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ABSTRACT: A variety of methods are available to estimate future solar radiation (SR) scenarios at
spatial scales that are appropriate for local climate change impact assessment. However, there are
no clear guidelines available in the literature to decide which methodologies are most suitable for
different applications. Three methodologies to guide the estimation of SR are discussed in this
study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not
measured. In Case 1, future SR scenarios are derived using several downscaling methodologies
that transfer the simulated large-scale information of global climate models to a local scale (mea-
surements). In Case 2, the SR was first estimated at the local scale for a longer time period using
sparse measured records, and then future scenarios were derived using several downscaling
methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period
using complete or sparse measured records of SR from which SR at the local scale was estimated.
Finally, the future scenarios were derived using several downscaling methodologies. The lack of
observed SR data, especially in developing countries, has hindered various climate change impact
studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid
Malaprabha reservoir catchment in southern India. A support vector machine was used in down-
scaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation
Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2,
B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m~2 yr~! in SR during
the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves
method. The decreasing trends for the future were in agreement with the simulations of SR from
the CGCM3 model directly obtained for the 4 scenarios.

KEY WORDS: Downscaling - Modified Hargreaves and Donatelli-Bellocchi methods - Support
vector machine - SVM - IPCC SRES scenarios - Cloud cover downscaling
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1. INTRODUCTION et al. 2005, Biggs et al. 2007, Teuling et al. 2009, Wild

2009). The lack of observed SR data, especially in

Solar radiation (SR; see Table 1 for further abbrevi- developing countries, has hindered various climate
ations) plays an important role in hydrological, eco- change impact studies in agricultural and hydrologi-
logical, biological, and physical processes (Rivington cal sectors (lizumi et al. 2012), thus indicating a need
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Table 1. Abbreviations

ANN Artificial neural networks

C Penalty term

cC Cloud cover

CCCma Canadian Center for Climate Modeling and
Analysis

CFM Change factor methodology
CGCM3 Third-generation Canadian general
circulation model

CP Solar radiation estimated using calibrated
parameters
DB Donatelli-Bellocchi method

DM Delta change factor methodology

GCM Global climate model

GrADS Grid analysis and display system

IPCC Intergovernmental Panel on Climate Change
LH Latent heat flux

LWR Long-wave radiation flux

MC Malaprabha reservoir catchment

MH Modified Hargreaves method

MRB Malaprabha River basin

NCEP National Centers for Environmental Prediction
NMSE Normalized mean square error

PC Principal component

PCA Principal component analysis

Pptn-oc Precipitation occurrence
PRW Precipitable water

RBF Radial basis function
RCM Regional climate model

RMSE Root mean square error
SD Standard deviation

SH Sensible heat flux

Sh Sunshine hours

SR Solar radiation

SRB Surface radiation budget

SRES Special report on emission scenarios
SVM Support vector machine

SWR Short wave radiation flux

SWroa  Extra-terrestrial radiation

Ta 925 Air temperature at 925 mb pressure level
Tave Average temperature

Tmax Maximum air temperature

Tmin Minimum air temperature

Thg Threshold for correlation between predictor
variables in NCEP and GCM datasets

Top Threshold for correlation between predictor

variables in NCEP and predictand datasets
Zonal wind velocities at 925 mb pressure level
Meridional wind velocities at 925 mb pressure
level

Ua 925
Va 925

plied. Furthermore, one methodology is discussed in
detail, using the Malaprabha River basin (MRB) in
southern India as a case study.

Based on the availability of measured SR data in a
location, the methodologies for estimating future SR
scenarios can vary. In this section, methodologies for
3 cases are discussed (Fig. 1).

1.1. Case 1: measured SR is available

When measured SR is available for a location,
future scenarios are derived using several downscal-
ing methodologies that transfer the large-scale GCM
output to a local scale using (1) analogies with differ-
ent climatic zones or historical time periods, (2) sim-
ple manipulation of current climate observations
(e.g. delta change factor methodology, DM), and (3)
more sophisticated statistical and dynamical down-
scaling methodologies.

In DM, the arithmetic difference (ratio) between a
GCM variable derived from a current climate simula-
tion and that derived from a future climate scenario at
the same GCM grid location is calculated. This differ-
ence (ratio) is then added (multiplied) to the observed
local values to obtain the modeled future values
(Anandhi et al. 2011). In the dynamic downscaling ap-
proach, an RCM is nested into a GCM (Uno et al.
2012, Yoshida et al. 2012). Statistical downscaling in-
volves developing quantitative relationships between

Is measured SR
data available?

to estimate future scenarios of SR in situations where
observed SR data are sparse. Further, there are no
clear guidelines to derive future SR scenarios in situ-
ations where SR data are either measured but sparse
or not measured. The purpose of this paper is to shed
some light on the different methods of estimating
future SR scenarios under different circumstances,
and to provide guidance on how they could be ap-

Yes No
Long-term Sparse Not available
Casel Case 2 Case 3

Estimate long-term SR
at local scale (Step 2i)

Estimate long-term SR at
regional scale (Step 3i) [MH, DB]

)

Estimate long-term SR
at local scale (Step 3ii)
[parameters from other studies]

Y A
Long-term SR data at local scale (measured or estimated) |

¥
Downscaling |

Global Climate Model
simulations (past, future) ISVFI

| Future scenarios SR |

Fig. 1. Schematic representation to estimate future scenarios
of solar radiation (SR). Long-term: >25 yr long record of
monthly SR time series; local scale: a single site; regional scale:
area-mean across sites. The methods/techniques used in this
study are noted in italics. For further abbreviations see Table 1
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the large-scale atmospheric variables (predictors) and
the local surface variables (predictands). There are 3
types of statistical downscaling: weather classification
methods, weather generators, and transfer functions.
Weather classification methods group days into a
finite number of discrete weather types or ‘states’ ac-
cording to their synoptic similarity (Lamb 1972,
Wetterhall et al. 2005, Anandhi 2010). Weather gener-
ators are stochastic models of observed sequences of
weather variables (Mehrotra et al. 2006, Chen et al.
2010). The transfer functions capture the relationships
between the predictors and the predictands (Schoof et
al. 2007, lizumi et al. 2008). Transfer functions that
have been used in the recent past include linear and
nonlinear regression, ANNSs, canonical correlation
analysis, PCA, and SVMs. Good reviews on down-
scaling methods can be found in Wilby et al. (2004),
Fowler et al. (2007), and Maraun et al. (2010).

1.2. Case 2: measured SR available but sparse

When measured SR is sparse for a location, an
additional step is required before methodologies
that are applicable to Case 1 can be used to estimate
future SR scenarios. This additional step (Step 2i in
Fig. 1) involves estimating the SR at the local scale
using methods that are available in the literature
(some are discussed here). Then the future SR sce-
narios are derived by transferring the GCM's simu-
lated large-scale information to a local scale using
the downscaling methodologies employed in Case 1.

A number of techniques have been used to over-
come the problems associated with using sparse
data. The gaps between the needs and availability of
SR data are filled in several ways: (1) using global
datasets as a substitute for local data, (2) combining
spatially coarse but temporally complete global
datasets with spatially fine but temporally limited
measured local data, (3) estimating SR from other
measured meteorological variables using physical
and empirical approaches, and (4) deriving data
based on information from satellites (Deng et al.
2010, Chen et al. 2011, lizumi et al. 2012, Wu & Liu
2012). Each of these methods has its own set of
advantages and pitfalls. Some of the techniques that
were used in the past to estimate SR in data-sparse
areas include: (1) regression models and Bayesian
approaches, which combine spatially coarse but tem-
porally complete global datasets, and spatially fine
but temporally limited measured local data to esti-
mate the local SR in a manner that incorporates the
space-time dynamics. The limitation with this meth-

od is that the grid interval of global datasets is too
coarse to identify the local weather conditions at a
site, and there are uncertainties in the grid-point val-
ues (lizumi et al. 2012) due to the amount of repre-
sentative measured data available for the region.
(2) Satellite-based RS methods are another possibil-
ity; they estimate SR from variable(s) (e.g. land sur-
face temperature) that are derived based on the ther-
mal radiation emitted by the earth. The advantages
of this method are that it is quick and reliable in data
processing, practical to derive data for inaccessible or
remote regions (mountainous and rural), and easy to
manipulate the data with a computer (Sahin et al.
2013). However, absence of a long-term (>25 yr)
satellite database is a limitation of this method.
(3) Finally, empirical relationships and soft comput-
ing techniques (e.g. ANNs, SVMs) can be used to
estimate SR at a location from other measured mete-
orological variables (e.g. sunshine duration, maxi-
mum and minimum air temperatures, relative hum-
idity, precipitation). The sunshine-based method is
generally more accurate, and, in its absence, air
temperature-based methods are commonly used be-
cause temperature is more routinely measured at
most meteorological stations (Chen & Li 2012). The
ratio of the meteorological stations recording SR to
those recording temperature is about 1:500 around
the world (Chen et al. 2011). The parameters of these
empirical formulae need to be estimated and tested
locally for accuracy. Good reviews of empirical mod-
els to estimate SR are available in Menges et al.
(2006) and Katiyar & Pandey (2013).

1.3. Case 3: measured SR not available

When measured SR data are not available, 2 addi-
tional steps (Steps 3i and 3ii; Fig. 1) are required,
before using the methodologies applicable to Cases 1
and 2 to estimate future SR scenarios. The first step
(Step 3i; Fig. 1) involves estimating the SR in the sur-
rounding regions which have completely or sparsely
measured records of SR using methods that are dis-
cussed in Case 1 or 2. In the second step (Step 3ii),
using the calibrated parameters from regions having
measured records, the parameters for a location with
no measurements are estimated using one of the fol-
lowing approaches: (1) an indirect approach of model
parameter regionalization using characteristics (e.g.
climate, altitude, latitude, and longitude), (2) solving
as an inverse problem providing the localized values
of parameters meeting the needs of the regionalized
specific model (e.g. a linear or nonlinear regression)
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(Cheng et al. 2006), and (3) using parameters from
earlier studies.

In all 3 cases, the long-term SR at a local scale is
obtained (estimated or measured) using the metho-
dologies provided. Future SR scenarios are then
obtained by downscaling the simulations from GCMs
or RCMs to the long-term SR (Fig. 1).

2. DESCRIPTION OF THE CASE STUDY
2.1. Study region

In this study, data from the MRB located in south-
ern India were used to demonstrate the methodology
in Case 3. The Malaprabha reservoir catchment (MC)
is a semi-arid region with an area of 2564 km?
(Fig. 2). The Malaprabha reservoir is the main source
of water for irrigation, domestic, and industrial uses
in a region with 3 million people—the 4 districts of
northern Karnataka (George et al. 2008). The Mala-
prabha reservoir supplies irrigation water for an area
of 218191 ha in northern Karnataka. However,
intense agricultural practices and the absence of rea-
sonable water resource management have led to an
unmet increase in water demand.

The climate of the study region can be broadly
classified into 2 seasons based on precipitation: a wet
season (the monsoon season) and a dry season.
Downscaling of cloud cover was done to account for
the 2 distinct climate conditions in the study area. For
this purpose, the precipitation-based wet and dry
seasons identified in an earlier study (Anandhi et al.
2008) were adopted in this study.

2.2. Data used

The reanalysis data of atmospheric variables for the
study region from the NCEP (Kalnay et al. 1996) were
extracted at monthly scale for the period of January
1978 through December 2000. The atmospheric vari-
ables were extracted for 9 grid points whose latitudes
ranged from 12.5° to 17.5°N and longitudes ranged
from 72.5° to 77.5°E, at a spatial resolution of 2.5°.

The monthly GCM data used in the study were
extracted from simulations by the CCCma's third-
generation CGCM3 (Kim et al. 2002) for the present-
day climate (20C3M) and for 4 emission scenarios
specified in the SRES (Nakicenovic et al. 2000),
namely, A1B, A2, B1, and COMMIT. The GCM data
were re-gridded to a common 2.5° NCEP grid by
bilinear interpolation using GrADS (Doty & Kinter

1993). The baseline period in the study was 1978-
2000, while the future time period was 2001-2100.

The average monthly CC and maximum and mini-
mum air temperature data were estimated for the
study region using daily records available from a
gauging station located in Gadag (15°25'N, 75°38'E)
for the period of January 1978 through December
2000 (Fig. 2). The weather station is maintained by
the India Meteorological Department.

2.3. Estimating SR from meteorological variables

SR at a local scale was estimated using MH (Supit &
van Kappel 1998) and DB (Donatelli & Bellocchi 2001)
methods. More details on these methods are provided
in Supplement 1 at www.int-res.com/articles/suppl/
c059p259_supp.pdf. These methods use measured
meteorological variables (temperature and CC) and
the parameters listed in Section 3.1. The parameter
values for these models were taken from other studies
(Donatelli & Bellocchi 2000, Biggs et al. 2007) cover-
ing the MRB. The proposed methodology for Case 3
for estimating SR in the absence of measured data
was tested with the satellite measurements provided
by Biggs et al. (2007) for the region. Their study ob-
tained SR from NASA’s SRB Release 2 at 1° resolution
from March 1984 to September 1995.

The sensitivity of different parameters used in
SR estimation methods (DB and MH) was assessed
by perturbing each parameter one-at-a-time (Morris
1991) about a fixed percentage (-100% to +100 %,
with increments of 20 %). The parameters considered
in this study were those found in the DB method, 1, b,
¢, and ¢, representing the clear sky transmissivity,
temperature range coefficient, and first and second
seasonality factors, respectively. Ay, B, and Cy/Rqy,
are Hargreaves site-specific coefficients obtained by
multiple linear regression. The most sensitive param-
eters were chosen for model calibration. During the
calibration, the parameters which provided the least
RMSE (the best fit) were selected. Using these para-
meters, the model was validated. SR was estimated
using this validated model.

2.4. Downscaling temperatures and CC
using SVMs

SVM, a novel machine learning tool popular for
predicting SR (Deng et al. 2010, Chen et al. 2011),
was used in this study as it was found to be effective
for downscaling meteorological variables (Anandhi
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Fig. 2. Study region (Malaprabha reservoir catchment) in the state of Karnataka, India. The data extracted at CGCM3 grid
points are re-gridded to the nine 2.5° NCEP grid points

et al. 2008, 2009, 2012). The future projections of SR
were estimated using the downscaled values of
future CC and maximum and minimum air tempera-
tures at a local scale. The basic concept of SVM is to
map input data into a higher dimensional feature
space, and further to employ linear regression in the
feature space (Vapnik 1998). More detailed informa-
tion on SVM is available in Vapnik (1995) and Vap-
nik (1998). The SVM has the advantage of imple-
menting the structural risk minimization principle,
and is based on statistical learning theory (Deng et
al. 2010). Further, it has the theoretical ability to
learn any training set without error. Furthermore, the
global optimum solution is possible with SVM (Chen
et al. 2011). The main disadvantages of SVM algo-
rithms are their large memory requirements and the
extensive computational time needed to deal with
very large datasets (Zhang et al. 2005). Further ex-
planations on developing the downscaling model
using SVM can be found in Anandhi et al. (2008,
2009, 2012) and Supplement 2 at www.int-res.com/
articles/suppl/c059p259_supp.pdf. In the past, very
few studies have statistically downscaled daily CC
(Enke & Spekat 1997, Wilby et al. 1998). In this study,
SVM was used for the first time to downscale CC.

2.5. Steps in downscaling using SVMs

The steps involved in developing each of the SVM
models (Fig. 3) for downscaling were as follows:

Step 1: Select probable predictors at each of the
NCEP grid points surrounding the study region. The
choice of predictors could vary with region, season,
and the predictand to be downscaled. More informa-
tion on predictor selection can be obtained from
Anandhi et al. (2012). The selected probable predic-
tors used in this study are given in Table 2, pertaining
to 9 grid points within and around the study region.

Step 2: Prepare scatter and correlation plots corre-
sponding to each grid point using 3 measures of
dependence (Pearson's product moment correlation
and nonparametric rank correlations, namely Spear-
man's rho and Kendall's tau explained in Anandhi et
al. 2008) between predictor variables in NCEP and
GCM datasets, and between predictor variables in
NCEP data and predictand.

Step 3: Select highly correlated predictors (poten-
tial predictors) by specifying 2 thresholds: T,y and
Thp. Thg represents the threshold for correlation be-
tween predictor variables in NCEP and GCM
datasets, and T, represents the threshold for corre-
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| Select probable predictors (PPs) | (Step 1)
Prepare scatter plots, compute cross-correlations (CCs): between PPs in NCEP St 2
and GCM datasets, and between PPs in NCEP and the predictand ( ep )

I Select/update thresholds T,, &T,, I( A

No
CCs 2

thresholds (Step 3)

Potential predictors (POPs) for downscaling f v
I Standardize the monthly data of POPs extracted from NCEP and GCM datasets l (Step 4)
Prepare feature vectors (FVs) depicting months for NCEP by extracting PCs & PDs from (Ste ps 5‘ 6)

standardized NCEP POPs
75% of FVs form 25% of FVs form (Step 7)
the training set the testing set No
Calibration of SVM model Validation of SVM model 1‘
Grid search method Compare model Is the model

to determine optimum | f=» simulations with performance (Steps 8' 9)

parameter range observed using

calibrated parameters

Genetic algorithm to
determine optimum
parameter value

Prepare FVs depicting months for GCM by extracting PCs
from GCM along PDs from NCEP

accepted

Yes

Validated model I

Y

Future projections
of predictand

(Step 10)

Fig. 3. Methodology followed for support vector machine (SVM) downscaling. PCs and PDs: principal components and princi-

pal directions, respectively; T,4: the threshold for correlation between predictors in NCEP and GCM datasets; Ty, the thresh-

old for correlation between predictors in NCEP data and the predictand; other abbreviations as in Table 1. Steps 1 to 10 in the
figure are explained in Section 2.5

lation between predictor variables in NCEP data and
predictand. Potential predictors are selected for each
grid point, while the probable predictors are common
to all the grid points. For example, to downscale air
temperature, one of the probable predictors is Ta 925
at all 9 grid points, while potential predictors are
Ta 925 values at selected grid points (2, 3, 5, and 6).

Step 4: Standardize the potential predictors for the
baseline period (1978-2000) to reduce systemic bias
(if any) in the mean and variance of the predictors in
the GCM data, relative to those of the predictors in
the NCEP reanalysis data. This step typically in-

volves subtraction of the mean and division by the SD
of the predictor for the period.

Step 5: Analyze the PCs of standardized NCEP pre-
dictor data to extract PCs that are orthogonal and
preserve >98 % of the variance in the data. The PCs
of GCM predictor data are extracted along the prin-
cipal directions of NCEP predictor data. The PCs
account for most of the variance in input, reduce the
dimensionality of the data and also remove the corre-
lations, if any, among the input data. They make the
model more stable and reduce the computational
load.
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Step 6: Prepare for feature vectors using PCs. The
PCs for each month are a feature vector and are
inputs to the SVM model. The contemporaneous
value of the predictand is its output.

Step 7: Partition feature vectors into a training set
(calibration) and a testing set (validation); 70 % of the
feature vectors are used for training the SVM model,
and the remaining 30 % are used for validation of the
developed model.

Step 8: Calibrate the SVM model to determine
parameters, namely kernel width (c) of RBF and
penalty term C, during training of the model. In this
study, we used a grid search procedure (van Gestel
et al. 2004) to find the optimum range for each of
these 2 parameters. Subsequently, the optimum val-
ues of the parameters are obtained from among the
selected ranges using the stochastic search tech-
nique of a genetic algorithm (Haupt & Haupt 2004).

Step 9: Validate the developed SVM model using
feature vectors in the testing set as input to the cali-
brated model, and compare output with the contem-
poraneous values of the observed predictand. We
used the NMSE as an index to assess the perform-
ance of the model (Zhang & Govidaraju 2000).

Step 10: Obtain future projections of the predic-
tand using feature vectors prepared from GCM sim-
ulations for the 2001-2100 period as input to the val-
idated SVM downscaling model for each of the 4
emission scenarios (A1B, A2, B1, and COMMIT).

Step 11: Conduct trend analysis on SR estimated
from downscaled meteorological variables over the
period 1978-2100 using Sen's slope (Sen 1968) and
Mann-Kendall tau (Helsel & Hirsch 1992) methods
that are described in Supplement 3 at www.int-res.
com/articles/suppl/c059p259_supp.pdf.

3. RESULTS

3.1. Sensitivity of SR estimation methods to
changes in parameters

The estimated SR values for various perturbations
of the 4 parameters (t, b, ¢;, and ¢;) in the DB method
are provided in Fig. 4a, while those of 3 parameters
(As, Bs, and Cy/Rqy,) in the MH method are provided
in Fig. 4b. From Fig. 4a, it can be observed that the
variability in the estimated SR for perturbations in 1
was the highest, and was therefore considered the
most sensitive parameter. It was followed by the b, c;,
and ¢, parameters in the DB method. In the MH
method (Fig. 4b), B; was the most sensitive parame-
ter, followed by Ci/R., and A,. It was also observed
that in most cases the SR estimated by the DB method
was lower than that estimated by the MH method for
the different parameter perturbations considered.
Sensitive parameters were calibrated.

3.2. Estimated SR

The calibrated parameter values in the MH method
were Ag = 0.045, B; = 0.20 and Cy/R.y, = 0.14. The cal-
ibrated parameters in the DB method 1, b, ¢;, and ¢,
were 0.6900, 0.0846, 0.0290, and 0.0080, respectively.
Using these parameters, measured maximum and
minimum air temperatures and CC at Gadag station,
SR was estimated for the study region.

The proposed methodology in Case 3 (estimating
SR in the absence of measured data) was validated
by comparison with the observed data for the region
from Biggs et al. (2007) (Fig. 5). The observed data

Fig. 4. Variability in the estimated solar radiation (SR) for perturbations in (a) 4 input parameters in the Donatelli-Bellocchi
method and (b) 3 input parameters in the modified Hargreaves method. CP: solar radiation estimated using calibrated
parameters; T: clear sky transmissivity; other parameters defined in Section 2.3
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Fig. 5. Mean monthly solar radiation (SR) at latitude 15.5°N

estimated using the Donatelli-Bellocchi (DB) and modified

Hargreaves (MH) methods for the period 1978-2000 and
measured SR from Biggs et al. (2007)

was for the period March 1984 to September 1995,
while the modeled data was for the period 1978-
2000. From the figure, it can be observed that the dif-
ferences between measured and estimated SR values
were relatively small during the April-May (June-
November) period for the DB (MH) method, and the
corresponding RMSE was 50.4 W m™2 (28 W m™).
The SR fluxes estimated with the DB method were
consistently higher than those estimated with the
MH method.

3.3. Downscaling of maximum and minimum
air temperatures

As part of an earlier study, the authors had already
downscaled IPCC scenario-based maximum and
minimum temperatures for the study area. More
details on this work are available in Anandhi et al.
(2009). The potential predictors selected are pro-
vided in Table 2. The downscaled maximum and
minimum air temperatures were projected to

Table 2. Probable predictors (selected from NCEP and
CGCM3 monthly datasets) for downscaling predictands.
See Table 1 for abbreviations

Predictand Probable predictors

Ta 925, Ua 925, Va 925,
LH, SH, SWR, LWR

Ta 925, Ua 925, Va 925,
LH, SH, SWR, LWR

PRW

1 Maximum temperature

2 Minimum temperature

3 Cloud cover

increase in the future for A1B, A2, and B1 scenarios,
whereas no trend was discerned for the COMMIT
scenario. The projected increase in maximum and
minimum air temperatures was high for the A2 sce-
nario, and it was least for the B1 scenario.

3.4. Downscaling of CC

The CC was downscaled in this study for use in SR
estimation. The amount of PRW, a large-scale atmos-
pheric variable and a predictor for the seasonal com-
ponent of radiation (Ilizumi et al. 2008), was the prob-
able predictor for downscaling CC. More PRW in the
atmosphere indicates more moisture, which causes a
statically unstable atmosphere leading to more vigor-
ous overturning that results in more precipitation. An
increase in the likelihood of precipitation indicates
more cloudiness.

To verify the reliability of the PRW simulations by
the GCM and to study the predictor—-predictand rela-
tionships, we prepared scatter plots and computed
cross-correlation using information for each of the 9
NCEP grid points enclosing the study area and their
collective information. The plots between the PRW
in NCEP and GCM datasets (Fig. 6) show that the
predictor variable was realistically simulated by the
GCM. Furthermore, the plots between the PRW in
NCEP data and the observed CC (Fig. 7a,b) show
that the PRW was positively correlated with the CC.
Thus, the PRW at 1-9 grid points were selected as
potential predictors.

The optimal values of the SVM parameters, i.e.
kernel width (o) and penalty term (C) were 50 and
4050, respectively. The downscaled CC values were
compared with the observed values (Fig. 7) for cali-
bration and validation periods and for wet and dry
seasons. The results showed good correlation
between the SVM downscaled CC and the observed
CC with an NMSE of 0.33 and 0.43 for wet and dry
seasons, respectively.

This study showed that CC is expected to increase
in the future for A1B, A2, and B1 scenarios, whereas
no trend was discerned for the COMMIT scenario.
The projected increase in CC was relatively high for
the A2 scenario, and it was least for the B1 scenario.

3.5. Trend in the SR projections
The trend was analyzed for the SR estimated by the

MH method for the various IPCC scenarios using
Sen's slope and the Mann-Kendall method for the
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period 1978-2100. For the baseline period (1978-
2000), the study region had a decreasing trend of
-2.7 Wm™ decade™! and was not statistically signifi-
cant (Fig. 8a).

The projected scenarios of SR projections for each
of the 4 emission scenarios (A1B, A2, B1, and
COMMIT) were estimated using MH methods
(described in Section 2.5). Estimated SR was found
to decrease in the future for A1B, A2, B1, and COM-
MIT scenarios. Among the 4 scenarios, the slope

was steepest for the A2 scenario (-1.2 W m™2 de-
cade™), followed by A1B (-1.0 W m~? decade™), B1
(-0.4 W m? decade™), and COMMIT (no change)
scenarios (Fig. 8b—e), at the 99 % significance level.
The projected decrease in SR was higher for the A2
scenario (12.2 W m™2 yr™!), whereas it was least for
the COMMIT scenario (0.4 W m~2 yr'!) (Fig. 8b). SR
simulations downloaded directly from the CGCM3
model also showed decreasing trends in the future
for these 4 scenarios (Figs. S1-S4 in Supplement 1).
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Fig. 8. Trend analysis in the estimated rate of change in solar radiation per year (SR) using Sen's slope method (a) for the
baseline period 1978-2000 and (b—e) for the future period 2001-2100 for the 4 emission scenarios. SR was estimated using
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4. DISCUSSION

In estimation of SR using MH and DB methods, the
parameters were calibrated. The calibrated parame-
ters were comparable to those from earlier studies. In
the study by Biggs et al. (2007), the parameter values
in the entire Krishna basin estimated by using the MH
method were A = 0.045, B, = 0.20, and Cy/R., = 0.15.
The parameters in the DB method obtained from SI-
PEAA (2004) for Hyderabad were 0.69, 0.0846, 0.029,
and 0.008 for 1, b, c1, and ¢, respectively.

The trends in CC are consistent with the results
from an earlier study. The increase in precipitation in
the region (Anandhi et al. 2008), increases the CC
and, in turn, decreases the SR (lizumi et al. 2008).
Spatially variable changes in annual CC were
observed in the region surrounding the basin (Biggs
et al. 2007).

The decreasing trend in SR was in agreement with
that reported in previous studies, showing a decrease
in SR during the period 1952-2001 in India (Biggs et
al. 2007, Wild 2009). In this region, changes in cloudi-
ness and anthropogenic aerosol forcing were found
to be the cause of decreasing SR (Biggs et al. 2007).
Further, the decreasing trend in the simulated diur-
nal temperature range was translated to a decreasing
trend in SR through the MH model.

5. SUMMARY AND CONCLUSIONS

In this study, we briefly discussed 3 different
methodologies for estimating future scenarios of SR,
namely: Case 1: SR is measured, Case 2: SR is meas-
ured but sparse, and Case 3: SR is not measured. In
Case 1, future scenarios were derived using down-
scaling methodologies that transfer the simulated
large-scale information of GCMs to the local scale
(measurements). In Case 2, the long-term SR was
first estimated at the local scale using sparse meas-
ured records, and then future scenarios were derived
using several downscaling methodologies. While in
Case 3, the long-term SR was first estimated at the
regional scale, which has completely or sparsely
measured records of SR, from which SR at the local
scale was estimated. Finally, the future scenarios
were derived using downscaling methodologies.

Implementation of the methodology provided in
Case 3 to estimate SR scenarios for regions with no
SR data was successfully demonstrated by applying it
to a concrete example, i.e. the Malaprabha River ba-
sin in southern India. Calibration and validation re-
sults indicated that the performance of the methodo-
logy and downscaling of meteorological variables
with SVM were satisfactory. The future SR scenarios
obtained using the methodology were dependent on
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the availability of observed data on predictor (meteo-
rological) variables, choice of models/methods used
in estimating SR, model parameter sensitivity, future
emission scenario, downscaling methods, and GCMs.
To bring out the variability in the future scenarios of
SR, 4 emission scenarios (A1B, A2, B1, and COM-
MIT) from the CGCMS3 were considered in this study.

The results of future scenarios of meteorological
variables (predictors of SR) in the study area indi-
cated that the maximum and minimum temperatures
and CC are projected to increase in the future under
the A1B, A2, and B1 scenarios. The projected in-
crease was high for the A2 scenario, whereas it was
least for the B1 scenario. The results of future scen-
arios of SR estimated based on downscaled CC and
temperatures revealed that SR was projected to de-
crease in the future for the A1B, A2, B1, and COM-
MIT scenarios. The decrease was the highest for the
A2 scenario and least for COMMIT. More model sim-
ulations are needed to explain the reductions in esti-
mated future solar radiation.
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