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INTRODUCTION 

Photoelasticity is the science which deals with the effects of stress 

upon polarized light traversing transparent materials. During the past few 

decades, much progress has been made in the photoelastic method of stress 

analysis, it is a rather good tool for experimental stress analysis. 

The purpose of this experiment was to investigate the stress distribution 

of a pinched rectangular bean along the horizontal and vertical axes of 

symmetry (see Fig. 13). 

In the following section, the fundamental theory of two dimensional 

photoelasticity and experimental procedures will be discussed. As the 

method of photoelasticity depends fundamentally upon the properties of light, 

a brief explanation of the theories of light which are relevant will be 

given in the first section. In the next section, the theory of two-dimen- 

sional photoelasticity will be reviewed briefly. The third section includes 

the procedures of experimental work and description of apparatus. The last 

section will compare the stress distribution in the rectangular beam and in 

the circular disk. The circular disk has a diameter equal to the depth of 

beam, and the stress distribution will be calculated according to two-dimen- 

sional theory of elasticity. 

A BRIEF THEORY OF LIGHT 

Nature of Light 

There are two basic theories that attempt to explain the behavior of 

light. One theory states that the energy is emitted from a light source in 

the form of discrete quantities; this is the corpuscular, the emission or 
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particle theory. The second theory stated by Haxwell is that the light 

energy is transmitted by means of an electromagnetic wave train; this theory 

is called electromagnetic theory or wave theory of light. Since the transverse 

wave theory suffices-adequately to explain the fundamental facts'of photo - 

elasticity we shall assume this theory as a basis of explanation [5]. 

From the point of view of the wave theory, ordinary light and also 

ordinary monochromatic light can be thought of as random or chaotic harmonic 

vibrations of ether particles in directions transverse to the axis of 

propagation, i.e., transverse to the direction of the light beam. 

Fig. 1. Idealized representation of light vector. 

Ordinary or non-polarized light can be graphically represented by a 

sketch such as shown in Fig. 1 in which the radius vectors represent the 

amplitude of the ether vibration. 
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Polarized Light 

Figure 1 represents a cross section of a beam of ordinary light. Such 

a beam shows no special characteristic when viewed sidewise. Looked at 

from the x axis, it represents the same piCture as when viewed from the 'y 

axis. It has no polarity. It is possible to dampen it to eliminate all 

vibrations except those parallel to one plane, say the X-Z plane. When 

such is the case, we say that the light is polarized and that the vibrations 

are in the X-Z plane. Such polarized light is called "plane polarized light" 

and the X-Z plane may be called the "plane of polarization" [1, 2, 4, 5]. 

In polarized light, the vibrations of the ether particles are not 

chaotic or random, but have order and direction. We also distinguish between 

plane polarized light, circularly polarized and elliptically polarized light. 

In plane polarized light (Fig. 2a), the transverse vibrations lie wholly in 

one plane. Not so in circularly polarized light. Here the plane of vibration 

changes its direction as the ray advances, so that the arrows representing 

the vector amplitudes of vibration trace out a circle with center at 0 

(Fig. 2b). Lastly, in elliptically polarized light the vibrations change 

in magnitude as well as direction, in such manner that the vector representing 

the vibration traces out a definite ellipse (Fig. 2c) [1]. 

Plane polarized light can be obtained by letting the beam of light pass 

through a transparent medium such as a Nicol's prism, or more usually a 

Polaroid Sheet. 



Plane Circular 

Fig. 2. Vector representation of polarized light. 

(a) Plane Polarized ,(b) Circular Polarized 

Double Refraction 

Elliptical 

(c) Elliptically 
Polarized 

The fundamental optical phenomenon entering into all photoelastic 

investigations of stress distribution is the phenomenon of "double 

refraction". Not only does this account for what is going on within the 

stressed model itself, but it also forms the basis for the design of the 

central parts (such as quarterwave plates) of all effective photoelastic 

polariscopes. 

Numerous transparent solids, such as quartz,, mica or Iceland spar, have 

two or three optical axes;mica, due to the distribution of molecules, has 

two optical axes whiCh are in planes parallel to the cleavage planes of the 

crystal and are at right angles to each other. Therefore, when a beam of 

monochromatic light is incident upon a sheet of mica, it splits into two 

plane polarized waves; the ordinary and the extraordinary, which vibrate 

in mutually perpendicular planes. The two beams travel through the crystal 

with different velocities and therefore emerge with a phase difference whose 

magnitude is dependent upon the thickness of the crystal and the difference 

of refraction indices in the two mutually perpendicular planes [2, 4, .5] 
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Due to mica having this special character, a sheet of mica is often 

used as a "quarter-wave plate" by adjusting the thickness of the sheet so 

that the relative retardation between the two components of the light is 

exactly one quarter of one-wave length for a certain monochromatic light. 

THEORY OF TdO-DI NENSIONAL PHOTOELASTICITZ 

Photoelasticity is based on the fact that an optically isotropic 

transparent solid becomes optically anisotropic when subjected to forced 

deformation, that is, a deformed optically isotropic solid demonstrates 

optical properties similar to those of crystals and the degree of optical 

anisotropy is proportional to the deformation of the material. 

Experiment has shown that at any point in a stressed transparent solid, 

the axes of polarization of light passing through the solid are parallel 

to the directions :of the principal stresses in the plane of the wave-front 

at that point, also the difference of the velocities of, the two oppositely 

polarized waves at the point is proportional to the difference of these two 

principal stresses [2, 4, s] 

In Fig. 3, abed represents a deformed transparent material of uniform 

thickness which is set perpendicular to the line of propagation of plane 

polarized light. 0 is the point of intersection of the plate and the 

polarized light. 



4 4 4 

Fig. 3. 
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Suppose that OA represents the plane of vibration of polarized light and 

that the length of OA = a represents the amplitude of the vibration. If 

the vibration is considered to be a simple .harmonic motion, the displacement 

may be represented by the equation 

A= a sin a)t 

where Wis proportional to the frequency of vibration which depends on the 

color of the light. 

In Fig. 3, the two principal stresses P and Q, different in magnitude, 

are applied to the edges of the plate. Due to the difference in the stresses, 

the optical properties of the transparent plate also become different in the 

two perpendicular directions. Let n1 and n2 be the indices of refraction 

along the principal axes X and Y respectively. Therefore, we get different 

velocities of light Vx and V in the planes OX and OY respectively. 

Vx = - c 

n2 

Where c is the velocity of light in vacuum.. 

The component of the light incident on the plate may be given along the 

planes of OX and OY as 
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A 
1 

= a cos 0 sin wt 

A2 = a sin 8 sin cot 

If d is the thickness of the plate, the time difference between two 

components of light will be 

tt ' (nl - n2) 

The relative retardation between the two components of the light 

expressed in whole wavelengths of the light may be written as 

toSt = 22(F = 2 X d (n1 n2) 

or 

F = - (ni - n2) 

where X= 2 it c/60 is the wave length of light and F is the number of wave- 

lengths of relative retardation. 

Experiment has shown that the difference of these velocities of light 

is proportional to the difference in the principal stresses, therefore, the 

relation between them will be shown as 

F = d (n 
I 

- n 
2 

) = 
C 

(P Q) 

where Cis called the photoelastic constant of the transparent material 

[2, 4, 5]. 

The resultant amplitude of the emergent light in plane mn because of 

relative retardation would be 

A5 = a sin 20 sin ..1-J41, (p Q) cos. (u) t + (P - Q)) 

or A5 = a sin 20 sin F71 cos (but + F7C) 

This is a simple harmonic vibration with amplitude a sin 28 sin FR'. 

Thus the intensity of the light will be zero if either sin 20 or sin Fir is 

zero, i.e., if either 28 = nn or Fn. = nit where n is zero or an integer [5]. 
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Isoclinics 

When the amplitude becomes zero because 20 = nit , the principal 

stresses in the plate are parallel to the planes. OA and ran respectively. 

If the planes of OA and nn are coincident with the axes of the polarizer and 

analyzer which are crossed, the intensity of light emerging from the analyzer 

will be zero. At every point in the plate where this occurs, the intensity' 

of light transmitted will be zero, whatever the wave length and whatever 

the magnitude of (P Q). In such case, certain black regions or lines will 

be observed which show the locus of all points in the plate at which the 

directions of the principal stresses are parallel to the axes of the polarizer 

and analyzer. Those black regions are called "Isoclinic lineS" or "lines of 

constant inclination of the principal stress" or simply "isoclinics" (2, 4, 5], 

From the elementary theory of elasticity, we know the directions of 

the principal stresses will change from point to point continuously in the 

area of the plate, therefore, if polarizer and analyzer are rotated simul- 

taneously, still keeping them crossed, the isoclinics will move from point 

to point continuously where the principal stresses are parallel to the new 

direction of the polarizer and analyzer. Thus we shall get a different set 

of isoclinic lines for each different orientation of polarizer and analyzer. 

Isochromatics 

The second condition for zero intensity of transmitted light occurs when 

the argument of the sine term Fit is either zero or it multiplied by an 

integer. This means F is either zero or an integral number of wave lengths 

of the light employed. If monochromatic light is employed, in this condition 
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certain black lines or regions will be observed. The lines or regions are 

called "isochromatic fringes" or "lines of constant color", "lines of 

constant principal stress difference", "lines of constant maximum shear 

stress" or simply "isochromatics" [7, 8]. 

In a stressed plate two distinct sets of dark fringes--isoclinics and 

isochromatics are usually viewed from a plane polariscope, in such cases the 

isoclinics always tend to mask the isochromatics. In order to eliminate 

the isoclinics, the quarter-wave plates are used. Due to introducing the 

quarter-wave plates, the arrangement of polarizer, analyzer and quarter- 

wave plates will produce circularly polarized light, and this kind. of 

arrangement is called a "circular polariscope", as distinguished from plane 

polariscope [2, 4, 5]. In the isochromatic pattern, showing the lines of 

relative retardation, the fringe order frequently cannot be interpreted 

without some indication of the growth of the.pattern as the loading was 

applied. Therefore, the growing fringe pattern must be watched as the 

loading is applied, and notes taken on the fringe order at variaus critical 

points. With this information available, the fringes on the photograph of 

the fringe pattern can be easily labeled for the analysis. Frequently the 

position of the zero fringe is all that is necessary to give the key to the 

fringe-value distribution in the pattern. 

The fringe pattern offers merely the information of the difference of 

principal stress (P Q) which is not enough to determine the principal 

stress at certain points, therefore it is necessary to know the direction 

of the principal stress at that point for separating stresses. The isoclinic 

pattern will give the whole information of the direction of principal stress. 
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However, at a free boundary of the structure, it is always easy to determine 

the principal stresses because one of the principal stress is zero at the 

boundary. 

Shear Difference Method 

The shear difference method is one of the methods which may be used tQ 

separate the stresses according to the data obtained from application of 

the photoelastic technique. The shear difference method is developed from 

the equilibrium equations of two dimensional theory of elasticity. This 

method had some advantage for the rectangular beam because of the clear 

boundary. So it was employed to evaluate the result in this experiment. 

Fig. 4. Sketch showing direction of shear stress 7:7 across section AB. 

Before using the shear difference method, the direction of shear along 

certain lines should be determined. The direction of the shear stress 7"../7 

at any point C on the arbitrary straight line AD is given by the Eq. (1) and 

shown in Fig. 4. 
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74 = sin 28 = (p - q) 1- sin 28' 
2 

where p is algebraically larger than q, and 8' is measured from the normal 

N to the direction of the algebraically maximum principal stress p. From 

the above description, we observe that the direction of the shear stress` 

Txy is the same as the initial direction of the angle 0' [2]. 

The equilibrium equation of two dimensions in theory of elasticity is 

given as 

6 x arT7 0 

9 .9Y 

(2) 

c96"71-, arxy _ 0 
ay a x 

Using e:::es as shown in Fig. 5 and integrating the first Eq. (2), it 

follows that 

in which 

(t5ix = dx 
i 

ay 

and 

Fip-. 5. 

( 3 ) 

c) denote respectively the stresses at points P and 0. 



By moans of approximation, the Eq. (3) may be expressed as 

(61x)p = Ox.)0 .....zLLE Lax 
y 

(4) 
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where LiTxy is difference'of shear stress at R and Q along a line .X = P, 

then:Ca;v1,141,y is an approximation to the slope of the curve f(y) at point 

P along a line parallel to Y axis. 

Selecting a suitable intervalzkx and ay, wo. will get an approximate 

value 51:-') along X axis if we can determine the value of (dx)0 at boundary. 
0 

INVESTIGATION OF MODEL 

The photoelastic polariscope used in the experimental stress analysis 

is sketched in Fig. 6, it is an 3-inch Research Polariscope manufactured by 

Chapman Laboratories. All components and controls of this equipment are 

mounted on a single rigid steel tube that extends the'length of the polari- 

scope. 

In regard to the light source, there is a dual lamp housing which contains 

both white and monochromatic. light sources and is mounted so that either 

source may be selected. The white source is a ribbon filament incandescent 

lamp and the monochromatic source is a high intensity mercury vapor lamp 

equipped with glass filter passing the green line (5461A °). 

The material selected for the model was CR -39 Diglycol Carbonate) 

which has high optical sensitivity and less susceptibility to time-edge 

effect than other materials. 

The mechanical Properties of CR-39 as given by Heywood [3) are: elastic 

limit = 3,000 psi, ultimate strength = 7,000 psi'and Young's Modulus = 

250,000 psi. Some of the disadvantages of CR-39. are its tendency to.creep 



Fig. 6. Sketch of photoelastic polariscope. 

S - light source 

- plane mirror 

L - parabolic mirror 

- quarter-wave plate 

P - polaroid 

A - polaroid 

C - camera lens 

F - film holder 
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under load and the effect of temperature on the physical and optical properties 

of the materials. However, most transparent plastics have these disadvan- 

tages, so the experiment must be done in a few hours after the, model is 

machined. 

To make a suitable model, a Dremel Moto-Saw was employed fora rough 

cut. Then a high speed milling machine (Chapman Model Making Kit, Model 45) 

WAS used for the finished cut. A 0.1 inch thick brass template was first 

made according to the exact contour required. The template was then placed 

on a sheet of CR-39 and a pencil was-used to outline the model on the plastic. 

The template was securely attached to the model with double-coated adhesive 

tape. The plastic sheet was carefully cut to leave about 1/16 inch margin 

around the desired boundary by using the mechanical saw. The final milling 

operation was achieved in the manner of a series of fast, light cuts, until 

the template was in contact with the guide pin as shown in Fig. 7. 

'ine spiral flutes 
,Tungsten carbide 

) (Midget mill 

Fig. 7. Sketch of milling machine. 

Chuck 

Model 

Template 

Guide pin 

ill table 
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The next stop was the calibration of the material C7 -39. The fringe 

number at various sections of a three-stage tension model for several loads 

were recorded. The sketch of the three-stage tension model is shown in 

Fig. 8; the data are -shown in Table 1. These data are used to plot a curve 

with the stress as the ordinate and fringe number as the abscissa, the curve 

is shown in Fig. 8. The fringe-stress coefficient found from the slope of 

this curve is 373 pounds per square inch per fringe. 

Table 1. Data taken for the determination of fringe-stress 
coefficient by use of a three-stage tension model. 11Ily 

Load 
in 

pounds 

Fringe 
number 
Sect. A 

Stress 
(psi) 

Sect. A 
Area = 

0.045 sq.in. 

Fringe 
number 
Sect. B 

Stress 
(psi) 

Sect. B 
Area = 

0.061 sq.in. 

Fringe 
number 
Sect. 

Stress 
(psi) 

Sect. C 

Area = 
C 0.094 sq.in. 

16.45 1 367 

22.78 37)4. 

32.9 2 732 

35.4 1 376 

44.3 2 740 

50.6 3 1149 

67.01 4 1490 

68.25 3 1120 

69.55 2 740 

82.2 5 1829 
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Three-stage 
tension model 
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= 373 psi/fringe 

3 

Fringe Order 

Fig. 8. Sketch of three-stage tension model and the curve of 
stress-optical coefficient. 
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After the rectangular model was machined, the model was placed in a 

loading frame and investigated in the polariscope. The model was loaded by 

means of a loading jig as shown in Fig. 9. The load was applied to the 

loading jig through a loading spring. The applied load was measured and 

indicated by a dial indicator on the spring. The jig was located on the 

polariscope midway between the polarizer and the analyzer. 

P 

1 -o 

0 

p 
Nodes 

Fig. 9. Sketch of loading jig. 

The simplest kind of a polariscope consists of a light source and two 

polaroid sheets which produces "plane polarized light". The polarized sheet 

nearest the light source is called the polarizer and the next polaroid sheet 

the analyzer as shown in Fig. 6. These can be crossed or para7301 depending 

upon whether a light or dark field is desired. A crossed polarizer and 

analyzer which completely extinguishes the light, was employed to investigate 

the isoclinics. The ordinary white light was employed to investigate the 

isoclinics. The isoclinic pattern is shown in Figs. 10 and 11. 
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(a) Zisoclinic. 

(b) 21° isoclinic. 

Fig. 10. Photographs of isoclinics in a rectangular beam. 
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Fig. 11. Sketch of the isoclinics for the angles indicated. 
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To investigate isochromatics, circularly polarized light was employed 

with monochromatic light. TUO quarter-wave plates were set between the 

analyzer and polarizer with the a:d..s making angles of 45 degrees to the 

a.:d_s of analyzer and polarizer to produce the circularly polarized light. 

The typical fringe pattern is shown in Fig. 12. 

With the arrangement of the polariscope mentioned previously, a complete 

photographic record of the results was made. The camera was equipped with a 

standard press back which accommodated standard 4" x 5" film holders. Urien 

the back of the camera was open, an image of the stressed model could be 

viewed on the ground glass. 

The isochromatic photographs were taken on Kodak Contrast Process 

Panchromatic Film with an exposure time of one second. The negatives were 

developed for 3 to 4 minutes in Kodak D-11 Developer. The same film was 

used for the:Ise-Clinic photographs, but these were exposed for 1/2 second. 

The load was changed slightly to make the isochromatics less distinct than 

before, while taking photographs of the isoclinics. The reason for slight 

loading is that the principal stress directions are defined no matter how 

great the load is. The negatives were then developed as before. 

The following method, which is called the Tardy Method, was used to 

measure fractional fringe order. This procedure is outlined below: 

1. Determine the direction of principal stress at point A which is 

in question. Then rotate the crossed analyzer and polarizer simultaneously 

until a dark line covers the point A. At that time, the polarizer and the 

analyzer are parallel to the directions of principal stress at A. 

2. Insert quarter-wave plates to produce circularly polarized light 

of dark field. In this arrangement, the polarizer and the two quarter -wave 
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a. Dark-field polariscope. 

b. Light-field polariscope. 

Fig. 12. Isochromatic fringe pattern of a rectangular beam. 
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plates are locked in position. Then rotating the analyzer through 180 

degrees results in a motion corresponding to one complete fringe. 

3. Rotate the analyzer to extinguish light at A. The angle of 

rotation of the analyzer 6,in degrees is measured and 6/180 is the fractional 

fringe at that point. Turning the analyzer in one sense results in an 

increase in the fringe number and rotating it in the opposite sense decreases 

the fringe order at that point. For instance, at a point A lying between 

fringe order one and two, the number of fractional fringe is either 

(1 01/130) or (2 - 02/180). 

The procedures to separate the stresses both on the vertical axis DC. 

and horizontal axis AC of symmetry of the beam as shown in Fig. 13 were 

carried out in the following manner. 

First only the quarter ABC]) of beam was considered, because of its 

symmetry to the other three parts, then line AB was divided into ten equal 

intervals which had the length of d/20 and the horizontal lines were drawn 

to get sections a-a, b-b, c-c, etc. In the same manner horizontal AC was 

divided into ten equal intervals of length 2d/20 and the vertical lines 

were drawn parallel to line AB to get lines 0-0, 1-1, 202, etc. as shown 

in Fig. 14. 

The fringe order and the direction of principal stress at each point 

on every horizontal section were determined from the fringe pattern and 

isoclinic pattern. The direction and the magnitude of shear stress at each 

point of a section were determined by using the Eq. (1) and the stress 

trajectories shown in Fig. 15. The direction and magnitude of shear stress 

along every section were tabulated in Tables 2, 3, and 4. 
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b 

Ve '7; t'a Force 

2 .9 2° 

Fig. 13. Dimension of rectangular beam. 
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Fig. 14. The enlargement of ABCD section on Fig. 13. 
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Using the data shown in Tables 2, 3, and 4, we may calculate the normal 

stresses along horizontal sections by means of the shear difference method. 

For instance, we take section c -c as the X axis and AB as the Y axis, then 

the can apply the Eq. '"'(4) thereATXy is theshea:rdifference between section 

b-b and d-d and a x is equal to A y (see Fig. 14). The Eq. (4) becomes 

(ex)p =. (ex)c - 
n=10 

Tclir 1 (5) 

Table 6 shows the value of the normal stress ex at points n3ong section 

c-c. Similarly, Tables 5-11 show the value of the normal stress 45'x at 

points along each section. 

To calculate ey along CG, we use the equation y =ex +Ai(p-q)2 - 47-v2 

The value of the normal stress ey at points along CG is shown in Table 13. 

In the same manner, the value of normal stress ey along AC was obtained 

and shown in Table 14. 



Table 2. Calculation of transverse shear-stress across section of a rectangula 

SeCt. a-a 
Sta- 0 fringes 0 
tion deg. 1 sin 20 p-q Tv deg. 

-1- 

sin 2 

Sect. b-b 

fringes 
p-q Txy 

eam 

Sect. c-c 
0 fringes 

deg. z sin 20 p-q 77,7 

0 0 0.20 0 0 0 0.2 0 0 0 0.2 0 

1 0 0,18 0 3.5 0.061 0.05 -0.003 5.5 0.095 0.0L -0.004- 

2 0 0 0.16 0 4.5 0.073 0.05 -0.004 9 0.105 0.03 
' 

-0.003 

3 0 0.15 0 4.5 0.073 0.05 -0.004 10 0.171 0.02 -0.004 

4 0 0 0.09 0 3.5 0.061 0.01 -0.001 8 0.133 0.01 -0.002 

5 0 0 0.2 0 21.5 0.341 0.15 -0.051 30.5 0.437 0.01 -0.005 

6 0 0 0.5 0 10 0.17 0.40 0.063 18 0.294, . 

- 

0.45 0.132 

7 0 0 1.1 0 7.0 0.12 1.0 0.12 14.5 0.242 1.1 0.266 

8 0 0 
' 2.0 0 6.0 0.11 2.0 0.22 12.5 0.212 2.1 ()4 

9 0 0 2.35 0 
' 

3.0 0.06 2.8 0.16 7.5 0.13 2:95 0.2: 

10 0 3.35 0 0 0.00 3.3 0 0 0.0 3.45 0.0 



Table 

Sta- 0 
tion deg. 

Calculation of transverse shear-stress across sections of a rectangular beam. 

Sect. d-d 

fringes 0 
1 sin 20 p-q deg. 

Sect. e-e 

fringes 
1 sin 20 p -q Tv 

0 
deg. 

Sect. f-f 

fringes 
sin 20 p-q T %;7- 

0 0 0 0 0 0 0 0 10 0 0 0 0 

1 9.5 0.163 0.02 -0.003 10.3 0.18 0.02 -0.004 12.5 0.212 0.04 -0.003 

2 15.5 0.26 0.10 -0.026 20 0.322 0.06 -0.01) 24.5 0.377 0.09 -0.034 

3 17.0 0.28 0.03 -0.022 24 0.372 0.06 -0.022 23.5 0.42 0.1.6 -0.067 

4 14.5 0.242 0.02 -0.004 21 0.335 0.02 -0.007 26.5 0.40 0.09 - .-0.036 

5 80.0 0.171 0.00 0 7 0.121 0.01 -0.001 13 0.419 0.02 -0.008 

6 29 0.424 0.4 0.169 37 0.48 0.4 0.192 46 0.5 0.25 +0.125 

7 23 0.36 1.05 0.37 28.5 0.42 1.0 0.42 35.5 0.473 0.9 +0.426 

8 15 0.25 2.05 0.5 22 0.347 2.05 0.71 27.5 0.405 2.0 +0.83 

9 10 0.17 3.05 0.51 12 0.203 3.3 0.()7 17.5 0.283 3.5 0.99 

10 0 0 3.65 0 0 0.0 3.93 0.0 0 0 1-.4 0 



Table 4. Calculation of transverse shear-stress across section - 

Sta- 
tion deg. 2 sin 2 

Sect. g-g 
fringes 

Tv 

rectangular beam. 

Sect. h-h Sect. i-i 

0 fringes 0 fringes 
g. 1 sin 2/ p-q Txy deg. 1 sin 2$ p -q 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 15 0.25 0.04 -0.01 21 0.335 0.03 -0.010 27 0.405 0.03 -0.012 

2 28 0.415 0.1 -0.042 32 0.45 0.10 -0.045 35.5 0.475 0.09 -0.042 

3 33 0.457 0.16 -0.074 37.5 0.483 0.18 -0.087 44 0.494 0.26 -0.13 

4 32 0.449 0.14 -0.063 40 0.493 0.17 -0.084 47 0.498 0.15 -0.07 

5 26 0.394 0.08 -0.032 42.5 0.498 0.04 -0.02 37 0.473 0.08 -0.037 

6 82 0.133 0.15 0.020 35 0.470 0.1 +0.047 10 0.171 0.01 0.002 

7 43.5 0.499 0.85 0.425 50 0.49 0.7 0.343 42 0.49 0.30 0.147 

8 33 0.457 2.05 0.945 41,5 0.497 1.85 +0.92 48 0.493 
1.5,. 0.75 

9 22 0.35 3.83 1.34 27.5 0.41 4.2 +1.73 44 0.499 4.5 2.25 

10 0 0 5.0 0 1.0 0.009 6.1 0.054 1.5 0.03 7.75 0.233 



Table 5. Calculation of transverse normal stress at points at section a-a. 

Station 
A 7xy 

fringe 

Mean 

.677. 
fringe 

Mean 

Tv AX dx 
fringe p.s.i. 

0 0 0 0 
+0.006 -0.006 

. 1 +0.012 -0.006 -2.4 
+0.012 -0.012 

2 +0.012 -0.018 -6.7 
+0.010 -0.010 

3 +0.008 -0.028 -10.5 
+0.005 -0.005 

4 +0.002 -0.033 -12.3 
+0.052 -0.052 

5 +0.102 -0.085 _31.7 
-0.014 +0.014 

6 -0.13 -0.071 -26.5 
-0.185 +0.185 

7 -0.24 +0.114 +42.5 
-0.34 +0.34 

8 -0.44 +0.454 +169.0 
-0:38 +0.38 

9 -0.32 +0.834 +312.0 
-0.16. +0.16 

10 +0.994 +370.0 



Table 6. Calculation of transverse normal stress at points at section c -c. 

ATT 
Station fringe 

Mean 

ATv 
fringe 

Mean x 

fringe x p.s.i. 

0 

1 

0 

0 
0 0 

0 

0 

0 

0 

+0.01 -0.01 
2 +0.022 -0.01 -3.7 

+0.02 -0.02 
3 +0.018 -0.03 -11.1 

+0.01 -0.01 
4 +0.003 -0.04 -14.8 

-0.02 +0.02 
5 -0.054 -0.02 -7.4 

-0.07 +0.07 
6 -0.100 +0.05 +18.6 

-0.18 +0.18 
7 -0.26 +0.23 +86.0 

-0.27 +0.27 
8 -0.28 +0.50 +186.5 

-0.31 +0.31 
9 -0.35 +0.81 +302.0 

-0.17 +0.17 
10 +0.98 +366.0 



Table 7. Calculation of transverse normal stress at points at section d-d. 

Station 
ATV 

fringes 

ilean 

fringes 
aNT:cy(- AZ) Ax 

ex 
fringes 

dx 
p.s.i. 

0 

1 

0 

0 

0 0 
0 

0 

0 

0 
+0.008 -0.008 

2 +0.016 -0.008 -3.0 
+0.017 -0.017 

3 +0.018 -0.025 -9.3 
+0.011 -0.011 

4 +0.005 -0.033 -12.3 
+0.000 -0.000 

5 -0.004 -0.33 -12.3 
-0.032 +0.032 

6 -0.060 -0.00t -0.3 
-0.11 +0.11 

7 -0.154 +0.11 +41.0 
-0.21 +0.21 

8 -0.265 +0.32 - +119.2 
-0.33 +0.33 

9 -0.396 +0.65 +242.5 
-0.20 +0.20 

10 +0.85 +317.0 



Table 8. Calculation of transverse normal stress at points at section e-e. 

Station 
474 

fringes 

Mean 

46r:7 

fringes 

Mean 

AT-47( - .2.221) Ax 
ex 

fringes 

ex 
p.s.i. 

0 0 0 0 
+0.002 -0.002 

1 +0.005 -0.002 -0.7 
+0.007 -0.007 

2 +0.008 -0.009 -3.4 
+0.026 -0.026 

3 +0.045 -0.035 -13.0 
+0.038 -0.038 

4 +0.032 -0.073 -27.2 
+0.020 -0.020 

5 +0.008 -0.093 -34.7 
+0.026 =0.026 

6 1-0.044 -0.119 -44.4 
-0.008 +0.008 

7 -0.06 -0.110 -41.0 
-0.20 +0.20 

8 -0.33 +0.09 +33.6 
-0.41 +0.41 

9 -6.48 +0.50 +186.5 
-0.24 +0.24 

10 0 +0.74 +276.0 



Table 9. Calculation of transverse normal stress at points at section f-f. 

Station 
A7:7 

fringes 

Mean 

ATV 
fringes 

:jean 

4Txy(- 6ix 

fringes 

ex 
p.s.i. 

A x 

0 0 0 0 
40.003 -0.003 

1 +0.006 -0.003 
40.014 -0.014 

2 +0.023 -0.017 -6.4 
+0.037 -0.037 

3 +0.052 -0.054 -20.2 
+0.052 -0.052 

4 +0.053 -0.106 -39.5 
+0.042 -0.042 

5 +0.032 -0.148 -55.2 
+0.10 -0.10 

6 +0.17 -0.248 -92.5 
+0.08 -0.08 

7 -0.01 -0.256 -95.5 
-0.13 +0.13 

8 -0.24 -0.126 -47.0 
r0.46 +0.46. 

9 -0.67 +0.334 +124.5 
-0.34 +0.34 

10 0 +0.674 +251.8 



Table 10. Calculation of transverse normal stress along section g-g. 

Station 
A rxy 

fringe s 

Mean 

Tv 
fringes 

Mean 

d x 
fringes 

.4Tx:7(- AY) 

0 0 0 0 
+0.001 -0.001 

1 +0.002 -0.001 -0.4- 
+0.006 -0.006 

2 4.0.011 -0.007 -2.6 
+0.015 -0.015 

3 +0.020 -0.022 -8.2 
+0.034 -0.034 

4 +0.048 -0.056 -20.9 
+0.030 4.030 

5 +0.012 -0.086 -32.0 
+0.046 -o.o46 

6 +0.08 -0.132 -49.2 
40.085 -0.085 

7 0.09 -0.217 -81.0 
+0 0 

8 -0.09 -0.217 -81.0 
70.42 +0.42 

9 -o.74 +0.21 +78.3 
-0.40 +0.40 

10 -0.054 +0.61 +227.5 

6/ 

Xi 



Table 11. Calculation of transverse normal stress along section h-h. 

Station 
x 

fringes 

Mean 

10747 
fringes 

Mean 

TY7 (- -4) x 
x 

fringes 
efx 

D.S.i. 

0 0 0 0 

+0.001 -0.001 
1 +0.002 -0.001 -0.4 

+0.001 -0.001 
2 +0 -0.002 -0.8 

+0.025 -0.025 
3 +0.05 -0.027 -10.1 

+0.028 -0.028 
4 -K).007 -0.055 -20.5 

+0.006 -0.006 
5 +0.005 -0.061 22.3 

+0.011 -0.011 
6 +0.018 -0.072 -26.8 

+0.107 -0.107 
7 +0.196 

+0.173 -0.173 
-0.179 -66.8 

8 +0.16 -0.357 -133.2 
-0,38 +0.38 

9 -0.91 +0.023 ±8.6 
-0.57 +0.57 

10 -0.233 +0.593 +221 



Table 12. Calculation for normal stress 5 y across transverse section CG. 

Station 
X 

fringes 
p-q 

fringes 
TY,7 

fringes 
dy 

fringes 
6'y 

p.s.i. 0_02 47'42 

a 40.994 3.36 0 -3.36 -2.37 -871 

b 1-o.99 3.4 0 -3.4 -2.41 -900 

+0.98 3.5 0 -3.5 -2.52 -941 

d +0.85 3.7 0 -3.7 -2.83 -1065 

e 40.74 4.0 0 -4.0 -3.26 -1218 

+0.674 4.5 0 -4.4 -3.82 -1425 

g +0.61 5.12 -5.12 -1682 

h 40.593 6.18 4.054 -6.18 -5.59 -2084 



Table 13. Calculation for normal stress 6y along horizontal section AC. 

Station 
ex 

fringes 
p-q 
fringes 

TV 
fringes 

dy 
fringes 

dy 
p.s.i. p-q)2 47xy2 

0 0 0.30 0 +0.30 +0.30 +112 

1 -0.006 0.19 0 +0.19 +0.184 + 69 

2 -0.018 0.16 0 +016 +0.142 ± 53 

3 -0.028 0.14 0 +0.14 +0.112 + 42 

4 -0.033 0.09 0 +0.09 +0.057 + 21 

5 0.10 0 -0.10 -0.185 - 69 

6 -0.071 0.5 0 -0.5 -0.571 -214 

7 +0.114 1.1 0 -1.1 -0.986 -368 

8 +0.454 2.0 0 -2.0 -1.546 -577 

.9 +0.834 2.85 0 -2.85 -2.01'6 -752 

10 +0.994 3.3 0 -3.3 -2.306 -862 
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DISCUSSION 

After the experimental work was done, it was interesting to compare the 

stress distribution along axis FC and CG (see Figs. 13 and 16) between the 

circular disk and the rectangular beam, because .the isochromatic pattern of 

the circular disk under concentrated load is somewhat similar to that of the 

pinched rectangular beam. 

The circular disk is sketched in Fig. 16, its diameter is equal to the 

depth of beam d. 

F, 

Fig. 16. Sketch showing circular disk under concentrated load P. 

From the theoretical analysis of a circular disk under concentrated load, 

the rectangUlar stress components along the X axis are given as 

2p. :12 - 

1t td d2 

2 

o y - 
(d2 4.42)2 

T -fir = 0 

Along the Y axis 

= ---2^;13 
td 
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6ty [ 2 + 

d 2y d + 2y d 

74 = 0 

where t is the thickness of circular disk, d diameter of disk and equal to 

1.46 inch [2]. 

The values obtained from rectangular beam and circular disk are shown 

in Tables 14-17 and drawn on Fiss. 17 and 18. 



Table 14. Rectangular stressC5x. along line FC: 

Station 
psi 

4o 

...1... 
0001.41.1".1.*M1110.110. 

5 6 7 8 9 10 

Rectangular beam -31.7 -26.5 42.5 169.0. 312.0 370 

73 156 240 306 331 Circular disk 

Table 15. Rectangular. stress 0"y- along line. FC. 

Station 

... 

-osi .5 0 7 8 9 10 

Rectangular beam 

Circular disk 

-69 

0 

-214- 

-151 

-368 

-384 

-577 

-653 

-752 

-900 

-862 

-993 

Relative 
Retardation 
Wave-length 

Rectangular beam 

Stress, 

lb./sq.in 

3oo 

0 

3oo 

i-Goo 

1-7oo 

Fig. 17. Distribution of rectangular stress along FC. 



Table 16. 

Station 

41 

Rectangular stress ex along vertical line CG. 

psi a b 

Rectangular beam 

Circular disk 

370.0 

331 

369 

331 

366 

331 

317 

331 

276 

331 

252 

331 

227.5 

331 

221 

331 

Table 17. Rectangular stress ey along vertical line CG. 

Psi 
Station 

a f g h 

Rectangular beam -871 -900 -941 -1065 -1213 -1425' -1682 -2084 

Circular disk -.3 -1008 -1048 -1124 -12 0 -1425 -1740 -2265 

Relative 
Retardation 
Wave-length 

c 

Stress 
lb./sq.in. 

(ex) ) 

a 

+300 

0 

--30o 

-600 

_goo 

_1200 

--(500 

-1800 

_1_2100 

i_2400 

Fig. 18. Distribution of rectangular. stress:along CG. 



4.2 

CONCLUSION 

There are several methods which can be used to evaluate the individual 

stresses according to the data obtained from application of the photoelastic 

technique. These include the relaxation method, shear difference method, the 

slope equilibrium method, etc. In this experiment, the shear difference 

method was employed to separate the stresses by using the data obtained from 

the isochromatic pattern and the isoclinic pattern. 

It is known that to obtain an accurate isoclinic pattern is difficult, 

therefore, there are some possible errors in the numerical values after 

using the shear difference method. Along the curve LIN of Fig. 11, which is 

a discrete set of isotropic points, all isoclinic lines from the middle part 

of the rectangular beam converge so, near this curve, there is a narrow 

range where the direction of principal stress changes abruptly and also, 

along this narrow range, the isoclinic lines are vague, therefore it is very 

hard to get accurate isoclinic lines near this region. 

In order to get a good isoclinic pattern, care was taken to keep the 

applied load exactly on the symmetrical axis of the beam. It was also found 

necessary to vary the exposure time for different parts of the model if 

sharp isoclinic lines were to be obtained on all the photographs. 

It would be interesting to compare the stress distribution for different 

kinds of rectangular beams which have different ratios of length to depth 

and applied loads of different width. 
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The purpose of this experiment was to determine by photoelastic 

methods the principal stresses in a pinched rectangular beam along the 

vertical axis and the horizontal axis which are symmetrical lines of the 

beam. Photoelasticity is an optical phenomenon which is used as a method 

of experimental stress analysis. 

The first step in this experiment was to select the material, make a 

rectangular beam and investigate the model. under pinching loads through 

the polariscope. The next step was to separate the stress using the data 

obtained from the first step by means of the shear difference method. The 

results are discussed in the report by comparing the circular disk with the 

rectangular beam. 

It was supposed that the stress distribution along the symmetrical axes 

of the rectangular beam were very close to that of the circular disk, but 

there is a small difference along the vertical axis. Whether it was induced 

by some numerical errors in the experimental data cannot be definitely 

stated without further investigation. 


