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Abstract 

The Wrangell arc (WA) is a ~29 Ma magmatic belt, extending from south-central Alaska 

into the Yukon Territory, that lies above the edges and leading front of the Yakutat microplate, a 

buoyant oceanic plateau that is causing shallow subduction (11-16º) in the region.  The WA 

occurs in a transition zone between “normal” Aleutian subduction to the west and dextral strike-

slip tectonics to the east, accomplished by the Totschunda, Denali, and Duke River faults.  This 

geologic setting offers a chance to study the interrelations between subduction, strike-slip 

motion, and slab-edge magmatic processes in a relatively well-exposed arc.  We implemented a 

novel technique of applying geochemical and geochronologic analyses on volcanic cobbles 

collected from glacio-fluvial systems (rivers, streams, and glaciers) encircling/draining the WA.  

Our primary objective is to integrate our cobble datasets with the existing bedrock and detrital 

sand records to develop a comprehensive understanding of WA magmatism through time and 

space.  Our secondary objective is to test the validity of this novel technique for reproducing 

what is documented from bedrock samples and its potential for utilization in other locations.  

This study provides new major element data from 215 samples and trace element data from 236 

samples collected from 17 major rivers that drain from the modern western and central WA (this 

study excludes the eastern WA).  This study also provides new age data from a total of 119 

samples from 10 major rivers.  New geochronology of modern detrital volcanic cobbles and 

sand/zircons reveal that the WA initiated at ~29 Ma and that magmatism migrated 

northwestward through time.  Cobble ages and locations across the arc agree with the 

northwestward progression of magmatism previously identified by Richter et al. (1990).  Forty-

seven cobbles are dated <~1 Ma and only nine cobbles are dated 29 – ~20 Ma, whereas there are 

no cobbles from 17 – ~13 Ma.  Geochemical data reveal similarities between our data and that of 

the <~5 Ma WA defined by Preece and Hart (2004): Trend 1 (transitional-tholeiitic), Trend 2a 

(calc-alkaline), Trend 2b (calc-alkaline, adakite-like).  Therefore, we use the geochemical 

framework defined in Preece and Hart (2004) to contextualize spatio-temporal trends of 

magmatism and tectonic implications in the WA during its ~29 m.y. history.  Trend 2a and 2b 

cobbles are spatially and temporally ubiquitous in the WA, indicating that subduction and partial 

slab melting have been the dominant tectonic processes throughout WA history. Trend 1 cobbles 

are not found in southwestern WA rivers and are temporally restricted to ~11 – ~6 Ma and <1 



  

Ma, suggesting intra-arc extension has occurred in discrete periods during WA history.  These 

conclusions are confirmed by the existing (Richter et al., 1990; Skulski et al., 1991; 1992; Preece 

and Hart, 2004; Trop et al., 2012) and new (Berkelhammer, 2017; Weber et al., 2017) bedrock 

records.  Finally, this study shows that the sampled cobble lithologies largely reproduce the 

known bedrock record in geochemical, temporal, and spatial contexts, which suggests the novel 

methodology applied here can be used in other locations where field conditions limit access to 

bedrock.     
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Chapter 1 - Introduction 

Studies of detrital material have typically been restricted to applications in sedimentary 

systems (e.g., geochronology of detrital zircons and provenance analyses).  Recently the scope of 

detrital studies has been expanded to utilize sand, pebbles, and cobbles to understand processes 

such as cooling and exhumation rates in glaciated areas by using thermochronology and 

geochronology (Grabowski et al., 2013; Ehlers et al., 2015; Enkelmann and Ehlers, 2015; 

Falkowski et al., 2016; Lease et al., 2016).  Studying detritus in heavily glaciated areas is a 

useful technique because it acts as a proxy to study bedrock that is inaccessible due to permanent 

ice cover, challenging terrain, or both.  However, applying geochronology and geochemistry 

analyses of cobble-sized igneous detritus in complement to in situ bedrock for petrological 

studies is not found in current literature.  The detrital petrological technique that is the focus of 

this study allows large areas of land to be targeted by relatively few sampling locales, thus 

providing a “high-return investment.”  This study is the first of its kind to utilize a sedimentary 

system technique for a purely petrological outcome: igneous river cobbles are used to indirectly 

sample in situ bedrock in the understudied and remote Wrangell arc (WA) of south-central 

Alaska.  This project combines applied geochronology and geochemistry of igneous river 

cobbles from the WA to achieve the overall general objective of better understanding how the 

WA progressed, both geochemically and tectonically, through time. 

The WA is a relatively well-exposed continental volcanic arc in south-central Alaska that 

is characterized by large shield volcanoes, stratovolcanoes, and cinder cones (Preece and Hart, 

2004), as well as ice fields, glaciers, and huge river systems (Fig. 1.1).  The WA covers 15,000 

to 20,000 km2 with peak heights ranging from about 700m to 5000m (Richter et al., 1990).  Of 

this huge area spanned by the WA, nearly one-third is covered by ice fields or glaciers, which 

effectively restricts access to the rocks beneath this ice.  However, major river systems drain 

watersheds within the WA, thereby providing a weathering and transportation mechanism for 

many of these inaccessible rock units.  Some river cobbles come from areas that have accessible 

bedrock exposures while others are derived from ice-covered areas and have therefore never 

been sampled.  The sizable spatial extent of WA, as well as expansive ice cover, large river 

drainage networks, and the potential to sample previously unavailable rocks, make this site an 
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excellent location to implement the use of fluvial igneous cobbles as an indirect method for 

bedrock sampling.  

To understand how the WA geochemically and tectonically progressed through time, we 

must answer specific questions regarding the history of the WA.  The questions we will be 

addressing about the history of the WA are as follows:  

 Did WA magmatism begin earlier than 26 Ma (Richter et al., 1990)?  Additionally, what 

do new cobble, detrital sand, and bedrock ages reveal about the progression of WA 

magmatism through time? 

 Are specific time intervals during WA history linked to eruptions of different magma 

types?  If so, what—if any—tectonic implications do these temporal trends reveal 

throughout the arc? 

 Are the controls on the occurrence of various magma types local or arc-wide? 

 What does the temporal migration of magmatism reveal about the tectonic controls on 

where WA magmatism was focused with time?  

 Are the compositions of the igneous cobbles in this study reflected in the existing 

bedrock record?  Can using igneous cobbles as a way of indirectly sampling bedrock be 

implemented in other locations? 

To address these questions, we present and interpret geochemical data on 236 cobble samples 

collected from 17 major rivers that drain and in their entirety circumvent the WA (Fig. 1.2).    

New geochronological data on 119 of these samples allow us to place cobble geochemistry 

within a temporal context, thereby creating a geochemical timeline for the WA.  Ages for the 

remaining samples are currently being obtained.  To create a robust dataset, we will integrate our 

geochemistry and ages with all other WA bedrock and detrital data to understand where the 

cobbles fit in with existing data as well as where the cobbles present new results.                                                                                                                                  
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Figure 1.1 Satellite image of the WA. Note the large amount of ice cover present, making this an ideal location to test the use of 

igneous cobble sampling to indirectly study bedrock.  Map is annotated with published bedrock and detrital ages. Purple circles 

and blue rectangles are locations of bedrock ages; blue hexagons are locations of detrital sand ages. Note the general 

northwestward younging trend, apart from Mt. Churchill and Eucher Mountain. Purple text = Pliocene-Quaternary in age; red 

text = Late Miocene; Green = Miocene (Yukon); Blue = Late Oligocene/Early Miocene. 
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Figure 1.2 Map locations of sample collections. Yellow hexagons represent cobble collection sites and boxes note the river name 

from which the samples were collected. 
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Chapter 2 - Geologic Framework 

The WA is a NW-SE trending continental volcanic arc that is ~29.0 m.y. old (Trop et al., 

2017; Davis et al., 2017) and covers 15,000 – 20,000 km2, extending from south-central Alaska 

into the neighboring Yukon Territory of Canada (Fig. 1.1).  The WA occurs where the 

northernmost portion of the Pacific plate plunges beneath the North American plate.  The Pacific 

plate in this locality includes the Yakutat microplate, which is interpreted as a wedge-shaped 

oceanic plateau made of thick, buoyant oceanic crust (Worthington et al., 2012) that originated at 

lower latitudes and has been translated northward to its current location along the Fairweather-

Queen Charlotte fault system (Plafker and Berg, 1994; Perry et al., 2009).  The presence of the 

Yakutat microplate causes subduction here to occur at a shallow angle that ranges from 6° to 16° 

in its imaged entirety (Bauer et al., 2014; Eberhart-Phillips et al., 2006).  The subducted Yakutat 

has been imaged as continuous to a point beneath the WA and is therefore associated with 

Wrangell magmatism.  However, the full geometry of the microplate north of the WA is 

unknown due to a lack of seismic stations in the region or the possibility of the lack of the 

Yakutat microplate north of the WA (Bauer et al., 2014). Major strike-slip faults (Denali fault, 

Totschunda fault, and Duke River fault) also interact with the WA subduction zone, creating an 

intersection between a convergent margin and strike-slip faults: an arc-transform junction (Fig 

2.1).   

In a regional context, this subduction zone is bracketed by “normal” Aleutian subduction 

to the west and by strike-slip motion to the east and north, creating an area where normal 

subduction transitions to shallow subduction and finally to a strike-slip regime (Haeussler, 2008; 

Gulick et al., 2013; Fig 2.2).  The western portion of this transitional area is characterized by arc 

magmatism associated with “normal” subduction of the Pacific plate marked by the Aleutian arc.  

The central portion is characterized by the Yakutat microplate subducting at a near-horizontal 

angle of ~6° (Eberhart-Phillips et al., 2006) and a subsequent lack of active magmatism (Fig. 

2.2).  The eastern region of this transitional area—the focus of this study— is characterized by 

active, dormant, and extinct WA magmatism associated with subduction of the Yakutat 

microplate (Bauer et al., 2014) as well as strike-slip motion along the Denali fault system 

(Skulski et al., 1991, 1992; Richter et al., 1994; Trop et al., 2012).  The dip angle of the Yakutat 

steepens slightly beneath the WA, ranging from 11º to 16º from west to east, thereby placing it at 
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a Benioff depth of ~80 km and therefore deep enough to be associated with magmatism observed 

in the WA (Bauer et al., 2014).  

The WA itself can be divided into western, central, and eastern regions for ease of study 

and discussion (Fig. 2.3).  The western and central regions are in Alaska and the eastern region 

lies across an international border in the Yukon Territory of Canada.  Data from this study focus 

on only the western and central WA, but previous work from the eastern WA is used here for 

interpretations and context.  The western WA is dominated by a subduction tectonic regime and 

the central and eastern WA have both subduction and strike-slip tectonic components (e.g., 

Eberhart-Philips et al., 2006; Haussler, 2008, Gulick et al., 2013; Totschunda fault in central and 

Denali and Duke River faults in eastern; Fig. 2.3).  Previous geological investigations in the WA 

have individually focused on the western, central, and eastern regions and reveal that WA 

magmatism consists of four distinct geochemical groups that vary in space and time.  The four 

groups are: 

 ubiquitous and voluminous calc-alkaline magmatism (Skulski et al., 1991, 1992; Preece 

and Hart 2004; Trop et al., 2012; Berkelhammer, 2017; Davis et al., 2017; Trop et al., 

2017; this study). 

 low-volume alkaline magmatism restricted to the eastern WA adjacent to the Denali and 

Duke River faults (Skulski et al., 1991, 1992).  

 voluminous transitional tholeiitic magmatism in the western and central WA associated 

with intra-arc extension (Preece and Hart 2004; Trop et al., 2012; Berkelhammer, 2017; 

this study). 

 adakitic magmatism restricted to two young volcanoes; Mount Drum in the western WA 

and Mt. Churchill in the central WA (Preece and Hart, 2004; Preece et al., 2014; this 

study), as well as adakite-like magmatism in the ~29 – 20 Ma WA Sonya Creek volcanic 

field and areas to the west (Berkelhammer, 2017; Weber et al., 2017). 

These geochemical groups reflect the tectonic regime(s) that formed them and, when these 

groups are coupled with their respective ages, have important implications for the magmatic 

history of the WA.  

Calc-alkaline magmas are a signature of “typical” subduction.  They are generated by 

melting in the mantle wedge in response to fluid influx via dehydration of the subducting slab; 

fluid-fluxing of the mantle wedge lowers the solidus and facilitates larger degrees of partial 
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melting than would otherwise be obtained.  Because the WA occurs above a subduction zone 

where mantle wedge melting is occurring, calc-alkaline magmas are the dominant series 

throughout the entire WA (western, central, and eastern regions) and are temporally ubiquitous, 

beginning at ~29.0 Ma and continuing to essentially the present (Richter et al., 1990; Preece and 

Hart, 2004; Trop et al., 2012; Berkelhammer, 2017; Trop et al., 2017; Davis et al., 2017; this 

study).  Northwestward migration of magmatism was initially identified based on ages and 

locations of calc-alkaline magmas throughout the WA (Fig. 2.4; Richter et al., 1990), but new 

data require modification of this interpretation (Berkelhammer, 2017; Trop et al., 2017; Davis et 

al., 2017; this study).  Preliminary geochemical and geochronologic analyses of samples were 

performed for a National Science Foundation sponsored collaborative investigation of the WA 

between University of Alaska-Fairbanks, Bucknell University, and Kansas State University (this 

study is a sub-project).  These preliminary data reveal calc-alkaline magmas with ages that range 

from ~30.0 to ~17.0 Ma that plot north of previously documented younger ages.  These 

preliminary analyses suggest an additional migration component prior to the northwestward 

migration proposed by Richter et al. (1990), but require further study (Fig. 2.4).  Prior to our 

investigation of the WA and other new studies (Berkelhammer, 2017; Davis et al., 2017; Trop et 

al., 2017), bedrock geochronology and geochemistry data were sparse in the WA and large 

sampling gaps existed, limiting the ability of researchers to discern spatial and temporal 

variations in magma type.  These new data (Berkelhammer, 2017; Trop et al., 2017; Davis et al., 

2017; this study) indicate that a southward migration preceded the well-documented 

northwestward migration of magmatism in the WA (Fig. 2.4).  This previously undocumented 

southward migration has implications for upper plate and/or subducting slab processes through 

time in the WA and will be further explored in the Discussion section.       

Alkaline magmas are only found in the eastern WA (Yukon) where major strike-slip 

faults are present (Denali and Duke River faults).  Alkaline magmas have only been documented 

in spatially isolated volcanic fields in the Yukon (St. Clare, Alsek, and Stanley Creek), where 

they erupted in small volumes via fissure eruptions and subparallel to the Duke River fault 

(Skulski et al., 1991, 1992; Figs. 2.1 and 2.3), which hints at a genetic link between motion along 

the fault and magmatism (Skulski et al., 1991).  Eruptive centers in these fields were active from 

18.0 to ~10.0 Ma: St. Clare Creek from 18.0 – 10.0 Ma, Nines Creek from 15.5 – ~13.0 Ma, and 

Alsek from 13.5 – ~10.8 Ma (Skulski et al., 1992).  While there was coeval magmatic activity in 
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these fields, they display a general southeastward younging trend (Skulski et al., 1992).  Magmas 

from these fields are dominantly transitional, but stratigraphy reveal there are minor alkaline 

eruptions before the transitional magmas and minor calc-alkaline eruptions after the transitional 

magmas (Skulski et al., 1991).  The occurrence of all three of these magma types in the same 

locality, and the sequence of their eruptions, has been interpreted as adiabatic melting of 

heterogeneous mantle (e.g., continental lithosphere and asthenosphere) triggered by extension 

and strike-slip motion (i.e., transtention) across the Duke River fault to generate alkaline then 

transitional magmas.  This was followed by interaction with the edge of the active WA to 

generate calc-alkaline magmas that are chemically transitional between arc and intraplate 

tectonic settings (Skulski et al., 1991; Thorkelson et al., 2011).   

Transitional-tholeiitic magmas in the WA were generated by localized intra-arc extension 

that formed basins in the western and central WA (Preece and Hart, 2004; Trop et al., 2012).  

Most transitional tholeiitic magmas are found in the younger western WA (Preece and Hart, 

2004) and central WA (Trop et al., 2012; Berkelhammer, 2017).  Basin development and 

accompanying magmatism—some of which was transitional tholeiitic in nature—has occurred in 

phases throughout the history of the WA.  The earliest known transitional tholeiitic magmas 

associated with basin development are found in the Sonya Creek volcanic field, located on the 

northern flanks of the central WA (Fig. 2.1).  The formation of these magmas began by ~23.0 

Ma and continued to ~18.0 Ma (Berkelhammer, 2017).  Additional tholeiitic magmas have been 

identified in the central WA, but they are south of the Sonya Creek center (Fig. 2.3) and younger: 

they began by ~12.5 – ~11.0 Ma and continued until ~5.3 Ma in some parts of the central WA 

(Trop et al., 2012) and to ~2.5 Ma in other central WA locations (Eucher Mountain, Fig. 1.1; 

Keast et al., 2016).  The same processes acted over at least the last ~1.0 Ma in the western WA 

(Preece and Hart, 2004).  The presence of transitional tholeiitic magmas is indicative of intra-arc 

basin development in areas of both the central and western WA.    

Adakitic magmas have been identified in a variety of localities around the world and, in 

some occurrences, are indicative of basaltic slab melts (orogenic adakites; Martin et al., 2005).  

In other instances, more complex processes are thought to be responsible for the formation of so-

called anorogenic adakites (Martin et al., 2005).  Adakitic magmas have been documented in the 

central and western WA and have been interpreted as the products of partial melting of the 

subducting slab (Preece and Hart, 2004), thereby qualifying them as orogenic adakites.  A 
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variety of tectonic settings can generate partial slab melts and adakites, including, but not limited 

to, subduction initiation (Sajona et al., 1993) or termination (Sajona et al., 1996), highly oblique 

subduction (Yogodzinski et al., 1995), shallow or stalled subduction (Beate et al., 2001; Bourdon 

et al., 2002; Gutscher at al., 2000), and breaking or tearing of the subducting slab (Calmus et al., 

2003; Thorkelson and Breitsprecher, 2005; Yogodzinski et al., 2001).  Adakitic magmas are 

geochemically recognized based on specific trace element criteria initially set forth by Kay 

(1978) and later modified by Defant and Drummond (1990).  These criteria include intermediate 

to high-silica ( 56 wt. %), high Sr (>~300 ppm), low Y (<~10 ppm), high Sr/Y (>~20 ppm), and 

high La/Yb (>~20 ppm).   

Adakitic magmas have been documented in the central WA at Mt. Churchill (<~10 ka) 

and in the western WA at Mt. Drum (0.7 – 0.2 Ma; Fig. 1.1) and were derived from partial 

melting of the subducting Yakutat microplate (Preece and Hart, 2004; Preece et al., 2014). The 

locations of these adakitic magmas are of particular interest because they appear above edges of 

the Yakutat microplate (Preece and Hart, 2004; Bauer et al., 2014), which suggests these 

magmas were generated by partial melting of the Yakutat microplate edge (Preece and Hart, 

2004).   

Although the geochemical data collected for this study include most of the necessary 

parameters to identify adakites, we lack Yb concentrations and, will, therefore, refer to our 

samples as “adakite-like”, where appropriate.  Additionally, given what is known about tectonic 

settings that can form adakites (see references above) and the tectonics of the WA, tectonic 

constraints can also be considered in conjunction with geochemical data to aid in the designation 

of an adakite-like magma when geochemical data are lacking.  

In summary, Wrangell magmatism has been continuously active since ~29.0 Ma and 

continues to essentially present-day (Trop et al., 2017; Davis et al., 2017; this study; Fig. 2.5).  

Magmatism in the central and western WA first migrated southward and then northwestward 

through time (Richter et al., 1990; Brueseke et al., 2015; Trop et al., 2017) and magmatism in the 

eastern WA has migrated generally southeastward but with much coeval magmatic activity 

among volcanic fields there (Skulski et al., 1991, 1992; Figs. 2.1 and 2.3).  Eruption of calc-

alkaline magmas marked the inception of the arc at ~29.0 Ma and magmas with these 

compositions have spanned the arc’s lifetime (Richter et al., 1990; Trop et al., 2017; this study).  

Calc-alkaline magmas erupted contemporaneously with all other magma types in the WA.  
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Minor alkaline magmas erupted in the eastern WA from brief and discrete fissural eruptions 

sometime during the span from 18.0 – 10.0 Ma (Skulski et al., 1991, 1992).  Tholeiitic magmas 

mark a period of extension and basin development from ~23.0 Ma to ~18.0 Ma and ~12.5 Ma to 

~1.0 Ma in the central and western WA (Trop et al., 2012; Preece and Hart, 2004; 

Berkelhammer, 2017).  Adakitic-like rocks are found in the western and central WA and are 

temporally restricted to early arc magmatism,  ~29.0 – ~20.0 Ma (Berkelhammer, 2017; Weber 

et al., 2017; this study) or late arc magmatism (<5.0 Ma; Preece and Hart, 2004; this study; Fig. 

2.5). 
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Figure 2.1 Map showing the regional tectonics of south-central Alaska and western 

Canada.  Tectonic regimes transition from west to east: “normal” Aleutian subduction 

transitions to strike-slip faulting (Denali and Totschunda faults) to create an arc-transform 

junction.  Note the ages of magmatism along strike-slip faults (Duke River).  TF = 

Totschunda fault; CF = inferred Fairweather-Totschunda connecting fault; CSEF = 

Chugach-Saint Elias fault; SB = seismic anomaly that defines the eastern boundary of the 

subducted Yakutat slab; TACT = Trans-Alaska Crustal Transect (geophysical survey that 

aids in defining crustal structure along western edge of WA).  Adapted from Trop et al., 

2012. 
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Figure 2.2 Schematic diagram reiterating the transition zone concept.  In the western 

portion of this transition zone, the Pacific Plate is subducting “normally” and is reflected 

by the presence of the Aleutian arc.  In the central portion, the Yakutat slab is causing 

near-horizontal subduction which is reflected by the lack of active magmatism in the 

region.  The western portion of this transition zone is associated with Wrangell arc and 

leaky strike-slip magmatism caused by a gradual subduction steeping and the interaction 

between the subducting Yakutat and major strike-slip faults.  WW = Western Wrangell 

arc; DF = Denali fault; EW = Eastern Wrangell arc; DRF= Duke River fault; FF = 

Fairweather fault; N = Nabesna, AK; M = McCarthy, AK.  Figure adapted from Kortyna 

et al., 2014). 
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Figure 2.3 Map showing the loosely defined western, central, and eastern regions of the 

Wrangell arc.  These regions are generally informal and there is in fact overlap between 

the western and central regions.  However, the eastern region is distinct from the other two 

and there is no ambiguity as to its boundaries.  These differences are reinforced by the 

chemistries observed from each region.  Chemistries in the western and central WA are 

similar and reveal a dominant subduction signature (calc-alkaline) while chemistries from 

the eastern WA display characteristics of both subduction and “leaky” strike-slip (alkaline) 

processes (Skulski et al., 1991; 1992).  TF = Totschunda fault; CF = inferred Fairweather-

Totschunda connecting fault; FF = Fairweather fault.  Figure adapted from Trop et al., 

2012. 
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Figure 2.4 Distance versus age plot using data from Richter et al., (1990) that reveal a 

northwestward migration of magmatism through time.  Ages are projected to line A-A’ 

(which trends N70ºW through the WA) in Figure 2 from Richter et al. (1990), which is 

interpreted as the main axis of the arc. 

 

 

Figure 2.5 Generalized geochemical timeline of the entire Wrangell arc showing when 

geochemistries have been documented in the bedrock.  Calc-alkaline chemistries span the 

entire life of the arc, beginning of ~29.0 Ma.  Adakitic chemistries are documented during 
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early (~29.0 – ~20.0 Ma) and late (<5 Ma) arc phases.  Dashed lines indicate discontinuous 

or small volume magmatic events.  Transitional-tholeiitic occurrences have been 

documented from ~23.0 – 18.0 Ma and during discrete periods between ~12.5 to present. 

Small volume alkaline magmatism has only been documented during 18.0 – 10.0 Ma in the 

eastern WA (Skulski et al., 1991, 1992).   
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Chapter 3 - Methods 

For this study, igneous cobbles were collected from rivers draining the WA, analyzed for 

major and trace elements using X-ray fluorescence spectroscopy (XRF), and dated using 

40Ar/39Ar single-grain fusion analyses on all samples, and 40Ar/39Ar step-heat analyses on a 

subset of six samples.  Sample preparation and hand sample petrography were done at Kansas 

State University (KSU), XRF analyses occurred at Franklin and Marshall College, and 40Ar/39Ar 

analyses were performed by Drs. Jeffrey Benowitz and Paul Layer at the Geochronology Facility 

at the University of Alaska-Fairbanks (UAF). 

 

 Field Methods 

Cobble-sized samples were collected by Drs. Matt Brueseke, Jeff Trop, and Jeff 

Benowitz from 17 modern rivers that surround and drain the WA over the course of two field 

seasons, summer 2015 and summer 2016.  These rivers are: Boulder, Chetaslina, Chisana, 

Chitistone, Copper, Cross Creek, Dadina, Hawkins, Kotsina, Kuskulana, Nabesna, Nizina, Root, 

Sanford, and White (Fig. 3.1).  A brief petrological survey was done upon arrival at each 

collection site to determine the variety of lithologies present at the site (Fig. 3.2) and only the 

freshest of those lithologies were collected.  In some cases, collection sites were strategically 

chosen downstream of major river confluences to capture tributary input.  Access to field sites 

was by plane and/or helicopter, so limitations to the collection procedure included locating a 

suitable landing site and limiting total sample weight.  Individual samples were split into 

multiple fragments by hammer at UAF and roughly half of those fragments were kept at UAF for 

geochronology analyses.  The remaining fragments of each sample were shipped to Kansas State 

University (KSU) to be prepared for XRF analyses.    

 

 Sample Preparation 

Upon arrival at KSU, samples were initially split into roughly golf ball-sized pieces using 

a RockLabs Hydraulic Press with tungsten jaws.  Once split, samples were inspected for extent 

of secondary alteration.  Those with any primary mineral replacement, pervasive groundmass 

alteration, or vesicle/cavity-fill were discarded (Fig. 3.3, 3.4, 3.5).  The remaining samples had 
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weathering surfaces that were removed by either grinding the surface off using a sandpaper 

wheel, utilizing a tile saw with a diamond-tipped blade, or by a combination of the two.  Most 

weathering surfaces were removed by grinding the rock against a 60 grit, 8” silicon carbide 

(sandpaper) disk on a grinding wheel.  However, if the weathering surface was found to be 

particularly thick and wouldn’t easily grind, the tile saw was used to cut off the altered portion 

from the sample.  The areas that were cut were also ground to remove any possibility of 

contamination from the saw blade.  All samples were then washed with deionized water, 

scrubbed using a standard toothbrush, and allowed to dry completely.  Once dry, the samples 

were coarsely crushed into pea-sized pieces using the crushing plates attachment of the 

RockLabs Hydraulic Press.  Coarsely crushed samples were randomized using the cone-and-

quarter method, taking care to keep all surfaces clean and free of sample cross-contamination.  

Each sample was eventually powdered by placing roughly 20 mL of each coarsely crushed 

sample in a Spec Industries Shatterbox machine with aluminum oxide ring and puck pulverizer.  

The samples were set to run for exactly eight minutes in the Shatterbox, which turned them into 

homogenous powders.  The powders were stored in glass vials that were double-labeled and 

shipped to Franklin and Marshall College for XRF analyses. 

 

 Analytical Methods 

 Geochemistry 

XRF analyses of major and trace elements, as well as loss on ignition (LOI) values, were 

completed at Franklin and Marshall College following the method outlined in Mertzman (2000, 

2015) and online at https://www.fandm.edu/earth-environment/laboratory-facilities/instrument-

use-and-instructions.  LOI values were measured for each sample by weighing out one-gram of 

powder then heating it at 950°C in a muffle furnace for 1.5 hours.  The samples were then 

allowed to cool to room temperature and reweighed.  The percent change in weight was reported 

as the LOI and generally represents how altered a sample has been by volatile constituents.  Any 

analysis with LOI > 3.5 wt% was discarded from the major element dataset, but retained in both 

the trace element and age datasets (Trop et al., 2012).  Twenty-one samples out of the original 

dataset of 236 had LOI > 3.5 wt%.  Negative LOI values were also measured for some samples.  

Negative LOI values mean the sample gained more weight during the heating process due to the 

https://www.fandm.edu/earth-environment/laboratory-facilities/instrument-use-and-instructions
https://www.fandm.edu/earth-environment/laboratory-facilities/instrument-use-and-instructions
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oxidation of Fe2+ to Fe3+ than it lost from the release of volatile components (S. Mertzman, pers. 

comm.).   

After LOI determinations, 0.4 grams of each rock powder was mixed with 3.6 grams of 

lithiumtetraborate and melted in a platinum crucible.  This molten material was placed in a 

platinum disk-shaped casting dish and quenched to produce a glass disk that was used for major 

element XRF analyses using a PANalytical 2404 ZRF vacuum spectrometer equipped with a 

4kW Rh X-ray tube.  Major elements are reported as weight percent oxide (SiO2, TiO2, Al2O3, 

Fe2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5).  Nineteen trace elements (Rb, Sr, Y, Zr, V, Ni, 

Cr, Nb, Ga, Cu Zn, Co, Ba, La, Ce, U, Th, Sc, Pb) were analyzed by using pressed powder 

briquettes that are made by mixing 7.0 grams of whole-rock powder and 1.4 grams of high purity 

Copolywax powder.  Trace element concentrations are reported as parts per million (ppm).  Iron 

analyzed for all the samples was initially reported as Fe2O3total and was split into FeO and Fe2O3 

following LeMaitre (1976).  All data presented here in diagrams and discussion have been 

normalized anhydrous. 

 

 40Ar/39Ar Geochronology 

All cobble samples were analyzed for 40Ar/39Ar ages at the University of Alaska 

Fairbanks Geochronology lab.  Rock samples were crushed using a stainless-steel mortar and 

pestle, then sieved using 500-1000 micron sieves.  Samples were then washed and sonically 

bathed in deionized water to remove and decant clay particles.  Samples were then dried in an 

oven overnight at ~60 °C and then grains were hand-picked under an optical microscope to select 

phenocryst-free homogenous groundmass chips, hornblende, and biotite mineral separates.  The 

monitor mineral TCR-2 with an age of 28.619 Ma (Renne et al, 2010) was used to monitor 

neutron flux and calculate the irradiation parameter (J) for all samples.  The samples and 

standards were wrapped in aluminum foil and loaded into aluminum cans of 2.5 cm diameter and 

6 cm height.  Mineral separates were sent to the uranium enriched research reactor of McMaster 

University in Hamilton, Ontario, Canada and irradiated for 20 megawatt-hours.  After irradiation, 

samples were loaded into 2mm diameter holes in a copper tray and loaded in an ultra-high 

vacuum extraction line.  The monitors were fused, and samples heated, using a 6-watt argon-ion 

laser following the technique described in York et al. (1981), Layer et al. (1987), and Benowitz 

et al. (2014).  Argon purification was achieved using a liquid nitrogen cold trap and a SAES Zr-
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Al getter at 400° C.  The samples were analyzed in a VG-3600 mass spectrometer.  The argon 

isotopes measured were corrected for system blank and mass discrimination, as well as calcium, 

potassium, and chlorine interference reactions following procedures outlined in McDougall and 

Harrison (1999).  Typical full-system 8 min laser blank values (in moles) were generally 2 x 10-

18
 mol 40Ar, 3 × 10-18 mol 39Ar, 9 × 10-18 mol 38Ar, and 2 × 10-18 mol 36Ar, which are 10 – 50 

times smaller than the sample/standard volume fractions.  Correction factors for nucleogenic 

interferences during irradiation were determined from irradiated CaF2 and K2SO4 as follows: 

(39Ar/37Ar)Ca = 7.06 × 10-4, (36Ar/37Ar)Ca = 2.79 × 10-4 and (40Ar/39Ar)K =  0.0297.  Mass 

discrimination was monitored by running calibrated air shots. The mass discrimination during 

these experiments was 0.8% per mass unit.  

The majority of samples were analyzed as single-grain or multi-grain fusion analysis 

approach.  We developed a procedure to limit the effects of alteration by degassing each sample 

at 0.5 watts for 60 seconds, and the released gas was not measured and pumped off for time 

efficiency and increased throughput.  The results have a single-grain and/or multi-grain precision 

of 1%. Samples selected for further geochronology analysis were step-heated from relatively low 

temperatures until reaching fusion temperatures using the 6-watt argon-ion laser (Sliwinski et al, 

2012).   

  

 Petrography 

Each sample was assessed and given a hand sample description.  The descriptions include 

a general compositional classification based on color (e.g., mafic/felsic); Figs. 3.6 and 3.7), 

textural descriptions (i.e., porphyritic-volcanic, porphyritic-plutonic, aphanitic, phaneritic, 

pyroclastic), and assessment of any identifiable mineral phases present.  These descriptions are 

used to determine the relative proportions of volcanic (lavas) and plutonic (intrusions) cobbles in 

the dataset and to assess any relations between volcanic/plutonic rocks, geochemistry, and age.  

These descriptions are compiled in Appendix A and results with relation to geochemistry and 

geochronology are included in the Results section. 
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 Watershed Map Creation 

Geographic Information System (GIS) was used to delineate the watersheds and 

determine the percentage of ice and geologic units within the watersheds by Brian Moretti at 

Bucknell University.  ArcMap by Esri is a computer program of Geographic Information System 

that was used to combine, analyze, and present spatial data. The data were projected with the 

NAD_1983_Alaska_Albers projection in Esri ArcMap Version 10.4.0.5524.  Digital geologic 

maps and elevation maps utilized were publicly available through the U.S. Geological Survey 

(Richter et al., 2006; Wilson et al. 2015).  Sample sites were plotted based on coordinates 

collected in the field using a handheld Global Positing System (GPS). 
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Figure 3.1 Satellite image showing the various collection sites. River names are labeled.  Yellow hexagons are locations with 

geochemical data and ages; blue hexagons are locations with geochemical data but have not yet been dated.  
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Figure 3.2 An example of cobble diversity collected from one river (White River). 
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Figure 3.3 Discarded sample Che 1C-1 displays pervasive groundmass alteration and 

secondary vesicle fill (amygdules). 
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Figure 3.4 Discarded sample Cross 8 displays pervasive groundmass and primary mineral 

alteration/replacement. 
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Figure 3.5 Discarded sample Nabesna 9 displays bright yellow material lining the vesicles, 

suggesting heavy secondary alteration. 
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Figure 3.6 Sanford 6, an example of a mafic rock with porphyritic-volcanic texture from 

the dataset.   
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Figure 3.7 Dadina 1C-4, an example of a felsic rock with porphyritic-volcanic texture from 

the dataset. 
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Figure 3.8 White 14, an example of a rock with porphyritic-plutonic texture from this 

dataset.  
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Figure 3.9 Chetaslina 1B-1, an example of a rock with phaneritic texture from our dataset. 
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Figure 3.10 Chetaslina 1A-3, an example of a rock with pyroclastic texture from our 

dataset. 
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Figure 3.11 Chisana 6, another example of a rock with pyroclastic texture from our 

dataset. 
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Chapter 4 - Results 

This study provides new major element data from 215 samples and trace element data 

from 236 samples collected from 17 major rivers that drain from the modern western and WA.  

This study also provides new age data from a total of 119 samples from 10 major rivers (Fig. 

3.1).  Geochemical analyses and ages of early arc samples (~28.0 Ma – ~19.0 Ma) are presented 

in Table 4.1.  A complete list of samples and geochemical/age data is provided in Appendix B.  

 

 Geochronology 

Sample ages in this dataset range from ~300 Ma to less than 1 Ma.  Samples with ages 

greater than ~30.0 Ma are from older volcanic arcs (e.g., Talkeetna, Chitina, and Chisana arcs) 

and are reported in the dataset but are not considered to have implications for WA volcanism.  

Sixteen samples are too old to be associated with WA volcanism and one sample has a negative 

age, reducing the total number of WA ages to 102.  WA-related samples range from ~28.0 Ma to 

less than 1.0 Ma, but a histogram of the results indicates that not all ages are equally represented 

(Fig. 4.1).  There is one sample from the White River, White 14, which has an age of ~35.0 Ma.  

This age is questionable for analytical reasons (explained in “40Ar/39Ar step-heating 

geochronology” section) and because no bedrock older than ~30.0 Ma has been documented in 

the WA.  This ~35.0 Ma sample will be investigated further but, given doubts of its accuracy, 

cannot currently be considered the oldest cobble.  Forty-seven of the samples in the dataset are 

younger than 1.0 Ma (Figs. 4.1 and 4.2) and come from rivers that drain the western WA, which 

is the youngest portion of the arc (Figs. 1.1, 2.1 and 2.4; Richter et al., 1990; Preece and Hart, 

2004).  There are no samples from ~17.0 – ~13.0 Ma in this entire dataset, however there are still 

117 samples that are not dated.  There are twelve samples in this dataset that range from ~28.0 – 

~17.0 Ma, from the older central portion of the arc.  The ~35.0 Ma sample, White 14, is 

questionable, but will be acknowledged as an early arc (~28.0 – ~17.0 Ma) sample without a 

definitive age for the time being.  These early arc (~28.0 – ~17.0 Ma) samples are significant 

because they could indicate the onset of WA magmatism and the initiation of the arc.  Table 4.2 

summarizes all the relevant age data and possible bedrock sources drained by each river. 
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 40Ar/39Ar step-heating geochronology 

A subset of six samples was dated using 40Ar/39Ar step-heating methodology.  40Ar/39Ar 

step-heat methodology can provide a more accurate age of initial cooling, because it can get 

around issues created by argon diffusion near grain boundaries and later heating events.  The six 

samples dated using this methodology are: Nabesna 2, Nabesna 13, White 5, White 15, Chisana 

2, and Chisana 11 (Table 4.1).  The step-heated samples were selected based on the fact that A) 

The single-grain fusion 40Ar/39Ar ages of these samples ranged from ~30.0 – ~27.0 Ma and their 

geochemical characteristics suggested a slab melt component, and B) Theses samples had high 

atmospheric 40Ar content (>50%), suggesting alteration.  One the objectives of this work is to 

date the initiation of the WA and step-heating these samples, which have some of the oldest ages 

in the dataset at ~30.0 – ~27.0 Ma, could more accurately constrain the age of arc initiation.  

Furthermore, all six samples that were step-heated have geochemical characteristics consistent 

with slab melt, which suggests a possible link between arc initiation and the melting of the 

subducting Yakutat microplate.  This link could have important tectonic implications for the 

initiation of WA magmatism.  These reasons are why initial single-grain fusion ages with slab 

melt geochemistry were the first criterion used to choose samples for step-heats.  Additionally, 

these six samples also had relatively high atmospheric 40Ar content (>50%), suggesting they are 

some of the most altered samples in the dataset and their single-grain fusion ages are therefore 

questionable.  This is why high atmospheric 40Ar was the second criterion used to choose 

samples for step-heats.   

Figure 4.3 shows the step-heat plateau ages provided by this method.  Table 4.3 provides 

a summary of 40Ar/39Ar step-heat ages, with all ages quoted to the ±1 sigma level and calculated 

using the constants of Renne et al. (2010).  The integrated age is the age given by the total gas 

measured and is equivalent to a potassium – argon (K-Ar) age.  The age spectrum provides a 

plateau age if three or more consecutive gas fractions represent at least 50% of the total gas 

release and are within two standard deviations of each other (MSWD <2.5).  For select samples, 

inverse isochron ages were calculated from an inverse isochron diagram of 36Ar/40Ar vs. 

39Ar/40Ar ratios measured during each heating step (Roddick, 1978; Roddick, 1980; Benowitz et 

al, 2011).  Table 4.4 presents the single-grain fusion ages and the step-heat ages of this subset for 

comparison between the two dating methods.  Apart from sample White 15, the plateau ages are 

generally younger than the initial single-grain fusion ages.  However, this does not mean that all 
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single-grain fusion ages in the dataset are unreliable given the criteria for choosing samples to 

step-heat that is outlined above.  White 15 was step-heated in error (White 14, with the oldest 

age in the cobble dataset at 34.58 ± 0.47 Ma, was supposed to be dated with step-heat 

methodology but was not) and is a relatively young sample at 10.4 ± 0.3 Ma compared to the rest 

of the step-heated samples (Fig. 4.3; Tables 4.3 and 4.4).  The age of White 15 remains 

essentially constant between the two dating methods (Table 4.4).  It is also the only step-heated 

sample that released 100% of its Ar and exhibits the flattest plateau of the six step-heated 

samples (Fig. 4.3).  Given that White 15 is at least 10 m.y. younger than the rest of the step-

heated samples and the quality of its plateau, it is possible that the other samples were affected 

by alteration processes because they have been on the earth’s surface for at least 10 m.y. longer. 

The single grain fusion age determination for White 14 produced the oldest age in the cobble 

dataset at 34.58 ± 0.47 Ma. This age is discounted based on the high atmospheric 40Ar content of 

the gas release (>50%) for this sample, indicating possible alteration, and the fact that there is no 

WA bedrock dated older than ~30.0 Ma.   We assign White 14 to the oldest group of samples 

(~28.0 Ma to ~17.0 Ma) given A) The step-heat results confirm no to limited excess 40Ar in the 

cobbles, and B) The step-heat results also demonstrate that a similar aged cobble with similar 

40Ar atmospheric content (White 5) falls in this age category. 

 

 Petrographic Classification 

Hand sample descriptions offer five distinct textural groups: aphanitic, phaneritic, 

porphyritic-volcanic, porphyritic-plutonic, and pyroclastic.  A majority of samples have 

porphyritic-volcanic texture (123), followed by porphyritic-plutonic (54), phaneritic (36), 

aphanitic (16), and pyroclastic (7).  These petrographic descriptions show that extrusive 

(porphyritic-volcanic and aphanitic) cobbles are the majority, whereas intrusive (phaneritic and 

porphyritic-plutonic) and pyroclastic cobbles are minority.  Extrusive and intrusive rocks occur 

across the entire arc, but pyroclastic rocks, indicative of explosive eruptions, are seen in only 

limited locations in both the western and central WA (Sanford, Chetaslina, Nizina, and Chisana 

Rivers; Fig. 4.4).  Notably, all early arc (~28.0 – ~17.0 Ma) cobbles are intrusive but younger 

cobbles (<5.0 Ma) are generally extrusive.  Pyroclastic rocks are only associated with distinct 

ages or age groups: ~7.0 – 6.0 Ma, ~1.7 Ma, and ~1.0 Ma.   
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 Geochemistry 

 Approach to sample classification 

Data here are presented in spatial and temporal contexts to parse both spatial and 

temporal variations throughout the WA.  The age divisions are based on age groupings observed 

from this new dataset but not necessarily on significant intervals of time throughout the history 

of the WA.  Each dated sample has been assigned to one of the following age groups: ~28.0 – 

17.0 Ma, 17.0 – 13.0 Ma, 13.0 – 8.0 Ma, 8.0 – 5.0 Ma, 5.0 – 3.0 Ma, 3.0 – 1.0 Ma, and <1.0 Ma.  

Samples over ~28.0 Ma are excluded on the basis that they precede WA magmatism.  

Additionally, over half of the dataset has not yet been dated but has geochemical data; these 

samples are included in these plots and coded as “No age.”  The spatial divisions are determined 

primarily based on the location and spatial extent of each river’s drainage on a watershed map 

(Fig. 4.5).  As a secondary qualification, the age range of cobbles in this dataset drained from 

each river is considered since the western WA is known to be the youngest region in the WA at 

<5.0 Ma (Figs. 1.1, 2.1, and 2.4; Preece and Hart, 2004).  The spatial divisions assigned are 

western WA, central WA, and both.  Rivers assigned to the western WA category drain bedrock 

from the western WA, rivers assigned to the central WA category drain bedrock from the central 

WA, and rivers assigned both drain bedrock in both the western and central WA.  All western 

WA rivers drain bedrock that is <5.0 Ma, all central WA rivers drain bedrock that is >5.0 Ma, 

and rivers that drain both have no age cutoff.  Table 4.5 shows which spatial category each river 

drainage belongs to.  Note the only rivers assigned to the both category are the Nabesna and 

Jacksina Rivers.  The watershed of the Nabesna River is so large that it captures both western 

and central WA bedrock and the Jacksina River is a tributary.  The plots coded by age directly 

show geochemical variations through time, but the spatially coded plots inherently contain a 

rough aspect of time as well, given that the central WA is older than the western WA.  Therefore, 

spatially coded plots show some broad temporal variations in addition to spatial variations. 

 Geochemical classification 

On the total alkalis versus silica (TAS) diagram of LeBas et al. (1989), dated WA 

eruptive products plot as subalkaline to transitional and range from basaltic (trachy) andesite to 

rhyolite (Figs. 4.6 and 4.7).  There is a larger compositional range of eruptive products from the 

central WA than from the western WA (Fig. 4.7).  Note that some samples plot outside this 
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geochemical range (i.e., basaltic (trachy) andesite to rhyolite) on the TAS diagram, but their ages 

are unknown and therefore cannot be attributed to WA magmatism yet.  A large proportion of 

the samples are andesite or dacite in composition.  Of the andesites, most are classified as 

medium-K; they tend to be <1 Ma (Fig 4.8) and come from rivers that drain the western WA 

(Fig. 4.9).  There are two high-K andesites from the central WA, one from the Chisana 18 and 

White 17, which are 8.02 ± 0.18 Ma and 10.84 ± 0.08 Ma, respectively (Figs. 4.8 and 4.9).  

There is one high-K andesite from the western WA, Sanford 14, which is 0.4 ± 0.05 Ma (Figs. 

4.8 and 4.9).  There are seven high-K andesites which are not yet dated (Fig. 4.8) and have 

drained from the western and central WA (Fig. 4.9).   

In an AFM diagram, most WA rocks follow a calc-alkaline trend (Figs. 4.10 and 4.11).  

A few samples that have not yet been dated and come from rivers that drain the central WA (Fig. 

4.11), plus one sample from the 13.0 – 8.0 Ma group (Fig. 4.10), may have tholeiitic 

characteristics.  Upon petrographic inspection, this sample (White 6) has sparse amygdules filled 

with red alteration material that may be the cause for the higher FeO content and is likely 

petrogenetically insignificant.       

These new data fit well with most existing WA geochemical data, apart from the alkaline 

samples observed in the Yukon (Skulski et al., 1991, 1992) from the eastern WA (Fig. 4.12).  

This is expected since our samples drained from only the western and central WA.  Our new data 

overlap the compositions of WA rocks previously reported by Preece and Hart (2004) and Trop 

et al. (2012) (Fig. 4.13).  Because of this overlap, the previous work of Preece and Hart (2004) 

will provide a framework for interpreting our new geochemical data (we chose Preece and Hart 

(2004) and not Trop et al. (2012) as our framework because Preece and Hart delve heavily into 

WA geochemical variations whereas Trop et al. (2012) focus more on tectonics).  To utilize this 

framework, we divided our dataset into the three rock suites recognized by Preece and Hart 

(2004) using their criteria 

 Trend 1: high TiO2, transitional-tholeiitic  

 Trend 2a: low TiO2, calc-alkaline 

 Trend 2b: low TiO2, calc-alkaline, adakitic/adakite-like 

According to the criteria set forth by Preece and Hart (2004), at SiO2 contents less than 60 wt.%, 

all samples with TiO2 > 1.15 wt. % are classified as Trend 1 whereas all samples with TiO2 < 

1.15 wt. % are classified as Trend 2 (Fig. 4.14a).  The next step considers Y concentrations 
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throughout the dataset, not just at less than 60 wt. % SiO2.  Preece and Hart’s (2004) data show a 

distinct branch in Y concentrations at SiO2 > 60 wt. %: Trend 1 classification is extended to all 

samples with elevated Y concentrations (> ~30 ppm); samples with lower Y concentrations (< 

~30 ppm) are classified as Trend 2 (Fig. 4.14b).  Trend 2 is further subdivided based on two 

arrays of Y concentrations at SiO2 > ~61 wt.%: the Trend 2a array is defined by relatively higher 

Y concentrations and Trend 2b by the relatively lower Y array (Fig. 4.14b).  Trend 2b also has 

adakitic characteristics (Fig. 4.15).  Although the geochemical data collected for this study 

include most of the necessary parameters to identify adakites (Sr, Y, La), we lack Yb 

concentrations and, will, therefore, refer to our samples as “adakite-like”, where appropriate.  

Our new dataset includes samples that do not fit perfectly within the Preece and Hart (2004) 

classification scheme, but they do show similar trends: Trend 1 has elevated Y values relative to 

Trend 2 and Trend 2a has elevated Y values relative to 2b (Fig. 4.14b).  Trend 1 and Trend 2a 

are generally contained in the andesite-dacite-rhyolite (ADR) field on a Sr/Y vs. Y plot whereas 

Trend 2b fall into the “adakite-like” field (Fig. 4.15).   

Our data reveal an age-dependent bimodal clustering of adakite-like (Trend 2b) magmas: 

one group from ~28.0 – ~20.0 Ma and another group with ages <1.0 Ma.  Adakites identified by 

Preece and Hart (2004) are all less than 1.0 Ma and spatially restricted to the edges of the 

subducting Yakutat.  Our young adakite-like magmas align temporally with definitive adakites 

identified by Preece and Hart (2004), but our older adakite-like magmas are more ambiguous.  

They could indicate older slab melting during the arc’s initiation that was previously 

unrecognized or they could be calc-alkaline rocks with high Sr and low Y for reasons other than 

slab melt input.  The geochemical classification of our data according to the criteria of Preece 

and Hart (2004) will be explored further in the discussion about geochemical trends through time 

and space. 

 

 Major element geochemical characteristics 

Major elements in the dataset show distinct temporal and spatial trends with increasing SiO2 

content.  In general, as SiO2 content increases, TiO2, FeO*, MgO, and CaO decrease.  Al2O3 and 

P2O5 first increase and then follow the same decreasing trend with higher SiO2 content; Na2O 

and K2O both increase as SiO2 increases (Figs. 4.16 and 4.17).  Older WA rocks (~28.0 – ~17.0 

Ma) cluster together and show little variability when compared to all other rocks younger than 
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~17.0 Ma (Fig. 4.16).  It should be noted that the ~28.0 – ~17.0 Ma range spans the longest 

amount of time and has the fewest samples when compared to the number of samples in all other 

age divisions. This is not surprising given a volcanic arc often builds upon itself, leading to less 

exposure of older volcanic products with time.           

In a spatial context, rocks from the central WA exhibit a larger range of all major element 

concentrations and are more geochemically diverse than rocks from the western WA (Fig. 4.17 

and Table 4.6).  Recall that rocks form the central WA are older than rocks from the western 

WA: the age range for central WA rocks is ~28.0 Ma – ~6.0 Ma whereas rocks from the western 

WA span ~5.0 – 0.0 Ma.  However, given the clustering of the oldest WA samples (28.0 – 17.0 

Ma) mentioned previously, it should be noted that rocks in this oldest group don’t necessarily 

contribute to the observed geochemical diversity.  Therefore, it can be inferred that, in general, 

rocks older than 5.0 Ma but less than 17.0 Ma show more geochemical diversity than rocks 

outside of this age range.   

TiO2 content in the central WA reaches a maximum of ~3 wt. % but only reaches a 

maximum of ~2 wt. % in the western WA (Fig. 4.16 and Table 4.6).  Al2O3 in the central WA 

first increases then decreases with increasing SiO2 content whereas Al2O3 content in the western 

WA shows only a decreasing array (Fig. 4.17).  There is also a larger range of Al2O3 values in 

the central WA as opposed to the western WA (Table 4.6).  The maximum FeO* (total iron as 

Fe2+) content in the central WA is nearly 14 wt. % but only reaches ~9 wt. % in the western WA 

(Table 4.6).  Similarly, the maximum MgO content in the central WA is ~13 wt. % as opposed to 

the maximum of ~7 wt. % in the western WA (Table 4.6).  Na2O values in the central WA show 

a rapid increase over a small range in SiO2 (49 to 53 wt. %), then more gradually increase until 

there is a branching of this trend at about 70 wt. % SiO2 (Fig. 4.17).  In the western WA, Na2O 

values gradually increase with increasing SiO2 but there is a less distinct branch observed at ~70 

wt. % SiO2 (Fig. 4.17).  K2O values in the central and western WA show essentially the same 

trend, but the entire data range is constricted in the western WA compared to the central WA 

(Table 4.6). 

 

 Trace element geochemical characteristics 

Trace elements also show distinct temporal and spatial trends with increasing SiO2 

content.  In general, as SiO2 content increases, Ni and Sc concentrations decrease whereas Ba 
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and La concentrations increase (Figs. 4.18 and 4.19).  Other trace elements, e.g. Y, Zr, and Nb, 

are more scattered (Figs. 4.18 and 4.19).  Sr shows first an increase and then a decrease with 

SiO2 concentration (Figs. 4.18 and 4.19).  Like major element trends, the oldest of the WA rocks 

(28 – 17 Ma) are generally clustered and show little variability when compared to rocks younger 

than 17 Ma, apart from a large spread of Ba concentrations (Fig. 4.18 and Table 4.7).  Rocks 

younger than 5.0 Ma in this dataset generally show more distinct trends, with the exception of Sr, 

Zr, and La, which are more scattered (Fig. 4.18).  Rocks ~13.0 – ~8.0 Ma show more scattering 

or completely different trends when compared to rocks that are less than 5 Ma (Fig. 4.18).  Rocks 

greater than 5.0 Ma show generally higher Ba, La, Y, Zr, and Nb values at a given SiO2 content 

than rocks younger than 5.0 Ma display.  Note the grouping of young (<5.0 Ma) and old (28.0 – 

17.0 Ma) at low Y concentrations for a given SiO2 value and the reverse of this in Sr 

concentrations (Fig. 4.18).  In a spatial context, rocks from the central WA generally span a 

larger range of all trace element concentrations than rocks from the western WA do (Fig. 4.19 

and Table 4.7). Rocks from the western WA generally show tighter clustering (Fig. 4.19) and 

smaller ranges of trace element values than rocks from the central WA do (Table 4.7).  Like the 

major elements, there appears to be more trace element diversity in rocks from the central WA as 

opposed to rocks from the western WA. 

 Trace element ratio plots 

Trace element ratio plots (Figs. 4.20 – 4.25) are used to highlight variations through time 

and space that have tectonic implications because certain ratios can reveal the role of a 

subduction component (or lack of one) in the petrogenesis of WA magmas beyond whether a 

rock is calc-alkaline or tholeiitic (Borg et al., 1997).  The x-axis variable on all of these plots is a 

Sr/P ratio normalized to primitive mantle, (Sr/P)n.  High (Sr/P)n ratios ((Sr/P)n > 5.5) in primitive 

(i.e., MgO > 6.0 wt.%, Ni >100 ppm, and Cr >200 ppm) calc-alkaline rocks are indicators of 

considerable slab components because these ratios are generated by the melting of a MORB-

source-like peridotite that is fluxed with slab-derived fluid (Borg et al., 1997).  A high (Sr/P)n 

ratio in more evolved rocks (i.e., MgO < 6.0 wt.%) may reflect magma evolution processes and 

are not always indicative of fluid addition/subduction (Borg et al., 1997).  There are four 

primitive (MgO > 6.0 wt.%, Ni >100 ppm, and Cr >200 ppm) samples out of the total dataset of 

215 samples (samples with LOI > 3.5 wt.% are not included here because major elements are 

considered when qualifying a sample as primitive and P2O5 values are used in the calculation of 
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(Sr/P)n ratios).  The four primitive samples drain from the Chetaslina (western WA), Jacksina 

(both), Hawkins (central WA), and Chitistone (central WA) rivers and have (Sr/P)n ratios that 

range from 0.5 – 3.2.  Only the Chetaslina sample has an age, which is 0.35 ± 0.11 Ma.  

Nevertheless, both primitive and evolved samples are presented in these plots to show the 

geochemical variation between primitive and evolved rocks, but the primitive rocks are coded 

differently for reference (Figs. 4.20 – 4.25).   

The ratios used on the y-axis of these plots are Ba/Nb, Nb/Zr, and Sr/Y, which are all 

good indicators of different tectonic processes.  A high Ba/Nb ratio (> ~100; Pearce et al., 2005) 

highlights total subduction input because, while both Ba and Nb are incompatible, Ba is fluid 

mobile and released over a wide range of subduction temperatures, making it subduction mobile, 

(Pearce et al., 2005), but Nb is only mobilized in the hottest of melts, making it subduction 

immobile (Ryerson and Watson, 1987; Ayers and Watson, 1993; Brenan et al., 1994).  High 

Nb/Zr ratios (> 0.135; Sun and McDonough, 1989) are associated with decompression melting of 

lithosphere and asthenosphere in intraplate environments (Thorkelson et al., 2011), because Nb 

and Zr are both incompatible elements, but Nb is slightly more incompatible meaning that it will 

increase more relative to Zr with small degrees of melting.  A high Sr/Y (> ~20 ppm) ratio is 

indicative of garnet, hornblende, and clinopyroxene in the source of the melt, suggesting partial 

melting of the subducting slab is contributing to the magma (Kay, 1978; Defant and Drummond, 

1990; Peacock et al., 1994; Rollinson and Martin, 2005; Martin et al., 2005; Castillo, 2012). 

A Ba/Nb versus (Sr/P)n plot (Fig. 4.20) shows that the oldest WA rocks (28.0 – 17.0 Ma) 

and rocks <5.0 Ma generally have higher Ba/Nb and (Sr/P)n ratios than rocks  in the 13.0 – 5.0 

Ma age range and primitive samples, which are clustered at lower Ba/Nb and (Sr/P)n values (Fig. 

4.20).  The oldest (28.0 – 17.0 Ma) and youngest (<5.0 Ma) have Ba/Nb > 100 and 3 < (Sr/P)n < 

6, whereas the 13.0 – 5.0 Ma range and primitive samples have Ba/Nb < 100 and (Sr/P)n < ~3.  

In a spatial context, western WA rocks generally have higher Ba/Nb (> 100) and (Sr/P)n (> ~3) 

ratios than central WA rocks, which are more clustered at Ba/Nb < 100 and (Sr/P)n < ~3 (Fig. 

4.21).   

A Nb/Zr versus (Sr/P)n shows that the oldest WA rocks (28.0 – 17.0 Ma) and rocks <5.0 

Ma generally have higher (Sr/P)n ( > 2.5)  for a given Nb/Zr ratio than rocks in the 13.0 – 5.0 Ma 

age range and primitive samples (Fig. 4.22).  The primitive samples (and some undated samples) 

have some of the highest Nb/Zr ratios in the dataset, but only reach a maximum of ~0.06 (Figs. 
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4.22 and 4.23, inset) and are not high enough (> 0.135; Sun and McDonough, 1989) to be 

considered indicative of an intraplate tectonic setting.  In a spatial context, western WA rocks 

generally have lower Nb/Zr ratios and higher (Sr/P)n ratios than central WA rocks (Fig. 4.22).  

Central WA rocks are generally clustered at (Sr/P)n < 2.5 and Nb/Zr < 0.08 whereas western 

WA rocks show a greater spread of (Sr/P)n values (1 – ~4.8)  over a relatively restricted range of 

Nb/Zr values (0.02 – 0.04).  Primitive samples and rocks from the central WA show some of the 

highest Nb/Zr ratios in the dataset (Nb/Zr = ~0.05 – ~0.07), which occur at some of the lowest 

(Sr/P)n ratios, (Sr/P)n < 1.5 (Fig. 4.22). The one primitive sample draining from the western WA 

has the lowest Nb/Zr (0.05) out of all primitive samples (Fig. 4.22).     

A Sr/Y versus (Sr/P)n plot shows that the oldest WA rocks (28.0 – 17.0 Ma) and rocks 

<5.0 Ma generally have higher (Sr/P)n and higher Sr/Y ratios than rocks in the 13.0 – 5.0 Ma age 

range and primitive samples (Fig. 4.24).  Most primitive samples and rocks aged 13.0 – 5.0 Ma 

are clustered at the lowest Sr/Y and (Sr/P)n ratios in the dataset: (Sr/P)n < 3 and Sr/Y < ~25 (Fig. 

4.24).  The oldest (28.0 – 17.0 Ma) and youngest (<5.0 Ma) samples show a larger spread of 

(Sr/P)n values (3 – 7) and Sr/Y values (25 – 150) across the dataset (Fig. 4.24).  Rocks collected 

from rivers draining the central WA show a distinct cluster at low Sr/Y (< 25) and (Sr/P)n (< 3) 

ratios whereas rocks from the western WA display a larger spread of values: (Sr/P)n values = 3 – 

7 and Sr/Y values = 25 – 150 (Fig. 4.25 and inset.) 

In summary, these plots show similar characteristics for the oldest (28.0 – 17.0 Ma) and 

youngest (<5.0 Ma) rocks in the dataset and these arrays contrast with primitive and 

intermediately-aged (13.0 – 5.0 Ma) rocks (Figs. 4.20 – 4.25).  These oldest (28.0 – 17.0 Ma) 

and youngest (< 5.0 Ma) samples have a subduction signature (Ba/Nb > 100) while 

intermediately-aged (13.0 – 5.0 Ma) samples typically have less of a subduction signature 

(Ba/Nb < 100), although not necessarily an intraplate signature (Nb/Zr values are well below 

0.135; Figs. 4.22 and 4.23, and inset).  Notably, these intermediately-aged (13.0 – 5.0 Ma) 

samples drain from the central WA, which may explain the spatial observations: rocks from the 

western WA tend to follow similar arrays between plots—and similar to the oldest and youngest 

WA rocks—and generally contrast with rocks from the central WA—and intermediately-aged 

rocks (Figs. 4.21, 4.23, and 4.25).  It should be noted that rocks from the western WA tend to be 

younger than rocks from the central WA, which could be responsible for the continuation of 
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arrays between age and space.  The tectonic implications of these trace element ratios through 

time and space will be further explored in the discussion.   
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Table 4.1 Raw geochemical data of early WA rocks, aged ~28.0 - ~19.0 Ma 

Sample Nabesna 4 
 

Chisana 
11 

Chisana 
2 

Nabesna 
14 

White 5 Nabesna 
2 

Chisana 3 Cross 7 Nabesna 
13 

White 14 

 
Age 
(Ma) 

 

19.210.22 

 

20.60.5 

 

22.90.4 

 

22.630.28 

 

23.50.7 

 

23.90.4 

 

25.120.26 

 

26.60.31 

 

27.70.2 

 

34.580.7 

SiO2 66.63 67.82 67.83 63.73 65.94 55.46 65.07 67.42 66.59 66.39 

TiO2 0.36 0.33 0.31 0.44 0.34 0.51 0.46 0.39 0.37 0.33 

Al2O3 16.82 16.3 16.44 17.65 16.56 15.79 17.15 16.41 16.84 16.62 

Fe2O3 3.74 3.05 2.98 4.49 3.51 8.04 3.97 3.09 3.15 3.37 

MnO 0.09 0.06 0.06 0.11 0.08 0.13 0.10 0.07 0.08 0.07 

MgO 1.73 1.8 1.80 2.64 2.54 6.27 1.76 2.29 1.78 2.27 

CaO 4.47 2.75 3.48 4.34 4.43 8.74 4.22 4.37 4.27 4.36 

Na2O 4.63 6.08 5.61 5.2 5.24 3.68 5.07 4.62 4.91 5.20 

K2O 1.27 1.42 1.03 1.01 0.90 0.55 1.73 1.18 1.64 0.97 

P2O5 0.15 0.13 0.13 0.22 0.13 0.28 0.24 0.15 0.18 0.13 

LOI 2.05 1.33 1.22 2.18 1.29 0.97 1.52 3.49 1.24 2.44 
Total 99.89 99.74 99.67 99.83 99.67 99.45 99.77 99.99 99.81 99.71 
           
Rb 25.0 31.1 18.3 16.1 24.0 12.1 37.6 26.9 39.0 26.2 
Sr 649 733 752 878 648 872 905 665 750 710 
Y 11.4 8.6 8.4 14.6 11.2 15.2 12.9 10.5 9.8 9.5 
Zr 94 109 137 99 93 70 147 115 124 103 
V 72 67 71 96 82 195 73 64 64 74 
Ni 13 26 29 29 47 82 12 46 15 35 
Cr 16 47 51 24 88 70 18 54 26 51 
Nb 2.1 2.3 1.0 1.5 2.5 0.7 10.6 5.6 5.7 2.4 
Ga 20.2 19.4 19.6 21.4 20.3 17.0 20.8 19.6 20.2 20.1 
Cu 31 49 18 37 13 89 17 28 18 12 
Zn 65 34 27 75 46 91 57 48 55 44 
Co 4 5 4 9 8 29 6 5 2 7 
Ba 578 1845 994 404 522 308 1014 719 909 545 
La 21 18 19 16 13 19 29 18 25 12 
Ce 27 27 28 29 20 32 48 23 42 18 
U <0.5 <0.5 0.5 <0.5 <0.5 <0.5 1.2 <0.5 0.7 <0.5 
Th <0.5 0.5 0.5 <0.5 1.3 <0.5 1.6 0.6 0.5 1.6 
Sc 5 4 4 9 9 23 3 4 4 7 
Pb 8 3 3 6 2 <1 5 16 7 1 
           

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Sample names in bold had additional step-
heats performed on them to more accurately constrain their age.  The strikethrough the age of White 14 indicates the age is questionable.  
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Figure 4.1 Histogram of WA-related cobble ages showing the distribution of sample ages.  

Colors are indicative of the approximate location of rocks and show that, in general, rocks 

draining from the western WA are younger than rocks draining from the central WA.  The 

"Both" category refers to the Nabesna drainage and its tributary the Jacksina, which drain 

areas of both the central and western WA.  Note that more than half of the samples are 

younger than 5 Ma, with a clear majority 5 Ma or younger. The ~35 Ma cobble is sample 

White 14 and we note in the text this age is questionable. 
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Figure 4.2 Relative probability distribution plot (i.e., ideogram) of all WA-aged (<30 Ma) 

cobbles showing distribution and relative probability of WA magmatism through time.  

Different colored curves correspond to the rivers from which the samples were collected. 

The ~35 Ma cobble is sample White 14 and we note this age is questionable. 
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Table 4.2 Summary of age ranges from each river drainage along with possible bedrock 

sources drained. 

River Number of 
samples 

Spatial division Possible bedrock sources* Entire age range WA-only age range 

Nabesna 10 
 

Central/western Mt. Gordon, Ice Fields 

Plateau, Skookum Creek 

Center 

1.37-153.31 Ma 1.37-27.7 Ma 

Cross 4 Central Frederika Mountain 26.6 – 147.97 Ma 26.6 Ma 

Chisana 17 Central Frederika Mountain, Eucher 

Mountain 

5.88 – 162.45 Ma 5.88 – 25.12 Ma 

White 13 Central Mt. Churchill, Mt. Bona, 

Castle Mountain, Frederika 

Mountain 

9.31 – 300.97 Ma 9.31 – 23.50 Ma 

Kuskulana 16 Western Mt. Blackburn, Mt. 

Wrangell(?) 

2.79 – 4.55 Ma 2.79 – 4.55 Ma 

Kotsina 13 Western Mt. Wrangell, Mt. Blackburn 0.02 – 215.07 Ma 0.02 – 1.54 Ma 

Chetaslina 9 Western Mt. Wrangell 0.23 – 152.42 Ma 0.23 – 0.92 Ma 

Dadina 11 Western Mt. Drum, Mt. Wrangell 0.31 – 1.86 Ma 0.31 – 1.86 Ma 

Nadina 8 Western Mt. Drum 0.17 – 0.88 Ma 0.17 – 0.88 Ma 

Sanford 18 Western Mt. Drum, Mt. Wrangell, Mt. 

Sanford 

0 – 2.3 Ma 0.07 – 2.3 Ma 

  
* Possible bedrock sources are inferred from Richter et al., 2006.    
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Figure 4.3 40Ar/39Ar spectra showing plateau ages that were produced using step-heat 

methodology for six select samples out of the entire dataset. 
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Table 4.3 40Ar/39Ar step-heat data for subset of six cobbles with early arc ages. 

Sample  Mineral 

or Whole 

rock  

Integrated Age 

(Ma)  

Plateau Age 

(Ma)  

Plateau Information  Isochron Age 

(Ma)  

Isochron or other 

Information  

White 5  Whole 

Rock  

33.2 ± 1.0 23.5 ± 0.7  5 out of 8 fractions 100% 39Ar release 

MSWD = 0.48 

 25.9 ± 1.9 
40Ar/36Ari = 263.8 ± 24.0 
MSWD = 0.10 

 

White 15  Whole 

Rock  

10.4 ± 0.2 10.4 ± 0.3 8 out of 8 fractions 100% 39Ar release 

MSWD = 1.39 

10.9 ± 0.4 
40Ar/36Ari = 287.8 ± 17.1 
MSWD = 1.44 

 

Chisana 2  Whole 

Rock  

25.4 ± 0.4 22.9 ± 0.4  6 out of 8 fractions 75.2% 39Ar release 

MSWD = 1.37 

22.8 ± 0.5  40Ar/36Ari = 296.2 ± 5.3 
MSWD = 1.69 

  

Chisana 11 Whole 

Rock  

27.7 ± 0.6 20.6 ± 0.5  5 out of 8 fractions 61.1% 39Ar release 

MSWD = 0.38 

21.0 ± 0.6  40Ar/36Ari = 291.1 ± 5.4 

MSWD = 0.30 

Nabesna 2 Whole 

Rock  

30.3 ± 0.4 23.9 ± 0.4*  4 out of 8 fractions 45.4% 39Ar release 

MSWD = 0.47 

20.5 ± 4.2 40Ar/36Ari = 317.9 ± 27.7 

MSWD = 0.32 

Nabesna 13  Whole 

Rock  

26.8 ± 0.2 27.7 ± 0.2  6 out of 8 fractions 78.1% 39Ar release 

MSWD = 1.02 

N/A N/A  

Note: Preferred age (between integrated, plateau, and isochrone age) in bold  

*Weighted average presented when all the criteria for a plateau age were not met. 

   

 

Table 4.4 Comparison between single fusion and plateau ages (step-heat). 

Sample Single-fusion age (Ma) Plateau age (Ma) 

Nabesna 2 29.66  0.98  23.9  0.4 

Nabesna 13 26.82  0.19 27.7  0.2 

Chisana 11 27.31  0.82 20.6  0.5 

Chisana 2 28.04  0.58 22.9  0.4 

White 5 30.09  0.56 23.5  0.7 

White 15 10.07  0.15 10.4  0.3 
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Figure 4.4 Map showing the variety of textures from this dataset. The term “volcanic” includes 

both porphyritic-volcanic and aphanitic textures.  The term “plutonic” includes both 

porphyritic-plutonic and phaneritic textures.  Note that pyroclastic textures, while rare, are 

found in the western and central WA. 
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Figure 4.5 Map of study area with watersheds delineated (pink lines), river drainages 

labeled (including ages), and spatial divisions assigned (western, central, both).  Black 

dashed line is the approximate boundary used for spatial divisions.  The Nabesna 

drainage—and its tributary the Jacksina—classify as “Both” because their watershed area 

is so enormous that it drains rocks from the western and central WA.  This is reinforced by 

the wide age range observed from the Nabesna River.  The unlabeled watershed north of 

the White River is Ptarmagin Creek, which drains the SCVF.  *Names in gray boxes do not 

yet have age data but have geochemical data and are therefore included in spatial divisions. 
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Table 4.5 Summary of the rivers included in each spatial division category used for all plots 

and discussion herein.  Note that rivers from the western WA generally drain younger 

rocks whereas rivers from the central WA generally drain older rocks.  The Nabesna and 

Jacksina rivers capture bedrock input associated with both the western and the central 

WA, so they are considered “Both”. 

Spatial 
division 

Rivers included Age range (Ma) 

Central WA Chisana, White, Hawkins, Cross, 

Chitistone, Nizina, Root 

 

5.88 – 23.50 

Western WA Kuskulana, Kotsina, Dadina, Nadina, 

Sanford, Boulder, Copper 

 

0 – 4.55  

Both Nabesna, Jacksina 1.37 – 27.70  
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Figure 4.6 Total alkalis versus silica diagram with cobble samples coded based on their age. 

 

 

Figure 4.7 Total alkalis versus silica diagram with cobble samples coded based on their 

spatial location. 
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Figure 4.8 Andesite type diagram (Gill, 1981) with cobble samples coded based on their 

age.  Most medium-K andesites are <1 Ma. 

 

 

Figure 4.9 Andesite type diagram (Gill, 1981) with cobble samples coded based on their 

spatial location.  Most medium-K andesites drain from the western WA. 
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Figure 4.10 AFM diagram with cobble samples coded based on their age. 

 

Figure 4.11 AFM diagram with cobble samples coded based on their spatial location. 
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Figure 4.12 Total alkalis versus silica diagram showing the general dissimilarity between 

this cobble dataset and alkaline compositions (yellow field) documented by Skulski et al. 

(1991; 92).  The colored fields labeled “Yukon” represent data from Skulski et al. (1991; 

92). 

 

Figure 4.13 Total alkalis versus silica diagram showing the general similarity between this 

cobble dataset and that of Preece and Hart (2004) and Trop et al. (2012).  Because Preece 

and Hart (2004) focused on geochemical variations within WA rocks, we use their criteria 

to group these new data into their trends for further comparison. 



56 

 

Figure 4.14 Classification of cobble data according to Preece and Hart (2004) criteria.  The 

colored fields represent data from Preece and Hart (2004); symbols are cobble data 

classified according to Preece and Hart (2004) criteria. (a) TiO2 versus SiO2 diagram.  Note 

the much larger range of TiO2 values at SiO2 < 60 wt. % than at SiO2 > 60 wt. %.  (b) 

Yttrium versus SiO2 diagram.  Note samples from this dataset don’t perfectly fit within the 

confines of the Preece and Hart (2004) data, but they do show similar trends, i.e., Trend 1 

has elevated Y values relative to Trend 2 and Trend 2a has elevated Y values relative to 2b. 
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Figure 4.15 Classification of cobble data according to Preece and Hart (2004) criteria.  Note 

that most Trend 2b samples from the cobble dataset are within the “adakite-like” field 

(Defant and Drummond, 1990).  ADR = andesite-dacite-rhyolite and is characteristic of 

volcanic arc compositions (Defeant and Drummond, 1990).   



58 

 

Figure 4.16 Harker diagrams showing major element variations through time.  Samples are 

coded based on their age.  FeO* indicates total iron as Fe2+. 
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Figure 4.17 Harker diagrams showing major element variations through space.  Samples 

are coded based on their spatial location. FeO* indicates total iron as Fe2+.
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Table 4.6 Major element and magnesium number ranges for the total dataset, each spatial division, and each age division.   

  Spatial Divisions Age Divisions 

 Total range (wt. %) Central WA Western WA Both <1Ma 1-3 Ma 3-5 Ma 5-8 Ma 8-13 Ma 17-28 Ma 

 n = 207 n = 83 n - 100 n = 24 n = 47 n = 10 n = 14 n = 9 n = 8 n = 13 

           

SiO2 48.64 - 77.76 48.64 - 77.76 53.58 - 75.29 55.17 - 72.49 53.70 - 74.48 54.32 - 67.38 61.87 - 67.42 62.25 - 76.79 53.05 - 72.24 56.05 - 68.16 

TiO2 0.05 - 2.86 0.05 - 2.86 0.05 - 1.92 0.13 - 1.16 0.07 - 1.42 0.42 - 1.11 0.53 - 0.81 0.15 - 0.76 0.36 - 2.61 0.31 - 0.52 

Al2O3 12.4 - 19.33 12.4 - 18.86 14.52 - 19.33 15.79 - 17.86 15.04 - 18.13 15.80 - 18.19 15.68 - 16.69 12.85 - 17.33 14.21 - 17.47 15.96 - 17.72 

FeO* 0.54 - 13.86 0.54 - 13.86 0.7 - 9.13 1.45 - 7.32 1.02 - 8.14 3.38 - 7.12 3.41 - 5.15 1.12 - 4.92 1.97 - 10.94 2.70 - 7.32 

MnO 0.03 - 0.3 0.03 - 0.3 0.05 - 0.2 0.07 - 0.15 0.06 - 0.15 0.08 - 0.15 0.08 - 0.10 0.04 - 0.11 0.07 - 0.15 0.06 - 0.13 

MgO 0.1 - 13.22 0.1 - 13.22 0.25 - 7.36 0.45 - 6.95 0.25 - 7.36 2.19 - 5.44 1.99 - 3.30 0.18 - 4.61 0.57 - 4.63 1.72 - 6.34 

CaO 0.37 - 10.9 0.37 - 10.9 1.45 - 9.17 2.05 - 8.83 1.85 - 8.16 4.36 - 8.53 3.87 - 5.72 0.47 - 5.45 1.31 - 7.28 2.76 - 8.83 

Na2O 2.13 - 6.19 2.13 - 6.19 3.43 - 5.65 3.72 - 5.96 3.43 - 4.78 3.74 - 4.46 4.02 - 4.43 4.16 - 6.09 3.80 - 5.13 3.72 - 6.11 

K2O 0.33 - 4.65 0.33 - 4.65 0.85 - 3.31 0.56 - 2.87 0.85 - 2.57 0.87 - 2.00 1.73 - 2.34 1.32 - 3.61 1.13 - 3.52 0.56 - 1.74 

P2O5 0.03 - 1.16 0.03 - 0.84 0.07 - 1.16 0.11 - 0.28 0.08 - 0.39 0.12 - 0.27 0.14 - 0.18 0.03 - 0.25 0.10 - 0.84 0.13 - 0.28 

Mg# 18.9 - 69.9 18.9 - 69.9 21.6 - 67.7 25.4 - 64.6 29.2 - 67.7 52.1 - 57.9 50.80 - 53.57 21.7 - 62.5 23.4 - 60.3 46.7 - 60.7 
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Figure 4.18 Harker diagrams showing trace element variations through time.  Samples are 

coded based on their age.   
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Figure 4.19 Harker diagrams showing trace element variations through space.  Samples are 

coded based on their spatial location. 
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Table 4.7 Trace element ranges for each spatial and age category. Rocks older than WA 

age (~30 Ma) are not included here.  Rocks with LOI values greater than 3.5 wt. % are 

included here. 

  Spatial Divisions Age Divisions 

 Total range 

(ppm) 

Central 

WA 

Western 

WA 

Both <1Ma 1-3 Ma 3-5 Ma 5-8 Ma 8-13 Ma 17-28 Ma 

 n = 220 n = 95 n = 101 n = 24 n = 47 n = 10 n = 14 n = 9 n = 10 n = 13 

           

Rb 1.5 - 145.4 1.5 - 145.4 16.9 - 89.1 12.1 - 53.6 16.9 - 68.8 16.9 - 

46.2 

39.3 - 61 30.7 - 99.2 25.5 - 

104.7 

12.1 - 39 

Sr 16 - 1241 16 - 1050 275 - 1241 275 - 878 413 - 973 516 - 891 503 - 595 67 - 582 174 - 816 622 - 905 

Y 3.6 - 61 8.4 - 53.5 3.6 - 61 8 - 45.3 3.6 - 44.4 10.7 - 

25.6 

16.6 - 20.5  15.4 - 51 11.4 - 

53.5 

8.4 - 15.2 

Zr 67 - 635 67 - 498 78 - 635 70 - 412 98 - 389 125 - 203 152 - 181 132 - 299 124 - 471 70 - 147 

V 4 - 419 4 - 419 8 - 276 17 - 195 8 - 219 90 - 205 85 - 135 12 - 106 30 - 203 64 - 195 

Ni 2 - 265 2 - 265 2 - 172 3 - 156 3 - 172 21 - 89 29 - 46 5 - 126 5 - 61 12 - 82 

Cr 4 - 685 5 - 685 7 - 248 4 - 287 7 - 248 40 - 131 36 - 56 11 - 235 9 - 124 15 - 88 

Nb 0.6 - 54.7 0.6 - 54.7 1.5 - 20.1 0.7 - 17.3 1.5 - 13.1 2.5 - 6.3 3.6 - 5.3 3.7 - 16.2 4.5 - 24.7 0.7 - 10.6 

Ga 14.2 - 25.4 14.2 - 25.4 18.6 - 24.4 17 - 23.7 18.9 - 23.8 18.9 - 

22.4 

19.7 - 21  17.7 - 25.4 18.3 - 

23.7 

17 - 21.4 

Cu 7 - 438 8 - 438 7 - 209 13 - 97 7 - 117 31- 126 27 - 55 12 - 59 8 - 60 12 - 89 

Zn 14 - 309 14 - 309 32 - 115 48 - 91 32 - 87 56 - 83 53 - 72 38 - 61 39 - 138 27 - 91 

Co <1 - 66 <1 - 66 <1 - 33 <1 - 32 <1 - 33 4 - 28 5 - 16 <1 - 20 <1 - 30 2 - 29 

Ba 21 - 1845 21 - 1845 269 - 1098 308 - 992 269 - 970 312 - 710 585 - 769 611 - 983 288 - 

1126 

308 - 

1845 

La 7 - 51 7 - 51 12 - 46 15 - 45 14 - 31 12 - 28 20 - 25 21 - 48 14 - 36 12 - 29 

Ce 10 -104 10 - 104 22 - 90 19 - 89 22 - 54 23 - 40 29 - 41 38 - 104 30 - 78 18 - 48 

U <0.5 - 12.1 <0.5 - 12.1 <0.5 - 3.4 <0.5 - 2.2 <0.5 - 3.4 <0.5 - 2.5 <0.5 - 2.1 <0.5 - 2 <0.5 - 3.7 <0.5 - 1.2 

Th <0.5 - 41.7 <0.5 - 41.7 <0.5 - 12 <0.5 - 11.1 <0.5 - 8.5 <0.5 - 3.4 0.5 - 5.2 1.2 - 19 0.5 - 18 <0.5 - 1.6 

Sc <1 - 111 <1 - 41 <1 - 111 <1 - 23 <1 - 111 8 - 23 5 - 12 <1 - 11 <1 - 22 3 - 23 

Pb <1 - 45 <1 - 45 <1 - 28  <1 - 21 <1 - 28 <1 - 21 <1 - 17 <1 - 20 <1 - 20 <1 - 21 
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Figure 4.20 Ba/Nb versus (Sr/P)n.  Samples are coded based on their age.  Primitive samples are defined as MgO > 6.0 wt.%, 

Ni > 100 ppm, and Cr > 200 ppm.  Gray-scale samples comprise the existing WA bedrock record.  *Central & western WA 

data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data are from Skulski et al. 

(1991; 1992). 
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Figure 4.21 Ba/Nb versus (Sr/P)n.  Samples are coded based on their spatial location. Primitive samples are defined as MgO > 

6.0 wt.%, Ni > 100 ppm, and Cr > 200 ppm.  Gray-scale samples comprise the existing WA bedrock record.  *Central & 

western WA data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data are from 

Skulski et al. (1991; 1992). 
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Figure 4.22 Nb/Zr versus (Sr/P)n.  Samples are coded based on their age.  Primitive samples are defined as MgO > 6.0 wt.%, 

Ni > 100 ppm, and Cr > 200 ppm.  Gray-scale samples comprise the existing WA bedrock record.  *Central & western WA 

data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data are from Skulski et al. 

(1991; 1992). 
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Figure 4.23 Nb/Zr versus (Sr/P)n.  Samples are coded based on their spatial location. Primitive samples are defined as MgO > 

6.0 wt.%, Ni > 100 ppm, and Cr > 200 ppm.  Gray-scale samples comprise the existing WA bedrock record.  *Central & 

western WA data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data are from 

Skulski et al. (1991; 1992). 
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Figure 4.24 Sr/Y versus (Sr/P)n.  Samples are coded based on their age.  Primitive samples are defined as MgO > 6.0 wt.%, Ni 

> 100 ppm, and Cr > 200 ppm.  Gray-scale samples comprise the existing WA bedrock record.  *Central & western WA data 

are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data are from Skulski et al. (1991; 

1992). 
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Figure 4.25 Sr/Y versus (Sr/P)n.  Samples are coded based on their spatial location. Primitive samples are defined as MgO > 

6.0 wt.%, Ni > 100 ppm, and Cr > 200 ppm.  Gray-scale samples comprise the existing WA bedrock record.  *Central & 

western WA data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data are from 

Skulski et al. (1991; 199
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Chapter 5 - Discussion 

The geochemical and geochronological data collected for this study are combined to offer 

new insights into the spatial, temporal, and geochemical variations that have shaped the 

Wrangell arc since the time of its inception.  Questions this work aims to address include the 

following: 

1) Did the Wrangell arc initiate prior to the published date of ~26 Ma (Richter et al., 

1990)?  Additionally, what do new cobble, detrital sand, and bedrock ages reveal 

about the progression of WA magmatism through time? 

2) Are specific time intervals during WA magmatism linked to eruptions and 

emplacement of different magma types?  If so, what—if any—tectonic implications 

do these temporal trends reveal throughout the arc? 

3) Are the controls on the occurrence of various magma types local or arc-wide? 

4) What do the spatio-temporal trends of magmatism reveal about the tectonic regime(s) 

that formed the modern WA?  

5) Are the compositions of the igneous cobbles in this study reflected in the existing 

bedrock record?  What does this mean for the application of this indirect sampling 

strategy to other locations? 

To address these questions, this discussion will establish a timeline for WA magmatism (1), 

consider geochemical variations through time and what tectonic implications those variations 

have (2), and consider those geochemical variations in a spatial context (3) to relate it back to 

tectonic processes influencing the migration of magmatism (4).  Finally, since this is a novel 

technique, there will be a discussion of its usefulness in the Wrangell arc and potential to be 

utilized in other locations (5).     

 

 Did the Wrangell arc initiate prior to the published date of ~26 Ma (Richter et al., 

1990? What do new ages reveal about the temporal progression of magmatism? 

Prior to this study, the timing of WA inception was based on a single bedrock K-Ar age 

of ~26.3 Ma from the Sonya Creek volcanic field (SCVF; Fig 1.1, 2.1, and 2.3; Richter et al., 

1990).  However, the WA is huge (over 15,000 km2) and there are many sample collection 
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limitations—ice cover, rugged terrain, and air travel—that impact where bedrock can and cannot 

be collected.  These limitations make it difficult to constrain the timing of arc initiation in such a 

large continental arc setting.  With the wide reach of this detrital cobble technique, we have been 

able to capture a larger area than would otherwise have been possible.  As a result, this 

technique, along with other geochronologic data from detrital sand and zircons (Davis et al., 

2017; Trop et al., 2017), has allowed for a better understanding of the age and migration patterns 

of the WA.  

Data here, as well as new detrital data (Davis et al., 2017; Trop et al., 2017), suggest that 

WA magmatism initiated at ~29.0 Ma.  One cobble sample from the White River yielded a single 

grain fusion age of 34.58  0.47 Ma (Fig. 4.5), but we discount this age due to potential 

alteration.  Trop et al. (2017) report less than 1% of more than 1600 new U/Pb detrital sand ages 

to be in the ~34.0 – ~29.0 Ma age range.  This sparse evidence for magmatism from ~34.0 – 

~29.0 Ma is not reflected in the current bedrock record: the oldest five bedrock ages are ~29.0 

Ma (Berkelhammer, 2017; Davis et al., 2017) and hence the ~34.0 Ma to ~29.0 Ma single grain 

zircon ages maybe an artifact of the analytical accuracy of the ICPMS U/Pb dating technique. 

Alternatively, these single grain zircon ages maybe reflecting regional magmatism preceding the 

initiation of the WA or a nascent stage of the WA. Given the bedrock geochronology data set 

does not capture ~34.0 Ma to ~29.0 Ma magmatism in the region, we presently prefer to interpret 

these single grain zircon ages as reflecting analytical issues.   

 The next oldest age in the cobble record is 27.7  0.2 Ma which is from the Nabesna 

River (Fig. 4.5).  This leaves an age gap in the cobble record spanning roughly one million years, 

from ~29.0 Ma to ~28.0 Ma.  However, new detrital sand data resolve the gap seen in the cobble 

record and show continuous arc activity began from ~29.0 Ma to present (Davis et al., 2017; 

Trop et al., 2017).   

Samples in the cobble dataset demonstrate continuous magmatism from 27.7 Ma to ~0.0 

Ma (Figs. 4.1 and 4.2) apart from absolutely no samples with ages between ~17.0 – ~13.0 Ma 

(Figs. 4.1, 4.2, and 5.1).  This ~17.0 – ~13.0 Ma gap in magmatism is also observed in the 

bedrock of the western and central WA (Richter et al., 1990).  Notably, the only occurrences of 

ages from 17.0 – 13.0 Ma are from bedrock in the eastern WA (Figs. 2.1 and 2.3; Skulski et al., 

1991; 92) and from U/Pb ages of detrital zircons draining from the White and Nabesna Rivers in 
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the central WA (Figs. 2.3 and 4.4; Trop et al., 2017).  The ~17.0 Ma to ~13.0 Ma single grain 

zircon ages may be an artifact of the analytical accuracy of the ICPMS U/Pb dating technique. 

When considered with the detrital sand and bedrock age data, the cobble data fit in well 

with the overall history of the WA and reproduce the ~17.0 – ~13.0 Ma gap in magmatism seen 

in the western and central WA bedrock and detrital sand records.  The cobble data are consistent 

with the hypothesis that WA magmatism began at least 3.0 m.y. earlier than previously thought, 

at ~29.0 Ma rather than ~26.0 Ma, and was continuous from ~29.0 to the present.   

 

Are specific time intervals linked to magmatic events of different magma types and 

what tectonic implications do these magmatic events have? 

It is possible to link magmatic events of different magma types (i.e., Trend 1, Trend 2a, 

Trend 2b) to specific time intervals throughout the history of the arc.  Trend 1 defines a high 

TiO2, transitional-tholeiitic suite, Trend 2a defines a low TiO2 calc-alkaline suite, and Trend 2b 

defines a low TiO2 calc-alkaline suite with adakitic characteristics (Preece and Hart, 2004).  

Trend 1 is associated with intra-arc extension, Trend 2a is formed by “normal” subduction, and 

Trend 2b is also formed by subduction, but has specific trace element (e.g., Sr > ~300 ppm and Y 

< ~10 ppm) geochemistry that may be attributed to partial melting of the subducting slab (i.e., 

adakite-like).  Once divided into these trends, the data can also be considered on the basis of 

their respective ages to link magma types to specific time intervals.  We will use the time 

intervals defined in the Results section throughout this consideration.    

 Figures 5.2 – 5.7 show that occurrences of cobbles defined as Trend 2a span the entire 

life of the arc.  Cobbles defined as Trend 2b also occur throughout the entire life of the arc, but 

they are more abundant during the oldest (28.0 – 17.0 Ma) and youngest (3.0 – 0.0 Ma) periods 

of arc magmatism (Figs. 5.2, 5.3, and 5.7).  Cobbles considered Trend 1 (transitional-tholeiitic) 

are temporally restricted to <1.0 Ma in the western WA and 10.8 – 5.9 Ma in the central WA 

(Figs. 5.2, 5.5, and 5.6).   

Temporal occurrences of these trends in the cobble record are generally consistent with 

the existing bedrock record.  It is well established in the literature that calc-alkaline (Trend 2a) 

magmas have erupted throughout the WA duration (Skulski et al., 1991, 1992; Richter et al., 

1990; Preece and Hart, 2004; Trop et al., 2012; Keast et al., 2016; Berkelhammer, 2017; Trop et 

al., 2017; this study).  Truly adakitic magmas have been recognized at <5 Ma (Preece and Hart, 
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2004) and between ~29.0 – ~20.0 Ma in the bedrock record (Berkelhammer, 2017; Weber et al., 

2017).  Adakite-like (Trend 2b) samples in the cobble dataset are consistent with these 

occurrences of Trend 2b in the bedrock record, but also show minor occurrences of Trend 2b 

throughout the entire history of the arc (Figs. 5.2 – 5.7). 

Transitional-tholeiitic magmas (Trend 1) have been identified in the bedrock record at 

<1.0 Ma (Preece and Hart, 2004), at ~2.5 Ma (Keast et al., 2016), from ~12.5 – ~5.3 Ma (Trop et 

al., 2012), and from ~23.0 – ~18.0 Ma (Berkelhammer, 2017).  Trend 1 magmas in the cobble 

record are only found from <1.0 Ma and from 10.8 – 5.9 Ma, which aligns well with the results 

of Preece and Hart (2004) and Trop et al., (2012), respectively.   

 Tectonic implications of geochemical timeline 

Calc-alkaline magmas (Trend 2a) are signatures of “typical” subduction and, since the 

WA is a continental volcanic arc, are temporally ubiquitous throughout the bedrock and cobble 

record (Richter et al., 1990; Skulski et al., 1991; 92; Preece and Hart, 2004; Trop et al., 2012; 

Berkelhammer, 2017; Trop et al., 2017; this study).  Additionally, the youngest (<5.0 Ma) and 

oldest (28.0 – 17.0 Ma) cobbles in our dataset have Ba/Nb ratios > 100, which is indicative of a 

subduction component (Fig. 4.20; Pearce et al., 2005).  The tectonic implication of these cobble 

and bedrock occurrences through time is that subduction processes (e.g., melting of subduction-

affected mantle wedge) have been continuous throughout the ~29.0 m.y. history of the arc. 

Cobbles defined as Trend 2b occur throughout the entire history of the WA as well (Figs. 

5.2 – 5.7), but are more abundant during the youngest (<1.0 Ma) and oldest (~28.0 – ~17.0 Ma) 

phases of WA magmatism, i.e. during modern magmatism and arc initiation, respectively (Figs. 

5.2 and 5.7).  Twelve of the thirteen oldest (28.0 – 17.0 Ma) cobbles in the dataset are considered 

Trend 2b, with only one cobble classified as Trend 2a (Fig. 5.7).  The youngest (<5.0 Ma) and 

oldest (28.0 – 17.0 Ma) cobbles have the highest Sr/Y (> ~25; Fig. 4.24) in the dataset, which is 

consistent with partial slab melting.  Furthermore, these same age groups (<1 Ma and ~28 – ~17 

Ma)  have Ba/Nb ratios > 100 (Fig. 4.20), which indicates a mantle wedge melt component 

(“normal” subduction) in the same rocks with a slab melt component.  Trend 2b cobbles are 

referred to as “adakite-like” in this discussion since we do not have the all the necessary data to 

identify them as true adakites.  La/Yb ratios are sometimes used to distinguish different types of 

adakites (Moyen, 2009), but we do not have Yb data, so the La/Yb ratio cannot be used to make 

this distinction.  Since La/Yb ratios are not available, but there is evidence that Trend 2b cobbles 
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have components of partial slab melting and mantle wedge melting, it can be concluded this may 

have arisen from the mixing of an adakite-like magma and magma derived from melting of the 

mantle wedge.  This explanation is consistent with that of Berkelhammer (2017) for similar 

compositions in the SCVF and by Weber et al., (2017) in locations across the north-central WA.  

In the bedrock record, occurrences of Trend 2b are only identified at <5.0 Ma (Preece and Hart, 

2004) and ~29.0 – ~20.0 Ma (Berkelhammer, 2017; Weber et al., 2017).  Trend 2b cobbles are 

more abundant during the time periods recognized in the bedrock (Figs. 5.2 and 5.7), but 

nonetheless occur throughout the entirety of WA magmatism (Figs. 5.2 – 5.7).  The tectonic 

implication of this is that partial slab melting and mantle wedge melting occurred 

contemporaneously, and may have mixed to generate adakite-like compositions, throughout the 

entire history of WA magmatism. 

Cobble data show that Trend 1 (transitional-tholeiitic) occurs during very young, 0.7 – 

0.4 Ma, (Fig. 5.2) or intermediately aged magmatism, 10.8 – 5.9 Ma (Figs. 5.5 and 5.6).  

Additionally, many of the intermediate-aged cobbles and all of the very young cobbles 

considered Trend 1 have relatively high Nb/Zr (> ~0.03) when coupled with relatively low 

(Sr/P)n ratios (< ~2) compared to the rest of the dataset (Fig. 4.22).  Note that some primitive 

samples in this dataset have Nb/Zr > ~0.06, but these samples do not yet have an age (Fig. 4.22).  

Overall, no cobble data show Nb/Zr ratios consistent with true intraplate character (Nb/Zr > 

0.135; Sun and McDonough, 1989), but there is a clear difference between these 0.7 – 0.4 Ma 

and 10.8 – 5.9 Ma cobbles that show these relatively high Nb/Zr and low (Sr/P)n ratios versus the 

rest of the cobble dataset.  In fact, all these relatively high Nb/Zr and low (Sr/P)n cobbles that are 

0.7 – 0.4 Ma and 10.8 – 5.9 Ma plot as Trend 1 when data is coded according to Preece and Hart 

(2004) criteria (Fig. 5.8).  Note that, even without primitive (i.e., MgO > 6.0 wt.%, Ni > 100ppm, 

and Cr >200 ppm) distinctions, there is a clear difference between transitional-tholeiitic Trend 1 

chemistries and subduction-related Trend 2 chemistries: Trend 1 corresponds to relatively high 

Nb/Zr and low (Sr/P)n, whereas Trends 2a and 2b are the opposite.  While Trend 1 is not 

consistent with a true intraplate signature, it is consistent with less fluid-fluxed mantle wedge 

melting (lower (Sr/P)n) and more decompression melting brought about by intra-arc extension 

(Preece and Hart, 2004; Trop et al., 2012).   

These cobble data fit with previous studies that documented transitional-tholeiitic 

chemistries in the bedrock from these time periods (Preece and Hart, 2004; Trop et al., 2012).  
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Recent studies have also recognized transitional-tholeiitic (Trend 1) chemistries at ~2.5 Ma 

(Keast et al., 2016) and spanning ~23.0 – ~18.0 Ma in the SCVF (Berkelhammer, 2017) which 

were not captured in the cobble record.  Notably, we did not collect any cobbles from the SCVF 

area, hence we acknowledge the geochemical and age data from this older region of the WA, but 

cannot compare the cobble dataset directly to the bedrock dataset for this region. 

  Transitional-tholeiitic (Trend 1) rocks are shown to be indicative of localized intra-arc 

extension in the western WA (Preece and Hart, 2004) and central WA (Trop et al., 2012; Keast et 

al., 2016; Berkelhammer, 2017).  The tectonic implication of this is that intra-arc extension and 

subsequent basin formation has occurred in discrete time periods during WA magmatism: ~23.0 

– ~18.0 Ma (Berkehlhammer, 2017); ~12.5 – ~5.3 Ma (Trop et al., 2012); ~2.5 Ma (Keast et al., 

2016); <1.0 Ma (Preece and Hart, 2004).  The youngest (< 5.0 Ma) and oldest (28.0 – 17.0 Ma) 

have low Nb/Zr ratios (< ~0.04) that indicate no intraplate component (i.e., decompression) went 

into the generation of these magmas (Fig. 4.22).  These time periods were concurrent with 

eruptions of Trend 2a and Trend 2b (Figs. 5.2, 5.5, and 5.6), which suggests that intra-arc basins 

were forming concurrently with subduction and partial slab melting, but only during specific 

periods.  

 

 Are the controls on the occurrences of various magma types local or arc-wide? 

Throughout the ~29.0 m.y. history of the WA, Trend 2a (calc-alkaline) and Trend 2b 

(adakite-like) cobbles are distributed evenly across the arc (Fig. 5.9).  Virtually every study in 

the western (Richter et al., 1990; Preece and Hart, 2004) and central (Richter et al., 1990; Trop et 

al., 2012; Keast et al., 2016; Berkelhammer, 2017; Trop et al., 2017) has shown continuous 

spatial distribution of calc-alkaline (Trend 2a) rocks in the bedrock record.  Trend 2b rocks have 

been recognized at Mt. Drum in the western WA and Mt. Churchill in the central WA (Fig. 1.1; 

Preece and Hart, 2004) and from the SCVF (Figs. 1.1, 2.1, and 2.3) in the north-central WA 

(Berkelhammer, 2017; Weber et al., 2017).   

Trend 1 rocks, however, are more localized in occurrence.  For example, no Trend 1 

rocks have been observed in the cobble dataset from the Nadina to the Kuskulana Rivers of the 

western arc (Figs. 4.5 and 5.9).  This absence of Trend 1 rocks in this area of the western WA is 

also seen in the bedrock record (Preece and Hart, 2004).  While Preece and Hart (2004) show 

numerous occurrences of Trend 1 rocks within the WA, they sampled bedrock north of these 
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rivers (Fig. 5.9; Nadina, Dadina, Chetaslina, Kotsina, and Kuskulana) and outside the capture of 

the watersheds of these rivers, thereby avoiding the main bedrock contributors to each of these 

rivers (Mt. Wrangell, Mt. Blackburn; Table 4.2).  Also, Preece and Hart (2004) point out that the 

locations of their Trend 1 occurrences are from Skookum Creek volcanic center (drained by the 

Nabesna and Jacksina Rivers; Table 4.2), the interior mesas (drained by the Nabesna and 

Jacksina Rivers; Table 4.2), and Mt. Sanford (drained by the Sanford River; Table 4.2), which 

are all locations where our data do show Trend 1 (Fig. 5.9).  Trend 1 rocks are also observed in 

the SCVF (Fig. 1.1, 2.1, and 2.3; Berkelhammer, 2017) and as a basal unit at Eucher Mountain, 

adjacent to the Totschunda fault (Fig. 1.1, 2.1 and 2.3; Keast et al., 2016), as well as in the 

Yukon (Berkelhammer, 2017).   

 Tectonic implications spatial magmatic occurrences 

Trend 2a (calc-alkaline) cobbles are universal across the western and central arc, which is 

unsurprising given that the WA is a continental volcanic arc.  Cobbles draining from areas of the 

central and western WA have Ba/Nb ratios >100, consistent with a strong subduction signature 

(Pearce et al., 2005; Fig. 4.21).  Some central WA and primitive cobbles are more heavily 

distributed at Ba/Nb < 100 (Fig. 4.21), indicating that some of the geochemistries in the central 

WA are controlled by upper plate processes, such as transtention along the Totschunda fault, 

rather than by subduction processes.  Nonetheless, some central and western WA cobbles both 

show Ba/Nb ratios > 100, which is consistent with subduction fluid input (Pearce et al., 2005) 

across the entire arc since its inception.   

Trend 2b cobbles are also found to drain from across the entire western and central arc 

(Fig. 5.9) and Trend 2b is recognized in the bedrock at Mt. Drum and Mt. Churchill (Preece and 

Hart, 2004).  Mt Drum and Mt. Churchill are the northwestern- and southeastern-most volcanoes 

in the western and central WA, respectively (Fig. 1.1), and are coincident with the imaged 

leading and eastern edges of the subducting Yakutat microplate (Preece and Hart, 2004).  Cobble 

data are consistent with these occurrences of Trend 2b because rivers draining from these two 

mountains (White, Dadina, Nadina, Sanford) capture cobbles recognized as Trend 2b (Fig. 5.9).  

Other occurrences of Trend 2b in the north-central bedrock and SCVF are thought to have been 

generated above the edge of the Yakutat microplate during early arc magmatism (i.e., ~29.0 – 

~20.0 Ma; Berkelhammer, 2017; Weber et al., 2017).  None of the rivers in this study drain the 

SCVF, but various rivers across the north-central WA (White, Chisana, Nabesna, and Copper; 
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Fig. 4.5) drain these mapped intrusives and captured Trend 2b cobbles (Fig. 5.9).  Some cobbles 

from the central and western WA also have Sr/Y > ~25, which is consistent with our definition 

of adakite-like (Fig. 4.25).  Again, there is a general difference between central and western 

rocks: most central WA rocks and primitive samples are grouped at Sr/Y < ~25, whereas most 

western WA have Sr/Y > ~25 (Fig. 4.25), indicating they are not adakite-like.  Bedrock 

occurrences indicate Trend 2b is spatially restricted to the where the leading front of the Yakutat 

microplate was during early arc magmatism (Berkelhammer, 2017; Weber et al., 2017), or the 

current northwest and southeast edges of the subducting Yakutat (Preece and Hart, 2004).  

However, cobble data suggest an arc-wide distribution of Trend 2b (Fig. 5.9).  There are Trend 

2b cobbles from every river we sampled (except for Cross Creek, a tributary to the larger 

Chisana drainage; Fig. 5.9), some of which drain from areas where Trend 2b is not recognized in 

the bedrock (i.e., from rivers in the western WA that do not drain Mt. Drum: Chetaslina, Kotsina, 

Kuskulana; Figs. 1.1 and 4.5).  These spatial occurrences indicate a component of partial slab 

melting across the entire arc.  The fact that Trend 2b and Trend 2a cobbles are both spatially 

ubiquitous further supports the previous explanation that Trend 2b chemistries were generated 

from the mixing of an adakite-like magma, likely along a slab edge given the locations of Trend 

2b occurrences in the bedrock (Preece and Hart, 2004; Berkelhammer, 2017; Weber et al., 2017), 

and a magma derived from melting of the mantle wedge (Trend 2a).   

The most spatially restricted magma type in the cobble record is Trend 1, which is 

consistently absent from the Nadina River southward to the Kuskulana River (Fig. 5.9).  Note 

that the Nabesna River and Cross Creek also have no cobble occurrences of Trend 1 (Fig. 5.9).  

However, the Jacksina River contains Trend 1 cobbles and the Jacksina is a tributary drainage to 

the Nabesna.  This is reversed for the absence of Trend 1 cobbles from Cross Creek: Cross Creek 

is a tributary to the larger Chisana drainage, which does have Trend 1 cobbles (Fig. 5.9).  Cross 

Creek also only has three available samples so it is entirely possible that Cross just missed the 

Trend 1 cobbles that were captured by the much larger Chisana drainage.  Bedrock studies 

(Preece and Hart, 2004; Keast et al., 2016; Berkelhammer, 2017) show only localized 

occurrences of Trend 1, which stand in contrast to abundant spatial occurrences of Trends 2a and 

2b.  In summary, there are no Trend 1 cobbles draining from the Nadina, Dadina, Chetaslina, 

Kotsina, or Kuskulana Rivers and we hypothesize this is because there are no Trend 1 

occurrences in the bedrock of each of these drainages.  We conclude our sampling strategy did 
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not miss any Trend 1 cobbles that were in fact here.  Rather, by using the known bedrock record, 

we can conclude that Trend 1 rocks do not exist here: Preece and Hart (2004) identified Trend 1 

in the interior of the arc, with Trend 2a on either side.  This is further highlighted by trace 

element ratio differences between the central and western WA.  Some central WA cobbles have 

relatively high Nb/Zr ratios (> ~0.04) and low (Sr/P)n (< ~2) , which corresponds to Trend 1, 

while most western WA cobbles show the opposite (Fig. 4.23).  These relatively high Nb/Zr and 

low (Sr/P)n are consistent with decompression melting brought about by intra-arc extension.  

Given the spatially isolated areas of Trend 1 throughout the bedrock and the nature of our sample 

collection, we cannot use our cobble data to make any significant spatio-tectonic implications 

about Trend 1.     

 

 What do spatio-temporal trends of magmatism reveal about tectonic regime(s) that 

formed the modern WA? 

When cobble and bedrock geochemical, temporal, and spatial data are integrated, they 

show that similar magma-generation and tectonic processes have been ongoing over the past 

~29.0 m.y. of WA magmatism, even though magmatism, and magma-generation processes, have 

migrated through time (Richter et al., 1990; Fig. 2.4).  The following discussion will consider the 

spatial occurrences of each magma type (Trend 1, 2a, 2b) during the time intervals defined in the 

Results section (28.0 – 17.0 Ma, 17.0 – 13.0 Ma, 13.0 – 8.0 Ma, 8.0 – 5.0 Ma, 5.0 – 3.0 Ma, 3.0 

– 1.0 Ma, and <1.0 Ma) in order to reveal spatio-temporal trends and their tectonic implications 

for WA magmatism.     

 28.0 to 17.0 Ma 

The detrital sand and cobbles with ages of 28.0 – 17.0 Ma all came from the north-central 

WA—the Nabesna, Chisana, and White Rivers, and Cross Creek (Fig. 5.1)—and the oldest 

cobble (~28.0 Ma) drained from the Nabesna River (Figs. 4.2 and 5.1).  In the cobble dataset, 

there are thirteen samples with ages that fall in the 28.0 – 17.0 Ma range.  Twelve of these 

thirteen cobble samples of 28.0 – 17.0 Ma are defined by their geochemistry as Trend 2b.  The 

one sample (Cross 7) not classified as Trend 2b is defined as Trend 2a (Figs. 5.7, 5.10, and Table 

5.1).   
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The earliest WA magmatism recorded in the bedrock is from the SCVF also located in 

the north-central WA, but north of the White River and beyond the capture of its watershed 

(Berkelhammer, 2017; Figs. 1.1, 1.2, and 4.5).  Magmatism began here at ~29.0 Ma and 

continued until 18 Ma (Figs. 1.1, 2.1, and 2.3; Berkelhammer, 2017).  There are no cobble data 

from rivers draining the SCVF, but there are abundant detrital sand data from the area, that 

support the ~29.0 Ma start (Davis et al., 2017; Trop et al., 2017).  In the SCVF, Trend 2a is 

documented from ~29.0 – 18.0, Trend 2b is documented from ~28.0 – ~23.0 Ma, and Trend 1 is 

documented from ~23.0 – 18.0 Ma (Berkelhammer, 2017).  Various intrusions classified as 

Trend 2b are also found across the north-central WA, with ages of ~29.0 – ~20.0 Ma (Weber et 

al., 2017).   

 Tectonic implications of spatio-temporal trends, 28.0 – 17.0 Ma 

These 28.0 – 17.0 Ma samples all drain from the White, Chisana, and Nabesna Rivers, 

and Cross Creek, located in the north-central WA (Fig. 5.7), which suggests that arc magmatism 

initiated by ~28.0 Ma in the north-central WA and remained relatively fixed in this area until 

~18.0 – 17.0 Ma (Berkelhammer, 2017; Trop et al., 2017; this study).  The fact that the oldest 

cobbles in the dataset are mostly Trend 2b and Trend 2a suggests that magmatism from 28.0 – 

17.0 Ma in the north-central WA (areas drained by the White, Chisana, and Nabesna Rivers, and 

Cross Creek; Figs. 5.1 and 5.7) primarily resulted from concurrent subduction-driven processes: 

mantle wedge melting (Trend 2a) and partial slab melting (Trend 2b).  These simultaneous 

processes likely led to magma mixing between the mantle wedge and partial slab melts, thereby 

generating the Trend 2b, adakite-like chemistries seen in the cobble record as well as in the 

SCVF (Berkelhammer, 2017; Weber et al., 2017).  Bedrock data support this, given temporal and 

spatial occurrences of Trend 2a and Trend 2b in the SCVF (Berkelhammer, 2017) and 

occurrences of Trend 2b throughout the north-central WA (Weber et al., 2017).  A majority of 

the cobbles from 28 – 17 Ma (i.e., 12 out of 13 cobbles) are Trend 2b, implying that partial slab 

melting was the dominant process during the time following the subduction initiation of the 

Yakutat microplate.  During this early arc period (28.0 – 17.0 Ma), when subduction had just 

recently initiated, subducting slabs and slab edges are more prone to melting due to increased 

thermal gradients (Sajona et al., 1993), which may explain the widespread distribution of these 

old Trend 2b occurrences in the bedrock and cobbles, during ~29.0 – ~20.0 Ma and ~28.0 – 17.0 

Ma, respectively.   
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A discrepancy between cobble and bedrock data arise from the lack of Trend 1 seen in 

the cobble record during 28.0 – 17.0 Ma, but the presence of Trend 1 in the bedrock of SCVF 

from ~23.0 – 18.0 Ma (Berkelhammer, 2017).  However, as previously mentioned, no cobbles 

were collected from rivers that drain the SCVF, thereby not capturing the bedrock of the SCVF 

and any occurrences of Trend 1 there.  Nevertheless, the fact that Trend 1 bedrock exists, with 

ages from ~23.0 – 18 Ma, suggests that decompression melting triggered by intra-arc extension 

was occurring in the SCVF (Berkelhammer, 2017) during the same time as subduction, but 

initiated ~6.0 m.y. after continuous arc activity began. 

 17.0 to 13.0 Ma 

Cobble data show no samples with ages of ~17.0 – ~13.0 Ma.  It is possible that our 

sampling technique missed samples from this age range.  However, other studies of detrital 

material are consistent with our results.  Davis et al. (2017) dated 862 sand grains using 40Ar/39Ar 

geochronology and found no ages in the range of 17.0 – 13.0 Ma.  Trop et al. (2017) dated 2757 

detrital zircons and found sixteen out of those 2757 total zircons (<0.006 %) with ages in the 

range of 17.0 – 13.0 Ma draining from the Nabesna, White, and Chitistone Rivers in the central 

WA (Fig. 4.5; Trop et al., 2017).  Collectively, these studies suggest that rocks with an age of 

17.0 – 13.0 Ma are either non-existent in most areas of the arc or very sparse (J. Trop, pers 

comm).  This scarcity of samples means there was likely a significant reduction in the volume of 

magmatism in the central WA during 17.0 – 13.0 Ma.  However, this age gap may also reflect 

mineral fertility differences between U/Pb (zircons) and 40Ar/39Ar (bedrock, cobbles, detrital 

sand) dating techniques.  These scarce 17.0 – 13.0 Ma single grain zircon ages may be reflecting 

zircon rich felsic (i.e., zircon fertile) eruptions or intrusions and minor to no mafic/intermediate 

magmatism during this time.  In contrast, magmatism in the eastern WA (Yukon) was active 

from 18.0 – 10.0 Ma, and notably during the 17.0 – 13.0 Ma the void presented by the current 

bedrock and cobble records of the western and central WA (Skulski et al., 1991; 92).   

 Tectonic implications of spatio-temporal trends, 17.0 – 13.0 Ma 

The complete lack of cobbles and bedrock from 17.0 – 13.0 Ma would seem to imply that 

there was no magmatic activity in the western and central WA during this time.  However, there 

are very scare detrital zircons from the central WA with ages from 17.0 – 13.0 Ma (Trop et al., 

2017) that instead suggest the possibility of very little magmatic activity in the central WA 
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during this time.  It is significant to note that no bedrock or cobble data corroborate these detrital 

sand data.  

  Meanwhile, the eastern WA was magmatically active from 17.0 – 13.0 Ma (Skulski et 

al., 1991; 92).  Magmatic activity in the eastern WA was active and subparallel to the Denali and 

Duke River faults (Figs. 2.1 and 2.3), during 18.0 – 10.0 Ma, but only independent from western 

and central WA magmatism from 17.0 – 13.0 Ma.  This suggests there was a migration of 

magmatism starting at ~18.0 – 17.0 Ma (last documented bedrock and cobble ages in the central 

WA) from the initial locus in the north-central WA (SCVF) towards the southeast (Yukon) that 

lasted until ~10.0 Ma.  Bedrock from the eastern WA during this 18.0 – 10.0 Ma span varies 

from calc-alkaline to transitional to alkaline in composition (Skulski et al., 1991; 1992).  

However, Berkelhammer (2017) show that these calc-alkalic compositions found in the Yukon 

should actually be considered Trend 1 (transitional-tholeiitic).  Therefore, all magmas from the 

17.0 – 13.0 Ma period are, to some extent, related to extension which allowed various degrees of 

decompression melting.  Given the proximity of eastern WA volcanic fields to the Denali and 

Duke River faults and the southeastward progression of magmatism from the north-central 

starting at ~18.0 Ma (Figs. 2.1 and 2.3), there is likely a link between fault movement and 

magmatism (Skulski et al., 1991; 1992).   Magmatism became dormant in the eastern WA at 

~10.0 Ma (Skulski et al., 1991; 1992).  Given the genetic link between movement along the 

faults and magmatism, the complete lack of central and western WA bedrock and cobbles during 

17.0 – 13.0 Ma, and the occurrences of Trend 1 (Berkelhammer, 2017) and transitional to 

alkaline magmas (Skulski et al., 1991; 1992) in the eastern WA, we hypothesize that from 17.0 – 

13.0 Ma the dominant tectonic regime responsible for magmatism was a combination of 

extensional motion along strike-slip faults and subduction, which can be explained by the 

migration of magmatism and chemical progression to extensional-dominated magmas.  This halt 

of central and western WA magmatism and southeastward migration of magmatism was likely 

accomplished by slab rollback, to diminish the subduction component of melting and to move 

the locus of magmatism to the south, coupled with dextral movement along the Denali and Duke 

River faults, which provided conduits for magmas (most magmas from this period show some 

component of decompression melting; Skulski et al., 1991; 1992; Berkelhammer, 2017), acting 

simultaneously.   

 13.0 to 8.0 Ma 
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Magmatism returned across the international border to the central WA starting at ~13.0 

Ma, as is evident explicitly in the cobble record: one sample, classified as Trend 2a, with an age 

of 12.63 ± 0.28 Ma comes from the White River, followed by continuous magmatism until ~8.0 

Ma (Figs. 5.1 and 5.11).  During this 13.0 – 8.0 Ma time, Trend 1, 2a, and 2b chemistries 

draining from the White and Chisana rivers are observed in the cobble record (Figs. 5.6 and 

5.11).  Detrital sand and zircons are consistent with and support this cobble temporal progression 

from 13.0 – 8.0 Ma (Trop et al., 2017).   

Contemporaneous magmatic activity between the eastern and central WA continued until 

~10.0 Ma, when the eastern WA became dormant (Skulski et al., 1991; 92).  The bedrock record 

documents a return of magmatism to the central WA at ~12.5 – ~11 Ma (Trop et al., 2012) that is 

south of the location of initial arc magmatism in the north-central WA (see location of “Late 

Miocene arc volcanism” in Fig 1.1).  Magmatism in the central WA bedrock during 13.0 – 8.0 

Ma is classified as primarily Trend 1 and Trend 2a, with very minor Trend 2b (Trop et al., 2012).   

 Tectonic implications of spatio-temporal trends, 13.0 – 8.0 Ma 

The bedrock and cobble records imply that magmatism during this 13.0 – 8.0 Ma period 

was focused in the central WA (Figs. 5.6 and 5.9), with ~3.0 m.y. of overlapping magmatic 

activity between the central and eastern WA (eastern WA magmatism concluded at ~10.0 Ma).  

All three magma types (Trend 1, 2a, and 2b) are found in the bedrock and cobble record during 

this time.  After the return of magmatism in this region starting at ~13.0 Ma, ~2.0 – 3.0 m.y. 

went by before Trend 1 appeared in the cobble record, and these Trend 1 occurrences are 

confined to the a ~1.0 m.y., period, from 11.0 – 10.0 Ma (Fig. 5.11).  Despite this temporal 

restriction in the cobble record, the bedrock record shows occurrences of Trend 1 from 13.0 – 8.0 

Ma (Trop et al., 2012).  This implies that subduction (Trend 2a), likely slab melting (Trend 2b), 

and intra-arc extension (Trend 1) were all acting concurrently during this 13.0 – 8.0 Ma period.   

However, one vital question remains: What caused magmatism to migrate back to the 

central WA and eastern WA magmatism to become dormant?  Significantly, the eastern WA 

went dormant at ~10.0 Ma but magmatism returned to the central WA at ~13.0 Ma, suggesting 

overlapping tectonic activity between the two regions.  The geochemistries during this time 

period may help explain a change in tectonics.  Recall that the geochemistries in the eastern WA 

all have an extensional component: Trend 1, transitional, and alkaline chemistries (Skulski et al. 

(1991; 1992) all indicate a component of decompression melting, but there is less subduction 
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input in all of these rocks.  The return of magmatism to the central WA at ~13.0 Ma is marked by 

a return to a subduction component (Trend 2a; Fig. 5.11), suggesting a change with the 

subducting slab took place at ~13.0 Ma.  Given the northwestward progression of magmatism, 

we hypothesize a halt in slab rollback, and a change in plate orientation and/or subduction 

direction (towards the northwest) of the subducting Yakutat microplate to cause this northwest 

migration.   

  

 8.0 to 5.0 Ma 

Cobbles with ages of 8.0 – 5.0 Ma are only observed from Chisana River (Fig. 5.1) and 

are primarily Trend 2a with relatively less occurrences of Trend 2b and Trend 1 (Figs. 5.5 and 

5.12).  Cobbles show a progression of Trend 2a to Trend 2b with a conclusion of Trend 1 (Fig. 

5.12). Detrital sand data show ages of 8.0 – 5.0 Ma focused primarily in the central WA, but with 

some from data the Kuskulana, Kotsina, Chetaslina, and Boulder Rivers in the western WA (Fig. 

4.5; Davis et al., 2017; Trop et al., 2017).  The bedrock record contains Trend 1 and Trend 2a 

located at the Green Hills area in the central WA with ages from ~7.0 – ~4.5 Ma, ~4.5 Ma being 

the youngest age documented in the central WA (Fig. 1.1; Fitzgerald et al., 2016).   

 Tectonic implications of spatio-temporal trends, 8.0 – 5.0 Ma 

The bedrock and cobble record reiterate that magmatism was relatively fixed in the 

central WA (Fig. 1.1) from 8.0 – 5.0 Ma.  The dominant occurrences of Trend 2a suggests a 

subduction regime, with partial slab melting and intra-arc extension (Trends 2b and 1, 

respectively) being less dominant processes but nevertheless present.  During 8.0 – 5.0 Ma, there 

are no major migrations or transitions between geochemical signatures to account for, so we 

hypothesize tectonic processes were relatively consistent with the previous time division.   

 5.0 to 3.0 Ma 

Cobbles with ages of 5.0 – 3.0 Ma are only seen from the Kuskulana River, which is 

consistent with draining the 4.2 – 3.4 Ma Mt. Blackburn in the western WA (Figs. 1.1, 4.5, and 

Table 4.2).  Detrital data show ages of 5.0 – 3.0 Ma from across the western WA (Davis et al., 

2017; Trop et al., 2017).  The cobbles are Trend 2a and Trend 2b (Fig. 5.13), suggesting 

subduction and partial slab melting but no intra-arc extension during 5.0 – 3.0 Ma.  Bedrock 

from this time are consistent with Trend 2a in the western WA, but Trend 2b is not recorded in 

the bedrock from 5.0 – 3.0 Ma (Preece and Hart, 2004).   
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 Tectonic implications of spatio-temporal trends, 5.0 – 3.0 Ma 

Between the period of 8.0 – 5.0 Ma and 5.0 – 3.0 Ma, the locus of magmatism continued 

to migrate towards the northwest, from the central WA to Mt. Blackburn in the western WA 

(Figs. 1.1 and 2.4).  The migration from the central WA to the western WA was accompanied by 

a halt in Trend 1 (no Trend 1 occurrences in the cobbles (Fig. 5.13) or the bedrock during this 

period), suggesting no intra-arc extension after the initial migration, from 5.0 – 3.0 Ma.  Rather, 

given the geochemical data that exist in the cobble and bedrock record, this period was 

dominated by subduction-processes. 

 3.0 to 1.0 Ma 

Cobbles with ages of 3.0 – 1.0 Ma drain from the Kuskulana, Kotsina, Dadina, Sanford, and 

Nabesna Rivers (Fig. 5.1 and 5.3).  The Kuskulana, Kotsina, Dadina, and Sanford Rivers drain 

the western WA, whereas the Nabesna River drains portions of both the central and western WA 

(Fig. 4.5).  This young (3.0 – 1.0 Ma) Nabesna sample is the only sample draining from the 

Nabesna River that is not in the 28.0 – 17.0 Ma age group (Fig. 5.7).  These cobble occurrences 

are consistent with detrital (Davis et al., 2017; Trop et al., 2017) and most bedrock data (Preece 

and Hart, 2004; Keast et al., 2016).  The one disagreement is the 2.4 – 2.0 Ma Mt. Eucher 

Mountain, truncated by the Totschunda fault on its west side, in the central WA (Fig. 1.1, 2.1, 

and 2.3; Keast et al., 2016).  Eucher Mountain is within the Chisana River watershed (Figs. 1.1 

and 4.5; Table 4.2), but there are no Chisana samples with ages of 2.4 – 2.0 Ma (Figs. 5.1 and 

5.3), which indicates cobble sampling missed Eucher samples. This is not surprising given the 

Chisana cobbles were collected along a morainal bench sourcing bedrock up glacier from Eucher 

Mountain.  Cobbles during this time are Trend 2a and Trend 2b (Figs. 5.3 and 5.14).  Western 

WA bedrock data during 3.0 – 1.0 Ma are primarily Trend 2a (Preece and Hart, 2004), but 

Eucher Mountain contains a basal unit classified as Trend 1 (Keast et al., 2016).  Again, since no 

cobbles are Trend 1 (Fig. 5.14), the cobble sampling missed Eucher Mountain samples. 

 Tectonic implications of spatio-temporal trends, 3.0 – 1.0 Ma 

The locus of magmatism in the western WA during 3.0 – 1.0 Ma is consistent across 

cobble, detrital, and bedrock datasets (Preece and Hart, 2004; Davis et al., 2017; Trop et al., 

2017).  However, cobbles reveal Trend 2b during this 3.0 – 1.0 Ma period from the Kuskulana, 

Dadina, and Sanford Rivers (Figs. 5.3 and 5.14) that are not documented in the bedrock during 

this time (Preece and Hart, 2004).  Trend 2b bedrock has been documented at Mt. Drum (Fig. 
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1.1) in the western WA, which the Dadina and Sanford Rivers drain (Fig. 4.5 and Table 4.2), but 

Trend 2b bedrock ages here are 0.7 -0.2 Ma (Preece and Hart, 2004).  It is possible that the 

Sanford and Dadina Rivers have captured 3.0 – 1.0 m.y. old Trend 2b bedrock that is 

unrecognized in the literature.  Or it is possible that all these Trend 2b samples are not the same 

suite identified by Preece and Hart (2004), but rather the product of mixing of an adakite-like 

magma and a magma derived from melting of the mantle wedge (Trend 2a).   

Eucher Mountain may seem like a spatial and geochemical abnormality (it has Trend 1 

whereas no bedrock or cobbles show Trend 1 from 3.0 – 1.0 Ma), but it is not.  When slip rates 

along the Totschunda fault are extrapolated, they are consistent with the hypothesis that Eucher 

Mountain was translated along the Totschunda fault from an initial location in the western WA, 

adjacent to the Skookum Creek volcanic center, beginning at ~2.5 Ma (Keast et al., 2016), where 

its age is consistent with surrounding bedrock (Preece and Hart, 2004), cobbles (this study), and 

detrital sand (Davis et al., 2017; Trop et al., 2017).  The Trend 1 basal unit at Eucher (Keast et 

al., 2016) also suggests that magmatism initiated with extension (i.e., transtension) along the 

Totschunda fault, triggering decompression melting.    

 Less than 1.0 Ma 

Cobbles with ages of <1.0 Ma (i.e., modern WA magmatism) are spatially restricted to 

the western WA—the Kotsina, Chetaslina, Dadina, Nadina, and Sanford Rivers (Figs. 5.1).  This 

is consistent with detrital data (Davis et al., 2017; Trop et al., 2017) and the bedrock record 

(Preece and Hart, 2004).  Cobbles occur as Trends 1, 2a, and 2b (Figs. 5.2 and 5.15), which is 

consistent with the compositions also seen in the bedrock (Preece and Hart, 2004).  Note that this 

age group of <1.0 Ma has, by far, the most cobbles (Figs. 5.2 and 5.15).  The fact that a majority 

of cobbles are <1.0 Ma does not necessarily correlate to the most voluminous period of 

magmatism in the arc’s history (although it could, but it is impossible to tell from our data).  

Rather, these samples are less weathered, they look the freshest in the field and may had biased 

the sample collector, and six out of the ten rivers with ages drain the western WA, which may 

artificially inflate the number of younger samples. Additionally with time, younger volcanic 

products can cover older volcanic products in a magmatic belt, leading to under representation of 

older units in the modern sedimentary system.   



86 

 Tectonic implications of spatio-temporal trends, <1.0 Ma 

The location of modern WA magmatism fits with the conclusion by Richter et al., (1990) 

that WA magmatism has migrated generally northwestward through time, though it was 

punctuated by a number of geographic shifts that were unrecognized by Richter et al. (1990).  

Cobble data and detrital sand and zircon data (Davis et al., 2017; Trop et al., 2017) also show a 

northwestward younging trend (Fig. 5.1).  Trends 2a, 2b, and 1 cobbles and bedrock suggest 

concurrent subduction, partial slab melting, and intra-arc extension.  Aside from the ~2.5 Ma 

Eucher Mountain, these Trend 1 occurrences are the first in the cobble and bedrock records since 

the northwest migration to the western WA took place at ~5.0 Ma.   

Cobble occurrences of Trend 2b during this <1.0 Ma period are consistent with bedrock 

occurrences of Trend 2b at Mt. Drum and Mt Churchill (Fig. 1.1; Preece and Hart, 2004).  Recall 

the widespread distribution of Trend 2b bedrock during early arc magmatism in the north-central 

WA (~29.0 – ~20.0 Ma; Berkelhammr, 2017; Weber et al., 2017) that is attributed to an 

increased thermal gradient along the newly subducted slab edges, causing slab edge melting on a 

relatively large scale (Trend 2b intrusions outcrop in the north-central WA for ~65 – 80 km).  

The formation of young (<1.0 Ma) Trend 2b magmas is thought to have occurred on a more 

localized scale, when wholesale slab edge melting was not as feasible because subduction has 

been ongoing for the past ~29.0 m.y..  The Trend 2b adakites identified by Preece and Hart 

(2004) are restricted to Mt. Drum and Mt. Churchill (Fig. 1.1) and therefore must be attributed to 

a more localized process than older adakite-like magmas recognized by Berkelhammer (2017), 

Weber et al. (2017), and this study.  Preece and Hart (2004) and Fuis et al, (2008) suggest a slab 

tear on the northwest boundary of the Yakutat, underneath Mt. Drum.  This slab tear, if present, 

may have created a slab window, allowing mantle flow along the slab’s edge and subsequent slab 

melting (Preece and Hart, 2004; Thorkelson et al., 2011), thereby generating adakites.  There is 

no geophysical evidence for a slab tear on the southeast edge of the Yakutat, underneath Mt. 

Churchill, so it requires a different explanation.  Preece and Hart (2004) suggest a physical 

transition, between the down going Pacific Plate coupled with the Yakutat and the Pacific Plate, 

that increases shear stresses, thereby increasing the thermal gradient, which could lead to slab 

melting.      

This leads to the question: what about Trend 2b cobbles?  They drain from every river we 

sampled around the arc (Fig. 5.9) and exist outside of the time limits established by bedrock 
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occurrences, ~29.0 – ~20.0 Ma and <1.0 Ma (Figs. 5.2-5.7).  The fact is, most Trend 2b cobbles 

may not be true adakites, especially if they are from rivers that don’t drain Mt. Drum and Mt. 

Churchill.  Trend 2b cobbles draining from rivers consistent with bedrock locations may be true 

adakites, but we have no way of knowing given that we do not have Yb concentrations.  The best 

we can do it match bedrock occurrences with Trend 2b cobbles from rivers that drain those 

locations and that are the appropriate age.  Otherwise, we resort back to the hypothesis that, since 

Trend 2b cobbles have components of partial slab melting and mantle wedge melting, these 

magmas may have arisen from the mixing of an adakite-like magma and a magma derived from 

melting of the mantle wedge.   

 Do cobbles reflect the existing bedrock record?  Did this novel technique “work”? 

The results from this study show that the sampled cobble lithologies largely reproduce 

the known bedrock record in geochemical (Figs. 5.16-5.18, Fig. 5.19a, and Fig. 5.20a), temporal 

(Figs. 5.19b and 5.20b), and spatial contexts (Figs. 5.19c and 5.20c).  We did not discover any 

undocumented bedrock lithologies.  Conversely, the known bedrock record doesn’t contain any 

lithologies that are not present in the cobble record.  The ages represented in the cobble record 

span the lifetime of the arc (~28.0 Ma to present) as known from the bedrock record and detrital 

sand/zircons ages (Figs. 2.5, 4.1, and 4.2; Davis et al., 2017; Trop et al., 2017).  The cobble age 

data reproduce one key observation from other datasets: 1) The ~17.0 – ~13.0 Ma gap in 

volcanism in the bedrock and detrital sand records.  This agreement serves to further solidify the 

robust nature of the cobble data in this study and indicate its validity and usefulness. 

Within our dataset, cobble dates are more heavily distributed toward younger ages.   

Nearly half of the ages are <1.0 Ma, and samples become sparser the older they get (Fig. 4.1).  In 

fact, the age category of 28.0 – 17.0 Ma only has 13 samples in it, but it covers the largest age 

range in our classifications.  This could be due to sampling bias during collection but it’s more 

likely that there just are not as many old samples in the form of cobbles (or exposed bedrock).  

Nearly 30.0 m.y. is a long time for rocks not to be tremendously weathered when they are 

exposed to high elevations, glaciers, ice fields, snow/rain, and large rivers.  Therefore, it is more 

likely that older samples have been weathered, eroded, or covered by younger volcanic products 

whereas younger samples are still around for collecting.  Nevertheless, the older samples (28.0 – 

17.0 Ma) are still present in the cobble record and provide meaningful and significant data with 

implications for the inception of WA magmatism.   
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The ability of the cobble data to reproduce the geochronology and geochemistry based on 

more detailed field mapping and bedrock sample analysis is encouraging, because it suggests the 

methodology applied here can be successfully translated to other localities.  In particular, it can 

be an efficient and cost effective way of indirectly sampling bedrock in locations where field 

conditions may limit sampling capabilities.  It has the potential to provide access to lithologies 

that are otherwise inaccessible due to ice cover or another hindrance that restricts bedrock 

sampling.  This type of sample collection method can also be easily added on to a more 

ambitious field study with relative ease to complement any bedrock record and increase the 

robustness of an entire dataset, and we suggest it will work in any arc-setting, or other igneous-

hosted terrains, that are dissected by fluvial systems.     

 Future Work 

The novel approach developed here of using stream cobbles as a reconnaissance tool has 

successfully contributed new results to an ongoing effort to gather data on the WA and expanded 

our understanding of the origin and evolution of the WA.  The area under investigation is large 

(17 drainage basins encompassing more than 15,000 km2 of the arc), remote, and relatively 

understudied.  The fluvial cobble method employed here allowed for large swathes of land to be 

surveyed by collecting rocks from all over a drainage in a single location.   

An alternative approach for future studies could be to focus on smaller areas by collecting 

cobbles from multiple sites along the same river, especially rivers that are known to drain regions 

of interest, moving closer to areas of interest.  Standard sedimentological methodologies could 

also be used to obtain a petrological outcome.  For example, the distribution of sample 

lithologies could be statistically analyzed within a grid system at each collection site to 

discourage over or underrepresentation of a particular lithology.   
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Figure 5.1 Watershed map showing the spatial distribution of different cobble ages 

throughout the WA.  Note there are no cobbles in the 17 – 13 Ma age range.   
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Figure 5.2 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types at <1 Ma. 
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Figure 5.3 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types at 1-3 Ma. 
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Figure 5.4 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types at 3 - 5 Ma. 
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Figure 5.5 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types at 5 - 8 Ma. 
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Figure 5.6 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types at 8 – 13 Ma. 
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Figure 5.7 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types at 17 - 28 Ma. 
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Figure 5.8 Nb/Zr vs. (Sr/P)n diagram with cobble data coded according to Preece and Hart 

(2004) trends.  Note that, even without primitive (i.e., MgO > 6.0 wt.%) distinctions, there 

is a clear difference between transitional-tholeiitic Trend 1 chemistries and subduction-

related Trend 2 chemistries: Trend 1 corresponds to relatively high Nb/Zr and low (Sr/P)n, 

while Trends 2a and 2b are the opposite.  While Trend 1 is not consistent with a true 

intraplate signature (Nb/Zr > 0.135; Sun and McDonough, 1989), it is consistent with less 

fluid-fluxed mantle wedge melting and more decompression melting due to intra-arc 

extension.   
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Figure 5.9 Cobble geochemical data, divided into Preece and Hart (2004) trends, showing 

the distribution of magma types in space with no regard to time.   
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Table 5.1 All cobbles in our dataset that fall into the 28 – 17 Ma age range.  Note they all 

drain from rivers in the north-central WA and that all samples except Cross 7 are 

considered as Trend 2b.  The age of sample White 14 is questionable (hence the 

strikethrough) but we still consider it in the oldest cobble group of 28 – 17 Ma. 

 

Sample Age (Ma) Magma type 

Nabesna 1 17.72 ± 0.36 Trend 2b 

Nabesna 2  23.9  0.4  Trend 2b 

Nabesna 4 19.21 ± 0.22 Trend 2b 

Nabesna 7 20.35 ± 0.36 Trend 2b 

Nabesna 8 18.8 ± 0.23 Trend 2b 

Nabesna 13 27.7  0.2 Trend 2b 

Nabesna 14 22.63 ± 0.28 Trend 2b 

Chisana 2 22.9  0.4 Trend 2b 

Chisana 3 25.12 ± 0.26 Trend 2b 

Chisana 11 20.6  0.5 Trend 2b 

White 5 23.5  0.7 Trend 2b 

White 14 34.58  0.47 Trend 2b 

Cross 7 26.6 ± 0.31 Trend 2a 
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Figure 5.10 Histogram showing the geochemical distribution (Trend 1, Trend 2a, Trend 2b) 

of magmatism from 28 – 17 Ma.   All samples here drained from the Nabesna, Chisana, and 

White Rivers, and Cross Creek (Fig. 5.7).  The ~35 Ma cobble is sample White 14 and we 

note this age is questionable. 

 

Figure 5.11 Histogram showing the return of magmatism to the central WA at ~13 Ma and 

the temporal distribution of different magma types (Trend 1, 2a, and 2b) at 13 - 8 Ma.  All 

samples here drained from the White and Chisana Rivers (Fig. 5.6). 
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Figure 5.12 Histogram showing the geochemical distribution (Trend 1, Trend 2a, Trend 2b) 

of magmatism from 8 - 5 Ma.  All samples here drained from the Chisana River (Fig. 5.5). 

 

Figure 5.13 Histogram showing the geochemical distribution (Trend 1, Trend 2a, Trend 2b) 

of magmatism from 5 – 3 Ma.  All samples drained here are from the Kuskulana River 

(Fig. 5.4).   
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Figure 5.14 Histogram showing the geochemical distribution (Trend 1, Trend 2a, Trend 2b) 

of magmatism from 3 – 1 Ma.  All samples drained here are from the Nabesna, Sanford, 

Dadina, Kotsina, and Kuskulana Rivers (Fig. 5.3).   

 

Figure 5.15 Histogram showing the geochemical distribution (Trend 1, Trend 2a, Trend 2b) 

of magmatism from 1 Ma to the present.  All samples drained here are from the Sanford, 

Nadina, Dadina, Chetaslina, and Kotsina Rivers (Fig. 5.2).   
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Figure 5.16 Total alkalis versus silica diagram showing cobble data, coded by geochemical 

parameters that define the Preece and Hart (2004) trends, overlain on existing bedrock 

record.  Significantly, all cobble compositions overlap with existing bedrock samples.  

Gray-scale samples comprise the existing WA bedrock record.  *Central & western WA 

data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern 

(Yukon) data is from Skulski et al. (1991; 1992). 
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Figure 5.17 AFM diagram showing cobble data, coded by geochemical parameters that 

define the Preece and Hart (2004) trends, overlain on existing bedrock record.  

Significantly, all cobble compositions overlap with existing bedrock samples except a few 

minor occurrences that plot as slightly more tholeiitic.  These samples either do not yet 

have an age or have alteration material that may have enriched them in iron.  Gray-scale 

samples comprise the existing WA bedrock record.  *Central & western WA data are from 

Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data is 

from Skulski et al. (1991; 1992). 
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Figure 5.18 Andesite type diagram showing cobble data, coded by geochemical parameters 

that define the Preece and Hart (2004) trends, overlain on existing bedrock record.  

Significantly, all cobble compositions overlap with existing bedrock samples.  Gray-scale 

samples comprise the existing WA bedrock record.  *Central & western WA data are from 

Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data is 

from Skulski et al. (1991; 1992). 
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Figure 5.19 TiO2 vs. SiO2  diagrams with cobble data overlain on existing bedrock data.  

Gray-scale samples comprise the existing WA bedrock record.  *Central & western WA 

data are from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern 

(Yukon) data is from Skulski et al. (1991; 1992). (a) Samples are coded based on 

geochemical parameters defined by Preece and Hart (2004) criteria.  (b) Samples coded 

based on respective ages.  (c) Samples coded based on spatial divisions outlined in the 

Results section (Fig. 4.5). 
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Figure 5.20 Y vs. SiO2  diagrams with cobble data overlain on existing bedrock data.  Gray-

scale samples comprise the existing WA bedrock record.  *Central & western WA data are 

from Richter et al. (1990), Preece and Hart (2004), Trop et al. (2012); Eastern (Yukon) data 

is from Skulski et al. (1991; 1992). (a) Samples are coded based on geochemical parameters 

defined by Preece and Hart (2004) criteria.  (b) Samples coded based on respective ages.  

(c) Samples coded based on spatial divisions outlined in the Results section (Fig. 4.5). 

 



107 

Chapter 6 - Conclusions 

1. Similar tectonic processes of subduction and slab melting have been ongoing over the 

past ~29.0 m.y. in the western and central WA, although these processes have migrated 

through time due to subducting slab processes (i.e., slab rollback and change in 

subduction direction) and shifting upper plate processes (i.e., transtensional and dextral 

movement along the Totschunda, Denali, and Duke River faults).  

2. Mantle wedge melting due to subduction has been ongoing over the ~29.0 m.y. of WA 

magmatism and is spatially ubiquitous.  From ~17.0 – ~13.0 Ma, mantle wedge melting 

was a less dominant process due to slab rollback and extensional and dextral movement 

along the Totschunda, Denali, and Duke River faults.  

3. Melting due to intra-arc extension has occurred in discrete time periods over the ~29.0 

m.y. of WA magmatism, but is not a temporally or spatially ubiquitous in the WA. 

4. Trend 2b cobbles are spatially and temporally ubiquitous, suggesting that Trend 2b 

cobbles are, in most instances, the result of a magma mixing of an adakite-like melt 

(likely due to slab edge effects) and a magma derived from melting of the mantle wedge.  

Trend 2b cobbles may reflect true adakites if their ages are consistent with ages of 

adakites documented in the bedrock, ~29.0 – ~20.0 Ma and <1.0 Ma, and if they were 

collected from rivers that drain bedrock occurrences of true adakites.  However, this may 

be complicated by dynamic fluvial systems changing over the course of ~29.0 m.y. and, 

when coupled with the fact that we have no Yb, should not be considered definitive.    

5. This igneous clast technique is novel but has proven successful in this location.  It can 

possibly be applied in other arc settings where access to bedrock sample may be difficult 

but river-to-river transportation is (relatively) easy.  At the same time, it also allows us to 

gather important arc data from rocks that have never been—and likely never would have 

been—sampled.  Therefore, the results from this project are twofold: 1) a novel technique 

was tested and proven effective, and 2) knowledge was gained and data contributed to a 

growing body of work on the Wrangell arc. 
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Appendix A - Hand Sample Descriptions 

*Samples with LOI > 3.5 wt. % 

 

 Chisana (5.88 – 162.45 Ma) 

Chisana 1 

Mafic; porphyritic plutonic texture with black aphanitic groundmass and small anhedral 

feldspar phenocrysts.  (Basalt*.  51.88  2.01 Ma) 

 

Chisana 2  

Felsic; porphyritic plutonic texture with aphanitic gray groundmass, abundant euhedral 

plagioclase phenocrysts, and lesser amounts of elongate and equant amphibole 

phenocrysts; minor sulfide mineralization.  (Dacite. 22.9  0.4 Ma) 

 

Chisana 3  

Felsic; porphyritic plutonic texture with aphanitic gray groundmass, subhedral 

plagioclase phenocrysts, and subhedral amphibole phenocrysts.  Amphibole-rich 

xenoliths are also present.  (Dacite. 25.12  0.26 Ma) 

 

Chisana 4 

Felsic; porphyritic plutonic texture with gray, waxy-looking aphanitic groundmass, 

subhedral plagioclase phenocrysts, and pervasive green alteration material.  (Dacite*.  9 

 0.13 Ma) 

 

Chisana 5  

Mafic; porphyritic volcanic texture with aphanitic groundmass and sparse subhedral to 

euhedral plagioclase phenocrysts.  (Andesite. 6.36  0.46 Ma) 

 

Chisana 6  

Felsic; crystal- and lithic-rich volcanic tuff.  Brown aphanitic groundmass contains 

lithics, subhedral quartz, subhedral feldspar (sanidine?), and subhedral biotite. Presence 
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of fiamme and hefty rock density indicate a high degree of welding.  (Rhyolite. 6.23  

0.09 Ma) 

 

Chisana 7  

Felsic; crystal- and lithic-rich volcanic tuff.  Gray aphanitic groundmass contains lithics, 

pumice fragments, subhedral biotite, subhedral amphibole, and subhedral feldspar 

(sanidine?).  Pumice fragments are slightly flattened, indicating a moderate degree of 

welding.  (Dacite. 7.43  0.15 Ma.) 

 

Chisana 8  

Felsic; crystal-rich volcanic tuff.  Gray aphanitic groundmass contains pumice fragments, 

subhedral amphibole, and subhedral feldspar (sanidine?).  Pumice fragments are slightly 

flattened, indicating a moderate degree of welding.  (Dacite. 6.93  0.15 Ma) 

 

Chisana 9  

Felsic; porphyritic volcanic texture with tan, aphanitic groundmass and elongate 

amphibole phenocrysts.  Contains vugs lined with rust-colored alteration material.  

(Dacite. 6.25  0.15 Ma) 

 

Chisana 11  

Felsic; porphyritic plutonic texture with light gray groundmass, abundant subhedral 

plagioclase phenocrysts, sparse biotite, and sparse xenoliths.  (Dacite. 20.6  0.5 Ma) 

 

Chisana 12  

Felsic; porphyritic volcanic texture with light gray, aphanitic groundmass, euhedral to 

subhedral plagioclase laths, elongate amphibole, and sparse biotite.  (Rhyolite. 5.88  

0.12 Ma) 

 

Chisana 13  

Felsic; porphyritic plutonic texture with light gray groundmass, abundant euhedral to 

subhedral plagioclase laths, and euhedral elongate amphibole.  (Dacite. 7.9  0.38 Ma) 
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Chisana 14  

Felsic; porphyritic plutonic texture with light gray groundmass, subhedral to anhedral 

plagioclase phenocrysts and elongate to equant amphibole.  (Dacite. 9.15  0.21 Ma) 

 

Chisana 15  

Felsic; porphyritic volcanic texture with gray aphanitic groundmass andpo sparse feldspar 

phenocrysts (sanidine?).  Rock has prevalent flow banding throughout.  (Rhyolite. 6.55  

0.04 Ma) 

 

Chisana 16  

Mafic; porphyritic volcanic texture with dark gray/green groundmass and subhedral to 

anhedral plagioclase phenocrysts.  (Basalt. 162.45  1.43 Ma) 

 

Chisana 17 

Felsic; porphyritic volcanic texture with white/tan groundmass and subhedral to euhedral 

plagioclase laths.  Pervasive alteration throughout: most micas have been replaced by 

green alteration product.  (Rhyolite. 7.06  0.08 Ma) 

 

Chisana 18 

Intermediate; fine-grained phaneritic.  Roughly even distributions of light to dark 

minerals, but most grains are too small to be identified using a hand lens.  

(Trachyandesite. 8.02  0.18 Ma) 

 

 

 White (9.31-300.97 Ma) 

White 2 

Mafic; black aphanitic rock with pervasive orange alteration material.  (Rhyolite*.  

262.66  1.66 Ma) 
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White 3 

Mafic; porphyritic volcanic texture with dark red aphanitic groundmass, abundant 

subhedral plagioclase phenocrysts, and patches of green alteration.  (Andesite*.  11.49  

0.26 Ma) 

 

White 5 

Felsic; porphyritic plutonic texture with aphanitic gray groundmass, abundant subhedral 

plagioclase phenocrysts, and lesser elongate and equant amphibole phenocrysts.  (Dacite. 

23.5  0.7 Ma) 

 

White 6 

Mafic; porphyritic volcanic texture with aphanitic dark gray groundmass and round and 

flattened feldspar phenocrysts. Sparse amygdules are filled with red material.  (Basaltic 

trachy-andesite. 10.25  0.19 Ma) 

 

White 7 

Mafic; porphyritic plutonic texture with dark gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and unidentifiable black phenocrysts.  (Basalt*.  93.48  1.11 Ma) 

 

White 8 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts (plagioclase?).  (Andesite. 12.63  0.28 Ma) 

 

White 11 

Felsic; phaneritic texture with gradation of crystal sizes (smallest to largest): pink/gray 

tabular crystals (feldspar?), subhedral to anhedral amphibole, and relatively large, 

subhedral plagioclase. Dissolution vugs are ubiquitous.  (Rhyolite. 9.31  0.12 Ma) 

 

White 13 

Mafic; black aphanitic rock with pervasive orange alteration material.  (Dacite*.  300.86 

 4.16 Ma) 
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White 14 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral to 

euhedral plagioclase phenocrysts, relatively small subhedral to anhedral amphibole 

phenocrysts. (Dacite. 34.58  0.47 Ma) 

 

White 15 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral to 

anhedral elongate feldspar phenocrysts.  (Basaltic trachyandesite. 10.4  0.3 Ma) 

 

White 16 

Felsic; phaneritic texture with gradation of crystal sizes (smallest to largest): pink/white 

tabular crystals (feldspar?), subhedral to anhedral amphibole, and relatively large, 

subhedral to anhedral plagioclase. Dissolution vugs are ubiquitous.  Xenoliths also 

present.  (Rhyolite. 9.92  0.23 Ma) 

 

White 17 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral 

rounded and flattened feldspar phenocrysts.  (Trachyandesite. 10.84  0.08 Ma) 

 

White 18 

 Mafic; black, aphanitic rock.  (Basaltic andesite*.  300.97  4.16 Ma) 

 

 Nabesna (1.37 – 153.31 Ma) 

Nabesna 1 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral 

feldspar phenocrysts, and subhedral amphibole phenocrysts.  (Dacite.  17.72  0.36 Ma) 

 

Nabesna 2 
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Mafic; phaneritic texture with plagioclase crystals and unidentifiable black crystals.  

(Basaltic andesite.  23.9  0.4 Ma) 

 

Nabesna 4 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, subhedral amphibole phenocrysts, and sparse subhedral biotite 

phenocrysts.  (Dacite.  19.21  0.22 Ma) 

 

Nabesna 5 

Felsic; porphyritic plutonic texture with gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, and an unidentifiable dark phase that has been heavily altered to 

a green material.  Minor sulfide mineralization.  (Andesite.  69.87  0.29 Ma) 

  

Nabesna 7 

Felsic; porphyritic plutonic texture with gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, subhedral amphibole phenocrysts, and spare subhedral biotite 

phenocrysts.  (Dacite.  20.35  0.36 Ma) 

 

Nabesna 8 

Felsic; porphyritic plutonic texture with tan aphanitic groundmass, subhedral feldspar 

phenocrysts, subhedral amphibole phenocrysts, and sparse subhedral biotite phenocrysts.  

Dissolution vugs are ubiquitous.  (Dacite.  18.8  0.23 Ma) 

 

Nabesna 11 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, small subhedral 

to anhedral feldspar phenocrysts, and patches of green alteration.  (Basaltic andesite*.  

153.31  1.39 Ma) 

 

Nabesna 12 

Mafic; dark gray aphanitic rock with ubiquitous vesicles.  (Basaltic andesite.  1.37  0.32 

Ma) 
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Nabesna 13 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral 

feldspar phenocrysts, and relatively smaller subhedral amphibole and biotite phenocrysts.  

(Dacite.  27.7  0.2 Ma) 

 

Nabesna 14 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, and relatively smaller subhedral amphibole phenocrysts.  

(Dacite.  22.63  0.28 Ma) 

 

 Dadina (0.31 – 1.86 Ma) 

Dadina 1A-1 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral to 

anhedral plagioclase phenocrysts.  Dissolution vugs are ubiquitous.  (Andesite.  0.49  

0.11 Ma) 

 

Dadina 1A-2 

Felsic; porphyritic volcanic texture with tan/light red aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, and relatively small amphibole phenocrysts that have been 

altered to dark red.  (Dacite.  0.31  0.12 Ma) 

 

Dadina 1B-1 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass and small 

subhedral amphibole phenocrysts, some of which have been heavily altered.  (Dacite.  

1.86  0.12 Ma) 

 

Dadina 1B-2 
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Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

euhedral plagioclase phenocrysts.  (Andesite.  0.48  0.09 Ma) 

 

Dadina 1B-3 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass and sparse 

subhedral feldspar and biotite phenocrysts.  (Dacite.  0.49  0.09) 

 

Dadina 1B-4 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, subhedral to 

anhedral plagioclase phenocrysts, and sparse heavily altered biotite phenocrysts.  Sparse 

dissolution vugs are present.  (Andesite.  0.68  0.09 Ma) 

 

Dadina 1C-1 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

anhedral plagioclase phenocrysts.  (Andesite/dacite.  0.74  0.11) 

  

Dadina 1C-2 

Mafic; porphyritic plutonic texture with gray aphanitic groundmass anhedral feldspar 

phenocrysts, and relatively smaller subhedral amphibole phenocrysts.  (Andesite.  1.46  

0.09 Ma) 

 

Dadina 1C-3 

Felsic; porphyritic volcanic texture with pink aphanitic groundmass, anhedral feldspar 

phenocrysts, and anhedral biotite phenocrysts that have been heavily altered.  Dissolution 

vugs are present.  (Rhyolite.  0.56  0.08 Ma) 

 

Dadina 1C-4 

Felsic; porphyritic volcanic texture with tan/white aphanitic groundmass and sparse 

subhedral feldspar and biotite phenocrysts.  (Rhyolite.  0.65  0.09 Ma) 

 

Dadina 1C-5 
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Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and relatively smaller subhedral amphibole phenocrysts.  The entire 

rock has a yellowish tinge.  (Dacite.  0.76  0.16 Ma) 

 

 Sanford (-0.38 – 2.3 Ma) 

Sanford 1 

Mafic; porphyritic volcanic texture with red/gray groundmass, subhedral plagioclase 

phenocrysts, and vesicles.  (Basaltic andesite.  0.07  0.34 Ma) 

 

Sanford 2 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, anhedral 

plagioclase phenocrysts, and vesicles.  Some red vesicle fill exists but only within about 

2cm from the edge of the rock.  (Basaltic andesite.  2.3  0.64 Ma) 

 

Sanford 3 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, and sparse black mineral grain that is unidentifiable in 

hand sample.  (Andesite.  1.29  0.05 Ma) 

 

Sanford 4  

Mafic; porphyritic volcanic texture with black aphanitic groundmass, subhedral 

plagioclase phenocrysts, and vesicles.  (Basaltic andesite.  0.83  0.15 Ma) 

 

Sanford 5 

Intermediate; lithic-rich volcanic tuff.  Black and dark red aphanitic groundmass contains 

abundant lithics and anhedral feldspar crystals.  Presence of fiamme and hefty rock 

density indicate a high degree of welding.  (Andesite/dacite.  1.69  0.62 Ma) 

 

Sanford 6 
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Mafic; porphyritic volcanic texture with black aphanitic groundmass, subhedral to 

anhedral plagioclase phenocrysts, and sparse olivine(?) phenocrysts.  (Basaltic andesite.  

0.59  0.18 Ma)     

 

Sanford 7 

Mafic; porphyritic volcanic texture with gray/dark red aphanitic groundmass and 

subhedral plagioclase phenocrysts.  Dissolution vugs are ubiquitous.  (Basaltic andesite.  

0.7  0.35 Ma) 

 

Sanford 8 

Mafic; porphyritic volcanic texture with gray aphanitic groundmass and subhedral to 

anhedral plagioclase phenocrysts.  Spare vesicles are also present.  (Basaltic andesite.  

0.34  0.21 Ma) 

 

Sanford 9 

Mafic; porphyritic volcanic texture with dark red aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  (Andesite.  0.54  0.16 Ma) 

Sanford 11 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

anhedral plagioclase phenocrysts.  Vesicles are ubiquitous.  Sparse orange vesicle fill is 

present.   (Basaltic andesite.  0.67  0.1 Ma) 

 

Sanford 12 

Mafic; dark gray aphanitic rock.  (Basaltic andesite. -0.38  0.39 Ma) 

 

Sanford 13 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  Sparse vugs are present and some are filled with tan 

alteration material.  (Andesite.  0.24  0.08 Ma) 

 

Sanford 14 
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Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  (Trachyandesite.  0.4  0.05 Ma) 

 

Sanford 15 

Felsic; porphyritic volcanic texture with tan aphanitic groundmass, anhedral feldspar 

phenocrysts, and sparse heavily altered amphibole phenocrysts.  (Dacite.  0.35  0.13 

Ma) 

 

Sanford 16 

Felsic; porphyritic volcanic rock with white aphanitic groundmass, subhedral biotite 

phenocrysts, and ubiquitous heavily altered feldspar phenocrysts.  (Rhyolite.  0.56  0.04 

Ma) 

 

Sanford 17 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, and sparse vesicles.  (Andesite.  1.46  0.15 Ma) 

 

Sanford 18 

Felsic; porphyritic volcanic texture with tan aphanitic groundmass, subhedral to anhedral 

feldspar phenocrysts, and heavily altered amphibole phenocrysts.  Dissolution vugs and 

heavily altered xenoliths are sparse.  (Dacite.  0.64  0.06 Ma) 

 

Sanford 19 

Felsic; porphyritic volcanic texture with light gray, aphanitic groundmass and subhedral 

biotite phenocrysts.  (Rhyolite.  0.58  0.08 Ma) 

 

 Kotsina (0.02 – 215.07 Ma) 

Kotsina 1A-1 
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Mafic; porphyritic volcanic texture with black aphanitic groundmass, abundant subhedral 

plagioclase phenocrysts, and less anhedral olivine (?) phenocrysts (could be an altered 

mineral?).  (Andesite.  0.43  0.38 Ma) 

 

Kotsina 1A-2 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, abundant subhedral 

plagioclase phenocrysts, and less anhedral olivine (?) phenocrysts (could be an altered 

mineral?).  (Andesite.  0.64  0.21 Ma) 

 

Kotsina 1B-1 

Intermediate; phaneritic texture with roughly equal proportions of subhedral feldspar and 

subhedral to euhedral amphibole crystals.  The amphibole crystals show planar 

alignment.  (Andesite.  152.31  1.09 Ma) 

 

Kotsina 1B-2   

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

anhedral plagioclase phenocrysts.  (Andesite.  0.49  0.18 Ma) 

 

Kotsina 1B-3 

Felsic; porphyritic volcanic texture with light red aphanitic groundmass, abundant 

subhedral feldspar phenocrysts, minor amounts of subhedral amphibole and biotite 

phenocrysts, and ubiquitous dissolution vugs.  (Andesite.  1.54  0.45 Ma) 

 

Kotsina 1B-4 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and a black phenocryst phase that has been heavily altered to a 

green mineral.  Dissolution vugs are sparse.  (Dacite.  0.55  0.17 Ma) 

 

Kotsina 1B-5 
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Mafic; porphyritic volcanic texture with black aphanitic groundmass, abundant euhedral 

to subhedral plagioclase phenocrysts, and ubiquitous vesicles.  (Andesite.  0.68  0.16 

Ma) 

 

Kotsina 1B-6 

Felsic; porphyritic plutonic texture with gray groundmass, abundant and large subhedral 

feldspar phenocrysts, and sparse quartz phenocrysts.  (Dacite.  150.27  0.39 Ma) 

 

Kotsina 11 7/23 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, abundant euhedral 

to subhedral plagioclase phenocrysts, and ubiquitous vesicles.  Some vesicles are filled 

with a rust-colored alteration material.  (Andesite.   0.66  0.12 Ma)  

 

Kotsina 12 7/23 

Felsic; porphyritic volcanic texture with red aphanitic groundmass, subhedral plagioclase 

phenocrysts, unidentifiable black phenocrysts, and dissolution vugs.  (Andesite.  0.02  

0.32 Ma) 

 

Kotsina 14 7/23 

Intermediate; porphyritic plutonic texture with gray aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, and anhedral unidentifiable black phenocrysts.  (Andesite.  

0.85  0.12 Ma) 

 

Kotsina 15 7/23 

Felsic; porphyritic volcanic texture with gray aphanitic groundmass, heavily altered 

amphibole phenocrysts, and sparse anhedral phenocrysts.  (Dacite.  0.11  0.1 Ma) 

 

Kotsina 16 7/23 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, anhedral waxy-

looking feldspar phenocrysts that are rimmed with a green alteration material, and 

patches of green alteration material.  (Basalt*.  215.07  14.23 Ma) 
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 Nadina (0.17 – 0.88 Ma) 

Nadina 1A-1 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and anhedral 

feldspar phenocrysts.  (Andesite.  0.57  0.17 Ma) 

 

Nadina 1A-2 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass, abundant 

subhedral amphibole phenocrysts, and sparse subhedral biotite phenocrysts.  (Dacite.  

0.47  0.1 Ma) 

 

Nadina 1A-3 

Felsic; porphyritic volcanic texture with red aphanitic groundmass with abundant 

subhedral plagioclase phenocrysts.  (Andesite/Dacite.  0.77  0.33 Ma) 

 

Nadina 1A-4 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral 

feldspar phenocrysts.  (Andesite.  0.36  0.16 Ma) 

 

Nadina 1A-5 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass and subhedral 

feldspar, amphibole, and sparse biotite phenocrysts.  (Dacite.  0.17  0.13 Ma) 

 

Nadina 1A-6 

 Mafic; dark red and black aphanitic rock.  (Andesite/Dacite.  0.29  0.18 Ma) 

 

Nadina 1B-1 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, subhedral amphibole phenocrysts, and subhedral to 

euhedral biotite phenocrysts.  (Dacite.  0.39  0.29 Ma) 



129 

 

Nadina 1B-2 

 Mafic; dark gray, aphanitic rock.  (Andesite.  0.88  0.11 Ma) 

 

 

 Chetaslina (0.23 – 152.42 Ma) 

Chetaslina 1A-1 

Felsic; porphyritic volcanic texture with purple aphanitic groundmass and amphibole and 

biotite phenocrysts that have been completely altered to a maroon mineral.  (Dacite.  0.39 

 0.11 Ma) 

 

Chetaslina 1A-2 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and abundant 

subhedral to euhedral plagioclase phenocrysts.  (Andesite.  0.62  0.11 Ma) 

 

Chetaslina 1A-3 

Felsic; crystal- and lithic-rich volcanic tuff.  Light red aphanitic groundmass contains 

lithics, subhedral quartz, subhedral feldspar (sanidine?), and fiamme.  (Andesite.  0.92  

0.54 Ma) 

 

Chetaslina 1B-1 

Intermediate; phaneritic texture with subhedral feldspar and amphibole crystals and 

books of biotite.  (Andesite.  150.24  0.48 Ma) 

 

Chetaslina 1B-2 

Intermediate; phaneritic texture with anhedral feldspar and pyroxene crystals.  (Basaltic 

trachyandesite.  152.42  0.96 Ma) 

 

Chetaslina 1C-2 
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Intermediate; porphyritic volcanic texture with gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and spare unidentifiable black phenocrysts.  (Basaltic andesite.  

0.35  0.11 Ma) 

 

Chetaslina 1C-3 

Felsic; porphyritic volcanic texture with tan aphanitic groundmass and sparse subhedral 

biotite phenocrysts.  (Rhyolite.  0.51  0.08 Ma) 

 

Chetaslina 1C-5 

Intermediate; porphyritic volcanic texture with gray aphanitic groundmass and abundant 

subhedral to euhedral amphibole and biotite phenocrysts.  (Dacite.  0.76  0.24 Ma) 

 

Chetaslina 1C-6 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral 

plagioclase phenocrysts.  (Andesite.  0.23  0.07 Ma) 

 

 Cross (26.6 – 147.97 Ma) 

Cross 3 

Intermediate; phaneritic texture with feldspar and pyroxene crystals.  (Andesite.  118.19  

0.37 Ma) 

 

Cross 5 

Felsic; heavily altered porphyritic volcanic rock with red aphanitic groundmass and 

unidentifiable white and black phenocrysts.  (Rhyolite*.  147.97  0.93 Ma) 

 

Cross 6  

Intermediate; porphyritic plutonic texture with gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, and subhedral relatively small amphibole phenocrysts.  

(Trachyandesite.  87.65  0.65 Ma) 
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Cross 7 

Intermediate; porphyritic plutonic texture with gray aphanitic groundmass, subhedral to 

anhedral plagioclase phenocrysts, and unidentifiable black phenocrysts. (Dacite.  26.6  

0.31 Ma) 

 

 

 Kuskulana (2.79 – 4.55 Ma) 

Kuskulana 1A-1 

Intermediate; porphyritic plutonic texture with dark gray aphanitic groundmass, 

subhedral feldspar phenocrysts, and subhedral amphibole phenocrysts.  (Dacite.  3.08  

0.12 Ma) 

 

Kuskulana 1B-1 

Mafic; porphyritic plutonic texture with black aphanitic groundmass and subhedral 

feldspar and amphibole phenocrysts.  (Dacite.  3.04  0.51 Ma) 

 

Kuskulana 1B-2 

Mafic; porphyritic plutonic texture with black aphanitic groundmass, subhedral feldspar 

phenocrysts, and unidentifiable black phenocrysts.  (Dacite.  3.16  0.16 Ma) 

 

Kuskulana 1B-3 

Felsic; porphyritic plutonic texture with gray aphanitic groundmass and subhedral to 

anhedral plagioclase phenocrysts.  (Dacite.  2.79  0.14 Ma) 

 

Kuskulana 1B-4 

Mafic; porphyritic plutonic texture with black aphanitic groundmass and subhedral 

plagioclase and amphibole phenocrysts.  (Dacite.  2.89  0.19 Ma) 

 

Kuskulana 1B-5  
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Mafic; porphyritic plutonic texture with dark gray aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, and subhedral amphibole phenocrysts.  (Dacite.  3.77  

0.25 Ma) 

 

Kuskulana 1B-6 

Mafic; porphyritic plutonic texture with black aphanitic groundmass and subhedral 

plagioclase phenocrysts.  (Dacite.  3.45  0.17 Ma) 

 

Kuskulana 1B-7 

Mafic; porphyritic plutonic texture with black aphanitic groundmass and subhedral 

plagioclase phenocrysts.  (Dacite.  3.31  0.27 Ma) 

 

Kuskulana 1B-8 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and sparse 

subhedral plagioclase phenocrysts.  (Andesite.  3.12  0.18 Ma) 

 

Kuskulana 1C-1 

Felsic; phaneritic texture with abundant feldspar crystals and relatively less unidentifiable 

dark crystals.  (Dacite.  3.72  0.31 Ma) 

 

Kuskulana 1C-2 

Felsic; phaneritic texture with abundant feldspar crystals and relatively less amphibole 

crystals that have been altered to a green mineral.  (Dacite.  4.47  0.41 Ma) 

 

Kuskulana 1C-3 

Felsic; phaneritic texture with abundant feldspar crystals, relatively less amphibole 

crystals, and an unidentifiable green mineral.  (Dacite.  4.55  0.23 Ma) 

 

Kuskulana 1C-4 

Felsic; phaneritic texture with abundant feldspar crystals, relatively less amphibole 

crystals, and an unidentifiable green mineral.  (Dacite.  4.06  0.4 Ma) 
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Kuskulana 1C-5 

Felsic; phaneritic texture with abundant feldspar and amphibole crystals.  (Dacite.  4.03  

0.15 Ma) 

 

Kuskulana 1C-6 

Felsic; phaneritic texture with abundant feldspar crystals, relatively less amphibole 

crystals, and an unidentifiable green mineral.  (Dacite.  3.61  0.47 Ma) 

 

Kuskulana 1D 

Mafic; porphyritic volcanic rock with dark gray aphanitic groundmass and anhedral 

feldspar phenocrysts.  (Andesite.  3.31  0.18 Ma) 

 

 Chitistone (No ages yet) 

Chitistone 1 

Mafic; dark gray phaneritic rock.  Minerals present include subhedral pink feldspar 

(orthoclase?), subhedral to anhedral gray feldspar, and black to dark gray phase that 

cannot be identified in hand sample.  (Basaltic trachyandesite) 

 

Chitistone 2 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral 

rounded and flattened feldspar phenocrysts.  (Basaltic trachyandesite) 

 

Chitistone 3 

Mafic; porphyritic plutonic texture with dark gray/green aphanitic groundmass and 

anhedral feldspar phenocrysts.  (Trachybasalt/Basalt) 

 

Chitistone 4 
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Felsic; porphyritic volcanic texture with pink aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts, many of which have been replaced by an orange material.  

(Dacite*) 

 

Chitistone 6 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  (Basaltic trachyandesite*) 

 

Chitistone 7 

Felsic; phaneritic texture with abundant subhedral feldspars and quartz.  Relatively lesser 

amounts of anhedral black/dark green phase also exists but is unidentifiable in hand 

sample. Minor sulfide mineralization is present.  (Dacite) 

 

Chitistone 8 

Felsic; porphyritic volcanic texture with dark red aphanitic groundmass and abundant 

subhedral plagioclase and quartz phenocrysts.  (Rhyolite*) 

 

Chitistone 9 

Intermediate; phaneritic texture with dark and light phases present.  Dark phase is 

subhedral to anhedral, black, and ranges from equant to elongate (amphibole?).  Light 

phase includes subhedral elongate plagioclase and other unidentifiable feldspars. 

(Trachyandesite) 

 

Chitistone 10 

Mafic; porphyritic plutonic texture with dark gray aphanitic groundmass, subhedral 

plagioclase laths, and minor sulfide mineralization.  (Basalt) 

 

Chitistone 11 

Mafic; porphyritic volcanic texture with dark red aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  (Basaltic trachyandesite*)  
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Chitistone 12 

Felsic; porphyritic volcanic texture with white aphanitic groundmass and small 

unidentifiable phenocrysts.  (Rhyolite) 

 

Chitistone 13 

Felsic; phaneritic texture with abundant subhedral plagioclase, orthoclase, and quartz 

crystals and relatively lesser amounts of an unidentifiable anhedral black/dark green 

mineral.  (Rhyolite) 

 

Chitistone 14 

Mafic; phaneritic texture with subhedral plagioclase laths, elongate amphibole crystals, 

and anhedral pyroxene crystals.  The plagioclase and amphibole crystals show a strong 

alignment.  (Basalt) 

 

Chitistone 15 

Felsic; phaneritic texture with abundant white and pink feldspar crystals and 

unidentifiable anhedral black crystals.  (Rhyolite) 

 

Chitistone 17 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral 

plagioclase phenocrysts.  (Basalt) 

 

Chitistone 18 

Intermediate; phaneritic texture with light and dark mineral phases.  The light phase is 

subhedral plagioclase crystals.  The dark phases include subhedral biotite and a dark 

mineral that is unidentifiable in hand sample.  (Andesite) 

 

Chitistone 19 

Mafic; porphyritic volcanic texture with black aphanitic groundmass with abundant 

subhedral plagioclase phenocrysts.  (Basaltic andesite) 
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Chitistone 20 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral 

rounded and flattened feldspar phenocrysts.  (Trachyandesite) 

 

Chitistone 21 

Intermediate; phaneritic texture with roughly equal amounts of light and dark mineral 

phases.  The light phase is subhedral plagioclase.  The dark phases include subhedral to 

euhedral elongate amphibole crystals and subhedral equant pyroxene.  (Andesite) 

 

Chitistone 22 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and light 

colored anhedral phenocrysts (plagioclase) that show a very strong planar alignment.  

(Trachydacite) 

 

Chitistone 24 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and subhedral 

rounded and flattened feldspar phenocrysts.  (Basaltic trachyandesite) 

 

 Copper (No ages yet) 

Copper 2 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, subhedral to 

anhedral plagioclase phenocrysts, and dissolution vugs.  Some cavities are lined with tan 

alteration material.  (Andesite) 

 

Copper 3 

 Mafic; black aphanitic rock.  (Basaltic trachyandesite) 

 

Copper 4  

Felsic; porphyritic volcanic texture with light gray/pink aphanitic groundmass and 

subhedral to anhedral feldspar phenocrysts, some of which have been altered to a rusty 

orange material.  Dissolution vugs are sparse.  (Dacite) 
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Copper 5 

Mafic; porphyritic volcanic texture with dark red aphanitic groundmass, unidentifiable 

black phenocrysts, and subhedral plagioclase phenocrysts.  (Andesite/Dacite) 

 

Copper 6 

Felsic; porphyritic volcanic texture with tan/pink aphanitic groundmass, anhedral feldspar 

phenocrysts, and dissolution vugs.  (Rhyolite) 

 

Copper 8 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, subhedral to 

anhedral feldspar phenocrysts, and irregular/angular vesicles.  (Basaltic 

andesite/Andesite) 

 

Copper 10 

Mafic; dark red, aphanitic rock with ubiquitous vesicles.  (Basaltic andesite) 

 

Copper 11 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, anhedral feldspar 

phenocrysts, and ubiquitous dissolution vugs.  (Trachydacite) 

 

Copper 12 

Mafic; porphyritic volcanic texture with black/dark red aphanitic groundmass and 

anhedral feldspar phenocrysts.  (Basaltic andesite/Andesite) 

 

Copper 13 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, subhedral 

plagioclase phenocrysts, and sparse vesicles.  There are also patches of bright orange 

alteration material.  (Andesite) 

 

Copper 14 
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Felsic; porphyritic volcanic texture with light red aphanitic groundmass, anhedral 

feldspar phenocrysts, and amphibole phenocrysts that have been completely altered to a 

dark red material.  Some vugs also exist.  (Dacite) 

 

Copper 15 

Intermediate; porphyritic volcanic texture with gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and much smaller subhedral amphibole phenocrysts.  Vugs are 

sparse throughout.  (Dacite) 

 

Copper 16 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass, subhedral to 

anhedral plagioclase phenocrysts, and pervasive green alteration material.  (Trachydacite) 

 

 Boulder (No ages yet) 

Boulder 1 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, subhedral 

feldspar, amphibole, and biotite phenocrysts.  (Dacite)  

 

Boulder 2 

Felsic; porphyritic volcanic texture with pinkish gray aphanitic groundmass and anhedral 

amphibole phenocrysts.  There is another phenocryst phase but it cannot be identified in 

hand sample.  (Trachydacite) 

 

Boulder 4 

Mafic; phaneritic texture with amphibole, pyroxene, and feldspar crystals.  (Basaltic 

andesite/Basaltic trachyandesite) 

 

Boulder 6 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, subhedral 

plagioclase phenocrysts, and sparse dissolution vugs.  (Trachyandesite/Trachydacite*)    
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Boulder 7 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and minor amounts of very small biotite phenocrysts.  (Rhyolite) 

 

Boulder 8 

Felsic; porphyritic volcanic texture with red aphanitic groundmass, abundant euhedral to 

subhedral plagioclase phenocrysts, and an unidentifiable black phenocryst phase. Looks 

like a crystal-rich volcanic tuff or air fall deposit.  (Dacite) 

 

Boulder 9 

 Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, abundant very  

 small feldspar phenocrysts, and ubiquitous dissolution vugs.  (Basaltic andesite) 

 

Boulder 10 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, abundant 

subhedral to anhedral feldspar phenocrysts, spare olivine (?) phenocrysts, and ubiquitous 

vesicles.  Some vesicles are lined with tan alteration material.  (Basaltic andesite/Basaltic 

trachyandesite) 

 

Boulder 11 

Felsic; porphyritic volcanic texture with pink aphanitic groundmass, subhedral feldspar 

phenocrysts, and an unidentifiable black phenocryst phase.  (Andesite/Dacite) 

 

Boulder 12  

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  (Basaltic andesite/Basaltic trachyandesite) 

 

Boulder 13 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass, abundant very 

small feldspar phenocrysts, sparse olivine (?) phenocrysts, and sparse dissolution vugs.  

(Basaltic andesite) 
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Boulder 14  

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, abundant 

subhedral plagioclase phenocrysts, lesser black phenocrysts that are unidentifiable, and 

ubiquitous dissolution vugs.  (Dacite) 

 

Boulder 15 

Mafic; black aphanitic rock with abundant very small dissolution vugs.  (Basaltic 

andesite/Basaltic trachyandesite) 

 

Boulder 16 

Felsic; porphyritic plutonic texture with red aphanitic groundmass, subhedral plagioclase 

phenocrysts, and an unidentifiable black phenocryst phase.  Looks like a crystal-rich 

volcanic tuff.  (Andesite) 

 

Boulder 17 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and subhedral to 

anhedral feldspar phenocrysts.  (Trachydacite) 

 

Boulder 18 

Mafic; porphyritic plutonic texture with dark gray aphanitic groundmass, subhedral 

feldspar phenocrysts, and unidentifiable black phenocrysts.  (Andesite/Trachyandesite) 

 

Boulder 20 

Mafic; dark red aphanitic groundmass contains flattened black lithic fragments.  Presence 

of flattened lithics and hefty rock density indicate a high degree of welding.  (Basaltic 

trachyandesite) 

 

Boulder 21 

Mafic; porphyritic volcanic texture with dark red aphanitic groundmass and abundant 

subhedral unidentifiable black phenocrysts.  (Basaltic andesite/Basaltic trachyandesite) 
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 Root (No ages yet) 

Root 1 

Felsic; porphyritic plutonic texture with pink aphanitic groundmass and abundant 

subhedral plagioclase phenocrysts.  (Dacite) 

 

Root 3 

Felsic; phaneritic texture with plagioclase, amphibole, and biotite crystals.  

(Trachyandesite) 

 

Root 4 

Felsic; phaneritic texture with abundant plagioclase, relatively less amphibole, and 

sparse, heavily altered biotite crystals.  (Dacite) 

 

Root 6  

Intermediate; phaneritic texture with roughly equal proportions of plagioclase and 

unidentifiable black crystals.  (Andesite) 

 

Root 7 

Felsic; porphyritic plutonic texture with white aphanitic groundmass, abundant subhedral 

to anhedral feldspar phenocrysts, and lesser amounts of subhedral biotite and amphibole 

phenocrysts.  (Dacite) 

 

Root 8 

 Mafic; black, aphanitic rock.  (Basalt) 

 

Root 9 

Felsic; porphyritic plutonic texture with pink aphanitic groundmass and abundant 

subhedral plagioclase phenocrysts.  (Dacite) 

 

Root 10 
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Felsic; porphyritic plutonic texture with light gray aphanitic groundmass, abundant 

subhedral plagioclase phenocryst, and minor amounts of subhedral amphibole, biotite, 

and other unidentifiable black phenocrysts.  (Dacite) 

 

Root 11 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, anhedral 

feldspar phenocrysts, and pervasive green alteration material.  (Basaltic trachyandesite*) 

 

Root 12 

 Mafic; black, aphanitic rock.  (Basaltic andesite) 

 

Root 13 

Felsic; porphyritic plutonic texture with light gray aphanitic groundmass and roughly 

equal proportions of feldspar, amphibole, and biotite phenocrysts.  (Dacite) 

 

Root 14 

 Felsic; light gray, aphanitic rock.  (Trachydacite*) 

 

Root 15 

 Felsic; light gray, aphanitic rock.  (Basaltic andesite) 

 

Root 16 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, subhedral tiny 

but abundant feldspar phenocrysts, and minor sulfide mineralization.  (Trachyandesite) 

 

 Hawkins (No ages yet) 

Hawkins 1 

Intermediate; porphyritic plutonic texture with dark gray aphanitic groundmass, large 

subhedral feldspar phenocrysts, and relatively small but more abundant amphibole 

phenocrysts.  (Dacite) 

 



143 

Hawkins 2 

Intermediate; porphyritic volcanic texture with gray aphanitic groundmass and anhedral 

unidentifiable white phenocrysts.  (Dacite*) 

 

Hawkins 3 

Felsic; phaneritic texture with abundant feldspar crystals and relatively less biotite and 

amphibole phenocrysts.  (Rhyolite) 

 

Hawkins 4 

Felsic; porphyritic volcanic texture with white aphanitic groundmass and very small 

biotite phenocrysts.  (Rhyolite) 

 

Hawkins 5 

Felsic; phaneritic texture with abundant feldspar crystals and relatively less amphibole 

crystals.  (Rhyolite) 

 

Hawkins 6  

Felsic; phaneritic texture with abundant feldspar crystals, abundant unidentifiable black 

crystals, and sparse and relatively large biotite phenocrysts.  (Rhyolite) 

 

Hawkins 7 

Felsic; phaneritic texture with abundant pink/red feldspar crystals, heavily altered 

plagioclase crystals, and heavily altered hornblende.  (Trachydacite/Trachyte) 

 

Hawkins 8 

Felsic; phaneritic texture with abundant feldspar, quartz, biotite, and amphibole crystals.  

(Rhyolite) 

 

Hawkins 9 

Felsic; phaneritic texture with abundant feldspar, quartz, biotite, and amphibole crystals.  

(Rhyolite) 
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Hawkins 10 

 Mafic; black, aphanitic rock.  (Basalt) 

 

Hawkins 11 

Mafic; porphyritic plutonic texture with dark red aphanitic groundmass and anhedral 

unidentifiable black and white phenocrysts.  (Dacite/Trachydacite*) 

 

Hawkins 12 

Mafic; porphyritic plutonic texture with black aphanitic groundmass and small anhedral 

feldspar phenocrysts.  (Basalt) 

 

Hawkins 13 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and small and 

sparse feldspar phenocrysts.  (Trachydacite) 

 

Hawkins 14 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, small feldspar 

phenocrysts, and relatively large olivine phenocrysts.  (Basaltic andesite) 

 

Hawkins 15 

Felsic; phaneritic texture with abundant feldspar, quartz, biotite, and amphibole crystals.  

(Rhyolite) 

  

Hawkins 17 

Felsic; phaneritic texture with abundant feldspar, quartz, biotite, and amphibole crystals.  

(Rhyolite) 

 

Hawkins 18 

Intermediate; phaneritic texture with roughly equal proportions of plagioclase, 

amphibole, and pyroxene crystals.  (Andesite) 
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 Jacksina (No ages yet) 

Jacksina 1 

Felsic; porphyritic volcanic texture with pink aphanitic groundmass and subhedral 

heavily altered feldspar phenocrysts.  (Dacite) 

 

Jacksina 2 

Felsic; porphyritic volcanic texture with red aphanitic groundmass and sparse subhedral 

to anhedral feldspar phenocrysts.  (Dacite)   

 

Jacksina 3 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, abundant subhedral 

plagioclase phenocrysts, and ubiquitous dissolution vugs.  (Andesite) 

  

Jacksina 4 

Felsic; porphyritic volcanic texture with gray aphanitic groundmass, small subhedral to 

anhedral feldspar phenocrysts, and sparse dissolution vugs.  (Dacite/Trachydacite) 

 

Jacksina 5 

Felsic; porphyritic volcanic texture with pink aphanitic groundmass and small rounded 

phenocrysts that have been completely replaced by a rust-colored material.  (Rhyolite) 

 

Jacksina 6 

Mafic; porphyritic volcanic texture with black aphanitic groundmass, anhedral feldspar 

phenocrysts (some have been replaced by orange material), and sparse vesicles.  

(Andesite/Trachyandesite) 

 

Jacksina 7 

Mafic; porphyritic volcanic texture with gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, subhedral olivine phenocrysts, and ubiquitous vesicles.  

(Basaltic andesite) 
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Jacksina 8 

Mafic; dark red and black aphanitic rock.  The black areas are angular and give it the 

appearance of breccia.  (Andesite) 

 

Jacksina 9 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and abundant 

small anhedral feldspar phenocrysts.  (Andesite) 

 

Jacksina 10 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass and sparse 

unidentifiable dark-colored phenocrysts.  (Dacite) 

 

Jacksina 11 

Felsic; phaneritic texture with abundant feldspar and relatively less and smaller 

amphibole crystals.  (Dacite) 

 

Jacksina 12 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and abundant 

subhedral plagioclase phenocrysts.  (Andesite) 

 

Jacksina 13 

Felsic; porphyritic volcanic texture with tan aphanitic groundmass and small amphibole 

and biotite phenocrysts.  (Dacite) 

 

Jacksina 14 

Mafic; porphyritic volcanic texture with gray aphanitic groundmass, subhedral feldspar 

phenocrysts, and ubiquitous dissolution vugs.  (Andesite) 

 

Jacksina 15 
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Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, subhedral 

plagioclase and amphibole phenocrysts, and pervasive red material throughout.  (Basaltic 

andesite/Andesite) 

 

Jacksina 16 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass and subhedral 

to anhedral plagioclase phenocrysts.  (Trachydacite) 

 

 Nizina (No ages yet) 

Nizina 1 

Felsic; porphyritic volcanic texture with pink aphanitic groundmass and unidentifiable 

phenocrysts that have been completely replaced with a rust-colored material.  (Rhyolite) 

 

Nizina 3 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and sparse and 

small anhedral feldspar phenocrysts.  (Andesite) 

 

Nizina 4 

Felsic; phaneritic texture with abundant feldspar crystals and relatively less amphibole 

crystals.  (Trachydacite) 

 

Nizina 6 

Mafic; porphyritic volcanic texture with black aphanitic groundmass and abundant 

subhedral plagioclase phenocrysts.  (Trachydacite) 

 

Nizina 7 

Felsic; porphyritic volcanic texture with light gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, and unidentifiable dark green phenocrysts.  (Rhyolite) 

 

Nizina 8 
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Felsic; lithic- and crystal-rich volcanic tuff.  Light gray aphanitic groundmass contains 

lithics, subhedral plagioclase, subhedral quartz, subhedral biotite, and fiamme.  (Rhyolite) 

 

Nizina 9 

Felsic; porphyritic volcanic texture with pink aphanitic groundmass, subhedral 

plagioclase phenocrysts, and ubiquitous dissolution vugs that are lined with orang 

alteration material.  (Rhyolite) 

 

Nizina 11 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and sparse and 

small anhedral feldspar phenocrysts.  (Andesite*) 

 

Nizina 12 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass and abundant 

subhedral plagioclase phenocrysts.  (Rhyolite) 

 

Nizina 13 

Felsic; phaneritic texture with abundant feldspar crystals, relatively less amphibole 

crystals, unidentifiable dark green crystals, and sparse dissolution vugs.  (Rhyolite)  

 

Nizina 14 

Felsic; porphyritic plutonic texture with gray aphanitic groundmass, subhedral 

plagioclase phenocrysts, and unidentifiable dark green phenocrysts.  (Rhyolite) 

 

Nizina 15   

Intermediate; fine-grained phaneritic texture with roughly equal proportions of feldspar 

and amphibole crystals.  (Andesite) 

 

Nizina 16   

Intermediate; phaneritic texture with roughly equal proportions of feldspar and amphibole 

crystals with the occasional biotite crystal.  (Andesite) 
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Nizina 17 

Felsic; porphyritic volcanic texture with white aphanitic groundmass and very sparse 

quartz and biotite phenocrysts.  (Rhyolite) 

 

Nizina 18 

Mafic; porphyritic volcanic texture with dark brown aphanitic groundmass, small 

anhedral feldspar phenocrysts, unidentifiable black phenocrysts, and patches of orange 

alteration material.  (Basaltic andesite*) 

 

Nizina 19 

Felsic; crystal-rich volcanic tuff.  Light gray aphanitic groundmass contains subhedral 

plagioclase and abundant fiamme.  Pervasive orange alteration material is present.  

(Rhyolite) 

 

Nizina 20 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, sparse and 

small anhedral feldspar phenocrysts, and patches of orange alteration material.  

(Andesite/Trachyandesite) 

 

Nizina 24 

Mafic; porphyritic volcanic texture with dark gray aphanitic groundmass, abundant 

subhedral plagioclase phenocrysts, and sparse amphibole phenocrysts.  (Trachyandesite) 
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Appendix B - Raw Geochemical Data 

Major and trace elements were analyzed at Franklin and Marshall College using XRF 

spectroscopy.  40Ar/39Ar ages were analyzed at University of Alaska, Fairbanks.  All major 

element data are expressed as raw wt.% and all trace element data are expressed in ppm.  Fe2O3* 

is total Fe.  N.D. indicates “not determined”, and applies to samples that do not yet have ages.  If 

there are sample numbers that appear to be missing (e.g., White 3 is followed by White 5), this 

simply indicates the missing sample was discarded in the sample preparation step due to 

intensive alteration and was therefore not analyzed using XRF spectroscopy.   

 

 
Sample Sanford 

1 
Sanford 

2 
Sanford 

3 
Sanford 

4 
Sanford 

5 
Sanford 

6 
Sanford 

7 
Sanford 

8 
Sanford 

9 
Sanford 

11 

Age 
(Ma) 

0.07 2.3 1.29 0.83 1.69 0.59 0.7 0.34 0.54 0.67 

± Ma 0.34 0.64 0.05 0.15 0.62 0.18 0.35 0.21 0.16 0.1 

SiO2 53.83 53.88 60.12 55.84 62.75 53.36 53.76 55.43 61.66 54.03 

TiO2 1.1 1.1 0.75 0.92 0.57 1.35 1.41 0.94 0.65 1.09 

Al2O3 17.43 18.04 17.08 16.76 16.86 17.88 18 16.8 16.83 17.03 

Fe2O3* 8.04 7.84 6.17 7.38 5.16 8.98 8.79 7.49 5.52 8.3 

MnO 0.14 0.13 0.1 0.13 0.11 0.15 0.14 0.14 0.11 0.14 

MgO 6.24 5.4 3.54 5.86 3.05 5.1 4.49 6 3.45 6.07 

CaO 8.04 8.46 6.13 7.73 5.7 7.87 7.72 7.82 5.64 8.08 

Na2O 3.75 3.71 3.93 3.84 4.01 4.06 4.23 3.76 3.99 3.5 

K2O 0.84 0.86 1.7 1 1.47 0.92 0.99 1.01 1.71 1.09 

P2O5 0.21 0.26 0.19 0.19 0.18 0.26 0.28 0.21 0.17 0.25 

LOI 0.03 0.22 0.66 0.28 0.24 0.13 -0.15 -0.01 0.39 0.37 
Total 99.62 99.68 99.71 99.65 99.86 99.93 99.81 99.6 99.73 99.58 

           
Rb 16.9 19..5 30.5 22.9 33.7 20.0 20.6 22.5 28.8 22.9 
Sr 535 583 755 512 587 537 542 525 758 560 
Y 24.9 21.9 16.4 22.3 15.3 25.8 26.9 24.2 14.0 26.0 
Zr 140 125 143 129 145 170 183 137 140 147 
V 170 205 151 181 111 218 205 170 99 219 
Ni 127 83 56 132 42 68 46 144 45 111 
Cr 155 105 80 136 70 54 40 134 73 163 
Nb 3.3 3.7 2.7 3.2 5.2 4.4 4.4 5.5 3.0 3.9 
Ga 19.1 19.5 20.4 18.9 20.2 19.6 20.1 19.1 20.9 19.1 
Cu 58 58 48 88 38 80 75 72 62 109 
Zn 67 68 56 68 58 77 73 64 57 74 
Co 31 27 17 29 13 33 30 30 13 33 
Ba 289 312 557 369 642 269 318 412 619 361 
La 17 12 18 16 19 14 14 20 19 15 
Ce 24 23 30 24 33 23 22 33 29 26 
U <0.5 <0.5 <0.5 1.0 <0.5 <0.5 <0.5 2.2 0.6 <0.5 
Th <0.5 <0.5 1.3 0.8 1.7 <0.5 <0.5 <0.5 1.7 <0.5 
Sc 22 23 14 20 12 22 22 19 12 24 
Pb <1 <1 9 11 <1 <1 <1 13 17 11 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Sanford 
12 

Sanford 
13 

Sanford 
14 

Sanford 
15 

Sanford 
16 

Sanford 
17 

Sanford 
18 

Sanford 
19 

White 2 White 3 

Age 
(Ma) 

-0.38 0.24 0.4 0.35 0.56 1.46 0.64 0.58 262.66 11.49 

± Ma 0.39 0.08 0.05 0.13 0.04 0.15 0.06 0.08 1.66 0.26 

SiO2 55.31 59.78 60.39 65.35 74.1 57.65 65.79 73.95 74.89 56.50 

TiO2 1.0 0.88 1.12 0.4 0.09 1.01 0.39 0.09 0.50 1.10 

Al2O3 17.74 16.73 15.74 16.77 15.08 17.16 16.76 15.14 11.31 16.60 

Fe2O3* 7.87 6.29 7.31 4.09 1.13 7.29 3.85 1.16 6.64 8.23 

MnO 0.13 0.11 0.13 0.07 0.06 0.12 0.06 0.06 0.04 0.17 

MgO 5.03 3.89 2.97 2.32 0.4 4.18 2.1 0.4 2.40 5.72 

CaO 7.63 6.18 4.93 4.76 1.9 6.89 4.73 1.92 1.14 6.11 

Na2O 3.99 3.92 4.33 3.97 4.77 3.84 3.94 4.75 1.49 4.04 

K2O 0.9 1.79 2.47 1.98 2.21 1.36 1.98 2.23 1.60 0.92 

P2O5 0.26 0.2 0.39 0.13 0.08 0.27 0.14 0.08 0.08 0.24 

LOI 0.03 0.26 -0.11 2.72 0.6 0.61 2.27 0.64 4.14 6.83 
Total 99.86 99.77 99.78 99.84 99.82 99.77 99.74 99.78 100.09 99.63 

           
Rb 18.8 47.0 59.9 43.0 62.7 30.2 46.0 60.9 55.6 25.5 
Sr 605 518 413 658 509 608 789 508 231 328 
Y 20.6 22.8 44.4 11.4 4.7 22.0 9.7 3.6 26.5 29.1 
Zr 127 202 389 119 104 169 128 98 174 144 
V 191 151 133 94 12 187 81 10 109 155 
Ni 88 61 55 38 5 70 29 5 56 23 
Cr 122 78 72 54 9 93 43 12 101 123 
Nb 3.4 5.0 13.1 3.3 4.0 4.4 2.7 4.5 15.2 5.5 
Ga 20.1 19.8 21.6 20.7 20.4 19.9 21.1 20.1 14.7 18.3 
Cu 78 66 65 59 7 126 54 8 32 17 
Zn 73 59 87 49 32 74 50 33 160 91 
Co 29 17 17 6 <1 23 6 <1 11 30 
Ba 352 463 712 645 950 459 624 950 325 288 
La 14 19 26 18 22 17 15 25 25 14 
Ce 26 29 53 25 33 35 38 33 44 30 
U <0.5 2.4 0.8 <0.5 <0.5 <0.5 1.5 <0.5 2.2 <0.5 
Th <0.5 6.2 8.5 2.0 7.1 <0.5 2.8 6.8 16.7 8.3 
Sc 20 14 15 9 <1 20 8 <1 6 21 
Pb <1 8 7 <1 8 15 18 17 10 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample White 5 White 6 White 7 White 8 White 
11 

White 
13 

White 14 White 
15 

White 
16 

White 
17 

Age 
(Ma) 

23.5 10.25 93.48 12.63 9.31 300.86 34.58 10.4 9.92 10.84 

± Ma 0.7 0.19 1.11 0.28 0.12 4.16 0.47 0.3 0.23 0.08 

SiO2 65.94 52.56 48.73 57.97 72.08 64.74 66.39 55.56 72.82 59.06 

TiO2 0.34 2.59 1.33 1.13 0.38 0.43 0.33 1.85 0.36 1.28 

Al2O3 16.56 16.20 15.11 16.39 14.51 9.46 16.62 17.19 14.23 17.38 

Fe2O3* 3.51 12.03 11.65 6.97 2.25 9.26 3.37 8.59 2.19 6.81 

MnO 0.08 0.13 0.17 0.12 0.08 0.06 0.07 0.12 0.07 0.12 

MgO 2.54 1.86 8.05 4.59 0.58 2.43 2.27 2.94 0.57 2.35 

CaO 4.43 7.04 10.41 7.22 1.42 11.30 4.36 6.68 1.31 5.73 

Na2O 5.24 4.38 3.55 3.77 5.13 0.94 5.20 4.01 5.04 4.50 

K2O 0.90 2.17 0.49 1.12 3.48 0.84 0.97 2.09 3.52 2.27 

P2O5 0.13 0.83 0.13 0.33 0.10 0.10 0.13 0.46 0.10 0.34 

LOI 1.29 3.12 4.01 1.84 0.30 10.51 2.44 3.06 0.40 0.85 
Total 99.67 99.79 99.62 99.61 100.01 99.56 99.71 99.49 100.21 99.84 

           
Rb 24.0 56.5 8.1 47.5 104.7 21.9 26.2 54.2 97.3 65.8 
Sr 648 436 258 674 191 702 710 478 174 481 
Y 11.2 53.5 27.6 26.2 36.9 25.2 9.5 37.9 36.5 31.2 
Zr 93 471 93 223 318 136 103 328 295 283 
V 82 203 309 142 30 100 74 164 31 123 
Ni 47 10 120 51 5 52 35 23 5 11 
Cr 88 16 265 124 9 77 51 44 9 26 
Nb 2.5 24.7 5.6 11.0 17.7 6.7 2.4 14.6 17.3 14.0 
Ga 20.3 23.7 16.7 19.7 21.0 10.9 20.1 20.5 20.9 21.8 
Cu 13 60 21 36 8 22 12 47 8 29 
Zn 46 138 100 77 51 122 44 96 39 79 
Co 8 28 52 20 <1 8 7 24 <1 16 
Ba 522 624 61 722 1126 251 545 661 1096 654 
La 13 26 8 24 34 24 12 21 36 28 
Ce 20 43 15 55 78 39 18 46 70 49 
U <0.5 3.7 <0.5 <0.5 3.5 1.3 <0.5 3.2 0.6 0.6 
Th 1.3 12.8 <1 4.5 18.0 4.8 1.6 11.2 17.8 7.2 
Sc 9 22 39 16 1 18 7 17 <1 11 
Pb 2 1 <1 9 6 8 1 13 13 1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample White 18 Chisana 
1 

Chisana 
2 

Chisana 
3 

Chisana 
4 

Chisana 
5 

Chisana 
6 

Chisana 
7 

Chisana 
8 

Chisana 
9 

Age 
(Ma) 

300.97 51.88 22.9 25.12 9 6.36 6.23 7.43 6.93 6.25 

± Ma 1.81 2.01 0.4 0.26 0.13 0.46 0.09 0.15 0.15 0.15 

SiO2 56.19 47.02 67.83 65.07 69.71 61.75 73.51 67.94 68.48 64.1 

TiO2 0.26 0.44 0.31 0.46 0.40 0.75 0.31 0.51 0.52 0.46 

Al2O3 6.40 17.21 16.44 17.15 15.62 15.54 13.82 15.56 15.33 17.22 

Fe2O3* 3.30 11.30 2.98 3.97 2.92 5.42 2.21 3.59 3.54 4.38 

MnO 0.06 0.16 0.06 0.10 0.05 0.11 0.07 0.08 0.09 0.08 

MgO 1.23 8.53 1.80 1.76 1.16 4.57 0.65 1.46 1.45 2.37 

CaO 30.33 12.93 3.48 4.22 3.44 5.35 1.44 3.06 3.07 5.42 

Na2O 0.63 2.16 5.61 5.07 3.91 4.25 4.55 4.92 4.8 4.13 

K2O 1.08 0.13 1.03 1.73 2.53 1.52 3.17 2.48 2.4 1.31 

P2O5 0.08 0.07 0.13 0.24 0.12 0.25 0.08 0.15 0.15 0.14 

LOI 19.66 4.69 1.22 1.52 3.62 1.72 0.8 1.51 1.46 2.73 
Total 99.56 99.95 99.67 99.77 99.86 99.51 99.81 99.75 99.83 99.61 

           
Rb 19.8 3.1 18.3 37.6 68.9 42.6 61.3 61.0 61.3 30.7 
Sr 769 163 752 905 376 582 185 326 322 571 
Y 13.1 17.0 8.4 12.9 15.7 20.8 22.9 30.1 29.3 15.4 
Zr 130 20 137 147 162 204 239 227 230 132 
V 57 251 71 73 63 106 35 65 66 88 
Ni 17 207 29 12 14 126 7 14 15 18 
Cr 44 229 51 18 26 235 14 26 31 31 
Nb 5.7 <1 1.0 10.6 5.8 5.0 10.9 8.3 7.6 3.7 
Ga 7.3 13.5 19.6 20.8 18.5 19.1 19.5 21.1 20.5 18.4 
Cu 8 88 18 17 30 59 15 23 27 33 
Zn 41 70 27 57 45 61 43 55 55 54 
Co <1 55 4 6 3 20 <1 2 2 9 
Ba 143 61 994 1014 815 611 931 811 783 611 
La 21 11 19 29 25 24 35 30 32 21 
Ce 34 16 28 48 48 49 60 54 58 38 
U 0.6 <0.5 0.5 1.2 1.3 <0.5 2.0 0.7 1.3 <0.5 
Th <0.5 <0.5 0.5 1.6 11.4 2.6 12.1 8.0 8.8 1.2 
Sc 25 37 4 3 5 11 1 4 5 4 
Pb <1 <1 3 5 6 1 2 5 3 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Chisana 
11 

Chisana 
12 

Chisana 
13 

Chisana 
14 

Chisana 
15 

Chisana 
16 

Chisana 
17 

Chisana 
18 

Dad 
1A-1 

Dad 1A-
2 

Age 
(Ma) 

20.6 5.88 7.9 9.15 6.55 162.45 7.06 8.02 0.49 0.31 

± Ma 0.5 0.12 0.38 0.21 0.04 1.43 0.08 0.18 0.11 0.12 

SiO2 67.82 74.9 67.13 65.19 76.6 48.2 74.42 57.73 60.19 64.17 

TiO2 0.33 0.22 0.57 0.41 0.15 2.61 0.31 1.12 0.88 0.54 

Al2O3 16.3 13.72 15.74 16.47 12.82 15.25 13.99 16.76 16.46 16.62 

Fe2O3* 3.05 1.36 3.81 3.69 1.24 13.92 1.68 7.4 6.23 4.61 

MnO 0.06 0.06 0.08 0.08 0.05 0.18 0.04 0.15 0.11 0.09 

MgO 1.8 0.19 1.64 2.83 0.18 5.74 0.39 3.01 3.82 2.78 

CaO 2.75 0.47 3.27 4.23 0.62 9.41 1.23 5.91 5.99 4.94 

Na2O 6.08 6.06 5.03 4.98 4.52 3.51 4.61 4.26 3.9 4.33 

K2O 1.42 2.59 2.26 1.54 3.6 0.58 3.07 2.5 1.85 1.71 

P2O5 0.13 0.04 0.17 0.18 0.03 0.26 0.05 0.75 0.2 0.16 

LOI 1.33 0.41 1.24 1.22 0.33 2.12 1.78 1.3 0.27 0.17 
Total 99.74 99.61 99.7 99.6 99.81 99.66 99.79 99.59 99.63 99.95 

           
Rb 31.1 62.2 58.2 32.5 99.2 7.3 97.9 53.4 45.6 41.2 
Sr 733 74 361 816 67 314 157 694 508 698 
Y 8.6 51.0 31.7 11.4 29.3 39.3 32.0 28.7 22.0 13.5 
Zr 109 290 221 124 198 163 299 225 204 145 
V 67 16 72 78 12 402 21 154 135 79 
Ni 26 5 17 61 5 84 5 5 56 49 
Cr 47 14 24 69 11 138 15 9 81 68 
Nb 2.3 16.2 8.3 4.5 10.5 14.6 9.1 10.2 5.6 3.9 
Ga 19.4 25.4 21.0 20.5 17.7 19.3 18.1 21.6 19.7 20.5 
Cu 49 13 26 39 12 152 16 43 75 57 
Zn 34 44 41 63 38 86 41 82 63 62 
Co 5 <1 3 9 <1 44 <1 18 16 12 
Ba 1845 897 805 853 983 97 838 794 497 656 
La 18 48 27 23 39 12 31 34 22 19 
Ce 27 104 48 37 75 18 64 65 37 37 
U <0.5 0.5 0.7 0.5 2.0 <0.5 1.5 0.5 <0.5 <0.5 
Th 0.5 15.7 6.7 0.5 19.0 <0.5 15.5 2.3 1.5 0.8 
Sc 4 <1 3 5 <1 36 1 10 12 8 
Pb 3 20 1 20 16 <1 14 8 <1 2 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Dad 1B-1 Dad 1B-
2 

Dad 1B-
3 

Dad 1B-4 Dad 1C-
1 

Dad 1C-
2 

Dad 1C-3 Dad 1C-
4 

Dad 1C-
5 

Nabesna 
1 

Age 
(Ma) 

1.86 0.48 0.49 0.68 0.74 1.46 0.56 0.65 0.76 17.72 

± Ma 0.12 0.09 0.09 0.09 0.11 0.09 0.08 0.09 0.16 0.36 

SiO2 67.31 59.57 63.4 59.24 62.66 62.22 73.56 73.99 66.08 66.9 

TiO2 0.42 0.84 0.51 0.92 0.78 0.6 0.12 0.08 0.38 0.34 

Al2O3 15.78 16.98 17.16 16.32 16.57 16.68 15.52 15.19 16.59 16.63 

Fe2O3* 3.75 6.35 4.65 6.58 5.4 5.18 1.28 1.24 3.8 3.68 

MnO 0.08 0.11 0.09 0.11 0.1 0.1 0.07 0.07 0.06 0.08 

MgO 2.19 3.99 2.54 4.39 2.69 3.51 0.43 0.39 2.2 1.71 

CaO 4.36 6.28 5.24 6.4 5.11 5.51 1.85 1.93 4.59 4.54 

Na2O 4.17 3.89 4.33 3.69 4.18 3.91 4.71 4.77 4.27 4.67 

K2O 1.92 1.69 1.69 1.88 2.13 1.99 2.53 2.21 1.67 1.04 

P2O5 0.12 0.19 0.18 0.23 0.2 0.16 0.09 0.09 0.13 0.16 

LOI 0.55 0.93 -0.03 0.28 0.84 -0.03 1.46 1.13 1.79 1.69 
Total 100.1 99.89 99.79 99.76 99.82 99.86 100.16 99.96 99.77 99.75 

           
Rb 40.8 44.1 35.7 46.8 57.3 35.0 58.2 57.7 39.3 22.4 
Sr 696 558 799 636 586 891 569 485 692 649 
Y 10.7 21.5 12.4 22.0 21.4 13.4 8.2 5.2 10.6 11.5 
Zr 136 189 140 214 211 148 130 104 105 93 
V 90 145 106 170 121 132 8 11 85 74 
Ni 21 68 30 58 33 55 3 4 26 13 
Cr 54 77 38 143 39 96 7 7 28 23 
Nb 2.5 5.0 3.4 5.1 5.7 3.3 6.1 4.0 1.5 1.4 
Ga 20.3 19.6 22.5 19.6 20.6 22.4 20.5 20.0 20.6 20.1 
Cu 64 88 85 96 66 91 11 13 67 18 
Zn 57 73 67 71 64 66 67 46 57 48 
Co 4 19 10 20 11 14 <1 <1 7 5 
Ba 710 514 604 635 674 665 970 866 638 499 
La 18 24 22 23 24 20 31 23 15 20 
Ce 26 37 28 44 44 32 54 39 23 30 
U 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.5 <0.5 <0.5 
Th <0.5 0.5 <0.5 1.8 0.5 <0.5 7.4 1.2 <0.5 <0.5 
Sc 8 13 5 14 8 10 <1 <1 7 6 
Pb 21 1 <1 12 5 15 28 4 7 10 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Nabesna 
2 

Nabesna 
4 

Nabesna 
5 

Nabesna 
7 

Nabesna 
8 

Nabesna 
11 

Nabesna 
12 

Nabesna 
13 

Nabesna 
14 

Che 
1A-1 

Age 
(Ma) 

23.9 19.21 69.87 20.35 18.8 153.31 1.37 27.7 22.63 0.39 

± Ma 0.4 0.22 0.29 0.36 0.23 1.39 0.32 0.2 0.28 0.11 

SiO2 55.46 66.63 60.11 66.42 66.37 52.95 55.82 66.59 63.73 65.33 

TiO2 0.51 0.36 0.68 0.36 0.35 0.66 1.09 0.37 0.44 0.48 

Al2O3 15.79 16.82 16.36 16.71 16.81 17.39 17.23 16.84 17.65 15.98 

Fe2O3* 8.04 3.74 7.23 3.84 3.84 9.22 7.77 3.15 4.49 4.07 

MnO 0.13 0.09 0.15 0.08 0.09 0.2 0.15 0.08 0.11 0.08 

MgO 6.27 1.73 3.15 1.75 1.78 5.66 5.41 1.78 2.64 2.7 

CaO 8.74 4.47 6.27 4.44 4.65 9.72 7.27 4.27 4.34 4.96 

Na2O 3.68 4.63 3.39 4.56 4.26 1.76 3.96 4.91 5.2 4.08 

K2O 0.55 1.27 2.06 1.27 1.57 1.71 0.9 1.64 1.01 2.15 

P2O5 0.28 0.15 0.18 0.16 0.15 0.28 0.26 0.18 0.22 0.16 

LOI 0.97 2.05 1.57 2.02 2.74 7.94 0.29 1.24 2.18 0.17 
Total 99.45 99.89 99.58 99.59 99.87 99.55 99.86 99.81 99.83 99.99 

           
Rb 12.1 25.0 43.7 24.5 29.9 22.0 16.9 39.0 16.1 34.1 
Sr 872 649 400 622 681 648 538 750 878 947 
Y 15.2 11.4 29.9 11.9 10.0 21.5 25.6 9.8 14.6 9.2 
Zr 70 94 152 100 90 75 145 124 99 139 
V 195 72 181 76 77 231 164 64 96 101 
Ni 82 13 11 15 13 25 89 15 29 55 
Cr 70 16 15 22 15 61 131 26 24 60 
Nb 0.7 2.1 3.1 2.2 1.7 2.6 6.0 5.7 1.5 3.0 
Ga 17.0 20.2 17.8 20.4 19.7 14.8 18.9 20.2 21.4 22.7 
Cu 89 31 80 26 24 137 68 18 37 117 
Zn 91 65 68 62 59 123 83 55 75 67 
Co 29 4 18 5 3 29 28 2 9 7 
Ba 308 578 475 567 761 1034 357 909 404 696 
La 19 21 19 22 16 16 15 25 16 19 
Ce 32 27 27 28 19 28 27 42 29 30 
U <0.5 <0.5 <0.5 1.0 <0.5 <0.5 <0.5 0.7 <0.5 0.5 
Th <0.5 <0.5 <0.5 0.5 <0.5 <0.5 <0.5 0.5 <0.5 <0.5 
Sc 23 5 19 6 5 31 18 4 9 7 
Pb <1 8 <1 21 9 11 5 7 6 20 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 

 

 

 

 

 

 

 

 

 



157 

Sample Che 1A-2 Che 1A-
3 

Che 1B-
1 

Che 1B-2 Che 1C-
2 

Che 1C-
3 

Che 1C-5 Che 1C-
6 

Cross 3 Cross 5 

Age 
(Ma) 

0.62 0.92 150.24 152.42 0.35 0.51 0.76 0.23 118.19 147.97 

± Ma 0.11 0.54 0.48 0.96 0.11 0.08 0.24 0.07 0.37 0.93 

SiO2 62.28 61.69 60.99 51.45 56.21 74.24 65.05 60.49 58.82 70.07 

TiO2 0.8 0.71 0.41 0.64 0.87 0.07 0.48 0.85 0.72 0.16 

Al2O3 16.18 16.54 17.87 19.46 16.29 14.99 16.17 17.29 16.62 15.6 

Fe2O3* 5.59 5.54 5.36 8.59 6.9 1.2 4.1 5.68 7.84 2.57 

MnO 0.11 0.12 0.14 0.24 0.12 0.06 0.08 0.1 0.15 0.13 

MgO 3.23 3.57 3.12 3.34 7.31 0.25 2.7 3.07 3.53 0.93 

CaO 5.32 5.79 6.21 9.93 6.98 2.02 4.93 6.29 6.88 3.02 

Na2O 3.92 3.82 4.05 3.5 3.41 4.67 4.05 4.08 3.18 4.07 

K2O 2.2 1.88 1.48 2.13 1.43 2.16 2.17 1.78 1.83 2.99 

P2O5 0.21 0.2 0.2 0.49 0.22 0.08 0.15 0.21 0.17 0.13 

LOI 1.07 0.47 1.24 0.55 0.25 1.41 0.88 0.84 0.9 5.27 
Total 99.84 99.86 99.83 99.77 99.74 99.74 99.88 99.84 99.74 99.67 

           
Rb 54.2 49.6 31.5 33.0 38.2 54.5 36.4 45.3 40.3 68.9 
Sr 507 554 1200 1436 691 481 973 579 366 569 
Y 20.9 20.2 10.8 22.2 21.0 4.9 10.9 20.6 29.9 8.6 
Zr 214 185 73 93 168 100 137 188 158 98 
V 132 124 141 208 169 15 109 148 200 53 
Ni 53 59 17 5 172 5 57 60 13 4 
Cr 67 76 47 7 248 13 63 49 26 9 
Nb 6.2 5.4 1.7 1.9 8.4 4.1 2.4 5.8 3.1 8.3 
Ga 19.6 19.8 18.6 18.7 19.1 19.6 23.8 20.3 17.4 17.1 
Cu 75 67 17 46 111 23 95 98 57 15 
Zn 67 71 71 95 65 41 64 64 69 36 
Co 12 17 13 17 29 <1 8 16 21 <1 
Ba 627 578 981 704 452 844 696 568 443 2256 
La 25 23 13 21 21 20 21 20 19 28 
Ce 38 37 26 31 42 27 27 34 40 32 
U 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.5 0.7 1.1 
Th 3.1 1.7 <0.5 <0.5 1.6 1.3 <0.5 0.9 0.5 2.8 
Sc 11 111 12 20 17 <1 8 13 23 1 
Pb <1 <1 <1 25 <1 1 25 7 <1 30 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Cross 6 Cross 7 Kot 11 
7/23 

Kot 12 
7/23 

Kot 14 
7/23 

Kot 15 
7/23 

Kot 16 
7/23 

Kot 1A-
1 

Kot 1A-
2 

Kot 1B-
1 

Age 
(Ma) 

87.65 26.6 0.66 0.02 0.85 0.11 215.07 0.43 0.64 152.31 

± Ma 0.65 0.31 0.12 0.32 0.12 0.1 14.23 0.38 0.21 1.09 

SiO2 60.27 67.42 60.97 60.66 59.61 63.22 48.49 59.94 59.34 58.22 

TiO2 0.4 0.39 0.8 0.73 0.88 0.76 2.00 0.96 0.97 0.28 

Al2O3 18.66 16.41 16.91 16.78 17.10 16.14 14.01 16.25 16.12 20.69 

Fe2O3* 5.19 3.09 5.55 6.02 6.35 5.30 13.40 6.50 6.73 4.59 

MnO 0.19 0.07 0.1 0.11 0.13 0.10 0.17 0.11 0.11 0.13 

MgO 2.25 2.29 3.36 3.77 3.68 2.75 6.91 4.24 4.38 1.73 

CaO 4.3 4.37 6.01 6.05 6.24 5.06 11.55 5.88 6.17 8.14 

Na2O 5.56 4.62 3.89 3.91 4.02 4.09 2.88 3.83 3.80 3.93 

K2O 2.51 1.18 1.83 1.54 1.70 2.10 0.05 1.91 1.83 1.96 

P2O5 0.27 0.15 0.21 0.2 0.20 0.19 0.19 0.21 0.21 0.20 

LOI 1.61 3.49 1.11 0.4 0.77 -0.13 3.79 0.86 0.88 0.89 
Total 99.6 99.99 99.63 99.77 99.91 99.71 99.65 99.83 99.66 99.87 

           
Rb 57.0 26.9 44.3 39.0 59.4 41.6 0.7 51.8 51.4 39.8 
Sr 1950 665 710 580 528 534 38 576 571 1468 
Y 15.1 10.5 18.5 17.5 19.9 20.4 35.0 20.6 20.1 13.1 
Zr 139 115 183 157 192 188 124 216 209 82 
V 110 64 143 140 133 137 391 160 165 110 
Ni 7 46 47 69 52 50 91 84 84 5 
Cr 12 54 40 75 58 52 204 131 132 13 
Nb 13.8 5.6 5.4 4.7 6.8 4.2 10.5 4.8 5.3 2.0 
Ga 22.6 19.6 20.7 19.5 19.9 19.7 18.5 19.4 19.3 20.9 
Cu 50 28 80 29 79 74 69 100 97 13 
Zn 74 48 63 68 61 65 70 64 64 45 
Co 8 5 15 18 12 18 46 20 22 4 
Ba 1482 719 617 527 617 558 13 569 565 626 
La 35 18 22 21 21 22 12 24 24 19 
Ce 64 23 36 37 42 34 16 43 46 23 
U 3.6 <0.5 <0.5 3.4 1.2 0.8 <0.5 <0.5 0.5 <0.5 
Th 0.5 0.6 <0.5 <0.5 4.6 0.5 0.6 5.6 5.6 <0.5 
Sc 7 4 13 14 10 13 42 14 13 11 
Pb 14 16 12 20 15 <1 <1 4 1 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Kot 1B-2 Kot 1B-
3 

Kot 1B-
4 

Kot 1B-5 Kot 1B-
6 

Nad 1A-
1 

Nad 1A-2 Nad 1A-
3 

Nad 1A-
4 

Nad 1A-
5 

Age 
(Ma) 

0.49 1.54 0.55 0.68 150.27 0.57 0.47 0.77 0.36 0.17 

± Ma 0.18 0.45 0.17 0.16 0.39 0.17 0.1 0.33 0.16 0.13 

SiO2 61.48 59.96 64.55 59.93 67.96 60.67 65.22 62.95 60.50 64.71 

TiO2 0.79 1.01 0.73 0.95 0.26 0.65 0.50 0.54 0.79 0.43 

Al2O3 16.36 16.14 16.01 16.36 17.35 17.58 17.01 17.48 17.42 16.98 

Fe2O3* 5.78 6.67 4.79 6.45 2.56 5.84 4.21 4.91 6.14 4.15 

MnO 0.10 0.12 0.08 0.12 0.05 0.11 0.09 0.10 0.12 0.08 

MgO 3.56 3.88 2.15 3.94 1.13 3.54 1.98 2.93 3.27 2.73 

CaO 5.59 5.97 4.46 6.19 3.09 6.24 4.58 5.52 6.31 4.98 

Na2O 4.01 3.81 4.13 3.81 5.48 4.09 4.43 4.23 4.14 4.16 

K2O 1.88 1.89 2.55 1.77 1.72 1.31 1.68 1.41 1.16 1.80 

P2O5 0.21 0.24 0.19 0.23 0.13 0.23 0.16 0.17 0.19 0.14 

LOI 1.11 0.88 0.31 0.76 2.31 0.00 1.04 0.75 0.92 1.05 
Total 99.76 99.69 99.64 99.75 99.73 100.26 99.86 100.24 100.04 100.16 

           
Rb 50.7 46.2 68.8 43.4 36.7 26.7 35.5 29.9 26.6 36.4 
Sr 551 516 457 568 998 743 628 715 629 795 
Y 20.7 23.0 23.6 22.1 2.8 14.0 12.7 12.2 16.2 10.5 
Zr 188 203 251 199 84 137 145 118 131 125 
V 143 153 111 171 67 141 80 100 154 97 
Ni 65 58 31 54 6 47 35 45 32 53 
Cr 73 85 54 87 17 68 27 54 37 67 
Nb 6.5 6.3 6.8 6.2 <0.5 4.0 3.9 2.5 5.6 3.0 
Ga 19.4 19.2 20.0 19.8 21.7 20.9 19.9 21.4 20.3 21.0 
Cu 81 71 52 55 20 48 27 58 56 67 
Zn 66 64 54 65 62 61 58 64 72 58 
Co 15 19 8 18 1 14 4 11 15 10 
Ba 605 520 684 545 832 533 639 556 486 648 
La 22 28 28 16 10 20 24 15 20 17 
Ce 35 40 45 31 10 33 35 24 25 32 
U 0.9 0.9 0.7 0.5 <0.5 <0.5 0.6 1.3 1.0 1.3 
Th 3.2 3.4 5.9 1.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Sc 12 15 7 16 3 12 5 9 13 7 
Pb 1 7 16 10 7 5 7 2 <1 25 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Nad 1A-6 Nad 1B-
1 

Nad 1B-
2 

Kusk-
1A-1 

Kusk-
1B-1 

Kusk-
1B-2 

Kusk-
1B-3 

Kusk-
1B-4 

Kusk-
1B-5 

Kusk-
1B-6 

Age 
(Ma) 

0.29 0.39 0.88 3.08 3.04 3.16 2.79 2.89 3.77 3.45 

± Ma 0.18 0.29 0.11 0.12 0.51 0.16 0.14 0.19 0.25 0.17 

SiO2 62.32 63.65 59.86 65.61 64.57 64.73 64.85 65.30 65.11 65.54 

TiO2 0.55 0.50 0.74 0.60 0.59 0.60 0.59 0.57 0.59 0.61 

Al2O3 16.47 17.09 17.10 15.97 16.48 16.36 16.95 16.35 16.58 15.92 

Fe2O3* 5.31 4.84 6.20 4.29 4.54 4.39 4.27 4.21 4.26 4.26 

MnO 0.11 0.10 0.11 0.08 0.09 0.08 0.09 0.09 0.08 0.08 

MgO 3.53 2.80 3.90 2.26 2.47 2.45 2.49 2.31 2.42 2.43 

CaO 6.00 5.23 6.18 4.30 4.62 4.63 4.69 4.81 4.56 4.36 

Na2O 3.80 4.16 3.90 4.37 4.30 4.26 4.45 4.21 4.27 4.00 

K2O 1.36 1.52 1.53 2.19 2.02 2.03 1.50 1.91 2.08 2.26 

P2O5 0.18 0.17 0.21 0.16 0.15 0.15 0.15 0.15 0.15 0.16 

LOI 0.17 0.57 0.69 1.13 1.70 1.66 0.34 1.07 1.13 1.58 
Total 99.63 100.06 99.73 99.83 99.83 99.68 100.03 99.91 100.10 99.62 

           
Rb 29.4 34.7 29.8 51.1 45.2 45.2 29.4 35.6 47.7 49.1 
Sr 560 712 753 552 595 574 585 590 574 561 
Y 17.7 12.1 18.2 18.0 18.0 17.2 18.3 18.2 18.6 18.2 
Zr 148 123 153 181 163 168 157 164 152 177 
V 182 102 143 105 98 94 101 98 94 99 
Ni 67 46 76 35 36 35 40 35 34 37 
Cr 95 61 106 45 43 44 52 40 45 43 
Nb 4.1 3.3 3.5 5.0 4.3 3.6 3.1 3.6 4.1 4.1 
Ga 19.1 21.8 21.3 20.5 20.6 20.5 20.3 20.9 20.6 20.1 
Cu 41 49 38 49 44 49 31 45 45 49 
Zn 72 66 71 58 58 59 63 58 57 58 
Co 15 11 17 8 8 8 10 8 8 8 
Ba 645 564 582 696 693 692 614 708 687 711 
La 24 20 19 22 20 20 20 23 25 21 
Ce 34 26 30 33 35 35 30 35 35 38 
U 0.9 0.5 0.5 <0.5 <0.5 0.5 2.5 <0.5 1.3 1.2 
Th <0.5 0.5 <0.5 5.2 0.7 3.1 0.5 2.3 1.9 3.3 
Sc 11 8 11 8 8 8 8 8 8 7 
Pb 8 9 6 7 <1 <1 6 11 15 9 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Kusk-
1B-7 

Kusk-
1B-8 

Kusk-
1C-1 

Kusk-
1C-2 

Kusk-
1C-3 

Kusk-
1C-4 

Kusk-
1C-5 

Kusk-
1C-6 

Kusk 
1D 

Root 1 

Age 
(Ma) 

3.31 3.12 3.72 4.47 4.55 4.06 4.03 3.61 3.31 N.D. 

± Ma 0.27 0.18 0.31 0.41 0.23 0.4 0.15 0.47 0.18 N.D. 

SiO2 64.62 61.75 66.08 66.35 66.71 67.15 67.07 65.36 61.75 67.35 

TiO2 0.59 0.81 0.58 0.55 0.53 0.53 0.53 0.56 0.81 0.48 

Al2O3 16.50 16.61 16.27 16.13 15.89 15.62 15.81 16.46 16.66 16.17 

Fe2O3* 4.37 5.69 4.21 3.96 3.77 3.83 3.85 4.10 5.64 3.56 

MnO 0.09 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.10 0.09 

MgO 2.48 3.08 2.20 2.14 1.98 2.04 2.01 2.16 3.29 1.73 

CaO 4.59 5.69 4.27 4.11 3.92 3.93 3.86 4.44 5.63 3.92 

Na2O 4.22 4.16 4.33 4.43 4.33 4.22 4.34 4.32 4.33 4.18 

K2O 1.99 1.81 2.19 2.31 2.33 2.27 2.31 2.16 1.73 2.33 

P2O5 0.15 0.17 0.15 0.14 0.14 0.14 0.14 0.15 0.18 0.14 

LOI 2.47 0.45 0.87 1.08 1.17 0.90 1.15 1.04 0.33 2.48 
Total 99.60 99.87 100.36 100.20 99.68 99.81 100.00 99.79 100.12 99.95 

           
Rb 44.1 41.8 56.2 61.0 58.3 58.9 56.5 51.5 39.3 58.2 
Sr 589 541 571 514 527 503 526 544 554 516 
Y 18.7 20.1 18.8 19.0 17.0 16.6 17.2 18.2 20.5 13.8 
Zr 162 159 180 165 161 163 165 164 162 134 
V 98 130 97 92 85 87 88 98 135 65 
Ni 36 45 40 34 29 30 30 31 46 29 
Cr 55 56 45 49 36 44 36 44 56 43 
Nb 3.7 3.7 5.3 3.6 4.2 4.1 3.8 4.0 3.7 5.6 
Ga 21.0 20.4 20.9 20.2 19.8 20.1 19.7 19.9 20.2 19.7 
Cu 41 53 40 28 32 27 32 35 55 51 
Zn 63 66 63 54 55 53 55 56 72 66 
Co 10 15 7 7 5 6 6 6 16 6 
Ba 677 585 626 725 747 769 707 727 586 768 
La 20 22 22 22 21 22 22 20 20 25 
Ce 37 33 35 41 36 39 36 38 29 32 
U 0.8 0.8 0.5 1.6 1.6 1.0 2.1 1.9 2.0 3.1 
Th 2.9 0.5 3.3 4.3 3.7 5.0 5.2 2.9 1.5 7.0 
Sc 8 12 7 7 5 5 5 7 11 5 
Pb 9 4 17 8 <1 6 12 17 1 9 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Root 3 Root 4 Root 6 Root 7 Root 8 Root 9 Root 10 Root 11 Root 12 Root 13 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 61.03 66.34 58.03 67.25 48.83 65.51 66.63 51.66 56.45 67.01 

TiO2 1.02 0.44 1.23 0.36 2.05 0.53 0.41 2.18 0.98 0.37 

Al2O3 17.19 16.79 16.50 16.58 14.56 16.06 16.68 14.41 18.00 16.59 

Fe2O3* 5.50 3.96 7.30 3.43 14.56 3.92 3.17 14.76 7.10 3.59 

MnO 0.11 0.08 0.14 0.08 0.20 0.09 0.06 0.17 0.13 0.08 

MgO 2.44 1.80 4.43 1.54 6.19 1.95 1.90 7.23 3.98 1.61 

CaO 5.01 4.30 6.60 3.88 10.66 4.99 4.17 4.36 8.27 4.08 

Na2O 4.80 4.84 4.29 4.64 2.63 4.25 5.01 5.11 4.31 4.57 

K2O 2.20 1.62 1.47 1.85 0.33 2.16 1.92 0.13 0.72 1.84 

P2O5 0.26 0.13 0.23 0.13 0.19 0.14 0.14 0.21 0.21 0.13 

LOI 0.96 1.27 1.01 1.98 1.95 1.95 1.54 4.27 1.21 1.13 
Total 99.56 100.30 100.22 99.74 100.20 99.60 100.09 100.22 100.15 99.87 

           
Rb 51.1 37.7 30.4 42.4 3.5 49.1 39.6 1.5 10.6 42.8 
Sr 513 695 419 635 229 553 837 92 565 648 
Y 28.9 12.2 34.4 12.3 34.9 14.7 10.6 40.4 24.3 10.4 
Zr 467 122 122 119 130 135 127 126 157 118 
V 126 83 149 69 399 63 77 390 179 67 
Ni 25 13 68 26 89 30 27 75 39 16 
Cr 39 34 145 47 113 42 43 135 32 40 
Nb 8.7 2.7 6.6 2.9 9.0 5.3 0.8 11.7 5.4 2.5 
Ga 21.5 22.4 19.6 20.7 19.3 19.7 19.9 15.4 19.6 21.2 
Cu 44 47 49 40 112 54 87 157 31 41 
Zn 49 58 77 58 99 63 42 112 73 60 
Co 12 3 22 2 52 6 1 58 21 2 
Ba 694 636 554 684 71 688 629 21 410 699 
La 26 21 18 20 10 22 17 10 16 19 
Ce 51 29 37 29 16 37 25 18 28 33 
U 1.3 0.6 1.3 1.3 <0.5 3.2 0.6 <0.5 2.3 <0.5 
Th 7.0 0.5 1.5 0.8 0.5 4.5 0.7 12.4 <0.5 0.6 
Sc 12 6 17 4 41 8 6 33 16 4 
Pb <1 17 <1 2 6 12 <1 <1 <1 10 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Root 14 Root 15 Root 16 Boulder 
1 

Boulder 
2 

Boulder 
4 

Boulder 
6 

Boulder 
7 

Boulder 
8 

Boulder 
9 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 63.43 55.60 58.63 63.45 66.39 53.52 61.50 75.21 66.99 55.68 

TiO2 0.56 0.87 1.53 0.44 0.69 0.58 1.34 0.05 0.57 1.24 

Al2O3 18.51 17.24 16.01 16.58 15.77 19.22 15.78 14.50 15.68 17.17 

Fe2O3* 4.46 6.80 9.16 4.44 4.88 8.34 6.87 0.78 4.05 8.01 

MnO 0.09 0.16 0.17 0.09 0.14 0.20 0.15 0.08 0.08 0.15 

MgO 1.41 5.28 2.15 3.22 0.90 3.23 1.89 0.29 1.97 4.74 

CaO 3.75 8.40 5.17 5.27 2.38 9.12 4.05 1.45 3.85 7.33 

Na2O 5.46 3.79 3.91 4.15 5.66 3.69 5.34 4.63 4.18 3.97 

K2O 2.15 1.31 2.84 1.89 3.31 1.64 2.51 2.87 2.38 1.33 

P2O5 0.30 0.21 0.48 0.15 0.21 0.40 0.46 0.07 0.15 0.39 

LOI 4.46 3.05 2.77 0.58 0.08 0.73 3.84 0.24 1.11 0.34 
Total 100.12 99.66 100.05 99.68 100.33 99.94 99.89 99.93 99.90 100.01 

           
Rb 45.2 33.6 54.6 38.8 89.1 28.7 53.2 77.6 48.5 30.1 
Sr 664 494 390 859 275 1241 363 359 490 521 
Y 19.3 24.7 46.7 9.6 60.6 29.7 49.0 7.2 18.6 30.5 
Zr 207 139 321 133 635 94 428 78 175 232 
V 51 163 161 96 33 208 117 8 88 203 
Ni 4 54 2 70 4 8 4 4 35 83 
Cr 22 143 20 87 24 19 32 32 62 112 
Nb 4.5 3.9 13,1 2.3 19.1 3.4 17.2 5.9 5.4 7.4 
Ga 22.6 18.3 21.0 20.9 24.3 18.8 22.2 18.8 19.6 19.4 
Cu 31 83 24 68 22 41 41 9 53 119 
Zn 76 97 82 58 87 82 93 46 54 91 
Co 4 23 17 10 1 19 10 <1 7 26 
Ba 577 277 926 683 1098 654 782 1011 749 503 
La 30 15 25 23 46 27 31 31 21 20 
Ce 54 26 57 30 90 38 59 51 39 37 
U 2.9 <0.5 1.0 0.8 2.7 1.1 2.4 2.0 2.5 1.4 
Th 7.1 <0.5 7.0 <0.5 12.0 <0.5 9.4 10.6 6.5 <0.5 
Sc 4 21 18 8 7 20 13 <1 7 20 
Pb 15 <1 5 19 20 7 15 6 10 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Boulder 
10 

Boulder 
11 

Boulder 
12 

Boulder 
13 

Boulder 
14 

Boulder 
15 

Boulder 
16 

Boulder 
17 

Boulder 
18 

Boulder 
20 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 53.19 62.83 54.17 54.40 64.80 54.62 62.28 62.49 57.03 54.42 

TiO2 1.36 0.52 1.11 1.30 0.46 1.66 0.67 0.99 1.38 1.91 

Al2O3 17.71 17.32 17.91 17.98 17.12 16.70 16.73 16.01 16.79 16.35 

Fe2O3* 9.19 4.94 8.27 8.39 4.28 9.57 5.40 6.51 8.03 10.09 

MnO 0.16 0.10 0.14 0.14 0.10 0.16 0.10 0.16 0.13 0.20 

MgO 4.70 2.96 4.72 4.35 2.07 4.21 3.24 1.75 3.82 3.27 

CaO 7.80 5.55 7.79 7.83 4.73 7.44 5.44 3.90 6.70 6.05 

Na2O 4.15 4.28 3.91 4.10 4.28 4.02 4.28 5.42 4.12 4.82 

K2O 1.21 1.40 1.50 1.18 1.99 1.35 1.54 2.31 1.86 1.87 

P2O5 0.36 0.17 0.29 0.32 0.16 0.42 0.18 0.33 0.48 1.15 

LOI 0.09 0.25 0.37 0.07 1.50 1.72 0.23 0.02 -0.04 1.65 
Total 99.83 100.07 99.81 99.99 99.99 100.15 99.86 99.87 100.34 100.13 

           
Rb 26.5 34.1 29.0 27.5 43.0 30.2 37.7 52.8 46.9 32.6 
Sr 631 671 630 589 639 520 608 369 548 616 
Y 28.9 11.2 22.6 27.4 12.5 35.1 13.7 44.1 34.8 47.9 
Zr 206 126 184 205 135 248 145 378 306 381 
V 222 85 225 207 83 242 106 106 200 122 
Ni 51 48 59 66 20 58 57 3 72 2 
Cr 67 72 72 68 35 75 95 10 110 18 
Nb 11.0 3.7 6.7 6.0 3.5 8.6 3.3 13.6 10.7 19.6 
Ga 20.2 20.6 20.5 19.6 20.8 19.7 19.5 22.7 20.2 21.2 
Cu 98 51 128 112 52 160 65 50 146 28 
Zn 91 63 84 82 62 90 66 91 80 107 
Co 28 11 27 26 7 28 14 8 20 24 
Ba 428 617 464 444 658 502 589 830 651 632 
La 22 18 18 21 20 18 17 33 29 28 
Ce 40 30 36 30 33 38 28 61 51 53 
U 2.0 1.3 2.0 0.6 2.3 2.5 1.1 2.6 2.7 0.8 
Th <0.5 <0.5 0.7 <0.5 4.0 2.3 <0.5 9.5 2.3 6.1 
Sc 23 9 22 19 8 22 11 13 16 18 
Pb <1 <1 10 1 15 1 7 11 21 9 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Boulder 
21 

Hawkins 
1 

Hawkins 
2 

Hawkins 
3 

Hawkins 
4 

Hawkins 
5 

Hawkins 
6 

Hawkins 
7 

Hawkins 
8 

Hawkins 
9 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 54.33 62.91 65.92 71.23 77.62 69.83 72.40 65.19 70.77 71.88 

TiO2 1.48 0.61 0.47 0.33 0.05 0.46 0.28 0.36 0.37 0.31 

Al2O3 17.33 16.75 15.90 14.96 12.40 15.32 14.54 16.64 15.03 14.64 

Fe2O3* 9.18 5.13 4.80 2.46 0.85 2.85 2.46 4.56 2.83 2.35 

MnO 0.15 0.12 0.06 0.07 0.03 0.07 0.07 0.13 0.04 0.07 

MgO 4.42 2.66 1.97 0.76 0.10 0.70 0.61 0.87 0.88 0.62 

CaO 7.50 4.52 4.83 2.15 0.37 1.69 2.24 2.04 2.17 1.86 

Na2O 4.13 4.48 3.12 4.83 3.93 5.16 3.98 5.72 4.79 4.82 

K2O 1.30 2.22 2.94 3.06 4.65 3.99 3.49 4.14 3.20 3.21 

P2O5 0.37 0.26 0.11 0.10 0.03 0.12 0.11 0.12 0.11 0.09 

LOI 0.59 2.43 5.40 0.36 0.18 0.27 0.28 1.61 0.30 0.37 
Total 100.19 99.66 100.12 99.95 100.03 100.19 100.18 99.77 100.19 99.85 

           
Rb 29.7 45.9 44.2 91.6 145.4 102.9 102.5 133.8 92.3 102.5 
Sr 546 619 110 225 16 177 261 264 233 183 
Y 30.9 14.6 23.1 21.6 38.9 32.1 23.0 50.6 23.9 25.4 
Zr 219 138 111 206 121 397 216 498 221 221 
V 237 101 133 32 4 36 36 28 43 28 
Ni 62 20 3 3 4 6 5 5 6 5 
Cr 78 44 26 23 9 18 21 16 17 21 
Nb 7.2 7.3 1.5 7.6 12.8 15.6 8.5 54.7 8.8 8.5 
Ga 19.3 19.7 14.5 19.4 17.8 21.6 17.6 23.3 20.4 19.2 
Cu 148 39 54 17 11 20 26 16 77 14 
Zn 96 83 70 49 14 54 37 69 23 45 
Co 29 8 4 <1 <1 <1 <1 <1 <1 <1 
Ba 436 1086 752 888 227 1047 1450 648 926 942 
La 19 19 18 27 37 37 29 51 27 29 
Ce 33 46 27 52 56 62 57 104 39 51 
U 1.3 0.5 2.1 3.4 6.4 2.8 2.8 12.1 2.7 2.5 
Th 1.3 1.4 4.0 12.0 28.2 18.0 12.4 41.7 10.0 13.6 
Sc 22 10 19 1 <1 2 3 1 1 <1 
Pb 4 10 2 6 3 25 9 27 11 1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Hawkins 
10 

Hawkins 
11 

Hawkins 
12 

Hawkins 
13 

Hawkins 
14 

Hawkins 
15 

Hawkins 
17 

Hawkins 
18 

Chitistone 
1 

Chitistone 
2 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 48.33 65.61 48.89 62.40 51.62 70.71 70.07 57.74 49.88 51.68 

TiO2 1.15 0.49 2.33 0.80 1.93 0.35 0.40 1.27 1.72 1.89 

Al2O3 15.24 16.46 14.35 16.48 17.73 14.95 15.33 15.56 18.09 16.39 

Fe2O3* 11.17 5.36 14.21 6.71 12.35 2.45 2.94 8.36 10.82 10.16 

MnO 0.30 0.13 0.21 0.18 0.24 0.07 0.08 0.15 0.26 0.16 

MgO 13.14 1.70 6.04 1.80 4.20 0.95 0.97 4.35 4.03 5.56 

CaO 7.51 2.41 10.79 3.55 6.80 2.46 2.44 6.24 7.41 7.85 

Na2O 2.12 4.62 2.53 5.13 3.65 4.66 4.98 3.92 4.10 3.91 

K2O 0.89 2.90 0.41 2.56 1.04 2.90 2.72 1.86 2.66 1.49 

P2O5 0.28 0.19 0.23 0.35 0.55 0.10 0.11 0.32 0.68 0.55 

LOI 0.71 3.64 0.85 1.58 2.33 0.38 0.48 0.61 2.99 1.95 
Total 100.13 99.87 99.99 99.96 100.11 99.60 100.04 99.77 99.65 99.64 

           
Rb 28.1 59.8 7.4 69.1 22.7 86.6 90.0 45.9 45.0 22.8 
Sr 127 240 227 206 511 265 253 441 691 607 
Y 32.4 36.9 33.3 40.0 53.2 18.0 24.2 44.4 39.0 39.2 
Zr 82 353 155 288 314 177 223 165 230 268 
V 253 59 419 68 170 43 45 183 229 218 
Ni 265 5 69 5 8 8 7 40 22 88 
Cr 685 19 124 21 37 28 29 69 21 163 
Nb 5.3 23.3 11.4 21.3 14.7 7.2 7.6 8.9 18.9 12.1 
Ga 15.9 22.0 20.1 20.3 22.7 19.1 20.2 19.0 17.4 19.5 
Cu 41 18 220 14 66 15 14 58 57 46 
Zn 309 59 105 119 157 49 48 104 129 102 
Co 66 6 48 8 37 <1 <1 24 30 33 
Ba 114 706 113 997 443 869 908 530 1197 515 
La 15 47 12 27 21 25 26 20 29 22 
Ce 33 90 21 53 48 42 52 42 75 45 
U <0.5 5.6 <0.5 1.4 1.2 1.5 1.3 1.8 1.3 4.0 
Th 5.5 23.6 <0.5 13.9 9.0 12.9 12.9 4.4 2.4 3.0 
Sc 35 4 34 8 19 2 3 19 19 19 
Pb 45 30 7 3 8 6 <1 <1 5 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Chitistone 
3 

Chitistone 
4 

Chitistone 
6 

Chitistone 
7 

Chitistone 
8 

Chitistone 
9 

Chitistone 
10 

Chitistone 
11 

Chitistone 
12 

Chitistone 
13 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 49.60 65.81 54.04 68.30 74.51 57.76 48.80 52.27 75.34 70.52 

TiO2 1.95 0.54 0.83 0.59 0.20 1.44 2.83 1.88 0.07 0.37 

Al2O3 15.43 16.50 20.88 14.79 14.05 16.70 15.07 17.01 14.68 14.91 

Fe2O3* 12.58 4.21 8.93 3.50 1.94 7.95 15.23 9.90 0.98 3.65 

MnO 0.18 0.09 0.13 0.07 0.02 0.13 0.24 0.15 0.05 0.08 

MgO 6.37 2.15 3.95 1.58 1.37 3.08 4.40 3.88 0.38 1.18 

CaO 8.93 4.55 3.77 2.79 1.63 5.70 9.71 8.25 1.86 1.79 

Na2O 4.27 3.95 5.72 4.17 3.89 4.64 3.14 4.28 4.24 5.07 

K2O 0.70 2.04 1.92 3.61 2.10 2.06 0.41 1.41 2.44 2.05 

P2O5 0.18 0.17 0.16 0.15 0.06 0.37 0.22 0.46 0.07 0.10 

LOI 3.08 6.50 5.53 1.85 3.88 0.09 0.39 3.93 2.05 2.24 
Total 100.19 100.01 100.33 99.55 99.77 99.83 100.05 99.49 100.11 99.72 

           
Rb 5.4 43.3 35.8 94.9 36.2 49.4 8.5 34.8 62.1 29.2 
Sr 384 485 201 331 93 477 254 485 363 183 
Y 32.4 15.6 21.5 26.1 19.8 31.0 32.5 36.9 9.2 34.2 
Zr 119 159 67 315 153 259 147 285 109 149 
V 349 90 293 74 27 161 417 188 9 45 
Ni 91 15 11 25 4 25 28 33 2 4 
Cr 189 46 31 60 19 47 52 71 7 16 
Nb 8.1 3.3 0.6 7.1 4.3 9.3 15.1 13.8 8.3 3.1 
Ga 18.1 19.1 19.3 18.8 14.2 21.7 21.8 19.9 18.3 17.5 
Cu 128 28 181 39 11 54 438 52 14 11 
Zn 92 65 92 76 39 86 104 90 14 36 
Co 46 5 28 2 <1 21 37 25 <1 <1 
Ba 157 660 465 843 557 716 117 502 813 1052 
La 7 25 14 33 24 25 8 20 32 22 
Ce 13 48 23 62 36 47 15 35 53 40 
U <0.5 1.8 <0.5 3.7 3.4 2.8 <0.5 2.7 1.9 1.8 
Th 1.4 7.8 9.3 17.6 13.7 3.8 1.3 2.6 11.9 7.5 
Sc 33 9 27 4 3 13 33 21 <1 6 
Pb <1 ! 2 14 18 <1 <1 9 1 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Chitistone 
14 

Chitistone 
15 

Chitistone 
17 

Chitistone 
18 

Chitistone 
19 

Chitistone 
20 

Chitistone 
21 

Chitistone 
22 

Chitistone 
23 

Chitistone 
24 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 50.41 69.27 49.05 59.86 51.97 57.55 57.48 63.06 83.05 52.05 

TiO2 1.93 0.55 1.47 0.99 1.54 1.39 0.58 0.96 0.13 1.79 

Al2O3 14.01 14.65 16.34 16.67 18.25 17.64 18.47 16.56 9.40 16.91 

Fe2O3* 13.44 3.03 11.95 6.51 9.00 7.51 6.89 5.54 1.55 9.86 

MnO 0.23 0.06 0.17 0.12 0.13 0.15 0.19 0.16 0.02 0.16 

MgO 6.48 1.40 7.47 3.40 4.38 2.65 2.53 1.88 0.44 5.60 

CaO 10.16 2.55 9.43 5.57 9.27 6.13 7.43 3.78 0.71 8.15 

Na2O 2.65 4.13 3.75 4.47 4.05 4.66 3.98 5.17 3.75 3.93 

K2O 0.45 3.80 0.41 1.85 0.70 1.97 1.86 2.27 0.83 1.26 

P2O5 0.18 0.14 0.14 0.26 0.31 0.32 0.23 0.38 0.05 0.52 

LOI 0.24 1.97 2.75 0.92 2.57 1.51 1.00 2.52 1.31 1.85 
Total 99.94 99.58 100.18 99.70 99.60 99.97 99.64 99.76 99.93 100.23 

           
Rb 11.5 97.8 5.3 40.0 5.8 49.5 41.5 71.4 15.6 16.6 
Sr 197 315 399 556 618 546 1050 564 159 637 
Y 30.7 24.0 28.2 28.7 32.0 30.6 22.1 37.8 16.3 37.6 
Zr 113 306 91 178 168 261 112 313 111 253 
V 365 71 310 136 191 150 147 74 32 210 
Ni 47 20 150 30 53 7 5 3 4 89 
Cr 44 51 335 59 119 28 19 16 27 168 
Nb 9.5 6.5 4.8 5.1 6.4 11.4 5.7 18.5 3.1 11.5 
Ga 19.2 19.1 16.8 20.1 19.6 22.4 19.3 21.8 11.9 20.0 
Cu 230 51 37 34 37 39 19 24 15 53 
Zn 107 47 93 85 81 100 69 92 26 95 
Co 48 1 52 17 31 16 10 3 <1 33 
Ba 105 806 301 603 371 619 999 1255 483 501 
La 8 32 10 25 15 25 21 42 20 21 
Ce 19 58 10 49 27 44 46 84 23 41 
U <0.5 2.9 <0.5 2.3 1.2 3.8 <0.5 3.1 3.2 4.0 
Th <0.5 17.0 <0.5 1.3 <0.5 5.2 <0.5 9.7 11.4 0.6 
Sc 36 4 33 13 21 11 13 9 1 19 
Pb <1 15 4 3 13 4 18 7 19 <1 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Nizina 1 Nizina 3 Nizina 4 Nizina 6 Nizina 7 Nizina 8 Nizina 9 Nizina 
11 

Nizina 
12 

Nizina 
13 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 71.60 59.78 67.40 64.99 71.19 72.25 71.62 57.58 72.58 71.32 

TiO2 0.19 0.87 0.58 0.91 0.49 0.34 0.16 1.29 0.36 0.38 

Al2O3 16.32 17.08 16.17 15.12 14.58 14.14 15.98 17.93 14.47 14.73 

Fe2O3* 1.88 5.84 3.21 6.01 2.81 2.46 1.87 7.20 1.88 2.26 

MnO 0.09 0.12 0.12 0.14 0.07 0.07 0.09 0.15 0.08 0.09 

MgO 0.27 3.76 0.90 1.34 0.62 0.79 0.23 3.38 0.36 0.60 

CaO 2.63 6.79 2.34 3.01 1.72 1.68 2.14 6.36 0.96 1.54 

Na2O 5.24 3.82 5.90 5.05 6.20 4.87 5.37 4.23 5.81 5.38 

K2O 1.97 1.67 2.83 2.58 2.47 3.00 2.10 1.31 3.18 3.32 

P2O5 0.12 0.22 0.16 0.34 0.11 0.10 0.11 0.30 0.06 0.10 

LOI 1.35 2.54 0.58 1.31 1.62 1.26 2.10 4.84 0.57 0.22 
Total 100.31 99.95 99.61 99.49 100.26 99.70 99.67 99.73 99.74 99.72 

           
Rb 45.7 38.4 68.0 58.1 53.7 66.2 53.1 24.0 74.4 86.8 
Sr 467 586 326 342 184 193 442 539 149 196 
Y 12.9 23.2 36.5 51.6 36.8 25.0 13.1 31.8 43.1 34.0 
Zr 172 194 391 397 382 228 178 207 437 312 
V 18 151 48 63 36 41 16 151 19 31 
Ni 4 53 5 5 4 8 4 28 4 5 
Cr 9 95 14 19 6 10 5 50 9 5 
Nb 3.5 4.6 15.5 10.8 12.2 10.9 3.6 5.9 13.8 16.5 
Ga 20.1 18.9 22.2 22.6 18.6 18.7 19.5 21.0 21.7 21.0 
Cu 12 67 15 31 20 21 12 43 16 18 
Zn 53 68 86 79 50 50 60 87 60 53 
Co <1 17 <1 7 <1 <1 <1 18 <1 <1 
Ba 761 555 1253 906 803 988 784 415 1116 1228 
La 24 21 35 33 36 35 25 21 41 39 
Ce 41 34 73 65 67 67 44 35 86 75 
U <0.5 0.8 2.6 2.5 2.5 0.9 1.1 0.6 3.1 4.2 
Th 3.9 1.1 10.1 10.6 15.8 14.2 5.4 6.3 14.6 13.1 
Sc <1 15 2 9 3 1 <1 18 3 <1 
Pb 9 7 12 8 10 11 <1 1 15 8 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Nizina 
14 

Nizina 
15 

Nizina 
16 

Nizina 
17 

Nizina 
18 

Nizina 
19 

Nizina 
20 

Nizina 
24 

Jasksina 
1 

Jasksina 
2 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 71.07 61.32 60.72 77.83 53.88 73.82 58.02 58.24 67.42 63.79 

TiO2 0.45 0.76 0.40 0.06 1.01 0.37 1.14 1.22 0.52 0.62 

Al2O3 14.99 16.93 17.19 12.67 16.86 13.71 18.24 18.73 16.31 16.93 

Fe2O3* 2.80 5.38 6.65 0.60 8.24 1.84 7.20 5.77 3.62 4.89 

MnO 0.07 0.14 0.15 0.04 0.15 0.07 0.14 0.10 0.12 0.13 

MgO 0.68 2.89 2.63 0.12 5.29 0.27 2.78 1.92 1.20 1.67 

CaO 1.81 5.80 6.87 0.49 9.33 0.84 6.32 6.66 3.19 4.33 

Na2O 5.55 4.69 3.54 4.08 3.63 5.65 4.57 4.42 5.16 5.09 

K2O 2.89 1.49 1.55 4.20 0.92 2.88 1.51 2.16 2.20 1.84 

P2O5 0.11 0.18 0.17 0.03 0.23 0.06 0.35 0.44 0.19 0.23 

LOI 0.52 1.66 0.77 0.37 5.23 1.89 2.22 1.53 0.48 1.46 
Total 100.42 99.58 99.87 100.12 99.54 99.51 100.27 99.66 99.93 99.52 

           
Rb 63.2 44.4 33.8 117.4 15.5 65.8 28.6 45.1 46.6 37.1 
Sr 189 548 735 82 552 152 618 769 430 497 
Y 37.4 20.3 15.6 13.8 26.5 41.6 30.3 28.9 19.8 21.0 
Zr 346 145 85 95 146 430 233 299 241 185 
V 32 119 138 4 178 26 145 138 58 71 
Ni 6 5 6 3 110 4 14 25 7 8 
Cr 8 13 15 9 306 11 24 54 14 10 
Nb 10.8 5.5 2.5 11.7 5.1 13.6 8.4 12.9 7.5 6.3 
Ga 21.3 19.3 17.4 16.6 17.3 19.8 20.5 22.4 20.5 20.6 
Cu 15 22 31 9 39 12 35 55 24 30 
Zn 36 85 48 25 83 64 89 73 64 71 
Co <1 12 8 <1 32 <1 20 12 1 4 
Ba 874 482 847 1235 380 1169 658 788 863 556 
La 33 19 16 40 19 37 25 33 30 21 
Ce 62 36 25 71 32 80 45 56 55 40 
U 2.9 2.0 1.2 2.9 0.7 3.3 1.9 2.9 2.2 1.3 
Th 10.9 2.1 <0.5 19.0 <0.5 15.5 2.4 3.3 2.2 0.5 
Sc 2 13 16 <1 20 1 16 11 3 6 
Pb 15 10 16 20 <1 12 <1 3 2 5 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Jasksina 
3 

Jasksina 
4 

Jasksina 
5 

Jasksina 
6 

Jasksina 
7 

Jasksina 
8 

Jasksina 
9 

Jasksina 
10 

Jasksina 
11 

Jasksina 
12 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 58.92 67.90 72.31 58.86 55.02 61.58 62.07 69.09 67.66 60.46 

TiO2 0.92 0.41 0.13 1.15 1.00 0.76 0.61 0.36 0.29 0.74 

Al2O3 17.08 16.23 15.75 16.53 16.79 17.66 17.83 16.18 16.78 16.69 

Fe2O3* 6.79 3.25 1.61 7.23 7.51 5.51 5.36 3.20 3.25 6.04 

MnO 0.13 0.14 0.09 0.13 0.14 0.08 0.11 0.14 0.08 0.11 

MgO 3.50 0.98 0.45 3.42 6.93 2.31 2.49 0.91 1.44 3.72 

CaO 6.22 2.72 2.04 6.01 7.65 5.85 5.72 2.71 3.85 5.96 

Na2O 4.24 5.56 5.39 4.42 3.72 4.25 4.39 5.48 5.33 3.97 

K2O 1.47 2.24 1.95 1.85 1.18 1.74 1.38 1.98 1.26 1.74 

P2O5 0.23 0.19 0.11 0.28 0.26 0.20 0.17 0.21 0.12 0.20 

LOI 0.72 1.56 0.34 0.96 0.24 1.59 0.55 0.25 1.47 0.87 
Total 99.50 99.62 99.83 99.88 100.20 99.94 100.13 100.26 100.06 99.63 

           
Rb 31.3 46.2 46.8 42.4 18.5 41.5 31.8 41.0 24.4 44.5 
Sr 540 463 347 460 592 500 601 408 655 548 
Y 24.8 27.4 8.0 31.7 21.4 20.5 17.4 22.5 10.0 21.8 
Zr 177 269 132 252 147 165 137 242 98 203 
V 148 23 17 162 175 139 114 25 63 131 
Ni 25 3 3 26 156 22 14 5 13 59 
Cr 45 5 4 54 287 43 30 19 34 107 
Nb 5.9 11.3 7.9 8.3 9.1 4.7 3.8 13.1 0.8 7.1 
Ga 19.8 21.6 20.2 19.6 18.7 20.3 20.8 20.4 20.6 19.2 
Cu 54 16 15 55 78 40 40 18 23 87 
Zn 84 78 51 75 71 65 62 72 53 73 
Co 16 <1 <1 19 29 12 9 <1 2 16 
Ba 557 912 831 588 329 707 576 763 476 592 
La 22 38 26 21 17 20 20 33 17 22 
Ce 33 69 52 38 30 39 33 58 24 41 
U 0.5 1.8 0.8 1.5 0.6 2.1 <0.5 1.0 <0.5 0.7 
Th <0.5 7.7 4.1 5.3 <0.5 3.8 <0.5 5.3 <0.5 2.6 
Sc 16 1 <1 15 17 12 9 1 4 11 
Pb <1 7 1 5 1 15 19 18 19 7 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Jasksina 
13 

Jasksina 
14 

Jasksina 
15 

Jasksina 
16 

Copper 
2 

Copper 
3 

Copper 
4 

Copper 
5 

Copper 
6 

Copper 
8 

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SiO2 66.97 58.52 56.31 66.79 58.92 55.86 64.60 62.79 70.33 56.59 

TiO2 0.33 0.84 1.01 0.55 0.94 1.88 0.46 0.82 0.32 1.09 

Al2O3 16.65 17.21 17.06 16.14 16.01 15.85 17.16 16.05 16.50 16.94 

Fe2O3* 3.45 6.83 7.73 4.59 6.78 9.79 4.40 5.75 2.44 7.24 

MnO 0.07 0.12 0.13 0.12 0.12 0.15 0.09 0.10 0.05 0.12 

MgO 1.45 4.62 4.87 0.79 4.77 3.53 1.88 3.18 0.34 4.87 

CaO 4.18 6.55 7.07 2.28 6.47 6.58 4.73 5.23 2.88 7.68 

Na2O 4.61 3.80 3.85 5.96 3.75 3.98 4.52 4.04 4.87 3.43 

K2O 1.61 1.64 1.36 2.87 1.71 1.97 1.61 2.17 2.08 1.85 

P2O5 0.12 0.19 0.26 0.18 0.22 0.62 0.19 0.19 0.12 0.25 

LOI 1.03 0.57 0.22 0.19 0.07 0.34 1.79 0.05 1.68 -0.06 
Total 99.44 100.32 99.65 100.27 99.69 100.21 99.64 100.32 99.93 100.06 

           
Rb 32.1 43.0 28.9 53.6 45.9 45.8 33.4 63.8 44.1 46.8 
Sr 598 524 546 275 617 496 578 585 487 685 
Y 9.9 22.8 25.7 45.3 21.5 39.1 14.2 21.9 8.0 21.8 
Zr 100 176 187 412 199 353 138 232 164 236 
V 61 156 168 23 161 276 85 132 36 194 
Ni 6 80 83 4 81 45 15 53 6 57 
Cr 21 140 135 13 152 83 35 92 18 136 
Nb 2.6 4.9 6.5 17.3 6.1 13.6 5.8 6.5 6.7 6.5 
Ga 20.4 18.5 18.7 23.7 19.1 19.6 19.8 19.1 19.1 19.4 
Cu 36 83 97 13 89 209 36 90 16 123 
Zn 54 71 77 89 74 110 64 64 48 66 
Co 3 32 27 <1 20 27 5 12 <1 21 
Ba 655 512 429 992 538 621 582 643 749 608 
La 17 20 20 45 22 26 24 22 26 26 
Ce 25 37 28 89 39 42 40 40 42 45 
U 0.8 0.8 0.7 2.2 1.8 1.8 1.4 1.0 2.0 2.6 
Th <0.5 1.9 0.8 11.1 3.6 6.8 2.6 5.6 5.0 1.9 
Sc 5 16 18 8 16 20 6 9 1 19 
Pb 6 <1 5 5 13 <1 1 <1 7 5 

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 
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Sample Copper 
10 

Copper 
11 

Copper 
12 

Copper 
13 

Copper 
14 

Copper 
15 

Copper 
16 

   

Age 
(Ma) 

N.D. N.D. N.D. N.D. N.D. N.D. N.D.    

± Ma N.D. N.D. N.D. N.D. N.D. N.D. N.D.    

SiO2 54.42 62.26 56.49 59.81 69.35 64.53 65.06    

TiO2 1.14 1.12 0.87 1.05 0.32 0.46 0.70    

Al2O3 17.55 15.76 18.61 16.32 15.81 17.28 16.22    

Fe2O3* 7.96 6.34 7.81 6.71 3.10 4.53 4.89    

MnO 0.14 0.19 0.14 0.12 0.10 0.12 0.12    

MgO 5.18 1.69 3.62 3.85 1.01 2.13 1.35    

CaO 8.44 3.78 6.62 5.94 3.11 4.81 3.39    

Na2O 3.82 5.53 4.26 3.81 4.79 4.58 5.46    

K2O 0.88 2.62 1.22 2.27 2.06 1.51 2.39    

P2O5 0.23 0.45 0.21 0.29 0.15 0.20 0.24    

LOI 0.38 0.88 0.61 1.73 0.66 0.86 0.39    
Total 99.76 99.74 99.85 100.17 99.80 100.15 99.82    

           
Rb 21.5 60.4 25.8 68.8 44.5 33.4 51.5    
Sr 530 368 639 421 460 600 363    
Y 23.9 61.0 19.6 28.1 12.6 13.5 34.7    
Zr 145 503 145 277 152 139 280    
V 176 64 168 152 31 83 70    
Ni 69 3 34 66 6 13 5    
Cr 144 10 53 123 14 32 17    
Nb 2.4 20.1 3.6 7.9 6.7 5.9 10.0    
Ga 18.8 24.4 20.6 19.3 18.6 19.7 22.4    
Cu 103 20 66 103 23 28 31    
Zn 76 115 81 74 55 67 76    
Co 26 3 24a 17 <1 5 3    
Ba 361 879 395 611 703 593 830    
La 14 36 19 21 26 25 30    
Ce 24 79 23 50 40 35 54    
U 0.5 1.9 <0.5 1.3 1.5 0.9 0.6    
Th <0.5 10.1 0.5 3.6 5.5 1.4 6.2    
Sc 23 15 16 13 3 5 6    
Pb 5 14 <1 1 <1 8 7    

 
 Note: All major element data expressed as raw weight % oxides; all other concentrations in ppm.  Fe2O3* is total Fe, N.D. = not 
determined. Dad = Dadina, Che = Chetaslina, Kot = Kotsina, Nad = Nadina, Kusk = Kuskulana. 

 

 

 

 

 

 

 


