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Chapter 1

INTRODUCTION

Reliability is a measure of the capacity of a piece of equipment

to operate without failure when put into service. Reliability has been

defined in various ways. One of the best is that of the National

Aeronautics and Space Administration (NASA) which defines reliability

as the probability of a device performing adequately for the period

of time intended under the operating conditions encountered [1].

There exist several methods to improve the system reliability, eg,

using large safety factors, reducing the complexity of the system, in-

creasing the reliability of components through a product improvement

program, using structural redundancy, and practicing a planned mainten-

ance and repair schedule [2]. In this thesis the method of allocating

redundancy, the development of a general mathematical solution for the

optimum number, and the type of redundant components in a mixed parallel-

series system [2] are studied.

There have been a number of studies in the application of integer

programming to the optimization of single objective system reliability

problems. Tillman [3], [4] used Gomory's cutting plane algorithm for

maximizing reliability or minimizing cost subject to several constraints

and for components having different modes of failures. Hyun [5] solved

the Tillman :

s same problem oy Geoffrion's implicit enumeration method.

Ghare and Tayler [6] used Branch-and-Bound algorithm to determine the

exact solution to the problem of maximizing the total system reliability

when it is subject to multiple resource constraints. Misra [7]



used the Lawler-Bell partial enumeration method to solve problems such

as maximizing reliability or optimizing some other objective function

subject to multiple separab'e constraints, which need not be linear.

Hwang, Fan, Tillman, and Kumar [8] used zero-one integer programming

to minimize the weight of the subsystems of a life support system

subject to several separable constraints while maintaining an acceptable

level of reliability of the system.

Researches on multiple objective problems became active recently,

however, little study has been dcoe on integer constrained multiple

objective optimization. In the early 1960's Charnes and Cooper [9]

presented an approach to the solution of linear decision models having

more than a single objective. Later the work of Ijiri [10], and Lee [11]

has resulted in a systematic methodology known as Goal Programming for

solving linear, multiple objective problems. Ignizio [12] presented

linear integer goal programming using Cutting Plane method, Branch-and-

Bound method, and Zero-One algorithm to solve integer constrained

multiple objective problems. He also presented nonlinear goal pro-

gramming and nonlinear integer goal programming. His nonlinear integer

goal programing method is to reformulate the nonlinear problem into zero-

one linear problem and to solve it by linear integer goal programming using

zero-one algorithm. However, the size of a problem increases dramatically

during the reformulation, hence his method is not appropriate for big size

problems. Hwang and Paidy [13] used nonlinear goal programming method to

solve "Regional Water Quality Management" problem. But little study has

been done on nonlinear integer goal programming so far.



The objective of this study is to present the techniques to solve

integer constrained problems encountered in the system reliability

optimization. In Chapter 2 integer programming techniques are used to

solve single objective reliability problems with linear or nonlinear

constraints. In Chapter 3 a nonlinear goal programming method is

formulated using Hwang and Paidy's nonlinear goal programming technique

[13] and Branch-and- Bound algorithm [12]. Four multiple objective non-

linear reliability optimization problem with integer constraint are

solved to demonstrate the algorithm. Concluding remarks and proposals

for further study are discussed in the final chapter.

Statement of Problem

Generally a system with redundant components at each

stages has a structure shown In Figure 1-1. The reliability

of this type of system can be increased by adding more

redundant components at each stage. But by doing so, the

weight, the cost, and the size of the system will also increase.

There needs some trade-off among them. Hence, the problem

of this thesis is how to allocate redundant components in

order to optimize the system reliability.



1

H CM

I

iH CV

i

I

L__

r

_i__

CM

1

H CJ
CM
s

1

1

r-\ CM

CO

03

«

00

-p
c
0)

c
o
a
s
o
o

-p
c
03

T3

a;

CD

H

§
CO

0)

H
tn

<U

ra

•H

CO

CD

bo
c«

-p
n
I

2:

P

£
0)

p
co

>>
co

I

rH

0)

u

bO
H

CD

bO
c«

P
CO

CO

0)

•p
CO

4)

a



REFERENCES

1. Smith, Charles 0., Introduction to Reliability in Design , N.Y.:

McGraw-Hill Book Company (1976).

2. Tillman, Frank A., Ching-Lai Hwang, and Way Kuo, "Optimization

Techniques for system reliability with redundancy - A review,"

IEEE Transactions on Reliability , Vol. R-26, No. 3, pp. 148-155

(August 1977).

3. Tillman, F. A. and Liittschwager, "Integer programming formulation

of constrained reliability problems," Management Science ,

Vol. 13, July 1967, pp. 887-899.

4. Tillman, F. A., "Optimization by integer programming of constrained

reliability problems with several modes of failure," IEEE Trans-

actions on Reliability , Vol. R-18, No. 2, pp. 47-53 (May 1969).

5. Hyun, K. N., "Reliability optimization by 0-1 programming for a

system with several failure modes", IEEE Transactions on Reliability,

Vol. R-24, No. 3, pp. 206-210 (August 1975).

6. Ghare, P. M. and R. E. Taylor, "Cptimal redundancy for reliability

in series system", Operations Research , Vol. 17, pp. 838-847

(Sept. 1969).

7. Misra, K. B., "A method of solving redundancy optimization problems",

IEEE Transactions on Reliability, Vol. R-20, No. 3, pp. 117-120

(August 1971).



8. Hwang, C. L., L. T. Fan, F. A. Tillman, and S. Kumar, "Opti-

mization of life support system reliability by an integer pro-

gramming method", AI IE Transactions , Vol. 3, No. 3, pp. 229-238

(September 1971).

9. Charnes, A. and W. W. Cooper, Management Models and Industrial

Applications of Linear Programming , Vols. I and II, New York:

John Wiley & Sons, 1961

.

10. Ijiri, Y., Management Goals and Accounting for Control , Chicago:

Rand-McNally & Co., 1965.

11. Lee, Sang M., Goal Programming for Decision Analysis , Philadelphia:

Auerbach Publishers, 1972.

12. Ignizio, James P., Goal Programming and Extensions , Lexington,

Mass.: Lexington Books, 1976.

13. Hwang, C. L. and S. Paidy, "Regional water quality management by

nonlinear goal programming ", submitted to Water Resources Bulletin

for publication, 1978.



Chapter 2

INTEGER PROGRAMMING APPLIED TO OPTIMAL SYSTEM RELIABILITY

1. Introduction

Various papers have presented the application of integer programming

to a variety of problems. Problems treated in these papers can be clas-

sified into the following examples [1]:

Nomenclature

c-j a cost per component at stage j .

h. number of class failure modes In subsystem i.

m, number of redundant components at stage j

.

m* = maximum number of redundant components at stage j

.

J > max

N number of stages in the system.

qiu probability of failure mode u for each element In

subsystem I.

R. * component reliability at stage J

.

R system reliability.

R . minimum required system reliability.
S fSUXl

s^-hj number of class A failure modes In subsystem I.

W = weight of the system.

w.t weight of a component at stage j .
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Example 2-1 Linear Objective Function

The problem is to minimize a linear cost function

N

f =
I

C.m.
j=l

J J

for an N-stage series system, where m,+l components are used in the
J

jth stage, subject to the constraints:

R
s
- R

s,min

N

w -(m.+l ) ^ W

j=l J J

where

N m.+l

R
c

= ii [1 - (1 - RJ J
]

The constants associated with the problem are given as

N " 2 ' R
s,min = -

9903 ' W = 40

R
1

= .91 R
2

= .96,

c l
x 5 * c 2 = 8

w- » 9> w = 6



Example 2-2 Nonlinear Objective Function and Linear Constraint Functions

Consider the problem in v/hich N stages are connected in series and

redundant components, m., are added in parallel at each stage. The

objective is to determine m. at each stage, such that the system reli-

ability is maximized and the weight and cost constraints are not

exceeded. The problem is stated as

Maximize

N m,+l

sK - I Ll - - R*)

'

j
1

j=l

subject to

N

g
l

=

si
C
j
m
j - C

N

g?
»

I w.m. > W
6

j=l
J J

Consider the set of data used in [2,3,4,5],



10

Stage Cost Weight Probabil ity of Survival

J C
J

W
j

R.
J

1 1.2 1.0 0.20

2 2.3 1.0 0.30

3 3.4 1.0 0.25

4 4.5 1.0 0.15

C = 47.0, W = 20.0

Example 2-3 Nonlinear Objective Function and Nonlinear Constraint

Functions

In this example [6,7,8], the system has N stages operating in series,

We want to achieve a system reliability being at least R . while
s,min

minimizing the cost. To attain this reliability, redundant components,

m-, are added in parallel up to a maximum of allowed number, m. ,
J j, max

at each stage. The problem is:

Minimize

N

Z =
I c.m. exp(-m-/2)

j=1 J J J

subject to

9
1

"
j2i

[a
Jl
m
J

+ a
J2

m
j

+ aj3^^

N

9?
=

I b iCm i
+ exp(-m.) - a,] >
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N

g- =
I d.m. exp(-m./4) > D

J
j=l J J J

N m.+l
R = n [1 - (1-R.) J

] > R .

°i mj± m
j,max' J

=
] > Z * ••" N

The constants assigned to this problem are:

j C
J

a
jl

a
J2

a
J3

b
j »d

d
o

R
j

1 3 3 1 30 30 .90

2 2 3 1 1 30 4 30 .75

N=2
'

R
s,min

=
-85. -j^- 4. A- 37. B- 81, D = 38

Example 2-4

The example is to maximize nonlinear system reliability subject to

3 nonlinear constraints with redundant components in each stage that

are subject to type 1 failures [9].

Maximize

3 , h. m.+l
s
j m.+l-,

*(«") = n 1 - I
1

[1 - (1 - q 1u )

]

] - I (q iu )

1

i=l t u =l
1U

u-h
1
+l

1U

subject to

G^m) = (it^+3)
2

+ (m
2

)

2
+ (m

3
+2)

2
< 51,

G
2
(m) = 20(m-| p exp(-m-j)) + 20(m

2
+ exp(-m

2 ))

+ 20(m
3

+ exp(-m
3
)) > 120,
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G
3
(m) = 20(m

1
exp(-m

1
/4)) + 20(m

2
exp(-m

2
/4))

+ 20(m
3
exp(-m

3
/4)) _> 65,

m = (m-j, m
2

, m~), m. positive integer for i = 1, 2, 3.

The subsystems are subject to four failure modes (s- = 4) with one

failure (h
i

= 1) and three A failures, for i = 1, 2, 3. For each sub-

system the failure probability of an element is shown in Table 2-1.

Classification of Examples and Approaches

Generally, to solve the previous examples, there are five distinct

approaches capable of solving these examples by integer programming.

These are: Partial enumeration - Lawler & Bell, Implicit enumeration -

Lemke & Spielberg, Cutting plane method-Gomory, Branch-and-Bound, and

Implicit enumeration-Geoffrion. They are classified in Table 2-2.

2. The Lawler-Bell Partial Enumeration Method

Lawler and Bell [15] describe a programmed method for solving dis-

crete optimization problems with monotone objective functions and

arbitrary (possible nonconvex) constraints.

A brief review of the Lawler-Bell method is provided in this

section. The type of problems that can be solved by this method may be

put in the following form. Minimize gQ
(x) subject to m constraints of

the form
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Table 2-1

The type of failure and its failure probability

for each element.

type of failure

subsystem failure probability

i u q .N iu

.01

1 A .
.05

A .10

A .18

-OS

2 A .02

A .15

A .12

.04

3 A .05

A .20

A .10



Table 2-2 Classification of examples and approaches

11+

Examples Methods applied to the examples References

Example 2-1 Partial enumeration-Lawler & Bell

Implicit enumeration-Lemke &

Spielberg

6

10

Example 2-2 Cutting plane method - Gomory
Branch-and-Bound
Partial enumeration-Lawler & Bell

Partial enumeration
Enumeration-Balas or Glover

7,8

2,3,4,11
6

12

13

Example 2-3 Cutting plane method - Gomory

Partial enumeration-Lawler & Bell

7,3

6

Example 2-4 Cutting plane method - Gomory
Implicit enumeration - Geoffrion

9

14
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where

and

g^x) - gi2
(x) >_ 0, i s 1, .... m

X "' [ X-l , Xp j ' • * , XJ

Xj a or 1, j = 1 n

(D

Each of the functions in (1) must be monotone nondecreasing in

each of its arguments. With some ingenuity, many problems can be

put in this form.

Vector x is "binary" in the sense that each x, is either or 1;

x <_ y if and only if x^ <. y i
for j = 1 , . . ., n. eg. , x <_ y, where

•J J

x = (0,1,0) and y = (0,1,1). This is the vector partial ordering.

There is also the lexicographic or numerical ordering of these vectors

obtained by identifying with each x. Define the integer value

N(x) = x^""
1

+ x
2
2
n " 2

+ ... + x 2°. Numerical ordering is a refinement

of the vector partial ordering, i.e., x ^y implies N(x) <_ N(y) ; however,

N(x) <_ N(y) does not imply x <_ y.

Suppose all binary n-vectors are listed in numerical order, i.e.,

(o,.. .,0,0,0),

(0,.. .,0,0,1),

(0,.. .,0,1,0),

(0,. .,0,1,1),

(0,.. .,1,0,0),

etc,
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Immediately following an arbitrary vector x, there may (or may not)

be a number of vector x' with the property that x <_x'. Roughly

speaking, these are vectors that differ from x only in that they have

1 's in place of one or more of the 'right-most' O's of x. For example,

immediately following x = (0,1,0,0) are (0,1,0,1), (0,1,1,0) and

(0,1,1,1), each of which is greater than x in the vector partial

ordering.

Let x* denote the first vector following x in the numerical order-

ing that has the property that x £ x*. For any given x, the vector x* is

yery easily calculated on a computer as follows:

Treat x as a binary number:

(1) Subtract 1 from x,

(2) Logically 'or' x and x-1 to obtain x*-l

,

(3) Add 1 to obtain x*.

Some examples:

Let x = 0101100,

(1) x-1 = 0101011,

(2) x*-l = 0101111,

(3) x* = 0110000,

Let x = 0101011,

(1) x-1 = 0101010,

(2) x*-l = 0101011,

(3) x* = 0101100,
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Let x = 0101000,

(1) x-1 = 0100111,

(2) x*-l = 0101111,

(3) x* = 0110000.

Note that x*-l is greater than each of x, x+1 , . .. ,x*-2, in the

vector partial ordering.

The method is basically a search method, which starts with

x = {0,0,..., 0} and examines the 2
n
solution vectors in the numerical

ordering described above. Further, the labor of examination is con-

siderably cut down by the following rules. As the examination proceeds

one can retain the least costly up-to-date solution. If x is the solution

having "cost" g (x) and x is the vector being examined, then the following

steps indicates the conditions under which certain vectors may be skipped.

1) Test if g (x) > g (x). If YES, skip to x* and repeat the operation;

otherwise proceed to step 2).

2) Examine whether g.-,(x*-l) - gi2
(x) _> for 1 = l,...,m. If YES,

proceed to step 3); otherwise skip to x* and go to step 1).

3) Further, if g^U) - g i2
(x) > 0, (i = 1 , . . . , m), replace x by x

and skip to x*; otherwise change x to x+1. In either case further

execution is transferred to step 1). Lawler and Bell [15] call the

above steps of the algorithm skipping rules 1,3,2, respectively.

Following the above rules, all the vectors are examined and scanning

continues until a vector having maximum numerical order, viz., {1,1 1},

is found. In case one has skipped to a vector having numerical order

higher than {!,...,!}, designate this state by "overflow" and terminate



16

the procedure. The least "costly" vector recorded provides the optimum

solution. One should not be over-whelmed by the number of trials. In

practice the number of vectors to be examined may be quite small. For

1

1

example, in all 11-variable problem with a total of 2 -solution vectors,

only 42 vectors were examined.

Example 2-1

This example should first of all be formulated as follows:

Minimize

f = 5m-i + 8nu

subject to

[1 - (l-.91)
1+m

l][l -(l-.96)
1+m

2] : .9903

9(1 +1^) + 6(l+m
2

) < 40 (2)

or

minimize

g (m) = 5m-i + 8m
2

subject to

g^m) = ln(l-.09
1+m

l) + ln(l-.04
1+m

2) + .009747^0

g
2
(m) = 25 - 9m-] - 6m

2
>. (3)

Before m, and m
?

, the nonnegative integer variables, can be transformed

to the variables of zero-one type, it is necessary to estimate their

maximum values. This is done by substituting zero for all variables in

the constraints in (3) except the one for which the maximum range is

desired. Denote these by m*. ., where subscripts i and j refer to the
I J
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constraint and stage, respectively. Then m, = min {m*,-^} (i = l,...,m)

is an upper bound for m..

In problem (3) the upper limits of m-. and nu can be found by

letting m-, = or nu = alternatively as follows,

stage 1

:

ln(l - .09
1+m

l) + ln(l - .04) + .009747^0

or

ln(l - .09
1+m

l) > .031075

Hence

m-ji*
= M, (where M, -> »)

25 - 9m
1

- 6(0) >

or

m, £ 2.78

Hence

mh
- 2

m, = min {M, ,2}

= 2

stage 2;

or

In (1 - .09) + In (1 - .04
1+m

2) + .009747 ^0

In (1 - .04
1+m

2) :

L
.08564

Hence

m, p* = Mo (wnere M
?

"*" °°^
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25 - 9(0) - 6m
2

>

or

m
2
£ 4.17

Hence

m*
2

= 4

nu = min {M
2
,4}

= 4

Let

m
l

= x
ll

+x
12

m
2

= x
21

+ x
22

+ 2x
23 ^

where x.^ is either or 1

.

Substituting these in problem (3), one can obtain the following problem

as defined in problem (1):

g (x) - 5x-|-| + 5x
12

+ 8x
21

+ 8x
22

+ 16x
23

g]1
(x) = ln(l - .09

x
ll

+x
12

+1
)
+ ln(l - .04

x
21

+x
22
+2x

23
+1

) + .009747

g12 ( x )

=
g2 -|( x )

=
°

g22
(x) = 9xn + 9x

]2
+ 6x

21
+ 6x

22
+ 12x

23
- 25 (5)

Now the problem conforms to the Lawler-Bell algorithm. The solution is

arrived at after examining only twelve vectors out of the 32 generated by
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the five binary variables of (4). The sequence of examination and the

different rules applied are indicated in Table 2-3. The vector ordering

used is also shown, viz., x h (x^x^.x^.x^ ,x
21

>. There are no

definite rules about the ordering of these variables. However, it has

been observed for all the problems studied that the variables carrying

least "numerical weights" are assigned the "rightmost" position in the

ordering. This is done so that the numerical values of m, and m
?

in-

crease as the examination of solution vectors x preceeds.

To begin with Table 2-3, we set x = (0,0, ...,0) and g (x) = »

and at the end of the table, the solution is x and the minimum cost is

g M.
Iteration 1)

x = (0,0,0,0,0)

x*-l = (0,0,0,0,0)

911
(x*-l)'" g12

(x) = ln(l - .09) + ln(l - .04) + .009747

= .125386 <

Skip to x* through step 2)

Iteration 2)

x = (0,0,0,0,1)

9 (x) = 8

Hence

9 (x) < gQ
(x)

x*-l = (0,0,0,0,1)



22

Table 2-3

The examination sequence of Example 2-1 by Lawler-Bell algorithm.

x
23

x
12

x
22

x
ll

x
21

g (x*-l) - g. ? Cx)<0 skip to x* through step 2)

1 g (x*-l) - g 9
(x)<0 skip to x* through step 2)

1 gu (x) - g -(x)<0 change x^ x+1 through step 3)

•*- Q 1 1 feasible, g (x) = 13 skip to x* through step 3)

1 g. , (x) - g.-(x)<0 change x + x+1 through step 3)

1 1 g (x) > g (£) skip to x* through step 1)

1 1 g (x) = g C*0 skiP t0 x* through step 1)

1 SnW " ?nW <0 change x -^ x+1 through step 3)

1 1 g (x) = g (£) skip to x* through step 1)

1 1 g i;,

(x) - g 2
(x)<0 change x * x+1 through step 3)

1 1 1 g (x) > g (x) skip to x* through step 1)

1 1 g (x) > g (x) skip to x* through step 1)

1 g (x) > g (x) skip to x* through step 1)

x* = 1 (0,0,0,0,0); therefore overflow takes place and we stop.
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gn (x*-l) - g12
(x) = ln(l - .09) + ln(l--04

2
) + .009747

,086165 <

skip to x* through step 2)

Iteration 3)

x = (0,0,0,1,0)

g (x) = 5

Hence

g (x) < g (x)

x*-l = (0,0,0,1,1)

gn (x*-l) - g12
(x) = ln(l - .09

2
) + ln(l - .04

2
) + .009747

= .000013 >

g
21

(x*-l) - g 22
(x) = -(9+6-25)

= 10 >

change x to x+1 through step 3).

Iteration 4)

x = (0,0,0,1,1)

g (x) = 5+8 = 13

Hence

g (x) < g (x)

x*-l = (0,0,0,1,1)



2k

gn (x*-l) - g12
(x) = ln(l-.09

2
)

+ ln(l-.G4
2

) + .009747

= .000013 >

g
21

(x*-l) - g22
(x) = -(9+6-25)

= 10 >

gn (x) - g 12
(x) = .000013 > o

g 21
(x) - g 22

(x) = 10 >

Therefore, g (x) = 13 is a feasible solution.

x = (0,0,0,1,1)

skip to x* through step 3)

Iteration 5)

x = (0,0,1,0,0)

g (x) - 8

Hence

g (x) < gQ
(x)

x*-l = (0,0,1,1,1)

gi1
(x*-l) - g12

(x) = ln(l-.09
2

) + ln(l-.043 ) + .009747

= .001550 >

g
21

(x*-i) - g22
(x) = -(6-25)

= 19 >
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g^U) -
g12

(x) = ln(l-.09) + ln(l-.04
2

) + .009747

= -.086165 <

change x to x+1 through step 3).

The process is repeated, and the true optimum is shown by the arrow

in Table 1. Therefore, m-j = m
2

= 1 from (4).

Actually in a large problem there is an appreciable reduction in

the number of solution vectors being inspected. For example in a

5-stage problem of Bellman [16] requiring 11 binary variables, the

solution was obtained by examining 42 of the 2 solutions.

3. The Branch-and-Bound Method

The branch and bound method [2,17], is briefly introduced as

follows:

Problem A: Maximize the total system reliability

Rr
m

: n

i=l

n
i

(1-Pi
1

)

subject to the cons traints:

m
V a.-n. ;

: d., j = 1, ..., s; n, z 1 ; n, integer.

If we make the following transformations:

c
ik

= an (1 -
p^

+1
) - an (1 - p![)

m

J
i = l
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then Problem A can be identically formulated as

Problem B: Maximize

m °°

1 =
I I c

ik
x
ik'

i=l k=l
1K 1K

subject to constraints:

m oo

I I
a^x.. < b., j = 1, ..., s;

i=l k=l
1J 1K J

where x-
k

= or 1; and x
ik

= implies x^ = if i > k, x
ik

= 1

implies x. =1 if m < k.r im

The one-to-one correspondence of Problem A and Problem B can be

easily proved:

Let x = (x.k) be a feasible solution to Problem B and let k
i

be the

largest index such that x-
k

= 1.

Since X is a feasible solution for Problem B,

m °°

i=l k=l
1J 1K J

m m

Y a. .k. < d- - J a.

.

i=l U i - J
i=
L
i
U

m

i/M'V'li'i

Hence N = (n.
|

n. = k
i

+ 1) is a feasible solution for problem A.

The other constraints are satisfied since k- is a nonnegative integer.
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The objective function for the feasible solution x in proDlem B

is given by

m °°

i=l k=l
1K 1K

m k -

m i , , ,

I I Cln(l - Pf
1

)
- ln(l - P^)}

i=l k=l
1 ]

m k.+l

I On(l - P,
1

) - ln(l - P.)}
i=l

m
= InR -

I ln(l - P.).
1-1

1

As a conclusion, R is maximized when Z is maximum, namely, the

optimal solution to problem B corresponds to the optimal solution to

problem A.

The proposed solution procedure first obtains an optimal solution

to problem B and then converts it into an optimal solution for problem

A by using the relation n^ = k.. + 1 . Problem B is a multi-dimensional

knapsack problem (MDK).

The branch-and-bound procedure consists of two phases: (1) parti-

tioning the space of all feasible solutions into mutually exclusive

and exhaustive subsets using a consistent decision rule, and (2) estab-

lishing an upper (or lower as the case may be) bound over the objective

functions within these subsets. These phase of branching and bounding

are repeated until a solution is found that is better than the bounds on
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all the unexplored subsets. This solution is optimal. A complete

description of the branch-and-bound process is given by Balas [17].

In order to develop a bounding procedure for an MDK, consider a

single-dimensional knapsack problem:

i'laximize

m °°

J E c
ik

x
ik'

i=l k=l
1K 1K

subject to a single constraint

m °°

I I a. -x .. <_ b. for a given j.
i=l k=l

1J 1K J

Define the ratios Y
i(<

= c
-j|</

a
i-j-

Then, for a feasible solution,

m M m =°

Z -
I I C..X-. = I I Y ik

a..x.
k

i=l k=l
1K 1K

i=l k=l
1K 1J 1k

m oo

1 max [V.J I I a..x.. < max [y,J • b.

i,k
1K

1-1 k-1
J 1K

i,k
1K J

Also, since

exp(c
ik )

= (1 -
Pl

k+1
)/(1 - pj) - 1 + pf/(l + p

1
+ ... + p

k_1
)

and

exp(c
1k+1 ) = (l -P

k+2
)/0 -

P
k+,

) = 1 + P
k+V

(1 + p, + ... +
pf"

1
+ p

k
),
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it can be seen that c
ik

> c^
k+1

, which implies y
ik

> Y
i k+1

> or

max {y.- t } = max {y,-W- Hence Z <_ max {y..-,} • b..

i,k
1K

i
1!

i

ni J

In the MDK there are s constraints, one for each resource j,

Therefore, for any feasible solution for the MDK,

Z <_ max Cy.j-|} • b. for any j

or

Z <_ min [max iy.-. } • b .].

j " i
J

Consequently, the optimal feasible solution Z* is bounded by the

quantity min[max{Y--i } • b-]. This quantity is the upper bound for the

j i
J

MDK.

Let X = {x-
k
> be an intermediate solution in which none of the

resources is fully utilized. This intermediate solution can be aug-

mented by including x . if i and i satisfy the conditions (1) x. , = 1

(2) x--„ = 0, and (3) no exclude decision has previously been made for

x. . Any such qualified variable can form the basis of a decision

either to include or to exclude. This decision would partition the set

of all the feasible solutions based on the intermediate solution X

into two mutually exclusive and exhaustive subsets, and it would be a

basis for branching. The subset described by the decision to include

x. (i.e., x. = 1) would be termed an inclusive branch, and the subset

described by the decision exclude (i.e., x.. = 0) would be termed an

exclusive branch.
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Let k
i

be defined, as before, as the largest index such that

X
ik

= 1 before the branching decision. It can be seen that i = k- + 1.

Also, let I be the set of all indices i for which an exclude decision is

made before the branching decision. Then the bound for the inclusive

and exclusive branches (subsets) can be computed as follows.

Inclusive branch:

k
i* - k

i
'•

i

Unallocated resource bl = b- - ^ 7 a.-x., = b- - V k- • a
J J j_i i,_i 1J Ik J • -, 11 U

Hence the

m ^m i

Objective function (after branching) =7 7 c

i=l k=l
1K

upper bound on the inclusive branch equals

m
k
i

J I
c + min(max

( Yl k +1
) • bi)

i=l k=l 1K
j in 1**1 + 1 J

Exclusive branch:

i' = IUi*.

m

(1)

k.
m l

Unallocated resource b' = b- - T k. -a..
J J

i
=

i

"•
"'J

m
Objective function (after branching) =

I
c

i=l k=l

Hence the upper bound on the exclusive branch equals

(2)

m
k

i

I I c.. + min(max
( Y , ,,-, ) • bi

i=l k=l
1k

j 1/1' ^Y 1 J
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Figure 2-1 shows the overall computational flow chart using in-

clusive or exclusive decisions for branching, and equations (1) and

(2) for computing the bounds on the objective functions. The first

forward solution is obtained by selecting the component for a branching

decision that yields the highest upperbound on the inclusive branch.

During the forward procedure, the bounds for the exclusive branch are

stored as temporary bounds. The bounds for the inclusive branches are

not stored explicitly. After a complete solution is reached (i.e.,

at least one of the resources is depleted completely at a given solution

X°), all the temporary bounds on the exclusive branches are revised.

For this revision the index k
i

is changed to the largest such that x
ik

=l

in the solution X°, for i f i*. These revised upper bounds are then

compared with the objective function Z(X°). Only those branches need

to be explored further for which the upper bound exceeds Z( x
). The

method of branch-and-bound is used to solve Example 2-2.

Example 2-2

This example can be converted into the following problem:

Maximize

4 OS

1 =
I I c

ik
x
ik

i=l k=l
1K 1K

subject to

J (1.2x
lk

+ 2.3x
2k

+ 3.4x
3k

+ 4.5x
4k

)
<47-

k=l

(1.2 + 2.3 + 3.4 + 4.5) = 35.6
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Figure 2-1. Macro flowchart of computational procedure.
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kl}

^ xlk
+ x

2k
+ x

3k
+ x

4k } ^ 20 " (1 +1 +1 +1) = 16

where c,, = Jin (1 - P
k+1

)
- Jin (1 - P^).

Hence b, = {35.6, 16)
J

i=l

and {c
ik

> = r
. 182322

032790

.006431

.001281

.000256

i=2

.262364

.066939

.019238

.005700

.001704

i=3

.223144

.048790

.011834

.002937

.000733

i=4

.1397621

.061158

.002874

.000430

.000065

k=l

k=2

k=3

k=4

k=5

The computational procedure of Example 2-2 solved by branch-and-

bound method is shown in Table 2-4. The optimal solution is reached

at (k-| jkp.k-.kj = (4,5,3,2) or (n-, .n-.n-.n.) = (5,6,4,3) which gives the

system reliability, R = 0.991691. The same result has been obtained

by Proschan and Bray [5].

4. The Gomory Cutting Plane Method

The reliability optimization problems solved by this method should

have the objective and constraint functions in the separable types

and need not satisfy any convexity and concavity conditions. A separable

function of several variables is one that can be written as a sum of

functions each with only one of the variables as argument.
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TABLE 2-5

The optimal configuration of Example 2-2

Total system reliability = 0.991691

35

Stage i No. of parallel components ni

1 5

2 6

3 4

4 3
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The reliability optimization problem can be formally stated as:

optimize

N

1-
I f (m)

j=i J J

subject to

N

I g.Am.) < b, i = 1, 2, ..., s,

and

N

n R'. > R

j =1
J - s,rmn

m- = 0, 1, .... m'. j = 1, 2, ..., N, (1)

where all the terms are known except Z and m. and where,
vJ

Z = the objective function of the system to be optimized

N = the number of subsystems or stages

f. (m.) = the objective function at stage j as a function of m.

,

' J J

the number of redundant units

9-jjOn.;) = the amount of the ith resource consumed at stage j as a

function of m.
J

b
i

= the amount of the ith resource available

s = the number of constraints
m.+l

R '•
= 1 - O-Rj) J

> the reliability of the jth subsystem with

m.+l units, where R, is the reliability of each component
J J

R
c m-in

= tne "i1n1mura acceptable reliability of the system

m. = the number of redundant units used at stage j

ml = maximum number of redundant units allowed at stage j.
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There exists the fact that after some transformations the above

problem given by eq. (1) can be solved as the following integer pro-

gramming problem expressed by eq. (2):

optimize

subject to

N J

j=l k=0
JK JK

m m'.

I I ^ik^Tk 1 b
i

i = 1, 2, ..., s

j=l k=0
JK JK 1

N
m
j

j y AlnR 1

..m.. > 2,nR

|S] k=0 J jk ~ s 'm1n

and

m.
k

= 1 for k =

mjk- m
j,k-l ±° for k= 1, ..., mj

j = 1 , . . . , N

m-
k

> for all j and k (2)

where in addition to the same notations used in problem (1).

k = index used to denote a particular redundant unit at stage j

Now the new variable m.
k

is introduced which represents the kth

redundancy at stage j and is defined as follows

m.. = 1 for < k < m-

= m. < k < m'. (3)
J J
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with the obvious result that

m
j

kI,
m
ok

(4 >

In the above it is understood that the a in RV are numerically

evaluated coefficients. To complete the integer programming formulation

it is necessary to formulate the relationships of (3) as restrictions.

Equation (3) includes the requirement that each subsystem shall contain

at least one component. This is accomplished by including the following

restrictions

m,
k

= 1 for k =

j = 1, ..., N (5)

The remaining part of (4) insures that at each stage j, the kth redundant

unit m.. equals one if it is in the solution and that it is in the

solution only if the (k-l)th redundant unit is included. This is in-

corporated into the problem by including the restraints

mjk± m
j,k-l

k= lj ••" m
j

j = 1, ..., N (6)

Thus including (5) and (6) completes the formulation of the problem (1)

as an integer programming problem as stated by (2).

m.,, = the variable representing the kth redundancy at stage j,
"jk

where m..= 1 for k < m. and m..= for m. < k <_ ml
J K J J K J J

if =f
jk

fork=0

. f
j|t

- f
j

_

k_
! for k- 1, ..., Bj
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is the change in f,(m.) by adding the kth redundancy

at stage j, where f-
k

is the objective function of

stage j when exactly k redundant units are used.

Ag
ijk

=
9 ijk

for k =

=
g ijk g ij,k-l

for k =
'• •' m

j

K — I) • • • 5 S

is the change in g..(m.) by adding the kth redundancy

at stage j and where g... is the function of the ith
I
J K

resource consumed when k redundant units are used at

stage j.

AlnR' = InR' for k =

= InR' - InR'. . for k =
1 , . . . , m.

J K J » K~ I J

is the change in lnRl by adding the kth redundancy at stage j,
J

and where R' is the reliability at stage j when k redundant

units are used.

Example 2-3

To solve this example, the minimum system reliability requirement,

RL > R
s - s,min

should be transformed into

InR. > lnR
e

. = -0.1625
s — s,min

This can be written as



ko

or

2 4

-0.1625 < I y AlnR'.,jn..
~ j=l k=0

JK Jk

2 4

0,1625 > -
I I AlnR' m., .

j = l k=0 JK JK

The objective is to determine m • , the number of redundant units as

stage j, that minimizes the following cost function.

-m-,/2 -m lo
Z = [3m]e ' ] + [2m

2
e 2

/2
]

while not violating the system restraints:

g
1

= [3m
1

+ m^] + [3m
2

+ m^ + 1] < 37

m, -m^III! IMo

g 2
= [30(m

1
+ e ')] + [30(m

2
+ e

c
) - 4] > 81

m it -mo/4

g 3
[20mie

VI + t20m2
e ^ 38

2 m,+l

9A
= n [1 - (1-R.) J

] > 0.85
3=1

Problems with fewer linear constraints such as Example 2-1 can be

readily solved by methods presented in [5,16], but it seems that these

methods are inadequate for solving Example 2-3 which includes multiple

nonlinear restraints. The integer programming formulation of this

problem is illustrated in Fig. 2-2.

The Group I equations represent the greater than restriction, and

the Group IV equations represent the less than restrictions on the

system. The Group II equations insure that one basic unit is in each

stage. The Group III equations allow the kth redundant unit to be in

the solution only if the (k-l)th redundant unit is included and requires
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Fig. 2-2

The integer programming formulation of Example 2-3.
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the m., variables to be either zero or one. This minimization problem

is converted to a maximization problem by multiplying the objective

function by (-1). The c. equation is the objective function to be

maximized. The integer programming solution is as follows

m-,Q = 1 m„ = 1 m„2 =
1 m?4

=
^

m
21

=1 m
23

= 1

and all other m., = 0. To summarize, there are

m-, =0 redundant units at stage 1.

m„ = 4 redundant units at stage 2.

The minimum cost Z = 1.0827 and the system reliability R = 0.899 where

lnR
s

= -0.1065.

5. The Geoffrion's Implicit Enumeration Method

Geoffrion's implicit enumeration method was to solve the reliability

optimization problem with two classes of failure modes [9]. A formulation

by 0-1 linear programming [18,19] is introduced.

Notation and nomenclature:

k-out-of-n:F the system is failed if and only if at least k out of

its n elements are failed.

k-out-of-n:G the system is good if and only if at least k out of

its n elements are good,

m. number of failure modes in subsystem i.

s- total number of failure modes in subsystem i.
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Class failure modes those of which subsystem i is l-out-of-mj:F

h. number of class failure modes in subsystem i(u=1,

2, ..., h.)

Class A failure modes those of which subsystem i is 1-out-of-m. :G

s.-h. number of class A failure modes in subsystem i

(u=h
i
+l, ^+2, ..., s^

q. probability of failure mode u for each element in sub-

system i

.

b. the amount of system resource t available, size of the

constraint

T number of kinds of resources (t=l , 2, ..., T)

g. .(m.) subsystem i requires this much of resource t when there

are m. elements in it.

Qa(m.),Qu(m-) failure probability in subsystem i (m. elements) for

failure mode u of the class or A failure modes.

Q (m.),Q (m.) failure probability in subsystem i (m. elements)

subject to the class or A failure modes.

Q.(m.) failure probability in subsystem i (m. elements)

R(m) reliability of the system when the element allocation

is m.

G.(m) the system requires this much of resource t when the

element allocation is m.

X matrix with element x..
' J

N number of subsystems
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v. upper bound of m. elements in subsystem \

y. lower bound of m- elements in subsystem i (y-=k for

k-out-of-m. :G subsystems)

Q^ (m.),Q. (m.) probability of failure for subsystem i (m^ elements)

by mode u; the modes are separated into classes S & P

Assumptions:

1. All elements in subsystem i are s-independent with respect to failure

mode u; for each i, u combination taken by itself.

2. The system is l-out-of-N:F, with respect to its subsystems.

3. The failure modes are a partitioning (mutually exclusive and

exhaustive) of the failure event. Thus failure probabilities for

failure modes add to get total failure probability.

4. Within a subsystem, the elements are 1-out-of-m^ :G for some failure

modes; and at the same time are 1-out-of-m^ :F for the other

failure modes.

We state the original system reliability problem as

Problem A

Maximize
N

R n [1 - Q.CraJ] (1)
s

i=1
i i

subject to

N

G+ (m) = n g..(i!i.) < b , t = 1 , 2, . . . , T. (2)

where

Q^) = Q ^.) + Q
A

(mi )
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Q (m^) and Q (m.) are the unreliability of subsystem i obtained for

class failure modes and for class A failure modes, respectively. [9]

To formulate Problem A into a 0-1 linear programming problem, we

define the following 0-1 variable:

1 ; allocate j elements to subsystem i,

*«-<
; otherwise.

(3)

When we introduce this 0-1 variable the nonlinear system reliability

(Problem A) of the NIP-m problem can be expressed by the following

linearized objective function:

f(X)
N

v
i

- I I C--X--
i=l j=Y<

1J 1J

where, for all i and j,

h.

c
ij

E £n

s
i

Mj=1
1U

u=h
i
+l

j+1

q?u (J)

Q?„(J)«i-Ci-q
1u )

JT,
.Q?u

(J)«Cq
1u

)Jj+i

(4)

(5)

When we introduce the 0-1 variable into the T nonlinear constraints

(2), we get

N
V

i

9
t
(X) =

I I a,.x.,<.b, t = l,2, ..., T,
1=1 J=Y

i

J J

a
tij

- = 9
tl
-Cj)» for all t, i, and j

.

By definition of the 0-1 variable (3), we add the following N linear

constraints to the constraints (6):

(6)

(7)
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gT+i
(x) = i-I x.. > 0, i = 1, 2, ..., N.

J=Y,-

(8)

By introducing the 0-1 variable, we have therefore reformulated

problem A into a ZOLP problem which maximizes the linear objective

function (4) - (5) subject to the T+N linear constraints (6) - (8);

this is the ZOLP-m problem. It is proved, as follows, that there is

a one-to-one correspondence between the NIP-m and the ZOLP-m proposed

here.

First we prove that (4) and (5) are correct. It is obvious that

(5) is necessary. In order to prove that it is sufficient, substitute

(5) into (4):

N
V

i

f(X) =
I I *n[l - {Q?( j ) +Q?(j}}] x

1"1 J
=
Y,

J

N

= I
1=1

1 +
*n[l - {Q°(j) + Q^j)}] x.. +

JeZ

where

and

L+ m[l - (q9(j) + Q
A
(j)}] Xij

JeZ

Q?(j) = I Q?U (J). Q-(J)
1

u=l
1U I Q?U (J).

u=h.+l

Z,
1

3 [j : Y^ Y
i
+ 1. .... v^

(9)

is a set of subsystem i and a direct sum of the Z- and Z. (which are

partitionings of Z^. Let X* be a feasible solution to the ZOLP-m

problem. Then, (9) is as follows:
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f(X*) =
I I +

*n[l

1-1 Ul]
«?(J) + 0}(J)>] x^

where

N n A

I an[l - {QV(jt) + Q*(j*)}] = ^ R(j*), (10)

J
; U] > Jo» •••' Jp/ •

Now we prove that (6) and (7) are correct. It is obvious that (7)

is necessary. In order to prove that it is sufficient, substitute (7)

into (6):

MwjL J
1

«h«>*ij- j, U+*« u,x«
+

i-l 0-Y
i

1*1 JeZ
i

.L+ 9ti
(j) x

ij
t = 1, 2, ..., T.

Let X* be a feasible solution to the ZOLP-m problem, then (11) is

g t
U*) - l

}

J
z+

g
ti

(J) x^-^ g ti (jf)

(ii)

= G
t
(j*) l b

t
, t = 1, 2, ..., T. (12)

Example 2-4

The ZOLP-m problem is to maximize the linear objective function

(4) - (5) subject to the linear constraints (6) - (8) for N=3 and T=3,
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where the coefficients a... of (6) for j = 1, 2, 3, 4 are:

a
nj

=
( 3 + J)

2
'

a
i2j

= ^ 2
'

a
i3j

=
( 2 +

J')

2
«

a
2ij

= " 20(j + exP("J'))' a
3ij

= 2 °J exp(-j/4)

for i = 1, 2, 3.

b
]

= 51, b
2

= -120, b
3

= -65.

The ZOLP-m problem is illustrated in Table 2-6 in the required

ZOLP-m formulations which 1000 times the coefficient c. • for all i
I J

and j of the linear objective function (4). The variables in Table 2-6

can be converted into single subscript variables as follows:

X
lj

= X
j'

X
2j

= x
4+j'

x
3j

= x
8+j*

The feasible and optimal solution of the ZOLP-m example are shown in

Table 2-7; the optimal solutions are x« 1, x
g

« 1, and x,, =1.
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Table 2-6

The integer programming formulation of Example 2-4

Obj ective Function, X
ij

1 i : 1 2 3 4

1 67.0 37.3 41.4 50.5

: 211.

S

256.7 334.5 417.1

3 140.5 132.8 165.3 204.5

Constraints

i j
: 1 2 3 4

1 -16 -25 -36 -49

2 -1 -4 -9 -16

5 -16

G
1

< 51

-25 -56

42. 61.0

same-

same-

• £1> G
? 1 -120.0

80.4

15.6 24.3 18.3

same-

same-

#3_, G. <_ -65.0

!9.4 -1 -1 -: -i

#4, G4^

1

:

o o

l -i

£5, G r < 1

•1 1

oooo
same

-1 -1 -1 -1

*£» G
6 - l



step 37 steD 41

step 61 step 91

50

Table 2-7

The feasible and optimal solutions to Example 2-4

Feasible Solutions

1

2

3

1 2 3 4 1 2 3 4

1
1

1 1

1 1

1

2

3

3 1 1

3 1 1

1 1

1 1

2 1

3 1

Optimal Solution

m* = 2, m* = 1, m* = 3.
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Chapter 3

NONLINEAR INTEGER GOAL PROGRAMMING APPLIED TO OPTIMAL SYSTEM RELIABILITY

1. Introduction

In the previous chapter several integer programming methods to solve

single objective reliability problems are introduced. In practice,

however, there arise a lot of multiple objective decision problems in

the system reliability optimization. For example a decision maker may

want to minimize the total cost and maximize the system reliability

at the same time, or he may want to make a system which has high reli-

ability, small volume, light weight, and low cost. Also there always

exists conflict among the decision maker's objectives or the attributes

of a system.

The purpose of this chapter is to present an algorithm to solve

the multiple objective optimization problems which need all integer

solution. The algorithm, which can be called nonlinear integer goal

programming, is formulated using Hwang and Paidy's nonlinear goal pro-

gramming technique [1] and the branch-and-bound algorithm applied in

Ignizio's linear integer goal programming [2].

2. Algorithm

The general form of the multiple objective model considered within

this chapter is given as:



&

Find

such that

x = (x-,, x
2

, ..., x ) so as to minimize

a = {[g^n.p)], [g
2
(n,p)], ..., [g k

(n,p)]}

^(x-,, x
2

Xj) + n
i

- p
i

= b., Vj

x, n,p >

x
t

= 0, 1, 2, for all t

(3-1)

As may be seen, the only difference between this formulation and

that of the general nonlinear goal programming is the integer con-

straints:

x
t

= 0, 1, 2, ... for all t

The technique of Branch-and-Bound employed in linear integer goal

programming by Ignizio [2] was Dakin algorithm [3,4]. Branch-and-Bound,

in essence, is a way to solve integer programming problems by implicitly

enumerating all possible solution combinations. The Dakin algorithm,

when applied to nonlinear integer goal programming, proceeds by first

solving the problem by general nonlinear goal programming (i.e., ig-

noring the requirements of the integer variables). If the solution

achieved by nonlinear goal programming happens to satisfy all the in-

teger conditions, the optimal solution is found. If not, one variable,

that is not integer valued and that provides the most preferrable achieve-

ment function value in the nonlinear goal programming solution, is
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selected. Using this variable, two new absolute objectives are de-

veloped as follows:

Let x be an integer constrained variable that is presently

fractional valued where the fractional value of x
s

is given by x
s

-

Then let [x ] represent the largest integer that is less than the

value x . Thus, the range given by:

[x
s
] < x

s
< [x

s
J + 1

is infeasible for x . To avoid a solution in this range the following

two objectives may be utilized:

x
s 1 [x

s
]

(3-2)

x
s

> [x
s
] + 1 (3-3)

Dakin lets each of the above objectives represent a new "branch"

from the previous problem. The problem associated with each new

branch is the goal programming problem as previously specified plus

the new objective associated with the branch under consideration. These

new, augmented problems are solved and the process is repeated according

to the certain rules until convergence to an optimal integer solution

is obtained. In this process priority level one must be reserved

solely for absolute objectives. Figure 3-1 serves to illustrates the

basic procedure.

Some simplifying notation and concepts used in describing the non-

linear integer goal programming algorithm are specified as follows:
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Node 1

Goal Programming
Problem without
Integer Conditions

x
s

>_ Cx
s
] + 1

(or x
s

+ n
2

- p 2
= [x

s
] + 1)

Node 3

Problem Formulation of
Previous Node Plus New

Objective: x > [x_] + 1

s — s

x. < [x ]
s s

(or x
s

+ n
1

- p
1

= [x
s
])

V
Node 2

Problem Formulation of
Previous Node Plus new
Objective: x„ < [x„]

s — s

\/ "

Figure 3-1. Branch-and-Bound Schematic
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x represents the solution, as achieved via nonlinear goal

programming, at node q.

Y represents the value of a, as computed by nonlinear goal

programming, at node q (and thus is a lower bound for

mode q).

Y* represents the best feasible solution (i.e., all variables

are integer) thus far obtained.

GP represents the goal programming formulation at node q.

NG represents the new objective (from either (3-2) or (3-3))

at node q.

For any two solutions, say 7, and 7k >
y", is preferred to y, if a

a d a d

priority level of y, is lower in value than the corresponding priority

levels in y, and all preceding priority levels are equal in both 7a

and y".
. For example, if:

7
3

= (0, 170, 18, 200)

and

7
5

= (0, 170, 14, 303)

then 7c is preferred to 73 -

The details of the nonlinear integer goal programming algorithm is

stated as follows:

Step 1: Establish the problem in terms of the goal programming formu-

lation as specified in equation (3-1). Reserve priority

level one solely for absolute objectives.



59

Step 2: Set q=l , and y* = (M, M, ..., M) where H is some arbitrary high

value. Designate the goal programming formulation, excluding

integer condition, as GP . Solve GP via nonlinear goal pro-

gramming at node q so as to establish x and ~
.

Step 3: Check the first term in y . If this term is positive then one

or more of the absolute objectives have been violated and thus

no implementable solution exists at this node. Terminate this

node and go to Step 5 (termination of a node infers that the

node cannot be branched from in any future steps). If, however,

the first term in y is not positive go to Step 4 (without

terminating node q).

Step 4: Compare 7a with 7* If 7a
= 7* and x is all integer solution,

terminate node q and go to Step 5. If T is preferred to 7*.

go to Step 6 (without terminating node q) . However, if 7* is

preferred to 7q3 terminate node q and go to Step 5.

Step 5: If all nodes have been terminated (not including those which

have been branched from), then stop and specify 7* as the

optimal solution. If any nodes are unterminated, proceed to

Step 6.

Step 6: If q is even valued, go to Step 9. Otherwise go to Step 7.

Step 7: Check all 7
q

values associated with any node not yet term-

inated or branched from. Select the node with the most pre-

ferable y
q

as the node to be branched on next. Go to Step 8.
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Step 8: Try branching with each variable which has a fractional value

at the node selected to be branched on next as follows:

(1) Select a fractional valued variable (designated as x )

for branching.

(2) Specify a new objective x <_ [x ], where x represent

the fractional value of x .

(3) Add this objective to the goal programming formulation

of the previous node
a

to obtain GP„ ,
-, . Solve GP ., tor q+1 q+1

establish x , and 7Q+ -i
•

(4) If x

_

+
, contains all integers and 7a+1 is better than y*»

set y* = 7q+ t and terminate those nodes in which 7* is pre-

ferred. Otherwise 7* remains at the same value.

(5) Specify a new objective x >_ [x ] + 1.

(6) Add this objective to the goal programming formulation of

the previous node
b

to obtain GP .-. Solve GP
2

to establish

*q+2
and ~q+2'

(7) If x" +2 contains all integers and 7Q+2 1S better than y*,

set 7* - 7Q+2 and terminate those nodes in which y* is preferred.

Otherwise y* remains at the same value.

After going through above procedures for e^ery fractional

valued variable, select a branching which gives the most pre-

ferable yq+ i
or 7a+2 f° r tne new two nodes. Go to Step 9.

That is, the node branched from to reach this node.

Again, the node branched from to reach this node.
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Step 9: Set q = q+1 . Go to Step 3.

In the next section numerical examples in the system reliability

optimization are provided to illustrate the algorithm.

3. Numerical examples

Example 3-1 :

min a = [(p
]

+ p
2
), (n

3
)]

G-j: 1.2x-| + 2.3x
2

+ 3.4x
3

+ 4.5x
4

+ n-, - p
]

= 35.6

G
2

: X, + Xp + x^ + x, + n
2

- P2
= 16

x,+l x 9 +l x~+l xA+l

G
3

: (1 - .20 ' )(1 - .30
c

)(1 - .25
J

)(1 - .15
4

)

+ n
3

" P
3

=
]

where X-. , x
2

, x
3

, and x. are nonnegative integers

and n, p >_

The solution to the problem is summarized via the Branch-and-Bound

schematic of Figure 3-2. The objectives shown at each branch are those

that must be included along with the goal programming formulation of the

preceding node to form the problem to be solved at the corresponding node.

The progress of the algorithm may be described with reference to

Figure 3-2 as follows:

Node 1 : The original goal programming problem is solved. No variable is

integer. Each variable is tried for branching and lower bounds are

found as shown in Table 3-1. x-, has the lowest bound and is picked for
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r (k,«)

x 3 (7. oil, k.6k, 1.2k, 2. =2)

Y3
* (0, .Cko35)

x- = (3.37, 3.22, 3.13, 3)

Y- 3 (0, .Cl06k)

Solution not any tetter than

Y so node terminated

*,,
a (k.67, 3.93. :.*2, 2.30)

T. = (0, .00?ek)

T » (M,X)

x
2

s (k, k.32, 3.12, 2.27}

T, = (0, .C072k)

\ T (H.M)

^tode It) ?. * (3.32, k.u.1 , 3.k9, 2)

Yk
* (0, .00725)

Solution not any better

than y so ""de

:erminated /x >
5 i ?

Y* = (0, .CC831)

x » (k, 5. 3. 2)

x
?

= (3.9 7 , 5.13, k.1 7
, 1.05)

r? = (0, .02212)

x, <U.

—

»

T = (0, .OOS31 )

—

*

X = (k. 5. 3, 2)

5 (k. k, 3.71, 2)

^6 s (0, .00757)

r* * (0, .00831)

x* * (k, 5, 3. 2)

*
9

= (k, k, k.10, 1.70)

Y, = (0, .0095k)

Solution not any better

than Y !0 ~ada

terminated

Solution not any
—»

better than y
30 node terminated

• (k, k, 3, 2)

Yg * (0, .01000)

Solution not an7
—

*

better t.-.an Y
so node terminated

Figure 3-2 Solution to Example 3-1
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Trial branchings from node 1 of Example 3-1
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Branch Remark

x
1

< 4 4.00, 4.32, 3.12, 2.27 0, .00724 lowest bound

x
1

> 5 7.44, 4.64, 1.24, 2.62 0, .04685

x
2

< 3 3.83, 3.00, 3.75, 2.52

x
2

> 4 3.18, 3.15, 3.05, 3.15

0, .01113

,85, .01195

x
3

< 3 3.18, 3.18, 3.00, 3.17

x
3

>_ 4 3.52, 3.47, 4.10, 2.10

0, .01198

0, .00889

x
4

< 2 4.02, 4.00, 3.70, 2.00

x
4

> 3 3.37, 3.22, 3.13, 3.00

0, .00758

0, .01084
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next branching, x-j <_ 4 and x-, < 5 are used as the new branching ob-

jectives.

Node 2 : Node 2 is the same goal programming problem as at node one with

one additional objective of x
1

+ n^ - p4
= 4 (where p. is to be minimized

at priority level 1). The solution of this problem can be found from

Table 3-1, i.e., x
£

= (4, 4.32, 3.12, 2.27) and 7
2

= (0, .00724). Move

to node 3.

Node 3 : Node 3 is the same goal programming problem as at node 1 with

the additional objective of x, + n, - p» = 5 (where n, is to be minimized

at priority level 1). The solution of this problem can be found from

Table 3-1, i.e., x~
3

= (7.44, 4.64, 1.24, 2.62) and
~
3

= (0, .04685).

The best y at an unterminated node is that associated with node 2.

Thus each fractional valued variable at node 2 is tried for branching

as shown in Table 3-2. x, has the lowest bound and is picked for next

branching, x, <_ 2 and x» _> 3 are used as the new objectives.

Node 4 : Node 4 has the same goal programming formulation as its immediate

predecessor, node 2, plus the additional absolute objective of

x4
+ n 5

- P5
= 2 (where p 5

is to be minimized at priority level one).

The solution of this problem can be found from Table 3-2, i.e.,

x
4

= (3.82, 4.41, 3.49, 2) and 74
= (0, .00725). Moved to node 5.

Node 5 : Node 5 represents the same goal programming problem as at node 2

plus the additional absolute objective of x» + rir - p 5
= 3 (where n

5
is to

be minimized at priority level 1). The solution can be found from

Table 3-2, i.e., x"
5

= (3.37, 3.22, 3.13, 3) and 7
5

= (0, .01084).
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Table 3-2.

Trial branchings from node 2 of Example 3-1

Branch x y Remark

x
2

< 4 3.93, 3.90, 3.24, 2.42 0, .00740

x
2

> 5 3.18, 3.15, 3.05, 3.15 1.85, .01195

x
3
<3 3.18, 3.18, 3.00, 3.17 0, .01198

x
3

> 4 3.52, 3.47, 4.10, 2.10 0, .00889

x
4
£ 2 3.82, 4.41, 3.49, 2.00 0, .00725 lowest bound

x
4

> 3 3.37, 3.22, 3.13, 3.00 0, .01084
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The best Y
q

at an unterminated node is that associated with node 4.

Thus each fractional valued variable at node 4 is tried for branching

as shown in Table 3-3. x
2

has the lowest bound and is picked for next

branching. x
2

<_ 4 and x
2

> 5 are used as the new objectives. Note

from Table 3-3 that x has all integer solution when x
3

< 3, i.e.,

x = (4, 5.04, 3, 2) and 7= (0, .00827), which can be approximated as

x = (4, 5, 3, 2) and 7 = (0, .00831). Obviously 7 = (0, .00831) is

better than 7* = (M, M). Set 7* = (0, .00831) and 7* = (4, 5, 3, 2).

Node 3 and node 5 are terminated because their solution is not any better

than y*. Move to node 6.

Node 6: Node 6 has the same goal programming formulation as its immediate

predecessor, node 4, plus the additional absolute objective of

x
2

+ n
6

" p6
= 4 (wnere P5 is to be minimized at priority level one).

The solution is, from Table 3-3, x~
6

=(4, 4, 3.71, 2) and 7= (0, .00757).

Move to node 7.

Node 7 : Node 7 represents the same goal programming problem as at node 4

plus the additional absolute objective of x
2

+ n
g

- pg
= 5 (where n

fi
is

to be minimized at priority level one). The solution is, from Table 3-3,

x
?

= (3.98, 5.18, 4.17, 1.05) and
~
?

= (0, .02212). Node 7 is terminated

because 7
7

is not any better than 7*-

The only node that has not been yet terminated is Node 6. All the

variables except x
3

have integer value. Thus, x
3

is tried for branching

for the next new two nodes as shown in Table 3-4. x
3

<_ 3 and x
3

>_ 4

are used as the new objectives. Note from Table 3-4 that x has all

integer solution when x
3

< 3 but 7=(0, .01000) is not any better than



Table 3-3,

Trial branchings from node 4 of Example 3-1

67

Branch Remark

x
2

< 4 4.00, 4.00, 3.71, 2.00

Xp - 5 3.98, 5.13, 4.17, 1.05

0, .00757

0, .02212

lowest bound

x
3

< 3 4.00, 5.04, 3.00, 2.00

x
3

> 4 3.79, 4.22, 4.10, 1.65

0, .00827

0, .00973

feasible



Table 3-4.

Trial branching from node 6 of Example 3-1

68

Branch x Y Remark

x <3 4.00,4.00,3.00,2.00 0, .01000 Feasible

x
3
>4 4.00,4.00,4.10,1.70 0, .00954
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y* = (0, .00831). Hence y* remains at the same value.

Node 8 : Node 8 has the same goal programming formulation as its imme-

diate predecessor, node 6, plus the additional absolute objective

of x
3

+ n
7

- p 7
= 3 (where p 7

is to be minimized at priority level

one). The solution is, from Table 3-4, Xg = (4, 4, 3, 2) and y8
=

(0, .01000). 7g is not any better than 7*. so node 8 is terminated.

Move to Node 9.

Node 9 : Node 9 has the same goal programming formulation as its immediate

predecessor, node 6, plus the additional absolute objective of x
3

+ n
7

- p 7
= 4 (where n

7
is to be minimized at priority level one). The

solution is, from Table 3-4, x
g

= (4, 4, 4.10, 1.70) and 7
q

= (0, .00954).

Yg is not any better than 7*> so node 9 is terminated.

At this point, all nodes are terminated and the optimal solution is

x* = (4, 5, 3, 2) and a * = 7* = (0, .00831).

Note that this example problem is the reformulation of Example 2-2

by taking the constraints as the priority level one and the objective

as the priority level two. Both solutions are the same, which is a rational

result.

Example 3-2:

mi n a = {(p
1

+ n
2

+ n
3
), (n

4
)}

G-j: (x-j+3)
2

+ x
2

+ U
3
+2)

2
+ n-, - p

1
= 51

G
2

: 20(x
1
+exp(-x

1
)) + 20(x

2
+exp(-x

2 ) ) + 20(x
3
+exp(-x

3
)) + n

2
-p

2
= 1 20
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G
3

: 20(x-,exp(-x
1
/4)) + 20(x

2
exp(-x

2
/4)) + 20(x

3
exp(-x

3
/4)) + n

3
-p

3
= 65

x,+l x,+l x,+l x,+l

G
4

: (1-[1-(1-.01) ' ] - .05 ' - .10 ' - .18 '
}

x 9+l x
9+l x 9 +l x 9+l

{1 - [1 - (1 - .08)
c

] - .02
c

- .15
c

- .12
c

}

x^+1 X-+1 x.,+ 1 x^+1

{1 - [1 - (1 - .04)
J
] - .05

J
- .20 ^ - .10

J
} + n

4
- p4

= 1

where x-, , x
2

> and x
3

are nonnegative integers and n, p >_ 0.

This problem is the reformulation of Example 2-4 by taking the con-

straints as priority level one and the objective as priority level two.

The solution to Example 3-2 is given in Figure 3-3. Trial branchings

from each node are presented in Tables 3-5 through 3-9. Note that in

solving this problem the actual optimal solution is found at node 8 but

must proceed to investigate three additional nodes (one of which is

also an optimal) before the search is terminated. The solution to the

problem is x* = (2, 1, 3) and 7* = (0, .33924), which is the same as

that of Example 2-4 as expected.

Example 3-3 :

min a = {(p
1

+ p 2
+ p 3

), (n
4
)}

G-j : x? + 2x
2

+ 3x
3

+ 4x^ + 2x^ + n
1

- p-j
= 110
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Y =

T' =

Y,

*, = (2.53. 1 .05. 1 .66)

Y^ = (0, .3111.72)

9*

s

Y-
3

Y* = (0, .3ii7!i3)

I* = (2, 2. 2)

*
2

= (2. 1.2k, 2.22}

» (0, .32377)

(0, .31i7iiS)

(2, 2, 2)

(3, 2, 1.32)

(0, ,3iio92)

Solution not any

better than Y

so nods terminated

Y* = (0. .3U7!i3)

x* = (2. 2, 2)

\ (3, 1, 1.56)

v
k

= (0, .31535)

-2 <̂ 1

Y

X"

T

(0, .3ii7b.3)

(2, 2. 2)

(2.33, .93, 2)

(.17, .31952)

= (0, .3li7L3)

x- = (2, 2, 2)

*
6

* (3.23, 1.3I1, 1.12)

' (.u.6, .32672)

Infeaaibls sines absolute

objectives violated,

terminate node

~ = (0, .3392ii)

x* « (2, 1, 3)

(2, 2, 2)

(0, .31i7!i3)

Infaaaibia since a'caoluta objectives

violated, terminate nods

r" = (0, .33c2ii)

x* «= (2, 1, 3)

1

1

?
11

(1.90, 1, 3)

(0, .33 c 33)

Feasible solution

node terminated

Feasible solution

nods terminated

^ * (0, .33°2!i)

• (2, 1, 3)

(2, <, 2.aD
' (0, .32533)

10

(0, .3392!:)

(2, 1, 3)

» (2.36, ', 2.05)

* (,li,1. .3l3li3)

Infsasible sines absolute objectives

violated, terminate node

Figure 3-3 Solution to Ixample 3-2



Table 3-5.

Trial branchings from node 1 of Example 3-2.

72

Branch Remark

x, < 2 2.00, 1.24, 2.22

x
1

> 3 3.00, 1.03, 1.52

0, .32377

0, .31575 lowest bound

x
2 1 1

x
2 — 2

2.22, 1.00, 2.20

2.05, 2.00, 2.00

0, .32090

0, .34740 feasible

x3- ]

x
3

> 2

3.23, 1.50, 1.00

2.34, 1.09, 2.00

0, .33577

0, .31774



Table 3-6.

Trial branchings from node 3 of Example 3-2.

73

Branch Y Remark

x
2

< 1 3.00, 1.00, 1.56

x
2

> 2 3.00, 2.00, 1.32

0, .31585

0, .34692

lowest bound

x
3

< 1 3.02, 1.55, 1.00 0, .33635

x
3

> 2 2.58, 1.96, 2.00 ,42, .34637 infeasible



Table 3-7.

Trial branchings from node 4 of Example 3-2.

Ik

Branch x 7 Remark

x
3

< 1 3.28,1.34,1.12 .46,-32672 infeasible

x
3

> 2 2.83, .98,2.00 .17, .31952 infeasible



Table 3-8

Trial branchings from node 2 of Example 3-2.
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Branch Y Remark

x
? - 1

x
2

> 2

2.00, 1.00, 2.41

2.00, 2.00, 2.00

0, .32533

0, .34748

lowest bound

feasible

x
3

< 2 2.00, 1.51, 2.00

x
3

> 3 1.99, 1.03, 3.00

0, .32712

0, .33928 feasible



Table 3-9

Trial brancnings from node 8 of Example 3-2,

76

Branch x y Remark

x
3
<2 2.36,1.00,2.05 .41,. 31843 infeasible

x
3

> 3 1.99, 1.00, 3.00 , .33933 feasible
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G
2

: 7[x
1

+ exp(x
]
/4)] + 7[x

2
+ exp(x

2
/4)] + 5[x

3
+ exp(x

3
/4)]

+ 9[x
4

+ exp(x
4
/4)] + 4[x

5
+ exp(x

5
/4)] + n

2
" p 2

= 175

G
3

: 7x-|exp(x-|/4) + 8x
2
exp(x

2
/4) + 8x

3
exp(x

3
/4)

+ 6x
4
exp(x

4
/4) + 9x

5
exp(x

5
/4) + n

3
- p

3
= 200

X x x

G
4

: [1 - (1 - .80) ^[1 - (1 - .85)
2
][1 - (1 - .09)

3
]

X X

[1 - (1 - .65)
4
][1 - (1 - .75)

5
] + n

4
- p4

= 1

where x-> , x
?

, x-, x
4

, and x
5

are positive integers and n, p >_ 0.

In this problem G-. , G
?

, and G
3

are nonlinear resource constraints

and G
4

is system reliability, which is the same problem as single ob-

jective decision problem when G
4

is taken as the objective and G-| , G
2

,

and G
3

as the constraints. The solution to Example 3-3 is given in

Figure 3-4. Trial branchings from each node are presented in Tables 3-10

through 3-14. The solution is x* = (3, 2, 2, 3, 3) and a* = y* = (0,

.09553). Hence, the optimal system reliability is:

.R = 1 - .09553 = -90447

Consumption of each resource is:

G
1

= 83, G
2

= 146.12, G
3

= 192.48

Example 3-4 :

min a = {(n
4 ), (p2 ), (p

3
), (p^}
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T - (M,«)

x
3

= (2.68, 2.69, 2.69, 2.69, 2.69)

Y, = (.3117!i, .10179)

(M.M)

(2.6", 2.31, 2.12, 3.69, 2.6k)

(0, .07-762)

Infeasible since absolute objectives

violated, terminate node

Y* =

Y- =

(0, .09553)

(3, 2, 2, 3, 3)

(1.77, 3.ii7, 1.68, k.09, 1.82)

(0
'

- l6k05) Solution not

than y" so nod

terminated

y" - (o, .09553)

** (3, 2, 2, 3, 3)
*"

7 * (2.63, 2.67, 2, 2.90, 3.10)

Y7 =» (0, .06936)

—

«

Y a

X* =

Y =

r* =

7
!1

!

(C, .09553)

(3, 2, 2, 3, 3)

(3, 2.J.1, 2, 2.92, 3.01)

(0, .08751)

(0, .09553)

(3, 2, 2, 3, 3)

• (3.06, 3, 1.51, 2.U.3, 3)

' (0, .12591)

, Mode

Solution not any tetter than y'

so node terminated

(3, 2, 1.57, 3, 3.k2)

10ti9?)

Solution not airr better than Y
so node terminated

Figure Solution to Ixam.ole 3-3



Table 3-10

Trial branchings from node 1 of Example 3-3.
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Branch Remark

*ii 2

x, > 3

x
2 1 2

x„ > 3

x
3

< 2

x
3

> 3

*
4 £ 3

x
4

> 4

x
5
£2

x5- 3

2.00, 2.69, 2.72, 3.28, 2.67 0, .10067

3.00, 2.09, 3.47, 2.43, 2.20 0, .14544

2.57, 2.00, 2.36, 3.65, 2.80 0, .08230

2.72, 3.00, 2.35, 3.02, 2.39 0, .09550

2.44, 2.34, 2.00, 3.75, 2.82 0, .07871

2.68, 2.69, 2.69, 2.69, 2.69 .31, .10179

2.84, 2.66, 2.35, 3.00, 2.65 0, .08693

2.85, 2.54, 2.78, 3.15, 2.22 .85, .09923

2.71, 2.36, 2.34, 4.00, 2.00 0, .10276

2.26, 2.41, 2.80, 2.85, 3.00 0, .10072

lowest bound

infeasible

infeasible



Table 3-11

Trial branchings from node 2 of Example 3-3.

80

Branch Remark

x
l

<_ 2

x
l

> 3

x
2

< 2

x
2

> 3

x
4 1 3

x
4

> 4

X
5

< 2

x
5

> 3

2.00, 2.80, 2.00, 3.36, 3.04 0, .09559

3.00, 2.96, 1.55, 2.97, 2.77 0, .10117

3.10, 2.00, 2.00, 3.09, 3.09 0, .08927

2.40, 3.00, 1.84, 3.00, 3.00 0, .09403

2.78, 2.80, 2.00, 3.00, 2.82 0, .08647

1.77, 3.47, 1.68, 4.09, 1.82 0, .16405

2.50, 2.50, 2.00, 2.50, 2.00 0, .16191

2.63, 2.67, 2.00, 2.90, 3.10 0, .08936

feasible

lowest bound
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Table 3-12

Trial branchings from node 4 of Example 3-3.

Branch x Y Remark

x
1
1 2 2.00, 3.09, 2.00, 3.00, 3.05 0, .10615 feasible

x, > 3 3.00, 2.96, 1.55, 2.97, 2.77 0, .10117

x
2

< 2 3.12, 2.00, 2.00, 3.00, 3.12 0, .09195 feasible

x
2

> 3 2.40, 3.00, 1.84, 3.00, 3.00 0, .09403

x r < 2 3.28, 3.10, 2.00, 3.00, 2.00 0, .11877

(

5

5

xc >.3 2.63, 2.67, 2.00, 2.90, 3.10 0, .08936 lowest bound



Table 3-13

Trial branchings from node 7 of Example 3-3.
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Branch

X-, <. 2

x-, > 3

x
2
£2

*2 - 3

2.00, 2.60, 2.00, 2.00, 3.42 0, .10477

3.00, 2.41, 2.00, 2.92, 3.01 0, .08751

2.99, 1.99, 1.51, 2.99, 3.46 0, .10892

2.28, 3.00, 2.00, 2.94, 3.02 0, .09624

Remark

lowest bound



Table 3-14

Trial branchings from node 9 of Example 3-3.

83

Branch Remark

x
2

< 2 3.00, 2.00, 1.57, 3.00, 3.42 0, .10497 lowest bound

x > 3 3.08, 3.00, 1.51, 2.48, 3.00 0, .12591



Qk

6, : x
2

+ 2x^ + 3x3 + 4x^ + 2xg + n
1

- p
]

=110

G
2

: 7[x
1

+ exp(x
1
/4)] + 7[x

2
+ exp(x

2
/4)]

+ 5[x
3

+ exp(x
3
/4)] + 9[x

4
+ exp(x

4
/4)]+ 4[x

5
+ exp(x

5
/4)] + n

2
- p

2
=175

G-: 7x-|exp(x-|/4) + 8x
2
exp(x

2
/4) + 8x

3
exp(x

3
/4)

+ 6x
4
exp(x

4
/4) + 9x

5
exp(x

5
/4) + n

3
- p 3

= 200XXX
G
4

: [1 - (1 - .80)
]

][1 - (1 - .85)
2
][1 - (1 - .90)

3
]

x x

[1 - (1 - -65)
4
][1 - (1 - .75)

5
] + n

4
- p4

= .99

where x-. , x
?

, x», x
4

, and x
g

are positive integers and n, p >_ 0.

This problem is a slight modification of Example 3-3, i.e., the

achievement of the minimum required system reliability .99 at priority

level one, resource consumption of G„ at priority level two, resource con-

sumption of G
3

at priority level three, and resource consumption of G-j

at priority level four. The solution to Example 3-4 is given in Figure

3-5. Trial branchings from each node are presented in Tables 3-15

through 3-20. Note that at node 10 every variable has been branched,

however, the solution still contains fractional valued variables. In

this case, it is recommended that the fractional valued variable be

tried for another branchings as shown in Table 3-20.

Note that, in Table 3-20, 3.95 <x
2

< 4.05 and 2.95 <x
3

< 3.05 are

used for branching instead of x„ = 4 and x
3

= 3 in order to give more

flexibility in finding the optimal solution using Hwang and Paidy's
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T =» (M, M, M, M)

x
}

= (k.79, k.25, 1l. lt.65, U.-661

?, = (0, 57.32, 319.73, l26.39)/£ > k

Node 3

Solution not any better than >

so node terminated

7* = (M, M, M, M)
*"

5
= (k.03, k, 2.35, 5.15, k.k5)

V- = (0, 52.75, 2kk.33, 103.23)

Solution not anT better than Y
30 node terminated

7 = (x, m, :»., :>.)

x
3

= (k.27, a, 2.63, L.97, 5.01)

73 = (0, 55. 36, 276.37, 111.77)

r" = (x, M, M, M)

x
t

= (k.5C. 3.73, 3.0k, 5.07, 1-.28)

r, = (o, 5k. 15, 2kk.8l, 105.0k)

y* =» CM, X, X, M)

t 2
$
2

= (k.29, 3.55, 2.90, 5.15, k.k5)
" v

2
= (0, 51.10, 233. k5, I0k.k9)

7* » («, M, M, M)

x
?

» (k.32, k, 2.73, 6, 3.7k)

?
?

(0, 72.51, 291.13, 1k0.36)

Y* = (X, M, M, «)

;Node k \ " (5 ' 07
' 3 '

2 * ?2> 5 ' 20
' 5 * 06)

Y^ » (0, 60.30. 300.93, 113.53)

Solution not any better than f
so node terminated

(X, M, X, V)

(k.k5, U.02, 2.35, k. 95. k.55)

0, 55. a3, 259.33. 105.96)

r- = ;.-, ::, ::, x) /^\* 1 "
*n (5.5k, k.01, 2.30, k.?5, 5) (node 111

Y
T1

= (0, 69.13, 333.0k, H6.55) \~J
Solution not any better than Y
so node terminated ^ „

x, > 5

7* = (0, 55.02, 275.63, 115)

** = (k, k, 3, 5, 5)

f
13

» (k, 5, 2.3k, Ll.55, 5.1°)

?13
=• (0, 65.10, 330.59, 123.09)

Solution not any better than Y
so node terminated

V" * (X, M, M, M)

= (5.12. 5.52, 3, 5. k)

/?a (.00021, 95.51, k26.79, 1L7.3-9)

Infeasible since absolute o'c.;ectiT«s

violated, terminate node

7* = (X, M, M, M)

,Jf10 * (k, k.30, 2.73, k.95, 5)
Node 1CL10

r* » (0, 56.16, 231.21, Hk.22)

3.95 < x
2
£k.05

Y = (0. 55.02, 275.53. 115)

= fk. k. 3, 5, 5)
,3

5\, = (3.93, 3. a5, 2.92. k.95. 5)

Y12 = (0. 52.23, 266.93. 110. k7)

easible solution, terminate node

Solution to Ixarrpla 3--J-
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nonlinear goal programming technique. The solution is x* = (4, 4, 3, 5,

5) and a* = y* " (0, 55.02, 275.68, 115), which gives:

R = .99069, G
1

= 225, G
2

230.02, G3 = 475.68
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CHAPTER 4

CONCLUSION

As is discussed in Chapter 2, the techniques to solve a single ob-

jective nonlinear integer problem is first to reformulate the problem

into a zero-one linear integer problem and to solve it by zero-one linear

integer programming algorithm. In Chapter 3 the single objective non-

linear integer problem is solved by nonlinear integer goal programming

taking the constraints at priority level one and the objective at pri-

ority level two, i.e., as a nonlinear problem itself. Of course, the

nonlinear integer goal programming method can solve a multiple objective

problem like Example 3-4. But the difficulty in handling the nonlinear

problem is that there is, in general, no way to guarantee finding the

global optimum for a given problem. This mean that the investigater

must usually be satisfied with a local optimum or set of local optima.

In fact, even if the method employed happened to give a global optimum,

it is usually impossible to distinguish this circumstance. Even in

applying the Hwang and Paidy's nonlinear goal programming method to

solve the goal programming formulation at each node has some difficulty,

i.e., the solution is quite dependable to the initial starting point and

stepsizes. Hence, several different starting points and steps izes

should be tried in order to get the real optimum solution, ,05's are

recommended as stepsizes. However, the algorithm presented in Chapter 3

seems to give pretty assuring solution to the multiple objective problems

as is demonstrated through examples in Chapter 3. One thing that should
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be mentioned is that it needs n(n+l) times computer runs of nonlinear

goal programming to solve a problem with n variables. For example,

to solve a problem with five variables takes 5(5+1) = 30 runs and a

problem with ten variables takes 10(10+1) = 110 runs, which takes up

a lot of computing time. But this problem may be eliminated by taking

the whole algorithm into one computer programming, which is left for

future study.
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ABSTRACT

The purpose of this thesis is to present the techniques to solve in-

teger constrained nonlinear problems encountered in the system reliability

optimization.

There have been a number of applications of integer programming

techniques to single objective reliability problems, which are first to

reformulate the nonlinear integer problems into zero-one linear integer

problems and to solve them by zero-one linear integer algorithms.

Those techniques are classified into four types. Each integer programming

technique is used to solve a numerical example in detail.

Few studies have been done on the techniques to solve multiple ob-

jective nonlinear integer problems. In this thesis, an algorithm for

nonlinear integer goal programming is formulated utilizing a Branch-and-

bound method and a nonlinear goal programming method. The application

of this algorithm is demonstrated by solving reliability problems with

single objective and multiple objectives.

One interesting feature in using the present algorithm is that the

problem is solved by traditional nonlinear search techniques, such as

Hooke and Jeeves pattern search, that are originally intended for solving

the so called "unconstrained" problem.


