SMRONG CHIEU-IISIUNG CHUANG

E. S., National Taiwan University, 1961

A MASTER'S THESIS

```
submitted in partial fulfillment of the
    requirements for the degree
```

 MASTER OF SCIENCE
 Department of Civil Engineering
 KANSAS STATE UNIVERSITY
 Manhattan, Kansas
 1967
 Approved by:
LD 2668
mont
TABLE OF CO:TETIS
INTRODUCHIOM. 1
TH゙EOREITCAL BASIS 3
RREII:TMARY STUDIES 10
DESIGN OT THE EXPERTMENTAL APPARATUS 17
RXPERI:ANTAL RESULTS 27
CONCLUSICISS 54
RECOK:ITDATIONS FOR TURTHER RESEARCH. 55
ACA:O:WLEDGITH: 56
REFERTICES 57
APSETDICTS
Appendix A 60
Appendix B. 63
Appondix C. 66

INTRODUCTION

Manifold problems are encountered very often in encineerins fields, such as: (1) control of circulation around aircraft wings and Gas turbine blades by ejecting air from an aerofoil into the main stream, (2) in gas burners, or in manifolds suoplying multi-cylinder internal combustion encines, (3) some irrigational facilitios or srass sprayer with multiple openings along the longth of the main pipe, (4) in water works processing unitos such as the entrance of sotting basins or back wash wator distribution system of rapid sand iilters, (5) oressure filters used in waterworis practice, and hot-waton heatins systens where a large number of radiators are connected to onc header, (6) in locks for shipoing, so that the rate of filling shall be evenly spread alons the length of the lock since this will assist in preventing excossive movenents and stresses in the mooring ropes and ca:lez of vesscls inside the lock.

Xenifold problems which arc likely to bc of concorn may bo classified briefly as: (1) those with variations of pressurc along the rain of manfold pipe, (2) thosc with variations of discharse cuantits alon the lonsth of manifold pipe, (3) equalizing the volocity of effur, rathor than attempting to obtain uniform guantity churactoristics in ordes to nrovent scouring offect when tho scour at t: o orificc outlot tis of concorn.

There aro two kinds of hmifold flow phenomona: (1) Mowinc snifole, the fluid is flowing out from tho side ports of manifold Dtpo such as lino souren. (2) Sucking mani cold, the roverse finction of \%e lowinc manifold such as linc sint. The blowine menifold is
more common.
If the total area of side opening is small in relation to the cross sectional area of the main pipe, then approxinatoly equal distribution of discharse fluid may be secured from a perforated pipe with holos of equal size and cqual spacing.

In seneral, the hoad loss due to friction causos the pressure head to docrease gradually along the direction of flow, while pressure recovory due to decrease of the flow velocity causes the pressure hoad to increase gradually along the direction of flow. In the atterpt to keep dischargo uniform $0.10 n$ the manifold pipe, it is impossible to make the pressure loss and prossure gain compensate for each other, Since the variation of prossure loss and prossure gain are of different characteristics. Therefore, in order to keop the discharge quantity constant along the length, several methods have beon established such as: (1) Varying the size of the side openings while keoping a constant pitch for tho holes. (2) Altering tho pitch of the holos while retaining a constant sizc of side opening. (3) Varying the cross sectional area of the main pipe along its loncth.

The objoctives of this thesis were: (1) Detemine tho monifold nort distribution (with constont cross sectional area of the main ripe and with the sa:nc opening of tho ports, tho spacing botwecn ports is varied.) and thus to providc for uniform flow distribution slong the Iength of manifold pipe. (2) To chance the prossure head at the entrance of the anifold pipe and observe the variation in the uniformity and constancy of the discharme.

TIIEORDIICAL BASIS

Consider a straight pipe with an uniform cross sectional area, A, with discharge Q flowing in the pipe. Assume that the number of side openings of the manifold pipe is very large so that they can be considered as a long, naryow slot and fluid is flowing uniformly from the slot along the pipe. (fig. 1). If the velocity at b, the entrance of the pipe, is V_{b} then $V_{b}=0 / A$. Let c denote the closed end, so that V_{c} is equal to zero. Moreover, since Q is being discharged uniformly along the slot of length L, the discharge per unit length is $q=Q / L$. At some distance z downstream, the velocity in the main pipe V_{x} is $(Q-q x) / A$ or $(Q / A)(1-x / L)$ or $V_{b}(1-x / L)$.

Fig. 1. Pressure Distribution Along a Slotted Manifold Pipe

Let y denote the piezometric head on the pipe at distance x downstream of b. ITeclecting the friction loss, from Bernoulli equation we set

$$
h_{b}+\frac{V_{b}^{2}}{2 G}=y+\frac{V_{x}^{2}}{2 g}=y+\frac{V_{b}^{2}\left(1-2 x / L+x^{2} / L^{2}\right)}{2 g}
$$

simplifying the above rolation and solving for y

$$
\begin{equation*}
y=h_{b}+\frac{v_{b}^{2}}{2 \pi}\left(2 x / L-x^{2} / L^{2}\right) \tag{1}
\end{equation*}
$$

So, y is a quadratic function of x, which moans the hydraulic gradiont along the manifold pipe is a parabolic curve. When $x=L, y=h_{c}$, so

$$
\begin{equation*}
h_{c}=h_{b}+\frac{v_{b}^{2}}{2 g} \tag{2}
\end{equation*}
$$

Practically, when the quantity of discharse is larce, i.s. Vb is relatively larse, the head loss due to the frictional effect of the inner pipe surface will be pronounced. For the fully developed turbulent flow, the hoad loss per unit loneth is proportional to some power of the velocity, expressed by $h_{f}=K V^{m}$. m varies fron 1.75 to 2. Darcy used m equal to 2, Millia:1-Tazon used m equal to 1.35 , and Scoby used mequal to 1.9. For the case of laminar flow, by means of mathematical derivation, Hasen-Poiseuilles cited m equal to 1.

The velocity in the pipe is docreasins linearly from V_{b} っt b to $V_{c}=0$ at c. At the very downstream end where the velocity is very small flow changes from turbulent to the laminar state. Fortunately, in this experiment, the state of laminar flow occurred only at a very small lencth of pipe near the closod end. Therefore, it was safe to assume that turbulent flow occurred over the whole leneth of the pipe.

$$
\begin{aligned}
\text { Assune } m & =2 \text {, and apply the Darcy Dquation } \\
h_{f} & =f \frac{L}{D} \frac{V^{2}}{2}
\end{aligned}
$$

From fig. 2, at the distance x from $b, V_{x}=V_{b}(1-x / L)$. Head loss d_{f} within the small distance $d x$ is

$$
\begin{equation*}
d h_{f}=f_{x} \frac{d \pi}{D} \frac{V_{b}^{2}(1-x / L)^{2}}{2 g}=\frac{f_{x} V_{b}^{2}}{2 g I}(1-x / L)^{2} d x \tag{3}
\end{equation*}
$$

Total head loss from b to x is

$$
\left(h_{f}\right)_{x}=\int_{0}^{x} \frac{f_{x} v_{b}^{2}(1-x / L)^{2}}{2 \mathscr{S} D} d x
$$

if f_{x} is constant, say f, along the whole length of L, then the above expression can be integrated as

$$
\begin{equation*}
\left(h_{f}\right)_{x}=\frac{f v_{b}^{2}}{2 g D}\left(x-x^{2} / L+x^{3} / 3 L^{2}\right) \tag{4}
\end{equation*}
$$

From equation (4), the expression of head loss is a third power function of x. Comparing equation (4) with equation (1), it is evident that two equations are of a different type, so, it is impossible to make the loss of head and recovery of head compensate for each other. When $x=L$, then

$$
\begin{equation*}
\left(h_{f}\right)_{c}=\frac{r v_{b}^{2} L^{2}}{6 D} \tag{5}
\end{equation*}
$$

Fig. 2. Friction Head Loss Along a Slotted Manifold Pipe Consequently, the actual head along the manifold pipe can be obtained by subtracting equation (4) from equation (1).

$$
h_{x}=y-\left(h_{f}\right)_{x}=h_{b}+\frac{v_{b}^{2}}{2 f}\left(2 x / L-x^{2} / L^{2}\right)-\frac{r v_{b}^{2}}{2 G^{D}}\left(x-x^{2} / L+x^{3} / 3 L^{2}\right)
$$

$$
\begin{equation*}
\therefore h_{x}=h_{b}+\frac{V_{b}^{2}}{2 U}\left[(2 / L-f / D) x+\left(I / L D-1 / L^{2}\right) x^{2}-\frac{x^{3}}{3 L^{2} D}\right] \tag{6}
\end{equation*}
$$

In viewing equation (6), it is easy to show that it is impossible to maintain h_{y} constant along L . To prove this, put $\mathrm{h}_{\mathrm{x}}=\mathrm{h}_{\mathrm{b}}$, then $(2 / L-f / D) x+\left(f / I D-1 / L^{2}\right) x^{2}-\left(f / 3 L^{2} D\right) x^{3}=0$, one and only one condition to get this result is that all the coefficients be equal to zero, and this is not practical.

Equation (6) is approximately true only for the case of manifold pipes with an open end so that the variation of the velocity from b to c is small and f remains approximately constant over the whole manifold length. For the closed end manifold pipe, f varies with the Reynolds Number and equation (6) cannot be used. It is, therefore, necessary to develop another method to determine the pressure distribution.

Divide the manifold pipe into N equal subdivisions with the length of each subdivision L / \mathbb{N}. Assume the velocity is constant within each subdivision as shown on fis. 3.
pressure head distribution curve

From equation (3), in each subdivision

$$
\begin{aligned}
&\left(d h_{f}\right)_{1}=\frac{f_{1} V_{b}^{2}(I / N)}{2{ }^{D} D}\left(\frac{N-1}{N}\right)^{2} \\
&\left(d h_{f}\right)_{2}=\frac{f_{2} V_{b}^{2}(I / N)}{2 G D}\left(\frac{N-2}{N}\right)^{2} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
&\left(d h_{f}\right)_{i}=\frac{f_{i} V_{b}^{2}(L / \mathbb{N})}{2 G D}\left(\frac{N-i}{N}\right)^{2} \\
& \therefore \quad\left(h_{f}\right)_{i}=\left(d h_{f}\right)_{1}+\left(d h_{f}\right)_{2}+\ldots+\left(d h_{f}\right)_{i} \\
&=\sum_{i=1}^{i=i} \frac{f_{i} V_{b}^{2}(I / \mathbb{N})}{2 \delta D}\left(\frac{\mathbb{N}-i}{\mathbb{N}}\right)^{2} \\
& \therefore \quad h_{i}=y_{i}-\left(h_{f}\right)_{i}
\end{aligned}
$$

From equation (1) $y_{i}=h_{b}+\frac{V_{b}^{2}}{2 g}\left(2 i / N-i^{2} / N^{2}\right)$

$$
\begin{equation*}
\therefore \quad h_{i}=h_{b}+\frac{V_{b}^{2}}{2 G}\left[2 i / N-(i / N)^{2}-\sum_{i=1}^{i=i} \frac{f_{i}(L / N)}{D}\left(\frac{N-i}{N}\right)^{2}\right] \tag{7}
\end{equation*}
$$

Based on equation (7), the head distribution curves of various discharge, Q, flowing in a two inches PVC pipe have been ploted in fig. 15.

So far it has been assumed that the manifold openings were so numerous that they could be regarded as a slot extending continuously along the length I. Actually, the opezing was discontinuous and when fluid passed through each of the side openiness it caused a cortain head loss. This type of problen has been extensively studied. Zenze ${ }^{1}$ presented an empirical rule, (II .4 .), whereby the pressure difforence between 1 and 2, P_{1-2}, and 1 and $3, P_{1-3}$, can be expressed eapirically

$$
\begin{align*}
& P_{1-2}=0.000135\left(1.36 \mathrm{~V}_{2}^{2}-0.64 \mathrm{~V}_{1}^{2}-0.72 \mathrm{~V}_{1} \mathrm{~V}_{2}\right) \tag{8}\\
& \mathrm{P}_{1-3}=0.000135\left(1.8 \mathrm{v} 3-0.368 \mathrm{~V}_{1} \mathrm{~V}_{2}\right) \tag{9}
\end{align*}
$$

En-Yun Hsu ${ }^{2}$ presented an entirely different type of analysis. He used the free streamline theory in determining the principal character of the lateral offlux. Considering the efflux from a circular orifice in a circular manifold pipe as type of irrotational two dimensional branching flow, a relationship was derived

Fis. 4 by means of the method of successive conformal transformation for the theoretical coefficient of contraction for two dimensional lateral efflux. With reference to fig. 5, the relationship,

$$
\begin{equation*}
c_{i}=F\left(\frac{V_{i+1}}{V_{i}}, \frac{a}{A}\right) \tag{10}
\end{equation*}
$$

was defined in general but implicit form. Equation (10) is applicable to the dividing flow with the provisions that (1) the ratio of the area of the lateral to the area of the main conduit be the same in each case, and (2) the enery loss is like that in an abrupt expansion

Fiç. 5
Flow Contraction at Manifold Side Ports
downstrean from a section at which the contraction of the jet can be assumed essentially complete. Thus, the energy loss, h_{f}, of fluid by passing through the side ports is computed from the known formula for head loss at a boundary enlargement,

$$
h_{f}^{\prime}=\frac{\left(v_{i}^{\prime}-v_{i}\right)^{2}}{2 g}
$$

where V_{i} ' is the velocity at the contracted section. Simplified to dimensionless form

$$
\frac{h_{f}^{\prime}}{\frac{v_{i}^{2}}{2 g}}=\left(\frac{1}{C_{i}}-1\right)^{2}
$$

The representative curve of C_{i} is reproduced as fig. 6 .

Fiç. 6
Coefficient of Contraction Versus Area Ratio Curve With Velocity Ratio as a Third Parameter.

PRELIMINARY STUDIES

The experiment was carried out by using a two inches DVC pipe as the main pipe. Although the nominal size was two inches, the actual inner diameter was 2.193 inches. The size of side opening was 19/32 inches in diameter and connected with a tube two inches in length as a flow guide to prevent flow from slanting forward in the direction of main pipe flow. Two essential items of information had to be known before starting to design the manifold system. They are skin friction coefficient, f, of the two inches PVC pipe and the discharge coefficient C_{q}, of the side ports.
(1) Determination of f-curve in terms of the Reynold's Number:

The experimental apparatus is shown schematically in fig. 7. e is a control valve, k is the orifice connected to a manometer with mercury as the indicating fluid. The detail structure of the orifice

$$
\text { Fisc. } 7
$$

and manometer is shown in fig. 8. A distance of 5 feet downstream from k to b was provided as a calming length. The loss of head from b to d and from d to c can be read from the plastic tubes which were placed at positions b, d, and c. d was the midpoint of length $b c$.

Fig. 8. Orifice Plate and Manometer
The orifice was calibrated and the results are shown in is. 9 . The quantity of discharge can be determined by reading the head difference of the manometer and then obtaining the corresponding discharge from fig. 9.

By the Darcy Equation $h_{f}=f(I / D)\left(V^{2} / 2 \delta\right)$, where h_{f} is the head
loss in the distance L, D is pipe diameter, V is mean velocity of the pipe flow. Solving for the friction factor it is found $f=\left(2 \sigma_{\mathrm{g}}^{\mathrm{f}} \mathrm{f}\right) /\left(L V^{2}\right)$ $=\left(\pi^{2} \dot{E} D^{5} h_{f}\right) /\left(3 L Q^{2}\right)$. Since $D=2.193^{\prime \prime}$, and $L=12^{\prime}$, then

$$
\begin{equation*}
f=6.75\left(10^{-3}\right)\left(\mathrm{hf} / Q^{2}\right) \tag{11}
\end{equation*}
$$

Fig. 9. Orifice Calibration Curve

Moreover the Reynold's Number, $\mathbb{N}_{\mathrm{r}}=(\mathrm{VD}) / \nu=(40) /(\pi D \nu)$. For a temperature equal to $70^{\circ} \mathrm{F}, \nu=1.05\left(10^{-5}\right) \mathrm{ft}^{2} / \mathrm{sec}$. So that

$$
\begin{equation*}
N_{r}=6.64\left(10^{5}\right) Q . \tag{12}
\end{equation*}
$$

From equations (11) and (12), it was necessary to measure only h_{f} and Q, then it was able to plot a curve of f vs \mathbb{N}_{r}.

The total number of testing points were fifty three. The data of the test are presented in appendix A. The test range was from a Reynold's Number of $4\left(10^{3}\right)$ to $6.6\left(10^{4}\right)$. The resulting stanton curve (f vs \mathbb{N}_{r} curve) is plotted in fig. 11. The curve of Blasiu's equation $f=0.3164 / \mathbb{N}_{r} 0.25$ for smooth pipe is also plotted for the purpose of comparison.
(2) Determination of the discharge coefficient of orifice:

The coefficient of discharge is defined as

$$
C_{q}=\frac{Q_{3}}{a \sqrt{2 \mathrm{gh}}}
$$

The detail of the side opening is shown in fig. 10

Fig. 10. Detail of Manifold Side Port
According to Zenz ${ }^{1}$ and En-Yun Msu ${ }^{?} C_{q}$ is a function of Q_{2} / Q_{1} and

Fis. 1i. Stanton curve of 2 inches PVC pipe.
a / A. Now $a / A=(d / D)^{2}=0.0737$ is a constant value for each side port. The only dependent variable is Q_{2} / Q_{1} or V_{2} / V_{1}. In order to determine a C_{q} vs V_{2} / V_{1} curve, one typical side port was taken as a test orifice. The experiment of determining C_{q} is shown on fig. 12 , where Q_{i} was read from manometer, q was determined by direct measuring, $Q_{i+1}=Q_{i}-q$

Fig. 12. Pictorial Sketch of Manifold Section
then can be obtained. Hence $Q_{i+1} / Q_{i}=V_{i+1} / V_{i}$ curve was determined. one can then compute $C_{q}=q /(a \sqrt{2 g h})$. The C_{q} vs V_{i+1} / V_{i} curve is show in figs. 13. The experimental data are presented in appendix B.

Fig. 13. Velocity Ratio Versus Side Port Discharge Coefficient

DESIGN OT THE EXPERTMMTMI APPARATUS

Let $D:$ Denote diameter of main pipe $=2.193$ inches.
A: Cross sectional area of main pipe $=0.02622 \mathrm{sq}$. ft.
d: Diameter of the opening ports of the manifold pipe $=\frac{1011}{32}$
a: Cross sectional area of each of the side openins $=0.00195 \mathrm{sq}$. ft. .
n: Total number of openings within the manifold Iength L.
Q: Total discharge at the inlot of the manifold pipe=0.25 cis.
O: Uniform discharge per unit length of manifold pipe equal to $2 / L=0.0208 \mathrm{cfs} / \mathrm{ft}$.
$\sigma_{-1}:$ Discharge through ith port of opening.
h_{b} : Water head at the entrance of the manifold.
h_{c} : Water heod at the dead and of the manifold $=20$ inches.
Now if keep D, L, Q, h_{b} (and hence h_{c}) constant, then n and d will depend on each other. The purpose of this oxperimont was to detormine tho value of n, and the spacing beiween those n oponings wile keeping D, d, L, h_{b}, and h_{c} constant and suppling a cortain designatod Q.

From tho analysis given on pages 6 and 7, assume $\mathbb{N}=20$, the pressure hoad distribution along the manifold pipo was obtainod ky the calculation shown in table 1 , where
column (1) (I-\%)/L is equivalont to ($N-1$)/N $=1-i / 20$, inom 1 to 20 .
column (2) $Q_{i}=Q_{i}(\pi-i) / \pi=0.0125(N-i)$.
column (3) $v_{i}=Q_{i} / \Lambda=Q_{i} / 0.02622=0.476(20-i)$.
$\operatorname{column}(6) H_{r}=V_{i} D / \nu=1.7 I_{1}\left(10^{4}\right) V_{i}$.
colum (7) stin friction coofficionts, f, wore obtainod from fis. 11.
column (8) sh were computed from equation (3) where $d x$ is equal to 0.6 ft. .
column (9) summation of column (8).
column (10) column (5) minus column (9), where $\Delta \mathrm{h}$ are as shown on fig. 14.

Fig. 14. Assumed Discharge and Pressure Head Distribution
From the table 1 , for $i=0$ (at B), we see that Δh is equal to 0.734 , so that $h_{c}-h_{b}=0.734$. The " Δh curve" for $Q=0.25 \mathrm{cfs}$ is plotted on fig. 15. Each quantity of Q vill have a characteristic Δh curve. From fig. $15 \Delta h$ curves for different values of Q may be determined. The calculations of the Δh curves for discharges, Q,

Table I Computations of h-curve ($\varepsilon=0.25 \mathrm{cfs}$ in $2^{\prime \prime}$ PVC pipe).
$i \frac{L-\pi}{I} \quad Q_{i} \quad V_{i} \quad V_{i}^{2} \frac{V_{i}^{2}}{2 ;} \quad N_{r} \quad f_{x} \quad \Delta h_{f} \quad \sum h_{f} \quad \Delta h$
(I) (2)
(3)
(4)
(5)
(6) (7)
(3)
(9) (10) 20 $\begin{array}{llllll}19 & 05 & 0725 & 48 & -2 & 004\end{array}$
$8,300 \quad .0425 \quad .0005 \quad .0005 \quad .003$
$18 \quad .10 \quad .0250 \quad .95 \quad .9 \quad .014 \quad 16,600 \quad .0318 \quad .0015 \quad .0020 \quad .022$
$17 \quad .15 \quad .03751 .43 \quad 2.0 \quad .032 \quad 24,900 \quad .0276 \quad .0029 \quad .0049 \quad .027$
$\begin{array}{lllllllllllll}16 & .20 & .0500 & 1.91 & 3.6 & .056 & 33,200 & .0251 & .0046 & .0095 & .046\end{array}$
$\begin{array}{llllllllllll}15 & .25 & .0625 & 2.38 & 5.7 & .088 & 41,500 & .0238 & .0069 & .0164 & .072\end{array}$
$14 \quad .30 \quad .07502 .86 \quad 8.3 \quad .129 \quad 49,800 \quad .0228 \quad .0097 \quad .0261 \quad .103$
$13 \quad .35 \quad .0875 \quad 3.33$ 11.1 $1.173 \quad 57,100 \quad .0221 .0126 \quad .0387 \quad .134$
$12.40 \quad .1000 \quad 3.81 \quad 14.5 \quad .225 \quad 66,400 \quad .0215 \quad .0159 \quad .0546 \quad .170$
I1. $415 \quad .11254 .29 \quad 18.4 \quad .285 \quad 74,700 \quad .0210 \quad .0197 \quad .0743 \quad .211$
$10 \quad .50 \quad .12504 .77 \quad 22.8 \quad .353 \quad 83,000 \quad .0207 \quad .0241 \quad .0984 \quad .255$

$\begin{array}{llllllllllllllll} & . & .150 & .1500 & 5.72 & 32.7 & .503 & 99,600 & .0203 & .0339 & .1611 & .347\end{array}$
$\begin{array}{lllllllllllll}7 & .65 & .1625 & 6.19 & 39.4 & .596 & 107,900 & .0202 & .0395 & .2006 & .395\end{array}$
$\begin{array}{llllllllllll}6 & .70 & .1750 & 6.67 & 44.5 & .691 & 116,200 & .0201 & .0456 & .2462 & .445\end{array}$
$\begin{array}{lllllllllll}5 & .75 & .1875 & 7.15 & 51.1 & .793 & 124,500 & .0201 & .0524 & .2986 & .494\end{array}$
$\begin{array}{lllllllllll} & 4 & .80 & .2000 & 7.63 & 58.2 & .904 & 132,800 & .0200 & .0594 & .3580\end{array} .5 \div 6$

$\begin{array}{lllllllllllll}2 & .70 & .2250 & 3.58 & 73.6 & 1.143 & 149,400 & .0200 & .0751 & .5003 & .643\end{array}$
I. . 95 . 23759.05 31.9 1.272 157,700 .0200 .0336 .5839 . 658
$01.00 .25009 .53 \quad 30.6$ 1.411 $166,000 \quad .0200 \quad .0223 \quad .6767 \quad .734$

Fig. 15. Characteristic Change of Head Curve
equal to $0.15,0.20,0.30,0.35 \mathrm{cfs}$ were presented in appendix C.
It was also assumed that $h_{c}=20$ inches (or 1.667 ft.), so that $h_{b}=1.667-0.734=0.933$ ft.. Based on this assumption, the distribution of pressure head along the manifold pipe is known. Since the opening area is known, and C_{q} can be obtained from fig. 13 , and the pressure head, h, is known at each point of the length, then the corresponding $q=C_{q} a \sqrt{2 \text { gh }}$ can be evaluated. A q-curve along the manifold pipe L can then be plotted.

The calculations are given in table 2, where
column (1) obtained from table (1).
column (2) obtained by subtracting column (1) from 1.667 ft .
$\operatorname{column}(4) a=0.00195$ sq ft., $a \sqrt{2 g h}=0.00195 \times \operatorname{column}(3)$.
column (5) calculated from column (3) of table 1.
column (6) obtained from fig. 12.
column (7) column (4) times column (6).
The resulting q-curve is shown in fig. 16.
The next step is to determine the spacing (therefore the number of side openings). From fig. 16, at the entrance, b, of the manifold pipe $q=0.00696 \mathrm{cfs}$. Since the required uniform discharce is $\mathrm{G} / \mathrm{L}=$ $0.0208 \mathrm{cfs} / \mathrm{ft}$, , the interval required between the first two ports is equal to $0.00696 / 0.028=0.334 \mathrm{ft}$ to make the discharge uniform. Therefore, the second side opening was drilled at a distance of 0.334 ft from the first opening. At the second position, from fig. 16 , the discharge is found to be equal to 0.00729 cfs . so that the second interval required is $0.00729 / 0.0208=0.351 \mathrm{ft}$ to make the discharge uniform. Therefore the opening was drilled at a distance of $0.334+$ $0.351=0.685 \mathrm{ft}$ from the first opening. At the third position, again,

Table 2 Computation of q-curve

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
i	Δh	h	$\sqrt{2 \text { gh }}$	$\sqrt[a]{2 g^{2}}$	$\mathrm{V}_{1+1} / \mathrm{V}_{\text {1 }}$	$c_{\text {a }}$	$\underline{\square}$
20.	0.000	1.667	10.34	0.02019	0.000	0.697	0.01406
19	0.003	1.664	10.33	0.02011	0.000	0.697	0.01400
18	0.012	1.655	10.30	0.02008	0.500	0.694	0.01392
17	0.027	1.640	10.26	0.02000	0.667	0.690	0.01380
16	0.046	1.621	10.20	0.01988	0.749	0.687	0.01366
15	0.072	1.595	20.12	0.01973	0.800	0.682	0.01345
14	0.103	1. 564	10.03	0.01955	0.834	0.675	0.01319
13	0.134	1.533	9.93	0.01935	0.858	0.670	0.01296
12	0.170	1.497	9.81	0.01912	0.874	0.663	0.01267
11	0.211	1.456	9.68	0.01888	0.889	0.654	0.01234
10	0.255	1.412	9.53	0.01857	0.900	0.645	0.01197
9	0.300	1.367	9.37	0.01825	0.909	0.633	0.01157
8	0.347	1.320	9.21	0.01795	0.917	0.620	0.01113
7	0.395	1.272	9.05	0.01765	0.923	0.606	0.01069
6	0.445	1.222	8.86	0.01715	0.923	0.596	0.01021
5	0.494	1.173	8.69	0.01693	0.933	0.573	0.00972
4	0.546	1.121	8.50	0.01656	0.937	0.555	0.00918
3	0.595	1.071	8.30	0.01617	0.942	0.533	0.00864
2	0.643	1.024	8.13	0.01584	0.945	0.512	0.00812
I	0.638	0.979	7.93	0.01546	0.948	0.189	0.00755
0	0.734	0.933	7.75	0.01510	0.950	0.1460	0.00696

Discharge, q,
(ofs)

Table 3 Calculations of side opening spacing

Number of holes	$(c \stackrel{q}{f s)}$	Spacins		Cumulative ft.	spacing inches
		ft.	inches		
1	0.00696	0.334	4.01	0.334	4.01
2	0.00729	0.351	4.21	0.685	8.22
3	0.00763	0.367	4.40	1.052	12.62
4	0.00799	0.384	4.61	1.436	17.23
5	0.00834	0.401	4.81	1.837	22.04
6	0.00868	0.417	5.01	2.254	27.05
7	0.00905	0.435	5.23	2.689	32.28
8	0.00942	0.453	5.44	3.142	37.72
9	0.00983	0.473	5.68	3.615	43.40
10	0.01023	0.492	5.91	4.107	49.31
11	0.01062	0.511	6.13	4.618	55.44
12	0.01100	0.529	6.35	5.147	61.79
13	0.01237	0.547	6.57	5.694	69.36
24	0.01177	0.566	6.79	6.260	75.15
15	0.01213	0.583	7.00	6.843	82.15
16	0.01247	0.600	7.20	7.443	89.35
17	0.01279	0.615	7.38	8.058	96.73
18	0.01307	0.628	7.54	8.686	104.27
19	0.01332	0.647	7.69	9.327	111.36
20	0.01356	0.652	. 7.83	9.979	119.79
21	0.01375	0.662	7.94	10.641	127.73
22	0.01389	0.668	8.02	11.309	135.75
23	0.01400	0.673	8.08	11.982	14.3 .83

from ficg. 16 , the discharge is equal to 0.00799 cfs. The intervals between outlets obtained by repeating this process are shown in table 3. The cumulative distance from the first hole to the twentythird hole is $11.982 \mathrm{ft} \approx 12 \mathrm{ft}$.

This finishes the design of the manifold pipe. The apparatus is shown in fig. 17 with 23 side ports drilled over the length bc and the spacings are as shown in table 3 .

EXPERIMETTAL RESULTS

The experimental apparatus is shown schematically in fig. 17. When the experiment was running, the downstream valve was closed and the upstream valve was opened. The discharge quantity, Q, was controlled by valve e and determined by means of the orifice and manometer k. The discharge through each side opening was measured by direct weighing. The sum of the discharge flowing from these twenty three openings compared favorably to the total inflow Q which was read from the manometer. This indicated that the accuracy of the measurement of the discharge through the side ports and the precision of the manometer were good.

In order to minimize the personal and the instrumental error, the experiments were repeated three times. the results of each of the tests was nearly the same. The final data oi the test obtained by taking the arithmetic mean of the three tests are as presented in table 4.

When the manometer indicated that inflow, Q, was equal to 0.25 cfs, the pressure head at b, based upon the theoretical analysis, should have been $0.933 \mathrm{ft}$. , at c it should have been 1.667 ft. , and at d it should have been $1.564 \mathrm{ft} . \mathrm{C}$. The results as shown in table 4 indicate that h_{b} was equal to 0.901 ft . which is a -3.22% deviation from the theoretical value of 0.933 fit. the head at d was equal to 1.496 ft. Which is a -4.43% deviation from the theoretical value of $1.564 \mathrm{ft} .$, and the head at c was equal to 1.750 ft . which is a $+4.96 \%$ deviation from the theoretical value.

Table 4 also gives the discharge from each of the ports and its

Table 4		$\mathrm{h}_{\mathrm{b}}=0.901 \mathrm{ft}, \mathrm{h}_{\mathrm{d}}=1.496 \mathrm{ft}, \mathrm{h}_{\mathrm{c}}=1.750 \mathrm{ft}$.		
port	theoretical	experimental	deviation	
no.	$\begin{gathered} \text { discharge } \\ \text { (cfs) } \end{gathered}$	$\underset{(\mathrm{cfs})}{\text { discharge }}$	cis	\%
1	0.00696	0.00701	$+0.00005$	$\div 0.72$
2	0.00729	0.00737	$+0.00008$	+1.10
3	0.00763	0.00778	+0.00015	+ 2.97
4	0.00799	0.00758	-0.00041	-5.13
5	0.00834	0.00807	-0.00027	- 3.24
6	0.00368	0.00870	$+0.00002$	$+0.23$
7	0.00905	0.00903	-0.00002	- 0.23
8	0.00942	0.00939	-0.00003	- 0.32
9	0.00983	0.00987	$+0.00004$	+0.47
10	0.01023	0.00990	-0.00033	- 3.23
11	0.01062	0.01020	-0.00042	- 3.94
12	0.01100	0.01114	$+0.00014$	+ 1.27
13	0.01137	0.01170	*0.00033	$+2.90$
14	0.01177	0.01200	+0.00023	+ 2.95
15	0.01213	0.01228	$+0.00015$	+ 2.24
16	0.01247	0.01260	$+0.00013$	$+1.04$
17	0.01279	0.01292	+0.00013	+ 1.02
18	0.01307	0.01237	- 0.00020	- 2.53
19	0.01332	0.01326	- 0.00006	-0.45
20	0.01356	0.01351	-0.00005	-0.37
21	0.01375	0.01381	+0.00006	$+0.44$
22	0.01389	0.01397	$+0.20008$	+ 0.58
23	0.01400	0.01476	$+0.00076$	+ 5.43
Σ	0.24 .916	0.24972	$+0.00056$	$+1.96$

Table 5

$$
Q=0.25 \mathrm{cfs} . \quad q=0.0208 \mathrm{cfs} / \mathrm{ft} .
$$

nort

1
2
3
4
5

6
7
8
. 9

10
11
12
13
14
15
16
17
13

19
20
21
22
23
experimental
discharsc
$(c f s)$
(1)
0.00701
0.00737
0.00778
0.00758
0.00807
0.00870
0.00903
0.00939
0.00987
0.00990
0.01020
0.01114
0.01170
0.01200
0.01228
0.02260
0.01292
0.01237
0.01326
0.01351
0.01331
0.01397
0.01476
0.662
0.668
0.673
0.209
1.004
1.004
1.052
deviation froy the theoretical value. Trom the recorded data, it is seen that the largest crror was about $\pm 5 \%$ and occurred at port 4 and port 23. Ports 3, 5, 10, 11, 13, 14, and 18 also had a relatively larse deviation from the theoreticel valuc. The deviations were due to the lack of skill in drilling the holes and connecting the guide tube of the sice ports. This would influence the cross sectional arca , a, and the discharse coorficient c_{q} of the side ports.

The uniformity of the test results are shown in table 5. Column (3) ras obtaincd by dividing column (1) by column (2) and column (4) was ottained by dividing colum (3) by the value of $0.0208 \mathrm{cis} / \mathrm{ft}$. the values in column (3) havo beon plotted in fis. 18. The values in column (4) have been plotted in dimensionless form in fis̃. 28.

A11 the deviations between the theorctical valuo and the experimental data discusscd above arc believed to be caused by error In the fundamontal assumptions and by deviations in the design from the fundamental assumptions. The main factors which micht be responsible arc stated in the following.
(1) In dosigning this experiment apparatus, it was assumed that the pipe was divided into twonty equal subdivisions and that the discharge in each subdivision was constant as shown in coluain (2) of table (1). In the actual casc, the manifold pipe was drilled with twenty three ports with tho distance botween oach port varted as show in table 3 and fics. 17. part of the deviation between experimental and theorctical. values mi cht bo attributed to this chance.
(2) It was ascuned that the prossure hoad loss in tho main pipe was duc only to frictional effect and momentum offect. The

turbulence loss in the main pipe when the fluid was divided into many branches was neglected.
(3) It was found that the discharge through each of the ports was not exactly equal to the design value. Therefore, the discharge per unit length of the manifold pipe was not a constant. This effect would influence the pressure head in the pipe, and the latter will also influence the former.

In general the deviations were small, and the results revealed that the basic assumptions and the theoretical method of analysis for the design of the manifold pipe given before were fairly satisfactory.

Following the completion of the first run the inflow quantity was changed by adjusting the control valve at e, and the pressure head h_{b}, h_{d}, and h_{c} changed correspondingly. In general, when Q became larger, then h_{b}, h_{c}, and h_{d} became larger; when Q became smaller, then h_{b}, h_{c}, and h_{d} became smaller. The relationship between Q and h was determined and is presented in the following table

Table 6

$Q(c f s)$	$h_{b}(f t)$	$h_{d}(f t)$	$h_{c}(f t)$
0.07	0.021	0.083	0.109
0.10	0.088	0.169	0.213
0.13	0.211	0.362	0.445
0.16	0.365	0.608	0.722
0.19	0.540	0.872	1.026
0.22	0.709	1.183	1.418
0.25	0.901	1.483	1.726
0.28	1.167	1.917	2.250
0.31	1.488	2.375	2.719

The data of table 6 have beon plotted in fis. 19.
Discharges, Q, of $0.07 \mathrm{cfs}, 0.10 \mathrm{cfs}, 0.13 \mathrm{cfs}, 0.16 \mathrm{cfs}, 0.19$ $\mathrm{cfs}, 0.22 \mathrm{cfs}, 0.28 \mathrm{cfs}$, and 0.31 cfs were tested and the resulis are presented in tables $?$ to 14 . The dischargc per unit length of manifold pipe for each case is plotted in fis. 20 to 27.

From these experimental results it was found that when Q was 0.25 cfs the uniformity characteristic of manifold pipe was fairly good as discussed before. Whon Q was gradually increased the uniformity characteristic of the manifold pipe was decreased; the discharge per unit length, q, decreased at the beginning $0:$ the manifold pipe and increased at the center portion of the manifold pipe. With $Q=0.28$ cis, table 8 and fis. 21 show that the uniformity varied from -6.3% at the entrance to $\div 3 \%$ of the uniform $q(=0.02342 \mathrm{cfs} / \mathrm{i} t)$ at the midportion of the manifold pipe. Then the inflov Q was increased further, this tendency of nonuniformity became more pronounced. When $Q=0.3035$ cfs it can be scen from tablo 7 and fig. 20, that the uniformity variod from -9.2% at the ontrance to $+4.2 \%$ of the uniform q ($=0.257$ cfs/ft.) at the mid-portion of the manifold pipe.

When the inflow discharge was roduced below 0.25 cfs , the anisold pipe experienced the same property of nonuniformity, but the nonuniforilty vas in the reverse order. Whon Q was greater than 0.25 cfs , the distribution curve of discharge per unit iongth, q, along tho mant fold pipe was concave downard as shown by fics. 20 and 21 . When Q W:as snallor than 0.25 cis the distribution curve for q was concave upward as shown by fif. 22 to 26. The q is Iarser at the entrance, and sradually docreases in the direction of flow. At the mid-portion of the manifold piyo tho o becamo ninimum and then increased rradually

Table $7 \quad Q=0.3085 \mathrm{cfs}, \quad h_{b}=1.488 \mathrm{ft}, \quad h_{d}=3.475 \mathrm{ft}, \quad h_{c}=2.730 \mathrm{ft}$.
uniformity

Table $8 \quad Q=0.28074 \mathrm{cfs}, \quad h_{b}=1.167 \mathrm{ft}, \quad h_{d}=1.917 \mathrm{ft}, \quad h_{c}=2.250 \mathrm{ft}$.

Table $9 \quad Q=0.22076 \mathrm{cfs}, \quad h_{b}=0.71 \mathrm{ft}, \quad h_{d}=1.18 \mathrm{ft}, \quad h_{c}=1.40 \mathrm{ft}$.

$\begin{aligned} & \text { port } \\ & \text { no. } \end{aligned}$	(c)	$\begin{gathered} \Delta L \\ (f t) \end{gathered}$	$\begin{gathered} g / \Delta L \\ (\mathrm{cfs} / \mathrm{f} t) \end{gathered}$	dimensionless uniformity	\% of deviation from uniform distribution
1	0.00620	0.334	0.01855	1.010	$+1.0$
2	0.00650	0.351	0.01850	1.005	+ 0.5
3	0.00690	0.367	0.01380	1.022	+ 2.2
4	0.00664	0.384	0.01730	0.930	- 7.0
5	0.00715	0.401	0.01782	1.032	$\div 3.2$
6	0.00763	2.417	0.01830	0.994	- 0.6
7	0.00797	0.435	0.01332	0.996	- 0.4
3	0.00830	0.453	0.01830	0.994	- 0.6
9	0.00870	0.473	0.01840	1.000	0.0
10	0.00870	0.492	0.01768	0.961	- 3.9
21	0.00904	0.511	0.01770	0.963	- 3.7
12	0.00980	0.529	0.01851	0.984	- 1.6
13	0.01030	0.547	0.01885	1.024	$+2.4$
14	0.01056	0.566	0.01865	1.014	+ 7.4
15	0.01030	0.583	0.01854	2.008	$\div 0.8$
16	0.01111	0.600	0.01852	1.007	$+0.7$
17	0.01140	0.615	0.01854	1.008	± 0.8
18	0.01140	0.623	0.01319	1.011	+ 1.7
19	0.01170	0.64 .1	0.01826	0.093	- 0.7
20	0.01200	0.652	0.01341	1.000	0.0
21	0.01230	0.662	0.01859	1.011	+ 1.1
22	0.01246	0.663	0.01863	1.012	+ 1.2
23	0.01320	0.673	0.01960	1.065	+6.5
	0.22076		noto	uniform $q=0$	$1340 \mathrm{cfs} / \mathrm{ft}$.

Table $11 \quad Q=0.16039 \mathrm{cfs}, \quad h_{b}=0.365 \mathrm{ft}, \quad h_{d}=0.607 \mathrm{ft}, \quad h_{c}=0.722 \mathrm{ft}$.

$\begin{aligned} & \text { port } \\ & \text { no. } \end{aligned}$	$(c \stackrel{q}{f s})$	ΔI	${ }_{(c f s / f t)}{ }^{q / \Delta I^{u}}$	niformit dimensionless uniformity	```y % of ceviation from uniform distribution```
2	0.00490	0.334	0.01466	1.097	± 9.7
2	0.00515	0.351	0.01467	1.098	+9.8
3	0.00536	0.367	0.02460	1.092	+9.2
4	0.00513	0.384	0.01335	0.999	- 0.1
5	0.00541	0.401	0.01350	2.010	$\div 2.0$
6	0.00572	0.427	0.01370	2.025	+ 2.5
7	0.00591	0.435	0.01359	2.017	$\div 1.7$
8	0.00605	0.453	0.01336	2.000	0.0
9	0.00633	0.473	0.01337	1.000	0.0
20	0.00637	0.492	0.01293	0.967	-3.3
11	0.00652	0.511	0.01275	0.953	- 4.7
12	0.00697	0.529	0.01316	0.984	- 1.6
23	0.00737	0.547	0.01346	2.007	+0.7
24	0.00750	0.566	0.01323	0.990	- 2.0
15	0.00760	0.583	0.01303	0.975	- 2.5
16	0.00731	0.600	0.01300	0.973	- 2.7
17	0.00802	0.615	0.01304	0.976	-2.4
18	0.00802	0.628	0.01291	. 0.966	-3.4
19	0.00831	0.647	0.01298	0.971	- 2.9
20	0.00852	0.652	0.01306	0.976	- 2.4
21	0.00830	0.662	0.01329	0.994	-0.6
22	0.00897	0.663	0.01343	1.004	+0.17
23	0.00265	0.673	0.01434	1.073	* 7.3
	0.16039		notc : un	rorm $\mathrm{q}=0.01337$	$\mathrm{cfs} / \mathrm{ft}$

Table 12 $Q=0.13009 \mathrm{cfs}, \quad h_{b}=0.211 \mathrm{ft}, \quad h_{d}=0.362 f t, \quad h_{c}=0.445 f t$.

$\begin{aligned} & \text { vort } \\ & \text { no. } \end{aligned}$	$(c \stackrel{q}{q})$	$\begin{aligned} & \Delta L \\ & (f t) \end{aligned}$	$\begin{gathered} q / \Delta L \\ (\mathrm{cfs} / \mathrm{f} t) \end{gathered}$	$\begin{aligned} & \text { dimensionless } \\ & \text { uniformity } \end{aligned}$	\% of deviation from uniform distribution
1	0.00420	0.334	0.01257	1.159	+15.9
2	0.00430	0.351	0.01225	1.129	+2.9
3	0.00443	0.367	0.01206	1.211	+21.1
4	0.00421	0.334	0.01096	1.010	+ 1.0
5	0.00442	0.401	0.01102	1.016	+ 2.6
6	0.00466	0.417	0.01117	1.029	+ 2.9
7	0.00476	0.435	0.01095	1.009	+0.9
8	0.00491	0.453	0.01083	0.997	-0.3
9	0.00510	0.473	0.01078	0.993	-0.7
10	0.00506	0.492	0.01023	0.947	- 5.3
11	0.00516	0.511	0.01009	0.929	- 7.1
12	0.00557	0.529	0.01051	0.968	- 3.2
13	0.00533	0.547	0.01065	0.981	- 1.9
14	0.00594	0.566	0.01049	0.966	- 3.4
15	0.00607	0.533	0.01040	0.958	- 4.2
16	0.00624	0.600	0.01040	0.958	- 4.2
17	0.00642	0.615	0.01043	0.961	- 3.9
18	0.00647	0.628	0.01029	0.948	- 5.2
19	0.00674	0.642	0.01051	0.968	- 3.2
20	0.00693	0.652	0.01063	0.979	-2.1
27	0.00724	0.662	0.01083	0.998	-0.2
22	0.00742	0.668	0.01109	1.021	+ 2.1
23	0.00301	0.673	0.01189	1.096	+ 9.6
	0.13009		te : unifor	$q=0.01085$	ft.

(1)
abl
port
no.

1
2
3
4
5
6
7
3
9
10

11
12
13

14
15
26
1713

$$
0.00305
$$

0.334
0.00379
0.351
0.00334
0.367
0.00322
0.334
0.00335
0.401
0.00364
0.417
0.00374
0.435
0.00387
0.453
0.00405
0.473
0.00403
0.492
0.00410
0.511
0.004 .50
0.529
0.547
0.566
0.583
0.00496
0.600
0.00506
0.615
0.623
0.20517
0.647
0.00525
0.652
0.00536
0.662

22
23
0.00541
0.668
$0.00563 \quad 0.673$
0.10025
0.00301
0.962

- 3.8
0.00807
0.968
-3.2
0.00805
0.966
-3.4
0.00810
0.973
$-2 . ?$
0.00810
0.973
-2.7
uniformity
$\mathrm{q} / \Delta \mathrm{L}$ dimensionless $\%$ of deviation
(cis/ft) uniformity from uniform
distribution

0.00913	1.096	+9.6
0.00908	1.090	+9.0
0.00909	1.091	+9.1
0.00838	1.006	$\div 0.6$
0.00838	1.002	+0.2
0.00873	1.048	+4.3
0.00860	1.033	+3.3
0.00854	1.026	+2.6
0.00857	1.029	+2.9
0.00819	0.983	-1.7

-3.6
0.00851
1.022
$\div 2.2$
$\div 2.3$
$\div 0.6$
-0.2
-0.7

- 1.2
$+1.5$

Ta.ble 14 $Q=0.07005 \mathrm{cfs}, \quad h_{b}=0.021 \mathrm{ft}, \quad h_{d}=0.083 \mathrm{ft}, \quad h_{c}=01109 \mathrm{ft}$.

$\begin{aligned} & \text { port } \\ & \text { no. } \end{aligned}$	$(c \stackrel{q}{i s})$	$\begin{gathered} \Delta L \\ (f t) \end{gathered}$	$\begin{gathered} q / \Delta L \\ (c f s / f t) \end{gathered}$	niformi dimensionless uniformity	```4 y % of deviation from uniform distribution```
1	0.00155	0.334	0.00464	0.796	-20.4
2	0.00170	0.351	0.00485	0.832	-16. 3
3	0.00183	0.367	0.00499	0.856	-14.4
4	0.00184	0.334	0.00479	0.822	-27.8
5	0.00200	0.401	0.00500	0.858	-14.2
6	0.00227	0.417	0.00530	0.909	- 9.1
7	0.00235	0.435	0.00541	0.928	- 7.7
3	0.00251	0.453	0.00554	0.950	- 5.0
9	0.20266	0.473	0.00563	0.966	- 3.4
10	0.00272	0.492	0.00553	0.948	- 5.2
11	0.00286	0.511	0.00560	0.960	- 4.0
12	0.00316	0.529	0.00593	1.026	+2.6
13	0.00338	0.547	0.00618	1.061	+6.1
24	0.00346	0.566	0.00611	1.048	$+4.8$
15	0.00359	0.583	0.00616	1.056	± 5.6
16	0.00375	0.600	0.00625	1.071	+7.1
17	0.00385	0.615	0.00626	1.073	$+7.3$
18	0.00628	0.628	0.00610	1. 047	$+4.7$
19	0.00397	0.641	0.00619	1.062	$+6.2$
20	0.00405	0.652	0.00622	1.067	+ 6.7
21	$0.001: 16$	0.662	0.00628	1.079	$\div 7.9$
22	0.00419	0.668	0.00627	1.075	$+7.5$
23	0.001113	0.673	0.00658	1.129	+12.9
	0.07005		e : unifo	orm $q=0.0583$	Is/ft

toward the closed end.
Whon $Q=0.221 \mathrm{cfs}$. I.t can be seen from table 9 and fis. 22, that the maxtmum o was 2.8% greater then the uniform q of $0.184 \mathrm{cis} / \mathrm{ft}$; the minimum o was 2.2\%smaller than the uniform q. When Q was further reduced, this tondency to nonuniformity became more pronounced. When Q $=0.195$ cis it is indicated by table 10 and fid. 23 , that the maximum q Was 4.5% greater than the uniforn q of $0.01596 \mathrm{cfs} / \mathrm{ft}$ at the entrance, and the minimum o was 2.0% smaller than the unfform q at the midi-point of the manifold pipe.

Then $Q=0.1604 \mathrm{cfs}$, table 11 and fig. 24 indicates that the maximum o was 9.1% greater than the uniform of 0.1337 cfs/ft at the entrance and the minimum o was 3.5% smaller than the uniform q at the nid-portion of the marifold pipe.

When $q=0.1301 \mathrm{cis}$, according to table 12 and fig. 25 the maximum q was 14.7% greater than the uniform of $0.01085 \mathrm{cfs} / \mathrm{ft}$ at the entrance, and the minimum q at the mid-portion of the menifold pipe vas 4.7% smaller than the uniform q .

When Q was 0.1003 cis , table 13 and fic. 26 indicates that the naximum o was 5.5 g greator thon the uniform q of $0.00835 \mathrm{cfs} / \mathrm{ft}$. at the entrance and the minimum q at the mid-portion was 3.5% smaller than the uniform q. the last result indicates that the discharge per unit Ioncth seomod to roturn to a more uniform discharge distribution and this fact contradicts the former statement that whon $\&$ was further reduced, the tendoncy of nonuniformity would become pronounced. This contradiction micit be explained by air ontrainment in the fluid inside the main pipe. Since when was $0.1003 \mathrm{ces} h_{p}=0.088 \mathrm{ft}$, and h_{b} Was moasurod from the centerline of the main pipe and sinco radius
of the pipe was 0.0913 ft , hence h_{b} was saaller than the pioe radius, so that at the entrance of the manifold pipe, open channel flow occurred, so that air entrainment was forming. This phenomena affected the test result considerably. The same reasoning could be applied in explanation of the next test for $\mathrm{Q}=0.07 \mathrm{cfs}$, as it can be seen from table 14 and fis. 27, that q was much smaller at the entrance of the manifold pipe. the q was about 20% smaller at the entrance than the uniform of of $0.0583 \mathrm{cfs} / \mathrm{ft}$, and increased gradually to 8.5% more than the uniform Q in the end portion of the manifold pipe. when Q was $0.07 \mathrm{cfs}, h_{0}$ was 0.021 ft , and h_{d} was 0.083 ft , indicating that open channel flow was presented over more than half the length of the manifold pipe and air entrainment would therefore be nore serious. The uniformity characteristic, consequentely, mould be of no interest.

Fig. 28. Dimensionless Difcharge Distribution Plot

CONCLUSIONS

In order to compare the uniformity characteristic of the manifold pipe flow at different discharges, the nine runs (i.e. With Q equal to $0.07,0.10,0.13,0.16,0.19,0.22,0.25,0.28$ and 0.31 cis) were converted into dimensionless form and are plotted in fig. 28 which enables the reader to make the determination of the anount of deviation from the uniform value for various inflow rates. It is seen that when the inflow rate is different from the design discharge quantity, Q, of 0.25 cfs , then the manifold pipe experienced a nonuniform distribution of discharge along the length. When the inflow rate was greater than the design discharge quantity, Q, of 0.25 cfs, the tendency toward nonuniformity was much greater than when the inflom rate was smeller than the desion Q.

In conclusion, when the allowable nonuniformity of discharse is $\pm 5 \%$, then the supplied Q must be limited to the range of approximately 0.2 cis to 0.27 cfs , that is it should not exceed 8% more or 20% less than the design ofscharse. When the allowable nonuniformity of discharge is $\pm 10 \%$, then the supplied Q must be limited to the range of approximately 0.16 cfs to 0.31 cfs , that is it should not excoed 24% more or 36% Iess thon the designated discharge.

RECOMMENDATIONS FOR FURMHER RESTARCH

This thesis has set forth a method for designing a manifold pipe system with side flow discharge uniformly distributed along the length of main pipe. However, due to the interrelationship of a variety of geometric elements such as D, d, L, and n and flow conditions such as Q and h which were defined before, the manifold problem becomes a very complicated one. This thesis gives the design criterion for a PVC pipe with dianeter D equal to 2.193 inches, port opening diameter, d, equal to $19 / 32$ inches length, L, equal to 12 feet, and discharge, Q, equal to 0.25 cis and closed end head h_{c}, equal to 1.657 ft .

Further research is need for the purpose of obtaining a more widely applicable design method for practical engineering design. A more extensive experiment with different flow conditions is recommended In order to set forth a more complete criterion or design chart to provide on engineer with on easy method for designing a manifold flow system.

As discussed before, the uniformity characteristics are a function of the ratios of total area of sitic ports, a, to the cross scctional area, A, of the main pipc. The ratio of the pipe diameter, D, to the a.ctivo leneth, L, of the manifold pipe, which in this cxperiment was equal to 65.7 shoul be cyamined for a range of values. A range of values for $(\Sigma a) / A$, which in this experimont ras cqual to 1.71 , should also be studied. Also a relationship botwoon the spacing of side ports to $(\Sigma a) / A$ and L / D should be dotermined. Thesc, of course, are out of the scope of this thesis.

1.CHNOMLEDGIENT

The writer wishos to express his appreciation to Doctor Richard M. Haynie for his guidance and instruction given in the preparation of this thesis

REFERE:CE

(1) Frederick A. Zenz, "Minirize Manifold Pressure Drop," Hydrocarbon Processing \& Petro Refiner, Vol. 41, Dec., 1962.
(2) John S. Menown \& En-Yun Hsu, "Application of Conformal Kapping to Divided Flow," First Hidwest Conference on Fluid Dynamfoc, 1950. P. 150.
(3) W. E. Howland,
"Design of Perforated Pipe for Uniforraty of Discharge," Third Kidwest Conference on Fluid Mechanics ProceedinE, 1953. P. 637.
(4) R. D. Glading,
"Loss of Tead Determination in Uniformly Tapped Pipe," inge. Hews Record, Vol. 125. P. 697.
(5) M. L. Ençer \& M. I. Levy, "Pressure in Manifold Pipe," Joumal of AMTA, Vol. 21, 1929.
(6) J. H. Horlock,
"An Investisation of The Flow in Manjfolds with Open and Closed rnds,"
Journal of Aero Soc., Vol 60, 1956.
(7) A. Acrivos, B. D. Babcocik \% R. L. Piciord,
"Flow Distribution in Kanifolds,"
Chemical Enc. Science, Vol. 10, 1959. P. 112.
(3) IV. Halishowsiny,
"Erperimonts in The Mydraulics of Riltor Uncerdrains," Journol of AWWA, Vol. 17, 1927.
(9) J. D. Keller,
"The Nanifold Problem,"
Journal of Applied Mech., Mar, 1949, Vol. 16, No.1. P.77.
(10) Andre: Vazsonyi,
"Pressure Loss in Elbows and Duct Branches,"
ASVIE Transactions, Vol. 66, 1944.
(11) John Allen \& Brian Albinson,
"An Investigation of The Manffold Problem for Incompressible
Fluid with Special Reference to The Use of Manifold for Canal
Locks,"
ASCE Proceedins, 1955. P. 114.

Anpendix A Test data for the skin friction coefficient, f, of two inci PVC pipe. (Sec page 13 for rolated discussion.)

	$(c \stackrel{Q}{\text { (fs }})$	Q^{2}	$\stackrel{h_{f}}{\left(f_{t}\right)}$	h_{f} / Q^{2}	${ }_{*}^{*}$	ITr**
1	0.0362	0.001310	0.0545	41.60	0.02805	23,930
2	0.0353	0.001282	0.0538	41.90	0.02831	23,810
3	0.0345	0.021190	0.0505	42.30	0.02854	22,910
4	0.0378	0,001430	0.0600	41.90	0.02990	25,090
5	0.0390	0.001521	0.0622	40.80	0.02754	25,910
6	0.0401	0.001610	0.0633	33.30	0.02587	26,620
$?$	0.0382	0.001460	0.0612	41.90	0.02990	25,360
8	0.0371	0.001379	0.0578	42.00	0.02839	24,610
9	$0.035 ?$	0.001277	0.0528	41.40	0.02795	23,720
10	0.0340	0.001158	0.0505	43.60	0.02941	22,560
11	0.0325	0.001058	0.0455	43.00	0.02904	21,580
12	0.0319	0.001020	0.0438	41.90	0.02830	21,170
13	0.0304	0.000925	0.0405	43.80	0.02956	20,160
14	0.0236	0.000819	0.0367	44.80	0.03026	18,970
75	0.0257	0.000661	0.0317	48.00	0.03239	17,060
16	0.0238	0.000568	0.0267	47.00	0.03170	15,800
17	0.0219	0.000430	0.0250	53.10	0.03581	24,540
18	0.0188	0.000354	0.0190	53.70	0.03625	12,410
19	0.0155	0.000241	0.0133	55.20	0.03724	10,290
20	0.0140	0.000196	0.0117	59.90	0.04041	9,290
21	0.0061	0.000037	0.0035	95.10	0.06420	4,020
22	0.70\%1	0.000066	0.0053	30.00	0.05410	5,380
23	0.0323	0.001523	0.0590	36.12	0.02439	26,120
24	0.0477	0.002302	0.0813	35.38	0.02883	31,320

θ	e^{2}	f	n_{f} / λ^{2}	f	
(cfs)		(ft)			**

0.005030
0.0176
35.10
$0.02372 \quad 47,180$
0.0666
0.004430
0.0160
36.10
0.02139

44,220
7
0.0578
0.003340
0.0133
39.40
0.02662

33, 1,00
0.0399
0.001571
0.0060
39.70
0.02650

25,810
0.0293
0.000390
0.0035
32.30
0.02656 29,300
0.0097
0.000094
0.0068
72.30
0.04830

6,480
$\underset{(c \pm s)}{Q}$
Q^{2} $\underset{(f t)}{\mathrm{h}_{\mathrm{f}}}$
 $\stackrel{f}{*}$ ${ }^{N} r_{\text {** }}$

50 0.0107
0.000125
0.0087
69.30
0.0468

7,120
51
52
53
54
0.0115
0.000132
0.0084
63.60
0.0429 7,630
0.01720 .000296
0.0157
53.10
0.0358 11,410
$\begin{array}{llllll}0.0207 & 0.000428 & 0.0213 & 49.80 & 0.0336 & 13,770\end{array}$
0.0230
0.000529
0.0268
50.70
0.0342 15,290
note : * : obtained from equation (11) ; $f=6.75\left(10^{-3}\right)\left(h_{f} / Q^{2}\right)$
**: obtained from equation (12) ; ${ }^{W_{r}}=6.64\left(10^{5}\right) Q$

Appendir B The test data for determining tho discharge coofficient C_{q} of side port of the manifold pipe in terms of V_{i+1} / V_{i}.

	$\begin{gathered} Q_{i} \\ (c f s) \end{gathered}$	$\begin{gathered} q \\ (c f s) \end{gathered}$	$\underset{(\mathrm{cfs})}{a_{i+1}=o_{i}-q}$	$\frac{Q_{i}+1}{Q_{i}}$	$\begin{aligned} & h \\ & (f t) \end{aligned}$	a $\sqrt{25^{\text {h }}}$	$\begin{gathered} C_{q} \\ =q / a \sqrt{2-h} \end{gathered}$
1	0.0971	0.0025	0.0946	0.975	0.29	0.0085	0.294
2.	0.0990	0.0038	0.0952	0.962	0.54	0.0115	0.331
3	0.1031	0.0051	0.0980	0.951	0.85	0.0144	0.355
4	0.1069	0.0054	0.1015	0.950	0.80	0.0140	0.386
5	0.1120	0.0049	0.1071	0.957	0.53	0.0114	0.428
6	0.1170	0.0062	0.1108	0.948	0.81	0.0141	0.440
7	0.1190	0.0060	0.1130	0.950	0.69	0.0130	0.460
8	0.1231	0.0055	0.1176	0.956	0.55	0.0116	0.474
9	0.1261	0.0076	0.1185	0.941	1.05	0.0160	0.476
10	0.1292	0.0067	0.1225	0.948	0.77	0.0137	0.489
11	0.1343	0.0081	0.1262	0.940	1.07	0.0162	0.501
12	0.1381	0.0069	0.1312	0.950	0.77	0.0137	0.505
13	0.14450	0.0072	0.1378	0.950	0.66	0.0127	0.515
14	0.1432	0.0067	0.1365	0.946	0.70	0.0131	0.512
15	0.1468	0.0082	0.1396	0.944	1.00	0.0156	0.527
16	0.1521	0.0089	0.1432	0.942	1.09	0.0163	0.546
17	0.1560	0.0097	0.1463	0.938	1.25	0.0175	0.556
18	0.1582	0.0108	0.1474	0.932	1.51	0.0192	0.562
19	0.1591	0.0108	0.1483	0.934	1.45	0.0188	0.575
20	0.1600	0.0121	0.1479	0.924	1.78	0.0209	0.579
21	0.1631	0.0105	0.1576	0.938	1.31	0.0179	0.555
22	0.1642	0.0113	0.1524	0.928	1.60	0.0198	0.507
23	0.1723	0.0113	0.1610	0.935	. 1.1 .5	0.0138	c. 602

	$\frac{Q_{i}}{(c f s)}$	$\begin{gathered} q \\ (c i s) \end{gathered}$	$\begin{gathered} Q_{i}+\lambda=Q_{j}-q \\ (c i s) \end{gathered}$	$\frac{Q_{i+1}}{Q_{i}}$	$\begin{gathered} h \\ (f t) \end{gathered}$	a $\sqrt{2 \text { ch }}$	$\begin{gathered} C_{q} \\ =q / \Sigma \sqrt{2 G^{2}} \end{gathered}$
24	0.1782	0.0152	0.1630	0.915	2.60	0.0252	0.604
25	0.1791	0.0136	0.1655	0.924	2.07	0.0225	0.606
26	0.1800	0.0145	0.1655	0.919	2.29	0.0237	0.611
27	0.7851	0.0138	0.1713	0.925	2.07	0.0225	0.615
28	0.1870	0.0152	0.7718	0.918	2.45	0.0245	0.620
29	0.1890	0.0169	0.1721	0.911	2.96	0.0269	0.627
30	0.1912	0.0159	0.1753	0.917	2.62	0.0253	0.629
31	0.2962	0.0143	0.1819	0.927	2.11	0.0227	0.631
32	0.1983	0.0181	0.1802	0.909	3.32	0.0285	0.634
33	0.1994	0.0211	0.1783	0.895	4.50	0.0332	0.636
34	0.2033	0.0188	0.7845	0.907	3.51	0.0293	0.647
35	0.2050	0.0205	0.2345	0.900	4.73	0.0318	0.645
36	0.0437	0.0055	0.0382	0.847	0.29	0.0085	0.650
37	0.0463	0.0053	0.0412	0.888	0.27	0.0081	0.654
38	0.0489	0.0051	0.0438	0.897	0.25	0.0078	0.652
39	0.0501	0.0054	0.0447	0.893	0.27	0.0081	0.665
40	0.0637	0.0038	0.0549	0.863	0.72	0.0133	0.662
41	0.0729	0.0091	0.0633	0.875	0.77	0.0137	0.662
42	0.0738	0.0100	0.0688	0.873	0.84	0.0152	0.663
43	0.0809	0.0146	0.0663	0.320	1.94	0.0218	0.669
44	0.0813	0.0125	0.0688	0.346	1.122	0.0187	0.669
45	0.02149	0.0121	0.0728	0.858	1.33	0.0181	0.670
46	0.0925	0.0153	0.0772	0.835	2.10	0.0227	0.675
47	0.0998	0.0157	0.0841	0.842	2.17	0.0231	0.681
143	0.1079	0.0194	0.0885	0.320	3.25	0.0284	0.683

49	0.1184	0.0236	0.0948	0.800	4.87	0.0246	0.683
50	0.1075	0.0225	0.0850	0.790	4.36	0.0327	0.689
51	0.1060	0.0241	0.0816	0.770	5.10	0.0354	0.682
52	0.1253	0.0265	0.0988	0.748	6.03	0.0385	0.688
53	0.0561	0.0153	0.0408	0.729	1.99	0.0221	0.693
54	0.0599	0.0174	0.0425	0.703	2.63	0.0254	0.686
55	0.0530	0.0150	0.0380	0.717	1.92	0.0217	0.690
56	0.0522	0.0189	0.0333	0.640	3.10	0.0276	0.686
57	0.0591	0.0225	0.0366	0.619	4.38	0.0328	0.696
58	0.0600	0.0259	0.0341	0.569	5.66	0.0373	0.696
59	0.0480	0.0221	0.0259	0.540	4.18	0.0320	0.690
60	0.0391	0.0199	0.0192	0.491	3.41	0.0289	0.690

Anpendix C The calculation of $h(a s$ defined in fig. 13) for discharge, Q, equal to $0.15,0.20,0.30$, and 0.35 cfs flowing in the 2 inch PVC pipe with uniform discharee along the lensth of the manifold pipe.

Table C-1 $\quad Q=0.15 \mathrm{cfs}$.
$i \frac{I-z}{I} \quad Q_{i} \quad V_{i} \quad \frac{V_{i}^{2}}{2 g} \quad \mathbb{N}_{r} \quad f_{z} \quad \Delta h_{f} \quad \Sigma h_{f} \quad \Delta h$

20	-	-	-	-	-	-	-	-	
19	.05	.0075	0.29	.0013	5,000	.0565	.0002	.0002	.0011
18	.10	.0150	0.57	.0051	10,000	.0389	.0007	.0009	.0042
17	.15	.0225	0.86	.0114	14,900	.0329	.0012	.0021	.0093
16	.20	.0300	1.14	.0203	19,900	.0289	.0020	.0041	.0163
15	.25	.0375	1.43	.0317	24,900	.0275	.0029	.0070	.0238
14	.30	.0450	1.72	.0458	29,900	.0259	.0039	.0109	.0349
13	.35	.0525	2.00	.0621	34,800	.0247	.0051	.0160	.0461
12	.40	.0600	2.29	.0815	39,800	.0241	.0065	.0225	.0590
11	.45	.0675	2.57	.1027	44,700	.0233	.0079	.0304	.0723
10	.50	.0750	2.36	.1273	49,700	.0227	.0095	.0399	.0874
9	.55	.0825	3.14	.1536	54,700	.0220	.0111	.0510	.1026
8	.60	.0900	3.43	.1820	59,700	.0215	.0129	.0639	.1181
7	.65	.0975	3.71	.2140	64,700	.0210	.0143	.0737	.1353
6	.70	.1050	4.00	.2435	69,700	.0205	.0168	.0955	.1530
5	.75	.1125	4.29	.2860	74,700	.0201	.0190	.1145	.1715
4	.80	.1200	4.57	.3243	79,700	.0198	.0212	.1357	.1386
3	.85	.1275	4.36	.3671	84,600	.0196	.0238	.1595	.2076
2	.90	.1350	5.14	.4097	89,600	.0194	.0262	.1357	.2240
1	.95	.1425	5.43	.4595	94,600	.0192	.0291	.2148	.24477
0	1.00	.1500	5.71	.5070	99,500	.0190	.0318	.2466	.2604

Table $\mathrm{C}-2 \quad \mathrm{Q}=0.20 \mathrm{cfs}$
$i \frac{L-x}{T} \quad a_{i} \quad v_{i} \quad \frac{v_{i}^{2}}{2 G} \quad N_{n} \quad f_{x} \quad \Delta h_{f} \quad \sum h_{f} \quad \Delta h$

20	-	-	-	-	-	.002			
29	.05	.01	0.38	.0023	6,600	.0480	.0004	.0004	.0019

18 . 10 . 02 0.76 .0090 13,200 .0344 .0010 .0014 .0076
$17 \quad .15 \quad .03 \quad 1.14 \quad .0202$ 19,900 .0293 .0020 .0034 0168
$16 \quad .20 \quad .04 \quad 1.53 \quad .0362 \quad 26,600 \quad .0266 \quad .0032 \quad .0066 \quad .0296$
$15 \quad .25 \quad .05 \quad 1.91 \quad .0565 \quad 33,200 \quad .0250 \quad .0047$. 0113 . 0452
$14 \quad .30 \quad .06 \quad 2.29 \quad .0813 \quad 39,800$. 0241 . 0065 . 0178 . 0635

| | .35 | .07 | 2.67 | .1108 | 46,500 | .0231 | .0084 | .0262 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | .0846

12. 40 . 08 3.05 . 1446 53,100 . 0220 . 0105 . 0367 . 1079
$12 \quad .45 \quad .09 \quad 3.43 \quad .1330 \quad 59,800 \quad .0213 \quad .0128 \quad .0495 \quad .1335$
10 . 50 . $10 \quad 3.81$. 2256 66,300 .0206 . 0153 . 0648 . 1608
9 . 55 . 11 4.19 . 2728 73,000 . 0199 . 0199 . 0347 . 1881
$3 \quad .60 \quad .12 \quad 4.58 \quad .3260 \quad 79,700 \quad .0195$. 0209 . $1056 \quad .2204$
7 . 65 . 13 4.96 . 3820 86,400 .0193 . 0243 . 1299 . 2521
$\begin{array}{llllllllll} & .70 & .14 & 5.33 & .4410 & 92,800 & .0191 & .0277 & .1576 & .2834\end{array}$
$5 \quad .75 \quad .15 \quad 5.72 \quad .5030 \quad 99,600 \quad .0190 \quad .0318 \quad .1894 \quad .3186$
4 . 80 . 16 6.10 . 5780 106,100 . 0189 . 0359 . 2253 . 3527
$3 \quad .35 \quad .17 \quad 6.48 \quad .6530 \quad 112,900 \quad .0198 \quad .0404 \quad .2657 \quad .3873$
2 . 90 . 18 6.87 . 7330 119,600 . 0187 . 0451 . 3108 .4222
$1 \quad .95 \quad .19 \quad 7.24 \quad .3150 \quad 126,000 \quad .0187 \quad .0502 \quad .3610 \quad .4540$
0 1.00 . $20 \quad 7.63$. 9050 132,800 . 0186 . 0554 .4164 .14396

Tablec-3 $\quad Q=0.30 \mathrm{crs}$

i	$\frac{L-x}{I}$	Q_{2}	V_{2}	$\frac{v_{i}^{2}}{2 U}$	N_{r}	${ }^{\prime}$	$\Delta h_{\underline{S}}$	$\sum h_{i}$	Δh
20	-	-	-	-	-	-	-	-	-
19	. 05	. 025	0.57	. 005	9,900	. 0390	. 0006	. 0006	. 0042
18	. 10	. 030	1.14	. 020	19,900	. 0298	. 0020	. 0026	. 0177
17	.15	. 045	1.72	. 04.6	30,000	. 0259	. 0039	. 0065	. 0390
16	. 20	. 060	2.29	. 031	39,900	. 0240	. 0064	. 0129	. 0679
15	. 25	. 075	2.86	. 127	49,800	. 0228	. 0095	. 0224	.1047
14	. 30	. 090	3.43	. 182	59,800	. 0214	. 0128	. 0352	. 1468
13	. 35	.105	4.00	. 248	69,700	. 0205	. 0167	. 0519	.1963
12	. 40	. 120	4.57	. 324	79,500	. 0200	.0213	. 0732	. 2508
11	. 45	. 135	5.14	. 410	39,400	. 0195	.0263	. 0995	.3105
10	. 50	.150	5.72	. 508	99,500	. 0190	. 0318	. 1313	. 3767
$?$. 55	. 165	6.29	. 613	109,400	. 0187	. 0378	. 1691	. 4439
8	. 60	. 180	6.86	. 730	119,400	.0134	.0443	.2134	. 5166
7	. 65	.195	7.43	. 854	129,300	. $0182^{\text {. }}$. 0511	. 2645	. 5595
6	. 70	. 210	8.00	. 993	139,200	.0180	. 0589	. 3234	. 6696
5	.75	. 225	8.58	1.141	149,200	. 0179	. 0675	. 3809	. 7501
4	. 80	. 240	9.15	1.297	159,100	. 0179	. 0764	. 4673	. 8297
3	. 35	. 255	9.72	1.463	169,000	. 0178	. 0858	. 5531	. 9099
2	. 90	. 270	10.29	1.633	179,000	. 0178	. 0959	. 6490	- 3890
1	. 95	. 285	10.36	1.326	138,900	. 01777	. 1065	. 7555	1.0705
0	1.30	. 300	11.43	2.021	193,800	. 0177	. 1177	. 3732	1.1478

Table C-L $\quad Q=0.35 \mathrm{cis}$

i	$\frac{\mathrm{L}-\mathrm{X}}{\mathrm{~L}}$	S_{1}	$V_{\text {i }}$	$\frac{\mathrm{v}_{i}^{2}}{28}$	${ }^{N} \mathrm{r}$	f_{2}	Δh_{f}	Σh_{f}	Δh
20	-	-	-	-	-	-	-	-	-
19	. 05	. 0175	0.67	. 007	11,700	. 0362	. 0008	. 0008	.0061
18	. 10	. 0350	1.34	. 028	23,300	. 0282	. 0026	.0034	. 0242
17	. 15	. 0525	2.00	. 062	34,800	. 0249	. 0051	.0085	. 0536
16	. 20	. 0700	2.67	. 110	46,500	. 0230	. 0033	. 0168	. 0934
15	. 25	. 0875	3.35	. 172	58,300	. 0215	. 0122	.0290	. 1434
14	. 30	. 1050	4.00	. 248	69,600	. 0207	. 0169	.0459	. 2022
13	. 35	. 1225	4.67	. 338	81,300	. 0198	. 0220	. 0679	. 2703
12	. 40	. 1400	5.33	. 442	92,800	. 0194	. 0281	.0960	. 3450
11	. 45	.2575	6.00	. 559	95,800	.0190	. 0350	.1310	. 4280
10	. 50	.1750	6.68	. 689	116,200	. 0184	. 0418	. 1728	. 5162
9	. 55	. 1925	7.33	. 834	127,600	. 0182	. 0499	. 2227	. 6113
8	. 60	. 2100	8.00	. 993	139,200	. 0180	. 0589	. 2816	. 7114
7	. 65	. 2275	8.67	1.165	150,800	. 0179	. 0686	. 3502	. 3148
6	.70	. 2450	9.33	1.350	162,300	. 0178	. 0790	. 4292	. 2208
5	. 75	. 2625	10.00	1.552	174,000	. 0177	. 0904	. 5196	1.0324
4	. 80	. 2800	10.68	1.761	185,800	. 0177	. 2025	. 6222	1.2389
3	. 35	- 2975	11.33	1.979	297,000	. 0176	. 1746	.7367	1.2423
2	. 30	. 3250	12.00	2.235	209,000	. 0176	. 1295	. 8662	1.3688
2	. 95	. 3325	12.69	2.1490	220,900	.0176	. 1442	1.0103	1.4797
0	1.00	. 3500	23.34	2.753	232,200	. 0176	.1596	1.1699	1.5831

the dniformity of discharge througi manifold pipe

$$
\begin{aligned}
& \text { by } \\
& \text { s. CHIEU-HSIUNG CHUANG }
\end{aligned}
$$

B. S., National Taiwan University, 1961

A MASTER'S THESIS
submitted in partial fulfillment of the requirement for the degree

MASTER OF SCIENCE

Department of Civil Engineering
kANSAS STATE UNIVERSITY hanhattan, Kansas

1967

The uniform distribution of discharge may be obtained from a manifold pipe with side ports of equal size and equal spacing if the total area of the side ports is small in comparison to the cross sectional area of the main pipe and the pioe is of large diameter in comparison to the active length of the manifold pipe. However, from the economic point of view, the size of the main pipe must be as small as possible, while the side ports must be numerous and larce in order to minimize the pressure drop through them. This thesis sets forth a method for determining the variation in size and in spacing of the ports to accomplish both economy and uniformity of discharge.

When the distribution of the discharge is uniform along the length of the manifold pipe, the pressure head distribution along the manifold pipe can be determined by theoretical analysis. If the size of the side port is assuned, and the pressure head at any point in the pipe is known side flow discharge at this point can be determined, since it is proportional to the square root of pressure head at the point. The corresponding required spacing between ports, which is inversely proportional to the side flow discharge, can be determined. The Iocation of each side port being known, an experimental apparatus can be designed. The test results and their deviation from the theoretical value are presented and discussed.

The investigation involved experimental runs at several inflow rates. Whon the inflow rate was difforent from the design discharce quantity the manifold pipe experienced a non-uniform distribution along the lencth. When the inflow rate was areater than the dosicm
discharge quantity, Q, the tendency to non-uniformity of discharge was much ereater than when the inflow rate was less than the design discharce quantity, Q.

It was concluded that when the allowable non-uniformity ie $\pm 5 \%$ of the uniform value the inflow value should not exceed 8% ereater or, 20\% less, than the designated discharge, and when the allowable nonuniformity is $\pm 10 \%$ of the uniform value the inflow rate should not exceed 24% greater, or 36% less, than the desi gnated discharge.

