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Abstract 

The impacts of climate change over the next 100 years on North American grasslands are 

unknown. Climate change is projected to increase rainfall and seasonal temperature variability, 

leading to increased frequency of drought and decreased rainfall amounts for many grassland 

locations in the central Great Plains of North America. To increase our ability to predict the 

effects of a changing climate, I measured multiple morphological and physiological responses 

from a diverse suite of C3 and C4 grasses. Due to varying characteristics associated with the 

different photosynthetic pathways, these grass species respond differently to altered temperature 

and precipitation. I monitored grass physiology and microanatomy in conjunction with varying 

watered availability to replicate drought. In the second chapter, I observed leaf-level physiology 

and root level morphology of C3 and C4 grasses when exposed to 100% water reduction. Results 

indicated that response to water reduction are not always dependent on the photosynthetic 

pathway. Root-level morphological measurements were found to vary significantly between 

species in the same genus; F. ovina had the highest specific root length (SRL), which is an 

indicator of tolerance to environmental variability. Results also indicated that grasses of interest 

have thresholds that when passed result in a photosynthetically inactive plant; however it was 

shown that they are able to recover to near pre-drought gas exchange rates when water is re-

applied. The third chapter investigated both leaf-level physiology and morphology in dominant 

C4 grasses across Kansas’ rainfall gradient over the growing season. I hypothesized that variation 

within a species’ physiology would be greater than its’ morphology. I also hypothesized that 

morphology would predict variability in a species physiological response to changes in climate. 

This research discovered within a location and species, leaf morphology is fixed across the 

growing season. Strong correlations between leaf physiology and morphology were observed, 



  

however, the strength and relationship changed among the species compared. A. gerardii and P. 

virgatum exhibited opposing relationships when comparing their photosynthetic rates to the 

amount of bundle sheath cells. This result highlights strong species-specific relationship between 

physiology and morphology. My results illustrate the importance of utilizing plant physiology 

and morphology to understand how grasses may respond to future climate change scenarios. 
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Chapter 1 - Introduction 

 Grassland Evolution 

The Central Great Plains of North America is a large geographic area that extends from 

southern Canada to northern Mexico and contains a large precipitation range from 260 to 1200 

mm (Axelrod 1985; Sala et al. 1988). The United States has over three million km2 of grasslands 

representing nearly 12.5% of North America, most of which is in the Great Plains (Bailey 1998; 

Lauenroth, Burke & Gutmann 1999). Over the past several thousand years, this region has been 

molded by frequent burning, climate variability, and grazing (Borchert 1940; Anderson 2006). 

These drivers have led to dominance by C4 grass species (Carpenter 1940; Smith & Knapp 1999; 

Sage 2004), while other species respond negatively or exhibit reduced responses compared the 

C4 grasses.  

 Climate Change 

The Central Great Plains are subject to climate change effects, which may reduce water 

availability in the region due to increased climate variability (Houghton et al. 2001; IPCC 2007). 

These changes are expected to cause a myriad of negative effects in agriculture and the native 

ecological communities that have not been observed since the 1930’s dustbowl drought (Adler & 

Levine 2007; Romm 2011; Eters, Tarks & Ernandez 2014; Cook, Ault & Smerdon 2015). With 

the loss of native dominant species, altered rainfall patterns and increased air temperatures may 

increase the susceptibility of plant communities to plant invasion (Bellard et al. 2012). Although 

droughts are a common occurrence in the Great Plains region, an increase in the frequency and 

magnitude of drought has the potential to reduce productivity and limit maximal crop production 

in the United States (Lobell et al. 2014). Current model forecasts of future climate change 

impacts in this region include both higher frequency of droughts, as well as higher intensity 
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(longer days between rain events) of droughts (Cook et al. 2015; Hoover, Duniway & Belnap 

2015). Different types of droughts can be categorized by “pulse-droughts” and “press-droughts”, 

which are differentiated by their magnitude (Hoover & Rogers 2016). According to Hoover & 

Rogers (2016), pulse-droughts are shorter in duration but characterized as more extreme in 

magnitude. Press-droughts, however, are higher in frequency but not as damaging to plant health 

(Hoover & Rogers 2016). Both types have been projected to increase in frequency due to climate 

change, and therefore warrant additional understanding.   

Plant species have evolved various strategies attempting to overcome drought conditions 

(Chaves, Maroco & Pereira 2003). Plants have evolved to tolerate drought conditions through 

physiological and morphological adaptations. However, frequent drought conditions may cause 

increased plant mortality and water-stress, regardless of adaptations. As water-stress increases, 

hydraulic failure or cavitation can cause plant mortality and also carbon starvation due to 

stomatal closure for water conservation (McDowell et al. 2008). Therefore, the dominant prairie 

grasses are C4 warm season perennials that can maintain leaf-level physiological processes 

during times of water stress. Without drought tolerant species in the grasslands, a major decline 

in productivity would follow droughts occurring in the region (Craine et al. 2012). These grass 

species utilize drought tolerant mechanisms to survive seasonal periods of low water availability, 

allowing some species to become increasingly dominant. Understanding the responses of these 

dominant grass species to drought is essential to answering how drought will alter the landscape 

of the Central Great Plains (Hoover, Knapp & Smith 2014a). In order to predict the responses of 

dominant grasses to drought, physiological and morphological plasticity over a range of 

precipitation inputs must be characterized.  
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 Physiology  

Drought manipulations have been conducted for many years with the use of rain-out 

shelters and greenhouse experiments that decrease the amount of water available (Fay et al. 

2000). Field experimental rainfall manipulations have been a proven method of measuring 

physiological responses of particular species (Knapp et al. 2002a; Nippert et al. 2009; Hoover, 

Knapp & Smith 2014b). Most precipitation manipulations entail large decreases in water (~50% 

in many cases) (Knapp 1984; Fay et al. 2000). By utilizing natural precipitation gradients, one 

can assess genotypic variation and phenotypic responses to varying rainfall amounts. To fully 

understand changes in species physiology, a multitude of traits are required for measurement. 

Measurements of gases exchanged through stomatal pores have been a key measurement for 

many years to measure species response to microclimate because of ecophysiologists’ 

understanding of key leaf-level processes (Nippert et al. 2009). Nippert et al (2009) utilized 

experimental increases in temperature and changes in precipitation to measure important 

physiological traits of grassland species at the leaf-level. In addition to experimental increases in 

temperature, chlorophyll fluorescence and water potential measurements have been utilized in 

previous research (Maxwell & Johnson 2000; Nippert et al. 2009). Chlorophyll fluorescence is a 

measurement of the efficiency of photosystems II; which is an indicator of how plants respond to 

stress (Murchie & Lawson 2013). Leaf water potential is measured to describe the tension that 

exists within the xylem. This tension gradient describes the difference in potential between the 

soil (high potential) and the atmosphere (low potential). If the tension gradient become too great, 

hydraulic failure or cavitation may occur (McDowell et al. 2008). Climate changes that alter 

precipitation may promote the frequency and intensity of dry soils, increasing negative effects of 

drought. Quantifying physiological traits that exist among co-existing plant species may provide 
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insight into susceptibility to drought, and the resilience of ecosystems under novel future climate 

scenarios.   

 Morphology 

C4 grassland species become dominant during the summer heat because of their unique 

leaf morphology termed ‘Kranz Anatomy’ (Edwards et al. 2001; Christin et al. 2013). This 

unique anatomical arrangement of photosynthetic cells contain distinct layers of bundle sheath 

and mesophyll cells which surround the vein tissues (Berry & Patel 2008). C4 photosynthesis 

allows for separation of the chemical reactions of CO2 carboxylation and assimilation, allowing 

sustained photosynthetic efficiency and increased water-use efficiency during high temperatures 

and decreased water availability (Edwards et al. 2001; Von Caemmerer & Furbank 2003; Berry 

& Patel 2008). Without separation of photosynthetic tissues, photorespiration occurs in C3 

species due to high temperatures and may lead to mortality (Ehleringer, Cerling & Helliker 

1997). The size of mesophyll cells, bundle sheath cells, and xylem diameter are significant traits 

due to importance for water-use in grasslands and photosynthetic pathways that evolved 24-35 

million years ago (Hatch 1987; Ehleringer et al. 1997; Sage 2004). It is advantageous to 

understand how C4 grass morphology varies within a species over a growing season and across a 

regional climate gradient. Linkages between leaf morphology and leaf physiology may provide 

insight into species differences in water-use efficiency, patterns of growth, and potential 

responses to climate variability.    

 

 Current Research  

 Climate change is projected to increase climate variability, leading to drought conditions 

in North America’s grasslands. Future projections depict the region to have decreased water 
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availability and increased temperatures which will lead to plant stress, mortality, and eventual 

shifts in plant communities. An assessment of intra-specific and inter-specific physiology and 

morphological traits can aid in understanding responses to current and future climatic conditions. 

Species response to environmental conditions can be influenced by the photosynthetic pathway 

utilized. Physiological responses of C3 and C4 grasses to drought conditions can aid future 

physiological, morphological, and agricultural research between closely related species.  

 This thesis investigated how precipitation variability affected physiology and 

morphology of grassland species. In Chapter 2, I examine how high intensity drought conditions 

alter both C3 and C4 physiology in a greenhouse setting. In Chapter 3 I investigate the plasticity 

of physiological and morphological traits in dominant C4 grasses over a growing season within 

the precipitation gradient of Kansas.  
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Chapter 2 - Drought Effects on C3 and C4 Grasses  

 Introduction  

Grasslands evolved multiple times on several continents during the Paleogene (Edwards, 

Smith & Thresholds 2010). Since the late Cretaceous period, grasslands have expanded and have 

become a dominant biome on Earth (Strömberg 2011). Grass species constitute the primary 

component of grassland ecosystems, which cover roughly 25% of the world’s land surface 

(Ramankutty & Foley 1999). Grasslands also globally influence climate and carbon cycles (Sage 

2004; Kidder 2005; Strömberg 2011). Despite considerable species diversity and the contribution 

to ecological complexity within grassland ecosystems, a few grasses species have disproportional 

influence on human diet (Tilman et al. 2002), ecological processes (Knapp et al. 2002a), and 

grazer proliferation (Forrestel, Donoghue & Smith 2015). Expected shifts in climate over the 

next 50 years are likely to impact energy, nutrient, and hydrological cycling in grassland 

ecosystems. For this reason, further research that explores unique traits among phylogenetically 

conserved grass species is warranted (Grass Phylogeny Working II 2012).  

Nearly 50 years have passed since the discovery of C4 photosynthesis, and from that time 

scientists have described the unique biochemistry of this pathway (Kellogg 1999; Sage 2004; 

Edwards et al. 2010), the physiological and morphological variability among C4 grass species 

(Grass Phylogeny Working II 2012; Christin & Osborne 2014), and the ecological significance of 

C4 photosynthesis on grassland ecosystem function (Epstein et al. 1998).  

Grasses that utilize the C4 photosynthetic pathway represent almost 2% of all 250,000 

terrestrial plant species, rather than the more common and evolutionarily older C3 photosynthetic 

mechanism (Sage 2004). Terrestrial plants have evolved the C4 photosynthetic pathway an 

estimated 45 times accounting for over 7,500 grass species (Still et al. 2003; Sage 2004; 
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Edwards & Still 2008). The C4 pathway differs from the C3 pathway because of morphological 

and physiological differences that lead to the concentration of CO2 around the enzyme Rubisco 

in the mesophyll cells (Brown 1975; Hatch 1987; Dengler et al. 1994; Edwards et al. 2001). The 

C4 pathway allows for increased photosynthetic rates, enhanced water-use efficiency, and the 

elimination of photorespiration (Knapp 1993, 2013; Taylor et al. 2011). Eliminating 

photorespiration is a unique advantage, and phylogenetic data suggest that the C4 pathway 

developed independently multiple times coinciding with increased warming between 20 and 30 

million years ago (Kellogg 1999; Strömberg 2005; Edwards & Still 2008). Increased 

understanding of the phylogenetic evolution of the C4 pathway has  led to its consideration for 

ecosystem ecology and global change research, and its consideration for ecosystem ecology and 

global-change research (Edwards, Still & Donoghue 2007). Edwards et al. (2007) states that 

understanding an organism’s evolutionary past will allow researchers to understand how traits 

have been spread across species and biomes. However, it is important to note that trait 

relationships vary between species, and these differences are highlighted by different 

evolutionary origins (Edwards et al. 2007).  

Variation of physiological traits are also evident in congeners (species in same genera) of 

C3 and C4 grass species. For this reason, controlling for phylogeny is critical for the examination 

and identification of traits with functional value (Edwards et al. 2007; Edwards & Still 2008; 

Taylor et al. 2011). Leaf-level physiology is highly differentiated between species of grasses and 

typically varies according to local environmental drivers (Carmo-Silva et al. 2009). A similar 

level of understanding on the degree of variation between similar species is poorly understood. 

Leaf-level physiological measurements include gas exchange rates such as photosynthesis 

(measurement of CO2 exchanged from leaf to atmosphere), stomatal conductance (rate of 
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stomatal opening to allow gas exchange), transpiration (measurement of H2O lost from the plant 

to the atmosphere), and chlorophyll fluorescence (measurement of electron’s loss of excitement 

or energy within a chlorophyll) measurements. Photosynthesis and transpiration rates differ 

between and within photosynthetic pathways due to inherent species characteristics and also in 

response to changing environmental factors such as water availability and temperature (Fay et al. 

2002; Knapp et al. 2002a; Nippert et al. 2009). Due to the photosynthetic constraints of C3 

species to warming temperatures and C4 species ability to maintain photosynthetic efficiency 

under increased temperatures and decreased water availability (Berry & Patel 2008), future 

climate predictions will cause unknown plant responses (Hoover et al. 2014a, 2015). However, a 

higher water-use efficiency (maximum photosynthetic rate/transpiration rate) is an inherent 

characteristic of C4 species which should ultimately increase fitness during drought conditions.  

The objective of this research was to determine if key leaf-level physiological traits vary 

in response to experimental drought simulation in a pair of C3 and C4 grasses, and if the results 

correspond to long standing notions of these pathways to decreased water availability. I 

hypothesize: (1) C4 species would remain at an optimal physiological state for a longer duration 

during dry-down compared to the C3 species; and (2) C4 species would show less gas exchange 

variability in response to simulated drought, while C3 species would exhibit larger fluctuations.  

 

 Materials and Methods 

Two species of the genus Festuca were used: F. ovina and F. pseudovina. Both Festuca 

species are cool-season C3 bunch grasses native to South Eastern Europe (Alderson & Sharp 

1994), and are adapted to growing in dry locations. Ten samples of each Festuca species were 

germinated 23 September 2015 and monitored between 10 November to 21 November 2015. 
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When photosynthetic measurements read 0 μmol m-2 s-1, water was applied to the sample 

individual; and gas exchange and fluorescence was measured the following day to monitor a 

simulated drought recovery.  

Two species of the genus Paspalum were used: P. notatum and P. jeurgensii. The 

Paspalum species are warm-season C4 grasses native to Brazil (Alderson & Sharp 1994), and can 

be commonly found in the southern United States. Eight samples of Paspalum jeurgensii and 

seven samples of Paspalum notatum were germinated January 14th and monitored in complete 

drought conditions during 28-March to 3-April-2016. Samples were grown from seeds 

(purchased from the USDA Germplasm Resources Information Network). When a sample 

measurement indicated a plant was photosynthetically inactive, water was applied; gas exchange 

and fluorescence were measured for the following two days to monitor a recovery.  

This dry-down experiment used four grass species. All species were subjected to 100% 

water reduction while physiological traits were measured daily. Grasses were watered daily and 

arranged randomly in blocks containing one of each species. Samples were grown in 868.5cm2 

size pots with a mix of potting soil and general purpose sand with a ratio of two parts soil one-

part sand and placed in a Kansas State University greenhouse under ambient conditions. 

 

 Leaf-Level Physiology 

All physiological measurements were collected between 11:00 and 14:00 CDT, including 

gas exchange, chlorophyll fluorescence, and pot weight. For each individual plant, leaves were 

marked for repeated sampling to ensure consistent measurements throughout the simulated 

drought. Four to five Festuca leaves were grouped laterally in order to increase surface area for 

gas exchange and fluorescence; single Paspalum leaves were used because their larger leaf 
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widths were of sufficient size for gas exchange and fluorescence measurements. Stomatal 

conductance and maximum photosynthetic rate were measured with a LI-6400 system (LiCOR, 

Inc., Lincoln, NE, USA) equipped with an LED light source (light intensity was maintained at 

2,000 µmol m-2s-1, CO2 concentration at 400 µmol mol-1, and relative humidity at ambient 

levels). Measurements from the Li-6400 were logged when maximum photosynthesis was stable 

for 1 minute to ensure accurate measurements. Chlorophyll fluorescence was measured with the 

use of a miniaturized pulse-amplitude-modulated photosynthesis yield analyzer (Mini-PAM) 

(OS1-FL, Opti-sciences, Inc., Tyngsboro, MA). Measurements were used to create light response 

curves (electron transport rate against light intensity) with the actinic intensity set at two to 

accommodate a better range for the species and reduce the risk of overheating. To observe 

general water loss by samples, overall pot weight was measured using a Pioneer balance (Ohaus, 

Inc., Pine Brook, NJ, USA).  

 

 Root Morphology 

Following the recovery day, samples were harvested and separated into above and below-

ground biomass. Roots were washed thoroughly in order to be scanned while suspended in water 

by a digital root imaging program (WinRhizo; Regent Instruments, Inc., Nepean, Ontario, 

Canada). WinRhizo calculates total root length and total root diameter by length. Root diameters 

were binned into ten size classes that began with < 0.5mm, 0.5-1.0 mm, and increased by 0.5 mm 

up to 4.5 mm and greater. After the scanning process roots and shoots were dried for 48 hours at 

60 ˚C and then weighed to determine aboveground and belowground biomass. Dried roots were 

used to determine specific root length, which is calculated as total root length (cm) divided by 

total belowground biomass (g).  
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 Statistical Analysis 

Eight traits were chosen as the key traits of interest. Leaf-level physiological traits 

included: maximum photosynthesis, stomatal conductance to vapor, and chlorophyll 

fluorescence. Morphological traits included: aboveground biomass, belowground biomass, total 

root length, root diameter, and specific root length. Traits were analyzed by analysis of variance 

(ANOVA) in Sigmaplot (Systat Inc., San Jose, CA, USA) and R 2.14.2 (R Core Team).  

 

 Results 

 Leaf-Level Gas Exchange 

 The dry-down manipulation impacted leaf-level physiological processes of all four 

species, but the susceptibility to dry conditions and the associated response varied among the C3 

and C4 species. The photosynthetic rates between Paspalum species were significantly different 

(P < 0.05); optimal An in P. notatum was 50% higher than optimal rates for P. jeurgensii (Figure 

2.1) (Table 2.1). P. jeurgensii continued photosynthesis at optimal level for three days until rates 

dropped by 98% prior to the water application and recovery (Figure 2.1). Recovery was used to 

describe the observed rate returning to pre-drought levels after water was re-applied. The 

photosynthetic rate in P. notatum remained maximal for three days but fell by 63% after five 

days (Figure 2.1). While both species expressed an abrupt negative response to drought 

conditions, the response for P. notatum was more gradual because of the additional day observed 

in its decrease. Recovery of both species was abrupt after one day, and increased slightly the 

second day (Figure 2.1). The photosynthetic rate in P. jeurgensii increased by 99% in of the 

previous day’s measurement after re-watering, but was 32% lower than its optimal pre-drought 
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rate. The photosynthetic rate of P. notatum increased by 56% after re-watering, but was still 27% 

below the maximal rate of photosynthesis.  

 Festuca had lower photosynthetic rates compared to both of the Paspalum species in this 

study. Both species responded with a gradual decrease in An, however, both species eventually 

experienced more than 100% decrease in An. A large difference between species can be seen in 

An of F. ovina, which remained positive for a longer period (day 7) compared to F. pseudovina 

(day 5) (Figure 2.1). Another major difference between both Festuca species is the recovery 

observed after re-watering. F. pseudovina exhibited a 72% recovery, or a 28% decrease from its 

optimal An at the start of the dry-down. F. ovina recovered by 27%, or decreased by 73% from its 

optimal An on day 1; F. ovina experienced a recovery more than half of F. pseudovina species 

(Figure 2.1). 

Stomatal conductance (gs) between Paspalum species was significantly different (P < 

0.05) (Table 2.2); optimal gs of P. notatum was nearly 50% higher than optimal rates for P. 

jeurgensii (Figure 2.2). P. jeurgensii continued its optimal conductance rate for three days before 

sharply decreasing by 90% before re-watering and recovery (Figure 2.2). Figure 2.2 also displays 

P. notatum exhibited an increased conductance rate for three days before declining sharply by 

64% before re-watering. Both species experienced a rapid decrease in their conductance rates due 

to the dry-down; however, P. notatum decreased its average rate more sharply compared to P. 

jeurgensii (Figure 2.2). Recovery of both Paspalum species was immediate after one day, but 

only slightly increased the second day (Figure 2.2). After re-watering, gs of P. jeurgensii was 

66% of its original rate, but increased to 77% of the optimal rate on day 6 (Figure 2.2). gs for P. 

notatum following re-watering was 64% of the maximum rate; but, day 6 was 93% of maximum 

pre-drought stomatal conductance or a 62% increase from day 5 (Figure 2.2).  
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 Both Festuca species had stomatal conductance rates was to that of Paspalum jeurgensii, 

but did not reach a maximum rate close to P. notatum (Figure 2.2). A major difference between 

Festuca species was the varying response to the dry-down experiment. F. ovina experienced a 

small increase in gs until day 4, from there gs decreased gradually reaching 77% of optimal gs 

before re-watering (day 7). This gradual decrease was compared to F. pseudovina abrupt fall in 

gs which resulted in a 100% decrease before re-watering (day 5) (Figure 2.2). Little difference 

was seen between Festuca species as both species exhibited a similarly swift recovery response 

(Figure 2.2). F. pseudovina exhibited an 80% recovery, or 20% decrease from its maximal gs.  F. 

ovina increased gs by 70% after re-watering (75% recovery), but was still 25% below its optimal 

gs at the start of the dry-down (Figure 2.2). The transpiration rates between Paspalum species 

was significantly different (P < 0.05) (Table 2.3); pre-drought E for P. notatum was more than 

1.5 times that of P. jeurgensii (Figure 2.3). P. notatum had a maximum transpiration rate more 

than two times that of P. jeurgensii (Figure 2.3). Transpiration rate of P. jeurgensii experienced 

subtle step-wise decrease until a sharp decrease on day 4 that was 90% of its optimal E (Figure 

2.3). Whereas, the transpiration rate for P. notatum increased on day three where it decreased 

sharply to 58% of its original optimal E (Figure 2.3). Although there was an increase of 

transpiration rate observed in both species during recovery, P. notatum displayed a rapid 

recovery of 68% after re-watering (Figure 2.3). At the conclusion of the dry-down, P. notatum 

increased its transpiration rate by 24% from its original pre-drought level while P. jeurgensii 

recovered by 85%, and was 93% of its optimal level by day 6 (Figure 2.3).  

Both Festuca species had transpiration rates that decreased over the span of the dry-down 

(Figure 2.3). One of the major differences between the two species was the nature of the E 

decline. An increased transpiration rate was observed in F. ovina before decreasing gradually to 
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18% of its optimal E (82% decrease) over seven days (Figure 2.3). The transpiration rate of F. 

pseudovina responded differently; after an increased E there was a sharp decrease on the fifth 

day that was a 100% decline from its maximal pre-drought rate. Recovery of both Festuca 

species was observable, however, F. pseudovina responsed to re-watering by regaining 84% of 

its original E. Recovery in F. ovina was not as abrupt compared to F. pseudovina, but it did 

regain 62% of its original transpiration rate (Figure 2.3).  

 

 Leaf-Level Chlorophyll Fluorescence 

 Dry-down conditions negatively impacted chlorophyll fluorescence of both Paspalum 

and Festuca in the study, however, the vulnerability to dry conditions differed between and 

among the C3 and C4 species (Figure 2.4).  

The maximum electron transport rate between Paspalum species was significantly 

different (P < 0.05). Though P. notatum was consistently higher compared to P. jeurgensii, both 

species had a similar abrupt decrease in ETRmax (Figure 2.4). P. notatum also displayed an 

increase of ETRmax before decreasing by 42% of its optimal electron transport rate (Figure 2.4). 

Figure 4A also portrays that P. jeurgensii experienced a gradual decrease before falling by 79% 

from the highest ETRmax. A large difference between the Paspalum species can be noted in the 

recovery of ETRmax. P. jeurgensii electron transport rate recovered by 72% one day after re-

watering, and regained further to be 16% short of its pre-drought ETRmax. P. notatum increased 

its maximum electron transport rate increased by 33% after one day of re-watering, then, 

𝐸𝑇𝑅𝑚𝑎𝑥 increased 7% beyond its original optimal rate (Figure 2.4).  

 The maximum electron transport rate did not reach the same level in Festuca as it did in 

P. notatum, but did experience contrasting responses within species to the dry-down (Figure 2.4). 
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F. pseudovina decreased gradually for the first four days, and then decreased sharply to 38% of 

the pre-drought ETRmax (Figure 2.4). The maximum electron transport rate for F. ovina increased 

one day, and then decreased by 22% gradually before water was re-applied on day seven. 

Another difference between the two species can be observed in their recovery. F. pseudovina 

recovered by 57% after re-watering, and was measured to be 73% of its optimal ETRmax (Figure 

2.4). Though F. ovina recovered 15%, which was not a large percentage, the ETRmax at this level 

is 90% of the pre-drought maximum electron transport rate (Figure 2.4).  

Chlorophyll light-curve results portray differences between the Paspalum species during 

multiple days in the dry-down (Figure 2.5). Days of the dry-down are partitioned in different 

panels of Figure 5. Both Paspalum species experienced a similar drop in electron transport 

during the ongoing drought, they also had similar recoveries based on pre-drought ETRLC (Figure 

2.5). There are observable differences between measurement days. Figure 2.5 depicts P. 

jeurgensii raising its electron transport rate as light intensity is increasing, totaling a 9% increase 

from its initial point. P. jeurgensii decreased its electron transport rate as the dry-down 

continues; the largest ETR decrease occurred on the fourth day of the experiment (Figure 2.5). 

ETR of P. jeurgensii dropped by 83% from its initial pre-drought rate; recovery is depicted to 

bring ETR levels near its original transport rate of electrons (78% of original rate) (Figure 2.5). 

Figure 2.5 portrays Electron transport rates were comparable between P. notatum to P. 

jeurgensii, ETR level fell by 75% from initial measurements of P. notatum (day 5), but showed a 

steep recovery of 83% of optimal electron transport rate (Figure 2.5). Recoveries by both 

Paspalum species are seen to closely mirror the original light-response curves (Figure 2.5).  
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 Root Morphology 

Specific root length (SRL) differed between the two Paspalum species, but not 

significantly (P < 0.05) (Figure 2.6F). P. jeurgensii had a slightly higher SRL compared to P. 

notatum, even though the total length for P. jeurgensii was much higher than P. notatum (Figure 

2.6F). Festuca specific root length varied drastically between species, and was statistically 

significant (P < 0.05) (Figure 2.6F). Of all species that experienced dry-down conditions, F. 

ovina had the highest SRL and P. notatum had the lowest. All species had similar proportions 

within the smallest root diameter class (<.5mm), yet the species with the lowest proportion had a 

lower SRL value compared to those with a high proportion of roots in this diameter size class 

(Figure 2.6C). There were observable species differences in total root length (2.6A), root 

production (2.6B), fine root length (2.6D), and resource allocation (2.6E); indicating various 

rooting strategies.  

 

 Discussion 

Numerous research projects have measured physiological traits of C3 and C4 grasses in 

response to changing environmental conditions (Nippert, Knapp & Briggs 2006; Ripley et al. 

2007; Knapp 2013; Taylor et al. 2014). However, few examples exist that compare physiological 

drought tolerant traits among congeneric species with contrasting C3 and C4 photosynthetic 

pathways. The objective of this study focused on addressing the differences between 

photosynthetic pathways of four grass species to drought conditions by measuring leaf and root 

physiological traits. In general, C3 species exhibited a prolonged gs while C4 species displayed a 

sharper decline in gs; both C3 and C4 species recovered at higher rates than expected. These 

results support previous research indicating the photosynthetic capabilities of C4 grasses (Smith 
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& Knapp 1999; Nippert et al. 2009; Volder, Tjoelker & Briske 2010) and importance of root 

characteristics (Monk 1966; Eissenstat 2000; Ostonen et al. 2007).  

Previously, leaf-level comparisons of physiological traits have been focused on 

identifying the differences between C3 and C4 grasses, particularly with regard to drought. 

Comparisons of drought responses by photosynthetic pathways suggest that C4 grasses retain 

greater physiological functioning during drought conditions compared to C3 grasses because of 

the inherently higher carboxylation rates at lower rates of stomatal conductance compared to C3 

grass species, which allows for an enhanced water use efficiency (WUE) (Knapp 1993). Higher 

WUE may facilitate C4 species to maintain gas exchange longer during drought conditions, by 

using less water per unit time. With the data collected, I have reinforced that there is significant 

physiological variability between photosynthetic pathways, and provided evidence for significant 

variability between congeneric species for physiological traits. C4 grasses did not consistently 

outperform C3 species during the induced drought. Gas exchange data (Figures 2.1-2.3) shows 

both Festuca (C3) species being photosynthetically viable for a longer or equal period than both 

Paspalum (C4). This was contradictory to our hypothesis that C4 grasses would remain 

physiologically optimal for a longer duration during the dry-down compared to C3 grasses. The 

impact of drought on Paspalum could be due to its leaf area which is larger compared to that of 

Festuca; leaf area has been shown to increase transpiration rates in many grass species (Xu & 

Zhou 2008). Paspalum was operating at a higher photosynthetic rate while remaining at slightly 

higher transpiration rates compared to Festuca. The water use behavior of Paspalum may reflect 

conditions experienced in its native habitat (where water is more readily available), which may 

point to the higher An and E and quicker desiccation.  
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 Maximum electron transport rate exhibited a similar trend as shown for gas exchange 

traits for all species (Fig. 2.4). The ETR reflects the health of photosystem II (Maxwell & 

Johnson 2000), while ETRmax provides insight into the maximum capability of electron transport. 

The high ETRmax by P. notatum suggests that this species did not experience physiological stress 

from the drought treatments imposed. Again, ETRmax for P. jeurgensii was similar to both 

Festuca species (Figure 4), and was reflected in gas exchange data (Figures 2.1-2.3). Large 

differences in ETRLC observed between congeners of C4 Paspalum species portray the damage 

done to the photosynthetic capability of the species (Fig. 2.5) (Maxwell & Johnson 2000; 

Murchie & Lawson 2013). P. jeurgensii had a very low photosynthetic rate, corresponding with 

the very low ETR values observed during day four, which implies severely damaged 

photosynthetic machinery.  

Congener variability was common for a variety of traits measured during this experiment. 

Differences between both Paspalum species’ photosynthesis, stomatal conductance, and 

transpiration rates were statistically significant (P < 0.05) (Tables 2.1-2.3) for every sampling 

period (excluding day five) (Figures. 2.1-2.3). These figures indicate differences between 

Festuca species; F. ovina did not always have the highest rates of gas exchange, but did maintain 

initial rates for a longer period compared to F. pseudovina. Maximum electron transport rate 

(ETRmax) also varied between congeneric species in this study (Figure. 2.4). Significant 

differences (P < 0.05) between Paspalum and Festuca ETRmax species similarly to that of gas 

exchange rates (Figure 2.4). Paspalum’s ETRLC had large differences throughout the length of 

the study, portraying photosystem II efficiency differences (Figure 2.5).  

Root traits of grass species can give insight into resource acquisition, providing 

mechanistic insight into how grasses allocate root growth belowground. When comparing root 
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traits (Fig. 2.6), variability among species is evident despite evolutionary similarity among these 

species. Figure 2.6A depicts F. pseudovina placing more investment into producing a longer and 

heavier rooting system which could demand greater carbon for maintenance (Reekie & Bazzaz 

1987a; b). F. ovina was seen to have a consistently larger proportion of fine roots (Fig 2.6C), 

while larger variation was observed in F. pseudovina and P. jeurgensii. Fine roots are typically 

responsible for acquisition of water and nutrients, with the tradeoff of reduced overall water 

transport during periods of high availability and low soil penetration power (Pérez-Harguindeguy 

et al. 2013). Root diameter is negatively correlated with nutrient uptake rate, but positively 

correlated with water uptake and penetrative force in soils (Roumet et al. 2011). This result 

could explain why all species have a relatively similar proportion of fine roots but alternative 

responses to simulated drought. Specific root length (SRL) is most frequently measured because 

of its ability to characterize economic features (maintenance of structural components, 

production of new material, etc.) of rooting systems with environmental change; similar to 

measuring specific leaf area (SLA) for leaf economic aspects (Ostonen et al. 2007; Pérez-

Harguindeguy et al. 2013). Both Festuca species exhibited larger SRL values compared to the 

Paspalum species. This result may be related to the prolonged drought tolerance for Festuca 

species. More specifically, F. ovina had the highest SRL compared to all species indicating that 

its leaf economic features are ideal to survive in drought conditions (Figure 2.6F). 

The goal of this research project was to determine if key leaf-level physiological traits 

vary in response to experimental drought simulation in C3 and C4 congeners, and if the results 

correspond to long standing notions of these pathways to decreased water availability. This 

project addressed two main hypotheses that revealed unique findings. Both Paspalum (C4) 

species did not sustain an optimal photosynthetic rate during prolonged drying, as predicted. 
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Festuca (C3) was found to remain photosynthetically active for more days of simulated drought. 

During dry-down conditions, the C4 species exhibited larger fluctuations in gas exchange rates 

compared to the C3 species. This suggests that a species photosynthetic pathway is not the sole 

determining factor of grass response to changing climate conditions; for instance, this study 

provided evidence that root-level morphological traits may explain large components of drought 

response that may be missed if not addressed in such studies. Research exploring root 

morphology’s importance in conjunction with leaf-level or whole-plant response to climate 

variability will require further investigation. 
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 Tables and Figures 

 

Figure 2.1 Average daily photosynthetic rates for study species. Left, Paspalum species with 

two-day recovery. Right, Festuca species with one-day recovery. 

 

 

 

Table 2.1 ANOVA results for species, sample day, and interaction effects for 

photosynthetic rate. Numbers in bold show significance (P < 0.05). 

 

  

 DF Mean Square F value P value 

     

Species (S) 3 5973 157.656 < 2e-16 

Sample Day (D) 1 3743 98.798 < 2e-16 

S X D  3 41 1.081 .358 
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Figure 2.2 Average daily stomatal conductance rates for study species. Left, Paspalum 

species with two-day recovery. Right, Festuca species with one-day recovery. 

 

 

 

Table 2.2 ANOVA results for species, sample day, and interaction effects for stomatal 

conductance rate. Numbers in bold show significance (P < 0.05). 

 

 

  

 DF Mean Square F value P value 

     

Species (S) 3 .1484 38.353 < 2e-16 

Sample Day (D) 1 .4680 120.957 < 2e-16 

S X D  3 .0253 6.549 .000278 
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Figure 2.3 Average daily transpiration rates for study species. Left, Paspalum species with 

two-day recovery. Right, Festuca species with one-day recovery 

 

 

 

Table 2.3 ANOVA results for species, sample day, and interaction effects for stomatal 

transpiration rate. Numbers in bold show significance (P < 0.05). 

 

  

 DF Mean Square F value P value 

     

Species (S) 3 91.81 48.87 < 2e-16 

Sample Day (D) 1 144.22 76.76 2.79e-16 

S X D  3 25.61 13.63  2.84e-8 
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Figure 2.4 Maximum daily electron transport rate for study species. Left, Paspalum species 

with two-day recovery. Right, Festuca species with one-day recovery 

 

 

 

 

Figure 2.5 Average light response curves for Paspalum. Left, P. jeurgensii; Right, P. 

notatum species. 
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Figure 2.6 Root morphological measurements for Festuca and Paspalum. 
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Chapter 3 - Physiological and Morphological Trait Plasticity 

 Introduction  

Since the appearance of grasses in the Paleogenic period, grasslands have spread across 

Earth (Strömberg 2011) with an eventual shift to the Neogenic C4 dominated grass habitats. 

Grassland expansion led to cover 25% of the terrestrial surface, resulting in the establishment of 

a major biome type (Ramankutty & Foley 1999). Grassland expansion in North America started 

in the Great Plains, which were formed in the Middle-Late Miocene period (Strömberg 2011).  

 Grasslands comprise 15% of North America, and have been shaped by fire, grazing, and 

precipitation variability (Anderson 2006). North American grasslands are characterized by 

climatic variability and periodic drought, creating an environment with fluctuating resource 

availability and extremes in temperature and precipitation (Weaver 1968). Precipitation 

variability is a fundamental condition for the grassland biome of North America, with variable 

rainfall and increased temperatures occurring in the summer growing season (Borchert 1950). 

Despite the natural occurrence of climate variability in this region, increased frequencies and 

magnitude of climate variability due to climate change may have negative consequences on 

grassland structure and function within the Central Plains of North America (Houghton et al. 

2001; Nippert et al. 2009). 

 Climate change is increasing the likelihood of future drought conditions in the Central 

Plains in North America  (Cook et al. 2014, 2015; Hoover & Rogers 2016). Drought conditions 

are likely to have a negative effect on plant species due to increased temperatures and decreased 

water availability (Craine et al. 2012). However, many grasses in the Great Plains have traits that 

confer tolerance to drought and fluctuations in water availability (Tucker, Craine & Nippert 



42 

2011). Traits such as small vessel diameter, increased water-use-efficiency, and decreased 

transpiration are generally associated with species that utilize the C4 photosynthetic pathway that 

has come to dominate grassland systems.  

C4 photosynthesis provides multiple adaptive benefits to plants in dry environments, 

including reduced photorespiration, increased drought tolerance, and greater growth efficiency 

(Brown 1975; Lundgren, Osborne & Christin 2014). Species that utilize C4 photosynthesis 

possess a modified leaf morphological structure referred to as ‘Kranz’ anatomy. Kranz anatomy 

is characterized by two spatially separate cell types that partition the biochemical reactions 

required for CO2 carboxylation and assimilation (Hatch 1987; Edwards et al. 2001; Berry & 

Patel 2008). Concentric rings of mesophyll cells are wrapped around a ring of bundle sheath cells 

that surround the vascular tissue (xylem and phloem). C4 mesophyll cells are responsible for 

carboxylation of atmospheric CO2, and these cells contain large numbers of chloroplasts for 

initial carboxylation (Berry & Patel 2008). Bundle sheath cells are responsible for the 

decarboxylation and assimilation of the C4 acid assembled in the mesophyll cells (Sage 2004; 

Berry & Patel 2008). The separation of the biochemical reactions facilitates maximal 

carboxylation rates by  the enzyme Rubisco via exposure to saturating concentrations of CO2 

(Christin et al. 2013; Kromdijk et al. 2014). During times of water-stress, plants strategically 

close stomata to reduce water loss, thus inhibiting the ability to take in atmospheric CO2. 

Therefore, species that concentrate CO2 in the bundle sheath cells (C4 species) are more likely to 

survive in water limiting conditions because the spatial separation in microanatomical tissue in 

C4 species gives them a higher water use efficiency (WUE) (Hatch 1987; Vico & Porporato 

2008; Taylor et al. 2014). WUE is recognized as a useful trait that explains how C4 species have 

increased carbon assimilation while maintaining or reducing rates of water loss (Nelson et al. 
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2004). Monitoring C4 grass gas exchange (H2O vapor and CO2 gas) through stomatal pores has 

been used in order to assess plant physiological response to drought and other altered climatic 

conditions (Fay et al. 2000; Knapp et al. 2002b; Nippert et al. 2009). Gas exchange 

measurements allow instantaneous measurements of photosynthesis and water lost through 

transpiration, which aid in understanding water limitation during drought. Chlorophyll 

fluorescence (measurement of electron’s loss of excitement or energy within chloroplasts) is also 

an indicator of the photosynthetic machinery involved in the light-dependent reactions of 

photosynthesis and has been observed to respond to water availability (Maxwell & Johnson 

2000; Kakani, Surabhi & Reddy 2008; Murchie & Lawson 2013). These physiological traits 

should be directly influenced by the micro-anatomical features of the species; more specifically, 

proportions and sizes of cell types in Kranz anatomy of C4 plants should effect the rates of gas 

exchange and water use in leaves.  

Plant physiological characteristics have been used to explain species specific responses to 

varying conditions, but little work has described species specific morphological traits. Key 

physiological traits may be influenced by the microanatomical structure that is characteristic of 

the species. C4 grass micro-anatomical features have been previously described (Christin & 

Osborne 2014), but understanding how this morphology changes over time and space within and 

across species has been seldom described. Measuring physiological and microanatomical 

differences between and within species over the growing season, and across natural 

environmental gradients may give insight to future responses from climate change.  

The objective of this research was to measure the plasticity of leaf-level physiological 

and anatomical traits among four common C4 grasses across time and space. Plasticity among 

selected leaf-level traits across a geographical rainfall gradient may provide insight on drought 
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sensitivity for these dominant C4 grass species. Four C4 grasses were examined due to their 

dominance of Kansas’ prairies systems: A. gerardii, S. scoparium, S. nutans, P. virgatum. Leaf-

level physiological traits measured included: Amax, gs, E, and chlorophyll fluorescence; leaf 

morphological traits included: interveinal distance (IVD), average Xylem area, % vein area, % 

bundle sheath area, % mesophyll area, bundle sheath: mesophyll area (BS:MS), distance through 

mesophyll (Dm), Average bundle sheath thickness (BSthick), and distance from stomata to xylem 

(stomataxylem). Here, I propose 3 hypotheses: (1) Species will exhibit significant variability in gas 

exchange characteristics across time and location (2) Leaf anatomical traits will not vary 

significantly within species over spatial and temporal scales, but will vary between species (3) 

Morphological traits will significantly predict variability in leaf physiology, with differences 

more pronounced by species rather than time or location.    

 

 Methods 

 Experimental Design 

This research was conducted at three sampling locations in Kansas. Albertson Prairie is 

located in Hays, Kansas (38˚88’ N, 99˚35’ W). Albertson Prairie has a mean annual precipitation 

of 596mm, with June maximum temperatures averaging 30.78˚C and 32.03˚C in August. Three 

watersheds at Konza Prairie Biological Station (4B: 39˚08’ N, 96˚60’ W; 1D: 39˚08’ N, 96˚56’ 

W; K20A: 39˚10’ N, 96˚57’ W) were used in this study. I averaged responses from these site in 

order to increase heterogeneity. Konza Prairie receives an average of 900mm of rainfall 

annually, and June temperatures average 30.39˚C and 32.16 ˚C in August. Rockefeller Prairie 

was the most eastern site (39˚05’ N, 95˚20’ W) and receives 1014mm annual rainfall and mean 

June temperatures of 30.16˚C and 32.22 ˚C in August. Measurements at each of the three 
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locations were made during two separate sampling periods: June 1st, 3rd, 4th and August 9th, 10th, 

11th in the summer of 2016. Precipitation and temperature data were collected from 2000-2016 

from weather stations nearest to each research site and averaged.  

Four C4 grassland species were measured at each site: Andropogon gerardii (big 

bluestem), Sorghastrum nutans (Indian grass), Schizachyrium scoparium (little bluestem), and 

Panicum virgatum (switchgrass). Ten individuals from each species were labelled with metal 

identification tags, and marked via GPS at each sampling location. Species physiological and 

morphological samples were measured and collected on the same leaf and spread to encompass 

the majority of grassland area in order to maximize heterogeneity. Soil moisture was measured at 

0-5cm depth adjacent to each individual sampled to account for differences in surface soil water 

availability. Measurements were conducted with a HydraProbe II (Stevens, Inc., Portland, OR, 

USA).  

 

 Trait measurements 

 All trait data were collected between 10:00 and 18:00 CDT at each sampling site. For 

leaf-physiology measurements, the youngest, developmentally mature leaves were used in order 

to reflect the most recent environmental conditions. Gas exchange rates were measure using a 

LI-6400 system (LiCOR, Inc., Lincoln, NE, USA) equipped with an LED light source (light 

intensity was maintained at 2,000 µmol m-2s-1, CO2 concentration at 400 ppm, and relative 

humidity between 40-60%) and included rates of photosynthesis (An), stomatal conductance (gs), 

and transpiration (E). Measurements from the LI-6400 were logged when maximum 

photosynthetic rate remained stable for at least one minute. Leaf chlorophyll fluorescence was 

measured using a miniaturized pulse-amplitude-modulated photosynthesis yield analyzer (Mini-
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PAM) (Walz, Hamburg, Germany). Measurements were utilized for the creation of light 

response curves (electron transport rate against light intensity) with actinic intensity set at values 

that ranged from 0-1087 µmol m-2s-1; this range of light intensities was appropriate to minimize 

the risk of photoinhibition in the field.  

 Leaf anatomy samples included leaf cross sectional tissue from newest mature leaf tissue 

from each species (four samples of each species) and were collected at all sites for both sampling 

periods. After leaf-level physiological measurements were taken, leaf anatomical samples were 

collected via clipping the same leaf previously measured for physiological characteristics. Leaf 

tissue samples were fixed in FAA (10% formalin / 5% glacial acetic acid / 50% ethanol (use 95% 

EtOH) / 35% DI water) and sent to Kansas State’s College of Veterinary Medicine 

Histopathology lab for paraffin mounting and cross-sectional slide staining with Safranin-O and 

Fast Green (Ruzin 1999). Leaf cross sectional samples were scanned with a Pannoramic MIDI 

(3DHistech Inc., Budapest, Hungary) and measured using IMAGEJ software (Rasband 1997).  

Two major vascular bundles were selected on either side of the mid-rib, and were at least 

one major vein distant from the mid-rib area (Figure 3.1). Interveinal distance (IVD) was 

determined by measuring the distance between the center of two adjacent vascular bundles and 

averaged for the entire leaf sample, while major leaf tissue types were measured in subsamples 

(Figure 3.1, area from 1-2 and 3-4) mesophyll:bundle sheath area ratio (MS:BS), and percent area 

of mesophyll, bundle sheath, and vein. Four large vessels were selected for measurements 

(Figure 3.1. 1-4): average xylem area, distance through mesophyll (Dm), bundle sheath thickness 

(BST), and distance from stomata to nearest xylem (Stomataxylem) (Figure 3.2). 
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 Statistical Analysis 

My primary goal was to elucidate differences in physiology and morphology among these 

C4 grass species across sites and across a growing season. Therefore, I used a mixed-effects 

model analysis of variance (ANOVA). For each model, the physiological gas exchange data, 

fluorescence data, and morphological traits measured were used as the response variables. Fixed 

effects include species, site, sample date and their interactions. Random effects include the 

model intercept, and sampling locations within site. Multiple comparison tests to identify 

differences among species, locations, and time were conducted using post-hoc Tukey’s HSD. 

Regression analysis was utilized to correlate physiological and morphological traits. All analyses 

were conducted in R 2.14.2 (R Core Team).    

 

 Results 

 Leaf-Level Gas Exchange 

During June, mean photosynthetic rate (An) for all species at Konza Prairie was higher than 

Rockefeller (Figure 3.3, P < 0.05) (Table A.2). For all species at Konza, An consistently 

decreased from June to August, whereas Albertson prairie and Rockefeller prairie increased 

between both sampling periods (excluding P. virgatum at Albertson) (Figure 3.3). Although An 

varied within species across sites and the growing season, S. scoparium was the only species to 

exhibit significant differences in An (P < 0.05) (Figure A.3) between sites within sampling period 

(June), and within a sample site (Hays) across the growing season (P < 0.05) (Figure 3.3).  

Stomatal conductance (gs) rates were also higher at Konza Prairie during June, but varied 

in August (Figure 3.4). Within the month of June, stomatal conductance (gs) for both S. 

scoparium and P. virgatum was higher on Konza compared to other sampling locations (Figure 

3.4, P < 0.001; P < 0.05) (Table A.3). S. scoparium decreased its gs significantly on Konza 
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between sampling periods and increased in Albertson and Rockefeller (P < 0.05, P < 0.001, P < 

0.05) (Table A.3). gs rates for S. scoparium in August varied between Albertson prairie and 

Konza prairie, due to Albertson’s significantly increased gs (P < 0.05) (Figure 3.4) (Table A.3).  

August transpiration (E) varied more for each species at all sites (excluding P. virgatum 

which exhibited small variation), and transpiration rate for S. scoparium was higher than all 

species at either site or sampling time (Figure 3.5). S. nutan and S. scoparium exhibited 

significantly variable E between sites during August (P < 0.05), while P. virgatum varied 

significantly in June (P < 0.05) (Figure 3.5) (Table A.4). E rates for two species (S. scoparium 

and S. nutans) increased significantly over the growing season at Albertson prairie (P < 0.01) 

(Table A.4). At Konza, S. nutans had increased E significantly over the growing season as well 

(P < 0.01) (Table A.4). 

During June, soil moisture exhibited the typical precipitation gradient of Kansas: soil 

moisture increased moving eastward. However; during the month of August, precipitation 

amounts were received in the following descending order: Konza, Rockefeller, and Albertson.  

 

 Chlorophyll Fluorescence 

 Measurements of electron transport rate (ETR) differed within species across different 

sampling locations and time (Figure 3.6-3.7). S. nutans and A. gerardii had significantly higher 

ETR on Konza prairie during June (P < 0.01), while S. scoparium and P. virgatum had 

significantly lower ETR at Rockefeller in August (P < 0.05). Significant differences in ETR were 

observed between both sampling periods within all species of this study. S. scoparium had higher 

ETR at Albertson prairie in June and highest ETR at Konza in August (P < 0.05) (Figure 3.6). 

Albertson prairie P. virgatum and S. nutans exhibited significant changes over the growing 
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season (P < 0.05) (Figures 3.6-3.7). A. gerardii and S. nutans at Rockefeller prairie were found to 

be significantly different between June and August. A. gerardii was found to increase ETR 

between growing season measurement periods at the Konza location (P < 0.01) (Figure 3.6).  

 

 Leaf Morphology 

 Leaf micro-anatomical measurements derived from the cross-sectional images revealed 

that tissue measurements of mesophyll, bundle sheath, and vein tissue area varied according to 

geographic location and species measured. P. virgatum varied significantly from the other three 

species in nearly every micro anatomical trait measured here. The most eastern sample location 

(Rockefeller) typically had different responses from the other two locations for many traits (P < 

0.05). P. virgatum contained significantly more bundle sheath cells than the other species (P < 

0.05) in both June and August (Table A.8). Total bundle sheath area was also found to vary 

significantly when comparing data from Rockefeller to other research locations (P < 0.05). 

Mesophyll area differed significantly between species and location (Table A.8) (P < 0.05). P. 

virgatum had significantly fewer mesophyll cells compared to the other three species in both 

June and August. A significant interaction between research location and sample period existed 

for differences in mesophyll area. P. virgatum had a significantly higher BS:MS ratio compared 

to other species and varied in location (Table A.8). Vein area was found to be significantly 

different between species in both June and August (P < 0.05) (Tables A.5-A.8). Leaf 

microanatomical tissue measurements display that most leaf tissue is mesophyll, followed by 

bundle sheath cells, and vein area tissue with typically less than 20% (Tables A.5-A.8). 

Generally, my data show that most tissue types exhibit little change within a growing season 

compared to physiological measurements.  
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Anatomical traits derived from distance to stomata openings (Dm, BSthick, and 

Stomataxylem) revealed significant differences between species and location (Tables A.5-A.8). Dm 

(Distance through mesophyll layer), also varied between June and August (P < 0.01) (Tables 

A.5-A.8). Dm and gs were found to relate positively with each other in P. virgatum only. Location 

of highest mean Dm was dependent on species during June sampling while August samples 

revealed that Hays had the highest Dm of all locations. 

Bundle sheath thickness (BSthick) did not differ between locations or months, but was 

significantly different (P < 0.0001) (Tables A.5-A.8) between species. All species varied 

significantly from each other (P < 0.05) except for S. scoparium and A. gerardii which were 

almost identical (P = 0.99). BSthick was taken by measuring only the outside sheath of P. 

virgatum, which is shown to be significantly higher than the other species measured. Stomataxylem 

(distance from stomata to nearest xylem) was found to vary significantly among locations (P < 

0.05) and species (P < 0.001). Over the growing season, differences were observed within a 

species at each location (Tables A.5-A.8). 

 Interveinal distance of each sample varied significantly between species (P < 0.0001) and 

month of the growing season (P < 0.05), but not between locations (Tables A.5-A.8). Mean IVD 

(Interveinal distance) was highest both June and August at the same location for each species, 

but in varying distances. S. scoparium and A. gerardii were the only species not significantly 

different from each other. Within subsampled veins (vascular bundles), species differed 

significantly in mean xylem area (Tables A.5-A.8). Significance was not observed across 

locations or sampling times, but S. scoparium xylem area was significantly smaller compared to 

other species (Figure 3.8) (Table A.7). 
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 Discussion 

The impacts of rainfall variation on physiology and leaf morphology of grassland species 

has been observed numerous times (Edwards et al. 2001; Fay et al. 2002; Tucker et al. 2011; 

Ocheltree, Nippert & Prasad 2012; Olsen et al. 2013; Schroeder-Georgi et al. 2016). However, 

there are few studies that document intra- and interspecific relationships between leaf-level 

physiology and morphology over the course of a growing season. The goal of this study was to 

examine physiological and morphological differences among four C4 grass species across a 

spatial rainfall gradient over the course of the 2016 growing season. Using the natural 

precipitation gradient of Kansas facilitated these comparisons within a geographical region, and 

allowed me to determine the plasticity of leaf-level physiological and morphological traits. 

Findings from this research indicate that physiological measurements of gas exchange respond to 

short-term changes in soil moisture over the course of the growing season. In contrast, leaf 

morphology was more consistent across the growing season, but did vary significantly between 

the research locations and species of interest (Table A.5-A.8). Results from this study support 

previous research findings indicating a tight coupling between C4 grasses physiological and 

morphological relationships in response to short-term changes in climate (Smith & Knapp 1999; 

Volder et al. 2010; Ocheltree et al. 2012; Christin et al. 2013). 

Physiological gas exchange measurements varied significantly between species and 

across space and time (Figures 3.3-3.5). Konza Prairie physiological data collected in June had 

the highest rates of gas exchange compared to the other field sites (excluding S. nutans 

transpiration rate), while August measurements display a varied trend in gas exchange rates 

across sites. The disparity between locations and the sampling periods likely reflects differences 

among landscape fire treatments at Konza Prairie. Two watersheds on Konza were burned in the 
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spring, which could have allowed for an increase in nutrient availability (Baer et al. 2003) and a 

decrease in light competition from cool season grasses (Wilson 1988). However, Konza’s gs was 

likely driven by fire’s removal of the top litter layer, allowing faster growth compared to the 

unburned locations: Albertson and Rockefeller (Gilliam, Seastedt & Knapp 1987). 

  Leaf-level morphological trait measurements were observed to vary significantly 

between species and location (Tables A.5-A.8). Significant statistical relationships between leaf 

morphological traits and physiological traits were not consistent among C4 species in this study. 

However, there were species-specific relationships between microanatomical traits and 

corresponding physiological traits from the same measured individuals. Known relationships 

between cell types have varying effects on species physiology; for instance, increasing size of 

bundle sheath cells correlates with increased photosynthetic rate (Dengler et al. 1994). In the 

results shown here, the relationship between bundle sheath area (measured as a %) and 

maximum photosynthetic rate varied between A. gerardii and P. virgatum (Figure 3.9-3.10). A. 

gerardii is more sensitive to photosynthetic responses when small changes in bundle sheath area 

are present. Bundle sheath thickness behaved similarly within A. gerardii and S. scoparium 

species across locations (Figure 3.11), while S. nutans and P. virgatum did not show a trend. 

Bundle sheath cell thickness relates to its area and volume, and correlates with increased light 

absorption to chloroplast within the cells (Dengler et al. 1994; Maai, Miyake & Taniguchi 2011).  

Differences in morphological and physiological relationships between species may reflect 

contrasting arrangements of decarboxylation tissues found in C4 grasses (Rao & Dixon 2016). 

The species of interest included grasses that have NAD-dependent malic enzyme (NAD-ME, 

which use malate as a transported metabolite) and NADP-dependent malic enzyme (NADP-ME, 

which use aspartate as the transported metabolite) decarboxylating enzymes. P. virgatum is a 
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NAD-ME grass that holds similar arrangement of tissue as classical Kranz anatomy, but has two 

distinct layers of bundle sheath cells. A. gerardii, S. nutans, and S. schizachyrium are NADP-ME 

grasses that have one layer of both mesophyll and bundle sheath cells. While contributions from 

aspartate and malate are considered equal in their ability to transfer CO2 for decarboxylation 

(Meister, Agostino & Hatch 1996; Rao & Dixon 2016), there may be differences in nitrogen-use 

efficiency due to the reduction of cellular aspartate in NAD-ME grasses (Bräutigam & Gowik 

2016; Rao & Dixon 2016).  

While grassland ecosystems in Kansas typically encounter periods of summer drought 

within most years, 2016 had above average rainfall for all locations measured in Kansas. Each 

site experienced abnormally high levels of rainfall in the latter half of the growing season. The 

impacts of higher late-season rainfall were most atypical for Albertson prairie (Hays, KS), which 

typically has hot dry late summer periods. Thus, the conditions at this site in 2016 has made 

results in species photosynthetic, stomatal conductance, and transpiration rates higher than most 

years (Maricle & Adler 2011).  

 The goal of this research was to determine the plasticity of leaf-level physiological and 

morphological traits among four dominant C4 grasses. This project addressed three hypotheses 

which resulted in novel findings. Species’ physiology was determined to vary significantly 

within Kansas rainfall gradient and across the growing season. While leaf morphological traits 

were observed to vary between species, most traits measured here remained static within species 

across time and location. I predicted that leaf morphological traits would significantly predict 

leaf physiology traits. The data showed significant relationships between morphology and 

physiology within species but not trends were not consistent among all species selected. The two 

main results gained from this research project are (1) morphological traits within a location and 
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species is fixed across the growing season. This finding suggests that leaf microanatomical 

structures produced early in the growing season will constrain the overall physiological response 

for the growing season. Therefore, early season growth of these species may be an indication of 

whole-season physiological potential. This suggests that late season droughts may have lower 

impact on potential physiological responses, than early-season droughts. (2) Because the selected 

dominant C4 grasses have varying responses (physiological, morphological, and morphology 

predicting physiology), models estimating a “general C4 grass response” are likely 

underestimating actual interspecific variability. The significance of missing the unique 

interspecific variability within the functional type (C4 grass) has yet to be determined, and will 

require further research. 
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 Tables and Figures 

 

Figure 3.1 Andropogon gerardii leaf cross section from Konza Prairie, August of 2016 

magnified 10X. Subsamples were taken between numbers 1 and 2; 3 and 4. Midrib was 

used as the reference point, X indicates a major vein that was unmeasured. 
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Figure 3.2 Cross section of Andropogon gerardii from Konza Prairie, August of 2016 

magnified 40X. Mesophyll cells (M), Bundle sheath cells (B), Vein area (V), Xylem area (X), 

yellow line (AVE Dm), blue line (AVE BSThick), black line (Stomataxylem).  
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Figure 3.3 Mean maximum photosynthetic rate An of each species at all sampling locations. 

BB: A. gerardii; IG: S. nutans; LB: S. scoparium; SG: P. virgatum.  

 

 
Figure 3.4 Mean stomatal conductance rate gs of each species at all sampling locations. BB: 

A. gerardii; IG: S. nutans; LB: S. scoparium; SG: P. virgatum. 
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Figure 3.5 Mean transpiration rate E of each species at all sampling locations. BB: A. 

gerardii; IG: S. nutans; LB: S. scoparium; SG: P. virgatum. 
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Figure 3.6 Light response curves at all sampling locations of June (A)(C) and August 

(B)(D). Photosynthetically available radiation (PAR). Values represent means, +/- 1 SE. 
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Figure 3.7 Light response curves at all sampling locations of June (A)(C) and August 

(B)(D). Photosynthetically available radiation (PAR). Values represent means, +/- 1 SE. 
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Figure 3.8 Mean xylem area for each species at all three research location in both June and 

August.  

 

  



73 

 

Figure 3.9 Correlation of bundle sheath area (expressed as a % of subsample) and 

maximum photosynthetic rate (An) for A. gerardii.  
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Figure 3.10 Correlation of bundle sheath area (expressed as a % of subsample) and 

maximum photosynthetic rate (An) for P. virgatum. 
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Figure 3.11 Correlation of bundle sheath thickness (µm) and maximum photosynthetic rate 

(An) for A. gerardii. 
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Chapter 4 - Conclusions 

Grasslands are a dominant biome that span 25% of the Earth’s land surface (Ramankutty 

& Foley 1999), and contribute to ecological complexity and hold substantial species diversity. 

However, grasslands commonly contain ‘dominant species’ – species with disproportionality 

large impacts on productivity and energy, nutrient, and water budgets (Smith, Knapp & Collins 

2009). Dominant species can also have disproportional influence on human diet (Tilman et al. 

2002), ecological processes (Knapp et al. 2002a), and grazer proliferation (Forrestel et al. 2015). 

The grassland biome is characterized by high climate variability which is projected to become 

even more variable in future climate scenarios over the coming century, likely impacting energy 

and nutrient/hydrological cycling in grassland ecosystems (Sage 2004; Kidder 2005; Edwards et 

al. 2010). Further research that explores unique phylogenetic, physiological, and morphological 

traits among grass species responding to climate variability is necessary (Grass Phylogeny 

Working II 2012).  

Climate change is projected to alter current environmental conditions for grassland 

systems, leading to increased temperature and rainfall variability (IPCC 2007). Increased 

variability can lead to drought conditions which will negatively affect growth of numerous 

grassland and agricultural species (Salinger, Sivakumar & Motha 2005; Mueller et al. 2016). 

Although grassland species are able to cope with current climate variability, further 

understanding of how grasses respond to future intensified climate change scenarios is needed. 

The goal of this thesis was to characterize the physiological and morphological response of C3 

and C4 grasses to across a range of water availabilities representing optimal to extreme drought 

conditions.   
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 In chapter 2, I conducted a greenhouse experiment that compared physiological responses 

of C3 and C4 congeners to dry-down conditions (100% water reduction). Two genera were used 

in the experiment (Festuca: C3 and Paspalum: C4), and drought tolerant traits were measured 

daily. Leaf-level physiological traits included Amax, gs, E, and chlorophyll fluorescence; and root-

level morphological traits included root length, mass, fine-root proportion, fine-root length, 

root:shoot ratio, and specific root length (SRL). C4 species typically respond with continued 

optimal photosynthesis during drought conditions, however, my results indicate an opposite 

pattern. Festuca species (C3), responded by maintaining optimal gas exchange rates for nearly 

twice the time compared to Paspalum (C4). Results from the root-level analysis indicate that 

Festuca species have a higher specific root length (SRL), a trait that is an indicator of species 

response to precipitation variability (Ostonen et al. 2007). Results from this experiment suggest 

that leaf and root-level traits also determine a species response to altered water availability.    

 In chapter 3, I examined the variability of dominant C4 grass species physiology and 

morphology in response to varying levels of water availability (across the Kansas rainfall 

gradient) over a growing season. Four C4 grasses were examined due to their dominance of 

Kansas’ prairies systems: A. gerardii, S. scoparium, S. nutans, and P. virgatum. Results from this 

experiment indicate that leaf-level physiology is variable between species over spatial and 

temporal scales, while leaf-level morphology is significantly different between species but static 

within species. There was also evidence of correlations between morphological (such as bundle 

sheath area) and physiological traits (photosynthetic rate). Interestingly, statistical relationships 

among species varied with regard to strength and nature of association. Amax for A. gerardii 

increased with more bundle sheath area present, while Amax decreased with increasing bundle 

sheath area in P. virgatum. This suggests that although C4 grasses utilize the same general 
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photosynthetic pathway, research estimating a “general C4 grass response” may be missing inter-

specific variability existing in grasses.  

 Within the central Great Plains of North America, the mesic grassland biome will likely 

be effected by increased climate variability resulting from climate change. Increased temperature 

and decreased precipitation will be major drivers of species physiological and morphological 

responses (Eissenstat, Wells & Yanai 2000; Fay et al. 2002; Schroeder-Georgi et al. 2016). This 

research has provided a first approximation linking physiological and morphological responses 

for several grass species at leaf and root-level and provides mechanistic insight valuable for 

forecasting changes in future novel environments.  
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Appendix A - Additional Information 

 

 

Table A.1 Precipitation data (mm) of each research site. Percentage of annual rainfall 

received, and average soil moisture of location Acquired from local weather and airport 

stations. 

 
May-June 

Precipitation 

% of Annual 

Rainfall 

Soil 

Moisture 

July-August 

Precipitation 

% of Annual 

Rainfall 

Soil 

Moisture 

Albertson 78.99 13.2 0.17 130.81 21.9 0.23 

Konza 149.35 16.6 0.34 120.65 13.4 0.35 

Rockefeller 217.42 21.4 0.40 127.76 12.6 0.32 

 

 

Table A.2 ANOVA results for species, location, month, and interaction effects for 

photosynthetic rate. Numbers in bold show significance (P < 0.05). 

 DF Mean Square F value P value 

     

Location (L) 2 205.7 3.090 .04777 

Species (S) 3 306.6 4.607 .00389 

Month (M)  1 28.5 0.428 .51362 

L x S 6 48.0 0.722 .63267 

L x M 2 451.9 6.791 .00142 

S x M 3 54.2 0.814 .48731 

L x S x M 6 42.2 0.634 .70257 
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Table A.3 ANOVA results for species, location, month, and interaction effects for stomatal 

conductance rate. Numbers in bold show significance (P < 0.05). 

 

 

Table A.4 ANOVA results for species, location, month, and interaction effects for 

transpiration rate. Numbers in bold show significance (P < 0.05). 

 DF Mean Square F value P value 

     

Location (L) 2 0.03405 6.376 0.00209 

Species (S) 3 0.06126 11.471 0.000000598 

Month (M) 1 0.01003 1.878 0.17222 

L x S 6 0.00640 1.198 0.30880 

L x M 2 0.06253 11.710 0.0000160 

S x M 3 0.01168 2.187 0.09099 

L x S x M 6 0.01739 3.256 0.00453 

     

 DF Mean square F value P value 

     

Location (L) 2 23.76 6.597 0.001696 

Species (S) 3 46.40 12.883 0.000000106 

Month (M) 1 54.04 25.004 0.000147 

L x S 6 6.13 1.702 0.122471 

L x M 2 4.47 1.240 0.291787 

S x M 3 9.13 2.584 0.054587 

L x S x M 6 13.68 3.798 0.001343 
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Table A.5 Mean values for each measured physiological and morphological trait of A. 

gerardii. Missing values indicate trait could not be measured for sample. 

 
Albertson 

June 

Konza 

June 

Rockefeller 

June 

Albertson 

August 

Konza 

August 

Rockefeller 

August 

A. gerardii Mean STE Mean STE Mean STE Mean STE Mean STE Mean STE 

Amax 34.96 3.76 46.19 5.81 20.51  33.10 5.60 16.87 1.29 28.70 0.73 

Gs 0.27 0.03 0.35 0.04 0.16  0.25 0.03 0.19 0.03 0.20 0.01 

E 6.61 0.64 8.23 0.96 5.86  6.64 0.77 6.53 1.04 5.72 0.35 

Soil 

Moisture 
0.22 0.01 0.24 0.11 0.45  0.24 0.01 0.35 0.03 0.32 0.01 

Max ETR 109.30 11.13 96.50 12.84 98.80  131.90 4.88 156.10 19.35 89.90 17.55 

IVD 95.48 4.07 99.15 8.02 85.31  85.13 3.26 91.87 4.98 85.47 1.80 

AVE Xylem 

Area (µm2) 
393.16 33.77 615.69 92.24 253.47  358.92 44.55 687.42 96.50 219.31 104.89 

% Vein 

Area 
0.17 0.01 0.150 0.01 0.16  0.17 0.01 0.19 0.01 0.17 <0.00 

% Bundle 

Sheath area  
0.20 0.01 0.19 0.02 0.19  0.19 0.018 0.19 0.01 0.19 0.01 

Mesophyll 

Area (%) 
0.64 0.01 0.64 0.01 0.63  0.64 0.02 0.65 0.01 0.66 <0.00 

BS : MS 0.31 0.02 0.35 0.03 0.38  0.30 0.03 0.31 0.01 0.36 0.01 

AVE Dm 

(µm) 
49.42 3.37 46.45 5.88 40.51  45.45 4.42 39.68 1.15 41.75 5.35 

AVE BSthick 

(µm) 
13.26 0.37 15.54 1.26 12.70  13.10 0.85 12.61 0.31 12.31 0.61 

Stomataxylem 

(µm) 
77.23 5.42 73.98 7.29 65.88  79.82 6.88 69.54 3.93 78.44 2.74 
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Table A.6 Mean values for each measured physiological and morphological trait of S. 

nutans. 

 
Albertson 

June 

Konza 

June 

Rockefeller 

June 

Albertson 

August 

Konza 

August 

Rockefeller 

August 

S. nutans Mean STE Mean STE Mean STE Mean STE Mean STE Mean STE 

Amax 34.73 3.60 47.31 6.78 29.61 2.17 35.89 3.80 25.83 4.28 38.38 3.36 

Gs 0.27 0.03 0.37 0.05 0.23 0.01 0.28 0.04 0.23 0.01 0.31 0.02 

E 6.31 0.71 8.35 0.53 8.02 0.86 6.62 0.89 6.82 0.48 6.91 0.42 

Soil 

Moisture 
0.10 0.03 0.22 < 0.00 0.43 0.02 0.17 0.02 0.34 <0.00 0.28 0.01 

Max ETR 70.8 12.53 168.5 19.60 149.3 23.87 155.2 17.55 195.9 34.00 143.8 14.27 

IVD 130.32 4.50 118.72 12.79 113.46 11.08 127.55 7.30 117.96 8.01 112.09 2.65 

AVE Xylem 

Area (µm2) 
586.44 49.42 400.19 133.29 543.35 135.07 494.67 117.84 459.37 98.94 616.96 107.56 

% Vein 

Area 
0.17 0.01 0.161 0.02 0.18 0.01 0.16 0.01 0.19 0.01 0.21 0.01 

% Bundle 

Sheath area  
0.36 0.01 0.22 0.01 0.17 0.01 0.35 0.01 0.19 0.02 0.19 < 0.00 

Mesophyll 

Area (%) 
0.51 0.01 0.63 0.01 0.67 < 0.00 0.52 0.01 0.62 0.01 0.62 0.01 

BS : MS 0.30 0.01 0.26 0.02 0.32 0.02 0.29 0.01 0.31 0.03 0.35 0.01 

AVE Dm 

(µm) 
49.20 4.22 44.46 3.44 38.85 1.90 46.44 1.42 38.03 2.96 35.31 3.99 

AVE BSthick 

(µm) 
17.89 1.00 16.08 0.61 15.61 0.51 23.71 6.48 14.89 0.41 15.37 0.54 

Stomataxylem 

(µm) 
80.38 4.65 74.61 4.20 60.72 2.02 81.81 4.35 71.50 4.41 70.35 8.05 
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Table A.7 Mean values for each measured physiological and morphological trait of S. 

scoparium. Missing values indicate trait could not be measured for sample. 

 
Albertson 

June 

Konza 

June 

Rockefeller 

June 

Albertson 

August 

Konza 

August 

Rockefeller 

August 

S. scoparium Mean STE Mean STE Mean STE Mean STE Mean STE Mean STE 

Amax 19.85 2.14 33.82  20.58  39.78 7.88 16.51  20.64  

Gs 0.12 0.01 0.27  0.11  0.37 0.09 0.16  0.35  

E 3.65 0.38 6.73  4.22  12.31 2.93 4.63  7.19  

Soil 

Moisture 
0.16 0.02 0.38  0.33  0.24 0.04 0.36  0.31  

Max ETR 75.3 16.28 35.7  42.6  151.1 18.49 117.4  75  

IVD 77.47 3.02 74.77  99.74  73.28 1.68 71.73  85.47  

AVE Xylem 

Area (µm2) 
119.43 19.09 734.75  407.94  214.82 14.26 644.41  297.66  

% Vein Area 0.18 0.01 0.15  0.16  0.15 <0.00 0.19  0.15  

% Bundle 

Sheath area  
0.21 <0.00 0.37  0.23  0.20 0.02 0.38  0.22  

Mesophyll 

Area (%) 
0.650 0.01 0.532  0.606  0.619 0.02 0.512  0.608  

BS : MS 0.31 0.01 0.31  0.35  0.29 0.04 0.32  0.34  

AVE Dm 

(µm) 
40.39 3.80 51.98  40.77  44.81 1.57 35.85  39.04  

AVE BSthick 

(µm) 
14.69 1.92 16.80  12.80  13.47 1.60 10.85  12.64  

Stomataxylem 

(µm) 
63.28 4.45 80.49  61.69  66.12 3.87 62.14  60.52  
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Table A.8 Mean values for each measured physiological and morphological trait of P. 

virgatum. 

 
Albertson 

June 

Konza 

June 

Rockefeller 

June 

Albertson 

August 

Konza 

August 

Rockefeller 

August 

P. virgatum Mean STE Mean STE Mean STE Mean STE Mean STE Mean STE 

Amax 27.02 2.41 32.53 4.86 26.18 3.79 26.49 3.72 37.33 7.63 19.39 0.91 

Gs 0.25 0.03 0.30 0.05 0.21 0.03 0.21 0.03 0.35 0.10 0.16 0.02 

E 6.18 0.61 7.49 1.38 4.43 0.32 4.86 0.67 10.64 2.94 4.23 0.38 

Soil 

Moisture 
0.17 0.03 0.26 0.04 0.42 0.01 0.23 0.03 0.39 0.02 0.32 0.01 

Max ETR 79.9 7.68 57.1 6.3 163.4 9.66 125.1 9.61 54.8 1.60 143 25.20 

IVD 171.57 10.33 187.22 5.85 159.06 7.23 158.05 2.77 165.60 23.24 144.01 9.23 

AVE Xylem 

Area (µm2) 
688.22 67.67 367.11 178.78 505.56 34.17 747.00 46.46 318.14 152.42 527.28 143.29 

% Vein 

Area 
0.12 <0.00 0.10 0.01 0.10 <0.00 0.13 0.02 0.11 <0.00 0.14 0.02 

% Bundle 

Sheath area  
0.20 0.01 0.22 <0.00 0.38 <0.00 0.21 0.02 0.22 0.03 0.43 0.07 

Mesophyll 

Area (%) 
0.62 0.01 0.62 0.01 0.52 <0.00 0.58 <0.00 0.63 0.04 0.43 0.06 

BS : MS 0.71 0.03 0.71 0.01 0.73 0.01 0.67 0.04 0.76 0.12 1.171 0.39 

AVE Dm 

(µm) 
37.54 3.05 43.39 2.34 35.59 2.55 35.30 1.41 33.71 3.39 31.54 1.17 

AVE BSthick 

(µm) 
27.79 3.81 26.60 0.23 24.08 1.28 24.07 0.34 22.66 0.93 21.64 1.01 

Stomataxylem 

(µm) 
88.39 9.37 91.27 7.76 78.38 3.89 81.46 4.56 78.22 0.73 70.52 3.11 
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