
identification and board EPROM connection.

C-10

1

1
4J

a

a

|

I

> 2:

>

W
D~

'—

IT.

xn

S
<

£

- H"

w
G

CO CO
OS
CO co co r^

1a

•H

5

2

<u
o

I
s

1
U
01

I
g"

01

0)

10

d
oH

n

C-ll

APPENDIX D

CIRCUIT CONSTRUCTION CONSIDERATIONS
AND COMPONENT LAYOUT

The purpose of this appendix is to present details

concerning the circuits that were constructed, including

details about construction considerations and component

layout. These circuits include the system front-end

(described in Chapter 3) and the A/D board (described in

Chapter 4) .

D.l. Construction of the system front-end

The circuitry for the system front-end was mounted

entirely on one board, as shown in Fig. D.l.l. The board

selected for the system front-end was a Page Digital, Inc.

P722-4, primarily because its dimensions (9 x 4.5 inches)

permitted all of the components plus two edge-card

connectors to be installed on it. In addition, the 36/72

edge card connection on the end of this board provided a

convenient means for system bus extension.

A 50-pin connector for flat ribbon cable was used to

interconnect the system controller board (the 68HC11EVB)

D-l

o
u

-

o

CO
*
f°1

cc lD

?OC

zc

o

W

V) '-

CD

31
uj

—
X ."

C/J

- c

w - o

n
DQ O —

o
c

c
0)

K

• CO

-X

T3
C
0)

I

P
C
O
u
<u

I
P
01

&

£

O

5

I

0)

D-2

to the system front end. This connector was selected

despite the fact that the connector on the 68HC11EVB has

60 pins. However, only pins between 1 and 50 are used,

and the poor availability of 60 pin connectors prompted

the use of the 50-pin device.

Power for the system is connected via four color

coded (female) banana plugs. This method of connecting

the power was selected since cables with banana

terminations are readily available, and since most power

supplies in the department have power outputs in the form

of banana connectors.

The edge card connectors selected for the prototype

were 36/72 connection (0.1" spacing), Vector type R636-1.

These edge card connectors are suitable since their

contacts are gold plated, and each of the contacts are

split to provide a better contact with the boards. Board

supports (Vector model BR27-1) were also installed to

support the boards while they are installed in the system.

D.2. Construction of the A/D Board

There were many considerations made during the

construction of the A/D board prototype. Among these

considerations included the method of interconnecting the

components: wire-wrapping was the selected for two

reasons. First, this method simplifies circuit revisions,

D-3

and second, printed circuit development facilities were

not available (though printed circuit would have been a

better alternative for the analog signals)

.

The number of components in the A/D board design

necessitated the use of two boards. Therefore, the

circuitry associated with signal handling was placed on a

separate board apart from the digital control circuitry.

This was advantageous since this provided a physical

separation between the noisy digital signals and the

sensitive analog signal components. The boards selected

for the A/D board prototype were the Page Digital, Inc.

model P722-4 for the digital control circuits, and the

Vector model 8007 for the analog circuit. The P722-4

provided the bus connections via a 36/72 (0.1") edge card

connector, and approximately 9x4.5 inch component

mounting area. The 8007 has a ground plane and

approximately 4.5x6 inch component mounting area. The

analog board was mounted to the digital board using four,

one-inch spacers.

The layout of the analog board is shown in Fig.

D.2.1. The components on this board are divided into two

sections: the analog signal components and digital

control components. The analog signal components are all

mounted above the board's ground plane. The layout of the

D-4

B
a
o
,2

<

!
W

B
a

•H

J

o

t

» c z
i = C

D-5

analog components were such that the length of signal

interconnecting wire between the components was minimized.

Therefore, the path of the analog signal can be described

as a "C" shape. The signal enters through the BNC

connector on the front of board, through the

instrumentation amplifier (U100) , over to the filter

(U103), and finally over to the A/D converter (U106)

.

Some digital control circuitry was also placed on the

analog board. These components are primarily associated

with signal-relay and gain-relay control, and, therefore,

not switching during a conversion sequence. This is

important since noise associated with the digital

transitions might be introduced to the analog circuitry.

Another group of components on the analog board

provide voltage regulation for the analog signal

components. These regulators are mounted on this board to

minimize power line impedance for the analog signal

components

.

The chip sockets selected for the analog board

depended upon the function of the chip. All analog signal

components were provided with high-reliability (machined

contact) sockets. Standard chip sockets were selected for

the digital control devices.

D-6

Three connectors were used to connect the analog

board to the digital control board. Two right angle 26-

conductor flat-cable connectors (CON101, CON102) carry

digital signals to and from the analog board. The pin

assignments for these connectors is presented in Table

D.2.1. Power for the analog board is received through a

5-pin connector mounted on the rear of the board (CON103)

.

A brass plate was used to seperate the digital board

from the signal handling circuitry. This brass plate was

connected to the analog board's ground plane.

The layout of the digital board is shown in Fig.

D.2.2. This board has three major sections: the on-board

memory, the on-board sampling clock generator, and the bus

interface components. The positioning of these sections

was determined after considering the location of the

analog components when the analog board is mounted to the

digital board. Since the on-board memory is not active

during the A/D conversion process, it and its control

circuitry were positioned on the right side of the board

(underneath the analog circuitry) . The on-board sampling

clock generator is the most digitally-active circuit

located on the digital board, and was therefore positioned

as far from the analog circuitry as possible — near the

bus connector. The bus interface circuitry may have

D-7

c
-.'

3

IB

O
i3

-:_2 03
aw
3

CM

2D

=1

a
-.>

3

OS

3

CO
o
3

a
w3

z
r^
iD
r\/ Cv?

— -1

^r
in inw

3(V n
rv CJ -

3 3 3

DJ •
W DM
z zz
2= K K

o o.

LU oL

IB

O

M
4J

5
u

IB

4J
•H

T3

5
m
o

i

I

CM

in

6

H

D-8

digital activity during the conversion process, and

therefore was placed near the sampling clock. The LEDs

and LED driver circuits were placed at the front of the

board, as shown in Fig. D.2.3.

The socket selected for the A/D board's EPROM was a

high-reliability socket since the EPROM might be removed

numerous times. The position of the board's EPROM was

located in a position such that it may be removed while

the analog board is installed. The remainder of the

sockets on the digital board are standard sockets.

D-9

R207

\ R209

R205 \ 1 / w
9999 RN212

Q205 O =0 LED201

Q206 Q
=t> LED202

Q203 O
Q201 Q R203

N213 ^? LED203

D200

D202 QQ =0 LED204

Q207 (_) ,

„„„„ ^S°R206 l

Q202 Q̂
<OR208

Q204 O
Q209 Q
„„„„ ^<OR214
Q208 Q

=0 LED205

=0 LED206

JN218

•
=^3

LED207

LED208

LED209

Figure D.2.3 Component placement details for the A/D
digital board.

D-10

Table D.2.1 Digital board to analog board connector pin
assignments.

Connector 101. 201

A/D DAT8 1 2 A/D DAT9
A/D DAT10 3 4 A/D DAT11*
A/D DATO 5 6 A/D DAT1
DGND 7 8 DGND
A/D DAT2 9 10 A/D DAT

3

A/D DAT

4

11 12 A/D DAT

5

A/D DAT

6

13 14 A/D DAT7
DGND 15 16 DGND
D8 17 18 D9
D10 19 20 Dll
D12 21 22 D13
A/D CONV* 23 24 A/D EOC
DGND 25 26 DGND

Connector 102. 202

DGND 1 2 DGND
AO 3 4 Al
A2 5 6 A3
A4 7 8 A5
DGND 9 10 DGND
WR REG6* 11 12 DGND
RD REG6* 13 14 GAIN
TRIG SIG 15 16 GAIN 1
FLTR OUT* 17 18 GAIN 2

BD_ERROR 19 20 SIG RT 1

(reserved) 21 22 SIG RT 3

INPUT EN 23 24 OVERLOAD*
DGND 25 26 DGND

D-ll

APPENDIX E

HARDWARE MODIFICATIONS FOR THE 68HC11EVB

The purpose of this appendix is to present the

modifications necessary for the 68HC11EVB before it can be

used as the system controller. The 68HC11EVB is an

evaluation board for the 68HC11 single-chip

microcontroller. This board has many features desireable

for the system controller, and was, therefore, selected

for this purpose.

However, the 68HC11EVB must be modified before it can

be used as the system controller. The most efficient

interface between the 68HC11EVB and the bus drivers is a

direct connection to the data and address buses of the

'EVB. Unfortunately, the 68HCllEVB's data and address

buses are not available via the 60-pin state connector (PI

on the 68HC11EVB) . Access is gained to the address and

data lines by replacing the 68HC24 port replacement unit

with the jumper shown in Fig. E.l. This jumper makes the

E-l

*~
.&!

i

55 — -. " —
J! w c X .-- „ L

- M "5

•v CO rr CO CO CO C*:

si -a

£ 5
Ol— t\ K 3 3 ^ "co p^ Q£ ct — p
o cj o o CJ o o CJ CD m CD CO CD 5 go
ft. C- BL 0. — c_ ft, 0- 0-

:
y; V. ft. ft. a. ft,

s c
_, c— c IS ©

O CO — kf> ce cc n a as a> - E —
CO C5 CM — P- cv -; <M — -

OJ

>
O

A A. *, ;.
\ y «, • >. /\ / \ /\ • *. /" \ /V / \ /\ / . <B

= EG CO
t OJ ->

—1 _ 5 ™ gj

=3 QS
~

M — M
**"* a.

U 6 x ft

*S CO - '

Vy ' YY ? y'yy =
IP |cc r- CO in ~ ?: _ o —

.

O N
ffl CO co CO CO CO CO CO CO rr CO in "tf CO CO> 4) 'S,-- 3E
Ed K QJ

&a
1- ^ 5 U

<j O — O <L

SS 2 — '£
C\i "w 13

CO -

s C\J CO m
o — OJ CO o CO r- \ w
TJ

a Q — — C5 Q ca o Cd ffi < < < < <
S
ft

>

o
In-

to

a
10

4J

a)

A!

05

D
a
a,

^*

CM

u •—
CO 73
to ai

>
01

a b
•P J)

h
•u
re in

•H
>i
|j vr
ID IN

01 O
01 X
CJ a>
u io

a)

c
.C

C 4J

•H
jj ..

(8 HJ

+J
H O
1-1 CH «•>

T3
o m
e >
w

01 tH
C H
•rt O
U X
-H <D
3 W
m a)

J3 *
Eh -P

0)

(-1

3
&

E-2

address and data lines (internal to the 68HC11EVB)

available at the 60-pin state connector by way of the

lines that were originally designated for the 68HC24

digital I/O. The address lines made available by this

connection make the address space $A0OO-$BO0O decodeable

by the bus driver circuit (described in Chapter 3).

E-3

APPENDIX F

ALGORITHMS FOR SYSTEM TESTING
AND

MAINTENANCE OF PC-BASED SOFTWARE

The purpose of this appendix is to present the source

code for the programs used to test the system prototype,

and to provide information for source code maintenance.

This C source code was compiled with the Microsoft C

compiler, version 5.1, on a Zenith Z-158 PC compatible.

Software maintenance

In the event that new routines are added to the pc-

based controlling software (or existing routines are

modified) , the following steps should be followed.

When a new function is added, the following functions

must be modified (all files can be found in C:\E747\DDN):

F-l

pi_ddn.h 1) If the new function is a command,

include the command in the defines for

CMD_xx, where XX is the command. The

values for MAX_CMD and NUM_CMDS must also

be adjusted.

2) Add the function prototype information

to the function definition list.

pi_disp If the new function is a command, include a

call to the function in this command-

dispatcher routine.

pi_init If the new function is a command, put

logger-information pertaining to the

command in the list.

pcpi_das Add the name of the source-code file to

this make-utility file.

libdas Add the name of the function to this list

to facilitate the functions inclusion in

the pcpi_das library.

Following modifications to these routines, the

Microsoft Make utility should be executed. This routine

updates *.obj files by compiling routines which have been

altered since their last compilation. Once all routines

have successfully compiled, regenerate the pcpi_das

F-2

have successfully compiled, regenerate the pcpi_das

library. This is done in the following manner:

1) From the DOS prompt, rename the existing

pcpi_das library to PCPI_DAS.LIB to PCPI_DAS . BAK

(this file is found in C:\LIB\DEVEL):

RENAME PCPIDAS.LIB PCPI_DAS.BAK <enter>

2) While in the C:\E747\DDN directory, invoke the

make utility with the following command:

MAKE MODEL=AS PCPI_DAS <enter>

3) Once the make utility reports no compilation

errors, invoke the library generation command in the

following manner:

LIB 6LIBDAS <enter>

4) Now that the pcpi_das library has been modified,

create the executable file.

LINK PIDAS <enter>

libraries: DMATH+FILE_IO+P_PLOT+PCPI_DAS <enter>

(accept defaults for each of the other prompts)

.

At the completion of step 4, the pcpi-das control

program may be executed by typing PI_DAS <enter>.

F-3

Source-code listing

The source code is presented in the following manner.

First, the headers for the files is presented, followed by

system command functions. These are followed by bus

driver routines, and then finally routines which emulate

the commands listed in Appendix B.

MAKE FILE

pcpi_das F-7

LIBRARY GENERATION RESPONSE FILE

lib_das F-ll

HEADER

pi_ddn.h F-12

pi_mod.h F-32

MAINLINE

pi_das () F-43

SYSTEM COMMAND ROUTINES

bi_das () F-48

bp_das () F-51

cc_das () F-54

ct_das () F-56

help_das () F-60

si_das () F-62

BUS DRIVER ROUTINES

bd_rd () F-64

bd_wr () F-67

bus_rd () F_70

F-4

bus_wr () F-73

data_dir () F-76

cct_err () F-79

rd_strob () F-81

wr_strob () F-84

A/D BOARD SPECIFIC ROUTINES — COMMAND IMPLEMENTATION

bc_das () F-86

cl_das () F-92

cs_das () F-97

dr_das () F-100

fc_das () F-103

fi_das () F-lll

fsdas () F-113

gs_das () F-116

gv_das () . F-123

mt_das () F-127

rs_das () F-135

sc_das () F-141

sr_das () F-143

ts_das () F-146

A/D BOARD SUPPLEMENTARY FUNCTIONS

byte_brk () F-149

ctrl_wr () F-151

give_val () F-155

mem_rd () F-157

ieu_wr () F-162

sing_bit () F-166

timer_rd () F-169

timer_wr () F-173

F-5

PCPI-SPECIFIC ROUTINES ALTERED FOR USE WITH THE DAS

pi_cmd () F-177

pi_disp () F-181

pi_init () F-197

The following PCPI functions were used with the PCPI-

DAS routines, however, these routines were unaltered from

the original PCPI versions. Source code for these

routines may be found in the PCPI literature.

int_lnln pi_log

int_plot pi_opin

int_sc pi_oplog

pi_cllog pi_opout

pi_cvt pi_prsta

pi_date pi_rdfil

pi_gets pi_rdreg

pi_iface pi_wrfil

pi_initl pi_wrreg

F-6

PCPI-DAS MAKE UTILITY FILE

Make-file for the PCPI_DAS control program.

9Apr89)
D.D. Nigus 4JU189

(taken from: S.A. Dyer
Used with permission.

#

#

#

#

#

#

f

#

#

#

#

I

#

*

#

opt
d_path
f_path
p_path
pi_path
lib_path

Usage is:

MAKE <model> pcpi_das

Example for small memory-model:

MAKE model=AS pcpi_das

= /c /$ (model) /FPi87 /D LINT_ARGS /W 2
= \include\devel
= \include\devel
= \include\devel
= \include\devel
= \lib\devel

. c . obj :

cl $(opt) $*.c

pi_cllog.obj

:

pi_cllog.c $ (pi_path) \pi_ddn.h

pi_cmd.obj: pi_cmd.c $(pi_path) \pi_ddn.h

pi_cvt.obj: pi_cvt.c $ (pi_path) \pi_ddn.h

pi_date.obj: pi_date.c $ (pi_path) \pi_ddn.h

pi_disp.obj: pi_disp.c $(pi_path) \pi_ddn.h

pi_gets.obj: pi_gets.c

pi_iface.obj: pi_iface.c $ (pi_path) \pi_ddn.h

pi_init.obj: pi_init.c $ (pi_path) \pi_ddn.h

pi_initl.obj

:

pi_initl.c $ (pi_path) \pi_ddn.h

pi_log.obj: pi_log.c $(pi_path) \pi_ddn.h

F-7

PCPI-DAS MAKE UTILITY FILE

pi_opin.obj

:

pi_oplog.obj

:

pi_opout.obj

:

pi_prsta.obj

:

pi_rdfil.obj

:

pi_rdreg.obj

:

pi_wrfil.obj

:

pi_wrreg.obj

:

int_lnln.obj

:

int_plot.obj

:

int_sc.obj

:

#

ddn files

pi_opin.c

pi_oplog.c

pi_opout.c

pi_prsta.c

pi_rdfil.c

pi_rdreg.c

pi_wrfil.c

pi_wrreg.c

int_lnln.c

int_plot.c

int sec

$ (pi_path) \pi_ddn.h
$(f_path)\file_io.h

$ (pi_path) \pi_ddn .

h

$(pi_path) \pi_ddn.h
$ (f_path) \file_io .

h

$(pi_path) \pi_ddn.h
$(f_path)\file_io.h

$(pi_path) \pi_ddn.h

$ (pi_path) \pi_ddn .

h

$ (pi_path) \pi_ddn .

h

$(d_path)\dmath.h
$(p_path)\plot_lcl.h
$(p_path)\P_pl°t.h

$ (p_path) \p_plot .

h

$ (pi_path) \pi_ddn.h

$(d_path)\dmath.h
$ (p_path) \plot_lcl .

h

$ (p_path) \p_plot .

h

bc_das . obj

:

bc_das .

c

$ (d_path) \pi_ddn .

h

bd_rd . obj

:

bd_rd .

c

$ (d_path) \pi_ddn .

h

bd_wr.obj: bd_wr.c $ (d_path) \pi_ddn.h

bi_das.obj: bi_das.c $ (d_path) \pi_ddn.h

bp_das.obj: bp_das.c $ (d_path) \pi_ddn.h

bus_rd.obj: bus_rd.c $ (d_path) \pi_ddn.h

F-8

PCPI-DAS MAKE UTILITY FILE

bus_wr.obj

:

byte_brk.obj

:

cc_das . obj

:

cct_err.obj

:

cl_das.obj

:

ctrl_wr.obj

:

cs_das.obj

:

ct_das.obj

:

data_dir.obj

:

dr_das . obj

:

fc_das . obj

:

fi_das.obj :

fs_das.obj

:

give_val . obj

:

gs_das . ob j

:

gv_das . ob j

:

help_das.obj

:

mem_rd.obj

:

mem_wr.obj

:

fflt_das . ob j

:

pre_plot . ob j

:

rd_strob . ob j

:

bus_wr .

c

byte_brk.c

cc_das .

c

cct_err.c

cl_das.c

ctrl_wr.c

cs_das .

c

ct_das .

c

data_dir.c

dr_das .

c

fc_das .

c

fi_das.c

fs_das .

c

give_val.c

gs_das .

c

gv_das .

c

help_das.c

mem_rd .

c

itiem_wr .

c

mt_das .

c

pre_plot.c

rd strob.c

$ (d_path) \pi_ddn . h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn . h

$ (d_path) \pi_ddn.h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn.h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn.h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn.h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path
) \pi_ddn .

h

$ (d_path
) \p i_ddn .

h

$ (d_path) \pi_ddn .

h

$ (d_path) \pi_ddn.h

F-9

PCPI-DAS MAKE UTILITY FILE

rs_das . ob j

:

rs_das .

c

$ (d_path) \pi_ddn .

h

sc_das . obj

:

sc_das .

c

$ (d_path) \pi_ddn .

h

sing_bit.obj

:

sing_bit.c $ (d_path) \pi_ddn .

h

si_das. obj

:

si_das.c $ (d_path) \pi_ddn .

h

sr_das . obj

:

sr_das .

c

$ (d_path) \pi_ddn.h

timer_rd.obj

:

timer_rd.c $ (d_path) \pi_ddn .

h

timer_wr.obj

:

timer_wr.c $ (d_path) \pi_ddn .

h

ts_das . obj

:

ts_das .

c

$ (d_path) \pi_ddn . h

wr_strob.obj

:

wr_strob .

c

$ (d_path) \pi_ddn .

h

pi_das.obj

:

pi_das.c $ (d_path) \pi_ddn.

h

F-10

PCPI-DAS LIBRARY GENERATION RESPONSE FILE

\lib\devel\pcpi_das .lib

Y
+pi_cllog+pi_cmd+pi_cvt&
+pi_date+pi_disp+pi_gets+pi_i faces
+pi_init+pi_initl+pi_log+pi_opin+pi_oplog&
+pi_opout+pi_prsta+pi_rdfil+pi_rdreg+pi_wrfil&
+int_sc+int_plot+int_lnln&
+pi_wrreg+bp_das+cc_das+cs_das+ct_das+dr_das&
+fi_das+fs_das+gs_das+gv_das+mt_das+bi_das&
+rs_das+sc_das+si_das+sr_das+ts_das+bus_wr&
+bc_das+cl_das+fc_das+pre_plot+help_das&
+mem_wr+mem_rd+timer_rd+bus_rd+cct_err&
+wr_strob+rd_strob+data_dir+ctrl_wr+sing_bit&
+timer_wr+bd_rd+bd_wr+give_val+byte_brk
pcpi_das. 1st

F-ll

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

*

* SOURCE FILE: pi_ddn.h

DESCRIPTION:

DOCUMENTATION
FILES:

AUTHOR:

DATE CREATED:

Header file for PC peripheral
interface (PCPI) control program.
This is a modified version of
Stephen A. Dyer's "pi.h".
Used with permission.

None.

Copyright 1989
Durwin D. Nigus

24 July 1989 Version 1.00

REVISIONS: None.

***/

#define FALSE
#define TRUE

#define LO
#define HI

#define DISABLE
#define ENABLE

#define INACTIVE
#define ACTIVE

#define OFF
#define ON

#define NO
#define YES

F-12

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define EPS 1.0E-3

#define BUF_LEN 81

#define PRMPT_MAX 25

#define MAX_DATA 8192

#define NUM_REGS 8

#define NUM_RDREGS 8

#define NUM WRREGS 16

#define MAX BDS 16

/* Maximum length of */
/* character buffers. */

/* Maximum number of */
/* characters in the */
/* prompt buffer. */

/* Maximum length of */
/* buffer for digitized */
/* data. */

/* Number of read/write */
/* registers on the */
/* PCPI external module. */

/* Number of read */
/* registers on the */
/* PCPI. */

/* Number of write */
/* registers on the */
/* PCPI. */

/* Number of boards */
/* allowed in the DAS. */

/*
/* Errors.
/*
#ifndef NORMAL
#define NORMAL
#endif

#define ERR INITBP

#define ERR INITTST

10

11

/* Normal return.

/* pi_init(): base port */
/* not found in the */
/* environment. */

/* pi_init(): TEST_DAS */
/* not found in the */
/* environment. */

F-13

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define ERR INITXTL 12

#define ERR OPEN 20

#define ERR OPENACC 21

#define ERR RDFIL 30

/* pi_init(): A/D board */
/* xtal freq not found */
/* in the environment. */

/* Pi_°pl°g()

:

/* pi_opin ()

:

/* pi_opout () :

/* cannot open file

V
V
V
V

#define ERR NORMAL + 1

/* pi_oplog(): log file */
/* having the given */
/* filename already */
/* exists. */
/* pi_opin (): file */
/* does not exist. */
/* pi_opout(): file */
/* already exists. */

/* pi_rdfil(): could not */
/* complete reading */
/* the requested input- */
/* data file. */

/* Abnormal return flag. */

/*
/* Register definitions.
/*
#define RGE 8

#define PI IFACE 12

*/
*/

-v
*/
*/
*/

V
*/

/* Control port for
/* -BDINIT, -MRESET.
/* Control port for PCPI
/* to external-module
/* three-state buffers.

/* Command codes.
*/
#define MAX_CMDS 4 5

#define NUM CMDS 40

*/
*/
V
V
V
V

/* Maximum number of
/* commands allowed.
/* Number of commands
/* (including Error)

.

F-14

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define CMD_ERROR

#define CMD R 1

#define CMD_W 2

#define CMD_SEMI 3

#define CMD E 4

#define CMD_D 5

#define CMD I 6
#define CMD IB 7
#define CMD IM 8

#define CMD IA 9

#define CMD_ID 10

#define CMD_L 11

#define CMD_QUIT 12

#define CMD_P 13

#define CMD_PP 14

#define CMD_SI 15

#define CMD_BI 16

#define CMD_CT 17

#define CMD_CC 18

#define CMD_BP 19

define CMD_TS 20

#define CMD_CS 21

#define CMD_FS 22

/* Command codes. */
/* Error: invalid */
/* command. */
/* Read from register. */
/* Write to register. */

/* Comment. */

/* Enable interface. */
/* Disable interface. */

/* Toggle initialization */
/* Activate -BDINIT. */
/* Activate -MRESET. */
/* Activate all inits. */
/* Deactivate all inits. */

/* Toggle session-logger */

/* Quit the session.

/* Configure system

#define CMD FI 23

/* trigger.
/* Configure system
/* clock.
/* Determine boards
/* present.

/* Trigger selection
/* for A/D board.
/* Clock select for
/* A/D board.
/* Full-scale signal
/* level adjust for A/D
/* board.
/*

V
/* Plot contents of data */
/* buffer on display. */
/* Plot contents of data */
/* buffer on pen plotter */

/* System front-end */
/* initialization. */
/* Board initialization. */

*/

V
*/

V
V
V
V
*/
*/
*/
*/
'/

/
Filter enable/disable*/

F-15

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define CMD_SR 24

#define CMD_BC 25

#define CMD_SC 26

#define CMD_GS 27

#define CMD_SB 28

#define CMD_DR 29

#define CMD_TR 30

#define CMD_STEP 31

#define CMD_RS 3 2

define CMD_MT 33

#define CMD_GV 3 4

#define CMD_FC 35

#define CMD CL 36

#define CMD_BR
#define CMD BW

37
38

/* for the A/D board. */
/* Set sample rate */
/* on A/D board. */
/* Begin conversion on */
/* A/D board. */
/* Stop conversion. */

/* Get A/D board status.*/

/*
/*
/*
/*

Set active board
address.
Display contents of
bus drivers.

V
V
*/
*/

/* Trace mode toggle. V
/* I/O-step toggle. V
/* Retrieve samples. V
/*
/*

On-board memory
test.

V
V

/* Get converter value. V
/* Filter configure. V
/*
/*

Calibration routine
for A/D board.

V
V

/*
/*

Board write command.
Board read command.

V
V

Idefine CMD HELP 39 /* Display key-help.

/* Type-int parameter table.

#define REG

#define VALUE

*/

v
/* Register most recently */
/* read from or written */
/* to. */

/* Value most recently */
/* used by a register-read */

F-16

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* or write.

#define IFACE

#define BDINIT

define MRESET

#define SCREEN

#define LOG

#define LOG_NO

define LAST_LOG

define QUIT

define DATA_LEN

define LEN_INFILE

define LEN_OUTFILE

define FA_LC

define FD LC

10

11

12

13

14

15

/*
/*

/'

/*

/«

/*
/*

/*
/*

/*
/*

/*
/*
/*

/*
/*

/"

/*

/*
/*
/*

/*
/*

/*
/*

State of PCPI three- */
state buffers. */

State of -BDINIT line. */

State of -MRESET line. */

State of screen-logger. */

State of session- */
logger. */

Number of current log */
entry. */

Number of entry last */
made to session-logger. */

State of request to */
terminate the present */
session. */

Length of valid data in */
data buffer. */

Length of valid data in */
input-data file. */

Length of valid data in */
*/
*/

last-written output

-

data file.

Loop constant for A/D */
conversion. */

Loop constant for D/A */
conversion. */

F-17

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* PCPI information and command structures.
/*
#define L_LFN

#define L_LDATE

#define L INFN

#define L OUTFN

30

25

30

30

-V
*/

/
/* Max. length of filename */
/* for session-log. */
/* Length of date-string */
/* for session-log. */

/* Maximum length of file- */
/* name for input- */
/* data file. */
/* Maximum length of file- */

/* name for output- */
/* data file. */

typedef struct pcpi_table
(

double

int

int

int

double

int

unsigned

FILE

char

char

FILE

FILE

flt[21];

fix[21]

;

inreg[16]

/* Type-double parameter
/* table.
/* Type- int parameter
/* table.
/* Values contained in bus
/* driver input-registers
/* (regs. written to by
/* computer/interface)

.

outreg[8]; /* Values contained in bus
/* driver output-registers
/* (regs. read from by the
/* computer/ interface)

.

/* Type-double conversion
/* constants

con_d[ll]

con_i[ll]

base_port

*logger;

log_fn[L_LFN

/* Type-int conversion
/* constants.
/* Base port for register
/* address space.
/* Handle for session-
/* logger file.
+ i];
/* Filename for session-
/* logger.

log_date[L_LDATE + 1]

;

/* Date for session-log.
infile; / Handle for input-data

/* file.
outfile; / Handle for output-data

V
V
*/
•/

V
V
*/

V
V
V
V
V
V
V
V
*/

V
*/

V
V
V
*/

V
V
V
V

F-18

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* file. */
cliar in file| L INFN + 1]

;

/* Filename for input-data V
/* file. */

cllar out file [L OUTFN + 1] ;

/* Filename for output- */
/* data file. V

) PCPI__TABLE

;

typedef struct pcpi_command
{

char

char

cmd_str [5]

;

log_format[80]

;

} PCPI_COMMAND;

/* Keyboard-entry string */
/* for the command. */
/* Format-string to be */
/* used by the session */
/* logger. */

/*====== =========== :===

/* Definitions and declarations of static variables.
/*
#ifndef PI_INIT

extern PCPI_TABLE
extern PCPI_COMMAND
extern char
extern char
extern char
extern char
extern int

extern int
extern long
extern int
extern int
extern int
extern unsigned
extern unsigned

extern int

pi;
commands [MAX_CMDS]

;

pi_buf1 [BUF_LEN]

;

pi_buf2 [BUF_LEN]

;

pi_logbuf [BUF_LEN]

;

pi_tempbuf [BUF_LEN]

;

pi_data[MAX_DATA] ;

plot len; /* -*/
xtal freq;
initialized[MAX BDS];
trace; /* ddn */
stepper; /* additions */
num_pre trig; /* */
num_post_trig; /* V
test das; /* if YES, */

/* no bus */

/* i/o. V
/* -v

F-19

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#else
PCPI TABLE pi;
PCPI~ COMMAND commands [MAX CMDS];
char pi bufl[BUF LEN]

;

char pi buf2[BUF LEN]

;

char pi_logbuf [BUF LEN];
char pi tempbuf[BUF LEN];
int pi_data[MAX_DATA]

;

int plot_len;
long xtal_freq;
int initial ized[MAX_BDS]

;

int trace

;

int stepper;
unsigned num_pre_trig

;

unsigned num_post_trig

;

int test_das

;

#endif

/* =*/

V
-*/

/* Function declarations.
/*
#ifdef LINT ARGS

int
int

inp
outp

(unsigned)

;

(unsigned, int)

int

int

int

int_lnln(int, int, int, int, int, double, double,
double, int[], int, double, double,
double, int, char)

;

int_plot(int, int, int, int, int[], char[],
chart], ohar[], char[], char[], int,
double)

;

int_sc (int[], int, int, double, int, double,
double *, double *, double *)

;

int pi_cllog (void)

;

int pi_cmd (char *)

;

int pi_cvt (char *)

;

int pi_date (void)

;

int pi_disp (int, int *)

;

int pi_gets (int, char *)

,

F-2

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

int
int
int
int
int

int
int
char
int
int

int
int

pi_iface (int)

;

pi_init (void)

;

pi_initl (int, int)
pi_log (char *)

;

pi_opin (char *)

;

pi_oplog (char *)

pi_opout (char *)

*pi_prsta(char *,
pi_rdfil (void)

;

pi_rdreg (int)

;

char *, int)

.

pi_wrfil (void)

;

pi_wrreg (int, int)

/*-
/*
/*-

PCPI_DAS-specific functions.

int mem_wr (int, unsigned, unsigned, int, int)

;

unsigned mem_rd (int, unsigned, int, int)

;

int bus_rd (int)

;

int bus_wr (int, int)

;

int wr_strob (void)

;

int rd_strob (int, int)

;

int data_dir (int, int, int)

;

int ctrl_wr (int, int, int)

;

int sing_bit (int, int, int)

;

int timer_wr (int, int, unsigned)

;

unsigned timer_rd (int, int)

;

unsigned bd_rd (int, int)

;

int pre_plot (void)

;

int bd_wr (int, int, unsigned, int)

;

int give_val (int, int)

;

int byte_brk (unsigned, int *, int *)

;

int bp_das (void)

;

int cc_das (void)

;

int cs_das (int)

;

int ct_das (void)

;

int dr_das (void)

;

F-21

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

int fi_das (int)

;

int fs_das (int);
int gs_das (int);
int gv_das (int) ;

int mt_das (int);
int bi_das (int);

int rs_das (int)

;

int sc_das (int);
int si_das (void)

;

int sr_das (int)

;

int ts_das (int)

;

int bc_das (int)

;

int cl_das (int);
int fc_das (int);

int help_das (void)

;

#else

int inp ();
int outp ();

int int_lnln ();
int int_plot ();
int int_sc ();

int Pi. cllog ();
int Pi. cmd ();
int Pi_ cvt ();

int Pi_ date ;

int Pi. disp ;

int Pi- gets ;

int Pi. iface ();
int Pi. init ();
int Pi-|initl ();
int Pi. log ();
int Pi. opin ();

F-22

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

int pi oplog () ;

int pi opout () ;

char *pi_prsta() ;

int pi rdfil () ;

int pi_rdreg ()

;

int pi wrfil () ;

int pi_wrreg ()

;

/*
/* PCPI_DAS-specific function declarations.
/*

int mem_wr ()

;

unsigned mem_rd ()

;

unsigned timer_rd ();
int bus_rd ()

;

int bus_wr ()

;

int pre_plot ()

;

int wr_strob () ;

int rd_strob
()

;

int data_dir ()

;

int ctrl_wr () ;

int sing bit ()

;

int ctrl_bd ()

;

int timer wr () ;

unsigned bd_rd
()

;

int bd_wr ()

;

int give val () ;

int byte_brk
()

;

int bp_das ()

;

int cc_das () ;

int cs das () ;

int ct das
()

;

int dr das () ;

int fi das () ;

F-23

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

int fs das Of
int gs das Of
int gv das Of
int mt das Of
int bi_das Of

int rs das Of
int sc das f) ;

int si das Of
int sr_das Of

int ts das Of
int be das Of
int cl das Of
int fc_das Of

int help_das (

)

#endif

/* Material specific to DAS routines. */
/**/

/ *= „.. . .., ..„...,.. ..„i..^M.„^.. l „.. y/* Bus-driver (PPI) information */
/* ^
/* _ v
/* Bus-driver register names and addresses. */
/* '

#define PPI1_CTRL 3
#define PPI2_CTRL 7
#define DAT_CTL_REG PPI1_CTRL

#define REG_ADR 2
#define BUS_CTRL 4

#define DAT_LSB 1
#define DAT_MSB

#define ADDR_LSB 6
#define ADDR MSB 5

F-24

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* */

/* PPI configuration-register values (for PPI1_CTRL */
/* and PPI2_CTRL registers)

.

*/

/* */

#define BUS_READ 0x92
#define BUS_WRITE 0x80
define BUS_ADDR 0x80

/* */

/* Define the multipliers for board-number and */
/* register-number within REG_ADR. */

/* */

/* The multiplier for the top 4-bits is 0x10. */

/* */

#define REG_MULT 0x10
#define BD_MULT 0x01

/*========== ========= ===; ==== ==== :*/

/* define the bus-control bits */

/* */
bit 4 of the id is */
"active" identifier */
active -low or -high */

#def ine ACT POSITION 16 /
/
/

#define ACT LO
Idefine ACT HI 1

F-25

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/*— ~*/
/* Information for the bus-control lines. V
/* Each of these one-byte IDs contain information */
/*
/*
/*

about each bus-control line: V
bits 0-3 is the bit position; V

/* bit 4 identifies whether the bit */
/* is active low or high (see */
/* above)

;

*/
/* bits 5-7 unused. */

#def ine BUS WR ID + ACT LO * ACT POSITION
#def ine BUS RD ID 1 + ACT LO * ACT POSITION
#define SYS X TRIG ID 4 + ACT HI * ACT POSITION
#define SYS TR LO ID 5 + ACT LO * ACT POSITION
#def me SYS X CLK ID 6 + ACT HI * ACT POSITION

/*============ === =========== ======= ==== */
/* A/D board information */
/* v
/* v
/* Register information. */
/* The register address is in bits 0-3, and */
/* bits 4, 5, and 6 identify the byte(s) from which */
/* the register is addressable. */
/* */
/* The data mask is used to determine the appropriate */
/* I/O register. */
/* ^
#define DATA_LOW 16 /* bit 4 means LSB */
#define DATA_HIGH 32 /* bit 5 means MSB */
#define DATA_BOTH 64 /* bit 6 means 16-bit */

#define DATA_MASK DATA LOW + DATA HIGH + DATA BOTH

F-26

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define EPROM + DATA LOW
#define BD PRESENT + DATA HIGH
#define ON BD MEM 1 + DATA BOTH
#define TIMER 2 + DATA HIGH
#define STATUS 3 + DATA LOW
#define CTRL1 4 + DATA LOW
#define TRIG ADDR 5 + DATA BOTH
Idefine FILTER 6 + DATA HIGH
#def ine AD DIRECT 7 + DATA BOTH
#define CNT STAT CON OxOB + DATA LOW
Idefine CTRL2 OxOC + DATA LOW

/* —
/* control_status register information
/*

-V
V
-*/

#define CON_STAT_CONF 0x82 /* configuration byte for */

/* the con_stat chip is */

/* (1000 0010 b) */

/*==
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*-

Control and status register data_id specificati
and definitions.

The definition of data_id is as follows:

0= regl, 1 = reg2, 2 = statusbitO:
bitl:
bit2:
bit3:
bit4:
bit5:
bit6:
bit7:

> bit start value (0-7)

> number of bits (0-7)

where bitO is the least-sig-bit of data_id

Data_id is used to identify a particular set
bits: on which register they are located,
where within the register they are located,
and how many bits make up the region.

of

•*/

V
*/
*/

V
*/
*/
*/

V
V
*/

V
V
*/

V
V
V
*/

V
*/
*/

V
-V

F-27

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define BIT POS 4

#define NUM BTS 32
#define C0NTROL1
#define CONTROL2 1

#define STS 2

/*
/* Region definitions.
/*

-V
*/
-*/

#define BD MODE CONTROL1 + 0*BIT POS + 2*NUM BTS
#define TRIG SEL CONTROL1 + 2*BIT POS + 2*NUM BTS
#define TRIG EDGE CONTROL1 + 4*BIT POS + 1*NUM BTS
#define CLOCK SEL CONTROL1 + 5*BIT POS + 2*NUM BTS
#define FIL_EN CONTROL1 + 7*BIT_POS + 1*NUM_BTS

#def ine SIG SEL CONTROL2 + 0*BIT POS + 2*NUM BTS
#define GAIN SEL CONTROL2 + 2*BIT POS + 3*NUM BTS
#define TMR CNT CONTROL2 + 5* BIT POS + 2*NUM BTS
#define PROTECT CONTROL2 + 7*BIT_POS + 1*NUM BTS

#define BD ER STS + 0*BIT POS + 1*NUM BTS
#define SAMP SER END STS + 1*BIT POS + 1*NUM BTS
#define TRIG RECVD STS + 2*BIT POS + 1*NUM BTS
#define PTR WRAP STS + 3*BIT POS + 1*NUM BTS
define EOC STS + 4*BIT POS + 1*NUM BTS

/* Bit -field information for the status register. V

define BD ER ACT ACT LO /* active values for */
#define SAMP END ACT ACT LO /* status bits */
#define TR_REC ACT ACT LO /* */
define PTR WR ACT ACT LO /* */
define EOC ACT ACT HI /* */

F-28

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* Control values for each specific region. V

Idefine
Idefine
Idefine
Idefine

STBY
CONV NOW
CONV TR
CONV_TR_PRE

1

2

3

/*
/*
/*
/*

BD_MODE
Board mode.

V
V
V
V

Idefine
Idefine
Idefine
Idefine

TR SIG
TR SIG BUS
TR BUS
TR_PANEL

1

2

3

/*
/*
/*
/*

TRIG_SEL
Trigger selection.

V
*/

V
V

Idefine
Idefine

TR EDGE POS
TR_EDGE_NEG 1

/*
/*

TRIG_EDGE
Trigger edge select.

V
*/

Idefine
Idefine
Idefine
Idefine

CLK INT HI
CLK INT LO
CLK BUS
CLK_PANEL

1

2

3

/*
/*
/*
/*

CLOCK_SEL
Clock selection.

*/
V
V
V

Idefine
Idefine

FILTER OUT
FILTER_IN 1

/*
/*

FIL_EN
Filter control

.

*/
*/

Idefine
Idefine
Idefine
Idefine

SIG REMOVE
SIG APPLIED
SIG REF
SIG_TR_LVL

1

2

3

/*
/*
/*
/*

SIG_SEL
Signal source select.

V
V
V
*/

Idefine
Idefine
Idefine
Idefine
Idefine

GAIN 1

GAIN 10
GAIN 100
GAIN 200
GAIN_500

1

2

3

4

/*
/*
/*
/*
/*

GAIN_SEL
Gain selection.

*/

V
*/
V
*/

Idefine
Idefine
Idefine
Idefine

TMR SAMP PD
TMR ONESHT
TMR SAMP CNT
TMR_CTL_REG

1

2

3

/*
/*
/*
/*

TMR_CNT
Timer control register
addressing controls.

*/
*/
*/
*/

Idefine
Idefine

PROTECT ON
PROTECT_OFF 1

/*
/*
/*

PROTECT
Signal input overloard
protection.

*/
*/

V

F-29

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* */

/* One-shot delay time adjustment. */

/* This delay is used to allow the sample-and-hold */

/* amplifier to settle. Time of the delay is given */

/* by */

/* t d = DLY 1SHT / XTAL FREQ */

/* ~ */

/* where t_d is the one-shot delay time, in seconds; */

/* DLY_1SHT is the 16-bit one-shot counter value, and */

/* XTAL_FREQ is the frequency of the on-board */

/* oscillator's crystal, in Hz. */

>* */

#define DLY_1SHT 4

/* */

/* A/D board sampling frequency bounds using the */

/* internal oscillator. */

/* */

#define F_LOW XTAL_FREQ / 1024.0 / 65536.0
/* This is the */
/* slowest sampling */
/* freq for the A/D */
/* board. */

#define F_HIGH 150000.0 /* 150 kHz is the */

/* maximum conver- */
/* sion rate for */
/* A/D board. */

#define F_MID 100.0 /* freq of division */
/* between int. */
/* oscillators. */

/* */

/* controls for on-board filter */

/* */

#define FIL_XTL 2.4 576e6 /* Filter XTAL freq */
/* (in Hz)

.

*/

#define FIL_CDC Oxle /* Clock divide */
/* code address. */

F-30

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* */

/* Values for memory writing - quick or normal control */

/* */

#define FAST 10
#define REGULAR FAST + 3

/* */

/* on-board memory base address */

/* */

#define FIRST SAMP 1

F-31

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

SOURCE FILE: pi_mod.h

DESCRIPTION:

DOCUMENTATION
FILES:

AUTHOR

:

Header file for PC peripheral
interface (PCPI) control program.
This is a modified version of
Stephen A. Dyer's "pi.h".
Used with permission.

None.

Copyright 1989
Durwin D. Nigus

* DATE CREATED: 12 August 1989 Version 1.00

REVISIONS

:

None.

***/

define FALSE
#define TRUE

Idefine LO
#define HI

#define DISABLE
#define ENABLE

#define INACTIVE
#define ACTIVE

#define OFF
#define ON

#define NO
#define YES

F-32

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define EPS 1.0E-3

#define BUF_LEN 81

#define MAX_DATA 8192

#define NUM REGS 8

/* Maximum length of
/* character buffers.

/* Maximum length of */
/* buffer for digitized */
/* data. */

/* Number of read/write */
/* registers on the */
/* PCPI external module. */

#define NUM RDREGS 8

#define NUM WRREGS 16

#define MAX BDS 16

/* Number of read */
/* registers on the */
/* PCPI. */

/* Number of write */
/* registers on the */
/* PCPI. */

/* Number of boards */
/* allowed in the DAS. */

/*
/* Errors.
/*
#ifndef NORMAL
#define NORMAL
#endif

#define ERR INITBP

#define ERR INITTST

-*/

V
-v

10

11

/* Normal return.

/* pi_init(): base port */
/* not found in the */
/* environment. */

/* pi_init(): TEST_DAS */
/* not found in the */
/* environment. */

F-33

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define ERR OPEN

#define ERR OPENACC

20

21

#define ERR RDFIL 30

/* pi_oplog()

:

*/
/* pi_opin ()

:

*/
/* pi_opout()

:

*/
/* cannot open file */

/* pi_oplog(): log file */
/* having the given */
/* filename already */
/* exists. */
/* pi_opin () : file */
/* does not exist. */
/* pi_opout(): file */
/* already exists. */

/* pi_rdfil(): could not */
/* complete reading */
/* the requested input- */
/* data file. */

/*
/* Register definitions.
/*
#define RGE 8

#define PI IFACE 12

-V
V
*/
V
V
*/

V
V

/* Control port for
/* -BDINIT, -MRESET.
/* Control port for PCPI
/* to external-module
/* three-state buffers.

/ »,,„.,„,,.,.,., ILIJJ.

/* Command codes.
/*
#define MAX_CMDS 45

#define NUM CMDS 4

V
V
*/

V
V

/* Maximum number of
/* commands allowed.
/* Number of commands
/* (including Error)

.

F-34

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

•(define CMD_ERROR

#define CMD R 1

define CMD_W 2

define CMD_SEMI 3

define CMD E 4

define CMD_D 5

define CMD I 6

define CMD IB 7
define CMD IM 8

define CMD IA 9

define CMD_ID 10

define CMD_L 11

define CMD_QUIT 12

define CMD_P 13

define CMD_PP 14

define CMD_SI 15

define CMD_BI 16

define CMD_CT 17

define CMD_CC 18

define CMD_BP 19

define CMD_TS 20

define CMDCS 21

define CMD_FS 22

/* Command codes. */
/* Error: invalid */
/* command. */
/* Read from register. */
/* Write to register. */

/* Comment. */

/* Enable interface. */
/* Disable interface. */

/* Toggle initialization */
/* Activate -BDINIT. */
/* Activate -MRESET. */
/* Activate all inits. */
/* Deactivate all inits. */

/* Toggle session-logger */

/* Quit the session. */

/* Plot contents of data */
/* buffer on display. */
/* Plot contents of data */
/* buffer on pen plotter */

/* System front-end */
/* initialization. */
/* Board initialization. */

define CMD FI 23

/* Configure system V
/* trigger. V
/* Configure system */
/* clock. */
/* Determine boards V
/* present. */

/* Trigger selection */
/* for A/D board. */
/* Clock select for */

/* A/D board. V
/* Full-scale signal V
/* level adjust for A/D */
/* board. V
/* Filter enable/disabli=>*/

F-35

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/*
#define CMD_SR 24 /*

/*
define CMD BC 25 /*

/*
#define CMD_SC 26 /*

#define CMD_GS 27 /*

#define CMD SB 28 /*
/*

#define CMD_DR 29 /*
/*

#define CMDJTR 30

#define CMD_STEP 31

#define CMD_RS 32

#define CMD_MT 33

#define CMD_GV 3 4

#define CMD_FC 35

#define CMD CL 36

#define CMD_BR
#define CMD BW

37
38

#define CMD HELP 39

for the A/D board. */
Set sample rate */

on A/D board. */
Begin conversion on */
A/D board. */
Stop conversion. */

Get A/D board status.*/

Set active board */
address

.

*/
Display contents of */
bus drivers. */

/* Trace mode toggle. */

/* I/O-step toggle. */

/* Retrieve samples. */

/* On-board memory */
/* test. */

/* Get converter value. */

/* Filter configure. */

/* Calibration routine */
/* for A/D board. */

/* Board write command. */
/* Board read command. */

/* Display key-help. */

/ * =========================
/* Type-int parameter table.
/*
#define REG

==== ========== =*/
*/
*/

/* Register most recently */
/* read from or written */
/* to. */

F-36

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#define VALUE 2

#define I FACE 3

#define BDINIT 4

define MRESET 5

#define SCREEN 6

#define LOG 7

#define LOG_NO 8

#define LAST_LOG 9

Idefine QUIT 10

#define DATA_LEN 11

#define LEN_INFILE 12

#define LEN_OUTFILE 13

#define FA_LC 14

#define FD_LC 15

/* Value most recently */
/* used by a register-read */
/* or write. */

/* State of PCPI three- */
/* state buffers. */

/* State of -BDINIT line. */

/* State of -MRESET line. */

/* State of screen-logger. */

/* State of session- */
/* logger. */

/* Number of current log */
/* entry. */

/* Number of entry last */
/* made to session-logger. */

/* State of request to */
/* terminate the present */
/* session. */

/* Length of valid data in */
/* data buffer. */

/* Length of valid data in */
/* input-data file. */

/* Length of valid data in */
/* last-written output- */
/* data file. */

/* Loop constant for A/D */
/* conversion. */

/* Loop constant for D/A */
/* conversion. */

F-3 7

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/*—»» — ==== „» _««_ .

/* PCPI information and command structures.
/*
#define L_LFN

#define L_LDATE

#define L_INFN

define L OUTFN

=== */
*/

v
30 /* Max. length of filename */

/* for session-log. */
25 /* Length of date-string */

/* for session-log. */

30 /* Maximum length of file- */
/* name for input- */
/* data file. */

30 /* Maximum length of file- */
/* name for output- */
/* data file. */

2def struct
(

double

: pcpi_table

flt[21]; /* Type-double parameter */
/* table. */

int fix[21]

;

/* Type-int parameter */
/* table. */

int inreg[16]

;

/* Values contained in bus V
/* driver input-registers */
/* (regs. written to by */
/* computer/ interface)

.

*/
int outreg [8]

;

/* Values contained in bus */
/* driver output-registers */
/* (regs. read from by the */
/* computer/ interface)

.

V
double con_d[ll]

;

/* Type-double conversion */
/* constants. */

int con_i[ll]

;

/* Type-int conversion */
/* constants. */

unsigned base_port

;

/* Base port for register */
/* address space. */

FILE *logger,

•

/* Handle for session- */
/* logger file. */

char log_fn[L_LFN + 1]

;

/* Filename for session- V
/* logger. */

char log_date[L LDATE + 1] ;

/* Date for session-log. */
FILE *infile; /* Handle for input-data */

/* file. */

F-38

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

FILE *outfile; /* Handle for output-data */
/* file. */

in_file[L_INFN + 1]

;

/* Filename for input-data */
/* file. */

out_file[L_OUTFN + 1]

;

/* Filename for output- */
/* data file. */

} PCPI TABLE;

char

char

typedef struct pcpi_command
{

char cmd_str[5]

;

char log_format[80]

;

) PCPI_COMMAND;

/* Keyboard-entry string
/* for the command.
/* Format-string to be
/* used by the session
/* logger.

V
V
V
V
*/

/*
/*
/*
#1

Definitions and declarations of static variables.

fndef PI_INIT
extern PCPIJTABLE
extern PCPI_COMMAND
extern char
extern char
extern char
extern char
extern int

extern int
extern int
extern int
extern int
extern unsigned
extern unsigned

extern int

pi;
commands [MAX_CMDS]

;

pi_bufl[BUF_LEN]

;

pi_buf2[BUF_LEN]

;

pi_logbuf [BUF_LEN]

;

pi_tempbu f [BUF_LEN]

;

pi_data[MAX_DATA]

;

test das;

*/
-*/

plot_len; /*
initialized[MAX_BDS]

;

trace; /* ddn
stepper; /* additions
num_pre_trig ; /*
num_post_trig ; /*

*/
V
V
*/

/* if YES, */
/* no bus */
/* i/o. */
/* */

F-39

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

#else
PCPIJTABLE
PCPI_COMMAND
char
char
char
char
int
int
int
int
int
unsigned
unsigned
int

#endif

pi;
commands [MAX_CMDS]

;

pi_bufl[BUF_LEN]

;

pi_buf2 [BUF_LEN]

;

pi_logbu f [BUF_LEN]

;

pi_tempbuf [BUF_LEN]

;

pi_data[MAX_DATA]

;

plot_len;
initialized[MAX_BDS]

;

trace

;

stepper;
num_pre_trig

;

num_post_trig

;

test das;

/* Function declarations.
/*
#ifdef LINT ARGS

int
int

inp
outp

(unsigned)

;

(unsigned, int)

.

int

int

int

int_lnln(int, int, int, int, int, double, double,
double, int[], int, double, double,
double, int, char)

;

int_plot(int, int, int, int, int[], char[],
char[], char[], charf], char[], int,
double)

;

int_sc (int[], int, int, double, int, double,
double *, double *, double *)

;

int pi_cllog (void)

;

int pi_cmd (char *)

;

int pi_cvt (char *)

;

int pi_date (void)

;

int pi_disp (int, int *)

;

int pi_gets (int, char *) ,

F-40

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

int
int
int
int
int

int
int
char
int
int

int
int

#else

pi_iface
pi_init
pi_initl
pi_log
pi_opin

(int);
(void)

;

(int, int)
(char *)

;

(char *)

;

pi_oplog (char *)

pi_opout (char *)

*pi_prsta(char *,

pi_rdfil (void)

;

pi_rdreg (int)

;

char *, int)

;

pi_wrfil (void)

;

pi_wrreg (int, int)

;

int inp ();
int outp ;

int int_lnln ();
int int_plot ();
int int_sc 0;

int Pi. cllog ();
int Pi. cmd ();
int Pi. cvt ();

int Pi. date 0;
int Pi. disp ();
int Pi. gets ();

int Pi. iface ();
int Pi. init ();
int Pi."initl ();
int Pi. log ;

int Pi. opin ();

int Pi_ oplog ();
int Pi. opout ;

char *pi_prsta()

;

int Pi..rdfil 0;
int Pi. rdreg 0;

F-41

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

int pi_wrfil ()
int pi_wrreg (

)

#endif

F-42

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

*

* SOURCE

:

* FUNCTION:

pi_das.c

main(

)

* DESCRIPTION:
*

*

*

*

* DOCUMENTATION
* FILES:
*

*

* ARGUMENTS

:

*

*

* RETURN:

Mainline for the PI_DAS program.
Adapted from "pi.c" by Stephen A.
Dyer. Used with permission.

None.

None.

int
Zero.

FUNCTIONS
CALLED: pi_cllog

pi_cmd
pi_date
pi_disp
pi_gets
pi_init
pi_oplog

* AUTHOR:

*

*

*

*

*

*

*

DATE CREATED:

REVISIONS:

Copyright 1989
Durwin D. Nigus

25 July 1989

None.

Version 1.00

**,

F-43

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

include <errno.h>
#include <io.h>

include <stdio.h>
include <string.h>

include <stdlib.h>
#include <process.h>

include "pi_ddn.h"

int errno

;

main()
{

int cmd_code, error, board;

int err_access, lcl_errno;

/* */
/* Clear screen and print initial header on screen. */
/* */

system ("els") ;

pi_date()

;

printf ("\n\n"
"KANSAS STATE UNIVERSITY "

"Department of Electrical and Computer Engineering\n"
"PC Parallel Interface (PCPI) Control Program \n"
i \n

ii

" Data Acquisition System Controller \n"
" \n \%s\n\n", pi. log_date)

;

/* */
/* Initialize the interface and pertinent variables. */
/* */

error = pi_init()

;

switch (error)
{

F-44

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

case ERR_INITBP:
printf ("\nError on initialization: "

"no PCPI_BASE found in the environment. \n")

return (0)

;

break;

case ERR_INITTST:
printf ("\n"

"no TEST_DAS found in the "

"environment. \n\n"
"Use TEST_DAS=0 for no test, \n\n"
"TEST_DAS=10 for test mode. \n\n")

;

return (0)

;

break;

case ERR_INITXTL:
printf ("\n"

"no XTAL_FREQ found in the "

"environment. \n\n"
"Use set XTAL_FREQ=n \n\n"
"where n is the A/D board crystal "

"Frequency in Hz. \n\n\n")

;

return (0)

;

break;

printf ("PCPI base port is %lu = %ixh.\n\n",
pi.base_port, pi.base_port)

;

printf ("A/D board oscillator frequency is %li Hz."
"\n\n", xtal_freq)

;

if (test_das == YES)
printf ("ATTENTION! \n"

DAS routine is in TEST mode "

"e.g. all bus operations are reported \n"
to the logger file. \n"
To turn off test mode, set TEST_DAS

"to zero \n\n"
from DOS. . .\n\n"
set TEST_DAS=0 \n\n")

;

F-45

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* */

/* Set up log file. */

/* */

for (;;)

printf ("\nEnter filename for session log (%s) : ",

pi.log_fn)

;

pi_gets(L_LFN, pi_bufl)

;

error = pi_oplog(pi_buf 1)

;

if (error == 0)

/* Everything is okay. Exit loop. */

break

;

else if (error == ERR_OPEN)
printf ("\nError: cannot open "

"session-log file.");
else if (error == ERR_OPENACC)

printf ("\nError: this session-log "

"file already exists.");
}

/* */

/* Give brief instructions for setting up the external */

/* module. */

/* */

system ("els")

;

printf ("\n\n\n The PCPI bus has been disabled. \n\n"
"1. Make sure that power to the DAS "

"is turned 0FF.\n"
"2. Connect the PCPI bus cable to the interface "

"board. \n"
"3. Turn power ON to the DAS.\n"
"4. Use the e(nable) command to enable the PCPI "

"bus \n\n"
ii —or— \n\n"
" use the 'si' command. \n\n"
"NOTE: Key-specific help is available by \n"
" typing the command 'help' .

\n\n")

;

F-46

PCPI-DAS SOURCE CODE: SOURCE-CODE HEADERS

/* v
/* Main command loop. */

-*

for (;;)
{

/

printf ("\npi: ")

;

pi_gets(50, pi_bufl)

;

cmd_code = pi_cmd(pi_buf 1)

pi_disp(cmd_code, Sboard)

;

pi_log(pi_logbuf)

;

printf ("%s\n", pi_logbuf)

;

/* Check QUIT.
if (pi.fix[QUIT])

{

pi_cllog()

;

return (0)

;

}

>

return (0) ;

F-47

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

bi das.c* SOURCE

:

*

* FUNCTION: bi_das (board)

* DESCRIPTION:
*

*

*

* DOCUMENTATION
* FILES:

The purpose of this function is to
simulate the "board initialize"
command issued to the DAS.

None.

* ARGUEMENTS

:

* board
*

*

*

* RETURN

:

(input) int
4-bit board address

(int)
NORMAL: normal return

*

*

*

*

*

FUNCTIONS
CALLED: ctrl_wr () ,

timer wr ()

,

bd_wr ()

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989

* REVISIONS: None.

Version 1.00

***/

F-48

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

include <stdio.h>
include <ctype.h>

#include "pi_ddn.h"

#define FREQ_INIT 1000 /* Initial freq. , in Hz */

define NUM_SAMP_INIT 1000 /* Initial # of samples. */

int bi_das (board)

int board

;

<

unsigned freq_init;
float freq_act

;

/ * ======= ==== — 1—— ========= :: ==: =*/

/* Initialize the control/status register */

/* and set control registers to zero. */
'/* */

printf ("\n\n"
"A/D board initialization. \n\n")

;

bd_wr (board, CNT_STAT_CON

,

CON_STAT_CONF, REGULAR)

;

bd_wr (board, CTRL1, 0, REGULAR)

;

bd_wr (board, CTRL2, 0, REGULAR);

printf ("Control-status register is set.\n");

/* */

/* Reset the board error condition flag by setting an */

/* active conversion mode and returning to STANDBY */

/* (this transition resets many conditions on the */

/* A/D board) . */
/* */

printf ("\nA/D board reset. \n")

;

if (test_das == YES)
fprintf (pi. logger, "\n A/D board reset. \n") ;

ctrl_wr (board, BD_MODE, CONV_TR)

;

ctrl_wr (board, BD_MODE, STBY)

;

F-49

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

/ * ===== ===== = — = —— == == */
/* Set counter chip, 82C54-2 */

/* */

printf ("A/D conversion-delay timer set. \n")

;

if (test_das == YES)
fprintf (pi. logger, "Setting A/D conversion-delay"

" timer. \n")

;

timer_wr (board, TMRJDNESHT, (unsigned) DLY_1SHT)

;

/* */

/* Store an arbitrary value in the sample counter */

/* and sample period counter. */
/* */

if (test_das == YES)
fprintf (pi. logger, "Setting sample counter /

"

"sample period generator. \n")

;

timer_wr (board, TMR_SAMP_CNT

,

(unsigned) NUM_SAMP_INIT)

;

/* Initialize the sample period generator with a value */

/* that cooresponds to 1000 Hz. */

freq_init = (unsigned) (xtal_freq / FREQ_INIT / 2.0) ;

timer_wr (board, TMR_SAMP_PD, freq_init)

;

freq_act = xtal_freq / freq_init / 2.0;

printf ("\nSample couter set to : %u samples, \n",

(unsigned) NUM_SAMP_INIT)

;

printf ("Sample frequency set to: %5.2f Hz.\n\n",
freq_act)

;

/* Modify the initialized-flag for this board address. */

initialized[board] = YES;

return (NORMAL)

;

>

F-50

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

*

* SOURCE : bp_das .

c

*

* FUNCTION: bp_das (

)

* DESCRIPTION:
*

*

*

The purpose of this function is to
simulate the "determine boards present"
command issued to the DAS.

* DOCUMENTATION
* FILES: None.

*

* ARGUEMENTS : None

.

* RETURN

:

(int)
The number of boards found.

* FUNCTIONS
* CALLED:
*

*

* AUTHOR:

bd_rd ()

Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989
*

* REVISIONS: None.

Version 1.00

***/

F-51

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int bp_das (

)

int bd_num, /* general-purpose counter */

num_pres, /* board-present counter */

test ;

/ * ==== —» —

<

====== */

/* The procedure for determining the boards present */

/* is as follows: */

/* */

/* l) set board address */

/* 2) read EPROM board register (REG 0) */

/* 3) if bit 15 of REG is LOW ("0"), a */

/* a board is present at this address. */

/* V
/* Repeat this for all possible board addresses. */

/* */

/* */

printf ("\n\n")

;

num_pres = 0;

for (bd_num = ; bd_num < MAX_BDS ; bd_num++)

{

test = (int)bd_rd (bd_num, BD_PRESENT)

;

if ((test & 0x80) == 0)

printf ("Board %d is present; ", bd_num)

;

if (initialized[bd_num] == YES)
printf (" board is initialized. \n") ;

else
printf (" board is NOT initialized. \n")

;

num_pres++

;

)

F-52

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

if (num_pres != 0)

printf ("\n\n"
"There were %i board (s) found on the "

"system bus. \n\n", num_pres)

;

else
printf ("No boards are present on the system "

"bus . \n\n")

;

return (num_pres)

;

F-53

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

*

* SOURCE : cc das .

c

* FUNCTION: cc_das (

)

* DESCRIPTION: The purpose of this function is to
* simulate the "system clock select"
* command issued to the DAS.
*

* DOCUMENTATION
* FILES: None.

*

*
ARGUEMENTS

:

None.

*

*

*

*

RETURN: (int)
NORMAL: normal return

*

*

*

*

*

*

*

FUNCTIONS
CALLED: bus_rd () ,

sing_bit ()

,

bus_wr () ,

pi_gets ()

*

* AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989

* REVISIONS: None.
*

Version 1.00

***/

F-54

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

#include <stdio.h>
include <ctype.h>
include <stdlib.h>

include »pi_ddn.h"

int cc_das (

)

{

char prompt [PRMPT_MAX]

;

int menu

,

new_val

;

/*, , =============== =============== '—"« «/
/* SYSTEM TRIGGER SOURCE SELECTION */

/* */

printf ("SYSTEM CLOCK INPUT ENABLE . . . \n\n"
"E) enable system clock input \n"
"D) disable system clock input \n"
'\n\n\n") ;

pi_gets (PRMPT_MAX, prompt)

;

menu = tolower (prompt [0])

;

new_val = bus_rd (BUS_CTRL)

;

/* */

/* Set the clock control bit accordingly (no-connect */

/* is the default) */

/* */

if (menu == 'e')
new_val = sing_bit (new_val, SYS_X_CLK_ID,

ACTIVE)

;

else
new_val = sing_bit (new_val, SYS_X_CLK_ID,

INACTIVE)

;

/* */
/* send the bus control value to the bus control */
/* register */

/* */

bus_wr (BUS_CTRL, new_val)

;

return (NORMAL)

;

)

F-55

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

*

* SOURCE

:

* FUNCTION:

ct_das .

c

ct_das (

)

* DESCRIPTION:

*

The purpose of this function is to
simulate the "system trigger select"
command issued to the DAS.

* DOCUMENTATION
* FILES: None.

* ARGUEMENTS

:

*

*

* RETURN:

None.

(int)
NORMAL: normal return

* FUNCTIONS
* CALLED: bus_rd ()

,

* sing_bit ()

,

* bus_wr ()

,

*

*

pi_gets ()

*

* AUTHOR: Copyright 1989
* Durwin D. Nigus

DATE CREATED: 24 July 1989 Version 1.00

REVISIONS: None.

***/

F-56

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int ct_das (

)

(

char prompt [PRMPT_MAX]

;

int new_val

,

toggle_bit = 1 « (SYS_TR_LO_ID & 0x07)

;

/ * ===== — ======= ===== =================*/
/* System trigger source selection. */
/* v

printf ("SYSTEM TRIGGER CONTROL . . . \n\n"
"A) activate trigger (system ctrl'r) \n"
"R) pre-set for RISING-edge trigger \n"
"F) pre-set for FALLING-edge trigger \n"
"E) connect external trigger \n"
"D) disconnect external trigger \n"
"C) bus-trigger controlled by board (s) \n"
"\n\n"
"selection??? ") ;

pi_gets (PRMPT_MAX, prompt)

;

/* */
/* Before executing any routines, retrieve the value */
/* of the bus control bus driver register. */
/* */

new_val = bus_rd (BUS_CTRL)

;

switch (tolower (prompt[0]))
(

case 'c':
/* */
/* Disable system control of system trigger */
/* i.e. switch to internal with INACTIVE */
/* logic level. */
/* */

new_val = sing_bit (new_val, SYS_X_TRIG_ID,
ACTIVE)

;

F-57

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

new val = sing_bit (new_val,
SYS_TR_LO_ID, INACTIVE)

bus_wr (BUS_CTRL, new_val)

;

break;

/* —*/

/* Pre-set for rising edge trigger sensitivity */

/* i.e. set to internal trigger source and */

/* set the trigger level to LOW (ACTIVE) . */

/ *

/ *

/ *

new_val = sing_bit (new_val, SYS_X_TRIG_ID,
INACTIVE)

;

new val = sing_bit (new_val,
SYS_TR_LO_ID, ACTIVE)

;

bus_wr (BUS_CTRL, new_val)

;

break;

*/

/* Pre-set for falling edge trigger */

/* sensitivity i.e. set to internal trigger */

/* source and set the trigger level to HIGH */

/* (INACTIVE)

.

*/

new_val = sing_bit (new_val, SYS_X_TRIG_ID,
INACTIVE)

;

new_val = sing_bit (new_val,
SYS_TR_LO_ID, INACTIVE)

bus_wr (BUS_CTRL, new_val)

;

break;

/

F-58

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

/* */
/* Activate system trigger by toggling the */
/* system trigger control value. */

/* */

bus_wr (BUS_CTRL, new_val A toggle_bit)

;

bus_wr (BUS_CTRL, new_val)

;

break;

case 'e':
/* */
/* Select the external trigger source. */
/* */

new_val = sing_bit (new_val, SYS_X_TRIG_ID,
ACTIVE)

;

bus_wr (BUS_CTRL, new_val)

;

break;

case 'd'

:

/* V
/* Select the internal trigger source (system */

/* controller)

.

*/
/* */

new_val = sing_bit (new_val, SYS_X_TRIG_ID,
INACTIVE)

;

bus_wr (BUS_CTRL, new_val)

;

break;

default:
printf ("\n"

"No action taken. \n")

;

break;
)

return (NORMAL)

;

F-59

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

*

* SOURCE : help_das .

c

* FUNCTION: help_das ()
*

*

* DESCRIPTION: The purpose of this function is to
* present keyh-specif ic help to the
* PCPI/DAS user.

* DOCUMENTATION
* FILES

:

*
None.

* ARGUEMENTS

:

None.

*

*

*

RETURN: (int)
NORMAL: Always.

*

*

*

*

FUNCTIONS
CALLED: None.

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

*

*

*
DATE CREATED: 11 August 1989

*

*
REVISIONS: None.

Version 1.00

***,

F-60

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

include <stdio.h>
include <stdlib.h>
include <process.h>

include "pi_ddn.h"

int help_das (

)

{

/* v
/* All this routine does is execute the DOS type */
/* routine, where the typed file is "PCPI DAS.HLP". */
/* v

system ("els") ;

if (system ("type pcpi_das.hlp
|
more") != 0)

printf ("Help file, PCPI_DAS.HLP not in "

"directory. \n\n")

;

return (NORMAL)

;

F-61

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

/***

* SOURCE: si_das.c
*

*

* FUNCTION: si_das ()

* DESCRIPTION:
*

*

*

*

*

*

*

*

*

the purpose of this function is to
configure the system at start up
(from the pi_das program)

.

NOTE: This routine verifies values
written to the bus drivers are
received. If not, an abnormal program
termination results.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

None.

* RETURN

:

(int)
NORMAL: no errors

FUNCTIONS
CALLED:

AUTHOR:

cct_err () ,

data_dir ()

,

bus_wr ()

,

pi_cllog ()

Copyright 1989
Durwin D. Nigus

DATE CREATED: 29 May 1989

REVISIONS: None.

Version 1.00

** *^

F-62

PCPI-DAS SOURCE CODE: A/D BOARD COMMAND IMPLEMENTATION

include <stdio.h>
include <ctype.h>
include <process.h>
#include <stdlib.h>

include "pi_ddn.h"

int si_das ()

{

int ctrl

;

void cct_err (void)

;

/* Verify circuit is responding to PC.
bus_wr (PPI2_CTRL, BUS_ADDR)

;

if (bus_rd (PPI2_CTRL) != BUS_ADDR)
cct_err ()

;

printf ("BUS initialization \n\n"
"Data is in READ mode, \n"
"System trigger = connector \n"
"System clock = connector \n"
"rd/wr inactive \n") ;

ctrl = 0;
ctrl - sing_bit (ctrl, BUS_RD_ID, INACTIVE);
ctrl = sing_bit (ctrl, BUS_WR_ID, INACTIVE);
ctrl = sing_bit (ctrl, SYS_X_TRIG_ID, ACTIVE)
ctrl = sing_bit (ctrl, SYS_X_CLK_ID, ACTIVE);

bus_wr (PPI2_CTRL, BUS_ADDR)

;

data_dir (BUS_READ, 0, 0)

;

bus_wr (BUS_CTRL, ctrl)

;

return (NORMAL)

;

F-63

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

* SOURCE: bd_rd.c
*

*

* FUNCTION: bd_rd (board, reg)

DESCRIPTION:

DOCUMENTATION
FILES:

The purpose of this function is to
read an 8 or 16-bit value from a
board located on the
"Acquisition System."

None.

ARGUEMENTS

:

board

reg

* RETURN

:

*

*

*

* FUNCTIONS
* CALLED:
*

*

*

(input) int
4-bit value that selects the board
being addressed

(input) int
4-bit value that selects the register
being addressed. This also includes
information about the byte at which
the register resides.

(unsigned)
the 8- or 16- bit number read from the
specified register

data_dir ()

,

bus_rd ()

,

rd_strob (

)

AUTHOR

:

Copyright 1989
Durwin D. Nigus

F-64

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

* DATE CREATED: 7 August 1989 Version 1.00
*

* REVISIONS: None.

#include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

unsigned bd_rd (board, reg)

int board, reg;

{

unsigned value;

/* v
/* Set data direction and board/reg bus port. */
/* v

data_dir (BUS_READ, board, reg)

;

/ * . ==: „ ============== ======== : =====*/
/* Determine if the register read is for LSB, MSB, */
/* or full 16-bit. */
/* */
/* When reading register value: activate the read */
/* line, read the data, then deactivate the read line. */
/* v

switch (reg & DATA_MASK)
(

case DATA_LOW:
rd_strob (ACTIVE, FAST)

;

value = bus_rd (DAT_LSB)

;

rd_strob (INACTIVE, FAST)

;

break;

case DATA_HIGH:
rd_strob (ACTIVE, FAST)

;

value = bus_rd (DAT_MSB)

;

rd_strob (INACTIVE, FAST)

;

break;

F-65

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

case DATA_BOTH:
rd_strob (ACTIVE, FAST)

;

value = bus_rd (DAT_LSB) +
256 * bus_rd (DAT_MSB)

;

rd_strob (INACTIVE, FAST)

;

break;

default:
value = Oxffff; /* error in calling routine */
break;

)

return (value)

;

F-66

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

* SOURCE: bd_wr.c
*

*

* FUNCTION: bd_wr (board, reg, value, mode)

DESCRIPTION: The purpose of this function is to
write an 8- or 16- bit value to a
specified register on a
specified board.

DOCUMENTATION
FILES

:

None.

ARGUEMENTS :

board

reg

value

mode

RETURN:

(input) int
4-bit board address

(input) int
4-bit register address

(input) unsigned
the 8- or 16- bit value to be written
to the appropriate register

(input) int
selects between FAST and REGULAR.

FAST: data is written immediately;
REGULAR: board and register are

written prior to write.

(int)
NORMAL

F-67

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

*

*

*

*

*

*

FUNCTIONS
CALLED: byte_brk ()

,

data_dir ()

,

bus_wr () ,

wr_strob (

)

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

*

*

*
DATE CREATED: 29 May 1989

*

*

*
REVISIONS: None.

*

Version 1.00

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int bd_wr (board, reg, value, mode)

int board,
reg,
mode ;

unsigned

{

/*
/*
/*
/*

int

value;

lsb, msb;

*/
Set the board and register address on the bus, and */

data direction if mode != FAST. */
*/

if (mode != FAST)
data_dir (BUS_WRITE, board, reg)

;

F-68

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/* */
/* Write the data to appropriate data bus register. */
/* v
/* */
/* Determine the appropriate byte to which the data */
/* should be written. This information is in the most */
/* significant nibble of "reg" (masked by DATA_MASK) . */
/* v

switch (reg & DATA_MASK)
{

case DATA_LOW:
bus_wr (DAT_LSB, value)

;

wr_strob ()

;

break;

case DATA_HIGH:
bus_wr (DAT_MSB, value)

;

wr_strob () ;

break

;

case DATA BOTH:
/*
/*
/*
/*

Break the 16-bit value into its LSB and MSB */
components, then write each. */

v
byte_brk (value, Smsb, Slsb)

;

bus_wr (DAT_MSB, msb)

;

bus_wr (DAT_LSB, lsb) ;

wr_strob () ;

break;

return (NORMAL)

;

F-69

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/***
*

* SOURCE: bus rd.o

* FUNCTION: bus_rd (reg)

* DESCRIPTION:
*

*

*

*

*

The purpose of this function is to
intercept read commands issued to
the PCPI and give the option to
echo PCPI READ operations on the
screen.

* DOCUMENTATION
* FILES

:

None.

* ARGUEMENTS

:

*

* reg
*

*

*

* RETURN:
*

*

* FUNCTIONS
* CALLED:

(input) int
3-bit bus register to read

(int)
the value read from the bus

pi_rdreg ()

* AUTHOR:
*

*

Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989 Version 1.00

* REVISIONS: None.

*

**
*/

F-70

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

include <stdio.h>
include <ctype.h>
include <string.h>
include <stdlib.h>

include "pi_ddn.h"

int bus_rd (reg)

int reg ;

{

int resp ;

char prompt[25], bin_buf [10] ;

/* */

/* Read the register. */

/* */

resp = pi_rdreg (reg)

;

/* */

/* Echo operation, if desired. */

/* If test_das is true send record of operation to */

/* disk. */

/* If program is in the "trace" mode, echo the */

/* operation to screen.
/*

ultoa ((long)resp, bin_buf, 2);

_ ii

*/

if (test_das == YES)
fprintf (pi. logger, "read reg %2i value =

"%4x h %8s b\n", reg, resp, bin_buf)

;

if (trace == YES)

(

printf ("read reg %2i value = %4x h %8s b\n",

reg, resp, bin_buf)

;

F-71

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/

if (stepper == YES)

i /

/* During "step" mode, pause after each read. */

/* */

printf (" <enter> to continue "

"[end step <enter> to cease step]"
"... \n»);

pi_gets (25, prompt)

;

if (strcmp (prompt, "end step") == 0)

stepper = NO;

>

)

return (resp)

;

F-72

PCPI-DAS SOURCE CODE: BOS-DRIVER ROUTINES

* SOURCE: bus wr.c

* FUNCTION: bus_wr (bus_reg, value)
*

DESCRIPTION: The purpose of this function is to
intercept PCPI writes and give the
option for screen echo of write
operation.

DOCUMENTATION
FILES

:

None

.

ARGUEMENTS

:

bus_reg

value

RETURN

:

FUNCTIONS
CALLED:

(input) int
3-bit bus register address

(input) int
The 8-bit value to be written
to the bus register

(int)
NORMAL: normal return

pi_wrreg
(

)

AUTHOR: Copyright 1989
Durwin D. Nigus

DATE CREATED: 29 May 1989

REVISIONS: None.

Version 1.00

F-73

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

include <stdio.h>
include <ctype.h>
include <string.h>
#include <stdlib.h>

include "pi_ddn.h"

int bus_wr (bus_reg, value)

int bus_reg, value;
{

char prompt[25], bin_buf [10]

;

/* */

/* If TEST_DAS is NOT defined in the environment, */

/* execute the register-write operation. */

/* */

pi_wrreg (bus_reg, value)

;

/* */

/* If test_das is true, send a record of the operation */

/* to disk. */
/* If program is in the "trace" mode, echo the */
/* operation to screen. */
/* __ */

if (trace == YES
|

| test_das == YES)

(

ultoa ((long) value, bin_buf, 2);

if (test_das == YES)

fprintf (pi. logger, "write reg %2i value "

"= %4x h %8s b ", bus_reg, value,
bin_buf)

;

if (bus_reg == REG_ADR)
fprintf (pi. logger, " WRITE to board "

"reg %2i ", value/16);

fprintf (pi. logger, " \n")

;

>

F-74

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

if (trace == YES)

{

printf ("write reg %2i value "

"= %4x h %8s b\n", bus_reg, value,
bin_buf)

;

if (bus_reg == REG_ADR)
printf (" set to board "

"reg %2i ", value/16)

;

printf ("\n")

;

)

if (stepper == YES)

/* */

/* If program is in "step" mode, pause. */

/* */

printf (" <enter> to continue,"
"[end step <enter> to cease step]"
"... \n")

;

pi_gets (25, prompt)

;

if (strcmp (prompt, "end step") == 0)

stepper = NO;

)

)

return (NORMAL)

;

F-75

PCPI-DAS SOURCE CODE: BOS-DRIVER ROUTINES

*

* SOURCE: data_dir.c
*

*

* FUNCTION: data_dir (state, board, reg)
*

* DESCRIPTION: The purpose of this function is to set
* the data direction on the system bus.
*

*

* DOCUMENTATION
* FILES: None.

* ARGUEMENTS

:

* state (input) int
* Select the direction of the data bus
* either
* BUS READ
* BUS WRITE

board

reg
*

*

*

*

*

* RETURN:
*

*

*

(input) int
4-bit board addresss to which will be
written to or read from

(input) int
4-bit register address which commun-
ication is intended

(int)
NORMAL
ERR

if no errors detected;
if error detected.

* FUNCTIONS
* CALLED: pause ()

,

bus_rd ()

,

bus_wr ()

,

cct_err ()

,

pi_cllog ()

,

pi_iface ()

F-76

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

* AUTHOR: Copyright 1989
* Durwin D. Nigus
*

* DATE CREATED: 28 May 1989 Version 1.00
*

* REVISIONS: None.
*

*

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int data_dir (state, board, reg)

int state, board, reg;

{

char prompt [PRMPT_MAX]

;

int combined, new, prev;

void cct_err (void)

;

/* */

/* Verify bus read / write strobe lines are inactive */

/* before changing the direction. */

/* */

prev = bus_rd (BUS_CTRL)

;

new = sing_bit (prev, BUS_RD_ID, INACTIVE)

;

new = sing_bit (new, BUS_WR_ID, INACTIVE)

;

bus_wr (BUS_CTRL, new)

;

/* */

/* State of data bus is BUS READ or BUS_WRITE. */
/* */

bus_wr (DAT_CTL_REG, state)

;

F-77

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/* */

/* Set the board and register address on the bus. */

/* Mask the data byte information from 'reg' with */

/* OxOf hex. */

/* */

reg = reg & ~DATA_MASK;
combined = board * BD_MULT + reg * REG_MULT;
bus_wr (REG_ADR, combined)

;

/* */

/* Verify data direction register setting. */

/* If an error exists, terminate program. */

/* */

if (bus_rd (DAT_CTL_REG) != state)
cct_err () ;

}

return (NORMAL)

;

F-78

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/***

SOURCE

:

cct err.c

FUNCTION

:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUEMENTS

:

RETURN

:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

cct_err (

)

The purpose of this function is to
cease the operation of the program,
usually if the circuit is not
responding to I/O from the PC.

None.

None.

None Program is terminated.

pi_cllog ()

,

pi_iface ()

Copyright 1989
Durwin D. Nigus

23 August 1989

None.

Version 1.00

***/

F-79

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

include <stdio.h>
include <stdlib.h>

include "pi_ddn.h"

void cct_err ()

{

/* */

/* Disable the interface, put a message in the logger */

/* and abort the program. */
/* */

printf ("\n ERROR!!! \n"
"\n Interface has been disabled. \n "

" Program has been terminated. \n\n"
" Error may be caused by no power to circuit."
"\n\n\n")

;

pi_iface (DISABLE)

;

sprintf (pi_logbuf, "Error with interface circuit. "

" Program terminated.");

pi_cllog ()

;

abort () ;

F-80

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/**
*

*

*

*

*

*

SOURCE: rd strob.c

FUNCTION: rd_strob (state, mode)

DESCRIPTION: The purpose of this function is to
control the bus read strobe.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

state

mode

RETURN

:

FUNCTIONS
CALLED:

(input) int
sets the read strobe to either:

ACTIVE
INACTIVE

read strobe active
read strobe inactive

(input) int
selects between a normal strobe (with
data direction checking) and a fast
strobe (during repeatitive reads)

NORMAL : check data bus direction
FAST : modify read strobe

immediately

(int)
ERR :

NORMAL:

read requested when bus
is in WRITE mode
read strobe is in specified
position

bus_rd ()

,

bus_wr ()

,

cct_err ()

,

sing_bit ()

F-81

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

*

* AUTHOR: Copyright 1989
* Durwin D. Nigus

* DATE CREATED: 28 May 1989 Version 1.00
*

* REVISIONS: None.
*

*

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int rd_strob (state, mode)

int state , mode

;

{

int prev_val , new_val

;

char prompt [5]

;

void cct_err (void)

;

/* */

/* Verify data direction doesn't cause data bus */
/* contention (if active is requested). */

/*
if ((state == ACTIVE) && (mode != FAST))

(

if (bus_rd (DAT_CTL_REG) != BUS_READ)

(

printf ("data bus contention ERROR \n"
"press ctrl-C to stop program ")

scanf ("%s", prompt);
return (ERR)

;

)

)

F-82

-*/

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/* */

/* retrieve a copy of board control register prior to */

/* sending control value, */

/* set write bit INACTIVE, */

/* set read bit in accordance with state */

/* */

prev_val = bus_rd (BUS_CTRL)

;

prev_val = sing_bit (prev_val, BUS_WR_ID, INACTIVE);
new_val = sing_bit (prev_val, BUS_RD_ID, state)

;

bus_wr (BUS_CTRL, new_val) ; /* write state */

/* */

/* Verify bus control is desired value. */

/* If error exists, terminate program. */

/* */

if (bus_rd (BUS_CTRL) != new_val)
cct_err () ;

return (NORMAL) ,-

F-83

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

/***

* SOURCE

:

*

* FUNCTION:
*

*

* DESCRIPTION:

*

*

*

*

*

*

*

* DOCUMENTATION
* FILES

:

None

.

*

wr strob.c

wr_strob (

)

The purpose of this function is to
make the bus write strobe active
for a brief period of time. If, dur-
ing the restoration, the bus
control register does not return to
its previous value, a error is
generated.

* ARGUEMENTS

:

None.

* RETURN

:

FUNCTIONS
CALLED:

* AUTHOR:

(int)
NORMAL
ERR

normal return
bus control register error

bus_rd ()

,

bus_wr () ,

cct_err (

)

Copyright 1989
Durwin D. Nigus

DATE CREATED: 28 May 1989

REVISIONS: None.

Version 1.00

***/

F-84

PCPI-DAS SOURCE CODE: BUS-DRIVER ROUTINES

#include <stdio.h>
#include <ctype.h>

#include "pi_ddn.h"

int wr_strob (

)

{

int prev_val, wr_val;

char prompt [5]

;

void cct_err (void)

;

/* */

/* Sending a WRITE strobe is simply a matter of making */

/* the bus write line active, and one instruction */

/* later making it inactive. It is also important to */

/* verify the contents of the bus control register */

/* before exiting this routine. */

/* */

/* */

/* Retrieve a copy of the board control register */

/* verify read and write bit were inactive. */

/* */

prev_val = bus_rd (BUS_CTRL)

;

prev_val = sing_bit (prev_val, BUS_RD_ID, INACTIVE);
prev_val = sing_bit (prev_val, BUS_WR_ID, INACTIVE);
wr_val = sing_bit (prev_val, BUS_WR_ID, ACTIVE);

/* */

/* Send the strobe. */
/* */

bus_wr (BUS_CTRL, wr_val) ; /* Make write active, */

bus_wr (BUS_CTRL, prev_val) ; /* restore bus */
/* control. */

/* */

/* Verify bus is previous value (RD/WR inactive) . */
/* */

if (bus_rd (BUS_CTRL) != prev_val)
cct_err ()

;

return (NORMAL)

;

}

F-85

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

*

* SOURCE : bc_das .

c

*

*

* FUNCTION: bc_das (board)

* DESCRIPTION:
*

*

*

* DOCUMENTATION
* FILES:

The purpose of this function is to
simulate the "begin conversion" command

None.

ARGUEMENTS

:

board (input) int
4-bit board address

* RETURN

:

(int)
NORMAL: normal return.
ERR : illegal number of samples;

board all ready active

FUNCTIONS
CALLED: ad_test ()

,

bd_rd ()

,

ctrl_wr ()

,

give_val () ,

pi_cvt (),
pi_gets ()

,

timer_wr ()

AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989 Version 1.00

F-86

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

* REVISIONS: None.

*

include <stdio.h>
include <ctype.h>
include <stdlib.h>

include "pi_ddn.h"

int bc_das (board)

int board

;

{

char prompt [PRMPT_MAX]

;

int cl, conv_mode, dummy, i, protect;

unsigned max, max_post, min, temp_samp;

/ * ====================== ================ =====*/
/* Determine if board is all ready in conversion mode. */
/* */

/* retrieve CONTROL #1 */
cl = (int)bd_rd (board, CTRL1)

;

if (give_val (BD_MODE, cl) != STBY)

(

printf ("\n\n"
"Board is all ready active. \n\n"
"Use Stop Conversion (sc) command before "

"using this command. \n\n")

;

return (ERR)

;

)

/* Determine conversion mode. */
/* */

printf ("\nSelect: \n\n"
"I) immediate conversion \n"
"W) wait for trigger \n"
"\n\n\n"
"your selection: ") ;

F-87

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

pi_gets (PRMPT_MAX, prompt)

/ * ===== ====: ;=========; ============*/
/* Set the number of samples. */
/* v

switch (tolower (prompt[0]))
{

case 'w'

:

/* */
/* Determine if pre-trigger sampling should */
/* occur. */
/* */

printf ("\n\n"
"number of pre-trigger samples [max"
" = 65535] (%u) : ", num_pre_trig)

;

if (pi_gets (PRMPT_MAX, prompt) != 0)
num_pre_trig = (unsigned) pi_cvt (prompt);

/* Is pre-trigger acquisition desired? */
conv_mode = (num_pre_trig ==0) ?

(CONV_TR) : (CONV_TR_PRE) ;

max_post = 65535 - num_pre_trig;
printf ("\n\n"

"number of post-trigger samples "

"[max = %u] (%u) : ",

max_post, num_post_trig)

;

if (pi_gets (PRMPT_MAX, prompt) != 0)
num_post_trig = (unsigned) pi_cvt (prompt);

break;

case 'i' :

/* v
/* Immediate data acquisition (no trigger) . */
/* */

conv_mode = CONV_NOW;
printf ("\n\n"

"number of samples [max = 65535] (%u):"
" " , num_post_trig)

;

if (pi_gets (PRMPT_MAX, prompt) != 0)

F-88

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

num_post_trig = (unsigned) pi_cvt (prompt)

if (num_post_trig != 0)

num_pre_trig = ;

break;

default:
printf ("\n"

"No conversions requested. \n\n")

;

return (ERR)

;

}

/* Varify the sum of pre- and post- trigger samples */

/* is not greater than memory limitations (64K) , and */

/* not equal to zero. */

/* */

if ((num_pre_trig + num_post_trig) == 0)

{

printf ("No samples requested. \n\n")

;

return (ERR)

;

min = (num_post_trig > num_pre_trig) ?

(num_pre_trig) : (num_post_trig)

;

max = (num_post_trig > num_pre_trig) ?

(num_post_trig)

:

(num_pre_trig)

;

if ((65535 - max) < min)

{

printf ("Illegal total number of samples "

"requested. \n\n"
ii routine aborted \n\n") ;

return (ERR)

;

/ * ============================ ============== ==*/
/* Set-up A/D board control registers appropriately. */
/* */
/* The sample counter must be written to first, then */
/* the conversion mode should be set. */
/* */

F-89

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* Note that one is subtraced from the number of post- */

/* trigger samples. The A/D board requires this */

/* counter to be one less than the number of samples. */

/ V
/* The sample counter operates in such a way that */

/* the minimum number of counts is 1 (set the counter */

/* to 1) and the maximum number of counts is 2 A 16 */

/* (set the counter to 0)

.

*/

/* */

temp_samp = (num_post_trig == 0)

? (1) : (num_post_trig)

;

temp_samp = (num_post_trig == 1)

? (1) : (num_post_trig)

;

temp_samp = (num_post_trig == 65535)
? (0) : (num_post_trig)

;

/* Determine if the protection circuit is enabled. */

printf ("\n\n"
"Overload protection circuit enabled? "

"(Y/N) ");
pi_gets (PRMPT_MAX, prompt)

;

protect = (tolower (prompt[0]) == 'n') ?

(PR0TECT_0FF) : (PROTECTION)

;

ctrl_wr (board, PROTECT, protect)

;

if (protect == PROTECT_ON)
printf ("\nlnput protection enabled. \n\n")

;

else
printf ("\nCAUTI0N! Input protection "

"disabled. \n\n")

;

/* Connect the signal. */

ctrl_wr (board, SIG_SEL, SIG_APPLIED)

;

/* Delay; wait for the signal connection relays */
/* to activate. */

F-90

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

for (i = ; i < 5000 ; i++)
{

dummy = i;

}

/* Write number of post-trig samples to counter. */
timer_wr (board, TMR_SAMP_CNT , temp_samp)

;

/* Write converison mode to control register. */
ctrl_wr (board, BD_M0DE, conv_mode)

;

return (NORMAL)

;

F-91

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/***

SOURCE

:

cl das.c

FUNCTION: cl_das (board)

DESCRIPTION: The purpose of this function is to
enable the user to calibrate the A/D
board.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

board

RETURN

:

FUNCTIONS
CALLED:

AUTHOR:

(input) int
4-bit board address

(int)
NORMAL:
ERR :

normal return,
abnormal return.

ctrl_wr () ,

bd_rd ()

,

bd_wr
()

,

give_val ()

,

pi_gets ()

Copyright 1989
Durwin D. Nigus

DATE CREATED:

REVISIONS:

27 June 1989

None.

Version 1.00

F-92

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

include <stdio.h>
#include <stdlib.h>
include <ctype.h>

include "pi_ddn.h"

int cl_das (board)

int board;
(

char prompt [PRMPT_MAX] , bin_buf [25];

int cl, conv_mode, menu;

unsigned ad_val, count, num_conv;

/

»

i.n - ii — ——— i ———————*/
/* determine if board is all ready in conversion mode */
/* v
/* retrieve CONTROL #1 */

cl = (int)bd_rd (board, CTRL1)

;

conv_mode = give_val (BD_MODE, cl)

;

if (conv_mode != STBY) /* error if true */
{

print f ("\n\n"
"Board is all ready active. \n\n"
"Use Stop Coversion command before "

"using this command. \n\n") ;

return (ERR)

;

)

/*— .

, ..i.i..,.,..,,.. ..,.,„„ ——*/
/* determine calibration mode */
/* v

printf ("\nSelect: \n\n"
"T) xlO gain adjustment \n"
"A) A/D adjustment \n"
" any other selection aborts routine"
" \n\n"
"your selection: ")

;

pigets (PRMPT_MAX, prompt)

;

F-93

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

menu = tolower (prompt[0])

;

/* */

/* execute the apporpriate calibration routine */

/* */

switch (menu)

{

case 't':
/* */

/* xlO gain adjustment routine */
/* l) turn on overload protection */
/* 2) set gain to ten */
/* 3) connect the signal relays */
/* ... wait for stop command ... */

/* 4) decouple the signal relays */
/* exit */
/* V
/* NOTE: These adjustments are made without the A/D! */

/* */

/* */

ctrl_wr (board, PROTECT, PROTECTION)

;

ctrl_wr (board, GAIN_SEL, GAIN_10)

;

ctrl_wr (board, SIG_SEL, SIG_APPLIED)

;

printf ("\n"
"Gain xlO adjustment . . . press "

"<enter> to stop. ")

;

pi_gets (PRMPT_MAX, prompt)

;

break;

*/

The A/D adjustment routine. */

turn on protection */

select gain =1 */
enable the signal relays */

prompt for the number of samples for */

conversion sequence ... */
Initiate conversion */
Check the EOC status bit and retrieve */
data when ACTIVE */

/* Th
/* 1)

/* 2)

/* 3)

/* 4)

/*
/* 5)

/* 6)

/*

F-94

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* 7) display the number on the screen */

/* and repeat steps 5, 6, 7 until the */

/* number of samples requested in (4) */

/* have been acquired. */

/* */

ctrl_wr (board, PROTECT, PROTECTION)

;

ctrl_wr (board, GAIN_SEL, GAIN_1)

;

ctrl_wr (board, SIG_SEL, SIG_APPLIED)

;

for (;;)

{

printf ("\n"
"A/D converter calibration routine."
"\n\n"
"How many samples to be acquired"
" during calibration?"
"\n\n"
"respond with to stop: ");

pi_gets (PRMPT_MAX, prompt)

;

num_conv = (unsigned) pi_cvt (prompt)

;

printf ("\n\n%5u samples selected. \n",
num_conv)

;

/* Stop routine when finished. */

if (num_conv == 0)

(

ctrl_wr (board, SIG_SEL, SIG_REMOVE)

;

return (NORMAL)

;

)

bd_wr (board, AD_DIRECT,
0, REGULAR)

;

for (count = num_conv ;

count > ; count—

)

{

bd_wr (board, AD_DIRECT,
0, FAST)

;

/* Wait for end-of-conversion,
cl = EOC ACT + 1;

F-95

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

while (give_val (EOC, cl) != EOC_ACT)

cl = (int)bd_rd (board, STATUS);
}

/* Read the sample value. */

ad_val = bd_rd (board, AD_DIRECT)

;

/* Convert to binary. */
ultoa ((long) ad_val, bin_buf, 2)

;

/* Display. */
printf ("\n"

"conv. value = %4x (hex)"
" %16sb", ad_val, bin_buf)

;

)

)

break;
}

/* v
/* routines complete, disconnect signal */
/* v

ctrl_wr (board, SIG_SEL, SIG_REMOVE)

;

return (NORMAL)

;

}

F-96

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

* SOURCE: cs das.c

* FUNCTION: cs_das (board)

* DESCRIPTION: The purpose of this function is to
* simulate the "clock select"
* command issued to the DAS.

* DOCUMENTATION
* FILES: None.

*

*

*

*

ARGUEMENTS

:

board (input) int
4-bit board address

*

*

*

*

RETURN: (int)
NORMAL: normal return

*

*

*

*

*

FUNCTIONS
CALLED: ctrl_wr ()

,

pi_gets ()

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989 Version 1.00
*

* REVISIONS: None.
*

*

F-97

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int cs_das (board)

int board

;

{

char prompt [PRMPT_MAX]

;

/ * ========================== = ===== =======*/
/* Clock source selection for A/D board. */
/* */

printf ("A/D board: clock selection . . . \n\n"
"I) internal \n"
"B) bus \n"
"P) front panel \n"
"\n\n"
"selection??? ") ;

pi_gets (PRMPT_MAX, prompt)

;

switch (tolower (prompt[0]))
(

case 'i':
/* */
/* Internal clock selected. Although this is */
/* not part of the 'ct' command for the DAS, */
/* this routine calls the 'sr' command to */
/* enable the user to select the frequency. */
/* */

sr_das (board)

;

break

;

case 'b':
ctrl_wr (board, CLOCK_SEL, CLK_BUS)

;

break;

case 'p':

ctrl_wr (board, CLOCK_SEL, CLK_PANEL)

;

break

;

F-98

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

default:
printf ("\n\n"

"No action taken.");
break;

)

return (NORMAL)

;

)

F-99

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

*

* SOURCE: dr das.c

* FUNCTION: dr_das (board)

* DESCRIPTION: The purpose of this function is to
* retrieve the bus driver values
*

*

* DOCUMENTATION
* FILES: None.

* ARGUEMENTS

:

*

None.

* RETURN

:

*

*

(int)
NORMAL: normal return

* FUNCTIONS
* CALLED: bus_rd (

)

* AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989
*

* REVISIONS: None.

Version 1.00

***/

F-100

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

#include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int dr_das (

)

{

int reggie, reg_val

;

/ * _ mmm ===================== »/
/* Display contents of bus driver registers. */
/* v

printf ("\n\n"
"Bus driver register values . . . \n\n")

;

reggie = DAT_LSB;
reg_val = bus_rd (reggie)

;

printf ("data LSB , reg %ld, value = %2X h "

"(%3d dec) \n", reggie, reg_val , reg_val)

;

reggie = DAT_MSB;
reg_val = bus_rd (reggie)

;

printf ("data MSB , reg %d, value = %2X h "

"(%3d dec)\n", reggie, reg_val, reg_val)

;

reggie ADDR_LSB;
reg_val = bus_rd (reggie)

;

printf ("addr LSB , reg %d, value = %2X h "

"(%3d dec)\n", reggie, reg_val, reg_val)

;

reggie = ADDR_MSB;
reg_val = bus_rd (reggie)

;

printf ("addr MSB , reg %d, value = %2X h "

"(%3d dec)\n", reggie, reg_val, reg_val) ;

reggie = BUS_CTRL;
reg_val = bus_rd (reggie)

;

printf ("bus Ctrl , reg %d, value = %2X h "

"(%3d dec) \n", reggie, reg_val, reg_val)

;

F-101

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

reggie = REG_ADR;
reg_val = bus_rd (reggie)

;

printf ("bd/reg addr, reg %d, value = "

"%2X h (%3d dec) \n",
reggie, reg_val, reg_val)

;

reggie = PPI1_CTRL;
reg_val = bus_rd (reggie)

;

printf ("\nPPIl Ctrl (data and bd/reg) "

"[read = 92h, write = 80h] \n"
"reg %d, value = %2X h (%3d dec) \n\n",
reggie, reg_val, reg_val)

;

reggie = PPI2_CTRL;
reg_val = bus_rd (reggie)

;

printf ("PPI2 ctrl (address and bus Ctrl) "

"[should be 8 Oh] \n"
"reg %d, value = %2X h (%3d dec) \n\n"

,

reggie, reg_val, reg_val)

;

printf ("\n\n")

;

return (NORMAL)

;

F-102

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

*

SOURCE: fc das.c

FUNCTION

:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUEMENTS

:

board

RETURN:

FUNCTIONS
CALLED:

fc_das (board)

The purpose of this function is to
simulate the "filter configure"
command issued to the DAS.

None.

(input) int
4-bit board address

(int)
NORMAL: normal return

pi_gets ()

,

mem_rd () ,

mem_wr ()

,

pi_cvt () ,

pi_rdfil (),
pi_wrfil ()

AUTHOR: Copyright 1989
Durwin D. Nigus

DATE CREATED: 24 July 1989 Version 1.00

REVISIONS: None.

F-103

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

#include <stdio.h>
include <ctype.h>
include <math.h>

include <stdlib.h>

include "pi_ddn.h"

int fc_das (board)

int board

;

{

char prompt [PRMPT_MAX]

;

int error, i, num_points, value;

unsigned addr, cdc;

double freq;

printf ("ON-BOARD FILTER CONFIGURATION . . . \n\n"
"C) change CS7 008 sampling frequency \n"
"L) load filter configuration from disk \n"
"M) make new filter configuration file \n"
"V) view filter's coefficient memory \n"
"\n\n")

;

pi_gets (PRMPT_MAX, prompt)

;

switch (tolower (prompt[0]))
{

case 'c': /* change clock divider value */

/* */

/* Display filter sampling frequency. */

/* */

cdc = mem_rd (board, FIL_CDC, REGULAR, FILTER);

freq = FIL_XTL / 6.0 / pow(2.0, (double)cdc)
/ 1000.0;

printf ("\n\n"
"The present sampling frequency is "

F-104

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

"%f kHz \n\n"
"Select the new clock division code "

"from the following: \n\n"
"cdc samp, freq (kHz) \n"
» \n"

,

freq)

;

for (i = 1 ; i < 8 ; i++)

<

freq = FIL_XTL / 6.0 /
pow (2.0, (double) i) / 1000.0;

printf ("%i %3.1f \n" , i, freq)

;

)

printf ("\n\n"
"The new cdc value is ")

;

pi_gets (PRMPT_MAX, prompt)

;

cdc = pi_cvt (prompt)

;

/* */
/* Check for illegal cdc value (must be */
/* bounded by 1 thru 7); if legal, store */

/* in coefficent memory. */

/* V
if (cdc <

|
| cdc > 7)

printf ("Illegal value. No modifications"
" made . \n")

;

else
mem_wr (board, FIL_CDC, (unsigned) i,

NORMAL, FILTER)

;

break;

case '1':
/* */
/* Load coefficients from disk. */
/* */

/* */

/* Data buffer will be over-written. Examine */

/* the buffer-size and warn the user if */
/* necessary. */

/* */

if (pi.fix[DATA_LEN] != 0)

{

F-105

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

printf ("\n\n"
"Data buffer is NOT empty. This"
" routine will purge \n"
"buffer contents. Proceed? (y/n)

"

.. n
);

pi_gets (PRMPT_MAX, prompt)

;

if (tolower (prompt [0]) != 'y')

(

printf ("\n\n"
"Routine abandoned. \n")

;

return (ERR)

;

)

else
printf ("\n\n")

;

)

/* */
/* Read the data-file from disk. */
/* */

if (pi_rdfil())
(

printf ("\n\n"
"Error during file read. \n")

;

return (NORMAL)

;

}

/* v
/* Store the retrieved coefficients in the */
/* filter's memory — starting at memory */
/* address 0. */
/* */

printf ("\n"
"Values are being written "

"to filter's memory . . . ")

;

data_dir (BUS_WRITE, board, FILTER)

;

for (addr = ; addr < 64 ; addr++)
(

mem_wr (board, addr, pi_data[addr] , FAST,
FILTER)

;

)

printf ("\n"
"Coefficient storage being "

"tested . . . \n\n")

;

F-106

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

error = ;

for (addr = ; addr < 64 ; addr++)
(

i = mem_rd (board, addr, FAST, FILTER)

;

if (i != pi_data[addr])
{

printf (" Error! "

"Addr=%x h, stored=%x h, "

"should be=%x h \n", addr,
i, pi_data[addr])

;

error++

;

}

)

if (error == 0)
printf ("No errors reported. \n") ;

else
printf ("Filter coefficients NOT "

"installed properly. \n")

;

/* Zero the data-buffer length.
pi.fix[DATA_LEN] = ;

break;

case 'm':
/* v
/* Make new filter configuration file. */
/* v

if (pi.fix[DATA_LEN] != 0)

(

printf ("\n\n"
"Data buffer is NOT empty. This"
" routine will purge \n"
"buffer contents. Proceed? (y/n)

"

ii ii \ .

pi_gets (PRMPT_MAX, prompt)

;

if (tolower (prompt[0]) != 'y')

{

printf ("\n\n"
"Routine abandoned. \n")

;

return (NORMAL)

;

F-107

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

}

printf ("\n\n"
"This is a very primative data-entry"
" routine which \n"
"enables the entry of CS7008 coeff"
"icients into a disk file. \n\n"
"Do you wish to continue this "

"routine?"
" (y/n) ");

pi_gets (PRMPT_MAX, prompt)

;

if (tolower (prompt[0]) != 'y')

{

printf ("Routine abandoned. \n")

;

return (NORMAL)

;

printf ("\n\n M

"Instructions: Type the coefficient "

"for each address. \n"
"Unfortunately, this coefficient-"
"entry routine does not permit \n"
"error correction. \n\n"
"If you make an error during entry, "

"you must make changes to the file \n"
"with a text editor. Sorry. \n\n"
"You may stop the data-entry by "

"typing a (-1) \n\n")

;

for (addr = 0; addr < 64 ; addr++)
(

printf ("\n"
"addr = %2x h, coeff = ", addr);

pi_gets (PRMPT_MAX, prompt)

;

i = pi_cvt (prompt)

;

F-108

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* */
/* Abandon entry??? */
/* */

if (i == -1)

<

printf ("\n\n"
"Routine abandoned. \n\n")

;

return (NORMAL)

;

}

pi_data[addr] = i;

)

/* */
/* Assign buffer length value */
/* v

pi.fix[DATA_LEN] = 64;

/ * ===: ====================== ========*/
/* Save the data to a disk file. */
/* */

pi_wrfil () ;

printf ("\n\n"
"File has been saved. To install "

"this set of coefficients in the \n"
"filter, use the 'load filter config"
"uration' routine listed "

"earlier. \n")

;

break;

case 'v':
/* v
/* View filter coefficients. */
/* 4/

printf ("\n\n"
"View filter coefficents routine. "

"Use CTRL-S to pause display. \n\n");

F-109

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* */
/* Set the data direction then retrieve each */
/* of the coefficent values. */
/* */

data_dir (BUS_READ, board, FILTER)

;

for (addr = ; addr < 64 ; addr++)

i = mem_rd (board, addr, FAST, FILTER)

;

printf ("\n"
"addr=%x h, coeff=%x h ",addr, i)

;

}

break;
)

return (0)

;

F-no

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/***

* SOURCE

:

fi das.c

* FUNCTION:
*

*

* DESCRIPTION:

*

*

* DOCUMENTATION
* FILES:

fi_das (board)

The purpose of this function is to
simulate the "filter control"
command issued to the DAS.

None.

* ARGUEMENTS

:

* board (input) int
4-bit board address

* RETURN

:

(int)
NORMAL: normal return

* FUNCTIONS
* CALLED: ctrl_wr ()

,

pi_gets ()

* AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989 Version 1.00
*

* REVISIONS: None.

F-lll

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

include <stdio.h>
include <ctype.h>

#include "pi_ddn.h"

int fi_das (board)

int board

;

(

char prompt [PRMPT_MAX]

;

printf ("ON-BOARD FILTER SELECTION . . . \n\n"
"I) filter in-clrcuit \n"
"O) filter out of circuit \n"
"\n\n\n")

;

pi_gets (PRMPT_MAX, prompt)

;

switch (tolower (prompt[0]))
{

case 'i':
ctrl_wr (board, FIL_EN, FILTER_IN)

;

break;

case 'o':
ctrl_wr (board, FIL_EN, FILTER_OUT)

;

break

;

default:
printf ("\n\n No action taken.");
break;

)

return (NORMAL)

;

F-112

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

* SOURCE : fs_das .

c

*

*

* FUNCTION: fs_das (board)
*

*

* DESCRIPTION: The purpose of this function is to
* simulate the "full scale signal range"
* command issued to the DAS.
*

*

* DOCUMENTATION
* FILES: None.

* ARGUEMENTS

:

* board (input) int
* 4-bit board address

* RETURN: (int)
*

*
NORMAL: normal return

*

* FUNCTIONS
* CALLED: ctrl_wr

()

,

*

*
pi_gets ()

*

* AUTHOR: Copyright 1989
*

*
Durwin D. Nigus

* DATE CREATED: 29 May 1989
*

* REVISIONS: None.
*

Version 1.00

***/

F-113

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

#include <stdio.h>
include <ctype.h>
include <stdlib.h>

include "pi_ddn.h"

int fs_das (board)

int board

;

{

char prompt [PRMPT_MAX]

;

int menu

;

/*=
/* Gain set for A/D board.

printf ("GAIN SET for board %i\n\n"
»1) gain = 1 5 V FS \n"
"10) gam = 10 500 mV FS \n"
"100) gain = 100 50 mV FS \n"
"200) gain = 200 25 mV FS \n"
"500) gain = 500 10 mV FS \n"
"\n\n\n", board)

;

pi_gets (PRMPT_MAX, prompt)

;

menu = atoi (prompt)

;

switch (menu)

{

case 1:

ctrl_wr (board,
break

;

GAIN_SEL, GAIN_1)

case 10:
ctrl_wr (board, GAIN_SEL, GAIN_10)

;

break;

case 100:
ctrl_wr (board, GAIN_SEL, GAIN_100)

;

break;

case 200:
ctrl_wr (board, GAIN_SEL, GAIN_200)

;

break;

F-114

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

case 500:
ctrl_wr (board, GAIN_SEL, GAIN_500)

;

break

;

default:
printf ("\n\n No action taken.");
break;

)

}

return (NORMAL)

F-115

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

* SOURCE : gs_das .

c

*

*

* FUNCTION: gs_das (board)

DESCRIPTION: The purpose of this function is to
present the status of the A/D board on
screen — a simulation of the command
"get status."

* DOCUMENTATION
* FILES:
*

*

* ARGUEMENTS

:

None.

board (input) int
4 -bit board address

*

*

*

RETURN

:

(int)
NORMAL: normal

*

* FUNCTIONS
* CALLED: timer_rd ()

,

*

*

*

*

*

give_val ()

,

gv_das (),
rd bd () ,

rd_bd_wd ()

*

*

*

*

AUTHOR: Copyright 198 9

Durwin D. Nigus

*

*

*
DATE CREATED: 29 May 1989

* REVISIONS: None.

Version 1.00

F-116

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

include <stdio.h>
include <ctype.h>
include <stdlib.h>
include <process.h>

include "pi_ddn.h"

int gs_das (board)

int board

;

{

int cl, c2, condition, i, i2, sts, trig_lvl;

unsigned onesht, period, pt_count;

float t_lvl, v_fs;

/* ======================= :=======================*/
/* Retrieve the control and status registers. */
/* v
/* retrieve CONTROL #1 */

cl = (int)bd_rd (board, CTRL1)

;

/* retrieve CONTROL #2 */
c2 = (int)bd_rd (board, CTRL2)

;

/* retrieve STATUS REG. */
sts = (int)bd_rd (board, STATUS);

/ * ============ ======== =============== =====*/
/* Display the results. */
/* v

system ("els") ;

printf ("\n\n"
"A/D Board Status Query. \n\n")

;

if (give_val (BD_ER, sts) == BD_ER_ACT)
printf ("*** BOARD ERROR *** \n\n")

;

printf ("Acquisition mode: ")

;

F-117

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

switch (give_val (BD_MODE, cl)

)

{

case STBY:
printf ("STANDBY \n");
break;

case CONV_NOW:
if (give_val (SAMP_SER_END, sts) ==

SAMP_END_ACT)
printf ("series completed. \n")

;

else
printf ("acq in progress. \n")

;

break;

case CONV_TR:
printf ("conv on trig, ")

;

if (give_val (SAMP_SER_END, sts) ==
SAMP_END_ACT)

printf ("series completed. \n")

;

else
{

if (give_val (TRIG_RECVD, sts) ==
TR_REC_ACT)

printf ("acq in progress. \n")

;

else
printf ("waiting for trigger. \n")

;

)

break;

case CONV_TR_PRE:
printf ("conv pre-trig, ")

;

if (give_val (SAMP_SER_END, sts) ==
SAMP_END_ACT)

printf ("series completed. \n")

;

else
{

if (give_val (TRIG_RECVD, sts) ==
TR_REC_ACT)

printf ("acq in progress. \n")

;

else
printf ("waiting for trigger. \n")

;

)

break;

F-118

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

)

printf ("Trigger source (if selected) is: ") ;

switch (give_val (TRIG_SEL, cl)

)

(

case TR_SIG:
printf ("signal\n")

;

break

;

case TR_SIG_BUS:
printf ("signal with bus-trigger control\n")
break;

case TR_PANEL:
printf ("A/D board front panel tigger "

"input \n")

;

break;

case TR_BUS:
printf ("system bus \n")

;

break

;

}

printf ("Trigger edge: ")

;

if (give_val (TRIG_EDGE, Cl) == TR_EDGE_POS)
printf ("rising edge\n")

;

else
printf ("falling edge\n")

;

printf ("Clock source: ")

;

switch (give_val (CLOCK_SEL, cl)

)

{

case CLK_INT_HI:
printf ("internal, high-speed \n");
break;

case CLK_INT_LO:
printf ("internal, low-speed \n")

;

break;

case CLK_BUS:
printf ("bus clock \n")

;

break

;

F-119

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

case CLK_PANEL:
printf ("A/D board front panel \n")

;

break;
}

printf ("Signal input: ") ;

switch (give_val (SIG_SEL, C2))
{

case SIG_REMOVE:
printf ("no signal selected, "

"shorted inputs\n")

;

break;

case SIG_APPLIED:
printf ("signal connected \n");
break

;

case SIG_REF:
printf ("internal reference \n")

;

break;

case SIG_TR_LVL:
printf ("trigger level \n")

;

break;
}

printf ("Input overload protection: ")

;

if (give_val (PROTECT, C2) == PROTECT_ON)
printf ("ENABLED. \n");

else
printf ("CAUTION! Protection disabled. \n")

printf ("On-board filter status: ")

;

if (give_val (FIL_EN, cl) == FILTER_IN)
printf ("filter in-circuit. \n")

;

else
printf ("filter out of circuit. \n")

;

printf ("Gain selection: ")

;

F-120

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

switch (give_val (GAIN_SEL, c2)

)

(

case GAIN_1:
printf ("gain = 1, 5 V FS\n")

;

v_fs' = 5.0;
break;

case GAIN_10:
printf ("gain = 10, 500 mV FS \n")

;

v_fs = 5.0 / 10.0;
break;

case GAIN_100:
printf ("gain = 100, 50 mV FS \n")

;

v_fs = 5.0 / 100.0;
break;

case GAIN_200:
printf ("gain = 200, 25 mV FS \n")

;

v_fs = 5.0 / 200.0;
break;

case GAIN_500:
printf ("gain = 500, 10 mV FS \n") ;

v_fs = 5.0 / 500.0;
break;

default:
printf ("gain selection error . . . \n")

;

v_fs = 5.0;
break

;

J

/* If in standby mode, report the trigger-level. */
if (give_val (BD_MODE, cl) == STBY)

{

printf ("\n"
"Signal trigger level = ")

;

ctrl_wr (board, SIG_SEL, SIG_TR_LVL)

;

F-121

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* */
/* Wait for the relays and the the circuit to */
/* arrive at a steady state operating condition. */
/* */

for (i = ; i < 1000 ; i++)

(

i2 = i;

/* */
/* Initiate the conversion by WRITING (value is */
/* NOT important) to the AD_DIRECT register. */
/* */

bd_wr (board, AD_DIRECT, 0, REGULAR);

/* */
/* When the end-of-conversion status is active, */
/* retrieve the A/D data. */
/* v

condition = E0C_ACT + 1;

while (condition != E0C_ACT)
(

/* */
/* Retrieve STATUS REG. and check eoc status. */
/* */

condition = give_val (EOC,
(int)bd_rd (board, STATUS));

}

/* v
/* Retrieve data directly from A/D converter. */
/* v

trig_lvl = (int)bd_rd (board, AD_DIRECT)

;

t_lvl = (float) trig_lvl * v_fs * 2.0 / 65535.0;
printf ("%1.5f volts.", t_lvl)

;

/* Reset the signal source to NONE. */
ctrl_wr (board, SIG_SEL, SIG_REMOVE)

;

}

printf ("\n\n");
return (NORMAL)

;

F-122

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

*

* SOURCE : gv_das .

c

* FUNCTION: gv_das (board)

DESCRIPTION: The purpose of this function is to
first select a signal source,
initiate conversion, then retrieve
the converted value and return it
to the calling function.

DOCUMENTATION
FILES: None.

*

if

ARGUEMENTS

:

* board (input) int
* 4-bit board address
*

*

* RETURN

:

int
* if improper

during menu selection;
value if conversion occurs.

*

*

*

*

*

*

FUNCTIONS
CALLED: bd rd ()

,

bd_wr
()

,

ctrl_wr ()

,

pi_gets ()

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

*

DATE CREATED: 1 June 1989

REVISIONS: None.

Version 1.00

F-123

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

*

*

include <stdio.h>
linclude <string.h>
include <ctype.h>

include "pi_ddn.h"

int gv_das (board)

int board;
{

char prompt [PRMPT_MAX] , selection[80]

;

int condition, source_ctrl

;

/* */
/* Select the signal source. */
/* */

printf ("Select signal source from the following \n\n"
"E) External signal \n"
"T) Trigger level \n"
"R) Reference level \n"
"S) Shorted inputs \n\n"
"selection ? ")

;

pi_gets (PRMPT_MAX, prompt)

switch (tolower (prompt[0]))
{

case 'e':
source_ctrl = SIG_APPLIED;
strcpy (selection, "Front panel signal")

;

break;

case 't':
source_ctrl = SIG_TR_LVL;
strcpy (selection, "Signal trigger level")
break;

F-124

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

case 'r':
source_ctrl = SIG_REF;
strcpy (selection, "Internal reference")
break;

case 's':
source_ctrl = SIG_REMOVE;
strcpy (selection, "normal: inputs shorted");
break;

default:
printf ("\n\n"

"Invalid signal source. \n")

;

return (0)

;

break;
}

printf ("\n\n"
"Source selected was: %s\n", selection);

/* */
/* Adjust the value of the appropriate control reg- */
/* ister to select the appropriate signal source. */
/* v

ctrl_wr (board, SIG_SEL, source_ctrl)

;

/* v
/* Wait for the relays and the rst of the circuit to */
/* arrive at a steady state operating condition. */
/* */
/* At the very least, one must wait 20 msec for the */
/* signal routingrelays to engage. */
/* */
/* In this test routine, the delay has been skipped */
/* and a "conversion prompt" is used to ensure */
/* enough time elapses between relay set-up and the */
/* A/D conversion. */
/* v

printf ("\n\n"
"type <enter> to convert. ")

;

pi_gets (PRMPT_MAX, prompt)

;

printf ("\n\n");

/* v

F-125

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* Initiate the conversion by WRITING (value is */
/* NOT important) to the AD_DIRECT register. */
/* */

bd_wr (board, AD_DIRECT, 0, REGULAR);

/* */

/* When the end-of-conversion status is active, */
/* retrieve the A/D data. */

/* */

printf ("\n waiting ")

;

condition = EOC_ACT + 1;

while (condition != EOC_ACT)
{

/* */

/* Retrieve STATUS REG. and check eoc status. */
/* */

condition = give_val (EOC,
(int)bd_rd (board, STATUS));

printf (" *")

;

)

/* */
/* Retrieve the data directly from the A/D converter */
/* */

printf ("\n")

;

return ((int)bd_rd (board, AD_DIRECT))

;

)

F-126

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

it

SOURCE: mt das.c

FUNCTION: mt_das (board)

DESCRIPTION: The purpose of this function is to
test the memory on the A/D board.
This routine uses a "marching Is"
technique over a specified region
of memory.

DOCUMENTATION
FILES

:

None

.

ARGUEMENTS

:

board (input) int
4-bit board address

RETURN

:

(int)
NORMAL: normal return

FUNCTIONS
CALLED:

AUTHOR:

bd_rd () ,

give_val ()

,

mcm_rd ()

,

mem_wr () ,

pi_cvt (),
pi_gets ()

Copyright 1989
Durwin D. Nigus

DATE CREATED: 29 May 1989 Version 1.00

F-127

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

REVISIONS: 4Aug89 Memory test for on-board
filter removed.

4Sep89 Memory display for EPROM
and FILTER added.

include <stdio.h>
include <ctype.h>
include <stdlib.h>

include "pi_ddn.h"

int mt_das (board)

board

;

int
{

char prompt [PRMPT_MAX]

.

int cl, dest, menu;

unsigned addr_st,
addr_end

,

addr_pres,
errors,
max_num = Oxffff,
num_test

,

temp_val

,

test_l = 0x5555,
test val

;

/* 64K memory size */

/* alternating ones */

/*
/*
/*
/*

Board is in standby mode. Select the operation
of this function from a menu.

printf ("MEMORY TEST . . . \n\n"
"S) sample memory (64K x 16 bit) \n"
"E) display EPROM values \n"
"F) display FITLER values \n"
"Q) quit this routine \n\n"
"selection ? ") ;

pi_gets (PRMPT_MAX, prompt)

;

-*/

*/
*/

-v

F-128

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

printf ("\n\n")

;

/*

/

switch (tolower (prompt[0]))
{

case 's':
1j

/* Test on-board sample memory. */
/* */

/* v/* Verify board is in standby mode. Memory */
/* operations may not occur while board is in */
/* non-standby mode. */
/* ^

cl = (int)bd_rd (board, CTRL1)

;

if (give_val (BD_MODE, cl) != STBY)
{

printf ("Board is in non-standby mode."
"\n\n"
"Memory test may only occur while"
" in standby mode. \n\n")

;

return (ERR)

;

}

printf ("Testing ON BOARD MEMORY. \n")

;

/* Prompt for test parameters. */
printf ("\n"

"Number of consecutive memory tests"
" [max = %u (dec)] ", max_num)

;

pi_gets (PRMPT_MAX, prompt)

;

num_test = (unsigned) pi_cvt (prompt);
printf ("\n\n");

if (num_test == 0)

{

printf ("Memory test terminated. \n")

;

return (ERR)

;

)

printf ("Starting address??? ")

;

pi_gets (PRMPT_MAX, prompt)

;

addr_st = (unsigned) pi_cvt (prompt);
printf ("\n\n");

F-129

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

addr_end = addr_st + num_test;

printf ("\n\n"
"Starting address = %x hex, \n"
"ending address = %x hex. \n\n"
"The test has begun. \n",
addr_st, addr_end)

;

/* */
/* Set the bus data direction, then */
/* write the value to the memory positions. */
/* */

data_dir (BUS_WRITE, board, ON_BD_MEM)

;

addr_pres = addr_st;
test_val = test_l;

while (addr_pres != addr_end)
{

mem_wr (board, addr_pres, test_val,
FAST, ON_BD_MEM)

;

/* Toggle the test value. */
test_val = -test_val

;

addr_pres++

;

}

/* */

/* The value has been written to the desired source. */
/* Now, retrieve the contests of each of these memory */
/* positions and compare them with the value sent. */
/* */
/* If an error is detected, report it to the user. */
/* */

data_dir (BUS_READ, board, ON_BD_MEM)

;

errors = ;

test_val = test_l;
addr_pres = addr_st;

while (addr_pres != addr_end)
{

temp_val = mem_rd (board, addr_pres,
FAST, ON_BD_MEM)

;

F-130

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

if (temp_val != test_val)
{

errors++

;

printf ("%u) Error! addr = %x: write"
" = %x, read = %x \n", errors,
addr_pres, test_val, temp_val)

;

}

/* Toggle the test value. */
test_val = -test_val

;

addr_pres++

;

}

printf ("\n\n"
"Memory test completed, %u errors reported."
" \n", errors)

;

break;

case 'e':
/* */
/* Display contents of EPROM (for test only) */
/* */

printf ("\n\n"
"Display EPROM contents. \n\n")

;

printf ("Starting address: ")

;

pi_gets (PRMPT_MAX, prompt)

;

addr_st = (unsigned) pi_cvt (prompt);
addr_st = (addr_st > 8192) ?

(8192) : (addr_st)

;

printf ("\n\n"
"Ending address: ")

;

pi_gets (PRMPT_MAX, prompt)

;

addr_end = pi_cvt (prompt)

;

addr_end = (addr_end > 8192) ?

(8192) : (addr_end)

;

printf ("\n\n")

;

F-131

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

if (addr_st > addr_end)
{

printf ("EPROM display terminated. \n")
return (ERR)

;

}

printf ("Starting address = %x hex, \n"
"ending address = %x hex. \n\n"

,

addr_st, addr_end)

;

addr_pres = addr_st;

for (addr_pres = addr_st ;

addr_pres <= addr_end ;

addr_pres++)

{

temp_val = mem_rd (board, addr_pres,
FAST, EPROM)

;

printf ("Addr = %4x h, contents - %2xh"
"\n", addr_pres, temp_val)

;

}

break

;

/* */

/* Display contents of FILTER (for test only) */
/* */

printf ("\n\n"
"Display FILTER contents. \n\n");

printf ("Starting address (0-63)???
pi_gets (PRMPT_MAX, prompt)

;

addr_st = (unsigned) pi_cvt (prompt);
addr_st = (addr_st > 64) ?

(64) : (addr_st)

;

F-132

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

printf ("Ending address (0-63)??? ")

I

pi_gets (PRMPT_MAX, prompt)

;

addr_end = (unsigned) pi_cvt (prompt)

;

addr_end = (addr_end > 64) ?

(64) : (addr_end)

;

if (addr_st > addr_end)
(

printf ("FILTER display terminated. \n")
return (ERR)

;

)

printf ("\n\n"
"Starting address = %2x h, \n"
"ending address = %2x h. \n\n",
addr_st, addr_end)

;

data_dir (BUSJREAD, board, FILTER)

;

for (addr_pres = addr_st ;

addr_pres <= addr_end ;

addr_pres++)

{

temp_val = mem_rd (board, addr_pres,
FAST, FILTER)

;

printf ("Addr = %2x h, contents = %2xh"
", (%3u dec)\n", addr_pres,
temp_val, temp_val)

;

)

break;

F-133

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

case 'q ':

default:
/* */

/* Quit or abnormal termination. */

/* */

printf ("Memory test terminated. \n")

;

return (ERR)

;

I

printf ("\n\n");

return (NORMAL)

;

F-134

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

*

* SOURCE : rs_das .

c

*

* FUNCTION: rs_das (board)

DESCRIPTION: The purpose of this function is to
simulate the "retrieve samples"
command issued to the DAS.

DOCUMENTATION
FILES

:

None.

ARGUEMENTS

:

board (input) int
4-bit board address

RETURN: (int)
NORMAL:
ERR :

normal return
abnormal return

FUNCTIONS
CALLED

:

bd_rd ()

,

give_val () ,

pi_cvt ()

,

pi_gets (),
pi_wrfil ()

AUTHOR: Copyright 1989
Durwin D. Nigus

DATE CREATED:

REVISIONS:

29 May 1989

None.

Version 1.00

F-135

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

include <stdio.h>
include <stdlib.h>
include <ctype.h>

#include "pi_ddn.h"

int rs_das (board)

int board;

{

char prompt [PRMPT_MAX]

;

int cl, i, sts;

unsigned addr, end_addr, nth_samp, num_samps,
start_addr, temp_samps, trig_addr;

/* */

/* Verify samples have been taken by the board. */
/* */

if (num_pre_trig == & & num_post_trig == 0)

{

printf ("No samples have been taken. \n\n")

;

return (NORMAL)

;

/ * ============ =========================== :=====*/

/* Retrieve the control and status register. */
/* */

/* retrieve CONTROL #1 */

cl = (int)bd_rd (board, CTRL1)

;

/* retrieve STATUS REG. */

sts = (int)bd_rd (board, STATUS);

F-136

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/ * . ====== === ===: == == == */

/* Examine the control and status values. */

/* if board error is present, give option to */

/* abandon retrieval. */
/* */

if (give_val (BD_ER, sts) == BD_ER_ACT)

{

printf ("*** BOARD ERROR ***\n\n"
"Do you wish to continue with data "

"retrieval? (y/n) : ") ;

pi_gets (PRMPT_MAX, prompt)

;

if (tolower (prompt[0]) != 'y')

{

printf ("\n\n")

;

return (ERR)

;

)

>

/* */

/* Determine if the board is still acquiring samples */

/* and, if so, exit this routine. */

/* */

if (give_val (BD_MODE, cl) != STBY

|
|

give_val (SAMP_SER_END, sts) != SAMP_END_ACT)

{

printf ("Board has not completed present "

"acquisition duties. \n\n"
"Note: Use 'sc' before retrieving data "

"from board. \n\n")

;

return (ERR)

;

/ * == ============ ================ === =====*/
/* All pre-conditions for data retrieval have been met */

/* */

/* The procedure for retrieving the data is as */
/* follows: */
/* */
/* 1) If conversion mode was "pre-trigger" */
/* (num_pre_trig != 0) , retrieve the */
/* trigger address. */

F-137

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* 2) Set the memory address on the bus to the */

/* first sample to be retrieved. */

/* 3) Read the data from the board. */
/* 4) Write the data to disk. */
/* */

/* */

if (num_pre_trig == 0)

{

start_addr = FIRST_SAMP;
end_addr = num_post_trig

;

}

else
{

trig_addr = bd_rd (board, TRIG_ADDR)

;

/* */

/* Calculate the starting address based on the */

/* trigger address and the condition of the */

/* "memory wrap" status. */
/* */

if (give_val (PTR_WRAP, sts) == PTR_WR_ACT)
start_addr = trig_addr - num_pre_trig

+ FIRST_SAMP;
else

start_addr = (trig_addr > num_pre_trig) ?

(trig_addr - num_pre_trig + FIRST_SAMP) :

(FIRST_SAMP) ;

end_addr = trig_addr + num_post_trig

;

)

/* */

/* Calculate the number of samples to be acquired. */
/* */

num_samps = abs (end_addr - start_addr) + 1 ;

/* */

/* The address bounds have been determined and */
/* retrieval may begin. */

/* */

printf ("Sample data retrieval from board %d \n\n"
"Starting address = %x hex \n"
"Ending address = %x hex \n\n"
"A total of %u samples. \n\n",
board, start_addr, end_addr, num_samps)

;

F-138

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/ * ========= ============= =============== ====*/
/* The data retrieval routine. */
/* v

printf ("\n"
"Retrieve how many samples (%u) : ",

num_samps)

;

if (pi_gets (PRMPT_MAX, prompt) != 0)
num_samps = (unsigned) pi_cvt (prompt)

;

if (num_samps == 0)

{

printf ("\n\n"
"No samples requested. \n")

;

return (ERR)

;

)

num_samps = (num_samps > MAX_DATA) ? (MAX_DATA) :

(num_samps)

;

/* Pre-assign the nth-sample value. */
nth_samp = 1

;

printf ("\n\n"
"%u samples to be retrieved. \n\n"
"Retrieval begins with which sample (%u) : ",
num_samps, nth_samp)

;

if (pi_gets (PRMPT_MAX, prompt) != 0)
nth_samp = (unsigned) pi_cvt (prompt);

/* v
/* Check for an illegal request ... */
/* t

'

y
if (nth_samp > num_samps

|

| nth_samp <= 0)

printf ("\n\n"
"Illegal request. \n\n")

;

return (ERR)

;

}

F-139

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* */

/* Assign the number of samples to pi. fix[DATA_LEN] */

/* and set the address. */

/* */

pi.fix[DATA_LEN] = num_samps - 1;
addr = start_addr + nth_samp ;

/* */

/* Loop through and retireve the data, saving it in */
/* the array. In order to use the FAST memory read */
/* mode, pre-set the bus data direction. */

/* */

data_dir (BUS_READ, board, ON_BD_MEM)

;

for (i = ; i < pi. fix[DATA_LEN] ; i++)

(

pi_data[i] = mem_rd(board, addr, FAST, ON_BD_MEM)

;

addr++

;

}

/* */

/* The buffer now contains the data retrieved from the */
/* board. Give the user the option to save the buffer */
/* to a disk-file. */

/* */

printf ("\n\n"
"The data has been collected from the A/D "

"Board memory. \n\n"
"Now, save data buffer to disk. \n\n")

;

pi_wrf il ()

;

return (NORMAL)

;

}

F-140

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/***
*

* SOURCE

:

*

*

* FUNCTION:

sc das.c

sc_das (board)

* DESCRIPTION: The purpose of this function is to
* simulate the "stop conversion"
* command issued to the DAS. This
* function removes the signal from
* the input amplifier and resets
* the board to the standby mode.

*

* DOCUMENTATION
* FILES: None.

*

*

*

*

ARGUEMENTS

:

board (input) int
4-bit board address

*

*

*

*

RETURN

:

(int)
NORMAL: normal return

*

*

*

*

FUNCTIONS
CALLED: ctrl_wr (

)

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

*

* DATE CREATED : 39 Mav TQRQ VolVersion 1.00

***/

F-141

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

#include <stdio.h>

include "pi_ddn.h"

int sc_das (board)

int board;
{

/ * , ========= ====================*/
/* Set conversion control to STANDBY and disconnect */
/* the signal input. */
/* */

ctrl_wr (board, SIG_SEL, SIG_REMOVE)

;

ctrl_wr (board, BD_MODE, STBY)

;

return (NORMAL)

;

F-142

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/***
*

sr das.c* SOURCE:
*

*

* FUNCTION: sr_das (board)

* DESCRIPTION:
*

*

The purpose of this function is to
simulate the "set sample rate"
command issued to the DAS.

* DOCUMENTATION
* FILES

:

*

*

* ARGUEMENTS

:

* board

None.

(input) int
4-bit board address

* RETURN

:

(int)
NORMAL: normal return

*

*

*

*

FUNCTIONS
CALLED: ctrl_wr ()

,

timer_wr ()

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

*

*

*
DATE CREATED: 29 May 1989

*

*
REVISIONS: None.

Version 1.00

***/

F-143

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

include <stdio.h>
include <ctype.h>
include <stdlib.h>

define SLOW_OSC_DIV 1024.0 /* 2' 10 */

include "pi_ddn.h"

int sr_das (board)

int board;
{

char prompt [PRMPT_MAX]

;

int sel

;

unsigned count;

float act_freq, clk_div, des_freq,
f_low, freq, num;

/ * ================= ========== IT—- =======*/
/* Prompt for desired sampling frequency, and exit */
/* if out of bounds. */
/* */

printf ("Desired sampling frequency is (Hz) : ")

;

pi_gets (PRMPT_MAX, prompt)

;

des_freq = atof (prompt)

;

f_low = xtal_freq / SLOW_0SC_DIV / 65535.0;

if (des_freq < f_low
|

| des_freq > F_HIGH)

{

printf ("Illegal frequency selected. \n\n")

;

return (ERR)

;

F-144

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/* */
/* Determine the proper selection for the internal */
/* oscillator (HIGH or LOW) and set the control reg. */
/* */

sel = (des_freq > F_MID) ?

(CLK_INT_HI) : (CLK_INT_LO)

;

clk_div = (des_freq > F_MID) ?

(2.0) : (SLOW_OSC_DIV)

;

ctrl_wr (board, CLOCK_SEL, sel)

;

/ * ======= ======== , ============*/
/* Calculate the value for the delay counter. */
/* */

nui = xtal_freq / clk_div / des_freq;

/ * ====== ====== ===============================*/
/* Determine the closest integer to num and send */
/* to counter. */
/* v

count = (unsigned) (num + 0.5);

timer_wr (board, TMR_SAMP_PD, count)

;

/ * ,- ,. „—., ================================== */
/* Display the actual frequency set. */
/* v

act_freq = xtal_freq / clk_div / (float) count;

printf ("\n\n"
"actual frequency = %10.2f Hz\n"
"sampling period = %.7f sec\n\n",
act_freq, 1.0 / act_freq)

;

return (NORMAL)

;

F-145

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

/***

ts das.c* SOURCE

:

*

*

* FUNCTION: ts_das (board)

* DESCRIPTION: The purpose of this function is to
simulate the "trigger select" command

*

*
issued to the DAS.

*

*

*

*

DOCUMENTATION
FILES: None.

*

*

*

*

*

ARGUEMENTS

:

board (input) int
4-bit board address

*

*

*

*

RETURN: (int)
NORMAL: normal return

*

*

*

*

*

FUNCTIONS
CALLED: Ctrl wr () ,

pi_gets ()

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

* DATE CREATED: 29 May 1989
*

* REVISIONS: None.

Version 1.00

***/

F-146

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

#include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int ts_das (board)

int board

;

{

char prompt [PRMPT_MAX]

;

int value,
wr_ctrl = YES;

/*====: =======================================*/
/* TRIGGER SOURCE SELECTION */
/* */

printf ("\n\n"
"A/D board: trigger source selector ..."
"\n\n"
"S) signal level \n"
"Z) signal level w/bus pull_down \n"
"P) front panel trigger input \n"
"B) bus trigger \n"
"\n\n\n");

pi_gets (PRMPT_MAX, prompt)

;

switch (tolower (prompt[0]))
{

case 's':
value = TR_SIG;
break;

case 'z':
value = TR_SIG_BUS;
break;

case 'p':
value = TR_PANEL;
break;

case 'b':
value = TR_BUS

;

break;

F-147

PCPI-DAS SOURCE CODE: SYSTEM COMMAND FUNCTIONS

default:
wr_ctrl = NO;
printf ("\n\nNo action taken.");
break;

}

if (wr_ctrl == YES)
ctrl_wr (board, TRIG_SEL, value)

;

else
return (ERR)

;

/ * ===== ================ , ================*/
/* TRIGGER EDGE SELECTION */
/* */

printf ("\n\n"
"A/D board: trigger edge selection . . . \n\n"
"R) rising edge (default) \n"
"F) falling edge \n"
"\n\n"
"edge selected??? ");

pi_gets (PRMPT_MAX, prompt)

;

switch (tolower (prompt[0]))
{

case 'f:
value = TR_EDGE_NEG;
break;

default:
case 'r':

value = TR_EDGE_POS

;

break;

I

if (wr_ctrl == YES)
ctrl_wr (board, TRIG_EDGE, value)

return (NORMAL)

;

F-148

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

* SOURCE: byte_brk.c
*

*

* FUNCTION: byte_brk (dat, msb, lsb)

DESCRIPTION: The purpose of this function is to
convert a 16-bit unsigned nunmber
into its respective LSB and MSB.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

dat

msb

lsb

(input) unsigned
the 16-bit value

(output) *int
pointer to the 8-bit MSB

(output) *int
*

*
pointer to the

*

*

*

*

RETURN

:

(int)
NORMAL

* FUNCTIONS
*

*
CALLED: None.

*

*

*

*

AUTHOR: Copyright 1989
Durwin D. Nigus

*

DATE CREATED: 28 May 1989

REVISIONS: None.

Version 1.00

F-149

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

include <stdio.h>
#include <ctype.h>

include "pi_ddn.h"

int byte_brk (dat, msb, lsb)

unsigned dat;
int *msb, *lsb;
{

*msb = dat / 256;
*lsb = dat - *msb * 256;

return (NORMAL)

;

}

F-150

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/***

* SOURCE

:

*

*

* FUNCTION

:

ctrl_wr.c

ctrl_wr (board, data_id, value)

* DESCRIPTION:
*

*

*

The purpose of this function is to
write a control value to a control
register on the A/D board.

* DOCUMENTATION
* FILES : None

.

ARGUEMENTS

:

board

data id

value

(input) int
4-bit A/D board address

(input) int
contains information about the
location of the data to be written.

See pi_ddn.h for a description of
this parameter.

(input) int
8-bit value to be written to a
control region (from 1 to 7 bits)

* RETURN

:

(int)
* NORMAL :

* ERR :

*

*

* FUNCTIONS
* CALLED: bd_rd (),
* bd_wr ()
*

*

no errors encountered
improper register specs

F-151

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

* AUTHOR: Copyright 1989
* Durwin D. Nigus

*

* DATE CREATED: 28 May 1989 Version 1.00
*

* REVISIONS: None.

#include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int ctrl_wr (board, data_id, value)

int board, data_id, value;
{

int cont_reg,
mask,
num_bits,
num_shifts,
previous,
reg,
result,
shft_val

;

cont_reg = data_id & 3

;

/* v
/* Determine the control register being addressed. */
/* v
/* Double check that a control-value is correct. . . */

if (cont_reg != C0NTR0L1 && cont_reg != CONTROL2)
return (ERR)

;

reg = (cont_reg == CONTROL1) ? (CTRL1) : (CTRL2)

;

F-152

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/*== = ==================== == ======= ====*/
/* How this routine works: */
/* The control registers have various fields */
/* which serve several functions (as defined in */
/* the pi_ddn.h header) . The position and size of */
/* these fields is passed to this routine in */
/* 'dat_id', and the value to reside in that */
/* field is passed in 'value'. */
/* */
/* This routine does the following things: */
/* 1) Move the data to be written into the */
/* proper position. */
/* 2) Generate a mask-byte in order to clear */
/* the value retrieved from the control */
/* register. */
/* 3) Retrieve the pre-modify value from the */
/* control register; place the new field */
/* value within this value; write this new */
/* value to the control register. */
/* */

/* */
/* Move the data into the proper position. */
/* v
/* Find out the number of shifts, then shift. */

num_shifts = (data_id & (7 * BIT_POS)) / BIT_POS;
shft val = value << num shifts;

/* */
/* Generate the clearing mask. */
/* Determine number of bits in mask ... */
/* (use a 3-bit mask, 7) */
/*

num_bits = (data_id & (7 * NUM_BTS)
) / NUM_BTS

;

/* Shift the number of bits for the field into the */
/* proper position in the mask. */

mask = (Oxff « num_bits) & Oxff;

/* Invert the mask (put ones where zeros where) . */
mask = -mask;

F-153

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/* Move ones to appropriate position. */
mask = mask << num_shifts;

/* Invert the mask so that zeros are in the position */
/* of the field being modified. */

mask = (-mask) & Oxff;

/* */
/* Retrieve the old-value from the control register. */
/* Modify it. Replace with the new value. */
/* */

previous = (int)bd_rd (board, reg);

/* Zero the old field ... */
result = previous & mask;

/* ... then place the new value in the field. */
result = shft val I result;

/* v
/* Save the result of the bit alterations (presently */
/* in result) in the appropriate control register */
/* (determined earlier)

.

*/
/* v

bd_wr (board, reg, result, REGULAR)

;

return (NORMAL)

;

F-154

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

* SOURCE: give_val.c
*

*

* FUNCTION: give_val (data_id, num)

* DESCRIPTION: The purpose of this function is
* decipher the contents of the control
* and status registers — see dataid
* code definitions in the header file
* pi_ddn . h .

DOCUMENTATION
FILES:

ARGUEMENTS

:

data id

RETURN

:

FUNCTIONS
CALLED:

AUTHOR:

None.

(input) int
the data identifier for the region
of data that is to be inspected

(input) int
the 8-bit value retrieved from a
status or control register

(int)
the value from the field in question

None.

Copyright 1989
Durwin D. Nigus

DATE CREATED: 28 May 1989 Version 1.00

REVISIONS: None.

F-155

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

*

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int give_val (data_id, num)

int data_id, num;
{

int mask, mask_size, num_shifts;

/* */
/* 1) Generate a mask to remove the field-value */
/* from num. */
/* */

mask_size = (data_id & (7 * NUM_BTS)) / NUM_BTS;

/* Move the proper number of zeros into mask. */
mask = Oxff << mask_size;

/* Now make these zeros into ones. */
mask = (-mask) & Oxff;

/* */
/* 2) Determine the position of the mask bits within */
/* the data byte. */
/* */

num_shifts = (data_id & (7 * BIT_POS)) / BIT_POS;

/* Shift the mask generated earlier by the determined */
/* number of bits. */

mask <<= num_shifts;

/* */
/* 3) Mask num with the generated mask and return */
/* the value from the field to the user. */
/* */

num = (num & mask) » num_shifts;

return (num)

;

}

F-156

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

**

SOURCE: mem rd.c

FUNCTION

:

mem_rd (board, addr, mode, source)

DESCRIPTION: The purpose of this function is to
facilitate reading a memory register
from the specifed memory source,
namely the on-board filter or the
sample memory.

When the filter memory is read, the
value retrieved from the filter is
masked such that # of bits used by
that particular coefficient. The
number of bits used by each coeff-
icient was obtained from the Address
Map, p. 9-15, Crystal Data Book.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

board

addr

mode

(input) int
4-bit board address

(input) unsigned
memory address

(input) int
selects between

FAST :

REGULAR

memory is read without
resetting data direct-
ion and bd/reg addr.

presets data direction
and board/register
values.

F-157

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

(input) int
selects between

ON_BD_MEM
FILTER
EPROM

sample memory; or
on-board filter
on-board EPROM

RETURN:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

(unsigned)
value read from specified memory
register

byte_brk ()

,

data_dir ()

,

bus_rd () ,

rd_strob ()

,

bus_wr (

)

Copyright 1989
Durwin D. Nigus

28 May 1989 Version 1.00

24JU189
4Sep89

Mask for filter-read added.
EPROM read option added.

#include <stdio.h>
include <math.h>
include <ctype.h>

include "pi_ddn.h"

unsigned mem_rd (board, addr, mode, source)

int board, mode, source;

unsigned addr;

{

int lsb,
msb;

F-158

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

unsigned value;

static int fil_mask[65] { 5, 6, 5, 6, 5, 6, 2, 0,

5,
5,

6, 5, 6, 5, 6, 0, 0,

6, 5, 6, 5, 6, 2,

5, 6, 5, 6, 5, 6, 3,

0,

0,

5, 6, 5, 6, 5, 6, 2, 0,

5, 6, 5, 6, 5, 6, 0, 0,

5, 6, 5, 6, 5, 6,

5, 6, 5, 6, 5, 6,

2,

6,

0,
5

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

==== == =======================================*/
If the mode bit is set to FAST, skip the board and */
register setup, and data direction selection. */

*/

if (mode != FAST)
data_dir (BUS_READ, board, source)

;

switch (source)
{

case FILTER:
*/

Set the address lines appropriately ... */
The filter's address lines are the LSB */
of the 16-bit address. */

*/
bus_wr (ADDR_LSB, addr)

;

*/
Read the data from the appropriate data bus */
registers while the bus read strobe is */
active. */

*/
rd_strob (ACTIVE, FAST)

;

value = ((FILTER & DATA_MASK) == DATA_LOW) ?

(bus_rd (DAT_LSB)) :

(bus_rd (DAT_MSB)) ;

rd_strob (INACTIVE, FAST)

;

F-159

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/* */

/* Mask the data from the filter. */
/* */

value = value & (int) (pow(2 . 0,
(double) fil_mask[addr]) - 1)

;

break;

case ON_BD_MEM:
/* */
/* Set the address lines appropriately ... */

/* */

byte_brk (addr, Smsb, &lsb)

;

bus_wr (ADDR_LSB, lsb) ;

bus_wr (ADDR_MSB, msb)

;

/* */
/* Read the data from the appropriate data bus */
/* registers while the bus read strobe is active. */
/* */

rd_strob (ACTIVE, FAST);

value = bus_rd (DAT_LSB)
+ 256 * bus_rd (DAT_MSB)

;

rd_strob (INACTIVE, FAST)

;

break;

case EPROM:
/* */
/* Set the address lines appropriately ... */
/* */

byte_brk (addr, Smsb, Slsb)

;

bus_wr (ADDR_LSB, lsb)

;

bus_wr (ADDR_MSB, msb)

;

F-160

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/* */

/* Read the data from the appropriate data bus */

/* registers while the bus read strobe is active. */

/* */

rd_strob (ACTIVE, FAST)

;

value =
((EPROM & DATA_MASK) == DATA_LOW) ?

(bus_rd (DAT_LSB)) :

(bus_rd (DAT_MSB)) ;

rd_strob (INACTIVE, FAST);

break;
}

/* */

/* Return the value to the caller. */

/* */

return (value)

;

F-161

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/***
*

* SOURCE: mem wr.c

FUNCTION

:

DESCRIPTION:

mem_wr (board, addr, dat, mode, dest)

The purpose of this function is to
facilitate writing to on-board memory,
including the sample memory and the
on-board programmable filter.

NOTE: This routine has no effect
when writing to on-board memory
while the A/D board is in a
non-standby mode.

* DOCUMENTATION
* FILES:
*

None.

ARGUEMENTS

:

board (input) int
4-bit board address

addr

dat

(input) unsigned
memory address (16-bit for sample
memory, 6-bit for filter)

(input) unsigned
data value to be written to memory
(16-bit for sample memory, 6-bit
for filter)

F-162

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

mode

dest

(input) int
selects between normal or fast
memory writes

NORMAL

FAST

data direction, board
and register address
are set prior to
writing to memory.

memory is written to
immediately.

(input) int
selects between:

RETURN

:

FUNCTIONS
CALLED:

ON_BD_MEM
FILTER

sample memory
programmable filter

If neither of these destinations
is selected, this function does
nothing.

(int)
NORMAL

byte_brk ()

,

datadir ()

,

bus_wr ()

,

wr_strob (

)

AUTHOR: Copyright 1989
Durwin D. Nigus

DATE CREATED: 28 May 1989

REVISIONS: None.

Version 1.00

***/

F-163

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

#include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int mem_wr (board, addr, dat, mode, dest)

int board, mode, dest;

unsigned addr, dat;
{

int lsb, msb;

if (dest == ON_BD_MEM
|

| dest == FILTER)
{

/* ================= „ ===============*/
/* If mode bit is set to FAST, skip the board and */
/* register setup, and data direction selection. */
/* */

if (mode != FAST)
data_dir (BUS_WRITE, board, dest)

;

}

switch (dest)

(

case FILTER:
/* */
/* Set the address lines appropriately. */
/* Filter is addressable from the LSB lines. */
/* V

bus_wr (ADDR_LSB, addr)

;

/* */
/* Write the data to the filter. */
/* First, determine which data byte the filter */
/* is addressed from. */
/* */

if ((FILTER & DATA_MASK) == DATA_LOW)
bus_wr (DAT_LSB, dat)

;

else
bus_wr (DAT_MSB, dat)

;

wr_strob ()

;

break;

F-164

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

case ON_BD_MEM:
/* */

/* Set the address lines appropriately. */
/* */

byte_brk (addr, &msb, Slsb)

;

bus_wr (ADDR_LSB, lsb) ;

bus_wr (ADDR_MSB, msb)

;

/* */
/* Write data to data bus register. */
/* - */

byte_brk (dat, &msb, Slsb)

;

bus_wr (DAT_LSB, lsb)

;

bus_wr (DAT_MSB, msb)

;

/* V
/* Flash the write-data strobe. */
/* */

wr_strob ()

;

break;
}

return (NORMAL)

;

F-165

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

**

SOURCE: sing_bit.c

FUNCTION: sing_bit (old_byte, dat_id, bit_ctrl)

DESCRIPTION: The purpose of this function is to
adjust a specifed bit in a byte and
return the new value. This function
is used with id values associated with
BUS-CONTROLS e.g. bus trigger, bus
write, NOT A/D board control register
modifications

.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

old_byte

dat id

bit Ctrl

RETURN

:

(input) int
the byte value to which bit manip-
ulation is desired

(input) int
the position of the bit to be adjusted
(a value between and 7)

;

the value of dat_id when ANDed with
ACT_POSITION is the active_hi or
active_lo value.

(input) int
ACTIVE or INACTIVE

(int)
old_byte with the specified bit
modified as requested

FUNCTIONS
CALLED: None.

F-166

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

*

* AUTHOR: Copyright 1989
* Durwin D. Nigus
*

* DATE CREATED: 29 May 1989 Version 1.00

* REVISIONS: 24JU189 Clean up.
*

*

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

int sing_bit (old_byte, dat_id, bit_ctrl)

int old_byte, dat_id, bit_ctrl;
{

int mask, new_bit, new_byte;

/ * ==== ================== „ .„. .
,

,. .,.„..,.. */
/* Determine whether bit is active low or high */
/* by examining ACT_POSITON in data id. */
/* */

if ((dat_id & ACT_P0SITI0N) / ACT_P0SITI0N == ACT_L0)
new_bit = (bit_ctrl == ACTIVE) ? (0) : (1)

;

else
new_bit = (bit_ctrl == ACTIVE) ? (1) : (0)

;

/ * ===: = = ========================== :===*/

/* Generate the bit mask: */
/* shift a "1" into the proper bit position. */
/* The bit position is given in the three least sig- */
/* nificant bits of dat_id. */
/* */

mask = ;

mask = 1 << (dat_id & 7)

;

F-167

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/ * == = ==== _ llll.l—

.

- II— I I— I !»/
/* Determine appropriate routine to manipulate bit. */
/* */

switch (new_bit)
{

case 1: /* make the bit a "1" */

new_byte = mask
|
old_byte;

break;

case 0: /* make the bit a "0" */

new_byte = -mask & old_byte;
break;

}

return (new_byte)

;

F-168

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/*
*

*

*

*

*

**

SOURCE: timer rd.c

FUNCTION: timer_rd (board, data_id)

DESCRIPTION: The purpose of this function is to
retrieve the 16-bit counter value
from the specified register on the
82C54-2 counter chip (present on the
A/D board) . A full description of this
device can be found in the 1986 Intel
Microprocessor Peripheral Databook, p.
6-294.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

board

data id

(input) int
4-bit board address

(input) int
selects between the three counter
based on their function:

TMR_SAMP_PD : sample period
counter

TMR_ONESHT : one-shot
TMR_SAMP_CNT: sample counter

RETURN

:

FUNCTIONS
CALLED

:

(unsigned)
the 16-bit nunmber retrieved from
the specified counter

bd_rd ()

,

bd_wr
()

,

ctrl_wr (

)

F-169

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

*

*

* AUTHOR:
*

*

*

* DATE CREATED:

* REVISIONS:

Copyright 1989
Durwin D. Nigus

28 May 1989

None.

Version 1.00

#include <stdlo.h>
include <ctype.h>

include "pi_ddn.h"

#define CNT_0 2

#define CNT_1 4

#define CNT 2 8

/* Values added to the control */
/* codes that enable i/o with */
/* the respective counter. */

#define CNT_STS 0x40 /* status-bit mask */

#define STS_CHK OxeO /* status check value */

#define VAL_RET OxdO /* value-retrieve control */

unsigned timer_rd (board, data_id)

int board, data_id;

{

int cont_val;

unsigned value;

Obtain the appropriate control value.

switch (data_id)
(

case TMR_SAMP_PD:
cont_val = CNT_0;
break;

-*/

V
-v

F-170

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

case TMR_ONESHT:
cont_val = CNT_1;
break;

case TMR_SAMP_CNT:
cont_val = CNT_2

;

break;

default:
printf ("\nERROR! timer_rd() .\n")

;

return (0)

;

break;
}

/* All i/o operations with the timer chip requires */
/* the setting of two address lines (A0, Al) , which */
/* are settable from a control register. */
/* */

/* */
/* Write to control register the timer-control value */
/* (set A0 and Al)

.

*/
/* */

ctrl_wr (board, TMR_CNT, TMR_CTL_REG)

;

/* */
/* Timer chip control register may now be read. */
/* Obtain the status byte ... */
/* */

bd_wr (board, TIMER, cont_val + STS_CHK, REGULAR)

;

/* */
/* Manipulate Al and A0 again to the appropriate */
/* counter. */
/* */

ctrl_wr (board, TMR_CNT, data_id)

;

value = bd_rd (board, TIMER)

;

F-171

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/* */
/* The status bit is active, thus indicating that */
/* the contents of the counter may be read. */
/* Write the appropriate control value to the */
/* control register (aOal = 11)

.

*/
/* */

ctrl_wr (board, TMR_CNT, TMR_CTL_REG)

;

bd_wr (board, TIMER, cont_val + VAL_RET, REGULAR);

/* Reset the address lines to the counter. */
ctrl_wr (board, TMR_CNT, data_id)

;

/* Retrieve the LSB ... */
value = bd_rd (board, TIMER);

/* ... then read and add the MSB. */
value += bd_rd (board, TIMER)

;

)

else
(

/* */
/* The data could not be retrieved. Since this */
/* function cannot indicate an error has occured, */
/* return the value of zero. */
/* */

value = 0;

return (value)

F-172

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/**
*

*

*

SOURCE: timer wr.c

FUNCTION

:

timer_wr (board, data_id, value)

DESCRIPTION: The purpose of this function is to
do a 16-bit write operation to the
timer/counter device present on the
A/D board (82C54-2) . The procedure
for programming this device is given
in the 1986 Intel Microprocessor Per-
ipheral Databook, p. 6-294.

DOCUMENTATION
FILES: None.

ARGUEMENTS

:

board

data id

value

RETURN

:

(input) int
4-bit board address

(input) int
selects between the three counter
based on their function:

TMR_SAMP_PD : sample period
counter

TMR_ONESHT : one-shot
TMR_SAMP_CNT : sample counter

(input) unsigned
the 16-bit number to be stored in the
specified counter

(int)

F-173

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

* FUNCTIONS
* CALLED: Ctrl wr ()

,

* bd wr ()

,

*

*

byte_brk ()

*

* AUTHOR: Copyright 1989
*

*
Durwin D. Nigus

*

*

*
DATE CREATED: 28 May 1989

+ REVISIONS: None.
*

*

Version 1.00

include <stdio.h>
include <ctype.h>

include "pi_ddn.h"

#define SAMP PERIOD MODE 0x36

#define ONESHOT_MODE 0x72
#define SAMPLE COUNT MODE OxbO

/* counter 0, mode 3 */

/* counter 1, mode 1 */
/* counter 2, mode */

int timer_wr (board, data_id, value)

int board, data_id;

unsigned value;

{

int cont_val, lsb, msb;

/* */
/* Break value into its respective hi and low bytes. */
/* */

byte_brk (value, &msb, &lsb)

;

F-174

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/* */
/* Obtain the appropriate control value. */
/* */

switch (data_id)
{

case TMR_SAMP_PD:
COnt_val = SAMP_PERIOD_MODE

;

break;

case TMR_ONESHT:
cont_val = ONESHOT_MODE

;

break;

case TMR_SAMP_CNT:
cont_val = SAMPLE_COUNT_MODE

;

break;

default:
printf ("\nERROR! timer_wr() \n")

;

break;
}

/

*

==*/
/* All i/o operations with the timer chip requires */
/* the setting of two address lines (AO, Al) , which */
/* are settable from a control register. */
/* */

/

*

====================================== :==========*/
/* Write to timer chip control register */
/* the appropriate value (set AO, Al)

.

*/
/* */

ctrl_wr (board, TMR_CNT, TMR_CTL_REG)

;

/* */
/* Timer chip control register may now be written to. */
/* */

bd_wr (board, TIMER, cont_val, REGULAR);

F-175

PCPI-DAS SOURCE-CODE: A/D BOARD SUPPLEMENTARY FUNCTIONS

/* */

/* Manipulate Al and AO again and write value to the */
/* appropriate counter—LSB first, then MSB. */
/* */

ctrl_wr (board, TMR_CNT, data_id)

;

bd_wr (board, TIMER, lsb, REGULAR);
bd_wr (board, TIMER, Itisb, REGULAR) ;

/ * , , , ======== === ======= */
/* Both the LSB and MSB have now been written. */
/* */

return (NORMAL)

;

F-176

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/***

SOURCE

:

FUNCTION:

pi_cmd.c

pi_cmd (buffer)

DESCRIPTION:

DOCUMENTATION
FILES:

Tokenizes the character string in
buffer ; observes the first three
tokens, treating them as follows:

First: command
Second: register number (if req'd)
Third: register value (if req'd)

invokes the appropriate function
required to carry out the command.

None.

ARGUMENTS

:

buffer

RETURN

:

(input) char *

Buffer containing the input
command string.

int
Command code. -1 is returned if an
invalid command was entered.

FUNCTIONS
CALLED:

* AUTHOR:

DATE CREATED:

Copyright 1989
Stephen A. Dyer, Ph.D.

19 March 1989 Version 1.00

F-177

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

*

* REVISIONS: 27Jul89 Removed 'C comment command.
*

#include <stdio.h>
include <string.h>

include "pi_ddn.h"

#define MAX_TOKENS 3 /* Maximum number of tokens */
/* to extract. */

#define LEN_TOKEN 10 /* Maximum length of each */
/* token. */

int pi_cmd (buffer)

char *buffer;
{

char tokens [MAX_TOKENS] [LENJTOKEN + 1]

;

char *token

;

int i, cmd_code, reg, token_no, value;

/* */
/* Check to see if string is a comment. */
/* */

if (buffer[0] == ' ;

'

)

{

/* A comment. Do not tokenize. */
strcpy (pi_tempbuf , &buffer[l]);

return (CMD_SEMI) }

/* Comment is in pi_tempbuf. */

}

/* */
/* Make a lower-case copy of buffer . */
/* */

strcpy (pi_tempbuf, buffer)

;

strlwr(pi_tempbuf)

;

F-178

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* */

/* Tokenize the string. */

/* */

for (token_no = 0; token_no < MAXJTOKENS; token_no++)

{

if (token_no == 0)

token = strtok(pi_tempbuf , " ")

;

else
token = strtok(NULL, " ")

;

if (token == NULL)
break;

strncpy (tokens [token_no] , token, LEN_TOKEN)

;

tokens [token_no] [LEN_T0KEN] = '\0';

/* token_no is now the number of tokens. */

/*
token_no = ;

token = strtok(pi_tempbuf , " ");
strncpy (tokens [token_no] , token , LENJTOKEN)

;

tokens [token_no] [LENJTOKEN] = '\0';

while (token != NULL & token_no < MAXJTOKENS - 1)

{

token_no++

;

token = strtok(NULL, " ")

;

strncpy (tokens [token_no] , token, LENJTOKEN);
tokens [token_no]

[LENJTOKEN] = ' \0 '

;

)

*/

/* token_no is now the total number of tokens. */

/* */
/* Save requested register and value, if pertinent. */

/* */

if (token_no > 1)

pi.fix[REG] = pi_cvt (tokens [1]) % NUM_REGS

;

F-179

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

if (token_no > 2)
pi.fix[VALUE] = pi_cvt (tokens [2]) % 256;

/* */

/* Determine command code. */

/* V

for (cmd_code = 1; cmd_code < NUM_CMDS; cmd_code++)

{

if (!strcmp(tokens[0]

,

commands [cmd_code] .cmd_str)

)

break;
)

/* If the entire command-table has been traversed */

/* without a match, then an error has occurred. */

if (cmd_code == NUM_CMDS)
cmd code = CMD ERROR;

return (cmd_code)

F-180

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

*

pi_disp.c* SOURCE

:

*

*

* FUNCTION: pi_disp(cmd_code, board)

* DESCRIPTION:
*

*

*

*

*

* DOCUMENTATION
* FILES

:

*

* ARGUMENTS

:

* cmd_code
*

*

* board
*

*

*

* RETURN:

Command-dispatcher for pi test
commands

.

Modified for the PCPI_DAS program.
Used with permission.

None.

(input) int
Code for command to be dispatched.

(i/o) *int
Pointer to the board address value.

(int)
cmd code

FUNCTIONS
CALLED:

* AUTHOR:
*

*

*

*

*

* DATE CREATED:

Copyright 1989
Stephen A. Dyer, Ph.D.

modified by : Durwin D. Nigus

25 July 1989 Version 1.00

* REVISIONS: None.

F-181

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

include <stdio.h>
include <stdlib.h>

include "pi_ddn.h"
include "p_plot.h"
include "plot.h"

int pi_disp(cmd_code, board)

int cmd_code , *board

;

I

char bin_buf[9], bin_buf2[9], prompt [PRMPT_MAX]

;

int first_list, i, reg, tmp_value, toggle;

unsigned conv val, lsb, msb, value;
/* _ */

/* Double-check cmd_code to assure that it is within */

/* range. */

/* */

if (cmd_code <
| | cmd_code >= NUM_CMDS)

cmd code = CMD ERROR;

/* */

/* No commands except 'enable', 'quit', comments, help */

/* and 'si' are permitted when the i'face is disabled. */

/*

if (pi.fix[IFACE]
if (cmd_code

cmd_code
cmd_code
cmd_code
cmd code

== DISABLE)
== CMD_QUIT
== CMD_SEMI
== CMD_SI
== CMD_E
== CMD HELP

V

)

else

F-182

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

{

printf ("\n\n"
"Interface is DISABLED! \n"
"Command ignored. \n\n")

;

cmd_code = CMD_ERROR;
)

/* */

/* Find the matching routine. */

/* */

first_list = YES;

switch (cmd_code)
{

case CMD ERROR:
/* */

/* Error. */

/* */

sprintf (pi_logbuf

,

commands [CMD_ERROR] . log_format)

;

break

;

case CMD_R:
/* */
/* Read register. */

/* */

pi.fix[VALUE] = pi_rdreg(pi.fix[REG])

;

ultoaf (long)pi.fix[VALUE] , bin_buf, 2);
sprintf (pi_logbuf , commands [CMD_R] .log_format,

pi.fix[REG], pi. fix[VALUE] , pi. fix [VALUE]

,

bin_buf)

;

break;

case CMD_W:
/* */
/* Write register. */
/* */

pi_wrreg(pi.fix[REG] , pi. fix [VALUE])

;

F-183

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

ultoa((long)pi.fix[VALUE] , bin_buf, 2)

;

sprintf (pi_logbuf , commands [CMD_W] . log_format,
pi.fix[REG], pi. fix [VALUE], pi.fix[VALUE],
bin_buf)

;

break;

case CMD_SEMI:
/* */
/* Comment. */
/* V

sprintf (pi_logbuf,
commands [CMD_SEMI] .log_format, pi_tempbuf)

;

break;

case CMD_E:
/* */
/* Enable interface. */
/* */

pi_i face (ENABLE)

;

sprintf (pi_logbuf,
commands [CMD_E] .log_format)

;

break

;

case CMD_D:
/* */
/* Disable interface. */
/* */

pi_i face (DISABLE)

;

sprintf (pi_logbuf

,

commands [CMD_D] .log_format)

;

break;

case CMD I

:

F-184

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* */

/* Toggle initialization. */

/* */

if (pi.fix[MRESET] == ENABLE ||

pi.fix[BDINIT] == ENABLE)

{

toggle = OFF;
pi_initl (DISABLE, DISABLE);

)

else
{

toggle = ON;
pi_initl (ENABLE, ENABLE);

sprintf (pi_logbuf , commands [CMD_I] .log_format,
pi_prsta("INACTIVE", "ACTIVE", toggle));

break;

case CMD IB:
/* z */

/* Activate -RFINTCB. */

)* */

pi_initl (DISABLE, ENABLE);
sprintf (pi_logbuf,

commands [CMD_IB] .log_format)

;

break;

case CMD IM:
/* Z */

/* Activate -MINIT. */

)* */

pi_initl (ENABLE, DISABLE);
sprintf (pi_logbuf,

commands [CMD_IM] .log_format)

;

break

;

F-185

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

case CMD_IA:
/* */
/* Activate all inits. */
/* */

pi_initl (ENABLE, ENABLE);
sprintf (pi_logbuf

,

commands [CMD_IA] . log_format)

;

break;

case CMD_ID:
/* */
/* Deactivate all inits. */
/* */

pi_initl (DISABLE, DISABLE);
sprintf (pi_logbuf,

commands [CMD_ID] .log_format)

;

break;

case CMD_L:
/* V
/* Toggle session-logger. */
/* V

if (pi.fix[LOG] == OFF)
pi.fix[LOG] = ON;

else
pi. fix [LOG] = OFF;

sprintf (pi_logbuf, commands [CMD_L] .log_format,
pi_prsta("OFF", "ON", pi . fix[LOG]))

;

break;

case CMD_QUIT:
/* */
/* Terminate session. */
/* V

pi.fix[QUIT] = YES;
pi_iface(DISABLE)

;

pi_date()

;

sprintf (pi_logbuf

,

F-186

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

commands [CMD_QUIT] . log_format,
pi.log_date)

;

break;

case CMD_P:
/* */
/* Plot contents of data buffer on display. */
/* */

if (pre_plot () != ERR)
int_plot (DISPLAY, plot_len, 0, 1,

pi_data, "Component Number", "",

"Amplitude", "",

"PCPI Data Buffer", CURVE, 0.0);

sprintf (pi_logbuf

,

commands [CMD_P] .log_format)

;

break;

case CMD_PP:
/* V
/* Plot contents of data buffer on display. */
/* V

if (pre_plot () != ERR)
(

printf ("Enter plot title: ")

;

pi_gets(50, pi_bufl)

;

int_plot (PLOTTER, plot_len, 0, 1,
pi_data, "Component Number", "",

"Amplitude", "", pi_bufl, CURVE,
10.0);

}

sprintf (pi_logbuf,
commands [CMD_PP] .log_format, pi_bufl)

;

break;

F-187

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/*= ., _ ======== ====== =: ======*/

/* ddn modifications follow */

/* */

case CMD HELP:
/* " */

/* Show the list of commands and their */

/* descriptions. */

)* */

help_das () ;

break;

case CMD TR:
/* Z */

/* Trace-mode toggler. */

/* */

printf ("Trace mode toggle. \n\n")

;

trace = (trace == ON) ? (OFF) : (ON)

;

if (trace == OFF)
printf ("Trace mode is now OFF. \n\n")

;

else
printf ("Trace mode is now ON. \n\n");

sprintf (pi_logbuf

,

commands [CMDJTR] .log_format)

;

break;

case CMD STEP:
/* z */

/* Trace-step toggler. */

/* */

if (trace == OFF)
printf ("Trace must be enabled for "

"stepper toggle. \n\n")

;

else
{

printf ("Stepper mode toggle. \n\n")

;

stepper = (stepper == ON) ? (OFF) : (ON)

;

F-188

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

if (stepper == OFF)
printf ("Stepper mode is now OFF."

"\n\n")

;

else
printf ("Stepper mode is now ON."

"\n\n"
"When an I/O statement appears, "

"press a character followed by "

"<enter> \n\n")

;

)

sprintf (pi_logbuf

,

commands [CMD_STEP] .log_format)

;

break;

case CMD_SI:
/* */
/* Initalize system */
/* */

/* Enable PCPI circuit. */

pi_i face (ENABLE)

;

sprintf (pi_logbuf,
commands [CMD_E] .log_format) ;

/* initialize bus drivers */
si_das ()

;

/* Tell which boards are present. */
/* If no boards are present, cease initialize. */

if (bp_das () != 0)

(

/* select board address */

board = 1;
printf ("Enter desired board address (%d):"

" ", *board)

;

if (pi_gets(BUF_LEN-l, pi_bufl) == 0)

tmp_value = *board;
else

F-189

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

tmp_value = pi_cvt (pi_buf1)

;

trap_value = (tmp_value > 0) ?

tmp_value : 0;

board = (tmp_value < 16) ?

tmp_value : 0;

Initalize selected board.
bi_das (*board)

;

sprintf (pi_logbuf

,

commands [CMD_SI] . log_format)

break;

case CMD BI:
/* z */

/* Initialize board */
/* */

bi_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_BI] .log_format)

;

break;

case CMD CT:
/* */

/* Configure system trigger */

/* */

ct_das ()

;

sprintf (pi_logbuf

,

commands [CMD_CT] .log_format)

;

break;

case CMD_CC:
/* */
/* Configure system clock */

/* */

cc_das () ;

F-190

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

sprintf (pi_logbuf

,

commands [CMD_CC] .log_format)
break;

case CMD BP:
/* Z */

/* Determine boards present on bus. */

/* */

bp_das ()

;

sprintf (pi_logbuf,
commands [CMD_BP] .log_format)

;

break;

case CMD DR:
/* */
/* Display bus driver registers. */
/* */

dr_das ()

;

sprintf (pi_logbuf,
commands [CMD_DR] .log_format)

;

break;

case CMD_SB:
/* */

/* Set board address value. */

/* */

tmp_value = pi.fix[REG];

tmp_value = (tmp_value > 0) ? tmp_value : 0;

*board = (tmp_value < 16) ? tmp_value : 0;

sprintf (pi_logbuf,
commands [CMD_SB] .log_format)

;

break;

case CMD_BR:
/* */
/* Read register from board. */
/* V

reg = (pi.fix[REG] & OxOf) + DATA_BOTH;
value = bd_rd (*board, reg)

;

F-191

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

reg &= 0x0 f;
byte_brk (value, &msb, Slsb)

;

ultoa ((long)msb, bin_buf, 2);
ultoa ((long)lsb, bin_buf2, 2);

printf ("\n\n"
"Board %i, reg %i contents = %4x h, "

"%5u dec, %8s %8s b\n\n", *board,
reg, value, value, bin_buf , bin_buf2)

;

sprint f (pi_logbuf

,

commands [CMD_BR] .log_format)

;

break

;

case CMD_BW:
/* */
/* Write to register on board. */
/* */

reg = (pi. f ix[REG] & OxOf) + DATA_BOTH;
value = pi. fix[VALUE]

;

bd_wr (*board, reg, value, REGULAR)

;

/* Echo value written by reading it. */
value = bd_rd (*board, reg)

;

reg &= 0x0 f;
byte_brk (value, Smsb, Slsb)

;

ultoa ((long)msb, bin_buf, 2);
ultoa ((long)lsb, bin_buf2, 2);

printf ("\n\n"
"Board %i, reg %i contents = %x h, "

"%u dec, %s %s b\n\n", *board,
reg, value, value, bin_buf, bin_buf2)

;

sprintf (pi_logbuf

,

commands [CMD_BW] .log_format)

;

break;

default:
/* v
/* Set flag that indicates that the instruction */
/* was not found in this list. */
/* v

first_list = NO;
break

;

F-192

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* */

/* The following routines are for a specific board and */

/* thus the board needs to be initialized before it */
/* can have bus i/o. */

/* */
if (initialized[*board] == NO && first_list == NO)

{

printf ("The board is not initialized. "

"Use 'bi' instruction. \n")

;

sprintf (pi_logbuf

,

commands [CMD_ERROR] . log_format)

;

return (CMD_ERROR)

;

}

/* */
/* Now examine the board-specific commands. */
/* */

switch (cmd_code)
{

case CMD_TS:
/* */
/* Select trigger for specified board. */
/* */

ts_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_TS] .log_format)

;

break;

case CMD_CS:
/* */
/* Select clock for specified board. */
/* */

cs_das (*board);
sprintf (pi_logbuf

,

commands [CMD_CS] .log_format)

;

break;

case CMD FS:

F-193

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* V
/* Set full-scale signal range. */

/* */

fs_das (*board)

;

sprintf (pi_logbuf

,

commands [CMD_FS] .log_format)

;

break;

case CMD_FI:
/* */
/* Enable or disable the on-board filter. */
/* */

fi_das (*board);
sprintf (pi_logbuf

,

commands [CMD_FI] .log_format)

;

break;

case CMD_SR:
/* */
/* Set sampling rate for specified board. */
/* */

sr_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_SR] .log_format)

;

break

;

case CMD_BC:
/* */
/* Begin conversion on specified board. */
/* */

bc_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_BC] .log_format)

;

break;

case CMD_SC:
/* */
/* Stop conversion immediately on */
/* specified board. */
/* */

sc_das (*board)

;

F-194

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

sprintf (pi_logbuf

,

commands [CMD_SC] .log_format)
break

;

case CMD_GS:
/* */
/* Display status for specified board. */
/* */

gs_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_GS] .log_format)

;

break;

case CMD_RS:
/* */
/* Retrieve samples from specified board. */
/* */

rs_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_RS] .log_format)

;

break;

case CMD_MT:
/* */
/* Perform on-board memory test. */
/* v

mt_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_MT] .log_format)

;

break;

case CMD_GV:
/* */
/* Get A/D conversion value with a specified */
/* source. */
/* v

conv_val = (unsigned) gv_das (*board)

;

byte_brk (conv_val, Smsb, Slsb)

;

F-195

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

ultoa((long)msb, bin_buf, 2) ;

ultoa((long)lsb, bin_buf2, 2);
printf ("\n"

"The conversion value is: \n\n"
"%6d (signed) %5u (unsigned) %4x"
" (hex) %8s %8s (bin)\n\n", conv_val,
conv_val, conv_val, conv_val,
bin_buf , bin_buf2)

;

sprintf (pi_logbuf

,

commands [CMD_GV] .log_format)

;

break;

case CMD_CL:
/* */
/* Perform calibration routine. */
/* V

cl_das (*board)

;

sprintf (pi_logbuf

,

commands [CMD_CL] .log_format)

;

break

;

case CMD_FC:
/* */
/* Perform filter configuration. */
/* v

fc_das (*board)

;

sprintf (pi_logbuf,
commands [CMD_FC] .log_format)

;

break;

return (cmd_code)

F-196

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/**

SOURCE

:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

pi_init.c

pi_init() ;

This function performs the
configuration and initialization
necessary before any functions which
access external module are invoked.
Modified for the PCPI_DAS program.

None.

ARGUMENTS

:

None.

RETURN:

FUNCTIONS
CALLED:

int
0:
ERR INIT

Normal return.
An error occurred.

AUTHOR:

DATE CREATED:

Copyright 1989
Stephen A. Dyer, Ph.D.

Modified for use with the DAS
by Durwin D. Nigus.

19 March 1989 Version 1.00

REVISIONS: 20Mar89 Add strcpy to [CMD_AD]

.

5Apr89 Add default filename for
output-data file.

F-197

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

* Initialize lengths of data
* buffer and files. Set up
* conversion tables for sampling
* rates.
* Zero data buffer.
* Add default sampling rates.
* Add CMD_B to list.
* Add CMD_P to list.
* 9Apr89 Add CMD_P to list.
* 10Apr89 Change command "ir" to "ib".
* Change log string for CMD_P.
*

* 4Jul89 Modified for PCPI_DAS.
*

#define PI_INIT

include <stdio.h>
include <string.h>
include <stdlib.h>

include "pi_ddn.h"

int pi_init()
{

char *getenv(const char *)

,

*pi_baseport,
*test_it,
*xtl,
*dummy

;

int i ;

/* v
/* Set base_port. */
/* v

if ((pi_baseport = getenv("PCPI_BASE")) == NULL)
return (ERR_INITBP)

;

pi.base_port = (unsigned) pi_cvt (pi_baseport)

;

F-198

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* */
/* Set test_das. */
/* */

if ((test_it = getenv("TEST_DAS")) == NULL)
return (ERR_INITTST)

;

test_das = (pi_cvt(test_it) == 0) ? (NO) : (YES) ;

/* */
/* Set A/D board internal oscillator frequency. */
/* */

if ((xtl = getenv("XTAL_FREQ")) == NULL)
return (ERR_INITXTL)

;

xtal_freq = strtol (xtl, &dummy, 10)

;

/* */
/* Disable interface. */
/* */

pi_iface(DISABLE)

;

/* */
/* Deactivate -MRESET and -BDINIT. */
/* */

pi_initl (INACTIVE, INACTIVE);

/* */
/* Activate and initialize screen-logger and session- */
/* logger. */
/* */

pi. fix [SCREEN] = ON;
pi.fix[LOG] = ON;

pi.fix[LOG_NO] = 0;
pi.fix[LAST_LOG] = pi.fix[LOG_NO]

;

F-199

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* */

/* Put a default filename for the session-logger into */

/* pi.log_fn . */
/* */

strcpy (pi.log_fn, "pcpi.log");

/* */

/* Put a default filename for the output-data file */

/* pi.out_file . */
/* */

strcpy (pi. out_file, "pcpi.out")

;

/* */
/* Initialize buffer and file lengths. */
/* */
/* Default length of data buffer. */

pi.fix[DATA_LEN] = ;

/* Length of input-data file. */
pi.fix[LEN_INFILE] = 0;

/* Length of plot data buffer. */
plot_len = ;

/* */
/* Zero contents of data buffer. */
/* */

for (i = 0; i < MAX_DATA; i++)
pi_data [i] = ;

/* */
/* Set board initialization state to NO. */
/* */

for (i = 0; i < MAX_BDS; i++)
initialized[i] = NO;

/* */
/* Turn off tracer and stepper. */
/* */

trace = NO;
stepper = NO;

F-200

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

/* */

/* Zero the sample counters. */
/* */

num_pre_trig = ;

num_post_trig = 0;

/* */

/* Initialize commands [] . */

/* */

strcpy (commands [CMD_ERROR] . cmd_str ,
"
")

;

strcpy (commands [CMD_ERROR] . log_format,
"Error: invalid command entered.");

strcpy (commands [CMD_R] .cmd_str, "r")

;

strcpy (commands [CMD_R] . log_format

,

"Read from register %2d the value %3d = %2.2Xh = "

"%8.8sb.")

;

strcpy (commands [CMD_W] ,cmd_str, "w")

;

strcpy (commands [CMD_W] . log_format,
"Write to register %2d the value %3d = %2.2Xh = "

"%8.8sb.");

strcpy (commands [CMD_SEMI] . cmd_str , " ;
")

;

strcpy (commands [CMD_SEMI] . log_format,
"COMMENT: %.40s");

strcpy (commands [CMD_E] .cmd_str, "e")

;

strcpy (commands [CMD_E] . log_format

,

"Enable interface.");

strcpy (commands [CMD_D] . cmd_str , " d")

;

strcpy (commands [CMD_D] . log_format,
"Disable interface.");

strcpy (commands [CMD_I] .cmd_str, "i")

;

strcpy (commands [CMD_I] . log_format

,

"Toggle initialization %s.");

strcpy (commands[CMD_IB] .cmd_str, "ib")

;

strcpy (commands [CMD_IB] . log_format

,

"Activate -BDINIT.");

F-201

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

strcpy (commands [CMD_IM] . cmd_str , " im ")

;

strcpy (commands [CMD_IM] . log_format,
"Activate -MRESET.");

strcpy (commands [CMD_IA] .cmd_str, "ia")

;

strcpy (commands [CMD_IA] . log_format,
"Activate -MRESET and -BDINIT.");

strcpy (commands [CMD_ID] .cmd_str, "id")

;

strcpy (commands [CMD_ID] . log_format,
"Deactivate -MRESET and -BDINIT.");

strcpy (commands [CMD_L] . cmd_str , " 1 ")

;

strcpy (commands [CMD_L] . log_format

,

"Toggle session logger %s.");

strcpy (commands [CMD_QUIT] .cmd_str, "quit")

;

strcpy (commands [CMD_QUIT] . log_format

,

"PCPI session terminated %s.");

strcpy (commands [CMD_P] .cmd_str, "p")

;

strcpy (commands [CMD_P] . log_format

,

"Plot contents of data buffer on display.");

strcpy (commands [CMD_PP] .cmd_str, "pp")

;

strcpy (commands [CMD_PP] . log_format

,

"Plot contents of data buffer on pen plotter. \n"
" Title: %s");

/ * ==*/
/* ddn commands */
/* v

strcpy (commands [CMD_S I] .cmd_str, "si") ;

strcpy (commands [CMD_SI] . log_format, "Initialize "

"system. ")

;

strcpy (commands [CMD_BI] .cmd_str, "bi")

;

strcpy (commands [CMD_BI] .log_format, "Initialize "

"board. ")

;

strcpy (commands [CMD_CT] . cmd_str , "ct ")

;

strcpy (commands [CMD_CT] .log_format, "Configure "

"system trigger")

;

F-202

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

strcpy (commands [CMD_CC
strcpy (commands [CMD_CC

strcpy (commands [CMD_TS
strcpy (commands [CMD_TS

strcpy (commands [CMD_CS
strcpy (commands [CMD_CS

strcpy (commands [CMD_FS
strcpy (commands [CMD_FS

strcpy (commands [CMD_FI
strcpy (commands [CMD_FI

strcpy (commands [CMD_SR
strcpy (commands [CMD_SR

strcpy (commands [CMD_BC
strcpy (commands [CMD_BC

strcpy (commands [CMD_SC
strcpy (commands [CMD_SC

strcpy (commands [CMD_GS
strcpy (commands [CMD_GS

strcpy (commands [CMD_BP
strcpy (commands [CMD_BP

strcpy (commands [CMD_DR
strcpy (commands [CMD_DR

.cmd_str, "cc") ;

.log_format, "Configure "

"system clock.");

.cmd_str, "ts");

.log_format, "A/D board "

"trigger select.");

.cmd_str, "cs")

;

.log_format, "A/D board clock '

"select.") ;

.cmd_str, "fs")

;

.log_format, "A/D board gain "

"set.")

;

.cmd_str, "fi") ;

.log_format, "A/D board "

"filter control.") ;

.cmd_str, "sr")

;

.log_format, "A/D board "

"sample rate control.");

.cmd_str, "be")

;

.log_format, "A/D board: "

"begin conversion.");

.cmd_str, "sc")

;

.log_format, "A/D board: "

"stop conversion.");

.cmd_str, "gs")

;

.log_format, "A/D board: "

"get status.")

;

.cmd_str, "bp")

;

. log_format, "Query for "

"boards present.");

.cmd_str, "dr")

;

. log_format, "Display bus "

"driver ports .
")

;

F-203

PCPI-DAS SOURCE CODE: ALTERED VERSIONS OF PCPI FUNCTIONS

strcpy (commands [CMD
strcpy (commands [CMD

strcpy (commands [CMD
strcpy (commands [CMD

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD_

strcpy (commands [CMD_
strcpy (commands [CMD_

SB].cmd_str, "sb")

;

SB] .log_format, "Set board "

"value.")

;

TR].cmd_str, "tr")

;

TR] .log_format, "Toggle trace "

"mode.");

STEP] .cmd_str, "step")

;

[STEP] .log_format, "Step mode."))

.cmd_str, "rs")

;

.log_format, "A/D board: "

"retrieve "

"samples. ")

;

.cmd_str, "mt")

;

.log_format, "A/D board: "

"memory test .
") ;

.cmd_str, "gv")

;

.log_format, "A/D board: get
"value .

")

;

.cmd_str, "cl")

;

.log_format, "A/D board: "

"calibrate.")

;

.cmd_str, "fc")

;

.log_format, "Filter coeff. "

"retrieve. ")

;

.cmd_str, "br")

;

.log_format, "Board read.");

.cmd_str, "bw")

;

.log_format, "Board write.");

HELP] .cmd_str, "help")

;

HELP] ,log_format,
"Show help-key list.");

return (0)

;

F-204

DESIGN OF AN
EASY-TO-USE, HOST-INDEPENDENT

DATA ACQUISITION SYSTEM

by

DURWIN DUANE NIGUS

B.S., Kansas State University, 1987

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

ELECTRICAL AND COMPUTER ENGINEERING

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

ABSTRACT

A design is presented for a host-independent data

acquisition system. This acquisition system has the

advantage of being usable by virtually any computer that

has an RS-23 2 port. The motivation for the system's

development was to reduce the cumbersome interface

problems frequently encountered when moving an acquisition

system from one host computer to another.

The thesis describes a system that is modular in the

sense that it is composed of a system controller and up to

sixteen removable I/O boards, all of which are

interconnected by a system bus. The system controller

receives mnemonic commands from the host computer by way

of an RS-232 communication link, whereupon the command is

deciphered and the appropriate actions are taken. An

important goal during the design of this system was to

minimize complexity of the host computer's system-

controlling software, thus reducing the development time

when the system is used with a new host.

The thesis presents the design specifications for the

system, the design of the system, a design for an analog-

to-digital (A/D) board, and algorithms used to control the

system. Additionally, a list of system commands, an A/D-

board user's guide, and software used for system testing

are included as appendices. This thesis also contains

sufficient information to facilitate the design and

construction of an I/O board compatible with the system.

The A/D board designed for use in the system has many

features. The board has a differential signal input with

programmable gain. A programmable filter is provided on-

board for anti-aliasing and other signal conditioning

needs. A/D conversions are made by a 12-bit, bipolar

successive-approximation ADC. The sampling rate is

programmable from 0.2 Hz to 150 kHz. On-board memory

retains up to 64K samples during an acquisition sequence.

In addition, the A/D board has flexible trigger selection

as well as pre-trigger sampling capabilities.

