
AN INTERACTIVE SYSTEM FOR THE DEFINITION OF

A SEMANTIC DATA MODEL

by

GREGORY DALE WOOD

B.S., Kansas State University, 1974

A MASTERS THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved by:

Major &>ofessor

I

A11205 bSTflbM

'f-mV Table of Contents

List of Figures ii

Chapter 1 - Introduction 1

Chapter 2 - Problem Description 4

Chapter 3 - System Design 11

Chapter 4 - System Implementation 33

Chapter 5 - Summary 37

Appendix A - Display and keyboard control functions 39

Appendix B - General screen control routine 41

Appendix C - Screen definitions 43

Appendix D - Error Messages 64

Appendix E - System code 65

References 84

List of Figures

NUMBER TITLE PAGE

3.1 Primary Selection Menu 12

3.2 Flashing error message 13

3.3 SDM Identification screen 14

3.4 Class Definition screen 16

3.5 Base Class definition screen 17

3.6 Sub-Class definition screen 18

3.7 Sub-Class Set Operator screen 19

3.8 Sub-Class Format screen 20

3.9 Sub-Class Attribute Predicate screen 21

3.10 Grouping Class Definition screen 22

3.11 Class Attribute Definition screen 23

3.12 Member Attribute Definition screen 24

3.13 Member Attribute Derivation Type screen 25

3.14 Member Attribute Derivation - Mapping screen 26

3.15 Member Attribute Derivation - Ordering screen 27

3.16 Member Attribute Derivation - Recursion screen 28

3.17 Member Attribute Derivation - Set screen 29

3.18 Member Attribute Derivation - Statistical screen 30

3.19 Member Attribute Derivation - Mathematical screen 31

3.20 Member Attribute Derivation - Predicate screen 32

4.1 Primary Selection Menu screen definition 34

- n

Chapter 1

Introduction

The conceptual modeling phase of database design, has been a time

consuming manual task, with inconsistent results. One tool for this

task, the Semantic Data Model (SDM), was developed by Hammer and McLeod

(3,4,5) to describe the semantics of application environments with a

formal syntax, while retaining an understandable relationship to the

actual data. The development of a strict syntax for an SDM, and an

interactive system for its entry, maintenance and verification will,

hopefully, simplify conceptual modeling and produce more reliable

results. The additional step of the automated generation of a static

Data Dictionary (DD) from the SDM should also simplify the transition to

logical database design.

The syntax developed by Lane (8) from the work of Hammer and

McLeod (3,4,5), is based on the grouping of identifiable units, or

entities, whether concrete or abstract, into classes. Three types of

classes are defined; Base Classes, Sub Classes and Grouping Classes.

Base Classes can be defined independently from other classes, while Sub

and Grouping Classes must be defined in relation to a parent class.

This relationship is based on attributes of the classes or their

members.

An interactive system for the entry, maintenance and verification

of an SDM is a specific example of interactive computerized application

systems. Such systems use a two way dialog between the user and the

computer, or more accurately the software executing on the computer, to

perform a specific task or set of tasks. Much work has been done to

- 1 -

optimize the design of such systems and the productivity of their users.

Andriole (1) identified six phases in the design of such systems.

The first phase, system targeting, should identify the prospective

user, his background, experience level, current working environment, as

well as requirements of the proposed system.

Phase two, system modeling, should provide a more detailed list of

the functions to be included in the system, and their interrelations.

As Gains (2) observed, it is also important to understand the users

current method of accomplishing the task or tasks, so as to present him

with a recognizable dialog. The term "user friendly" has been widely

used to describe this objective, but perhaps a more complete description

was given by Gains (2), when he said such a system should "present an

understandable and sympathetic face to its user".

The third phase, software design, is most critical, but will most

likely not succeed unless it is based on an accurate completion of the

first two phases. Also, the impact of Andrioles (1) phase four,

hardware selection, on software design, can at times be large enough to

justify the reversal of these two phases.

Dialog design, the first task of software design in an interactive

system, should be tailored to the users experience level. Those users

with little experience require a system with less flexibility, that is,

a small number of ways to accomplish each task, and less complexity, or

a small number of options at any specific time. Inexperienced users are

also more comfortable with a computer initiated dialog, although as

Gains (2) pointed out, the user should dominate the dialog, so as to

avoid user uncertainty and the resulting dissatisfaction. Computer

- 2 -

initiated dialogs can take the form of question and answer sessions,

menus, fill in the blank forms, or some combination of these, although

it is important to maintain a consistent use of form across similar

functions.

At the other end of the spectrum are user initiated systems for the

more experienced user. These can be much more flexible and complex, and

can be implemented by techniques such as command or natural languages.

Mixtures of the two types of systems are possible, such as using a menu

for a simple subtask, and a command language for a more complex subtask,

but as Monk (7) advised, care must be taken to avoid confusing the user.

Display design also requires consistency, specifically in the use

of emphasizing techniques such as highlighting, flashing, multicolor,

or reverse video. Placement of information on the display is also of

interest. Monk (7) recommended that the upper right quadrant of the

display be used for high priority information, and that no more than

twenty five percent of the display be filled, while Miller (6) suggested

that seven or less options for a unidimensional variable be presented at

one time.

This report describes the application of these principles to the

design of an interactive system for the creation of a correct SDM. The

primary target population of this system is made up of undergraduate

students in database design classes. Chapter 2 gives a more detailed

description of the problem and Chapter 3 continues with the system

design. Chapter 4 describes the system implementation, and Chapter 5

gives a summary and suggestions for future directions.

- 3

Chapter 2

Problem description

An SDM can be viewed as having only two major types of components,

classes and attributes, which an interactive system must address. Each

has a variety of required and optional sub-components.

Class definition will require a class name and optionally a class

description, then will diverge depending on which type of class is being

defined, Base, Sub or Grouping.

Base Classes will require an indication of the acceptability of

multiple members with identical attribute values, and optionally, one or

more identifiers, where an identifier is an attribute or combination of

two attributes, the value of which will specify a member, or multiple

members if duplicates are allowed.

Sub-Classes will require the class name of the parent class and an

indication of the type of relationship between the two. There are five

types of relationships between Sub-Classes and their parent classes;

specification, set operator defined, format, attribute predicate and

existence.

The simplest of these is specification, in which the relationship

is declared to exist. An example of this would be the relationship of

core courses in the Computer Science Masters Program to all courses in

Computer Science Masters Program. Although some criteria, other than

arbitrary selection, probably exists in this case, as in most cases of

Sub-Class by specification, those criteria are esoteric enough to defy

easy definition by any of the other methods available.

A more easily defined and probably the most common, relationship is

- 4 -

created by the set operators; union, intersection and difference. Using

these operators, the membership of a Sub-Class is based on membership of

two other classes, or occasionally, one other class and the universal

set, such as the definition of Graduate Computer Science Courses as the

intersection of Graduate Courses with Computer Science Courses.

The format relationship is primarily used to subset the Base Class

STRINGS into a more specific Sub-Class. For example the COURSE ID

Sub-Class could be given the format of a two character alphabetic code

followed by a three digit number.

Attribute predicate relationships are based on the existence of a

logical relationship between the value of a specific attribute of the

members of the parent class, and either a literal or the value of a

second attribute. For example, GRADUATE COURSES can be defined as those

for which the value of the attribute Course# of the parent class COURSES

is greater than 600.

The last type, existence, is used by Hammer and McLeod (5) to show

a relationship similar to intersection, but membership is based on the

value of an attribute in one of the classes rather than membership in

the classes. In their example, DANGEROUSCAPTAINS is defined as the

subclass of OFFICERS which also exist as values of the attribute

Involvedcaptain of the class INCIDENTS. This relationship is easily,

and more understandably, stated as an attribute predicate, the subset of

the class OFFICERS, whose value for the attribute Name, is equal to the

value of the attribute Involved Captain of the INCIDENTS class. It

would seem that the existence relationship can always be stated as an

attribute predicate, and thus could be excluded from this system.

The final type of class, Grouping Classes, has a very basic

difference from Base and Sub-Classes, a clear understanding of which is

necessary for their correct use. Base and Sub classes have, as their

members, individual items or entities, whereas in a Grouping Class each

member is a group of items or entities, each of which must be a member

the parent class. The definition of a Grouping Class requires the class

name of the parent class, as well as one of two grouping techniques.

The first such technique, grouping by common value of some member

attribute, will create groups with the value of the indicated attribute

as member names. An example would be the Grouping Class DEPARTMENTAL

COURSES, or the grouping, from the COURSES class, of the attribute

Courses# on the common value of the attribute Department, which would

have as members, CS, EE, etc., each of which would consist of a group of

courses.

The second method of grouping, enumeration, simply consists of the

listing of two or more Sub-Classes, such as the grouping of CS COURSES

and MATH COURSES into TECHNICAL COURSES, the contributing classes

becoming members of the Grouping Class.

Hammer and McLeod (5) give a third method of grouping, user

controlled or specification, and use as an example the CONVOYS class,

whose members are user specified groups of ships. Although CONVOYS is

a good example of a Grouping Class, to arrive at it by specification is

ungainly. It would be preferable to include a member attribute called

Present Convoy in the Base Class SHIPS, on which a common value grouping

could be made. It seems likely that any case of grouping by means of

user specification could be accomplished by one of the previous methods,

- 6 -

possibly after the addition of an attribute to the parent class, or the

definition of additional Sub-Classes. The ease of these additions, in

an interactive system, argues against the inclusion of specification

grouping.

In addition to class definition, two types of attributes can be

defined. Class attributes are features of the class as a whole, such as

the Total Active attribute of the FACULTY class. Member attributes are

features of individual members of the class. Both types of attributes

require a name and a value class, where a value class refers to a class

whose members are the potential values for this attribute. They will

also require an indication of the number of concurrent values possible

for the attribute, as well as the acceptability of null or changeable

values. For member attributes, the existence of an inverse relationship

with another attribute, in this or another class, may be noted. For

example, the Instructor attribute of the COURSES class is the inverse of

the Courses Taught attribute of the FACULTY class.

Member attributes will also require an indication of whether the

attribute values must exhaust the value class, and the acceptability of

duplication of any value of the attribute from member to another.

Optionally each attribute may have a description and a method of value

derivation. Both class and member attributes may use statistical

derivation. This includes the functions minimum, maximum, average, sum,

total number or number of unique, as applied to another attribute in the

class. A simple example would be a member attribute of Grade Point in

the class of STUDENTS, which could be defined as the average of the

values of attribute Course Grade. Member attributes can be derived in

- 7 -

several other ways.

Their values can be obtained from members of this or another class

having common values for a specified attribute, using the value of yet

another attribute from each such member to generate a value, statistical

if the derived attribute is to be single valued, or a set if it is to be

multivalued. For example, the Hours Taught attribute of the FACULTY

class can be obtained by summing the values for the attribute Credit for

members of the COURSES class having a common value for the attribute

Instructor. The multivalued attribute Courses Taught could be derived

similarly, although without the summation.

Hammer and McLoed (3,4,5) frequently refer to mappings in their

syntax, defining them recursively as an attribute name or an attribute

name dot mapping. They explain the concept thus defined, as a direct

reference to the value of an attribute of an attribute. A flaw in this

explanation is immediately apparent, since attributes do not have

attributes. Their first example, Captain dot Name, is completely

useless as it derives its value from itself. If it were changed to be

somewhat more useful, say Captain dot Pay, the actual method of

derivation would be to take the value of the attribute Pay, from the

member of the OFFICERS class whose value for the attribute Name is equal

to the value of the attribute Captain of the current class. Obviously

the syntax given does not supply enough information to resolve this

derivation. One possible syntax to rectify this situation would be:

MAPPING <-

[ATTRIBUTENAME onto ATTRIBUTENAME of CLASSNAME using ATTRIBUTE NAME;
MAPPING onto ATTRIBUTENAME of CLASSNAME using ATTRIBUTENAME]

The first attribute is defined to belong to the current class. This

syntax contains enough information, although the recursive case may

introduce an unacceptable amount of complexity into an interactive

system. An examination of the need for a recursive case will show that

it can safely be omitted from this system.

The three level example given by Hammer and McLeod (5), Captain dot

Superiors dot Name, displays the same problem encountered with the first

example, Captain dot Name. The value class for superiors is most likely

already NAMES, and thus the mapping should be reduced to Captain dot

Superiors. If the value class for superiors happened to be SERIAL#, as

in "name, rank and", then a true recursion would be required to derive

the desired value. First a set of serial numbers would be obtained by

mapping Captain onto Name of OFFICERS using Superiors. Then the actual

value would be derived by mapping that result onto Serial# of OFFICERS

using Name. Rather than use the recursive syntax, an intermediate

attribute, Captains Superiors, could be defined and used in the mapping

for Captains Superiors Name.

Ranking, by increasing or decreasing order, of the value of some

other member attribute, within the class or within a group of members

sharing a common value of yet another attribute, can be used to create

a value. The Seniority attribute of the FACULTY class, for example, is

an ordering of the class on the value of the attribute Years of Service.

A boolean value of true or false can be derived from the inclusion

or exclusion, of the member in question, in another class. For example,

the Required attribute of the class CS COURSES, is true if the course is

a member of class CS COURSES REQUIRED.

- 9 -

One of the more complex derivations, recursion, can generate a

large set of values for a multivalued attribute through repeated

applications of an attribute. For example the attribute Children can

be repeatedly applied to generate the multivalued attribute Descendants.

Hammer and McLeod (5) suggest the ability to limit the number of levels

of recursion.

Another complex derivation is the subsetting of another multivalued

attribute, based on the satisfaction of an attribute predicate similar

to that used in the specification of Sub-Classes. For example, the

attribute Morning Sessions of the COURSES class, consists of the subset

of Meeting Times with values between 0600 and 1200.

Still other sets of values can be derived by the application of the

set operators union, intersection and difference, to other multivalued

attributes, such as the definition of Nonmorning Sessions as the

difference between Meeting Times and Morning Sessions.

The final derivation uses mathematical computation on one or more

other attributes and zero or more literals. An example would be the

attribute Session Length, which could be calculated from Meeting Time

and Ending Time.

10 -

Chapter 3

System design

The interactive SDM to DD system is intended as a database design

tool for use by undergraduate computer science students and professional

database designers. Both groups of users should be familiar with the

selected hardware, IBM compatible personal computers, as well as MS/DOS

based software. The professional users should have a working knowledge

of SDMs, whereas the students will have only classroom exposure.

This experience level would lead to the use of a computer initiated

dialog, if the number of functions needed is not prohibitively large.

From the users point of view, entry and maintenance of an SDM can be

seen as one function, only varying in the original contents of the SDM

in question. Parsing of a complete SDM is another required function and

generation of a DD from an SDM is a third. A fourth function, which may

not be apparent from the problem definition, is the deletion of an

entire SDM. This seems to be a sufficient set of functions to satisfy

the requirements of the system, with the possible addition of an exit

option, and is a reasonable number of options for a menu driven system.

The first function, entry and maintenance of the SDM, includes a

large number of sub-functions. Most of these involve the definition of

components of an SDM and are best implemented with the fill in the blank

format. This format provides the user with guidance in the completion

of the definition, and is less time consuming than a question and answer

session. A few of the sub-functions have enough options to support the

further use of the menu format. The remainder of this chapter details

the displays used in the system.

- 11

Access to the system is by entering the system name, SDM. The user

is then presented with the Primary Selection Menu (figure 3.1). As on

all screens in the system, entry fields are displayed in reverse video

and are preceded by an arrow and a short item of text identifying the

intended contents of the field.

SDM **************************** MENU **********************************

Option (D = Delete SDM

E - Edit SDM

G = Generate DATA DICTIONARY from SDM

P = Parse SDM

X = Exit) ==>

**

Fl=Help F3= F5= F7= F9= ESC=MS/D0S
F2= F4= F6= F8= F10= C/R=Enter

**

Figure 3.1: Primary Selection Menu

12

If help is selected (Fl) before any option is selected, or at any

time when no error has been detected, a full screen description of the

currently active piece of the system and any related SDM syntax, is

displayed. If a character other than those letters shown as options, is

entered, an error message is flashed in the upper right hand corner of

the screen (figure 3.2). If help is selected at this point, or whenever

a flashing error message is being displayed, a full screen description

of that error is provided.

$q^ **************************** menu ***************** INVALID OPTION

Option (D - Delete SDM

E = Edit SDM

G = Generate DATA DICTIONARY from SDM

P = Parse SDM

X = Exit) ==>

**

Fl=Help F3= F5= F7= F9= ESC=MS/D0S
F2= F4= F6= F8= F10= C/R=Enter

**

Figure 3.2: Flashing error message

- 13

Once an option, other than X, has been selected, a screen for the

identification of the desired SDM is displayed (figure 3.3). Each SDM

is given a full path name, including the drive on which it exists, and

the automatically added extension SDM. The SDM definition will then be

stored on disk with this path name. Any valid MS/DOS path name can be

used, up to the limit of three directories and a file name.

SDM ************************* IDENTIFICATION ***************************

Drive ==>

Path ==> Path ==> Path ==>

SDMname ==>

**

Fl=Help F3= F5= F7= F9= ESC=MS/DOS
F2= F4= F6= F8= F10= C/R=Enter

**

Figure 3.3: SDM Identification screen

- 14 -

Movement in the system is controlled by the function keys. From

any SDM entry screen, as opposed to the menu, id or help screens, the

function keys institute the following actions.

Fl - Help

F2 - Display the current class

F3 - Display the first class attribute of the current class

F4 - Display the first member attribute of the current class

F5 - Insert an additional component of type currently displayed

F6 - Delete the component currently displayed

F7 - Display the previous component of type currently displayed

F8 - Display the next component of type currently displayed

F9 - Update the component currently displayed

F10 - End

The ESC key will affect a nondestructive exit to MS/DOS.

- 15

If the previously identified SDM already exists, its first class

definition will be displayed. If not, the Class Definition screen

(figure 3.4) will be displayed with blank entry fields.

Name and type are required fields and their omission will cause a

flashing error message. Additional screens are used to complete the

class definition, depending on the type selected.

5Q^ *****************************
ci_/\ss ********************************

Name ==>

Type (B = Base, S = Sub, G = Grouping) ==>

Description ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.4: Class Definition screen

- 16 -

If type Base was chosen, the Base Class screen (figure 3.5) is

displayed. The validity of members with duplicate identifiers, in this

class, must be indicated, as well as the makeup of the identifiers, if

any exist. To allow the entry of multiple identifiers for the class,

the identifier fields will be blanked and redisplayed each time the

enter key is pressed, until the update function key is pressed. Each

identifier is comprised of from one to five attributes.

SDM *************************** Base Class *****************************

Duplicates allowed (Y, N) ->

Identifier: attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

Identifier: attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.5: Base Class definition screen

17 -

If type Sub is chosen one or two additional screens are needed to

complete the definition. The first (figure 3.6) requires the name of

the parent class and a choice of class relationship. The second depends

upon the type of relationship chosen. No second screen is needed for

specification.

SQ^ *************************** Sub-Class ******************************

Parent Class ==>

Relation type (1 = specification,

2 = set operator

3 = format

4 = attribute predicate) ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.6: Sub-Class definition screen

- 18

If the set operator relationship is chosen, the second screen

(figure 3.7) requires the type of set operation to be used and the names

of the two Sub-Classes involved.

SDM ********************* Sub-Class Set Operator ***********************

Operation (U = union, D = difference, I = intersection) ==>

of Sub-Class ==>

and Sub-Class ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.7: Sub-Class Set Operator screen

19 -

If format is chosen, the second screen (figure 3.8) requires a size

range, and optionally a value range for each position in the size range.

The maximum size available in this system is 17.

SDM ************************ Sub-Class Format **************************

Size from ==> to ==> 01 from ==> to ==>

02 from ==> to ==>

03 from ==> to ==>

04 from ==> to ==>

05 from ==> to ==>

06 from ==> to ==>

07 from ==> to ==>

08 from ==> to ==>

09 from ==> to ==>

10 from ==> to ==>

11 from ==> to ==>
12 from ==> to ==>

13 from ==> to ==>
14 from ==> to ==>

15 from ==> to ==>
16 from ==> to ==>

17 from ==> to ==>
**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.8: Sub-Class Format screen

20 -

The second screen (figure 3.9) for the last and most complex type

of relationship, attribute predicate, requires the name of the first

attribute, the predicate operator and either a literal or the name of a

second attribute. Of the ten operators, the first six are familiar and

should be easy to remember. The last four are used to indicate some set

relationship. The first two of which are only valid if the first of the

two attributes is multivalued, and the last two of which are only valid

if the second attribute is multivalued.

SDM ****************** sub-Class Attribute Predicate *******************

Attribute ==>

(GT = greater then,
LT = less then,
EQ = equal to,

NE = not equal to,
GE = greater then or equal to,
LE = less then or equal to,
CT = contains,
PC = properly contains,
IN = is contained in,

PI = is properly contained in) ==>

Attribute or 'literal' ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.9: Sub-Class Attribute Predicate screen

21

If Grouping Class was chosen the Grouping Class Definition screen

(figure 3.10) is displayed. It requires the name of the parent class

and either the name of an attribute to be used for grouping by common

value, or a list of Sub-Classes to be grouped.

SDM ************************* Grouping Class ***************************

Parent class ==>

on like value of attribute ==>

or of Sub-Classes ==>
==>
==>
==>
==>
==>
==>
==>
==>
==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.10: Grouping Class Definition screen

- 22 -

The Class Attribute Definition screen (figure 3.11) requires only

the attribute name, but will validate any of the optional fields given.

SQM **************************** class Attribute ***********************

Name ==> Value class ==>

Description ==>

Non-null (Y, N) ==>

Changeable (Y, N) ==>

Number of values from ==> to ==>

Derivation (MIN, MAX, AVG, SUM, TOT, UNQ) ==>

of attribute ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.11: Class Attribute Definition screen

- 23

Member attribute definition uses one or more screens, depending on

the options chosen. The first (figure 3.12) is similar to that used for

class attribute definition, with the additional options of Inverse,

Exhaustive and Overlap, and the simplification of the Derivation choice

to Y or N.

5QM *************************** Member Attribute ***********************

Name ==> Value class ==>

Description ==>

Inverse of attribute ==>

of class ==>
Non-null (Y, N) ==>

Changeable (Y, N) ==>

Exhaustive (Y, N) ==>

Overlap (Y, N) ==>
Number of values from ==> to ==>
Derivation (Y, N) ==>

or Match on attribute ==>

of class ==>
using attribute ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.12: Member Attribute Definition screen

24

If an attribute derivation is indicated, a menu for selection of

derivation type (figure 3.13) is displayed. Each choice from this menu

involves an additional screen with which to describe the derivation.

SDM ******************** Member Attribute Derivation Type **************

Derivation (1 = Mapping,

2 = Ordering,

3 = Recursion,

4 = Set operation,

5 = Statistical
,

6 = Attribute predicate,

7 = Mathematical) ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.13: Member Attribute Derivation Type screen

25 -

The first option, mapping (figure 3.14), requires identification

of the attribute name from the current class, to be used in the mapping,

the attribute name and class name onto which the mapping is to be done

and the attribute name from that class from which the derived value is

to be taken.

SDM ************* Member Attribute Derivation - Mapping ****************

Mapping of attribute ==>

onto attribute ==> of class ==>

using attribute ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.14: Member Attribute Derivation - Mapping screen

26

Ordering (figure 3.15) requires the name of the attribute upon

which the ordering is to be based and an indication of the direction,

ascending or descending, in which to evaluate the ordering. Optionally

a second attribute can be named to limit the domain of the ordering. In

effect, this is a two level sort. The class is first sorted on the

second attribute named and then on the first, in the order specified.

The value derived is then the relative position within common values of

the second attribute.

SDM ************* Member Attribute Derivation - Ordering ***************

Ordering of attribute ==>

in (A = ascending, D = descending) ==> order

within attribute ==>

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.15: Member Attribute Derivation - Ordering screen

27

The recursion derivation (figure 3.16) requires only the name of

the attribute to be recursively applied. Optionally a limit to the

number of levels of recursion can be given.

Som ************* Member Attribute Derivation - Recursion **************

On attribute ==>

up to ==> levels

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.16: Member Attribute Derivation - Recursion screen

28 -

Derivation based on set operations (figure 3.17) requires the

identification of the operation used, and the names of the attributes

involved.

SDM *************** Member Attribute Derivation - Set ******************

(U = union, D = difference, I = intersection) ==>

of attribute ==>

and attribute ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.17: Member Attribute Derivation - Set screen

- 29 -

Similarly statistical derivation (figure 3.18) requires only the

type of analysis to be used and the name of the attribute to be used.

SDM ********** Member Attribute Derivation - Statistical ***************

(MIN = minimum,

MAX = maximum,

AVG = average,

SUM = sum,

TOT = total number,

UNQ = number of unique) ==>

of attribute ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.18: Member Attribute Derivation - Statistical screen

- 30 -

Mathematical derivation (figure 3.19) requires the name of at least

one attribute and one or more combinations of an operator and a literal

or an attribute name.

SDM ********* Member Attribute Derivation - Mathematical ***************

(+>

(+,

(+,

(+,

(+,

attribute ==>

*, /) ==> attribute or 'literal' ==>

*, /) ==> attribute or 'literal' ==>

*, /) ==> attribute or 'literal' ==>

*, /) ==> attribute or 'literal' ==>

*, /) ==> attribute or 'literal' ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/DOS
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.19: Member Attribute Derivation - Mathematical screen

31

The final type of derivation, attribute predicate (figure 3.20),

requires one attribute name, the identification of a predicate and

either a literal or the name of another attribute.

SDM *********** Member Attribute Derivation - Predicate ****************

Attribute ==>

(GT = greater then,
LT = less then,
EQ = equal to,
NE = not equal to,
GE = greater then or equal to,
LE = less then or equal to,
CT = contains,
PC = properly contains,
IN = is contained in,

PI = is properly contained in) ==>

Attribute or 'literal' ==>

**

Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter

**

Figure 3.20: Member Attribute Derivation - Predicate screen

32 -

Chapter 4

System Implementation

The hardware chosen to support this system, IBM compatible personal

computers, imposes some limitations on the choice of language used for

the implementation. In order to support a full screen system, with

displays such as those shown in the previous chapter and software

controlled function keys and cursor movement, the language chosen must

be able to directly access the video display and the keyboard. It also

should handle complex data structures and direct access files to allow

access to individual components of the SDM. Of the languages available

on the personal computer, C is well suited to these requirements.

Several display and keyboard input and output functions are

supported. From this base, a more powerful set of functions (see

appendix A) was developed.

Using these functions, a general purpose display and keyboard

control routine (see appendix B) was written for use in the interactive

system (see appendix E). This routine accepts as parameters:

1) an index into an array of screen definitions;

2) the field number at which to position the cursor;

3) the address of a buffer in which to store any input;

4) an index into an array of error messages (see appendix D).

Shown in figure 4.1 is the Primary Selection Menu screen as defined

for display by this routine. All of the screen definitions are given in

appendix C. Any input fields defined are displayed in reverse video and

primed with any data in the buffer at the time of the call.

- 33

The keyboard is also controlled by this routine. Any non-control

character is written to the buffer and echoed to the screen. Control

characters are translated to meaningful values and returned to the

caller. Cursor movement is calculated against the known input fields

and cannot reach any other position of the screen, thus insuring that

any data entered directly corresponds to a known entry field.

1, /* number of input fields */

00, /* original cursor field */

00, /* previous screen (none) */

{ /* length, row, col */

{ 1, 14, 39}},

{ /* screen text lines */
"SDM ******************************** MENU ***************************"

Option (D = Delete SDM

E = Edit SDM

ii

ii

ii

G = Generate DATA DICTIONARY from SDM
<

ii

P = Parse SDM ii

X = Exit) ==>
" i.

" ii

••
ii

I'***"

" Fl=Help F3= F5= F7= F9= ESC=MS/D0S "

" F2= F4= F6= F8= F10= C/R=Enter "

I'***"

}

Figure 4.1: Primary Selection Menu screen definition

- 34 -

Storage of an SDM is by fixed length records, each of which is

directly accessible by its record number. Each record contains a single

class or attribute definition. The structure of an entire SDM is

realized by storing pointers in the form of record numbers, in each

component record. This chain of pointers originates in a header record

which contains the record number of the first class in the SDM. Each

class record, whether base or non-base, has pointers to the next and the

previous class record. Any pointer which has no current object has a

value of binary zero. Class records also have pointers to the first

class attribute and the first member attribute associated with that

class. Each of these attribute records contain pointers to the next and

the previous attribute of the same type. Rather than store Pointers to

the associated class in each attribute record, a single system variable

saves the record number of the last class record displayed.

Traversing these chains is fairly straight forward. The function

key F2 selects the record indicated by the system variable for previous

class. Similarly F3 selects the first class attribute from that class,

and F4 selects the first member attribute. F7, previous record of the

current type, uses the backward pointer stored in each record, and F8,

next record of current type, uses the corresponding forward pointer.

Any request encountering a zero forward pointer, that is for a non-

existent next record is translated to an insert.

The insertion and deletion of records is slightly more complex

than the simple traversing of pointer chains, since it is here that the

chains must be created and maintained. Any scheme to make reasonable

use of storage space, must include the ability to reuse space occupied

- 35 -

by deleted records. To accomplish this, the header record contains a

pointer to the last deleted record. This pointer is maintained in a

system variable and the header record is updated only when the SDM file

is closed. When a record is deleted, the records indicated by its next

and previous pointers are updated to reflect its deletion. If the

deleted record happens to be the first class attribute or the first

member attribute of a class, its previous record pointer will be zero.

In this case the class record, indicated by the system variable for last

class displayed, is updated. The system variable for last deleted

record is stored into the next record pointer of the record being

deleted and is then updated with the record number of that record. This

creates a chain of pointers to deleted records available for reuse.

This process is essentially reversed when inserting a new record.

First the system variable for last deleted record is checked. If it is

zero the new record is simply appended to the end of the file. If,

however, the last deleted record is not zero, the value of the forward

pointer from the record indicated is used to update the last deleted

record system variable, and the record is used to store the new SDM

component. The new record is then inserted into the pointer chain, its

forward and backward pointers set to indicate the records between which

it is being inserted, and their corresponding pointers set to indicate

the new record.

Validation of the SDM definition, although not yet implemented,

will be on two levels. First the contents of each field entered will be

checked for a valid character set for that particular field, and after

an entire definition is entered, it will be passed to parsing routine.

- 36 -

Chapter 5

Summary

The design and implementation of an interactive system for the

creation of a correct SDM involved three main tasks:

1) analysis of the SDM syntax to find a minimum functional subset;

2) creation of an easily understandable format for its entry;

3) writing code to handle the display of and the input to these

formats, and the storage of the SDM thus defined.

The first task resulted in three fairly significant changes to the

syntax used by Hammer and Mcloed (3,4,5):

1) elimination of the existence relationship Sub-Group;

2) elimination of user specification grouping;

3) creation of a new syntax for Mapping.

Smaller changes include the limitation of references to Mappings to

member attribute derivation, and the implementation of only the non-

recursive form of the Mapping syntax.

The second task required the identification of the various sub-

components of an SDM and a logical organization thereof. This resulted

in the creation of 17 input screens to accept data for SDM definition.

The third task involved writing a set of display and keyboard

control functions and a single general screen handling routine. It also

required the design of a storage structure and linkages to allow the

retrieval, insertion and deletion of SDM components.

In addition to the changes made to the syntax for the SDM, several

areas remain worthy of further inspection.

37 -

Most obvious is the attribute predicate, whether used as a sub-

classing technique or for member attribute derivation. Its meaning is

only clear when the second half of the predicate is a literal.

The recursive derivation, although its meaning seems clear, quite

likely suffers from a lack of information similar to that discovered in

mappings.

Problems of this sort will become critical when the syntax is used

as input to an automated data dictionary generator. These small items

of missing information, which the human reader fills in without notice,

will create absolute blocks to the translation to a data dictionary

language.

38

Appendix A

Display and keyboard control functions

(1)

(0)

(-D
(0)

/*******
/*

I define TRUE
define FALSE
define ERR
define OK
define mvaddstr(y,x,str)
define mvaddch(y,x,ch)

define addch(ch)
#include <stdio.h>
#include <conio.h>
#include <signal .h>

#include <dos.h>
#include <process.h>
#define LINES 24
#define COLS 80
#define VIDEOINT 0x10
#define KEYBDINT 0x16
#define KEYECHO 0x01
union REGS regs, outregs;
clear(){

•A'**'*'***'*'************
CURSES for the AT&T 6300

* * /

V********************** *i

(move(y,x)==ERR?ERR:addstr(str))
(move(y,x)==ERR?ERR:putch(ch))
putch(ch)

regs
regs
regs
regs
regs
regs
regs

ah

al

ch
cl

dl

h.dh
h.bh

= 6:

= 0:

= 0:

= 0;
= 80;
= 24;

Al;

/*
/*
/*
/*
/*
/*
/*

int86(VIDE0_INT, ®s, ®s);
return;

scroll up function
code to blank screen
upper left row
upper left column
lower right column
lower right row
attribute byte

V
V
V
V
V
V

}

move(R,C)int R,C
regs. h. ah = 2

regs. h.dh = R

regs.h.dl = C

regs. h.bh =

{

/*
/*
/*
/*

int86(VIDE0_INT, ®s, ®s);
return;

}

addstr(str)char *str;{
while (*str) putch(*str++)

;

position cursor function
row position of cursor
column position of cursor
current page

V
V
V
V

39

wattron(w,at) int *w , at; {

regs.h.ah = 6; /* scroll up function
regs.h.al = 0; /* code to blank screen 1

regs.h.ch = w[0]

;

/* upper left row 1

regs.h.cl = w[l]

;

/* upper left column 1

regs.h.dl = w[2]

;

/* lower right column 1

regs.h.dh = w[3]

;

/* lower right row 1

regs.h.bh = at; /* attribute byte
int86(VIDE0_INT, ®s , ®s);
return;

}

scroll(ulr, ulc, lrr , lrc , attr, line) {

regs.h.ah = 6; /* scroll up function V
regs.h.al = line; /* # lines to scroll V
regs.h.ch = ulr; /* upper left row V
regs.h.cl = ulc; /* upper left column */
regs.h.dl = lrc; /* lower right column */

regs.h.dh = lrr; /* lower right row V
regs.h.bh = attr; /* attribute byte V
int86(VIDE0 INT, ®s , ®s);
return;

}

getch() {

regs.h.ah = 0;
int86(KEYBD_INT, ®s, ®s);
return(regs.h.al);

}

newwin(nr,nc,sr,sc) int nr, nc, sr, sc;{
if (nr ==

if (nc ==

return;

}

initscr(){

}

endwin(){

}

cbreak(){

}

noecho(){

}

refresh(){

)

) nr = LINES - sr;

) nc = COLS - sc;

V
V
V
V
V
*/

40

Appendix B

General screen control routine

scio(n, c, b, e) int n, c, e; char b[];{
int i, j, k, m, 1, ch, w[4]

;

clear()

;

for (i=0;i<24;i++)
mvaddstr(i ,0,scr[n] .text[i])

;

for (i=k=0;i<scr[n].fields;i++) {

w[0] = w[3] = scr[n].floc[i][l];
w[l] = scr[n].floc[i][2];
w[2] = w[l] + scr[n].floc[i][0] - 1;

wattron(w,RV);
move(scr[n].floc[i][l],scr[n].floc[i][2]) ;

for (j=0;j<scr[n].floc[i][0];j++)
addch(b[k++]);

}

if (e) {

w[0] = w[3] = 0;
w[l] = 57;
w[2] = 76;
wattron(w,RV)

;

mvaddstr(0,57,msg[e-l]);

for (i=j=0;i<c;i++) k += scr[n] .floc[i][0];
move(scr[n].floc[i][l],scr[n].floc[i][2]);
refresh (

)

*

while ((ch=getch())!=ENTER) {

for (k=m=0;m<i ;m++)
k += scr[n].floc[m][0];

if (Mscntrl(ch)) addch(b[k+j++]=ch)

;

else switch(ch) {

case : switch (regs.h.ah) {

case 59:

case 60
case 61

case 62
case 63

case 64
case 65
case 66
case 67

case 68 return(regs.h.ah);
case 71 i=j=0; break;
case 72: if (--i < 0)

i = scr[n]. fields
j = 0; break;

- 41 -

l;

/* clear the screen */

/* display tesxt */

/* set input fields */
/* to reverse video */

/* and initialize */
/* with values from */
/* buffer */

/* if an error is V
/* indicated, set V
/* error field to V
/* reverse video and */
/* display the error V
/* message V

/* while the entered */
/* character is not */
/* ENTER, echo it if */
/* not control char */

/* f 1 */
/* f 2 */
/* f 3 */
/* f 4 */
/* f 5 7
/* f 6 V
/* f 7 V
/* f 8 */
/* f 9 V
/* f 10 V
/* home V
/* up arrow V
/* (back tab) V

}

case 75: if (--j < 0) {

if (--i < 0)
i = scr[n]

.

fields- 1

;

j = scr[n].floc[i][0]-l;
} break;

case 77: if (++j > scr[n] .floc[i] [0]-l)

j = scr[n].floc[i][0] ; break;
case 79: j = scr[n].floc[i][0]-l; break;
case 80: j = scr[n] .floc[i][0] ; break;
default: addch(regs.h.ah) ;

} break;
case 8: if (--j < 0) {

if [— 1 < 0)
i = scr[n] .fields-1;

j = scr[n].floc[i][0]-l;
} break;

case 9: j = scr[n] .floc[i][0] ; break;
case 15: if (--i < 0)

i = scr[n]. fields-1;
j = 0; break;

case 27: esc();
default: addch(regs.h.ah)

;

/* right arrow*/

/* left arrow */

/* e o field */
/* down arrow */

/* backspace */

/* tab
/* back tab

/* escape

}

if (j > scr[n].floc[i][0]-l) {

j - 0;
if (++i > scr[n]. fields-1)

i = 0;

}

move(scr[n].floc[i][l],scr[n].floc[i][2]+j);
refresh();

/* maintain cursor
/* within defined
/* input fields

V
V

V
V

return (OK);

- 42

Appendix C

Screen Definitions

/* number of input fields */
/* original cursor field */
/* previous screen number */
/* length, row, col */
/* screen text lines */

number of input fields */

original cursor field */
previous screen (none) */
length, row, col */

screen text 1 ines */
"SDM ******************************** MENU **************************"

struct screens {

int fields;
int cursor;
int prevscr;
int floc[40] [3];
char text [24] [80];

} scr[; - {

{

1 >
/*

00
i

/*
00 /*

{ /*

{ 1, 14, 39}},
{ /*

Option (D = Delete SDM ii

ii

E = Edit SDM

G = Generate DATA DICTIONARY from SDM
ii

P = Parse SDM

X = Exit) ==>

n ***^
1 Fl=Help F3= F5= F7= F9= ESC=MS/D0S "

" F2= F4= F6= F8= F10= C/R=Enter "

},

>

- 43 -

>{

5, /* number of input fields */
0, /* original cursor field */

0, /* previous screen number */

{ /* length, row, col */

{ 1, 7, 23},
{ 8, 10, 23},

{ 8, 10, 41},
{ 8, 10, 59},
{ 8, 13, 23}},

{ /* screen text lines */
"SDM ************************** IDENTIFICATION ***********************"

II M

II M

II
ii

II
ii

II
ii

II

II

Drive ==> H

H

II H

II

II

Path ==> Path ==> Path ==>
ii

II H

II

II

SDMname ==> ii

ii

II
ii

II
ii

II
ii

II
ii

1 Fl=Help F3= F5= F7= F9= ESC=MS/D0S "

1

F2= F4= F6= F8= F10= C/R=Enter "

I'***"

},

}

- 44

,{

3, /* number of input fields */

00, /* original cursor field */

0, /* previous screen number */

{ /* length, row, col */

(17, 7, 17},

{ 1, 10, 51},

{44, 13, 24}},

{ /* screen text lines */

"SDM ****************************** CLASS ****************************"
H

Name ==>

Type (B = Base, S = Sub, G = Grouping) ==>

Description ==>

ii

M

I***"
1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

}

- 45

,{

11,

00,

2,

{

{

"SDM

{ 1.

(17,

(17,
(17,

(17,

(17,

{17,

{17,

{17,
{17,

{17,

3,

6,

7,

8,

9,

10,

13,

14,

15,

16,

17,

34},

34}
34}

:

34}
:

34}

,

34}

,

34}

,

34}
;

34},

34}

,

34}},

/*
/*
/*
/*

number of input fields
original cursor field
previous screen number
length, row, col

V
V
V
V

/* screen text lines 7
**************************** Basg class *** ********************** *

Duplicates allowed (Y, N) ==>

II

II

II

II

II

II

Identi fier: attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

II

II

II

II

II

II

II

Identi fier: attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

+ attribute ==>

' Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S '

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter '

»***!

},

}

- 46

,<

2, /* number of input fields */

00, /* original cursor field */

2, /* previous screen number */

{ /* length, row, col */

(17, 5, 27},

{ 1, 14, 54}},

{ /* screen text lines */
"SDM **************************** Sub Class **************************"

Parent Class ==>

Relation type (1 = specification,

2 = set operator

4 = attribute predicate) ==>

ii

it

3 = format

11 A — a + + v**i hi i+ A n^flHira+fl^ v
II

II

II

II

» II

•I***"
1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

' F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

).

)

47 -

3, /* number of input fields */
00, /* original cursor field */

4, /* previous screen number */

{ /* length, row, col */

{ 1, 7, 65},
(17, 10, 36},
{17, 13, 36}},

{ /* screen text lines */
«Sdm ********************** sub-Class Set Operator *******************

Operation (U = union, D = difference, I = intersection) ==>

of Sub-Class ==>

and Sub-Class ==>

**
1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter
"***

>,

}

48

,{

36, /* number of input fields V
00, /* original cursor field V
4, /* previous screen number */

{ /* length, row, col V
{ 2 2

.
H}

{ 2 2

2

2

3

3

4

4

5

5

6

24}

39}
48}
39}
48}
39}
48}
39}
48}
39}

6 48}
7 39}
7 48}
8 39}
8 48}
9 39}
9 48}

10 39}
10 48}
11 39}
11 48}
12 39}
12 48}
13 39}
13 48}
14 39}
14 48}
15 39}
15 48}
16 39}
16 48}
17 39}
17 48}
18 39}
18 48};\,

49 -

{ /* screen text lines */
"SDM ************************ Sub-Class Format ***********************"

"Size from ==> to ==> 01 from ==> to ==>

02 from ==> to ==>

03 from ==> to ==>

04 from ==> to ==>

05 from ==> to ==>

06 from ==> to ==>

07 from ==> to ==>

08 from ==> to ==>

09 from ==> to ==>

10 from ==> to ==>

11 from ==> to ==>

12 from ==> to ==>

13 from ==> to ==>

14 from ==> to ==>

15 from ==> to ==>

16 from ==> to ==>

17 from ==> to ==>

I' ***

»

" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

»***ii

»

50

,{

3, /* number of input fields */
00, /* original cursor field */

4, /* previous screen number */

{ /* length, row, col */

{17, 3, 27},

{ 2, 14, 54},
(17, 16, 40}},

{ /* screen text lines */
-
SDM ****************** Sub-Class Attribute Predicate ****************"

Attribute ==>

ii

ii

n

I

(GT = greater then,
LT = less then,
EQ = equal to,

NE = not equal to,
GE = greater then or equal to,
LE = less then or equal to,
CT = contains,
PC = properly contains,
IN = is contained in,

PI = is properly contained in) ==> "

Attribute or 'literal' ==>
"

.,

•
..

»
ii

' Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

"*** n

},

}

51 -

,{

12,

00,

2,

{

{

"SDM

4,

6,

8,

9,

10,

11,

12,

13,

14,

15,

16,

17,

28}

42}
33}
33}
33}
33}
33}
33}
33}
33}
33}
33}},

/*
/*
/*
/*

number of input fields
original cursor field
previous screen number
length, row, col

V
V
V
V

/* screen text 1 ines
************************** Grouping Class ***********************"

ii

ii

Parent class ==>

on like value of attribute ==>

or of Sub-Classes ==>
==>
==>
==>
==>
==>
==>

==>

"*** h

" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

"***!!

},

}

52

,{

9, /*
00, /*
o, /*

{ /*

(17, 3, 12},

(17, 3, 46},

{44, 5, 19},

{ 1, 8, 24},

{ 1, 10, 24},

{ 2, 12, 29},

{ 2, 12, 39},

{ 3, 14, 49},
(17, 16, 23}},

number of input fields */
original cursor field */

previous screen number */
length, row, col */

{ /* screen text lines */
"SDM ************************* Class Attribute ***********************"
»

ii

" Name ==> Value class ==> "

" Description ==> "

M

Non-null (Y, N) ==>

Changeable (Y, N) ==>

Number of values from ==> to ==>

Derivation (MIN, MAX, AVG, SUM, TOT, UNQ) ==>

of attribute ==>

ii

"*** h

1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

1 F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

»***n

}>

}

53

,{

15,

00,

0,

{

{

{17, 2

{17, 2

{44, 4

{17, 7

{17, 8

{ 1, 9

{ 1, 10

{ 1, 11

{ 1, 12

{ 2, 13

{ 2, 13

{ 1, 14

{17, 15

{17, 16

{17, 17

12}

46}
19}

28}

28}
25}
25}
25}
25}
29}
39}
25}

32}
32}

32}},

/* number of input fields
/* original cursor field
/* previous screen number
/* length, row, col

V
V
V
V

/* screen text lines /
"SDM ************************ Member Attribute ***********************

Name ==>

Description ==>

Value class ==>

Inverse of attribute ==>

of class ==>
Non-null (Y, N) ==>

Changeable (Y, N) ==>
Exhaustive (Y, N) ==>
Overlap (Y, N) ==>

Number of values from ==>

Derivation (Y, N) ==>
or Match on attribute ==>

of class ==>

using attribute ==>

to ==>

n ***^
" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S '

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter '

!•

- 54

,{

1, /* number of input fields */

0, /* original cursor field */

10, /* previous screen number */

{ /* length, row, col */

{ 01, 16, 46}},

{ /* screen text lines */
-
SDM ***************** Member Attribute Derivation Type **************

ii

ii

n

I

ii

ii

H

ii

"***
" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S

F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter
"***

Derivation (1 = Mapping,

2 = Ordering,

3 = Recursion,

4 = Set operation,

5 = Statistical

,

6 = Attribute predicate,

7 = Mathematical) ==>

>.

}

55

4, /* number of input fields */

0, /* original cursor field */

11, /* previous screen number */

{ /* length, row, col */

{17, 7, 28},
{17, 10, 28),
{17, 10, 60},
{17, 13, 28}},

{ /* screen text lines */
"Sdm *************** Member Attribute Derivation - Mapping ***********

n

ii

ii

M

" onto attribute ==> of class ==>
I

n

ii

ii

I

1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter
**

},

}

Mapping of attribute ==>

using attribute ==>

56

,{

3,

0,

11,

{

(17,

{ 1,

(17,

{

"SDM

7,

10,

13,

32},
44},

27}},

/*
/*
/*
/*

number of input fields
original cursor field
previous screen number
length, row, col

/* screen text lines

Member Attribute Derivation

V
V
V
V

7
Ordering ************"

Ordering of attribute ==>

in (A = ascending, D = descending) ==> order

within attribute ==>

" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S '

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter '

»***!

},

}

57 -

,<

2, /* number of input fields */

0, /* original cursor field */

11, /* previous screen number */

{ /* length, row, col */

{17, 8, 33),

{ 1, 11, 26}},

{ /* screen text lines */
-
SDM ************* Member Attribute Derivation - Recursion *************

H ii

ii ii

•I ii

ii H

ii ii

On attribute ==>
i H

ii

up to ==> levels

"***»
" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

I***"

>,

}

58

,{

3, /* number of input fields */

0, /* original cursor field */
11, /* previous screen number */

{ /* length, row, col */

{ 1, 7, 60),
{17, 10, 29},
{17, 13, 29}},

{ /* screen text lines */
»SDM *************** Member Attribute Derivation - Set ***************"
<i ii

•I it

•I ii

ii n

ii H

(U union, D = differenc, I = intersection) ==>

of attribute ==>

and attribute ==>

ii***"
1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

1 F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

I'***!!

},

}

- 59

,<

2, /* number of input fields */

0, /* original cursor field */

11, /* previous screen number */

{ /* length, row, col */

{ 3, 13, 54},
{17, 16, 43}},
{ /* screen text lines */
"
SDM ************ MemDer Attribute Derivation - Statistical **********"

ii

ii

11

MAX = maximum,
ii

ii

ii

ii

TOT total number,
» ii

ii

I

(MIN = minimum,

AVG = average,

SUM = sum,

UNQ = number of unique) ==>

of attribute ==>

11 *** I'

1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

"*** h

}

60

1,

o,

1.

17,

1,

17,

1,

17,

1,

17,

1,

17,

1,

17,

SDM

5, 30},
7, 25},

54},
25},

54},
25},
54},
25},

54},
25},

/* number of input fields
/* original cursor field

previous screen number
length, row, col

/*
/*

V
V
V
V

7,

9,

9,

11,

11,

13,

13,

15,

15, 54}},

/* screen text lines 7

Member Attribute Derivation - Mathematical **********"

attribute ==>

(+> -, *, /) ==>

(+, -, *, /) ==>

(+, -, *, /) ==>

(+, -, *, /) ==>

(+, -, *, /) ==>

attribute or 'literal' ==>

attribute or 'literal' ==>

attribute or 'literal' ==>

attribute or 'literal' ==>

attribute or 'literal' ==>

'***
1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
1 F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter
'***

- 61

,{

3, /* number of input fields V
0, /* original cursor field */

11, /* previous screen number V
{ /* length, row, col V
{17, 4, 26},

{ 3, 15, 53},
(17, 17, 39}},

{ /* screen text lines V
"SDM
ii

ii

************ Member Attribute Derivation - Predicate

ii

ii

n
Attribute ==>

H
(GT = greater then,

H
LT = less then,

ii

EQ = equal to,
H

NE = not equal to,
ii

GE = greater then or equal to,
ii

LE = less then or equal to,
ii

CT = contains,
ii

PC = properly contains,
H

IN = is contained in,
H

II

PI = is properly contained in) ==>

II

II

Attribute or 'literal' ==>

II

"***
" Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S
" F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter
"***

},

}

- 62

,{

1, /* number of input fields */

0, /* original cursor field */

0, /* previous screen (n a) */

{ /* length, row, col */

{44, 9, 23}},

{ /* screen text lines */
"SDM ************************** VERIFICATION *************************"
" ii

• ii

" ii

<
ii

<<
ii

»
ii

" Press ENTER to confirm the above action "

" ti

For ==>
"

ii

" Press F10 to cancel the action. "

•I

I'***"
1 Fl=Help F3=C Attr F5=Insert F7=Previous F9=Update ESC=MS/D0S "

F2=Class F4=M Attr F6=Delete F8=Next F10=End C/R=Enter "

•I***"

},

}

- 63

Appendix D

Error Messages

char msg[19][20] =
{

" inval id option",
" file not found",
" no update yet ",

" I/O error
" required field",
" invalid 1st c ",

' invalid name ",

" non numeric ",

" F9 to update",
DELETE
EDIT

GENERATE DD
" PARSE "

" ACTION CANCELLED '\

char lmsg[19][80] =
{

" The option selected for this field is not valid
The file specified was not found, check full path name
The current component is not complete and cannot be updated yet

" An I/O error has occured while reading or writing your SDM
This field is required for the definition of this component
The first character must be alphabetic

" Valid characters are: alphanumeric and underscore
" Only numeric values are valid in this field
" Component definition is complete, press F9 to save this definition"
};

64

Appendix E

System Code

#define BFSIZE 280
#define Al 0x46
#define FL 0xc6
#define RV 0x64
#define ENTER 13

#define ESC 20
#define OPEN
#define CLASS 1

#define CATR 2

#define MATR 3

#define HEADR 4

#define MSGL1 20
#define MSGL2 23

#define MSGC 00
#define DEL 10

#define EDIT 11

#define GEN 12

#define PRS 13

#define CAN 14
#define BADTYP 1

#define OPT 1

#define NOFIL 2

#define NOUPD 3

#define IOERR 4

#define REQ 5

#define CHI 6

#define CHR 7

#define NUM 8
#define UPD 9

#include <io.h>
#include <ctype.h>
#include <stdlib.h>
#include •scr.h"
#include 'scrO.h"
#include •scrl.h"
#include 'scr2.h"
#include 'scr3.h"
#include 'scr4.h"
#include 'scr5.h"
#include 'scr6.h"
#include 'scr7.h"
#include 'scr8.h"
#include 'scr9.h

M

#include 'scrlO.h"
#include 'scrll.h"
#include 'scrl2.h"
^include 'scrl3.h"

65 -

scrH.h"
'scrl5.h"
'scrl6.h"
'scrl7.h"
'scrl8.h"
'scrl9.h"

#include
#include
#include
#include
#include
#include

};
#include
#include
#include
#include
char buf[300];
int *sdmptr =

FILE *sdm;
long int longO
int recsize =

int fstfree,
fstcatr,

char fp[44]

;

char opt[l];
main() {

initscr() ;

cbreak()

;

noecho()

;

refresh ()

;

clear();
mnu();
clear()

;

move(0,0)

;

refresh ()

;

endwin()

;

exit();

mnu() {

int i , j, e

opt[0] = 0;
while(l) {

opt[0] =

if (opt[0])
case 'D'

case 'E'

case 'G'

case '?'

case 'X'

default

msg.h"
rec.h"
curses.

h"

scio.h"

&sdmu.hdr.fstclass;

= 0;

sizeof (sdmu.rec)

;

curclass, fstclass, screen, 1 screen, cursor, currec,
fstmatr, rtyp, numfree, numrec, filestat, oset, c, upd;

0;

toupper(opt[0])

;

switch (opt[0]) {

e = delsdm() ; opt[0] = 0;

}

scio(0,0,opt,e)

;

e = 0;

e = edit()

;

e = gen();
e = prs();
return;
e = 1;

opt[0]
opt[0]
opt[0]

= 0;
= 0;
= 0;

break;
break;
break;
break;

- 66

id(a) int a;{ /* get sdm full path name */
int i, j, k, m, e=0;
char buf[43];
for (i = 0; i < sizeof(buf) ;i++) { buf[i] = 0; fp[i] = 0;}
filestat = 2;

while(filestat > 1) {

scio(l,0,buf,e)

;

for (i=k=m=0;i<scr[l].fields;i++) {

for(j=0;j<scr[l].floc[i][0]&&buf[k+j]>' ';)

fp[m++] = buf[k+j++]

;

if (i == 0) fp[m++] = ':';

k += scr[l].floc[i][0];
if (i < scr[l].fields-l && buf[k]>' ') fp[m++] = '/';

fp[m++] = '.'; fp[m++] = 's'; fp[m++] = 'd'; fp[m++] = 'm';
if (sdm = fopen(fp,"r+")) filestat = 0;
else if (sdm = fopen(fp,"w+")) filestat = 1; else filestat = 2;
e = filestat;

}

}

return(scio(19,0,fp,a));

/* delete an sdm file */delsdm() {

if (id(DEL) == 68) return(CAN);
if (filestat) return(NOFIL)

;

if (c = unlink(fp)) return(c);
return(OK);

gen() {

if (id(GEN) == 68) return(CAN);
if (filestat) return(NOFIL)

;

return(OK);

}

prs() {

if (id(PRS) == 68) return(CAN);
if (filestat) return(NOFIL);
return(OK);

edit() {

int i, re, e = 0;
setbuf (sdm, NULL);
if (id(EDIT) == 68) return(CAN);
if (filestat == 0) {

fread(sdmptr,recsize,l,sdm)

;

curclass = currec = fstclass = sdmu.hdr.fstclass;
fstfree = sdmu.hdr.fstopen;
numrec = sdmu.hdr.nrec;
numfree = sdmu.hdr.nopen;
getrec(currec);

/*
/*
/*

verify action
good sdm name?
unl ink

*/

V
V

/*
/*

generate a data
dictionary

V
V

/* not implemented V
/*
/*

parse an sdm
definition

V
V

/* not implemented V
/* edit an sdm def V

/*
/*

verify action
open old sdm

V
*/

67 -

else {

numrec = currec =

fstfree = numfree
sdmu.rec.pre
sdmu.rec.nxt
sdmu.rec.catr
sdmu.rec.matr
sdmu.rec.typ

}

rtyp = CLASS;
screen = 2;

oset = upd = 0;

while (screen >

/* open new sdm
curclass = fstclass = 1;

= fstcatr = fstmatr = 0;

0;

0:

0:

0;

CLASS;

7

0) /* if return to main menu */
switch (scio (screen, cursor, sdmu.rec.buf+oset,e)) {

case OK: 1 screen = screen;
switch(screen)(

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

} break;
case 59:

case
case
case
case
case
case
case
case
case

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

proc2(sdmu.rec.buf+oset)

;

proc3(sdmu. rec. buf+oset)

;

proc4(sdmu. rec. buf+oset)

;

proc5(sdmu.rec.
rec.

/* validate screen input */

proc6(sdmu.
proc7(sdmu.
proc8(sdmu.

rec

buf+oset)
buf+oset)
buf+oset)

;

rec. buf+oset)
proc9(sdmu. rec. buf+oset)

;

= procl0(sdmu. rec. buf+oset)

;

= procll(sdmu. rec. buf+oset);
= procl2(sdmu. rec. buf+oset)

;

= procl3 (sdmu. rec. buf+oset)

;

= procl4(sdmu. rec. buf+oset)

;

= procl5(sdmu. rec. buf+oset)

;

= procl6(sdmu. rec. buf+oset)

;

= procl7(sdmu. rec. buf+oset)

;

= procl8(sdmu. rec. buf+oset);

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

60:
61:

62:

63:

64:

65:

66:

67:

68:

hlp(e); break;
e = cls(); break;
e = ctr() ; break;
e = mtr(); break;
e = add(); break;
e = del () ; break;
e = pre(); break;
e = nxt(); break;
e = updt(); break;
screen = scr[screen].prevscr;
oset -= soffset(screen)

;

cursor = scr[screen] .cursor;
e = OK;

/* process function keys */

- 68

sdmu.hdr.fstclass = fstclass; /* update header and */
sdmu.hdr.fstopen = fstfree; /* close file */
sdmu.hdr.nrec = numrec;
sdmu.hdr.nopen = numfree;
sdmu.hdr.typ = HEADR;
for (i=0;i<BFSIZE;i++) sdmu.hdr.buf[i] = 0;
fseek(sdm,longO,0) ;

fwrite(sdmptr,recsize,l,sdm)

;

fclose(sdm)

;

return (OK);

}

proc2(b) char b[] ;{
int i

;

cursor = 0;

if (c = nblank(b,17)) return(c); /* required field */
if (c = goodname(b)) return(c); /* invalid name */
i = foffset (screen,!)

;

b[i] = toupper(b[i]);
switch(b[i]) {

case 'B': screen = 3; break;
case 'S': screen = 4; break;
case 'G': screen = 8; break;
default: cursor = 1; return(OPT); /* invalid option */

oset += soffset(l screen)

;

cursor = scr[screen] .cursor;
return (OK);

}

proc3(b) char b[];{
int i

;

b[0] = toupper(b[0]);
switch(b[0]) {

case 'Y':

case 'N': break;
default: cursor = 0; return(OPT); /* invalid option */

for (cursor = 1; cursor < ll;cursor++) (

i = foffset(screen, cursor)

;

if (nblank(b+i,17)==0K) /* if non blank */
if (c = goodname(b+i)) return(c); /* invalid name */

upd = 1; /* allow update */
cursor = 0;

return(UPD);

proc4(b) char b[];{
int i

;

cursor = 0;
if (c = nblank(b,17)) return(c); /* required field */
else if (c = goodname(b)) return(c); /* invalid name */
i = foffset(screen,l);

- 69 -

switch(b[i]) {

case '1' return(UPD);
case '2' screen = 5; break;
case '3' screen 6; break;
case '4' screen = 7; break;
default: cursor = 1; return(OPT);

}

oset += soffset(l screen);
cursor = scrfscreen] .cursor;
return (OK);

/* invalid option */

proc5(b) char b[] ;{
int i;

b[0] -= toupper(b[0]);
switch(b[(

case 'U':

case 'D':

case 'I': break;

}

cursor

default: cursor = 0; return(OPT);

' = 1;

if (c = nblank(b+l,17)) return(c)

;

if (c = goodname(b+l)) i"eturn(c)

;

cursor = 2;
if (c = nblank(b+18,17)

I
return(c);

if (c = goodname(b+18)) return(c)

;

cursor =

upd = 1;

returri(UPO);

}

proc6(b) char b[];{
int i

;

cursor = 0;

if (c = nblank(b,2)) return(c);
if (c = numb(b,2)) return(c);
cursor = 1;

if (c = nblank(b+2,2)) return(c);
if (c = numb(b+2,2)) return(c);
upd = 1;

cursor = 0;
return(UPD);

proc7(b) char b[];{
int i, j;
cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor)

;

for (j = 0; j < 2; j++)
b[i+j] = toupper(b[i+j]);

/* invalid option */

/* required field */
/* inval id name */

/* required field */
/* invalid name */

/* allow update */

/* required field */
/* non numeric

/* non numeric

7

/* required field */

/
/* allow update */

/* required field */
/* invalid name */

/* convert to cap */
/* & check value */

- 70 -

}

if (!((strncmp(b+i,"GT\2) ==

(strncmp(b+i,"LT\2) ==

(strncmp(b+i,"GE",2) ==

(strncmp(b+i,"LE",2) ==

(strncmp(b+i,"EQ",2) ==

(strncmp(b+i,"NE",2) ==

(strncmp(b+i,"CT",2) ==

(strncmp(b+i,"PC",2) ==

(strncmp(b+i,"IN",2) ==

(strncmp(b+i,"Pr ,

,2) ==))
return(OPT);

cursor = 2;

i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(c);
upd = 1;

cursor = 0;
return (UPD);

proc8(b) char b[];{
int i, f = 0;
cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor)

;

if (nblank(b+i,17)==0K) {

if (c = goodname(b+i)) return(c);
f = l;

}

for (cursor = 2; cursor < 12 ;cursor++) {
i = foffset(screen, cursor);
if (nblank(b+i,17)==0K) {

if (c = goodname(b+i)) return(c);
f = 1;

}

}

cursor = 1;

if (!f) return(REQ);
upd = 1;

}

cursor = 0;
return(UPD);

proc9(b) char b[];{
int i, j;
cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor);
if (! nblank(b+i,17))

if (c = goodname(b+l)) return(c);

/* inval id option */

/* required field */
/* allow update */

/* required field */
/* inval id name */

/* if non blank
/* invalid name

/* if non blank
/* invalid name

/* if nonblank
/* invalid name

V
V

V
V

/* required field */
/* allow update */

/* required field */
/* invalid name */

V
7

71

for (i = 3; i < 5; i++) {

j = foffset(screen,i)

;

b[j] = toupper(b[j]);
switch(b[j]) {

case 'Y':

case 'N': break;
default: cursor =

}

i; return(OPT); /* invalid option */

}

cursor 5;

i = foffset(screen,5);
if (c = nblank(b+i,2)j return(c);
if (c = numb(b+i,2)) return(c);
cursor 6;

i = foffset(screen,6)

;

if (c = nblank(b+i ,2)) return(c);
if (c = numb(b+i,2)) return(c);
cursor = 7;

i = foffset(screen,7)

;

if (! nblank(b+i,3)) {

for (j = 0; j < 3; j++)
b[i+j] = toupper(b[i+j]);

if (!((strncmp(b+i,"MIN",3) ==

(strncmp(b+i,"MAX",3) ==

(strncmp(b+i,"AVG",3) ==

(strncmp(b+i,"SUM",3) ==

(strncmp(b+i,"T0T ,,

,3) ==

(strncmp(b+i,"UNQ\3) ==

return(OPT);
cursor = 8;
i = foffset(screen,8)

;

if (c = nblank(b+i , 17)) return(c);
if (c = goodname(b+i)) return(c);

upd = 1;

cursor = 0;
return (UPD);

proclO(b) char b[];{
int i

;

cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor)

;

if (nblank(b+i,17) == OK)
if (c = goodname(b+l)) return(c);

cursor = 3;
i = foffset(screen, cursor)

;

)))

/* required field */
/* non numeric */

/* required field */
/* non numeric */

/* if nonblank */
/* then check */
/* value */

/* invalid option */

/* required field */
/* invalid name */

/* allow update */

/* required field */
/* invalid name */

/* if nonblank */
/* invalid name */

- 72

if (nblank(b+i,17) == OK) {

if (c = goodname(b+i)) return(c);
cursor = 4;

i = foffset(screen, cursor)

;

if (c = nbl ank(b+i , 17)) return(c);
if (c = goodname(b+i)) return(c);

for (cursor = 5; cursor < 9; cursor++)
i = foffset(screen, cursor)

;

b[i] = toupper(b[i])

;

switch(b[i]) {

/*
/*

/*
/*

}

case 'Y'

case 'N'

default:
break;
return (OPT);

case 'Y'

case 'N'

if nonblank */

invalid name */

required field */

invalid name */

/* invalid option */

/*
/*

}

cursor = 9;
i = foffset(screen, cursor)

;

if (c = nblank(b+i,2)) return(c);
if (c = numb(b+i,2)) return(c);
cursor = 10;
i = foffset(screen, cursor)

;

if (c = nblank(b+i,2)) return(c);
if (c = numb(b+i,2)) return(c);
cursor = 11;

i = foffset(screen, cursor)

;

b[i] = toupper(b[i]j;
switch(b[i]) {

screen =11;
oset += soffset(l screen);
cursor = scr[screen] .cursor;
return(OK);
cursor = 12;
i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(
if (c = goodname(b+i)) return(c
cursor = 13;
i = foffset(screen, cursor);
if (c = nblank(b+i,17)) return(
if (c = goodname(b+i)) return(c
cursor = 14;
i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(
if (c = goodname(b+i)) return(c
break;
return(OPT); /*

required field */
non numeric */

/* required field */
/* non numeric */

default

}

upd = 1;

cursor = 0;
return (UPD);

/'

c);

);

c);

);

c);

);

inval id option V
allow update V

73 -

12;

13;

14;

15;

16;

break;
break;
break;
break;
break;

18; break;
17; break;

procll(b) char b[] ;{
switch(b[0]) {

case '1': screen
case '2': screen
case '3': screen
case '4'

: screen
case '5': screen
case '6': screen
case '7': screen
default: return(OPT);

oset += soffset(l screen)

;

cursor = scr[screen] .cursor;
return(OK);

}

procl2(b) char b[];{
int i

;

for (cursor = 0; cursor < 4;cursor++) {

i = foffset(screen, cursor)

;

if (c = nblank(b+i ,17)) return(c);
if (c = goodname(b+i)) return(c);

}

upd = 1;

cursor = 0;
return(UPD);

procl3(b) char b[];{
int i

;

cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor)

;

b[i] = toupper(b[i]);
switch(b[i]) {

case 'A'

case 'D'

default:
break;
return(OPT);

}

cursor = 2;
i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(c);
if (c = goodname(b+i)) return(c);
upd = 1;

cursor = 0;
return(UPD);

procl4(b) char b[];{
int i

;

cursor = 0;
if (c = nblank(b,17)) return(c);

/* invalid option */

/* required field */
/* invalid name */

/* allow update */

/* required field */
/* invalid name */

/* invalid option */

/* required field */
/* invalid name */
/* allow update */

/* required field */

74 -

if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor)

;

if (c = nblank(b+i ,1)) return(c);
if (c = numb(b+i,l)) return(c);
upd = 1;

cursor = 0;

return (UPD);

}

procl5(b) char b[];(
int i

;

cursor = 0;
b[0] = toupper(b[0]);
switch(b[0]) {

case 'U':

case 'D':

case 'I'

default:
: break;
return(OPT);

}

cursor = 1;

i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(c);
if (c goodname(b+i)) return(c);
cursor = 2;
i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(c);
if (c = goodname(b+i)) return(c);
upd = 1;

cursor = 0;
return(UPD);

}

procl6(b)
int i

;

cursor
for (i

char b[];{

= 0;
= 0; i < 3; i++)

bfi] = toupper(b[i]);
if (!((strncmp(b,"MIN",3) ==)

(strncmp(b,"MAX",3) ==)

(strncmp(b,"AVG",3) ==)

(strncmp(b,"SUM\3) --)

(strncmp(b,"T0T",3) ==
)

(strncmp(b,"UNQ",3) ==)))
return(OPT);

cursor = 1;

i = foffset(screen, cursor);
if (c = nblank(b+i,17)) return(c);
if (c = numb(b+i)) return(c);
upd = 1;

cursor = 0;

return(UPD);

/* inval id name */

/* required field */
/* non numeric
/* allow update

V
V

/* invalid option */

/* required field */
/* invalid name */

/* required field */
/* invalid name */
/* allow update */

/* invalid option */

/* required field */
/* invalid name */
/* allow update */

75

procl7(b) char b[];{
int i, f = 0;

cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
for (cursor = 1; cursor < 10; cursor +=

i = foffset(screen, cursor)

;

switch(b[i]) {

2) {

/* required field */
/* invalid name */

case
case
case
case

}

case
default

f = 1;

i = foffset(screen,c
if (c = nblank(b+i ,1

if (c = goodname(b+i
break;
return (OPT);

ursor+1)

;

7)) return(c);

)) return(c);

}

}

if (!f) return(REQ);
upd = 1;

cursor = 0;
return (UPD);

procl8(b) char b[];{
int i, j;
cursor = 0;

if (c = nblank(b,17)) return(c);
if (c = goodname(b)) return(c);
cursor = 1;

i = foffset(screen, cursor)

;

for (j = 0; j < 2; j++)
b[i+j] = toupper(b[i+j]);

if (!((strncmp(b+i,"GT\2)
(strncmp(b+i,"LT",2)
(strncmp(b+i,"GE\2)
(strncmp(b+i,"LE",2)
(strncmp(b+i,"EQ\2)
(strncmp(b+i,"NE",2)
(strncmp(b+i,"CT\2)
(strncmp(b+i,"PC
(strncmp(b+i,"IN
(strncmp(b+i, ,, Pr ,

,2) > j)
return (OPT);

cursor = 2;

i = foffset(screen, cursor)

;

if (c = nblank(b+i,17)) return(c);
upd = 1;

cursor = 0;

return(UPD);

/* required field */
/* allow update */

/* required field */
/* invalid name */

/* convert to cap */
/* & check value */

/* invalid option */

/* required field */
/* allow update */

76 -

nbl ank(b,n) int n; char b[]; {

int i

;

}

for (i

case
case '

default

}

return(REQ);

0;i < n;i++) switch (b[i]) {

break;
return(OK); /* non blank field */

/* required field */

numb(b,n) char b[]; int n;{
int i, f = 0;
for (i=0;i<n;i++) switch(b[i]) {

case '0'

case '1'

case '2'

case '3'

case '4'

case '5'

case '6'

case '7'

case '8'

case '9' f = 1; break;
case
case '

'

if (f) {

b[i] = 0;

while (++i < n) {

if (b[i] == ' '
) b[i]

else if (b[i])
return (NUM);

} break;
default

}

return(OK);

return(NUM);

0;

/* imbedded blank */

/* non numeric

}

goodname(b) char b[]; {

int i

;

if (b[0] >= 'a' && b[0] <= 'z')
b[0] = b[0] + 'A' - 'a';

else if (b[0] < 'A' || b[0] >

return(CHl);
for (i = l;i < 17;i++) {

if (!((b[i]
(b[i]
(b[i]
b[i]
b[i]

'I')

/* convert 1st char */
/* to upper case */

>= 'a'
>= 'a'
>= '0'

"
'

J,)

&& b[i]
&& b[i]
&& b[i]

b[i]

<=
<=
<=

'z'l

;z'
'9')

return(CHR);

/*
/*
/*
/*
/*
/*
/*

invalid 1st char
valid characters
lower case alpha
upper case alpha
numeric
blank or null
underscore

V
V
V
*/

V
V
V

77

b[i] == 0) {

{

if (b[i] == '
'

b[i] = 0;

while (++i < 17)

if (b[i] == ' '
) b[i] = 0;

else if (b[i]) return(CHR);

}

}

}

return (OK);

/* imbedded blank

w[4];

MSGL1;

76;

}

hlp(e) int e; {

int hscreen,
if (e) {

w[0] = w[3] =

w[l] = MSGC;
w[2] = MSGC +
wattron(w,RV);
mvaddstr(MSGLl,MSGC,lmsg[e-l]);
w[0] = w[3] = MSGL2;
w[l] = MSGC;
w[2] = MSGC + 24;
wattron(w,RV)

;

mvaddstr(MSGL2, MSGC, "PRESS ANY KEY TO CONTINUE");
getch();

else {

hscreen = screens - screen;
scio(hscreen,0,b,0);

}

return (OK);

/*
/*
/*
/*

V /* tutorial */

V /* not implemented */

V
7

}

cls(){
screen
cursor
oset =

rtyp

}

= 2;
= 0;
upd = 0;

CLASS;
if (currec==curclass) return(OK);
return(getrec(curcl ass))

;

/* display current class */

ctr(){
screen = 9;

oset = upd = cursor = 0;
rtyp = CATR;
if (currec==fstcatr) return(OK);
if (fstcatr) return(getrec(fstcatr))

;

return(add());

/*
/*
/*

display first class
attribute of current
class

V
*/

V

}

- 78

mtr()<
screen = 10;

oset = upd = cursor = 0;
rtyp = MATR;
if (currec==fstmatr) return(OK);
if (fstmatr) return(getrec(fstmatr))

;

return(add());

}

pre(){
if (sdmu.rec.pre) {

if (c = getrec(sdmu.rec.pre))
return(c);

if (sdmu.rec.typ == CLASS) curclass

oset = upd = 0;
switch (rtyp) {

case CLASS: screen = 2; break;
case CATR : screen = 9; break;
case MATR : screen = 10; break;
default : return (BADTYP)

;

cursor = scr[screen] .cursor;
return(OK);

}

nxt(){
if (sdmu.rec.nxt)

if (c = getrec(sdmu.rec
oset = upd = 0;
switch (rtyp) {

case CLASS: screen =

case CATR : screen =

case MATR : screen =

/*
/*
/*

display first member
attribute of current
class

V
V
V

/" display previous
record of this type

V
V

currec:

nxt)) return(c);

/* display next record */
/* of this type */

2; break;
9; break;

10* brGcik

*

default : return (BADTYP)

;

}

cursor - scr[screen]. cursor:
return(OK);

updt() {

If (upd) {

oset = upd = 0;
switch (rtyp) {

case CLASS: screen =

case CATR : screen =

case MATR : screen

2; break;
9; break;

1 * bv^Gci
k

*

default : return(BADTYP)

;

}

cursor = scrfscreen]. cursor;
return(putrec(currec));

else return(NOUPD);

79

del(){
int scatr =

smatr =

sprev =

snext =

stype =

scur =

ncur =

temp;
char b[45]

;

for (temp =

sdmu.rec.catr,
sdmu.rec.matr,
sdmu.rec.pre,
sdmu.rec.nxt,
sdmu.rec.typ,
currec,

0,

/*
/*
/*

delete current record from
sdm file and update linked
1 ist of open records

V
V

45; temp++) bftemp] = 0;

17; temp++)

/*
/*

0;temp <

for (temp = 0;temp <

b[temp] = sdmu.rec.buf[temp]

;

if (scio(19,0,b,DEL)==68) return(OK);
if (snext) (

ncur = snext;
if (c = getrec(snext)) return(c);
sdmu.rec.pre = sprev;
if (c = putrec(snextj) return(c);

if (sprev) {

ncur = sprev;
if (c = getrec(sprev)) return(c);
sdmu.rec.nxt = snext;
if (c = putrec(sprevj) return(c);

el se {

if (stype == CLASS)
fstclass = curclass = snext;

else {

if (c = getrec(curclass)) return(c);
if (rtyp == CATR)

sdmu.rec.catr = snext;
else sdmu.rec.matr = snext;
if (c = putrec(currec)) return(c);

if (Incur) ncur = curclass;
}

pushopen(scur);
if (stype == CLASS) {

if (scatr) {

if (c == getrec(scatr)) return(c);
while (sdmu.rec.nxt) {

temp = currec;
if (c == getrec(sdmu.rec.nxt)) return(c);
pushopen(temp);

}

/* get name of record
/* and verify delete

update pointer
in next record

7
*/

/* and prev record */

/*
/*
/*
/*
/*
/*
/*
/*

if no prev rec */

and type CLASS */
update fstclass */
else update the */
current class */
if type CATR */
update catr */

else update matr*/

/*
/*
/*
/*

if current record is

class, then all of
its class attributes
must also be deleted

V
V
V
V

80

if (smatr) {

if (c == getrec(smatr)) return(c);
while (sdmu.rec.nxt) {

temp = currec;
if (c -- getrec(sdmu.rec.nxt)) return(c);
pushopen(temp);

}

}

}

if (c == getrec(ncur)) return(c);
oset = upd = 0;

switch (sdmu.rec.typ) {

case CLASS: screen = 2; break;
case CATR : screen = 9; break;
case MATR : screen = 10; break;
default : return (BADTYP)

;

cursor = scr[screen] .cursor;
return (OK);

}

pushopen(n) int n;{
int i

;

if (n<l) return(ERR);
sdmu.rec.nxt = fstfree;
sdmu.rec.catr = sdmu.rec.matr = sdmu.rec.
sdmu.rec.typ = OPEN;
for (i=0;i<BFSIZE;i++) sdmu.hdr.buf[i] =

if (c = putrec(n)) return(c);
fstfree = n;

return (OK);

add() {

int snext = sdmu.rec.nxt,
stype = sdmu.rec.typ,
sfree = fstfree,
scur = currec,
i;

if (fstfree) currec = fstfree;
else currec = ++numrec;
if (rtyp == stype) {

sdmu.rec.nxt = currec;
if (c = putrec(scur)) return(c);
if (snext){

i = currec;
if (c = getrec(snext)) return(c);
currec = i

;

sdmu.rec. pre = currec;
if (c = putrec(snext)) return(c);

if (rtyp == CLASS) curclass = currec;

/* and also all of its
/* member attributes

V
V

/* add a record to the */
/* linked list of open */
/* records V
pre = 0;

0;

/* get a record from
/* the linked list of

open records if any
are free, or add one
to the end of file

/*
/*
/*

/*
/*
/*
/*
/*
/*

update pointers to
new rec in pre & nxt
if type unchanged
then update the last
recs next pointer
if there is a next

V
V
V
*/

V
V
V
V
*/

V
V

/* read it and update */

/* its previous pointer */

- 81

/*
/*

else { /*
if (scur != curclass) { /*

scur = currec; /*
if (c = getrec(curclass)) return(c);
currec = scur;

}

if (rtyp == CATR)
sdmu.rec.catr = fstcatr = currec;

else
sdmu.rec.matr = fstmatr = currec;

if (c = putrec(curclass)) return(c);
snext = scur = 0;

}

if (sfree) {

if (c = getrec(sfree)) return(c);
fstfree = sdmu.rec.nxt;

}

oset = upd = 0;
switch (rtyp) {

case CLASS: screen = 2; break;
case CATR : screen = 9; break;
case MATR : screen = 10; break;
default : return (BADTYP)

;

cursor = scr[screen] .cursor;
for (i=0;i<BFSIZE;i++) sdmu.rec.buf[i] = 0;
sdmu.rec.catr = 0;
sdmu.rec.matr = 0;
sdmu.rec.pre = scur;
sdmu.rec.nxt = snext;
sdmu.rec.typ = rtyp;
if (c = putrec(currec)) return(c);
return(OK);

getrec(n) int n; {

long int i = n;

if (fseek(sdm,i*recsize,0)) return(3);
if (fread(sdmptr,recsize,l,sdm)!=l) return(IOERR)

;

currec = n;

if (sdmu.rec.typ == CLASS) {

curclass = currec;
fstcatr = sdmu.rec.catr;
fstmatr = sdmu.rec.matr;

return (OK);

if type has changed
then class rec must
be updated

*/

V
7

rec of new typ has
no pre or nxt

V
*/

/* read a specific record */

82 -

/*
/*

putrec(n) int n; {

long int i = n;

if (fseek(sdm,i*recsize,0)) return(3);
if (fwrite(sdmptr,recsize,l,sdm) !=1) return(IOERR)

;

return(OK);

}

foffset(s, f) int s, f; {

int i, k;

for (i = k = 0;i < f;i++)
k += scr[s].floc[i][0];

return(k)

;

}

soffset(s) int s; {

int i, k;

for (i = k = 0;i < scr[s] .fields;i++)
k += scr[s].floc[i][0];

return(k);

}

esc(){
int i

;

sdmu.hdr.fstclass = fstclass;
sdmu.hdr.fstopen = fstfree;
sdmu.hdr.nrec = numrec;
sdmu.hdr.nopen = numfree;
sdmu.hdr.typ = HEADR;

/* write a specific record */

compute the offset of a

given input field

/*
/*

compute the total offset
for input on one screen

V
V

V
V

for (i=0;i<BFSIZE;i++) sdmu.hdr.buf [i] =

fseek(sdm,longO,0);
fwrite(sdmptr,recsize,l,sdm); /*

fclose(sdm)

;

clear()

;

move(0,0);
refresh();
endwin()

;

exit()

;

r

0;

update header record
and close file

V
V

83 -

References

1) Andriole, S. "Interactive Computer-Based Systems: Design &
Developement" , Petrocelli Books, Princeton, NJ, 1983

2) Gains B. The technology of interaction - dialogue programming rules",
International Journal of Man-Machine Studies, 14, 1981

3) Hammer, M. and D. McLeod. "The semantic data model: A modeling
Mechanism for data base applications", SIGMOD (ACM) Int. Conf. on
Management of Data, Austin, TX, May 31, June 1-2, 1978

4) Hammer, M. and D. McLeod. "The semantic data model: A conceptual
data modeling mechanism", Advances in data base management, Ed. T.
Rullo, Heyden, Philadelphia, PN, 1980

5) Hammer, M. and D. McLeod. "Database description with SDM: A Semantic
Database Model", ACM Trans Database Syst, 6:3, 1981

6) Miller, G. "The magical number seven, plus or minus two: Some limits
on our capacity for processing information", Psycological Review,
63:2, 1956

7) Monk A. "Fundamentals of Human-Computer Interaction", Academic Press,
New York, NY, 1984

8) Lane, R. "Senantic Database Model Language (SDML): Grammer
Specification and Parser", Masters Thesis, Kansas State University,
1986

J

- 84

AN INTERACTIVE SYSTEM FOR THE DEFINITION OF
A SEMANTIC DATA MODEL

by

GREGORY DALE WOOD

B.S., Kansas State University, 1974

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

The Semantic Data Model (SDM) was developed for the conceptual

modeling of application environments. An interactive system for SDM

definition will enable database designers to more easily create these

models, with standard results.

The system will allow the user to enter and maintain one or more

SDM definitions, delete an entire SDM definition, parse the definition

of an SDM for syntactic correctness, and to generate a static data

dictionary from an SDM definition.

These functions are accomplished through menu selection and fill in

the blank, formatted screens, which provide initial guidance in SDM

definition. Futher guidance is available through error messages and

expanded descriptions thereof, as well as general help screens about the

system and related SDM syntax.

