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CHAPTER 1

INTRODUCTION

A queueing network is a mathematical model applicable to
protlems involving a network of nodes with a queue formed in
each node. A single queueing system in which there is only
one node is just a special case of the gueueing network model.
Queueing network models have been applied to such important
and diverse areas as computer time-sharing and multiprogramming
systems, communications networks, alir traffic control, production,
assembly and inspection operations, maintenance and repair
facilities, and medical car delivery systems. The purpose of
this report is to survey the results available for queusing

networks to date.

1-1 Queueling Network Models

The formation of qusues is a common phenomenon which
occurs whenever the current demand for a service exceeds the
current capacity to provide that service. For example, customers
await service a2t the products wait to be assembled in the
assembly line. The basic model for a single queueing system
is as follows: "customers"” requiring service come from an "input
source"; they enter the system and join a queue; at certain times
a member of the gueue is gelected for service by some rule known
as the queueing discipline; the reguired service is then
performed for the customer by the server in the service station,
after which the custoemer leaves the queueing system. This

model is depicted is Figurel.1l.
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A queueing network is a network of service stations where
customers must receive service at some or all of the stations.
Registration for classes in many universities 1s an example.

The students_must queue to see an advisor for course planning,
then queue for registration, for fee payment, and so on. Another
example is job-shop manuracturing. A4 casting may go to the
grinding area, from there to a lathe, then to z milling machine,
to a drilling machine, to the inspection area, then perhaps be
fed back for more mill work, and so forth. At every atation a

gueus of work pieces is formed.

A possible queueing network model is shown in Figure 1.2.
Customers arriving at service sitation 1 may come from outside
the network with mean arrival rate Po,l' or they may transfer
from service station 3 with transfer probability PB.l' After
being serviced in each station, they will transfer to another
atation with transfer probability such as Pl,h' or will ieave

the system with certain probability, such as P2 0

1-2 Classification of Queueing Network Models

Queueing network model applications abound in mecent years.
It is therefore useful to classify such models. Kienvle and
Seveik [2] proposed a classification scheme for computer system
models based on six characteristics: model structure, customer
classification, arrival process, queueing disciplines, and
server characteristics. Below, each characteristic will be

discussed in detail.
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1. Model structure: the manner in which customers flow
among the service stations. A general queueing network structure
ig the one which has arbitrary routing-among gservice stations;
Figure 1.2 is one example, Some particular and useful mocdel
structures include;

(a) cyclic queueing model: a fixed number of customers
cycle among the service stations. The model is shown in Figure
i

(b) central server model: customers move to other
stations from the central service station, but after receiving
service they return to the central service station. The model

is shown in Figure 1.4.

2., Customer classification: grduping customers classes
which have different sets of service rates or routing
probabilities, A multiple class model is shown in Figure 1.5.
There are three groups:

(a) single class model: all the customers have the same
set of service rates and routing probabilities.

{(b) multiple class model with no class changes: some
customers have different sets of service rates and routing
probabilities frcm other customers. A customer will never
change his class while he is in the system.

(c) multiple class model with class changes: customers
have different sets of service rates and routing probabilities.
A customer may change his present class to other one at a

certain time.
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3. Arrival process: the manner in which new customers
come into existence. A model can be one of the following three
types:

(a) closed network: a fixed number oI customers
circulate in the network at all times.

(b) open network: all customers are permitted to enter
or leave the system. The arrival rate from outside may be
constant rate Poisson, load dependent Polsson, or non-Poisson.

(¢) mixed network: the system is closed with respect
- to some classes of customers and open with respect to others.

An example is shown in Figure 1.6.

4, Queueing disciplines: the rules for selecting members
of the gueue for service. Some possible gueueing disciplines
include:

(a) FCFS: first-come-first-served.

(b) PS: processor sharing, i1.e. when there are n
customers in the service station each is recelving servicé at
a rate of 1/n sec/sec.

(c) LCFS: preemptive-last-come-first-served, 1i.e.
coming customer will preempt the customer being served now.

(d) IS: infinite servers, i.e. there are enough server
so that no queue will happen.

(e) priority disciplines: the priority of service may

be baged on customer class.

5. Service time description: some possible descriptions

are:
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(a) a workload vector: in which the mean total service
time required by a customer of a class at each service station
is stated. ;

(b) exponential distribution: the service time for each
customer at each service station is assumed to be exponentially
distributed.

(¢) general distribution: the service time is an
arbitrary distribution.

(d) mean and variance: the service time distribution

is in terms of its mean and variance.

6., Server charcteristics: describes the reaction of the
server to the load. These include:
(a) load independent servers: server has a constant
service rate. ‘
(b) load dependent servers: service rate of a server
may depend on the number of customers in the same class at the

service station, on the total number of customers in a..subsystem.

In addition to the above, some other characteristics are
needs to classify queueing network models which may not be
restricted to computer systems. Three different characteristics
are mentioned by Disney [1]. One is routing properties, by
which customers may proceed through the network according to
their needs, or be routed through the network by a routing
scheme imposed on the network exogenously. Another is the
waiting space at each service station. The number of spaces .

before a given server may be finite or infinite and may even be
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zero such as in some telephone system models. The third is
switching rules, which are used to determine the next path to
be taken by a customer. In principle, there are two broad
classes of switching rules. Decomposition rules partition the
flow processes into substreams; recomposition rules accumulate

substreams intec a single stream.

1-3. -Computer Systems and Queueing Netwerk Models

The growing complexty of computer systems has motivated
the development of analytic tools to investigate computer system
performance. The gueueing network model is an appropriate tool
to analyze the modern computer system. Since we may picture
jobs flowing from one device to another within the computer
system as they place successive demands upon these devices,
simultaneous conflicting demands on a device are solved by the
fermation of a gqueue in front of the device. Therefore, the
application of queueing netwerk models to computer system
performance analysis has generated considerable interest.

There have been notable advances in both the fundamental theory

and practical experience for this area during the past ten years.

The first successful application of a queueing network
model to a computer system came in 1965 when Scherr used the
finite population model or machine repairman model to analyze
the Compatible Time-Sharing System (CTSS) at MIT [205]; the

finite population model is shown in Figure 1.7.

In 1971, Moore showed that a closed queueing network model



Figure 1.7 A Finite Population Model
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could predict the response time on the Michigan Terminal System
(MTS) to within 10% [37]. At the same time, Buzen intrduced .
the central server model to represent the behavior of
multiprogrammed computer systems [57]. This model is shown in

Figure 1.8. A more complicated model is shown in Figure 1.9.

Besides the model structure, some gueueing disciplines are
also introduced to model computer systems. The FCFS scheduling
is appropriate for modeling secondary storage input/output
devices because preemptive scheduling is not possible or
efficient for such devices. Processor-sharing scheduling and
LCFS are appropriate models for central processing units {CPUs)
since LCFS is an efficient preemptive scheduling method, and
both methods have been found to improve the performance of CPUs.
No queueing or IS are appropriate models for terminals and for
routing delays in the network. Different customer elasses
present varying service requirements, sinc¢e they needs different

kinds of compliers or input/output devices.

1-4 Plan of this Report

Queuveing network mcdels are widely used to analyze the
performance of modern computer systems. The intent of this
report is to provide an overview of available models and

methods for queueing networks of compﬁter systems.

In Chapter 2, the development of queueing network models

is reviewed. Then two different approaches to deriving those
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models are discussed. The traditional approach is based on
stochastic assumption; the other approach is operational

analysis.

In Chapter 3, the efficient computational algorithms to
get the performance values for the queueing networks with
product form solutions are discussed. These algorithms include

convolution algorithm, mean value analysis, and other approaches.

In Chapter 4, the methods for solving any géneral queueing
network are discussed. These methods can solve the gqueueing
networké which do not have product form solutions. Two
different approaches are considered, namely numerical methods
and approximation methods. Numerical methods include some
matrix iteration methods and other recursive techniques. Two

ma jor methods for approximation are diffusion and aggregation.

Chapter 5 summarizes the contents of this report, and gives

gsome areas for future research.

Lastly, a classified bibliography of research on queueing
networks is placed at the end of this report. These papers
are classified in an order similar to the contents of this
report. The scheme of classification is as follows:

I. Survey Papers and Books.

IT. Models

IT.A Stochastic Analysis.

IT.B Operational Analysis.
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III,%Methads
III.A Computational Algorithms for Product Form Solution
III.A.1 Convolutional Method.
III.A.2 Mean Value Analysis.
III.A.3 Cther Methods.
III.B Numerical Methods.
ITITI.C Approximation Methods
III.C.1 Diffusion Approximation.
III.C.2 Aggregration (or Decomposition).
ITI.D Simulation.
III.E Software Package.
IV. Application
IV.A Computer System.
IV.B Other Fields.

N, Miscellaneous Papers.



CHAPTER 2
QUEUEING NETWORK MODELS

In recent years the gqueueing network models have developed
rapidly. The study of queueing networks began when Jackson
studied an open network with only negative exponential service
distribution and a single customer class. Presently, the most
general gqueueing network models allow a variety of customer
classes and some kinds of service stations with different

gueueing disciplines and service time distirbutions.

The traditional approach to deri%e these models is based
on some stochastic assumptions. These assumptions have been
studied in recent years. Analysts used the operational (i.e.
directly measured) values in actual systems to validate the
results of network models based on these assumptions. The
repeated successed of validatiens led %0 a new appreach -
operational analysis - to derive the same results as before.
The approach allows the analyst to test whether each assumption

is met in a given sustem.

In this chapter, we first review the progress in queueing

networks so far. In Section 2-2, we discuss the analysis based

on stochastic assumptions. In the last section, we discuss the

operational analysis approach to network models.

2-1 Development of Queueing Network Models

The study of gqueueing network models dates back to the

18
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1950's, In 1957, Jackson [29] studied an open network with a
single class of customers. Operationally, this implied using
only mean and one set of routing probabilities to describe all

customers.

Jackson's model consists of an N station network, each
station containing one or more parallel servers. Service time
distribution at these stations. A state is a vector n = (nl,
nz,...,nM). Other values such as station utilizations, mean
queue lengths, mean walting time and throughputs can be derived
from these equilibrium- state probabilities. We denote Pi(n) as
" the marginal pfobability of finding n customers at the ith
station, that is
P.(n) = 2 P(n,,n

. all feasible states
n such that n;=n

2,...,nM)

Then the utilization, which measures the probability of being

busy for a station, can be computed as

Jackson showed that the equilibrium probability of state n in
an open network is simply the product of the marginal probability

for each station, i.e.
P(nl,nz.....nm) = Pl(nl] Pz(nz) . i PM(nM)

This expression is termed a "product form" since it separates

into a product of factors, one factor for each station in the

netitwork.
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In contrast to the open network, Gordon and Newell [28]
considered a closed network. In their model, there are a finite
number of customers N circulating through the network, requesting
and receiving service from a finite number of stations M. Each
station i may have a; parallel identical servers with negative
exponential service time distribution. The state of the network
is again described by a vector n = (nl,nz,....nM). but the sum

of all the n, must be N.

Gordon and Newell obtained the equilibrium state probability,

and proved it also satisfied a product form

" )
P(n) = P(nl,nz,...,nM) = —ET%T—']j; fi(ni)
i=

where G(N) is a normalization constant chosed to make all the
feasible state probabilities sum to one, that is,
M
G(N) = M IT £, (n;)
all feasible i=1
states n
The function fi(ni) depends on the characteristics of the ith

station, We defer a precise description of the fi(n) until

chapter 3.

In 1963, Jackson [30] introduced a general network model
which includes both open -and closed networks. In this model,
the external arrival is Poisson process and total arrival rate
is allowed to depend upon the total number of customers in the
systems. Each station may have lcad dependent servers with

service rate depending on the total number of customers at the



21

- service station and exponential service time distribution for
the servers. Jackson demonstrated that the equilibrium state

distribution of this network also has the "product form".

In 1968, Posner and Bernholtz [41] generalized the closed
network in Gordon and Newells' model to permit different classes
of customers with different sets of service rates énd routing
probabilities. Once again, it was demonstrated that the

equilibrium state probability is of product form.

A more general queueing network model was developed by
Baskett, Chandy, Muntz, and Palacios in 1975 [14]. This model
allows multiple classes of customers and different kinds of
service stations. Customers may change their classes through
the system. This model describes either an open, closed, or

mixed gqueueing network.

The queueing discipline 1s assumed FCFS at each station
for earlier queueing network models. In the general model
developed by Baskett et al., each service station can have any
of the following four types of gqueueing disciplines:

Type 1: FCFS. Each customer has the same exponential
service time distribution. The server may be load dependent
with service rate depending on total number of customers at
the station.

Type 2: PS. Only one server is involved. Each class of
customer may have a distinct service time distribution. The

distribution is arbitrary except that it must have a rational
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Laplace transform.

Type 3: IS. There are sufficient servers so that no
gueueing will occur. Each class of customer may have a distinct,
arbitrary service time distribution with rational Laplace
transform.

Type 4: LCFS. There is only one server. Again, each
class of customer may have a distinct arbitrary service time

distribution with rational Laplace transform.

From the above disciplines, we can see this model can
reﬁresent a wide range of computer systems. A state in this
model represents a distribution of customers over classes and
stations. For an M-station network, a state is denoted by a
vector n = (gl,gz,...,gM), where each component of n is also a

vector. Let R be the total number of customers classes. The

component of n can be denoted as n; = (nil’niz""'niR)’ where

n. . is the number of class r customers at station i. The
equilibrium state probabilities are derived and also have

| product form.

In 1977, Lam [33] further extended the previous general
queueing network models to include mechanisms of state dependent
lost arrivals and triggered arrivals. That is, arrivals to the
network from outside may be lost when the system is in certain
states. Also, a new customer may be injected instantaneocusly
into the network upon the departure of a customer from the
network. This model can be used for computer communication

networks with storage and flow constrints. The equilibrium
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state probabilities are also proved to be product form.

2-2 Analysis Based on Stochastic Assumptions

The theory of stochastic procedded has traditionally been
used as a framework for deriving queuelng netwirk models. Most
analysis of queueing systems begins with the stochastic
hypothesis; that is, the behavior of the real system is
characterized by the probability distributionsg of a stochastic
process. Assumption used in the theory of stcchastic processes
include:

The system is modeled by a stationary stochastic
process;

. Customers are stochastically independent;

. Customers steps from station to station following a

Markov chain;

.The service time distribution 1s exponential;
and so on. All these assumptions constitute a stochastic
model, which precduces many benefits. All the variables can be
defined exactly, assumptions can be stated concisely, and a lot
of known results of theory can be called on during analysis.
The theory of queueing networks based on these assumptions is

usually called "Markovian queueing network theory" [3].

The network models in which service time is exponentially
distributed could be solved by deriving and solving the glohal
balance equation for the network. The global balance equation
will equate the transition rate of the network out of a state

with the transition rate intoc this state; a transition out of
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state n occurs when a customer at any service station i completes

service. The rate of. transition out of state n is

M
2. P(n) u,
J=1 ’

Here uj is the service rate of station j. A transition from

another state into state n = (ny,n,,...,ny) can be written as
M M
j§1 jg:l P(l‘ll,...,I’li‘f'i,.-.,l’lj-l,....nM) ui Pij

Therefore, for the equilibrium probability in state n = (nl,

n2,...,nM). we have

M
'Ei P(ni,-..,ni,...,nj,...nM) uj =
M M
i=zl j;l P(nl,.-.,ni""l.--.,nj-i,cqa.nm) Ui Pij

Solving these linear equations and applying the global balance
equation to all feasible states will result in a product form

solution.

Fof networks with general service time distribution, we ean
g8till preserve the Markovian nature. Cox [24] has shown that
any service time distribution with a ratiohal Laplace transform
can be represented by a network of exponential stages of the

form shown in the following figure:
a a

a.
G — 2 —
— =" ---—0
¥1 b, by VRE
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In this figure, a station with general service time digtribution
is represented by a network of stages. The service time at each
stage 1s exponentially distributed. In terms of the above
figure, a customer proceeds to stage j + 1 of the station,

after completing service at stage j with probabilty aj. or

exits from the service station with probability b. =1 - a..

J J

At each stage ] the service rate is Uy This representation of
general service time distribution is called the "method of

stages” [12].

The global balance equation becomes unmanageable when
applied to some complex models, since it may consist of an
enormous (yet finite) number of states. Chandy [19] discovered
that the equilibrium probabilities for the system states with
Markovian nature obey not only the global balance equations
but also the "local balance equations", and proved that a
Sﬁlution to the local balance equations is also a solution of
the global balance equation. The local balance eguation eguates
the rate of entry to a given state caused by a custﬁmer entering
a given queue with the rate of exit from that state caused by a
customer exiting the given queue. A local balance equation
exists for each queue of the network. For a queue at service

station j of the network, the lccal balance equation would be

P(nl,...,n .,l’l-,-..,nM) nw. =

1rereh j

Il
e | =
izzf P(nl.--.,ni+1....,nj l’ll!jnm) U.i Pij
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Local balance equations have been used to derive the equilibrium
state probability for the general network model developed by

Baskett et al., and proved it to be product form [39].

Muntz [38] investigated the "M =2M" property of Poisson
arrivals implying Poisson departures. He showed that a network
of queues with the "M = M" property has product form and also
had the "M = M" property.

2-3 Operational Analysis of Queueing Networks

The Markovian assumptions used to derive the gueueing
network model are often violated by many computer systems.
For example, service time is not exponential, station to station
transitions do not follow Markov chains, parameters change over
time. Therefore, many people doubt the accuracy of the queueing
network model. In recent years some analysts studied the
validation of the results of Markovian queueing networks theory
with operational (i.e. directly measured) values of real systems.
The repeated successes of validation led to an investigation
of the relationship between operational values, and the use of
different assumptions to derive the same results as before

(45 - 51]. The new approach is called "operational analysis".

In operational analysis, the real system is observed for
a finite period of time. All the quantities - such as
utilizationa, completion rates, mean queue sizes - should be
defined so as to be precisely testable. The precision of

results should depend only on these assumptions which can be
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tested by observing a real system for a finite period of time.
All the eguations in operational analysis depend on these four
assumptions:

1. Job flow balance: the number of jobs (or customers)
which are observed to arrive at a given station is (almost) the
same as the number being observed to depart from the station
for this finite perilod of time;

2. State transition balance: the number of fransitions
into a given system state is (almost) the same as the number
out of the state for this finite period of time;

3. One step behavior: the only observable state changes
result from singlé customers either entering the system, or
moving between pairs of stations in the system, or exiting from
the system. In other words, the simultaneous customer-move 1s
negligible.

L, Homogeneity; for stations, the output rate of a
station is determined completely by its queue length, and is
independent of queue lengths of other stations; for routing,

the routing of customers is independent of the system's state.

Using operational analysls, we can alsoc get the product
form solution for state probability. In operational analysis,
the state probability P(n) represents the proportion of time
state n is occupied. Before discussing how to get product form
solution, we need some notations to defined:

k, n, m denote distinct system states,

T : total observed time period,

i) : total time during which state n is occupied,



c. .
ij

S.(n)

LJ

Xy

total time during which the number of customers
in station i is n,

the number of one-step state transitions observed
from n fto m,

C(n,m) / T(n) +*he number of transitions per
unit time when n 1s occupied,

T(n) / T the proportion of time n is occupied,
the number of times at which a customer requests
service at station j immediately after completing
a service request at station i, when the number
of customers in station i is n,

= Ci(n) 'the total number of times at which a
gaétomer moves out of station i,

I Ci(n) the total number of times at which a
Eaétomer moves out of station i,

%icij(n) the total number of times at which a
Qastomer moves to service ] immediately after
completing service at station 1,

Ti(n) / Ci(n) the mean time between service

completion (or mean service time) at station 1

when n customers are there,

"Gij £ C; routing frequency, the fraction of

customers moving to station j immediately after
completing service at service i,

throughputs or output rate of station i.

From state transition balance assumption, we have

5% ¢(k,n) = 2 C(n,m) for all n.
k m

28



Since transition rate. r(nym) = C(n,m) / T(n) and state

probability P(n) = T(n) / T » We can change state transition
balance to

2 P(k) r{k,n) = P(n) X r(n,m) for all n.

k m

P

This form of expressicn is generally not useful since r{(n,m)

From these equations, we can express P(n) in terms of r(n,

13

needs too much computation.

To reduce the number of states involved, we introduce one
step behavior assumption. This assumption asserts that the
gimultaneous customer-moves will not be observed, and that
transitions are possible only between neighboring states. Let
U.Sdenote 1’_1 = (nl...-|ni,...,n-,.-.nM) a.rld n. = (nlplnn,ni-lg

J =ig

.,nj+1,...,nM) are two states neighboring each other. When

a customer moves from station 1 to station j, the system will

move from state n ton After this one step behavior

13"
assumption, the state balance equations can be transformed into

M M M
Png ;) rln;5n) = Pla) 2 30 rinn

for all n.
J i=1 j=1
1#]

j=1 i)
# ]

i=1
i

Using the homogeneity assumption, we can replace r(n,m}
with Si(n) and aj 3 which can easily be obtained. For stations,

the homogeneity assumption gives us

C(I_}ll_'_l- ‘) C. -(n-)
oy y) = EE)S T TR

For routing, the homogeneity assumption give us 933 = Cij / C.l
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is the same for the system. Combining these two relationships,

we have
r(n,n;5) = a5 / 8;(ny)

Replacing it, the previous balance equations.will transform into

M M Qe 1 - q-
o i3 _ for all n.
X 2 Pngy) SHEICED Pl SHEY §

P(n) can be derived by solving these equations, and proved to

be of product form [50,51].

To simplify these equations, we can replace routing

frequencies with throughput. From job flow balance equations,

we have
output rate = input rate for all stations, or
M
X. = 23 X q; : for j =1, 2, .., M.
u i=1 u

Xi can be obtained by solving these linear egquations.
Operational analysis can also be applied to queueing
network models with multiple classes of customers [53].
Compared with Markovian queueing network theory, operational
analysis is easily understood and applied since it does not
involve advanced queueing theory. In addition, its results can
be applied to more classes of networks. The drawback of
operational analysis is that it cannot deal with transient

behavior.
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CHAPTER 3
COMPUTATIONAL ALGORITHMS. FOR PRODUCT FOEM SOLUTIONS

A1l the models of queueing networks previously described
can result in product form solutions for equilibrium state
probability. For the open network, this equilibrium state
probability P(n) is simply the product of the marginal
probability for each station, which can be analyzed separately.
For closed or ﬁixed networks, we have to compute the .. _ .
normalization constant G(N) before determining the equilibrium

stété probability.

In this chapter, we discuss some efficient computational
algorithms to calculate the normalization constant G(N), and
other performance values for the clcsed queueing network model.
In section 3-1, we describe the precduct form solution and the
performance values needed when we analyze a real system. In
addition, the computational problem is pointed out when we
calculiate the normalization constant. Next, two well known
computational algorithms - convolution algorithm (or
normalization constant method) and mean value analysis - are
discussed in section 3-2 and section 3-3, respectively. In

section 3-4 we mention some other efficient algorithms.

3-1 Product Form Solution and Performance Values

For a closed gqueueing network with a single customer class,

the equilibrium state probability is [28,30]
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M
P(n) = P(nl,nz....,nM) = _ET%T"' ;EE fi(ni}

In -this model we have M stations and N customers; queueing
disciplines are assumed FCFS for all stations, and all service
time distributions are exponential. The service rate at each
station ﬁay be dependent on the total number of customers at
the service station. For this solution G(N) is a normalization

constant, or

M
all feacible i=1
state n

n

G(N)

fi(ni) is a function depending on station i, or
n.
_ .n
£.(n;) = ey / ;ZQ u; (k)

where ui(ni) is the service rate for station 1 when there are
n customers at service station 1. e; is the relative throughput
to station i, which can be calculated from flow balance

equations:

M

where Pij is the transition probability from station i to
station j. Notice that the state probability is the same as

the queue length distribution for a single class network.

The expression for the equilibrium state probability is a
little complicated in the closed queueing network with multiple

customer classes and different queueing disciplines [14]. 1In
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addition to M stations and N customers, we have R distinct
customer classes. This model permits four different queueing
disciplines: FCFS (First Come First Served), PS (Processor
Sharing), IS (Infinite Servers), and LCFS (Last Come First
Served). Except that we need the exponential service time
distribution at the stations with FCFS queueing discipline, the
general service time distributions are assumed for the stations
with the other three queueing disciplines. In this model, a
state is a distribution of customers over classes and stations
other than a queue length distribution. The state can be
denoted by a vector n = (nl,nz,...,nM), where n. = (nil’niz""'
niR) n... is the numb;r of class r customers at station i. Let
us restrict our attention to the multiple class networks which

do not allow customers to change class membership. The

equilibrium state probability is [56]

M
P(n) = Plny,mp,..chmy) = —G(I%IT ;{_Tl £:(ny)

where
if station 1 has FCFS
n; ! 1131_ 1 ny, |
. —_— e, PS, LCFS queueing
'F[l , T Aypd IR ’ 1 &
u: (k disciplines.
P - k:l 1 p
fi(nl) =
. if station 1 has an
R 1 e. n.
T ( —2tL. 3y 1F IS queueing
R n. ! L.
i=1 ir ir

discipline.

e is the relative throughput for calss r customers at station

i, and can be calculated from flow balance equations for

r=lg 2. III'R
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e = X Cip Pyl =Lz W
where Pij(r) is the transition probability from station i to
station j for class r customers. The equilibrium state

probability for multiple calss networks with class changes is

also a similar form [147.

In addition to equilibrium state probability, some other
values such as station utilization, throughput, mean queue
length, and mean waiting time are also needed when evaluating
the performances of computer systems. After obtaining the
equilibrium state probability P(n) for a closed network with a
single customer class, the marginal probability pi(n), which is
the probability of finding n customers at the ith station, can
be computed as

Pi(n) ) all feaé%ble states P(nl.nz,...,ni,....nM)

n such that n;=n
Then the utilization Ui' which measures the probability of
being busy for station i, can be calculated as
N

u; = _15:‘{1 Pi(n) =1 - Pi(o)

The throughput Xi’ which is the output rate of station i, can

be calculated as
i

N
X. = fga Pi(n) u; (n)

Here ui(n) ie the load dependent service rate for station i.

The mean gqueue length ﬁi, which is the average number of
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customers staying at station i, can be calculated as
_ N
Hy # néi n Pi(n)
The mean waiting time ﬁi’ which 1s the average time a customer
spends at station i (including both walting time and service
time), can be calculated from Little's equation [35] which
relates mean waiting itme with mean queue length and throughput
for any queueing system, i.e.

o0

=
1 Xi

From the above discussions, we can see the importance of
G(N) in a closed queueing network with product form solution.
The computation of G(N) is dependent on the number of feasible
states. For a single class queueing network with total number
of customers N, a feasible state n = (n;,n,,...,ny) is the

state in which the sum of all the ns is equal to N. 1i.e.
M

z n; = N and n. >0 feri=1, 2, «.., M. The number of
i=1
feasible states i1s the number of ways one can place N custiomers

among the M service stations, and is equal to (N & T I 1).

20, we

]

For a relatively modest model in which M = 6 and N
have 53130 feasible states, and the calculation of G(N) requires
the summation of 53130 terms, each of which is the product of

6 factors. For multiple class queueing networks, a state is

a distribution of customer over classes and stations, so there
is an even greater number of feasible states. Therefore, a

straightforward evaluation of G(N) must be avoided.



3-2 Convolution Algorithm

The convolution algorithm is a recursive algorithm for
computing G(N). This algorithm was introduced by Buzen [57].
Buzen used this algorithm only for closed single class gyeyeing
networks. Adopting generating function method, Reiser and
Kobayashi generalized the convolution method to systems with
multiple class networks and mixed networks [64,66]. Below, we
discuss the basic scheme of the convolution method for closed

single class queueing networks.

3-2.1 The Computation of the Normalization Constant

In the closed single class queueing network models, we
have M stations and N customers. Each station has only FCFS
queueing discipline and exponential service time distribution.
Service rate are dependent only on the total number of customers
at these stations. Let ui(n) denote the service rate for
station 1 when there are n customers, and let Py 5 be the
transition probability from station i to station j. The
relative throughput for ezsch station i, denoted by e;» can be
calcuiated from flow balance equations, or solving these N

linear equations:

Ui
ej=i}=:1 ey Pij 1= 1y Py wees M

In this model, the equilibrium state probability is shown as

il
InM) = L IT = (ni}

P(n) = P(nyun G 1oy i

or e

where
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fi(ni) B

T us (k)
k=1

G(N) is a normalization constan%, or

M
G(N) = ¥ I £ ()
all feasible i=1
states n

Since a feasible state n = (nl,nz....,nm) is the state in
which the sum of all the n; equals N, we can define the set of
all feasible states as S(N,M), where

. M
S(N,M) = {(nyenye .. ny) | i{;l ng =N, n; >0, 1= 1,2,...,1}

Hence the normalization constant can be given by

n
i

1
G(N) = 2 i )
=1

n € S(N,M) 1 - -

To derive this algorithm, Buzen [58] introduced an

auxiliary function g(n,n), where g(n,n) is defined as

for A = 0z 1, 24 swesy Nandm= 1, 2, sy H. HNote that G(N)

is equal to g{(N,M), and in fact,
g{n,M) = G(n) fOI‘ n = o’ 1| 2. LRI ] I\Io

Now ohserve that for m > 1,



m
(n,m) = i f;{n,)
e n € S(n,m) iE[1 17
m
= L f.(n,) ]
k=0 13% S(n,m) igl 1
&n_ =k
f( (k)n[1 nﬁ f.(n.) ]
= f s \n
k=0 ™ n¢ S{n-k,m-1) i=1 * *
= 55 fm(k) g(n-k,m-1)
k=0

This expression is a recurrence relation, i.e. gm_i(n) is
required before gm(n) can be computed. The initial condition

for this recurrence relation can be obtained from otserving that

1
g(n,1) = z IT fi(n:)
n € S{n,1) i=1 -
= >3 f.(n)
one {} 7
=fi(n) forn = @ 3y 8, sesx Na
and g{n.0) =1 form=1, 2, ...,M.

Therefore, G(N) can be computed iteratively. Tatle 3.1
provides a schematic representation of the algorithm for a single
class closed queueing network. Buzen originally required two
vectors of gize N + 1 for storage of computation in this -
algorithm [58]. But observe that if the elements in the mth
column are computed starting with the last element g(N,m) and
proceeding to the first element g(1,m), then we can reduce the
need of storage to only one vector of size N + 1, For the
network with load independent servers, the computation will be

simpler and easier. The computational algorithm for the load

33
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independent case is presented in [56,58].

3-2.2 The Marginal Probability

Besides equilibrium stat probability, we sometimes want
to know the probability of finding n customers at each station
i, i.e. marginal probability P,(n). On"the other hand, the
marginal probability Pi(n) is needed when we want to compute
some performance values such as utilization, throughput, and

mean queue length.

The marginal probability Pi(n) can be expressed by

P.(n) = Plng
SR € §(N,M) !

& n,=
n;=n

..,ni_l.n,ni+1,....nM)

One can get Pi(n) directly from summation of all feasible
states with ng = n. This computational scheme is not efficlent
since there are too many states involved. Alternatively, we

discuss a more efficient algorithm.

The above expression for Pi(n) can be simplified as

A
7 —(—5—1 T f.ln.)
n., =
1

mp B
f.(n ji
= + ' T £.(n.)
SN pe S gri 34
&n; = n &j#i

To derive an algorithm for computing Pi(n). we need to define

another auxiliary function g (n,m) as
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" m
gnm) = K I £,(ny)
n ¢ S(n,m) i=1
& n; = n

This term can be viewed as a normalization constant of a network
which is the same network as the original one except removing

- station i and having only n customers. With this new auxiliary
function definition, the marginal probability becomes

f.(n) ;
P, (n) = "Eﬁ"‘ gt (N-n,M)

An algorithm is then needed to evaluate this new auxiliary
function gl(N-n.M). The derivation of this algorithm is based
on the fact that the marginal probabilities must sum to 1.

Therefore, we have

N

1= 5 Pk} for each station i
x=0 *
N £ (k)

Hence,
& i
G(N) = 2. £, (k) g (N-k,M)
k=0
and
i N i
g (NM) = o(N) - X5 £, (k) g (N-k,M)
k=1

Values of this auxiliary function can be computed by this

recurrence relation with the initial condition

gi(O.M) = G{0) = 1



3-2.3 Other Performance Values and Considerations

In this section, we represent the algorithm for computing
some performance values. These performance values are throughput,
utilization, mean queue length, and mean waiting time at each
station. "Most of these performance values can be simply
computed by means of the normalization constant. Therefore,
some people use the term "normalization constant method"”

instead of "convolution method" [55,56].

The throughput of a station measures the rate at which
customers leave that station. Hence, the throughput Xi can
be expressed as
‘ N
Xy = gza Pi(n) ui(n)
When Pi(n) is replaced by the expression derived in the previous

section, Xi can be transformed as [56]

Thus the wvalue of throughput can be simply obtained by computing

this expression,

The utilization denoted by Ui is the measurement of the

fraction of time station i is busy. By definition, we have

N
Us: = J: Paln)
3 n=1 h d
LN, M

1 - A6D)



The mean queue length ﬁi is the average number oif customers
staying at station 1 and needs to be evaluated from its

definition, that is

N
n. = 3, n P.(n)
T i

The mean waiting time for station i is the average time a
customer spends at it. The mean walting time ﬁi can be obtained
directly by Little's equation [35]. Little's equation means
that the average number of customers in the queueing system is
equal to the average arrival rate of customers to that system
times the average time spent in that system. In a steady-state,
the average arrival rate in a system 1s the same as the average
output rate (or throughput). ‘Hence, Little's equation can te

expressed as

n=32%w
When applying Little's equation to the queueing system at

station 1, we have

Wi T TX

The convolution algorithm described above is restricted
to the single class clased queueing network. Extensions of this
algorithm to more general queueing networks can be seen in

[56,64,66].

43



The problem of exceeding the floating point range may
sometimes occur during the computation of the normalization
constant [59]. This problem has been discussed and can be

avoided by some methods [55, 56, 59,67,68].

Some computer program packages have been developed to
solve large queueing networks with product form solutions. A
typical one is QNET [170], which is now one component of another
package RESQ (RESearch Queueing analyzer) [174]. Another
typical one is PNET (Purdue NETwork of queues evaluator) [55,56].

3-3 Mean Value Analysis

Mean value analysis is another recursive algorithm for

solving the closed queueing networks with product form solutions.

Ll
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In this algorithm, mean queue lengths, mean waiting time, and
throughputs can be computed iteratively without computing product
terms and normalization constants. This new technique was
developed by Reiser and Lavenberg in [70,71]. Bard extended

this technique to the more general case [69].

The mean value analysis is based on intuitively appealing
principles, namely;

"1, The queue length distribution seen by a customer upon
his arrival at a given station is the same as the overall
distribution seen by an outside observer when one less customer
is in the systemn.

2. Little's equation can be applied to the entire system
and to each station individually.
The first principle has been proven to hold in all closed
queueing networks with product form solutions [245,267]. For
a network with load independent servers, the following equation

can be obtained from the first principle,
wi(n) =8, + 8, ni(n—l)

where S. = 1 # u;  is the mean service time at each station i,
ﬁi(n) and ﬁi(n) denotes ﬁi and ﬁi with only n customers in the
system. This equation states that the mean waiting time of a
customer at each station i ia equivalent to its average service
time plus the mean time spent by the previously queued customers
at this station. For load dependent cases, we have the similar
egquation from the first principle, namely,

1
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where P (k,n) denotes the marginal probability Pi(k) when only

n customers are in the system. The above equation implies that
the mean waiting time of a customer at each station is the average
of the backlog that exists at this station. The average backlog
at each station is the average service time spent by all customers
when the station has different loads. In agreement with principle
1, the weighting factor used in computing the average is the
marginal probabilitydistribution at this station when n - 1

customers circulate throughout the system.

The second priciple states that Little's equation can be
used to transform mean queue lengths and mean walting times
throughout the network. When Little's equafion is applied to
the entire queueing network, the system throughput XS can be

obtained, i,e.

n

M
Z: A (n)

Note that the average number of customers in the system is n,
and the mean {ime a customer spends in the system is the sum of
the time it spends at each of the individual service stations.
The average time a customer spends at each station can be
expressed as the mean waiting time a customer spends per visit
times the mean number of visits to this station, which is the
relative throughput at this station. Then the throughput at
each station 1 can be computed as the relative throughput at

this station times system throughput, i.e.

Xi(n) = ey Xs(n)
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When Little's equation is applied to each station i, we can get

the mean queue length, namely

ﬁi & Xi(n) wi(n)

Combining the above discussions, we have the following
recursive equations for i =1, 2, ..., Mandn=1, 2, ..., N

in independent case:

Wi(n) = S, if station i is IS,
= Si(1+ﬁi(n~1)) otherwise.
n

Xs(n) - M- (

ST e.w.(n)

i=g 4
ﬂi(n) = e; ks(n)
Ui(n) = Si Xi(n)
ni(n) = Xi(n) wi(n)

with initial condition ﬁi(O) = 0 For i = 1, 2, .vey M.

The above equation for utilization Ui(n) is proved to be true

in the load independent case [56].

in load dependent cases, the computation of mean waiting
time involves the marginal probability. The recursive relation

exists for the marginal probability [71], that is
Pi(k’n) — Si(k) Xi(n) Pi(k-lgn-l) fOI‘ i = l| 2| L I ) M

In zaddition, we have
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n

3. P.(k,n) =1 for i=1, 2, ...,.M

- 1
k=0

or
I

P.(O,n) =1 - £ P.(k,n) fori=1, 2, ..., M
1 k=1 =

Therefore, the recursive equations for load dependent cases for

i=1,2, ..., Mandn =20, 1, 2, «.., N will be
i " 1)
n
P.(O,n) = 1 - ¥} P.(k,n)
i 1
k=1
-&i(n) = 8 if station i is IS,
n
= ¥ k S.(k) P,(k-1,n-1) otherwise.
= i i
n
Xs(n) = M -
i;l e; wi(n)
xi(n) m &y Xs(n)
Ui(nJ = 1 - Pi{oln)
ni(r‘ = Xi(n) wi(n)
with initial condition Pi(0,0) = 3 for i =1, 2, ..., M

Compared with the convolution algorithm, mean value analysis
is easy to intult and simple to implement or program. It will
never exceed the floating point fange during computation. Bui

the recursive expressions for marginal probability may fail for
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relatively small populations since Pi(o,n) may turn out to be
negative [59]. Hence, mean value analysis may not be able to
handle some networks with small populations and variable service
rates. Reiser proposed a modification of mean value analysis
which avoids this problem [62]. But the modification requires

additional computations.

3-4 Other Efficient Algorithms

In addition to the two algorithms described, there are
other algorithms which give still less computation. One of them
is partial fraction approach. This approach is based on partial
fraction expansion of the generating function, and gives an
explicit expression for the normalization constant G(N). This
approach was developed by Moore for closed queueing networks
with single class and exponential service time distribution [77].
Reiser and Kobayashi [64], and Lam [76] extended this approach
to general gqueueing networks. This approach has the same computer
efficiency as the convolution method, but it will become
numerically unstable since it requifes the summation of terms
with alternating signs which may be subject to round-off errore
in some cases [64]. Hence, the partial fraction approach is

clearly inferior when compared with the convolution method.

In recent years Kobayashi [75] proposed a new computational
algorithm for calculating normalization constant and other
performance values of a queueing network. This algorithm is
based on the Polya theory of counting, which is an application

of group theory to combinatorial problems. This algorithm also
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deirves some recursive equations to compute G(N). The amount of
computations required in this algorithm is the order of Nz,
where N is the total number of customers. Thus the algorithm is
preferable to the convolution algorithm when there are many
service stations and N is small. But this algorithm is now

restricted to a network with exponential serivce time distribution

and constant service rates.

Twa new algorithms were proposed by Chandy and Sauer in
1980 [59]. One is similar +o mean value analysis and the other
one is closely related to the convolution algorithm. The former
is called the Local Balance Algorithm for Normalizing Constant
(LBANC), and the latter is the algorithm to Coalesce Computation
of Normalizing Constant (CCNC). LBANC depends on Little's
-equation, btut it also requires the normalization constant G(N).
We use the unnormalized mean queue length to keep the equations
recursive. The normalization constant can easily be calcuated
from these unnormalized mean ququq lengths. For a closed queueing
network with load dependent service rates, the unnormalized mean

queue length. denoted by LBni(n). can be expressed as
n
LBn;(n) = 7 k LBP,(k,n)
X=1 .

where LBPi(k,n) is the unnormalized queue length distribution

for station i, or unnormalized marginal probability, we have
n
22 LBP, (k,n) = G(n)
k=0

or

n
LBP.{(0,n) = G(x) - X LBP.(k,n)
1 o= 1



The relation between unnormalized mean queue length LBni(n) and

mean queue length ﬁi(n) is
LBn;(n) = n;(n) G(n)

To get the normalized constant G(n), wenotice the fact that
M e
7 H.(n) = n

i=1 1

Thus, G(n) can be obtained from the above two equations, namely

M
L LBEn;(n) / n
i=1

5(n)

Therefore, we have the recursive equations:for i =1, 2, ..., M

andn=20, 1, 2, ..., N

LBPi(k.n) - Si(k) Xi(n) LBPi(k—l,n—l)

- n
IBn.(n) = k LBP. (k,n)

M
G{n) = iﬁﬁi(n) / n
=1

1

LBPi(D,n) = G{n) - EE LaPi(k.n)
k=1

n; (n) fﬁﬁi(n) / G(n)

G(N -1
X;(n) = e; —5(w

wi(n) = &;(n) / X, (n)

1]

Ui(n) 1 - Pi(O,n) =1 - LBPi(O,n) / G(n)

with initial condition LBPi(0,0) =1 fori=1, 2, ..., M
This new algorithm has the same computational efficiency as mean
value analysis and convolution algorithm. LBANC is also very

simple to program, and can be applied to mixed networks which
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cannot be applied in mean value analysis. But this algorithm
has the numerical Problems which happen in both convelution
algorithm and mean value analysis. That is, it may fail because
the normalization conatant exceeds the floating point range for

some populations, and may fail for relatively small populations.

Another algorithm CCNC is intended for use with programmable
calculators. This algorithm gives an explicit expression for
normalization constant. Then it computes the normalization
constant by taking advantage of exponentiation and factorial
operations which are usually provided as ﬁachine instructions in
calculators. Other performance values can be computed in the
same mamner as in LBANC. But this algorithm applies only to

the queueing networks with constant serivce rates.

Zahorjan (79] also proposed a convelution algorithm for
queueing networks with product form solutions. This algorithm
leads to a different way to determine the normalization constant
and other performance values. Not only can it be applied to
all the queueing network models as before, this new algorithm is
the first efficient algorithm to deal with Lam-type networks [33]
which allow external arrivals to be triggered by a departing
customer, and arriving customers to be lost depending on the

current state.
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.. CHAPTER 4
METHODS FCR SOLVING GENERAL QUEUEING NETWORKS

The computation.algorithms discussed in Chapter 3 are applied
only to queueing networks with product form solutions. This
kind of network exists only when it has "M = M", or local
balance property [22,38], or when it satisfies the homogeneous
assumption [(51]. A typical netwrok with local balance property
is the one developed by Baskett et al. [14[, which includes four
different types of queueing disciplines: FCFS, PS, IS, and LCFS.
There are some queueing networks which do not have the "local
balance” property. One example is the nefwork with general
service time distribution at the service station and FCFS queueing
discipline. Since a general service time distribution is
represented by a series of stages at this station, and if the
queueing discipline is FCFS, a customer waiting at the head of
the line is not allowed to enter the first stage until the |
customer currently in service completes its last stage and
departs from this service station. The entrance stage is
considered blocked when a customer is still in some stage of

this service station.

We need other approaches to solve the queueing networks
which do not have product form solutions. Three different
approaches can be considered:

!. Some numerical methods.

. Some approximation methods.

2
3. Simulation.
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Numerical methods may give an exact solution for a general
queueing network, but they will have difficukty in handling a
very large system. Approximation methods and simulation can
handle any large and comples queueing networks. But since
simulation is not an anaytical method, we do not want to discuss
it. A discussion of simulation methods can be seen in [5].
Regenerative method has recently been developed for estimating
canfidence intervals when simulating a queueing system. An
introduction to regenerative method is given by Lavenberg and
Slutz [147,156]. Iglehart gives a thorough survey of this
method [151]. One computer program package, APLOMB [69], is
used for simulation of general networks. Written in FORTRAN,

it is the simulation component of RESQ [174].

In this chapter, we discuss some numerical methods and
approximation methods. The section 4-1, we discuss some
numerical methods which are used to obtain the stationary
probability vector of a Markovian model. These numerical methods
include some matrix iteration methods: power method, lopsided
metnod, Jacobi method, Gauss-Seidel method, and successive
overrelaxation method, and two other recursive methods: one
developed by Herzog, Woo, Chandy [87], the other by Brandwajn
[81]. In section 4-2, we discuss two major approximation methods:

diffusion and aggregation.

-1 Numerical Methods
If a queueing system can be modeled by a continuous time
Markov chain, then numerical methods may be used to obtain the

stationary (or long-run) probability vector of the system, the
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vector whose length is equal to the number of states which the
system can occupy, and whose i1th component denotes the probability
of the system being in state i after a long period of time which
is independent of the initial state. From such stationary

probabilities, the performance values may be derived.

Consider a queueing network which is modeled by a continuous
time Markov chain with discrete state space. Let Pi(t) be the
probability that the system is in state i at time t, then Pi(n)
can be expressed in the form of a Chapman-Kolmogorov equation

[250]

n g1
Pi(t+at) = Py(t) {1 - 3 s;iat+ L sy P(E) At}

J=1 k=1
£ k#i
where n is the total number of states, and sij is the rate of
. n
transition from state i to station j. Let s;; = - P S5 50 then
J#1
n
P, {t+at) = P. (%) + 13::; Sy Plt) Aot
Py (t+at) - Pi(%) d n
At-+0 At k=1

In matrix notation

4 -

At steady state, the rate of change of P(t) is zero, and therefore

s'P=o0

where P(t) is now written as P. Therefore, some numerical
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methods can be applied to solve this matrix equation in order. to

get P.

Direct methods and iterative methods are two different kinds
of numerical methods for solving simultanecus linear equations.
When a direct method like Gauss elimination method is used , the
solution will be yielded after an amount of computation that can
be specified in adveance. In contrast, an iterative method is
one in which we start from an approximate solution iteratively

until the required accuracy is achieved.

When numerical methods are used to solve the above matrix
equation, iterative methods are generally preferred to a direct
method because the matrix involved is usually large and sparse,
i.e. having few nonzero elements. The only operation in which
the matrix s is involved is a multiplication with one or more
vectors in a iterative method. The operation does not change
the the form of the matrix, and thus compact storage schemes
may be used. Such schemes store only the nonzero elements of
the matrix and the position of these elements in the array,
and consequently a considerable saving in core requirements is
effected. On the other hand, direct methods will cause the form
of the matrix to be changed, creating nonzero elements in
positions which were previously empty. However, iterative
methods also have a major disadvantage in that they often require
a very long time to converge to the desired solution compared

with direct methods.
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In this section, we first discuss some iterative methods
[92,97] for solving this matrix equation. Then a direct method
[94] developed by Stewart is also described. A comparison of
these numerical methods can be seen in [93]. Finally, two

numerical methods with other approaches are described.

Power method and lopsided method
The power is used to solve the eigenvalue problem. This

method is the first numerical approach to analyze the gqueueing
network models [97]. The computer program package RQA-1 (
Recursive Queue Analyzer) [176] was developed based on the power
method. This method involves repeatedly premultiplying an
arbitrary trial vector by the matrix until the results obtained

from consecutive iterations become proportional to one another.

Power method can be investigated as follows: the equation

(8§T+£)P

g
"
on
1
d
+

e
f

where § is a scalar multiplier. This in turn suggests the

iteration

= (§sT +I)P

P
=4

-n+1

It has been shown that P will be assured to converge onto unique
=1

» < . ..
vector when § is chosen such that & < (m?x bsiil 077 where sis

is a diagonal element of g [98]. This can also te considered
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as an eigenvalue problem in which P is presented as an eigenvector
[92]. There is only one dominant eigenvector in the power method.

Thus, sometimes the rate of convergence is very slow [93].

This problem can be overcome to a certain extent by using
simultaneocus iterative methods. Such methods are an extension
of the power method in which iterative is carried out with a
eigenvectors and yield the dominant eigenvalues [93]. The
simultaneous iterative methods have been most highly developed
for the real symmetric eigenvalue problem. There are also
some simultaneous iterative methods for unsymmetric cases [239].
The lopsided method developed by Jennings and Stewart (89] is
a simultaneous iterative method for unsymmetric cases. This
method determines only one set of eigenvectors for a real
unsymmetric matrix, thus considerably reducing core requirements
[93]. Therefore the lopsided method is well suited to analyzing
the Markovian problem. One computer program package, MARCA
(MARkov Chain Analyzer), has been developed based on this
method [91,173].

Jacobl, Gauss-Seidel, and successive overrelaxation methods

In the above section, either the power method or lopéided
method is used to determine the stationary probability vector P
from the equation P = (gT + 1) P . Stewart [92] proposed an
alternative approach to obtain P from the homogeneous system of

B P=0 . This approach lets us use soﬁe

the linear equation: s

standard and well known iterative methods are Jacobi method,
Gauss-Seidel method, and successive overrelaxation method.
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Consider the equation: §T P=0 3 let

s = (L+D+U

where D is a diagonal matrix and L and U are, respectively, lower

and upper triangular matrices. Then

(L+D+U)P=

o

DP=-(L+U)P
Assume that D is nonsingular; this yields

P=-D1(L+UP

1

The matrix - D™~ (L + U) is just the iterative matrix for the

Jacobi method. Then P can be obtained from this iterative method.

-

Similar results may be derived for the Gauss-Seidel method.

From
(L+D+U) RP=0
we have
(L+D)E=-UP

Assume that (L'+ D} is nonsingular; it yields

P=-(L+DhUP

This matrix - (L + Q)'l U is just the iterative matrix for the

Gauss-Seidel method, and P can be also be obtained.

Finally, for the successive overrelaxation method, we begin
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with
w(L+D+U) PB=0

where w is the relaxation factor. Then

(WwU+wD) P=-wLP

(WwU+wD P-DP=-wLP-DP
(wU+{(w-1)D]P=-(wL+D)P
P=-(wL+D P [wu+(w-1)D]FP

This is the iterative equation used in the successive o
overrelaxation iterative method. Note that when w = 1, it will

be the same as Gauss-Seidel method.

It has been shown that the Jacobi iterative method will
give poor results compared with power method, while the Gauss-
Seidel and successive overrelaxation methods permit numerical
solutions to be obtained very rapidly and should be used

whenever possible [92].

Direct method
A direct method was proposed by Stewart [94]. Instead of

the usual direct methods, this approach used the method of
inverse iteration; the latter requires less numerical computation.
A fixed bandwidth storage scheme is also recommended to handle
the core memory problem. Note that although it requires more
memory for storing arrays, the direct method obtains much more

accurate results in a considerably shorter time period.
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Other numerical methods

Two other numerical methods which may efficiently solve
queueing problems have been developed. One is a recursive
method proposed by Herzog, Woo, and Chandy [87]. Taking
advantage of the special recursive structure of the systems of
equations, this method is easy to program and has less computing
time and/or memory compared with some numerical methods. All
those systems of equations which are described by means of
Chapman-Kolmogoroff stationary equations have the folowing
typical feature: there exists a subset of the state probabilities,
which ﬁe define as boundaries, and if the values of the boundaries
are known, the recursive of the total system of equations can
be carried out efficiently [87]. Therefore, using this feature,
this recursive method first determines the boundaries and
derives expressions for all remaining state probabilities as
functions of the boundary values. Then it solves a reduced
system of equations for these boundaries. Finally, it determines
all interesting state probabilities and performance values by
means of the boundaries. When solving the reduced system of
equations, some common techniques such as matrix inversion can

be applied.

Another numerical method was proposed by Brandwajn [81].
This method is based on a systematic use of the notion of
equivalence, and of conditional probability distributions. In
most cases, it implies an iterative scheme. The computation
involved at each iteration is simple and does not require any

matrix operation; sufficient convergence conditions have been



62

obtained, and the rate of convergence appears to be good.

k-2 Approximation Methods

There is a limitation for numerical methods which can give
an exact solution for a queueing network. Since the numerical
methods are trying to solve the steady-state balance equations,
they often requiré a prohibitively large core memory to store
the transition matrix, or a long time to obtain the solution.
This is due to the fact that some numerical methods need to
solve the balance equations directly, and some need a large
number of iterations to converge. Therefore, instead of numerical
methods, we usually use approximation methods to handle more
complex queueing networks. Approximation methods approximately
at relatively low cost, i.e. taking less compute core memory
or/ and computation time. Two major approximation methods,

diffusion and aggregation, are discussed in this section.

4-2,1 Diffusion Approximation

The diffusion approximation is based on the assumption that
queues are almost always nonempty (i.e. heavy traffic conditions).
The central limit theorem is applied to characterize the
fluctuations in the queue lengths, and then the discrete-state
queueing process is replaced by a continuous . time Markov process
(also called a diffusion process). The probability distribution
of this continuous process is described by a diffusion equation,
which is in the form of partial differential equations. These
equations can be solved with appropriate boundary conditions.

The diffusion approximation was originally used to solve a single
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queuéing system with G/G/1 (i.e. general input process, general
service time distribution, and one service) [117]. Gaver and
Shelder [106] used diffusion approximation to evaluate the CPU
utilization in a multiprogramming system which is represented by
a cyclic queueing model. Kobayashi [118] extended the diffusion
approximation to solve the general queueing networks.
Furthermore, a transient solution of a queueing network can

also be obtained via diffusion approximation (119]. Gelenbe
[107] proposed different boundary conditions to improve diffusion
approximation. Reiser and Kobayashi [121], and Badel and Shum
[102] have assessed and evaluated the accuracy of diffusion
approximation to gqueueing systems. Some application of diffusion
approximation can be seen in [105,109,110]. In this section, we

discuss some basic ideas in diffusion approximation.

The basic problems involved in diffusion approximation are
(1) the choice of the mean and variance which-are the parameters
for characterizing the diffusion process, (2) the choice of the
appropriate boundary conditions, and (3) the selection of
" intervals needed to approximate gqueue length distributicn from
continuocus-path process. Consider a single gueueing system with
G/G/1. Let Q(t) be the queue length at time t. The interarrival
time and service time are both represented by their means and

variances, namely

i

mean interarrival time

variance of interarrival time

e
1}



&4

——%—— = mean service time
s ,
Ui = variance of service time

Q(t) will not become zero since it is a heavy traffic condition.
Then on the basis of the "cantral limit theorem", the change in
queue length AQ(t) = Q(t+at) - Q(t) can be approximately
normally distributed [118] with mean -

E(8Q(t)] = (u, - u ) ot = @at

a

with variance

Var[ AQ(t)] = (ca u, *+ Cg us) At = d At

o G - e B : .
where C,=u, g, and C, = u; g, ,» l.e. the squared coeffients

of variation.

Therefore, we can approximate a discrete-state process Q(t)

by a continuous path process X(t), whose incremental change
dx(t) = X(t+dt) - X(t)

is normally distributed with mean dt and variance dt. Let P(XO,
X,t) be the probability density function of X(t) given that its
initial value X(t) = Xy + It can be shown that P(XO,X.t)

satisfies the equation [118].

- 4 3
—2— P(XpX,t) = —3

2 5 g
5 > ax P(Xosxnt) -_ﬁ—;;fP(XO.X.t)

2

This equation is called the Kolmogorov diffusion equation or

Fokker-Planck equation.
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The diffusion equation is now sclved with appropriate
boundary conditions. Since the queue length cannet be negative,

the solution must satisfy the boundary condition.
P(XyiX,t) = 0 for X <0

The natural way to handle this condition will be to treat X = O
as a reflecting barrier. Since a general distribtution has a
di;ferent coefficient, a simple reflecting barrier tends to

| bring considerable error in the solution of queue length.

| Therefore, there are several different ways to modify the

boundary condition [106,107,118,121].

After obtaining P(XO.X,t), we need to approximate the gqueue
lengfh distribution P(no,n,t) by integrating P(XO.X.t) over a
selected interval. A reasonable heuristic one is a unit interval
n<X<n+1. In steady state, we use the equilibrium queue

length distribution P(n) instead of P(nc.n.t). or
P(n) = P(ng.n, t)

From the integration, we can get

n+l1

P(n) = [ P(XpX,t) = (1-P)P" gorn=o0, 1,2, ..

A

where € = expl -2 (1 -P )/ (C

n

S+CaP)]. and P is

utilization.

For a queueing network, the queueing processes can be
approximated by a vector valued diffusion process. The

interactions among different queueing procedded are explicitly
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considered in the diffusion equétions in terms of the variance-
covariance matrix. Kobayshi [118] has derived the joint queue
length distribution, which is expressed in a product form of the
marginal queue length distributions, That is,

M

1 A
P(n n RS o | ) = H P‘(n' )
172 M g qeq 11

A
where M is the total number of service stations, and G is the
normalization constant, i.e.
i} M A

all feasible 1i=1
states

A A
Bim)=(1-p )60
and

€ = exp(2 8 /o)

@m depends on the mean interarrival and service time, and routing
probabilities, and.dm_depends on the variances of interarrival

and service time.

The diffusion approximation is used not only to obtain the
equilibrium state solution P(n), but also to get the
nonequilibrium solution P(ngy,n,t). Kobayashi [119] showed that
the transient solution for a cyclic queueing model can be
obtained via diffusion approximation. However, there are
cercertain restrictions for diffusion approximation. It
requires a nonpreemptive queueing discipline and a heavy load

in each station of the network. The latter condition is usually
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met in_open networks under heavy traffic conditions, but is not
the case in closed queueing netwerks where several stations are
often likely to be underutilized. Hence, the diffusion
approximation is seldom used for analyzing complex closed

queueing networks,

L-2.2 Aggregation

The key concept in aggregation is that one solves portions
of the networks in isolation, and replaces each portion by a :
single composite queue, then analyzes these composite queues to
produce a solution of the whole system. This approach has also
been referred to as decomposition, since one can view the
strategy alternatively as decomposition of the whole system or
as aggregation of portions of the system. Aggregation can be
shown to give exact solutions and to do parametric analysis for
queueing networks with product form solutions [20]. But in
general queueing networks, the aggregation will cause some
error because it dose not totally capture the interaction
between the individual portions. Courtois [129] studied the
conditions for determining how and when decomposition is viable,
and derived the error bound for some queueing network models.
Vantilborgh [141] did a similar study in which aggregation
yields exact results for some gueueing networks with an
exponential, lcad dependent server. On the other hand,
aggregations are also studied by means of flow-equivalent
approximation. TFlow-equivalent methods rely mostly on intuitive
heuristies, but they have proved to be usefully accurate in a

number of particular applications. An introduction of flow-
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equivalent methods is given by Chandy and Sauer [104]. To reduce
the error in aggregation, a lot of methods which will improve

the flow-equivalence are developed. Iteration [125] and product
form {137] are two such methods. Comparison among these methods
can be seen in [101] or in ([123]. Some other approximation
methods using different approaches for open queueing networks
may be seen in [134,138]. 1In this section, we discuss some ideas

about flow-equivalent, iteration, aﬁd‘product form methods.

Flow-equivalent method.
The equivalent method is a basic approach to replcing a

subnetwork of queues by a single composite queue. In this
method, the customer flow through the composite gqueue is equal
to the customer flow through the network. For a queueing ndtwork
with product form solution, flow-equivalent method will give an
exact result for a composite queue [20]. To determine the
ccmposife queue service time, we first analyze the subnetwork
isolately. By considering the subnetwork with the output fed
back to the input, we can determine the throughput, X(n), along
this feedback path for each possible customer population size n
in the subnetwork. Then the mean service time of the composite
queue given n customers in the queue, S(n), is set just equal

to 1 / X(n) . To illustrate this method, we consider a central
server model in Figure 4.1 There are M stations and N customers
in this model. Except for station 1, all stations satisfy local
balance, First we consider the subsystem in Figure 4.2, and
calculate the throughput X(n) forn=1, 2, ..., N. Then the

original network is reduced to a simple network which contains
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only two queues as shown in Figure 4.3. The mean service time
of the composite queue S(n) is equal to 1 / X(n) for n = 1, 2,
+s:9 N. The reduced network can be easily analyzed by any

numerical method.

For the subnetwork in which some stations do not satisfy
local balance, we need to consider two things: service time

distributions and queueing disciplines for the composite queue.

70

Very little work has been done in the area of selecting gqueueing

disciplines, though it does affect the aggregation's_results.
Usually the queueing disciplines are selected more to reduce
computational complexity than to better model the composite

system. For service time distribution, we need to determine

the mean service time and variance. Mean service time can be

determined by throughputs. There are several ways of estimating

the throughput in the subnetwok. The better the estimation, the

more expensive the method. The most accurate solution is to
model this subnetwork as a discrete-state Markov process and
then to determine steady-state probabilities numerically, and
thus compute the throughputs or mean service time of the flow-
equivalent. One easy but not very accurate method is by

assuming all stations in the subnetwork have local balance and

determine the mean service time directly by the flow-equivalent.

The simplest way to determine variances is to assume that the

service time of the composite queues are exponential. Sauer and

Chandy [135], and Sevick, Levy, Tripathi, and Zahorjan [136]

used different approaches to determine the coefficient of

variation of the service time for composite queue. More detailed
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discussion can be found in [104,136].

- Iteration and product form methods
Iteration and product form methods are the methods which

try to reduce the error of aggregation from flow-equivalent
approximations. Rather than attempting to represent a subnetwork
accurately, these two methods carry out the computation assuming
simplistic subnetwork representation and later attempt to correct
for the inaccuracy in subnetwork representation. In the
iteration method [125], the queueing network is first assumed to
satisfy local balance. Then in each iteration, we determine

the complement of queue for each queue i in the netwok. The
complement of queue is a composite queue of subnetwork which is
the network excluding queue i. Since the subnetwork satisfies
local balance, we can determine sarvice station directly by using
flow-equivalence. Then we determine queue length distribution
for each queue i by analyzing the two queue network consisting
of this original queue and its complement queue. We can use

only numerical methods to sclve this two queue network. Then

we make consistency tests which check whether flow is balanced
balanced and whether the mean gueue lengths in the queues sum

to the total number.of customers in the network. If the tests
are not satisfied, we adjust the mean service time of the queues,
and do the next iteration. Thus queue length distribution for
each queue 1 can be improved iteratively until the tests are

satisfied.

In product form method [137], we first assume the queue
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length distribution P(nl.nz,....nm) has a product form which is

the products of factors Pi(hi) for each queue, i.e.

P(nyongeeee,ny) = —E%ET— ég% P.(n,)
Each factor Pi(ni) is analyzed as an M/G/1/N queue isolately.
The input rate for each queue 1 is e; X, , where e is relative
throughput to gueue i, and Xs is the system throughput.
Beginning with an arbitrary X_ , we can find each factor P;(ny)
independently, and then get the joint queue length distribution
P(nl.nz,....nm). A set of throughputs can be computed from the
joint queue length distribution. Theﬁ we check whether these
throughputs satisfy flow balance. If they do not satisfy, we
adjust system throughput XS » and do the next iteration. The
joint queue length distribution can be improved iteratively

until a set of throughputs satisfies flow balance.
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CHAPTER §
CONCLUSION

This report gives an overview of queueing networks for
modeling computer systems. First, an introduction and
calssification of queueing network models is given. The
development and derivation of queueing networks which will
result in product form solutions is then represented. Finally,
computational algorithms and methods for solving queueing
networks are discussed. In addition to describing some basic
ideas about those different approaches, computational algorithms,
and methods, we also give a classified biblipgraphy of research

in queueing networks at the end of this chapter.

In summary, there are three different approaches for
solving queueing network problems. One is to make some -
assumptions about the system so as to get a gqueueing network
model which has a product form solution, and then use some
computational algorithms to solve it. Although this approach
will give an exact solution and can be solved efficiently, it
needs.some strong assumptions which may severely affect
credibility. A second approach is by numerical methods. These
methods can also give an exact solution, but they have -
restrictions about core memory or/and time of convergence. The
third approach is by approximation methods. Diffusion
approximation will give nearly exact results when applied to a
system with heavy traffic conditions. Aggregation approximation

is an attractive approach for analyzing complex systems, since



74

it allows the mixture of various techniques (e.g. product form

solution, numerical methods, and simulation).

There are a lot of areas for future research. For product
form solutions, one may develop some other computational
algorithm with more efficiency, or extend existing algorithms
such as Polya enumeration to more general models. For numerical
methods, one may find other methods with the fast rate of a
direct method. For approximation methods,one may find some
ways to improve flow-equivalent methods, or conditions in which
~aggregation will yield exact results for any general queueing

network.
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Abstract
This research gives an overview of queueing networks for
modeling computer systems. First, an introduction and calssif
classification of queueing network models is given. Then the
development of queueing network models is reviewed, and two
different approaches to derive these network models are discussed.
The traditional approach is based on stochastic assumption;

another approach is operational analysis.

Finally, three different approaches for solving queueing
network problemé are described. One is to make some assumption
about the system so as to get a gqueueing network model which has
product form solution, then using some computational algorithm
to solve it efficiently. The second approach 1s by the numerical
methods which can give an exact solution but are restricted in
terms of core memory or/and time of convergence. The third
approach is by the approximation methods. Diffusion
approximation will give nearly exact results when the system
has heavy traffic conditions. Aggregation is an attractive
approach for analyzing complex systems, since it allows the
mixture of varicus techniques (e.g. product form solution,

numerical methods, and simulation).

In addition to describing some basic ideas about those
different approaches, computational algorithms, and methods,
we also give a classified bibliography of research in queueing

networks at the end of this report.



