‘A CONFIGURATION ITEM AND BASELINE
IDENTIFICATION SYSTEM
FOR SOFTWARE CONFIGURATION MANAGEMENT

by
WILLIAM H. WILSON, IV,

B.S., Virginia Polytechnic Institute and State University, 1970
M.B.A. University of North Carolina at Greensboro, 1983

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

Major Professor

LD
2.6

R

24 TA].].EIIIE bh5Y433

/?Jﬁ¢ Table of Contents
WS ES

s

o2

b

Chapter 1 _Overvie“.lI..l.....Il.'..l....l'.l.‘.-l..l.‘..l---.....‘

1.1
1.2

1.3

1.4

1.5

1.6

IntrOdUCtion...--.......-.-.......----c-o-.---.-----.----..oo--
Literature Review - overVieW-..-..-.--.-.o-o--o-uonoo-oo--o--no

Tutorial, Theoretical SCM Literatur€...ccceeessccssssssascsnsse

1.3.1 The Concept of S0ftWare....eecececcersersssssscancsssssns

1.3.2 Software Configuration Management....veeoececccessscascses

1-3-3 asksuoolnsoto-oo-oolo.l--oouo-oc-oa-----o.--o--co--
1 SCM Identification 7

2 SCM Control 8

3 SCM Auditing 9

4

SCM Status Accounting 10

.
WwwwzIx
.
[VINVIN VIR VIR |
.

Implemented SCM TOOlS.ssveecccssncssesccnssassscnssaasnsascanes
1.4.1 The Source Control SysSteM,....ccccecevescacecasacsssacse
1.4.2 The Revision Control SysteM...cesveseccacascsssccsssonns
1.4,3 The Project Automated Librarian...cccesccccccesscsscsnes
1.4.4 The GTD-5 EAX Development Environment....ccccececescsccas
1.4.5 The Modification Request Control SystéM......ccesesseeee
Literature SUMMArY..ecesesccscssssssassosncssssssassesesessases

Summary of the Configuration and Baseline Identification
Project As It Relates to the Literature.....--------.--.-eoo---

Chapter 2 - Requirements for the SCM Identification Project...cevess

2.1
2.2

2.3

IntrOGUCtionI...l..I..ll.'..'..'.'......-lI.l..l.l..l...‘....l.

General Requirements,...csceceescacscotsonscscsccscsssssscncsss
SPQCific RequirementS--l..l.ﬂl.l..l.'..l.........‘..ld.l...'!l.
2.3.1 Administrative ReqUirements.-.!C!.I..l"l""!"'D“DOD.

2.3.2 CI Identification Requirements.l......'l.'..l.......l..‘

-~ w w

1"
1"
14
15
16
17
18

20
21
21
22
24

24

2.3.3 Baseline Identification RequirementS..cccccecacccnssasne

2.4 Design DecisionS...ceaeescsssssscccass seessssnsee

es s e s s

Chapter 3 - Design for the SCM Identification Functions....eeeeneeee

3.1 Administrative HOduleSl.l..l..l..I.II-l..l.'....lt.........l...

3.2 CI Identification Modules....... IS S

ses s O R B ISR

3.3 Baseline Identification ModuleS...eeeessevssacssccsascscscsacns

Chapter 4 - Implementation DetailS...eceescesccssccsscescscncnssunsrns

4,1 Internal InterfaceS..seseccasscsscascscscassccssannas

LI R B B O B B BB B AN

4,2 External InterfaceS..secessceccssocesscsssscssssscassasncassnsnsns

un3 Implementation PrOCEdure-nt'oo.b-0onlo|.l.oo..l.'oﬁlol.'nnouoil

Chapter 5 - Conclusions and EXtensionS....cceccecscccscsssssscsssccnes

5.1 ConCIuSionsoo.l...000....00.'...--.0-.---uo--oll-----.l-o--c-o-

5.2 ExtEHSionS...--------.-.-----.----.--.-.--.----.-

REferences........-a-......-..-c.oo-co-o...-.---.-.--...----

LRI B I B B

LR B

Appendix A: Administrative Module Specifications...sesesscssccncoces

Appendix
Appendix
Appendix

Appendix

B:

Configuration Item Module Specifications....cceesecccees

Baseline Module SpecificationS..iceccccsscsccncncs

LRI B I

User's GUide,.iesessssssssonrasscssaanesssannenosssessssss

: Source COde--.-.-o-nonl..olool.llol'.ll'lI

- ii =

29
31
32
35
38
39
42
42
42
uy
46
46
47
49
51
56
62
68
85

Figure 2-1.
Figure 3=1,
Figure 3=2.
Figure 3-3.
Figure 3=4,
Figure 3-5.
Figure 3-=6.
Figure 3-7.
Figure 3-8,
Figure 3-9.
Figure 3-10.

Figure 3-11,

LIST OF FIGURES

Envisioned Role of the SCM System,,ccececacascncccacss
SCM High Level Hierarchy..sceoeessessssesacassscsnnnsas
SCM Administrative Module Hierarchy..ececesesssssscaes
SCM Configuration Item Module Hierarchy..ecieeseessssas
SCM Baseline Module Hierarchy....eeesececssescescsssass
Command Data Structure....sseeesseencsncsnssscscscsnsan
SCM Directory Created by install...veeceenesscnsncanas
Project ID Directory Created by addprojecesccessccoscs
Project File Directory Created by addfile...ceseesccas
CI Creation by createci,.veccncsnccscccssncascsssosnns
Baseline File Data Structure.,....evevccccsncscccscosnces

Baseline Creation by createbl...ceescescctoncsnnsenssns

- iii -

22
32
33
23
34
35
36
3T
37
39
41

41

Chapter 1 = Overview

1.1 Introduction

This paper addresses the subject of Software Configuration Management
(SCM) and presents a master's project which consists of the design,
development, and implementation of a SCM identification system at Kansas
State University. Software configuration management 1is the use of
configuration management tc manage software systems (2, 3).
Configuration management has been defined as "... the discipline of
identifying the configuration of a system at discrete pcints in time for
the purpose of maintaining the integrity and traceability of the

configuration throughout the life eyecle." (2).

The SCM identification system was designed and developed to be part of
the prototype software development environment under development at
Kansas State University. The KSU prototype development environment is
designed to be used in the development of fifth-generation software and

in the Department of Defense's STARS environment (10, 12).

This report presents a detailed review of the current literature on SCM
(with a special emphasis on literature which describes the
implementation of SCM tools), followed by a presentation of the SCM
identification project which has been implemented at Kansas State
University. A summary of the project and a discussion of its
relationship to current SCM thought are presented in this chapter, the

project's requirements are presented in Chapter 2, the design in Chapter

3, implementation details in Chapter Y4, and a summary of the project and

possible extensions are presented in Chapter 5.

The term "tool™ is used throughout this paper to refer to a software
system which has been developed to assist individuals or other software

systems perform a specific task in the software development life cycle.

1.2 Literature Review - QOverview

Most of the current literature on SCM can be divided into two
categories: 1literature which addresses SCM in a tutorial, theoretical
manner (i.e., material which explores the nature of SCM) and literature
which documents the implementation of actual SCM tocls. A review of

literature in each category is presented.

1.3 Tutorial, Theoretical SCM Literature

Tutorial, thecoretical 1literature is composed of 1literature which
provides an instructional overview of 3SCM and literature which addresses

certain aspects of SCM from an instructional or theoretical viewpoint.

Much of the current overview material on SCM has been written by Messrs.
E. H. Bersoff and S. G, Siegel individually, together and with others
(2, 3, 4, 6, 7). Typically, this material explores the concepts of
software and software configuration management (SCM), and presents the
components of SCM, Each of these concepts and the components of SCM

will be addressed in this section.,

1.3.1 The Concept of Software

In the past, software has been viewed as actual computer programs
composed of coded statements. Recently, this view has been expanded to
include just about anything that contributes to eventual written
software code (4)., Bersoff, Henderson and Siegel have defined software
to be "information" which is (U4):

(1) structured with logical and functional properties;

(2) created and maintained in varicus forms and representations

during its life cycle; and

(3) tailored for machine processing in its fully developed state.
This definition leads to the idea that software can exist in two forms:
nonexecutable form and executable form (3, 4). Nonexecutable software
includes specifications, documentation, and software stored on a machine
readable storage media but which is not executable (e.g., source code),
Executable software is the actual machine executable code. From a SCM
perspective, both forms of software are viewed in the same manner (4).
Therefore, for SCM purposes, the term software includes specifications,

documentation, source code, and executable cocde,
1.3.2 Software Configuration Management

Bersoff, Henderson, and Siegel define configuration management as "the
discipline of identifying the configuration of a system at discrete
points in time for the purpose of systematically controlling changes to
this configuration and maintaining the integrity and traceability of the

configuration throughout the system life cycle™ (3). A similar but more

specific definition 1is used by the Department of Defense. The DOD
regulation on configuration management defines CM as "A discipline
applying technical and administration direction and surveillance to (1)
identify and document the functional and physical characteristies of a
configuration item [to be defined laterl:; (2) control changes to those
characteristics; and (3) record and report change processing and
implementation status" (8). In both cases, CM is viewed as the
discipline for identifying configuration elements, controlling changes
to the configuration, and monitoring the status of the configuration,
Traditionally, CM has been used in the management of hardware systems to
insure consistent labeling of hardware elements, to track the evolution
of hardware components throughout their life, and tc control changes to

hardware components (4).

Software configuration management is CM adapted to systems composed
primarily of software (3). Thus, SCM is concerned with identifying
software components, tracking the evolution of software configurations,
and cohtrolling changes to the software configuration throughout the
life cyecle of the configuration., Bersoff, Henderson, and Siegel state
that "The primary objective of SCM is the effective management of a

software system's life cycle and its evolving configuration™ (4),

Interest in the application of CM to software systems has grown out of
the numerous software failures which occurred in the 1970's (2). Such
failures are generally attributed to a lack of control over the software

development process. The goals of SCM along with the other quality

assurance disciplines (quality assurance, validation and verification,
and test and evaluation) are to control the software development process
and to aid in the development of software systems which exhibit product
integrity (4). A product that exhibits integrity is one that "fulfills
user needs, can easily and completely be traced through its life cycle,
meets specified performance criteria, and whose cost and delivery

expectations are met" (3).

In addition to the concept of product integrity, other concepts which
are fundamental to SCM are the concepts of software configuration,

baseline, and configuration item,

A software configuration is a "relative arrangement of software parts®
(3)., Typicslly, a software configuration is a software system which is
composed of specifications, documentation, and programs which are
related in some way (e.g., part of the same production computer system).
Thus, a configuration can be thought of as the collection of all current

software parts for a given system.

A baseline (BL) is a "reference point or plateau in the development of a
system" (4). Bersoff refers to it as a "snapshot" of the software
configuration at a given point in time (2). A Dbaseline, 1like a
configuration, is a collection of related software elements. A baseline
differs in that it is a picture of the configuration as it exited at a
given point in time, Bersoff, Henderson, and Siegel use the term
baseline to identify the approved (final) product associated with each

stage in the 1life cycle of a system (3). They define functional

baseline as being associated with the end of the system concept
formulation stage, allocated baseline as being associated with the end
of the advanced development/validation stage, design baseline as being
associated with the end of the detailed design phase, product baseline
as being associated with the end of the first article development stage,
and operational baseline as being associated with the end of the

production/deployment stage (3).

A configuration item (CI) is the "most elementary" entity in the
software configuration (2). The software components which can be called
CIs can be many different things. Typically, a software configuration
item is thought of as source code for a program. However, this is a
rather limited view of what a CI can be. From a SCM perspective, a CI
can be any item in the software development process which is considered
important encugh to name., A configuration item can represent an entire
specification, a piece of the specification, a data structure, a
program, etc. Bersoff, Henderson, and Siegel describe CIs as being
relatedrto one another in a "tree-like hierarchy" (2, 3). They envision
that a CI can be partitioned into multiple CIs as a system evolves

during its life cycle,

In retrospect, a baseline can be defined as "ordered collection" of Cls
and a software configuration as a collection of related CIs (3). A
baseline is the set of CIs at specified update levels formally included
in the baseline. A configuration is the total set of CIs and associated

updates that have been identified in the configuration. That 1is, a

baseline is a picture of a system's configuration at a given point in
time, and a configuration is the current view of all that has been

identified within the system.

1.3.3 SCM Tasks

SCM is composed of four components or tasks: identification, control,
auditing, and status accounting. A discussion of each task is

presented,

1.3.3.1 SCM Identification

The identification component of 3CM is concerned with the consistent
identification of CIs, baselines, changes to CIs, and changes to
baselines, This is perhaps the most important SCM task. Without
consistent identification of CIs, baselines and changes to each, it

would be impossible to perform the other SCM tasks.

CIs must be consistently and uniquely labeled, Each CI must have a
unique name and a mechanism must exist that can be used to differentiate
between different versions of the same CI. Each CI must also have a
description associated with it which describes the CI, when it was
created and by whom. Similarly, each CI version must have a description
which describes its wuniqueness compared to other versions of the CI,
when it was created, and by whom, All of this identification
information must be recorded and maintained (see status accounting later

in this chapter).

As noted earlier, Bersoff, Henderson, and Siegel have suggested a tree-
like hierarchy of relationships for CIs in which a CI can be
progressively decomposed into a series of more detailed CIs (3). To
keep track of CIs, they have suggested a naming convention in which the
first CI is identified as CI 1. The next level of decomposition for
this CI would yield CIs 1,1; 1,2; 1,3; etc. The next level below 1,1

would be 1,1,1; 1,1,2; etec.

Equally important to the SCM identification task 1is the baseline
identification funection. Baselines must be consistently labeled with
unique names. As with CIs, a mechanism must exist which can be used to
differentiate between different updates or versicns of a baseline,
Thus, baseline identification involves labeling of baselines and updates
to baselines, A description must be associated with the baseline and
with each update, and all information regarding a baseline must be

recorded and maintained,
1.3.3.2 SCM Controel

The focus of the SCM control task is on managing changes to CIs and

baselines (4).

Bersoff, Henderson, and Siegel state that "The role of software
configuration control 1is to provide the administrative mechanism for
precipitating, evaluating, and approving or disapproving all change
proposals throughout the system life cycle™ (4)., They list three "base

ingredients" for software configuration control (4):

1) Documentation (such as administrative forms and supporting
technical and administrative material) for formally precipitating
and defining a proposed change to a software system,

2) An organizational body for formally evaluating and approving or
disapproving a proposed change %to a software system (the
Configuration Control Board).

3) Procedures for controlling changes to a software system,

The first ingredient can be addressed by a computerized modification
request system. The second ingredient is by necessity a manual

administrative process. The third ingredient can be addressed with a

computerized CI and baseline identification and control system.

Bersoff has suggested that a software control system should include a
centralized repository for software components (CIs), facilities for
developing and maintaining CIs, control of software releases, automatic
program and documentation reconstruction, and automatic change tracking

and reporting (2).

1.3.3.3 SCM Auditing

The auditing component of SCM is concerned with how the current state of
a system fulfills the requirements for the system. The SCM auditing
component 1is composed of verification and validation functions.
Verification is concerned with verifying that the intent of a CI in a
previous baseline or baseline update is carried forward to the next
baseline or baseline wupdate (2, U4). Validation is concerned with
ensuring that the software configuration addresses and solves the
problem that it was intended to solve (2, 4). That is, it makes sure

that the needs of the user are satisfied.

10

Bersoff presents SCM auditing as the means to formerly establish a
baseline (2). Accordingly, each to-be-established baseline in the
system 1life cycle must be audited before it can be 1labeled an

established (approved) baseline,

The auditing task is primarily a manual management task,., However, data
provided by the status accounting task (next section) can be used in the

performance of the auditing task.

1.3.3.4 SCM Status Accounting

The SCM status accounting component is concerned with the tracking and
reporting of all activities associated with CIs and baselines (3). Its
function is to maintain a record of how a configuration has evolved over
its life cycle. SCM status accounting responsibilities include tracking
all changes to a configuration from the time they are requested until
the time they are implemented or rejected, tracking the implementation
of new and changed software, tracking all documentation associated with
a configuration, and keeping track of which modules have been
implemented and where they have been implemented (8). The SCM status
accounting component is responsible for recording the occurrence of
configuration events, when they occurred, what they entailed (i.e., what
happened), and who initiated the event (3). Configuration events
include creation of CIs, the initiation of a request to change or add to
the configuration, CI updates, etec., With all of this data, the status
accounting function will be able to provide a description of where a

configuration is at any given point in time.

11

SCM status accounting provides the data to support the other three SCM
components, In particular, it provides the data needed by the SCM

auditing function.
1.4 Implemented SCM Tools

A variety of development tools which include SCM functions have been
developed and implemented. The more notable tools are discussed in this

section,
1.4.1 The Source Control System

Rochkind has described the Source Code Control System (14)., The Source
Code Control System (SCCS) is a SCM identification and control teol for
the management of text data, It is currently distributed as part of the
UNIX* operating system, SCCS is basically a tool which can be used to
identify software modules (i.e., software configuration items) and
control the changes which are made to these modules. SCCS provides
facilities for uniquely identifying modules, storing modules, retrieving
modules, updating modules, uniquely identifying module versions
(modification 1levels), preventing parallel modifications to a medule,
controlling access to modules, and recording change data such as date,

time, description, and changed by whom.

¥ Trademark of ATAT Bell Laboratories.

12

Modules are identified in SCCS by a name and a 3CCS identification
string (SID). The name uniquely identifies a module while the SID
uniquely identifies the version of that module. For example, suppose
that a module is given the name "moda™ when created. The initial
version of "moda™ will be 1.1, the second version will be 1.2, the third
1.3, and so on. Version as used here indicates a particular state of a
module which differs from the previous state and succeeding state in
some way. Therefore, version 1.2 is version 1.1 with modifications.
The format of a SID is (16):
release.level .branch.sequence

Release and level (e.g., 1.2) comprise the normal SID identification for
a module and are referred to as being on the "trunk" (i.e., the main
version line) of a module. Release, level, branch, and sequence (e.g.,
1.2.1.1) are used to identify a "branch" from the trunk of a module.
For example, one may decide to modify version 1.2 of a module after
version 1.3 has been created. In such a situation, one would cause a
branch ;o be taken from version 1.2 of the module, The SID for this
branch will be 1.2.1.1. An update to "moda" 1.2.1.1 will be identified
via SID 1.2.1.2. Thus, release and level are used together for SIDs on
the trunk of module, and release, level, branch, and sequence are used
together on a branch from the trunk of a module. The entire sequence of
versions, including those on the trunk and those on branches, for a

module is referred to as a "tree".

An important function performed by SCCS is change control. 3CCS will

not allow two login names to retrieve a module for update at the same

13

time. Thus, the possibility of parallel updates to a module is avoided.
SCCS also requires the specification of a change description before a

module can be updated (i.e., a new version is created).

SCCS stores all pertinent information regarding a module in one file,
The original source for the module is stored along with module
description, change information, change description, etc. Revisions or
versions of a module are stored as deltas, where a delta is the
difference between two successive versions of a module, Any version of
a module can be retrieved by specifying the version desired when
entering the SCCS "get" command. SCCS will then perform a forward merge

of deltas to the original source until the desired version is obtained.

SCCS provides the mechanism for controlling update access privileges for
each module, The SCCS file for each module has a list, embedded within
the file, of UNIX login names which are allowed to make changes to that
module, The designated SCCS administrator for a project is the only
one allpwed to modify this list. An additional access control measure
is also imposed by the UNIX operating system in conjunction with SCCS.
Login names outside the group level of the designated SCCS administrator
{the UNIX owner of the SCCS files for a project) are nct allowed read or
write access to the SCCS files for that project unless they are
specifically added to the access list of the designated files by the

administrator.

SCCS functions are initiated via a set of SCCS commands. These commands

are normally entered by a terminal user. However, SCCS commands could

14

be initiated from "C" programs via the UNIX "fork"™ and "Yexecv" system

calls.

1.4,2 The Revision Control System

Tichy has described the Revision Control System (15). The Revision
Control System (RCS) is a SCM identification and control system for the
management of text data such as source code and documentation, RCS 1is
similar to SCCS in function and form. Like SCCS, RCS is a tool which
can be used to identify text modules and control changes to these
modules, It has been implemented in a UNIX environment as is SCCS3.
Capabilities provided by RCS are the ability to uniquely identify text
modules, store modules, retrieve modules, update modules, uniquely
identify updates to modules, prevent parallel updates to a module, and

control access to modules.

RCS uses a similar module identification scheme to that used by SCCS.
Modules are identified by a unique name and a revision number, The RCS
revision number has a somewhat different format from that of SCCS. RCS
supports the "branching" concept used by SCCS to create a second version
line off of the trunk of a module, RCS also supports "branches" off of
branches, which is not supported by SCCS. While not specified by Tichy
(15), the structure of the RCS revision number appears to be:
release.level.branch,sequence branch,.sequence
RCS has the facility to assign a symbolic name to a given revision or a

branch in a module's tree, SCCS does not have a similar facility,

15

RCS maintains a change history for each module within the source file
for that module. Updates are not allowed without the specification of
an update description. RCS also prevents the retrieval of a module for

update by more than one user, thus preventing parallel updates,

All information regarding a module is stored within the module as is
done by SCCS. The major differences between RCS and SCCS are the manner
in which the information is stored and the way a specific version is
generated. RCS stores the most up-to-date version of a module along
with reverse separate deltas for all previocus versions of the module.
SCCS stores the initial version of a module and forward merged deltas
for successive versions of the module. The result is that RCS works
backwards to get to old versions of a module while SCCS works forward to

get to newer versions of a module.

In summary, RCS and SCS are very similar products with the major
differences being the way deltas are stored and the way module versions
are generated. Both appear to provide +the essential ingredients
required for the SCM identification function, and both provide SCM

control facilities.
1.4.3 The Project Automated Librarian

The Project Automated Librarian (PAL) has been described by Prager (13).
PAL is a SCM identification and control tool developed by IBM for use in
the management of medium sized software development projects. It can be

used to manage the development of software code, PAL provides

16

facilities for the creation, storing, retrieval, modification, and

listing of source modules,

PAL is similar to SCCS and RCS in providing the aforementioned
facilities. Other similarities include: the unique identification of
files (modules in SCCS and RCS), the prevention of parallel updates to a
file, the maintenance of change history for a file, and the capability
to retrieve earlier versions of a file, Additicnally, PAL requires a

description of the change when a file is updated.

PAL differs from SCCS and RCS in a number of ways: PAL is software code
oriented instead of just text oriented; PAL maintains complete copies of
previous versions of a file instead of deltas to a base file; PAL
provides no access security; and PAL is menu driven instead of command
driven. Additionally, PAL stores information regarding dependency
relationships. An update to a file will automatically regenerate other
files which are derived in some way from the file which has just been

updated.
1.4.4 The GTD=5 EAX Development Environment

Begley has presented an overview of the GTD-5 EAX software development
environment (1). This environment is a development environment which is
composed of a formalized software development methodology, a number of
development support tools, and a distributed hardware and operating
system environment. The support tools include several SCM tools: the

Software Management Support System, load generation tools, and a change

17

tracking system.

Begley indicates that the Software Management Support System (SMSS) is
based on a customized use of UNIX SCCS to "create"™ a software medule, to
"fetch™ a module and to "promote" a module (i.e., update a module). He
provides no details on how the SMSS implementation differs from the
native SCCS implementation. The load generation tools are tools used to
assemble a complete 1load package for a specific GTD=5 EAX processor.
The change tracking system is the software system which is used to
formally request new software features or changes to existing software.
Requests are accepted from a computer terminal. Request status and

assigned responsibilities are maintained and reported periodically.

1.4.5 The Modification Request Control System

The Modification Request Control System (MRCS) has been described by
Knudsen, Barofsky, and Satz (9). MRCS is a SCM change control tool
developed to manage modification requests. A modification request as
used here is a request to modify (i.e., add , change or delete) a

software system.

MRCS interfaces with users interactively. The format of a modification
request is left to the user for a given implementation of MRCS. The
system operates on a mode or status basis, where the status of a
modification request changes from "submitted" to other states during the
life cycle of the modification request. The status of a modification

request can be displayed at any time, The system may be used to record

18

modification request for documentation, scurce code, etc,

MRCS was designed to be used in conjunction with SCCS and other software
to form a change management system. Change management is defined as
"the function that seeks to insure that when a product (or new release
of a product) is issued, it contains only (and all) those modifications
which the producer and consumer expect it to contain."™ (9). Knudsen,
Barofsky, and Satz maintain that use of MRCS with SCCS, software which
maintains a configuration list of change levels or versions of software
per release, and software which will generate a specific release of a

system will constitute use of a change management system.
1.5 Literature Summary

As stated at the beginning of this chapter, most of the current
literature relating to SCM focuses on tutorials of SCM and on

implemented SCM tools.

The tutorial material, in general, attempts to define SCM and to place
it in proper perspective within the software development environment.
This material discusses the four tasks of SCM (identification, contrel,
auditing, and status accounting) in some detail. Much of the material
on identification centers around the form needed to wuniquely identify
Cls. Bersoff, Henderson, and Siegel have suggested a hierarchical
relationship between CIs, with the implication that CIs can spawn other

CIs (3).

19

There appears to be general agreement on what SCM is, its objectives,
and its tasks (7). The differences or unclear issues are associated
with what to identify (documents as a whole, chapters of documents,
etc,) and how to identify CIs. Bersoff, Henderson, and Siegel suggest a
numeric decomposition labeling scheme, while Rochkind and Tichy have
implemented basic identification systems based on unique names and

numeric version numbers.

The literature on implemented tools addresses identification and control
aspects of SCM with an emphasis on software which can be used to
identify and control updates to software components, and manage change
requests. Rochkind with SCCS and Tichy with RCS have presented two
basic tools which can be used to identify configuration items and to
control changes to CIs in a UNIX environment. Prager has presented a
SCM system for the IBM environment which goes beyond the CI
identification stage by actually defining dependencies between
components, Begley has presented an overview of a CI identification
tool which appears to use SCCS in a customized way along with a
modification request system. Knudsen, Barofsky, and Satz have presented
a UNIX based modification request system which was designed to work with
SCCS and other software to form what they characterize as a change

control system,

20

1.6 Summary of the Configuration and Baseline Identification Project As

It Relates to the Literature

The objective of this project is to develop a system which can be used
to identify, control, and track CIs and baselines for requirement
specifications, and which will be flexible encugh to use throughout the
system life cycle with any text oriented development data (e.g., design
specifications, data descriptions, source code, etc.). Implementation
of this system will be based on a customized usage of SCCS as is
suggested by Begley (1). The system will provide the capability to
explicitly identify baselines in addition to Cls. Baseline
identification has not been addressed by any of the tools which were
examined, The system will provide two of the four parts which Knudsen,
Barofsky, and Satz state are required for a change management system
(9): a source identification and control capability (based on SCCS)
which allows the regeneration of previous versions of a software item,
and a baseline identification and control capability which keeps track
of CIs (by version) which are included in each baseline, A future
interface to a modification request system and use of software which can
regenerate any release of a system would result in a change management

system per their definition.

21

Chapter 2 - Requirements for the SCM Identification Project

2.1 Introduction

The objective of this project is to design, develop and implement a SCM
identification system which is composed of functions which can be used
to identify, control and track configuration items (CIs) and baselines
(BLs). The initial use of this system will be for requirement

specifications.

The SCM identification system will be incorporated into the prototype
development environment currently under development at Kansas State
University (KSU). The SCM identification system will be wused by the
other KSU development environment tools (requirements specification
tool, design specification tool, etc.) to store and retrieve text data.
Figure 2-1 provides a graphical representation of the SCM system and its

envisioned place in the KSU prototype software development environment.

22

Requirements Specification Tool

! !
! SCM System !
0 ! ! 0
t ! ! t
h ! ! ! ! h
e 1 ! Text Data ! ! e
r 1 ! stored ! H r
! ! via ! !
t ! ! Sccs ! ! t
o ! ! ! ! o
o ! ! o
1 ! ! 1
s ! ! s
! !

Data Dictionary Tool

e SEE smp s sum Sl sam W sam 0SB fum SR san SEE san S D Smm SmE dwm sem SeB
B A A S SED cmb smS SuE MEE Gul S e cmh Sm SuE A AN AR AN Sum S bem

Figure 2-1. Envisioned Role of the SCM System

2.2 General Requirements

The SCM identification system must be suitable for use in a standard
UNIX environment and must be implemented in the Kansas State University
UNIX environment. All SCM identification functions (presented later in
this chapter) must be implemented using "C" 1language and/or shell

programs.

In general, the SCM identification System must support the
identification, storage, and retrieval of configuration items, and the

identification, storage and retrieval of baselines,

23

The SCM identification system must be general enough to be used with any
text oriented development data (i.e., it must have a wide range of
applicability). Therefore, the format of CIs can not be specified by

the SCM identification system.

The system must have simple and easy to use external interfaces in order
to promote its wuse in the development process. Interfaces must be
provided for UNIX login sessions, shell programs, and "C" language

programs,

To support simple external interfaces, input data must be command and
argument 1list oriented. Output must be simple and pertinent to the
user's request and needs. Input and output should not consist of
elaborate crt screens. To do so would make the use of the system by a

shell or "C" program cumbersome at the least.

Cl activities must be user oriented. Access controls by individual CI
must be provided. The system must also prevent parallel updating of
CIs. The contents of a CI must contain the text data provided by the
user along with other SCCS data (such as the list of authorized users

for that CI).

Baseline activities must be restricted to the designated project
administrator for each project. Baseline data must be stored in a SCCS
baseline file associated with the subject project file. The contents of

the text of a baseline will contain a list of CI names and their SIDs.

24

Administrative functions must be provided in order to establish and
maintain the appropriate directories and SCCS files required for a
project by the SCM identification system. Administrative activities
must be restricted to the designated project administrator for a given

project.

2.3 Specific Requirements

The identification requirements can be subdivided into administrative,
CI identification, and baseline identification requirements. Common to
both CI and BL identification are the requirements tc be able to create,
retrieve, update and 1list entities (CIs and BLs). Support for the
incremental development of CIs and BLs, automatic archiving of CIs and
BLs, the selective retrieval of CIs and BLs by version, and the

prevention of parallel updates to CIs and BLs are also required.

2.3.1 Administrative Requirements

Administrative requirements include the ability to install the SCM
identification system and the ability to add projects to an installed
SCM identification system. Use of these functions must be restricted to
the designated administrator for each project. Specific functions

required are:

(1) 1Install the SCM Identification Subsystem (install): The install

(2)

(3)

25

function will install the SCM identification system for a new
project administrator by creating a SCM global directory under the
file system directory under which the administrator's login
directory is located, and a SCM project ID directory under the SCM
directory. Additional project IDs can be added to a previously
installed SCM system via the addproj function which is described
later., Individual project files (e.g., source, data, etec,) will
have to be added via the addfile function which is alsc described
later. Input to the function will consist of a project ID, the
system administrator's login name, and the file system identifier,
Output will consist of a SCM directory, a project ID directory and

various messages.

Add a project to a previously installed SCM system (addproj): The

addproj function will add a project directory to an installed SCM
system by creating a project ID directory under the SCM directory
of the caller, Input will consist of a project ID. Output will be

a project directory and variocus messages to the user.

Add a project file directory (addfile): The addfile function will

add project files (e.g., source, data, etc,) to a previously
established project (see addproj) of an installed SCM system (see
install) by creating a project file under the specified project
directory and creating a baseline directory under the project file
directory. Input will consist of a project ID and a project file

name, Output will consist of a project file directory and a

(4)

26

baseline directory for the subject project.

Update the 1list of authorized users (updatusr): The updatusr

function will add or remove login names from the list of authorized
users for a specified CI or for all CIs in a specified project file
by causing the 1list of authorized users stored in each CI to be
updated, Input will consist of a project ID, a project file name,
a CI name, and an update type flag followed by a list of login
names., Output will consist of an updated SCCS file and various

messages.,

2.3.2 CI Identification Requirements

As previously noted, identification requirements include the ability to

create, retrieve, update, and 1list CIs. CI activities are end user

oriented. Specific functions required are:

(1)

Create a CI (createci): The createci function will cause the
crgation of a CI by creating a member (SCCS file) for the CI under
the specified project file. The function will require the
specification of a CI "description" and provide the option to
specify a CI "type" (e.g., "activity", "data", etec.). The calling
toocl may require that a CI "type"™ be provided at all times which
would make "type™ a requirement to all users of that calling tool.
Input to this function will consist of a project ID, project file
name, CI name, CI type (optional), and a CI description. Output

will consist of a 3CCS file and various messages,

(2)

(3)

(4)

27

Fetch a CI (fetchci): The fetchei function will retrieve a specific

version (SCCS SID) of a CI for information use or for subsequent
update. The latest version will be fetched if a specifie version
is not requested. The option must be provided to retrieve a CI for
information only or for subsequent update. The fetchei function
must not allow the retrieval of a CI for update if that CI has
already been fetched for update nor allow the retrieval of a CI for
update from an unauthorized user. Input will consist of a project
ID, a project file name, a CI name, and a fetch type flag. Output
will consist of a copy of the CI in the directory of the requester

from which the fetchei was issued and various messages.

Update a CI (updateci): The updateci function will create a new
version of a CI which has been previously fetched for update by
causing the SCCS file for the subject CI to be updated. The
function will require a "description" of the new version before
update is allowed and one or more modification request numbers if a
modification request system is being used for the subject project.
The updateci function will not allow anyone but the user who
fetched a CI for update to update that CI. Input will consist of a
project ID, a project file name, and a CI name, Output will
consist of the updated SCCS file for the subject CI and various

messages.,

List information regarding one or more CIs (listci): The listei

function will 1list specific information pertaining to a CI.

(5)

(6)

28

Options will be provided tc list the description of a CI, its
change history or both at the latest version level or at a
specified version level. Input will consist of a project 1ID, a
project file name, a CI name, and an options flag., Output will
consist of a standard output listing of the requested information

and various messages.

Replace a CI's description (rcidesc): The rcidesc function will

replace a CI's description by causing the description of a CI which
is stored in the SCCS file for the CI to be replaced, Input will
consist of a project ID, a project file name, a CI name, and a file
which contains the new description. Output will consist of the

updated SCCS file for the specified CI.

Amend (add to) the description of a CI version (civdesc): The

civdese funection will add to the description of the specified
version of a CI by appending the new description onto the old
description which is stored in the SCCS file for the specified CI.
Th; option will be provided to specify the amendment on the command
line or to receive a terminal prompt to key in the description.
Input will consist of a project ID, a project file name, a CI name,
a CI version number, and the amendment. Output will consist of the

updated SCCS file for the specified CI and various messages.

29

2.3.3 Baseline Identification Requirements

Baseline identification requirements include the ability to create,
retrieve, update, and list BLs. Baseline activities must be restricted
to the designated project administrator for each project. Specific

functions required are:

(1) Create a baseline (createbl): The createbl function will create a
new baseline from the 1latest version of each CI in the
configuration. The function will require the specification of a
file in which the baseline "description" c¢an be found. The
function will alsc support the options to include selected CIs by
version and to exclude selected CIs. Only one version of a CI will
be allowed in a baseline, The use of this function will be
restricted to the project administrator. Input from the
administrator will consist of a project ID, a project file name,
and a description, Input from the CI portion of the system will
consist of CI files from which CI names and SIDs will be extracted.
An optional CI include/exclude file can also be specified as input,
Output will consist of a SCCS file for the new baseline and various

messages.,

(2) Fetch a baseline (fetchbl): The fetchbl function will retrieve a

specific version of a baseline for information purposes or for
subsequent update. The fetchbl function will restrict the fetch
for update to the designated project administrator., Fetchbl will

also prevent the retrieval for update of a baseline version if that

(3)

(%)

(5)

30

version has already been retrieved for update. Input will consist
of a project ID, a project file name, and a baseline version
number . Output will consist of a copy of the BL in the directory
of the requester from which the fetchbl was issued and various

messages.

Update a baseline (updatebl): The updatebl function will update the

baseline version which was previously fetched for update. The use
of this function will be restricted to the project administrator.
The function will require a "description" of the update before the
update is allowed. Input will consist of a project ID, a project
file name, and a description. Output will consist of an updated

SCCS file for the subject BL and various messages.

List a baseline (listbl): The listbl function will list information

pertaining to a baseline, Options will be provided to list the
change history of a baseline or the description of a baseline,
Input will consist of a project ID, a project file name, a baseline
version, and an options flag. Output will consist of a standard

output listing of the requested information and various messages.

Replace a baseline's description (rbldesc): The rbldesc function

will replace a BL's description. The use of this function will be
restricted to the project administrator. Input will consist of a
project ID, a project file name, a baseline version number, and the
name of the file in which the description c¢an be found. Output

will consist of an updated SCCS file for the specified baseline.

31

(6) Amend (add to) the description of a baseline version (blvdesc): The

blvdesec function will add to the description of a specified
baseline version. The option will be provided to specify the
amendment on the command line or to receive a terminal prompt to
key the description at the terminal. The use of this function will
be restricted to the project administrator. Input will consist of
a project ID, a project file name, a baseline version number, and
the amendment. Qutput will consist of the updated SCCS file for

the specified BL and various messages.
2.4 Design Decisions

The requirements for this project restrict its development and
operations to the UNIX environment. Requirements for the support of
multiple CI and baseline versions, no parallel updating, and support for
update access controls influence the use of UNIX Source Code Control
System (SCCS) functions as primitive functions for the SCM

identification system.

The many functional requirements that have been defined tend to
influence the implementation toward one or more "C" programs.
Implementation via shell programs would require a 1like number of
programs to perform all the required functions. The many functional
requirements also imply a modular structure which can be used in a "C"

program.

32

Chapter 3 = Design for the SCM Identification Functions

The SCM identification system has been designed as a hierarchy of
functional modules. Each function described under the specific
requirements section of Chapter 2 will constitute a separate functional
module in the actual system. Each functional module will be designed to
be independent of all other modules with the exception of the supervisor
module, A supervisor module will be used to interpret the caller's
request and to call the appropriate functional module. Each module will
in turn utilize specific SCCS functions and/or other UNIX facilities to
accomplish the required task. Figures 3=1 through 3-4 provide hierarchy

diagrams of the system's module structure.

Supervisor
Module
] Configuration]
Administrative Item Baseline
Modules Modules Modules

Figure 3-1, SCM High Level Hierarchy

Figure 3=2,

administrative
modules
]
| l |]
install addproj addfile updatusr
module module module module
| 1]
j |
mkdir chmod SCCS
admin

SCM Administrative Module Hierarchy

configuration
item
modules
{

l I | { | 1
createci fetchei updateci listci rcidesc civdesc
module module module module module module
SCCS SCCS SCCS SCCS SCCS SCCS
admin get delta prs admin cde

Figure 3-3.

SCM Configuration Item Module Hierarchy

33

34

baseline
modules ¢
|
createbt fetchbl updateb]l Tistbl rbldesc blvdesc
module module module module module module
SCCS SCCS SCCS SCcS SCCS SCCS
admin get delta prs admin cde

Figure 3-4., SCM Baseline Module Hierarchy

Input to the supervisor will consist of a command which is composed of a

list of arguments. The first argument will identify the function to be

performed and the remaining arguments will be functionally dependent.
Figure ~3-5 provides a graphical representation of the data structure of

the command. Standard input for each functional module will consist of

a series of arguments which ineclude the project ID and project file name

as well as other functionally dependent arguments.

This design will promote good module independence. The modules will be

highly functional and each module will be interconnected, via data

coupling, with only the supervisor mcdule.

35

SCM
command
[T T \
function f :
function project ID/ o . unction
g ume
name project file gl n e s arg:ment

Figure 3-5. Command Data Structure

3.1 Administrative Modules

The administrative modules will perform the administrative functions
such as installation of the SCM identification system, adding projects
to a SCM identification system, and adding project files (e.g.,
requirements specification, source, data, etc.,) under a SCM identified
project. Each module will be designed to fulfill the requirements of

the identically named function specified in Chapter 2.

The "install™ module will create a SCM directory under the file system
directory under which the administrator's login directory is located as
is depicted in Figure 3-6. The "addproj" module will add a project

under the administrator's SCM directory as is depicted in Figure 3-7.

36

The "addfile™ module will add a SCM file under the specified project
directory as is depicted in Figure 3-8. The "updatusr" module will
allow the administrator to control update access privileges for each (I
created under a file directory. Module specifications for each module

are provided in Appendix A.

file
system

directory,

Figure 3-6. SCM Directory Created by install

Figure 3-7.

file
system

Figure 3-8.

directory,

Prcject ID Directory Created by addproj

SCM
directory

"bldir"
directory

Project File Directory Created by addfile

37

38

3.2 CI Identification Modules

The CI modules will perform the creation, maintenance, and reporting
functions for configuration items, Each module will be designed to
fulfill the requirements of the identically named function specified in
Chapter 2, Input to the CI modules will consist of the set of character
string arguments passed by the supervisor and in some cases free form
text files. Each CI is itself a free form text file. Output from the
CI modules will be composed of CI files put in the requester's directory

or in a SCCS file, and text to stdout and stderr.

The "createci" function will create a SCCS file for the new CI under the
specified project ID and project file directories as is depicted in
Figure 3-9, It will alsc require as input a free form text file which
describes the CI. The "fetchei" CI will retrieve a module for
information use or for subsequent update and place the CI in the current
working directory of the requester, The CI will be retrieved from its
SCCS file. The "updateci" module will update the SCCS file for the
specified CI wusing the text file in the requester's current working
directory (which has the same name as the CI) as the wupdate text. It
will also require a description of the update which is also free form
text. The "listci"™ module will list the specified CI as requested in
the argument 1list. The CI's SCCS file will be read as input. The
"reidesce™ module will replace the description for a CI with the free
form text which is provided in the specified description file. The

"civdese™ module will amend the comments specified for a specific

39

version (release) of a CI., Comments are stored as free form text in the

SCCS file for the CI. Module specifications for

provided in Appendix B.

Baseline
File

*
Baseline
Record

1

CI
Name

Figure 3-9.

)

each module are

CI
Version
(SID)

CI Creation by createci

3.3 Baseline Identification Modules

The baseline identification modules will perform

maintenance, and reporting functions for baselines.

the creation,

Each module will be

designed to fulfill the requirements of the identically named function

specified in Chapter 2. Input to the baseline modules will consist of

40

the set of character string arguments passed by the supervisor, free
form text in some cases, and in some cases formated records. Each
baseline file is composed of a set of CIs and their versions (SIDs)
separated from each other by a new line character (see Figure 3-10), and
is stored in a SCCS file. Output from the baseline modules will be
composed of baseline files put in the requester's directory or in a SCC3S

file, and text to stdout and stderr.

The "createbl™ module will create a SCCS file for a new baseline and
place it under the baseline directory for the specified project file as
depicted in Figure 3-11, It will also require as input a free form text
file which describes the baseline, The "fetchbl" module will retrieve a
baseline for information use or for subsequent update and place it in
the current directory of the requester. The baseline will be retrieved
from its SCCS file, The "updatebl™ module will update the SCCS file for
the specified baseline wusing the baseline file in the requester's
current working directory which has the same name. A description will
be required in free form text format. The "listbl" module will 1list the
specified baseline as requested via the arguments. The baseline SCCS
file will be read as input. The "rbldesc" module will replace the
description for a CI with the free form text which is provided in the
specified description file, The "blvdese"™ module will amend the
comments specified for a specific version (release) of a baseline,

Module specifications are provided in Appendix C,

directory

"Hh1dir"
directory

baselin
file

Figure 3=-10. Baseline File Data Structure

"bldir"
directory

ci
file
(sccs)
Figure 3-11, Baseline Creation by createbl

42

Chapter 4 - Implementation Details

The SCM identification system has been implemented as a single "C"
program which is composed of many internal functions. The name of this
program is "scmid". The "main" function of scmid is the supervisor
module which is described in Chapter 3. Each of the other modules
discussed in Chapter 3 are internal functions within semid. The program
is installed in such a way that it may be initiated by specifying the

name of the desired SCM function and its argument list.

The "C" program is approximately 1700 statements 1long. A listing is

provided in Appendix E.
4,1 Internal Interfaces

The "main" (supervisor) function of semid will examine the first
argument passed to¢ it and determine which SCM functiocn has been
requested., The first argument passed to a "C" program always contains
the name that the subject program was called by (i.e., the name that was
used to execute the program). In the case of scmid, the first argument

will contain the desired SCM function name.
4,2 External Interfaces

A user of the SCM identification system can call scmid in one of three
ways: a "C" program call to scmid, a UNIX login ID call to scmid, or a

shell program call to scmid.

43

A "C" program call to scmid requires that the caller create a child
process via a UNIX “forkt system call and then overlay the child process
with scmid via

execvy ("/filesys/bin/scmemd®,argptrlist)
where scmemd is the name of the SCM function desired and argptrlist is
an array of pointers t¢ the arguments required by the desired SCM

function.

A call from a UNIX login to scmid requires the entry of
scmemd arglist
where scmemd is the name of the desired SCM function and arglist is the

list of arguments required by the specified SCM function.

A call from a shell program to scmid requires the entry of
scmemd arglist
or
nohup scmemd arglist
where scmemd is the name of the desired SCM function and arglist is the

list of arguments required by the specified SCM function.

Most of the SCM functions in scmid use one or more of the SCCS functions
as primitive functions. SCCS functions are called from scmid by first
creating a child process via the UNIX "fork" system call and then
overlaying the child process with the desired SCCS functicn via

execv ("/usr/bin/scescmd",argptrlist)
where scesemd is the name of the desired SCC3 function and argptrlist is

an array of pointers to the arguments required by the SCCS function,

4y

4.3 Implementation Procedure

The SCM identification system can be implemented in a UNIX environment
which supports SCCS, The system has been designed to be implemented for
each UNIX file system. A SCM administrator should be designated for
each file system in which the 3CM system is to be used. This person
must be the person under whose 1login name the CI and Baseline

Identification System is implemented via the feollowing procedure:

1. Move scmid.c to /filesys/bin where "filesys" is the file system
identifier under which the administrator's login directory is

located.

2, Position the current login to /filesys/bin (e.g., c¢d /filesys/bin)

3. Compile the program by entering

cc scmid.c =oscmid

4. Turn on the "set user ID on" bit by entering
chmod 4755 scmid
This will allew all authorized users of the SCM system in the
subject file system to inherit the privileges of the project

administrator for the duration of each SCM request,

5. Define link names for the scmid program. Once this 1is done, a
request to execute a SCM function will cause semid toc be executed.
Link names are defined as follows:

1n scmid install
1n scmid addproj

45

1n scmid addfile
1n scmid updatusr
1n semid createci
1n scmid fetchei
1n scmid updateci
1n scmid listei

In scmid rcidesc
ln scmid civdese
1n scmid createbl
1n scmid fetchbl
1n scmid updatebl
1n scmid listbl

In scmid rbldesc
1n scmid blvdesec

6. Enter the SCM command "install" to install the system in the SCM

administrator's UNIX file system.

Upon completion of the above procedure, the CI and Baseline
Identification System will be installed in the subject UNIX file system
as is described in the administrative module section of Chapter 3. The
owner of the system will be the login name under which the "install"

command was executed.

The "semid" program can be modified to have an operational scope broader
than a file system by altering the setting of "home" in "main" of scmid
to something other than the current file system. If the system is so

modified, then the above implementation instructions must be modified

accordingly.

46

Chapter 5 - Conclusions and Extensions

This paper has presented a master's project in Software Configuration
Management. A literature survey was presented first, followed by the

requirements, design, and implementation of the subject project.
5.1 Conclusions

All the stated requirements for the Configuration Item and Baseline
Identification System have been met. The system can be used to uniquely
identify configuration items and baselines, to control changes to each,
and to uniquely identify such changes. Furthermore, the system can be
used to control and track the evolution of CIs and baselines throughout

the life cycle of a configuration.

The CI and Baseline Identification System offers great flexibility in
terms of what a CI can be and what baselines can signify. A CI can be
any text oriented data from a specification document or piece thereof,
to source code for a module or function. A baseline can be the end

product of a system life cycle stage or a specific release of a system.

Inherent in the system design is the capability to keep 1like things
together. Project separation (i.e., a separate project ID directory for
each project) and project file separation (i.e., separate project file

directories within each project ID) are part of the design.

Central control of the SCM identification process 1is included in the

design. The creation of projects and project files as well as control

47

over CI access privileges and baseline functions are all restricted to a

designated SCM project administrator.
5.2 Extensions

Several possible extensions to the CI and Baseline Identification System

have been identified. A description of each follows:

e Interface this system with a modification request system. A key
element of such an interface should be the validation of modification
request numbers through the standard SCCS facility for wvalidation of
such numbers, Other potential benefits are the cross-referencing of
CIs and modification request numbers, and relating satisfied

modification requests with baselines,

e Make the specification that modification request numbers are required
to update CIs a "project level" specification instead of a "CI level”

specification,

® Requife the specification of modification numbers at "fetch for
update" time instead of at "update" time. This would discourage the
retrieval of a CI for update unless a modification request number has

been previously submitted which requires the modification of that CI.

e Modify the "create" and "replace description™ functions te allow the
specification of a description at command entry time as an option to
the current requirement of specifying the name of a file in which the

description resides,

48

¢ Provide a project level opticn that modification request numbers are
required for update of a CI only if that CI is not part of the current
baseline, This would permit CIs in the initial development stage to
be modified freely without having to specify an associated

medification request number each time the CI is updated.

e Develop a mechanism for keeping track of interrelationships and
dependencies among CIs. This extension may require the use of a DBMS

and could be a rather substantial effort.

In addition to the above, the operational scope ¢f the CI and Baseline
Identification System can be modified to be something other than a UNIX
file system by changing the setting for "home" in "main" to scmething
other than the current file system. The program can be modified so that

its scope is system wide by putting the "scm" directory under "/usr".

5.

6.

10.

11.

12.

49

References

Begley, A. "The GTD-5 EAX Software Development Environment." GTE
Automatic World-Wide Communication Journal, 19(November-December

1981):193-198

Bersoff, E. H. "Elements of Software Configuration Management."
IEEE Transactions on Software Engineering, SE-10(January 1984):79-87

Bersoff, E. H., Henderson, V. D., and Siegel, S. G. Software
Configuration Management An Investment in Product Integrity

Englewood Cliffs, N.J.: Prentice-Hall, 1980

Bersoff, E. H., Henderson, V. D., and Siegel, S. G. "Software
Configuration Management: A Tutorial.™ in Tutorial: Software
Configuration Management." eds., W. Bryan, C. Chadbourne, and S.

SiegeI] Falls Church, Va.: Computer Society Press, 1980, pp.24-32

Boehm, B. W. "Verifying and Validating Software Regquirements and
Design Specifications." IEEE Software, 1(January 1984):75-88

Bryan, W. L., Siegel, S. G., and Whiteleather, G. L. "Auditing
Throughout the Software Life Cycle: A Prime."™ Computer 15(March
1982):157=-67

Bryan, W., Chadbourne, C,, and Siegel, S., eds. Tutorial: Scoftware
Configuration Management, Falls Church, Va.: Computer Society

Press, 1980, p.23

Dean, W, A. "Why Worry About Configuration Management?" Tutorial:
Software Configuration Management, eds. W. Bryan, C. Chadbourne,

and 3, Siegel, Falls Church, Va.: Computer Society Press, 1980,
Pp.48=56

Knudsen, D. B., Barofsky, A. and Satz, L. R. "A Modification
Request Control System." Proceedings of the 2nd International
Conference on Software Engineering, 1976, pp.187-192

Martin, E. W. "The Context of STARS."™ Computer, 16(November
1983): 14+

McCarthy, Rita "Applying the Technique of Configuration Management
to Software.” in Tutorial: Software Configuration Management, eds.,
W. Bryan, C. Chadbourne, and S. Siegel, Falls Church, Va.: Computer
Society Press, 1980, pp.42-47

MaCorduck, P. "Introduction to the Fifth Generation.,"
Communications of the ACM, 26(September 1983):629-630

13-

14.

15.

16.

17.

50

Prager, J. M. "The Project Automated Librarian." IBM Systems
Journal, 22(1983):214-228

Rochkind, M. J. "The Source Code Control System."™ IEEE Transactions
on Software Engineering, (December 1975):233-239

Tichy, W. F. "™Design, Implementation, and Evaluation of a Revision
Control System.” Proceedings of the 6th International Conference on
Software Engineering, 1982, pp.58=-67

Support Tools Guide UNIX System. n.p.: Western Electric, 1982

UNIX System User's Manual Release 5.0. n.p.: Western Electriec,
1682

51

Appendix A: Administrative Module Specifications

Mcdule: supervisor
Inputs:
@ a counter of the number of arguments passed to the scmid program
e a list of pointers to the passed arguments
Functionss
e determine the home path for the requester via the getenv
subroutine.
e determine the SCM function requested by comparing the first
argument with a list of valid SCM functions
e call the appropriate routine if a match is found
e return to caller if a match is not found
Qutputs:
¢ a list of pointers to the arguments which are passed te the
desired SCM function
e an error message to stderr if an unknown function was requested
o Return codes:
0 => success
16 => an unknown function was requested

52

Module: install

Inputs:

e a list of arguments resulting from a caller's "install [projid]"
request:

- preoject ID (optional)

Functions:

e create a SCM directory under the installer's login directory

e change the mode of the SCM directory to 770 so that the installer
and other lcogins in the same group will have access to the

directory

e create a project ID directory if one was specified in the argument
list

e change the mode of the project ID directory te 770

Cutputs:

® a SCM directory under the requester's login directory (see Figure
3-6)
e a project ID directory under the SCM directory if one was
specified in the argument list (see Figure 3-6)
@ error messages to stderr from mkdir and chmed if errors are
encountered
e Return codes:
0 => success
2 => a project ID directory was not created
X => "x" return code from mkdir or chmod

53

Module: addproj
Inputs:
e a list of arguments resulting from a caller's "addproj projid"
request:
- the name of the project ID directory to be created
Funetions:
e insure that 2 arguments were provided
e create a project ID directery
@ change the mode of the project ID directery te 770
Outputs:
e error message to stderr if the argument count is less than 2
e a project ID directory under the requester's SCM directory (see
Figure 3=7)
@ error message to stderr from mkdir or chmod if errors are
encountered
@ Return codes:
0 => success
4 => insufficient arguments
X s> "x" return code from mkdir or chmod

54

Module: addfile
Inputs:
e a list of arguments resulting from a caller's
"addproj projid/prejfile"” request:
= project ID
- the name of the project file to be created
Functions:
e insure that 2 arguments were provided
e create a project file directory under the specified project ID
directory
@ change the mode of the project file directory tco 700 to make the
requester (administrator) the scole controller of the file
(authorized users of the file will have access to it through the
CI functions which are specified later).
@ create a baseline directory under the project file directory
Outputs:
@ error messages to stderr from mkdir and chmod if errors are
encountered
® a project file directery under the specified project ID directory
(see Figure 3-8)
® a baseline directory under the project file directory (see Figure
3-8)
@ Return codes:
0 => success
4§ => insufficient arguments
X => "x" return code from mkdir and chmod

Module: updatusr

Inputs:

55

® a list of arguments resulting from a caller's
"updatusr projid/projfile ciname {-axxx -ayyy | -eaaa -eyyyl"
request:
- project ID
= project file
- CI name whose list of authorized users is to be medified
- "_a" flag and login IDs of those users who are to be added to
the list of authcrized users for the specified CI
= "_e" flag and login IDs of those users who are to be removed
from the list of authorized users for the specified CI
Functions:

create

Outputs:

a child process via fork

execute admin from the child process
wait for the child process to end
check admin status

insure that at least 3 arguments were provided
setup an argument list for SCCS admin

e error message if fork, execv, or admin fail
e an updated authorized user 1list in the

CI
e Return
0 =>
y =>
16 =>
X =>

codes:

success

insufficient arguments
fork failure

'x' return code from admin

SCCS file for the specified

Med

Appendix B: Configuration Item Mocdule Specifications

ule: createci

Inputs:

F

L N N BN JNell BN BN BN BN BN BN

a list of arguments resulting from a caller's

56

"createci projid/projfile ciname descfile [-t??] [=v??]" request:

- project ID

- project file

- name to given to the new CI

- the file in which the CI's description can be feound
- opticonal CI type flag with type name

- optional modification request validatien flag with validation

module name
unctions:
insure that 3 arguments were provided
check for valid flag specifications
create the admin argument list
create a child process via fork
execute admin in the child via execv
wait for admin to finish
check status of admin
utputs:
error message to stderr if less than 3 input arguments
an error message to stderr if an unknown flag is encountered
error messages if fork, execv, or admin fail
a SCCS file for the subject CI under the specified project file
for the specified project ID
Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
"X => 'x' return code from admin

57

Module: fetchci

Inputs:
e a list

of arguments resulting from a user's

"fetchei projid/projfile ciname [-e] [-rsidl]" request:
- project ID
- project file
- name of the CI to be retrieved
- optional "retrieve for update™ flag
- optional "CI versicn te be fetched"™ flag plus desired SID
& the SCCS file for the desired CI
Functions:

e insure
insure
create
create

utputs:

a copy
Return

LA AR B BN JNel BN B BN 2N B

0 =>
4 =>
8 =>
16 =>

X =>

that a least 2 arguments are provided

that each flag argument is correctly specified
the get argument list

a child process via fork

execute get in the child via execv
wait for get to finish
check status of get

error message te stderr if less than 2 input arguments
error messages to stderr if flag specification errors are detected
error message if fork, execv, or admin fail

of the requested CI in the requester's current directory
codes:

success

insufficient arguments

argument error(s) detected

fork failure

"' returned from get

58

Module: updateci
Inputs:

a list of arguments resulting from a user's
"updateci projid/projfile ciname [-ycomments] [-m[mrlist]]"
request:
- project ID
project file
name of the CI to be updated
optional comment flag and comments
cptional "modification request number™ flag and optional list
of mr numbers
the copy of the CI that resides in the requester's current
directory which will be used to created the new version of the CI

I

Functicns:

e insure that a least 2 arguments are provided

e insure that each flag argument is correctly specified
® create the delta argument list

e create a child process via fork

e execute delta in the child via execv

e wait for delta to finish

e check status of delta

Qutputs:

® error message to stderr if less than 2 input arguments
e error messages to stderr if flag argument specification errors are

detected
error message to stderr if fork, exeecv, or delta fail
updated SCCS file for the CI
Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
X => 'x' returned from delta

59

Module: listei
Inputs:

a list of arguments resulting from a user's
"listei projid/projfile ciname [=-c] [=d]" request:
project ID

project file

name of the CI to be listed

optional "list CI change history" flag
optional "list CI description" flag

the SCCS file for the specified CI

Functions:

L I BN BN BN BNel BN BN BN BN

insure that a least 2 arguments are provided

insure that each flag argument is correctly specified

set both flags if neither was specified in the argument list
(i.e., produce both a description of the specified CI and its
change history)

create the prs argument list

create a child process via fork

execute prs in the child via execv

wait for prs te finish

check status of prs

utputs:

error message to stderr if less than 2 input arguments
error messages to stderr if flag specification errors are detected
error message to stderr if fork, execv, or prs fail
the output requested te stdout
Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
X => 'x' returned from prs

60

Module: reidesc
Inputs:
e a list of arguments resulting from a user's
"rcidesc prejid/prejfile ciname descfile" request:
- preject ID
= project file
- name of the CI whose description is to be replaced
- file name in which the new descripticon can be found (this
file must reside in the current directory of the requester or
a complete path name must be specified)
¢ the SCCS file for the specified CI
Functicns:
e insure that a least 3 arguments are provided
create the admin argument list
create a child process via fork
execute admin in the child via execv
wait for admin to finish
check status ¢f admin
utputs:
error message to stderr if less than 3 input arguments
error message to stderr if fork, execv, or admin fail
new description in the 3CCS file for the specified CI
Return codes:
0 => success
4 => insufficient arguments
16 => fork failure
X => '"x' returned from admin

[3N 3 BN SN0 BN BN BN I

Module:
Inputs:
e a list of arguments resulting from a user's

Neiv

61

civdese

desc projid/projfile ciname [-rsid] [-ycomments]™ request:
project ID

project file

name of the CI whose specified SID description is to be
amended

version flag and SID whose description is to be amended
optional comment flag and comments

e the SCCS file for the specified CI
Functions:

P09 Q0O ® OO OO OS

insu
insu
crea
crea
exec
wait
chec

re that a least 3 arguments are provided
re that each flag argument is correctly specified
te the cdec argument list
te a child process via fork
ute cde in the child via execv
for cde te finish
k status of cdc

utputs:

error message to stderr if less than 3 input argumentis

erro
erre
amen

r message to stderr if flag specification errors are detected
r message to stderr if fork, execv, or cdc fail
ded SID description in the SCCS file of the specified CI

Return codes:

0]
y
8
16
X

=> success

=> insufficient arguments

=> argument error{(s) detected
=> fork failure

=> 'x!' returned from cdc

62

Appendix C: Baseline Module Specifications

Module: createbl

In
°

puts:

a list of arguments resulting from a users

"createbl projid/projfile blname descfile inexfile™ request:
- project ID

procject file

name to be given to the baseline

the file name in which the baseline description can be found
- a "CI by version" include/exclude file (format: flag {iiel

CIname release)
all "s." files in the specified project ID/project file directory

Funetions:

....8......

insure that a least 3 arguments are provided
get list of CIs and latest releases via prs
sort and merge the list of CIs at the latest release with the list
of CIs and versicns to be include and/or exclude (inexfile)
create the list of baseline CIs from the sorted and merged file
create the admin argument list
create a child process via fork
execute admin in the child via execv
wait for admin tec finish
check status of admin
tputs:
error message to stderr if less than 3 input arguments
error message to stderr if prs or sort fail
error message to stderr if fork, execv, or admin fail
a SCCS file for the specified baseline in the baseline directory
for the preoject file
Return codes:
0 => success
-4 => insufficient arguments
16 => sort, prs, or fork problem
X => "x' returned from admin

63

Module: fetchbl
Inputs:
@ 3 list of arguments resulting from a user's
"fetchbl prejid/projfile blname [-e] [-rsid]" request:
- project ID
- project file
- name of the baseline to be retrieved
- optional "retrieve for update" flag
- opticnal "baseline versicn to be fetched" flag plus desired
SID
e the 3CCS file for the desired baseline
Functions:
e insure that a least 2 arguments are provided
insure that each flag argument is correctly specified
create the get argument list
create a child process via fork
execute get in the child via execv
wait for get to finish
check status of get
Outputs:
e error message to stderr if less than 2 input arguments
e error messages to stderr if flag specification errors are detected
¢ error message if fork, execv, or admin fail
e a copy of the requested baseline in the requester's current
directory
¢ Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
X => "x' returned from get

64

Module: updatebl
Inputs:
e a list of arguments resulting from a user's
"ypdatebl projid/projfile blname [-ycomments]" request:
= project ID
- project file
- name of the baseline to be updated
- opticonal comment flag and comments
¢ the copy of the baseline that resides in the administrator's
current directory which will be used to created the new version of
the baseline
Functions:
insure that a least 2 arguments are provided
insure that each flag argument is correctly specified
create the delta argument list
create a child process via fork
execute delta in the child via execv
wait for delta to finish
check status of delta
utputs;
error message to stderr if less than 2 input arguments
error messages to stderr if flag argument specification errcors are
detected
error message to stderr if fork, execv, or delta fail
updated SCCS file for the baseline
Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
X => "x' returned from delta

® ® OO ® 000 @

65

Module: listbl
Inputs:

a list of arguments resulting from a user's
n"listbl preojid/projfile blname [-c] [-d]" request:
- project ID
- project file
- name of the baseline to be listed
- cptional "list baseline change history" flag
- optional "list baseline description" flag
the SCCS file for the specified baseline

Functions:

insure that a least 2 arguments are provided

insure that each flag argument is correctly specified

set both flags if neither was specified in the argument list
{(i.e., produce both a description of the specified baseline and
its change history)

create the prs argument list

ereate a child process via fork

execute prs in the child via execv

wait for prs to finish

check status of prs

Outputs:

error message to stderr if less than 2 input arguments
error messages to stderr if flag specification errors are detected
error message to stderr if fork, execv, or prs fail
the output requested to stdout
Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
X => '"x' returned from prs

Module: rbldesc
Inputs:
e a list of arguments resulting from a user's
"rbldesc projid/projfile blname descfile" request:
= project ID
- project file
- name of the baseline whose description is to be replaced
- file name in which the new description can be found (this
file must reside in the current directory of the
administrator or a complete path name must be specified)
e the SCCS file for the specified baseline
Functions:
insure that a least 3 arguments are provided
create the admin argument list
create a child process via fork
execute admin in the child via execv
wait for admin teo finish
check status of admin
Outputs:
¢ error message to stderr if less than 3 input arguments
e error message to stderr if fork, exeev, or admin fail
e new description in the SCCS file for the specified baseline
¢ Return codes:
0 => success
4 => insufficient arguments
16 => fork failure
X => 'x' returned from admin

® o000 0

66

67

Mcdule: blvdesec
Inputs:
® a list of arguments resulting from a user's
"blvdesc projid/projfile blname [-rsid] [-ycomments]"™ request:
- project ID
= project file
- name of the baseline whose specified SID description is to be
amended
- version flag and SID whose description is to be amended
= ¢ptional comment flag and comments
® the SCCS file for the specified baseline
Functions:
e insure that a least 3 arguments are provided
insure that each flag argument is correctly specified
create the cde argument list
create a child process via fork
execute cdc in the child via execv
wait for ecdec to finish
check status of ede
utputs:
error message to stderr if less than 3 input arguments
error message to stderr if flag specification errcors are detected
error message to stderr if fork, execv, or cdc fail
amended SID descripticn in the 3CCS file of the specified baseline
Return codes:
0 => success
4 => insufficient arguments
8 => argument error(s) detected
16 => fork failure
x => "x' returned from cdc

LA A 20 N el BN 28 BN N N J

68

Appendix D: User's Guide

From a user's perspective, the CI and Baseline Identification System
consists of 16 commands or functions., The functions are divided into
administrative, baseline, and CI functions. Use of the administrative
functions and most of the baseline functions are restricted to the
designated SCM administrator for each file system, The administrative
functions consist of the following:

install

addproj

addfile

updatusr
The baseline functions are:

createbl

fetchbl

updatebl

listbl

rbldesc

blvdesc
The CI commands can be used by all login names in a UNIX file system who
are in the same group as the administrator. CI functions consist ¢f the
following:

createci

fetchei

updateci

listei

rcidesc

civdesc
A UNIX manual page has been prepared for each of the SCM identifiecation
functions. The remainder of this appendix consists of SCM manual pages

in slphabetical order. It should be noted that all non-dash (i.e., non

"_") parameters are positional in each of the SCM functions,

addfile(1) UNIX 3.0 (SCM command) addfile(1)

Name
addfile = create a project file directory under the

specified project ID directory.

SYNOPSIS
addfile projid/projfile

DESCRIPTION
addfile will create a project file for projfile under the
projid directory. Many project files can be created under
each project ID directory.

Use of this command is restricted to the designated SCM
administrator for a file system.

SEE ALSO
install(1), addprej(1), updatusr(1).

69

addproj(1) UNIX 3.0 (SCM command) addpreoj(1)

Name
addproj - create a project ID directory under the SCM
directory of the caller's file system,

SYNOPSIS
addprej prejid

DESCRIPTION
addproj will create a project ID directory for projfile
under the SCM directory of the file system in which the
command is issued. Many project ID directories can be
created under each SCM directery.

Use of this command is restricted to the designated SCM
administrator for a file system.

SEE ALSO
install(1}, addfile(1), updatusr(1).

T0

blvdesc(1) UNIX 3.0 (SCM command) blvdesc(1)

Name
blvdesc - amend the description of the specified version of

a baseline,

SYNOPSIS
blvdesc projid/projfile blname -rsid [-ycomments]

DESCRIPTION
blvdesc will amend the description of the version of the
blname specified by the -r parameter, Comments may be
provided on the command line via the -y parameter. The
caller will be prompted for comments if the -y parameter is
not specified. If -y is specified, it must be the last
parameter on the command line.

Use of this command is restricted to the SCM administrator.

SEE ALSO
createbl(1), fetechbl(1), updatebl(1), listbl(1), rbldesec(1).

71

civdese(1) UNIX 3.0 (SCM command) civdese(1)

Name
civdesc - amend the description of the specified version of
a configuration item.

SYNOPSIS
civdesc projid/projfile ciname -rsid [-ycomments]

DESCRIPTION
civdesc will amend the descripticon of the version of the
ciname specified by the -r parameter. Comments may be
provided on the command line via the -y parameter. The
caller will be prompted for comments if the -y parameter is
not specified. If -y is specified, it must be the last
parameter on the command line.

SEE ALSO
createci(1), fetchei(1), updateci(1), listeci(1), rcidesc(1).

T2

createbl (1) UNIX 3.0 (SCM command) createbl (1)

Name
createbl - create a baseline in a SCM project file.

SYNOPSIS
createbl projid/preojfile blname descfile [iefile]

DESCRIPTION
createbl will create a baseline module for the SCM projfile
under SCM project projid. The description of the baseline
will be taken from file desefile which must be in the
current directory of the caller or be designated by its full
path name. An cptional include/exclude file, iefile, can be
provided to override the normal creation process for a
baseline. Entries in the iefile of the form "i ciname SID"
will include the specified version of the designated CI
instead of the most recent version (SID) for that CI.
Entries in iefile of the form "e ciname™ will exclude that
CI from the baseline entirely.

Use of this command is restricted to the designated SCM
administrator for a file system.

SEE ALSO
fetchbl (1), updatebl(1), 1listbl(1), rbldesc(1), blvdesc(1).

73

createci(1) UNIX 3.0 (SCM command) createci(1)

Name
createci - create a configuration item (CI) in a SCM project
file.

SYNOPSIS
createci projid/projfile ciname descfile [-tTypel [-
vimodulel]

DESCRIPTION
createci will create a CI module in the SCM projfile under
SCM project projid. The desecription of the CI will be taken
from file descfile which must be in the current directory of
the caller or be designated by its full path name. An
optional CI type can be specified via -tType. The caller may
specify that modification request (MR) numbers are required
te update this CI by specifying the -v option. The
validation module (if one is specified) must reside in the
same directory as the system's SCCS commands.

SEE ALSO
fetchei(1), updateci(1), listei(1), recidese(1), civdesc(1),

T4

fetchbl(1) UNIX 3.0 (SCM command) fetchbl(1)

Name
fetchbl - retrieve a release of a baseline for information
purpeses or for subsequent update.

SYNOPSIS
fetchbl projid/projfile blname [-e] [-rsid]

DESCRIPTION
fetchbl will retrieve the latest version of blname from
projfile which is under the projid directory and place it in
the caller's current working directory. The -e parameter
should be used if the subject baseline is to be subsequently
updated, Otherwise the caller will receive a read-only
version of the baseline. The caller may request a specific
versicon of the baseline by specifying the -r parameter
followed by the desired version number (SCCS SID).

Use of this command to retrieve a baseline for subsequent
update is restricted to the SCM administrator. Other SCM
users may retrieve baselines for information purposes.

SEE ALSO
createbl (1), updatebl(1), 1listbl(1), rbldesc(1), blvdesc(1).

75

fetchei(1) UNIX 3.0 (SCM command) fetchei(1)

Name
fetchei - retrieve a release of a configuration item for
information purpeses or for subsequent update.

SYNOPSIS
fetchei projid/projfile ciname [-e] [-rsid]

DESCRIPTION
fetchel will retrieve the latest version of ciname from
projfile which is under the projid directory and place it in
the caller's current working directory. The -e parameter
should be used if the subject CI is to be subsequently
updated. Otherwise the caller will receive a read-only
version of the CI. The caller may request a specific
version of the CI by specifying the -r parameter followed by
the desired version number (SCCS SID).

SEE ALSO
createci(1), updateci(1), listei(1), reidesc(1), civdesc(1).

76

install(1) UNIX 3.0 (SCM command) install(1)

Name
install - install the Configuration Item and Baseline
Identification System under a UNIX file system directory.

SYNOPSIS
install [projid]

DESCRIPTION
install will install the SCM identification system under the
UNIX file system in which the command is issued. A "scm"
directory will be created under the file system directory
and a SCM owner file "adm" will be created under the "scm"
directory. The login name which issues this command will
become the SCM administrator's login name for that file
system. Therefcre, use of this function will identify the
SCM administrator for a file system as well as install the
SCM system in a file system., A project ID directory for
projid will be created under the SCM directory if specified,

The "adm”™ file will be used to restrict access to
administrative and baseline functions to the SCM
administrator once the system has been installed.

SEE ALSO
addproj(1), addfile(1), updatusr(1).

T7

listbl(1) UNIX 3.0 (SCM command) 1listbl(1)
Name
listbl - list the description and/or change history for a
baseline.
SYNOPSIS

listbl projid/projfile blname [-c] [-d]

DESCRIPTION

listbl will list the description and/or change history of
blname which resides in projfile under the projid directory.
The -¢ parameter will cause the change history to be listed.
The -d parameter will cause the description of the baseline
to be listed, If neither is specified, both the description
and change history for the baseline will be listed. If a
"." is specified for blname ,then all baselines in projfile
will be listed.

All SCM users in a file system can use this command.
SEE ALSO

createbl(1), fetchbl(1), updatebl(1), rbldesc(1),
blvdesc(1).

78

listei(1) UNIX 3.0 (SCM command) listei(1)

Name
listci - list the description and/cor change history for a
configuration item,

SYNOPSIS
listei projid/projfile ciname [-c] [-d]

DESCRIPTION
listci will list the description and/or change history of
ciname which resides in projfile under the projid directery.
The -c¢ parameter will cause the change history to be listed.
The -d parameter will cause the description of the CI to be
listed. If neither is specified, both the description and
change histery for the CI will be listed., If a "." is
specified for ciname ,then all CIs in projfile will be
listed.

SEE ALSO
createci(1), fetcheci(1), updateci(1), rcidesc(1),
civdesc(1).

79

rbldesec(1) UNIX 3.0 (SCM command) rbldese(1)

Name
rbldesc - replace the description of a specified baseline.

SYNOPSIS
rbldesc projid/projfile blname descfile

DESCRIPTION
rbldesc will replace the description of blname which resides
in projfile under the projid directory with the desecription
which is contained in file descfile.

Use of this command is restricted to the SCM administrator.

SEE ALSO
createbl(1), fetchbl(1), updatebl(1), listbl(1), blvdesc(1).

80

reidesc(1) UNIX 3.0 (SCM command) rcidese(1)

Name
rcidesc - replace the description of a specified
configuration item.

SYNOPSIS
rcidesc prejid/preojfile ciname desecfile

DESCRIPTION
rcidesc will replace the description of ciname which resides
in projfile under the projid directory with the description
which is contained in file descfile,

SEE ALSO
createci(1), fetchci(1), updateci(1), listci(1), civdesc(1).

81

updatebl(1) UNIX 3.0 (SCM command) updatebl(1)

Name
updatebl - update a baseline which has been previously
retrieved for update (see fetchbl).

SYNOPSIS
updatebl projid/projfile blname [-ycomments]

DESCRIPTION
updatebl will update blname in projfile which resides under
the projid directory. The subject baseline must have been
previously "fetched for update" by the SCM administrator.
The administrator will be prompted for comments unless the
-y parameter is specified. If provided, the -y parameter
must be the last parameter specified in the command line,

Use of this command is restricted to the SCM administrater.

SEE ALSO
createbl(1), fetchbl(1), 1listbl(1), rbldesc(1), blvdesc(1).

82

updateci(1) UNIX 3.0 (SCM command) updateci(1)

Name
updateci = update a configuration item which has been
previously retrieved for update (see fetchci).

SYNOPSIS
updateci projid/projfile ciname [-m[{mrnumber]] [-ycomments]

DESCRIPTION
updateci will update ciname in projfile which resides under
the projid directory. The subject CI must have been
previously "fetched for update" under the login name which
issues the updateci command., If the -v parameter was
specified at the time the CI was created (see createci), the
-m parameter with or without a modification request number
may be specified on the updateci command. The user will be
prompted for MR numbers if the -m parameter is not specified
and -v was specified when the CI was created via createci.
The caller will also be prompted for comments unless the -y
parameter is specified. If provided, the -y parameter must
be the last parameter specified in the command line.

SEE ALSO
createci(1), fetchei(1), listei(1), rcidese(1), civdesc(1).

83

updatusr(1) UNIX 3.0 (SCM command) updatusr(1)
Name
updatusr - update the authorized user list for a specified
CI.
SYNOPSIS

updatusr projid/prejfile ciname {-axxx | -eyyy}

DESCRIPTION
updatusr will change the list of authorized users for a
specified CI. A login name can be added as an authorized
user by specifying the -a parameter followed by the login
name. Similarly, a login name can be removed from the
authorized user list of a CI by specifying -e fellowed by
the login name. More than cne login name can be added
and/or removed from an authorized user list at a time, Each
such request requires a login name preceded by the
appropriate dash parameter.

Use of this command is restricted to the designated SCM
administrator for each file system,

SEE ALSO
install(1), addproj(1), addfile(1).

84

85

Appendix E: Source Code

#include <stdio.h>

f#define INTBYTES 4 /® number of bytes per integer #/
#define MAXPATH 70 /% max path length #/

ffdefine MAXCMD 80 /®* max command length #*/

#define MAXARGS 30 /* max number of SCCS argruments ¥/
f#define MAXLINE 80 /% max number of characters in a line ¥/

/% Define an external name table of legitmated SCM commands.
This table is an array of pointers to the character array
which follows. *®y

char ¥namet[] =

{"install"®,
"addproj",
"addfile®,
"updatusr",
"createcin,
"fetchei"”,
"updateci™,
"listei”,
"reidesc®,
"civdesc®,
"createbl®,
"fetchbl",
"updatebl®™,
mjistbl"™,
"rbldesc™,
"blvdesce",
"invalid"};

/® Define all functions as integer functions
This definition is required in order to define an external branch table.¥®/
int install(),
addproj(),
addfile(),
updatusr(),
createci(),
fetchei () ’
updateci(),
listei(),
rcidesc(),
civdesc(),
createbl(),
fetehbl(),
updatebl (),
listbl() ’

rbldesc(),
blvdesc(),

/®* Define an external branch table for the functional routines

invalid();

86

This table is an array of pointers to the integer functions specified
in the array and defined above,

int

int ®*getenv();

char
char
c¢har
char
¢har
char
char
char
char
char
char
char
char
char
char

(®*brancht[]) () =
{install,
addproj,
addfile,
updatusr,
createci,
fetchei,
updateci,
listei,
rcidesc,
civdesc,
createbl,
fetchbl,
updatebl,
listbl,
rbldesc,
blvdesc,
invalid};

sem[] = "/scm";

mkdir[] = "mkdir ";
em770[] = "chmod TT70 ";
em700[] = "chmod 700 ";
bldir[] = "bldir";
sprefix[] = "s.";

star[] = n#n;
slash[] = "/";
blank[] = " ";
dquote[] = "\oj2";
nline[] = "\n";
home[100];
filesys[20];
logname[50];
owner[50];

int maxfunc, thispid;

char

#xargv[MAXARGS];

int xargce;

/% command names %/

char
char

admin[] = "admin";
get[] = "get";

L7

/% getenv is a function which returns a pointer of int #/

87

char deltal[] = "delta";
char cde[] = "ecde™;
char prs[] = "prs";
/% prs specifications #/

char cprs[] = "\nVersion: :Dt:\nComments: :C:\nMR's: :MR
char eprs2[] = "\nModule: :M: Version: :Dt: \nComments. 5
char dprs[] = "\nModule: :M: Type: :Y¥:\nDescription:\n
rized users:\n :UN:\n";

char bleprs[] = "\nVersion: :Dt:\nComments: :C:";

char bleprs2[] = "\nModule: :M: Version: :Dt:\nComments: :C:";

char bldprs[] = "\nModule: :M:\n Description:\n :FD:\nlList of authorized u
sers:\n :UN:\n";

\n";
:\nMR's: :MR:\n";
tFD:\nlist of autho

/% shell program specicifications %/

char blsort[] = "sort +1 40 -1 -0 t.srtblist t.blist ";
char blprs[] = "prs —d\"z :M: :I:\" -r ";

char blist[] = " >t.blist";

main(argc,argv)

int arge;
char ®*argv[];
{

/% Define other needed variable ¥/
FILE *admfp;

char 1ine[80], adm[80];

int i, sent, offset, re, stremp();
int #pir;

/% Supervisor #/

maxfunc = (sizeof(brancht)/INTBYTES);
ptr = getenv("HOME");
strepy(home,ptr);

ptr = getenv("LOGNAME");
strepy{logname,ptr);

/% determine file system name %/
sent = 1 = 03
while ((sent < 2) && (home[i] 1= "\0'))

{
if (homeli] == '\/')
scnt++;
filesys[i] = home[i];
L14s;
}

filesys[—i] = '"\0';

/% read adm file to determine the administrator name %/

if (stremp(argv[0],"install") != 0)

{

strepy(adm,filesys);

strecat(adm,scm);

strcat (adm,slash);

strcat(adm,"adm");

if ((admfp = fopen(adm,"r")) == NULL)
{fprintf(stderr,"\n"‘*"*'*" ERROR !!*il!i*!*!i\nﬂ);
fprintf{stderr," can not open /filesys/scm/adm.\n");
fprintf(stderr,"#EEEs rsEas s s R e RERR NN R R RRRREN\ 1)
return(16);

}
if (fgets(line,T79,admfp) == NULL)
{fprintf(stderr,"\n¥%EEssxExss FRROR #EEsssssEsss\nn).

fprintf(stderr,"” /filesys/scm/adm is empty.\n");
fprintf(stderr, " #EerEsdsss e s s N e R R NN R RN RRRURRE\ ")
return{16);
}

sscanf(line,"%s",owner);

fclose(admfp);

}

/% reset home to be the file system directory ¥/
strepy(home ,filesys);

/¥ Determine the appropriate funection to call #/
offset = maxfunc;
for (i=z0j;i<maxfunc;i++)
{
if(stremp(argv[0],namet[i]) == 0)
{
offset = i;
1 = maxfune;
}
}
if (offset == maxfunc)

{
/% Bad function name received #/
fprintf(stderr,"\n¥¥#* ExEEnes FRORR HUEEEERESRERE\nn) .,

fprintf(stderr,"Invalid function name encountered. \n");
fprintf(stderr,"Probably an installation error. \n");
fprintf(stderr,"Review your installation procedure. \n");
fprintf(stderr, S s er e us e s Esuun s b eERRunE\nn);
exit(1);

}

/% Call the appropriate function ¥/
rec = (¥brancht[offset]) (—arge,&argv(1]);
exit(re);

}

89

/% END OF MAIN #/

/® "invalid" is a dummy function. It is used as a means to
determine when scmid has been entered with a bad function
name. E/

invalid () {}

cmderr (cmd)

char emd[];

{fprintf(stderr,"\n*s#&#&RE%¥%% ERROR EEREXEERRERE\nn),
fprintf(stderr,"The following command failed:\n");
fprintf(stderr," gs\n",cmd) ;
fprintf(stderr, M s s s s s an e s R ER R RN R RSN\ n) .

}

aout ()
{
{
}
}
/t START OF INSTALL ®/
install(arge,argv)
int arge;
char #*argv([];
{
FILE *admfp;
int i, re;
char path[MAXPATH], cmd[MAXCMD], 1ine[80], adm[801];
strepy(path,home};

/% mkdir /HOME/scm %/

strcat(path,scm);

strepy(emd ,mkdir);

strcat(cmd,path);

rc = system(cmd);

if (re 1=z 0)
{emderr(cemd) g
return(re);

}

/% chmod 770 /HOME/scm %/

strepy(emd,em770);

strcat(cmd,path);

rc = system(emd):

if (re '= 0)
{cmderr(cmd);
return(re);

1

/® create an adm file under the SCM directory ¥/

strcpy(adm,path); /% /HOME/scm #/
strcat{adm,slash};
strecat(adm,"adm"); /® /HOME/scm/adm #/

admfp = fopen(adm,"w");
if (admfp == NULL)

{fprintf(stderr,"\n##¥EsseEnss® ERROR *EUEREXRFEERE\nN),
fprintf(stderr,™ can not open /filesys/scm/adm.\n");
fprintf(stderr " HrEsErEE R R RN RN RRRRRRRRNRRRRNR\)+
return(16);

}

sprintf(line,"%s",logname);
fputs(line,admfp);

/* chmod 700 /HOME/scm/adm %/
strepy(emd,em700);
strcat(cmd,adm);
rc = system(cmd);
if (re 1= 0)

{cmderr(cmd);

return(re);

}

/® mkdir for project 1D #/
if (*argv[0] == NULL)
return(2):
strcat(path,slash);
strcat (path,argv[0]);
strepy(cemd,mkdir);
strcat(emd,path};
rec = system(cmd);
if (rec 'z 0)
{emderr(cmd);
return(re);
b
/% chmod 770 /HOME/scm/projectID ¥/
strepy(emd,em770) ;
streat (emd,path);
rc = system(cmd);
if (rc 1= 0)
{cmderr(emd);
return(re);
}
return(0);
}
/% END OF INSTALL &/

/% START OF ADDPROJ &/
addproj(argec,argv)

int arge;

char *argv[];

90

{

int i, rcg;
char path[MAXPATH], cmd[MAXCMD];

/%® check authorization #/
if (stremp(owner,logname) != 0)

{fprintf(stderr,"\n¥E*#&¥s¥%%% EFRROR W#ENEERREXERE\nn),
fprintf(stderr,” This function is retricted for \n");
fprintf(stderr,"™ use to the administrator.\n"):;
fprintf(stderp MEREEEEREEER RS ERRERRRRRRRRERRRRRRN 1),
return(256);

}

if (®argv[0] == NULL)

{fprintf(stderr ,"#E¥REEXE%a%%% FERROR SEEERSENEEREN\nn).
fprintf(stderr,"Project ID required with addproj\n"):
fprintf(stderr ¥R ssEesa NN R RN RRRRRRRRERRRRN\NV) »
return(i);

}

/% create project ID directory ¥/

strepy(path,home);

strcat (path,scm);

streat(path,slash);

strecat(path,argv[0]);

strepy(emd ,mkdir);

strcat(cemd,path);

rc = system(cmd);

if (re t= 0)
{emderr(cmd);
return(rec);

}

/* chmod 770 /HOME/scm/projid #/

strepy{cmd,em770);

strecat(emd,path);

rc = system(cmd);

if (re 1= O
{cmderr(cmd);
return(rc);
}

return(0);

}

/% END OF ADDPROJ ®/

addfile(argc,argv)

char ¥argv[];

{

int i, re;

char path[MAXPATH], cmd[MAXCMD];

/% check authorization #/
if (stremp(owner,logname) != 0)

{fprintf(stderr,"\n¥*#xsx#x¥8% FERROR S*E#EXIERREX\nN),
fprintf(stderr,"” This function is retricted for \n");
fprintf(stderr," use to the administrator.\n");
fprintf(stderr " ##EEsEERaanaRr b et RRRRRRRRRIN\),
return(256);

}

if (®*argv[0] == NULL)

{fprintf(stderr,"\n¥¥*kExxssxs® FRROR l!l!i&llll!l\nN);
fprintf(stderr,"projectid/filename required for addfile\n");
fprintf(stderr ,MEE i rE R ERasE R N R R SR ERRERRRRRERE\ 0) .
return(ly);

}

/% create file directory #/

strepy(path,home);

strcat (path,scm};

streat(path,slash);

strecat(path,argv[0]);

strepy(cmd ,mkdir) ;

strcat (emd,path);

rc = system(emd);

if (re !'= 0)
femderr{cmd);
return(re);

}

/* set mode to 700 ¥/

strepy(emd,em700);

strecat (emd,path);

rc = system(emd);

if (re 'z Q)
{emderr(cmd) ;
return(re);

}

/* create a baseline directory under /HOME/scm/projid/projfile %/

strcat(path,slash);
strcat(path,bldir);
strepy(emd ,mkdir);
strcat(emd,path);
rc = system(emd);
if (rc !z 0)
{cmderr(cmd) ;
return(re);

}

/® set mode to 700 #/
strepy(emd,em700);

92

strcat(emd,path);
rec = system(cmd);
if (re '= 0)
{emderr{cmd);
return(re);
}
return(Q);

}

updatusr(argc,argv)
char ®*argv[];

int i, rec, pid, wpid, stat;
char path[MAXPATH], emd[MAXCMD];

/® check authorization ¥/

if (strcmp(owner,logname) != 0)
{f‘printf(stderr'“\nlliliiiliii ERROR Illilillilii\nn) :
fprintf(stderr,” This function is retricted for \n");
fprintf(stderr," use to the administrator.\n");
fprintf(stderr, ¥ S EssssEsErsE i su st uRERRNRRERRN\ ")
return(256);
}

stat = 03

if (arge < 3)
fprintf(stderr," updatusr requires at least 3 arguments.\n");
fprintf(stderr " RERERErsRREn R ER N RERNRRRRRERRNN\O") ;
return(d);

}

/%create expanded path #/
strepy(path,home);

streat (path,scm);
strecat{path,slash);
strcat(path,argv[0]);
strecat(path,slash);
strecat(path,sprefix);
strcat(path,argv[1]);

/% set argv[0] to point to "admin® %/
argv[0] = admin;

/% set argv[1] to point to path #/
argv[1] = path;

/® fork to create a child process #/
pid = fork();
if (pid == =1)

93

{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try updatusr again later.\n");
return(16);

}

/® child process => execute SCCS command ¥/
if (pid == 0)
execv("/usr/bin/admin",argv);

/% wait in parent process for child to finish ¥/

while ((wpid = wait(&stat)) != pid);

if (stat != 0)
{f‘printf(stderr’“\nllllllllllll ERROR l‘ill!llllll\n") :
fprintf(stderr,"SCCS admin request failed.\n");
fprintf(stderr '||I§III'Iilll**!i*llll‘*!lllll'll Ilil\nll) 5
return(stat);

}

return(0);

}

createci(arge,argv)
int arge;
char *argv[];

{
int i, j, re, pid, wpid, stat, cnt;

char path[MAXPATH], ¥*sptr, a[10][50];
stat = 0;
cnt = 03

/% check the number of arguments supplied %/
if (arge < 3)

{fprintf(stderr,"\n##&¥sxsxsus FRROR HEFSEXXEERRE\n");
fprintf(stderr,” createci requires at least 3 arguments.\n");
fprintf(stderr, " SREssrsrsse ER e RRRRRRERE\nN),
return(4);

}

/% insure 3rd argument dose not start with "-" #/

if (*argv[2] == '=1)
{fprintf(stderr,"\n%%###&x288% FRROR #EEEXEXRFIEI\nN);
fprintf(stderr,"” 3rd argument must be a filename.\n");
fprintf(stderr ,MEFErEEE RN R R ERRRRERERRINRRERRRE\ ") ;

return(8);

}

/% copy argument pointers to SCCS argrument pointer list ¥/
for (i=0; i<carge ; i++)

xargv([i] = argvl[i];
Xarge = arge;

95

/% check for valid flags in the argument list and expand '-' arguments #/
i = xarge;
rc = j = 03
while (-1 > 0)
if (¥xargv[++j] == '=")
{
sptr = xargv[jl+1;

switch(¥sptr)

{

case 't':
alent][0] = '=';
alent][1] = 'f';

strepy(&alent][2],sptr);
xargv[j] = alent];
cnt++;
break;

case 'v';
alent][0] LA
alent][1] 1"
strepy(&alent][2],sptr);
xargv[j] = alent];
cnt++;
alent][0]
alent][1] Tm?:
alent][2] ™NO';
xargv[xarge++] = alcnt];
cnt++;
break;

default:
fprintf(stderr,"\n***#¥#xx8¥% ERROR #¥EeEEeezzdd\nn),

fprintf(stderr,"” Invalid '-' option encountered\n");
fprintf(stderr 'ﬂ*"'l""""* (XTI EIZZIL 2] "‘l‘*""i\n") ;

Tt
?

rc = 8;
break;
}
}
if (re !'= 0)

return(re);

/% set '-i' and '-n' argruments %/
alent][0]
alent][1] 'ivyg
strepy(&alent1[2],argv(1]);
xargv[xarge++] = alent];

11,
?

cnt++;

alent][0] = '=';

alent][1] = 'n';

alent][2]) = "\0';

xargv[xarge++] = alent];
cent++;

96

/% create arguement list for admin ¥/

strepy(path,home); /% HOME ¥/

strecat(path,scm); /% HOME/scm %/

strcat(path,slash);

strcat(path,xargv[0]); /% HOME/scem/projid/projfile ¥/

strecat(path,slash);
strecat (path,sprefix);
strecat(path,xargv(1]}; /®* HOME/scem/projid/projfile/s.ciname #/

/% set xargv[0] to point to "admin" #/
xargv[0] = admin;

/% set xargv[1] to point to path #*/
xargv[1] = path;

/% put '-t' prefix on descfile #/
alent][0] = '-';

alent][1] e
strepy(&alent1[2],xargv(2]);
xargv[2] = alent];

cnt++;

/% put creator's LOGNAME in the list of authorized users %/
alent][0] = '=';

alent][1] = 'a';

strepy(&alent][2],logname);

xargvxarge++] = alent];

cnt++;

/® fork to create a child process #/
pid = fork();
if (pid == =1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try createci again later.\n");
return(16);
}

/% child process => execute SCCS command #/
if (pid == 0)
execv("/usr/bin/admin” ,xargv);

/% wait in parent process for child to finish #/
while ((wpid = wait(&stat)) != pid);
if (stat 1= 0)

{fprintf(stderr,"\n**sEssssssss ERROR #EREXBERREEEN\n) .
fprintf(stderr,"SCCS admin request failed.\n")};
fprintf(stderr, " SEsssssssrEREEERN ERERRsRRRRRRRIR\N);
return(stat);

}

return{(0};

}

fetchei(arge,argv)

int argce;

char *argv([];

{

int i, j, re, pid, wpid, stat, cnt;

char path[MAXPATH], *®sptr;
stat = 0;

/% check the number of arguments supplied ¥/
if (arge < 2)

{fprintf(stderr,"\n#**EFE%Ex%e ERROR H¥EXEEEBRERE\PN) .
fprintf(stderr,” fetchei requires at least 2 arguments.\n");
fprintf(stderr, " EEtss s sRErEasmus s R R RN EREN RS\),
return(l);

}

/% copy argument pointers to SCCS argrument pointer list #/
for (i=0; i<argec ; i++)

xargv[i] = argv[i];
Xarge = arge;

/% check for valid flags in the argument ¥/
i = xarge;
re = j = 03
while (--i > 0)
if (®#xargvi++j] == '=")
{
sptr = xargvljl+1;
switch(®sptr)
{
case 'e':
break;
case 'r':
break;
default:
fprintf(stderr,"\n#¥%e s sesin ERROR #¥*E¥¥EREEEE\nn),
fprintf(stderr," Invalid '=' option encountered\n");
fprintf(stderr, #FERERRRRRRERRRERRERRRRRRERNNRRRR\),
rc = 8;
break;
1
}
if (rc !'= 0)
return(re);

/% create arguement list for admin ¥/

97

98

strepy(path,home); /% HOME #®/

strcat(path,scm); /% HOME/scm ®/

strcat(path,slash);

strcat(path,xargv[0]); /% HOME/scm/projid/projfile ¥/

strcat(path,slash);
strcat(path,sprefix);
strcat (path,xargv[i1]); /% HOME/sem/projid/projfile/s.ciname ¥/

/% set xargv[0] to point to "get" #/
xargv[0] = get;

/% set xargv[1] to point to path #/
xargv[1] = path;

/® fork to create a child process ¥/
pid = fork();
if (pid == =1)
{fprintf(stderr,”"Can't service fork request at this time.\n");
fprintf(stderr,"Try fetchei again later.\n");
return(16);
}

/% child process =)> execute SCCS command ¥/
if (pid == 0)
execv("/usr/bin/get",xargv);

/%* wait in parent process for child to finish #/
while ((wpid = wait(&stat)) != pid);
if (stat !'= 0)

{fprintf(stderr'"\n'lilill!lifi ERROR .Ill*'l'l'!l\nﬂ);
fprintf(stderr,"SCCS get request failed.\n");
fprintf(stderr.n!!llll!liiilil!l!!lil'!!ll!l!**ii\nn);
return(stat);

}

return(0);

}

updateci(arge,argv)

int argce;

char ¥argv[];

{

int i, j, k, rec, pid, wpid, stat, cnt;

char path[MAXPATH], #sptr, cmnt[200];
stat = 0;

/% check the number of arguments supplied #/

if (arge < 2)
{fprintf(stderr'ﬂ\n*.l’*'l‘l*’ ERROR i'll‘**lll".l‘\nﬂ);

fprintf(stderr," updateci requires at least 2 arguments.\n");
fprintf(stderr,"ERRauEEseaeer e anu e s R RRsERREI\n)
return(4);

}

/® copy argument pointers to SCCS argrument pointer list #/
for (i=0; i<argec ; i++)

xargv[i] = argv([i];
xarge = arges

/% check for valid flags in the argument ¥/
i = xarge;
rec = j = 03
while (--i > 0)
if (*xargvl++j] == '=')
{
sptr = xargv[jl+1;
switch(#sptr)
{
case 'y':
k = j;
strepy(emnt ,xargv[jl);
while (—=i > 0)
{
strcat(emnt,blank);
strcat(cmnt ,xargv[++k1);
xarge——;
}
xargv[j] = cmnt;
xargv[++j] = NULL;
break;
case 'm':
break;
default:
fprintf(stderr,"\n##s##ss%2%% ERROR #%¥RREEREEER\n").
fprintf(stderr," Invalid '-' option encountered\n");
fprintf(stderr 'ﬂ'***i*l’l"llI'I'Ill!’llIlll‘l*l"""ll‘l\nﬂ) :
rc = 8;
break;
}
}
if (re 1= 0)
return(re);

/% create arguement list for admin ¥*/

strepy(path,home); /% HOME #/

strecat (path,scm); /* HOME/scm %/

strecat (path,slash);

strcat(path,xargv[0]); /% HOME/scm/projid/projfile #/

strecat(path,slash)

100

strcat(path,sprefix);
strcat(path,xargv(1]); /% HOME/scm/projid/projfile/s.ciname #*/

/% set xargv[0] to point to "delta" %/
xargv[0] = delta;

/% set xargv[1] to point to path #/
xargv[1] = path;

/* fork to create a child process ¥/
pid = fork();
if (pid == =1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try updateci again later.\n");
return(16);
}

/¥ child process => execute SCCS command ¥/
if (pid == 0)
execv("/usr/bin/delta™,xargv);

/% wait in parent process for child to finish #/

while ((wpid = wait(&stat)) != pid):

if (stat 1= O)
{fprintf(stderr,"\n¥#sesesaxsns ERROR #**SssxuExss\pn),
fprintf(stderr,"SCCS delta request failed.\n");
fprintf(stderr MEREEEER AR RRERRRRRARERRNRRRESRRNE\ 1),
return(stat);
}

return(0);

}

listci(arge,argv)
int arge;
char #argv([];

{
int i, j, re, pid, wpid, stat, cnt, cflag, dflag;

char path[MAXPATH], #sptr, argstr[300], 1[3], e[3], al[3];
stat = 0;
c¢flag = dflag = 0;

/% check the number of arguments supplied %/

if (arge < 2)
{fprintf(stderr,"\n*#*E¥Essans ERROR FAREXEZENEER\pn),
fprintf(stderr,” listci requires at least 2 arguments.\n");
fprintf(stderr,"FEERREERREERRRRSRERERRRRERERERNN\ "),
return(i);
}

101

/% copy argument pointers to SCCS argrument pointer list #/
for (i=0; icarge ; i++)

xargv[i] = argv[i];
xarge = arge:

/% check for valid flags in the argument ¥/
i = xarge;
re = j = 03
while (—i > 0)
if (®*xargvi++j] == '-")
{
sptr = xargv[jl+1;
switch(¥®sptr)
{
case 'e':
cflag
break;
case 'qd!
dflag
break;
default:
fprintf(stderr,"\n*¥#*sE¥¥%¥% ERROR SEREEREEEREE\qN).
fprintf(stderr,” Invalid '-' option encountered\n"):
fprintf(stderr , M#EEEEsss s e s R RN AR RN RRERENRRRER\ D01)
re = 8;
break;

}

1;

13

}
if (re 1=z 0)
return(re);

/® create arguement 1list for admin #/

strepy(path,home); /% HOME %/
strecat (path,scm}; /% HOME/scm ¥/
strecat(path,slash);
strcat (path,xargv(0]1); /% HOME/scm/projid/projfile %/
if (®xargv[1] 1=z *.%)
{

strcat (path,slash);

streat(path,sprefix);

strcat (path,xargv[1]): /% HOME/scm/projid/projfile/s.ciname #/
}

/% set xargv[0] to point to "prs" #/
xargvi0] = prs;

/% set xargv[1] to point to path ¥/
xargv[1] = path;

/% determine output required %/

102

argstr[0) = '-';

argstr[1] = 'd';

if (cflag == dflag)
cflag = dflag = 13

if (dflag == 1)

{
strepy(&argstr[2],dprs);
xargv[2] = argstr;
xargv[3] = NULL;

xarge = 33
/%* fork to create a child process ®/
pid = fork();
if (pid == -1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try listei again later.\n");
return(16);
}
/% child process => execute SCCS command %/
if (pid == 0)
execv("/usr/bin/prs",xargv);

/% wait in parent process for child to finish #/

while ((wpid = wait(&stat)) != pid);

if (stat 1= 0)
{fprintf(stderr,"\n**EseREERe%s ERROR HEEXREEERENE\nn),
fprintf(stderr,"SCCS prs request failed.\n");
fprintf(stderr M FEEaEr e e R e s e E R AR RRER R RRNRERI\)N) &

return(stat);

}

}

if (cflag == 1)
{
1[0] = 't
1[1] = "1';
1[2] = "\0';
e[0] = '-';
e[1] = 'e';
e[2] = "\O';
a[0] = '=1;
a[1] = 'a';
al2] = "\0';

if (dflag == 1)
strepy(&argstr[2],cprs);
else strepy(&argstr[2],cprs2);

xargv[2] = argstr;

Xargc++;
xargv[3] = 1;
Xargc++;
xargv[4] = e;

Xarge++;

103

xargv[5]
xargv[6]
xarge = 63

/% fork to create a child process #/

pid = fork();

if (pid == =1)

{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try listeci again later.\n");
return(16);

}

/%* child process => execute SCCS command %/
if (pid == 0)

execv("/usr/bin/prs®,xargv);

/% wait in parent process for child to finish ¥/
while ((wpid = wait(&stat)) != pid);
if (stat != 0)

{fprintf(stderr,"\n¥¥¥&%¥¥senxr ERROR ®*REREEEEExRI\nn).
fprintf(stderr,"SCCS prs request failed.\n"};
fprintf(stderr, " tEEssssms e R RR R RRRR s NRRRRRRER\ "),
return(stat);

}

aj
NULL;

}

return(0);

}

rcidesc(arge,argv)
int arge:
char *argvi];

{
int i, j, k, re, pid, wpid, stat, cnt;

char path[MAXPATH], #sptr, a[100];
stat = 0;

/% check the number of arguments supplied %/

if (arge < 3)
{f‘printf(stderr ’n\nllllillllli ERROR ll!llllll!!!\nﬂ) *
fprintf(stderr," rcidesc requires at least 3 arguments.\n");
fprintf(stderr,"SEEssrsuinsRnRRR R RERRRNRERRNRN\nn) .,

return(4);

}

/% copy argument pointers to SCCS argrument pointer list #/
for (i=0; i<arge ; i++)

xargv[i] = argv[il;
xarge = argc;

/® create arguement list for admin %/
strepy{path,home}; /% HOME #/
strcat(path,scm); /% HOME/scm ¥/

104

streat(path,slash);

strcat(path,xargv[0]); /* HOME/scm/projid/projfile %/
strecat(path,slash);

strecat(path,sprefix);

strcat(path,xargv[11); /% HOME/scm/projid/projfile/s.ciname #/

/® set xargv[0] to point to "admin" #/
xargv[0] = admin;

/% set xargv{1] to point to path %/
xargv[1] = path;

/% put "_t" prefix on descfile ¥/
a[0] = '-';

af1] = 't';
strepy(&a[2],xargv[2]);

xargv[2] = a;

/% fork to create a child process #/

pid = fork();

if (pid == -1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try rcidesc again later.\n");
return(16);

}

/% child process => execute SCCS command ¥/
if (pid == O)
execv("/usr/bin/admin® ,xargv);

/% wait in parent process for child to finish ®/

while ((wpid = wait(&stat)) != pid);

if (stat != 0)
{fprintf(stderr,"\n¥###s¥xx%¥%% EFRROR REEEEEREXEEE\qn).
fprintf(stderr,"SCCS admin request failed.\n");
fprintf{stderr'"!*’!'*illI!'*lil'l'*!lll'l'liiiil\nﬂ);

return(stat);

}

return(0);
}

civdesc(arge,argv)
int arge;
char ¥argv[]:;

{
int 1, j, k, re, pid, wpid, stat, cnt;

char path[MAXPATH], #sptr, emnt[200];
stat = 0;

/% check the number of arguments supplied %/

if (arge < 3)
{fprintf(stderr,"\n*¥*##E%uxn% FERROR RESEEZEXEERE\n"):

fprintf(stderr,"” civdesc requires at least 3 arguments.\n");
fprintf(stderr,mHtEEtssErEEasRusnsennsn R R RRENNR\n0) .
return(4);

}

/® copy argument pointers to SCCS argrument pointer list ¥/
for (i=0; i<carge ; i++)

xargv[i] = argv[i];
xarge = arge;

/% check for valid flags in the argument ¥/
i = xarge;

rec = j = 0;

while (==i > 0)

if (®*xargv[++j] == '-')
{
sptr = xargv[jl+1;
switch(¥®sptr)
{
case 'y':
k = j;

strepy(emnt ,xargv[jl);
while (==i > 0)
{
strecat (cmnt ,blank);
strecat(emnt ,xargvi++k1);
Xarge——;
}
xargv[j]l = cmnt;
xargv[++j] = NULL;
break;
case 'r':
break;
default:
fprintf(stderr,"\n®*¥#*EREXsE% FRROR SEEEREXEENEE\nn).

fprintf(stderr," Invalid '=' option encountered\n"):
fprintf(stderr ,"#E¥EERaEsERsss R RN p R RN RNRRRRERRE\)+

re = §;
break;
}
}
if (re != 0)

return(re);

/% create arguement list for cdec #/
strepy(path,home) /% HOME #/
strcat(path,sem) ; /% HOME/scm %/

105

106

strcat(path,slash);

strcat(path,xargv[0]); /% HOME/sem/projid/projfile ¥/
strcat(path,slash);

strcat (path,sprefix);

strcat (path,xargv[1]1); /® HOME/scm/projid/projfile/s.ciname #/

/% set xargv[0] to point to "cdc" #*/
xargv[0] = ecde;

/% set xargv[1] to point to path #/
xargv[1] = path;

/% fork to create a child process #/
pid = fork({):
if (pid == -1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try civdesc again later.\n");
return{16);
}

/® child process => execute SCCS command */
if (pid == 0)
execv("/usr/bin/cdc",xargv);

/% wait in parent process for child to finish #/

while ((wpid = wait(&stat)) != pid);

if (stat !'= 0)
{fprintf(stderr ,"\n**E¥sExeRuns® FRROR #EEFERREENFE\n").
fprintf(stderr,"SCCS cdc request failed.\n");:
fprintf(stderr MESsEEasansneRusnssnenRRRRRRRRNRRE\),
return(stat);
}

return(0);

}

createbl(argc,argv)

int arge;

char *argv[]:

{

FILE ¥®inptr, ¥outptr;

int i, re, pid, wpid, stat, x, ¥ptr, cnt;

char path[MAXPATH], ®sptr, cmd[MAXCMD], line[80], 2[10][50];

struct cilist
{ char action;
char ciname[30];
char rel(81];
}s

107

struct cilist last, cur, %sp;

/% check authorization #*/

if (stremp(owner,logname) != 0)
{fprintf(stderr,"\n*¥¥¥¥eauuss ERROR #FEEEEEXRERE\pn).
fprintf(stderr,” This function is retricted for \n");
fprintf{stderr," use to the administrator.\n");
fprintf(stderr’nl!ilil!il!!!!lilllliilIlilllllll*\nn);
return(256);
}

cnt = 0;

/% check the number of arguments supplied %/

if (arge <)
{fprintf(stderr,"\n#*EEEx%a%x% ERROR WEAREERREEREE\nn).
fprintf(stderr,” createbl requires at least 3 arguments.\n");
fprintf(stderr MEFEEEERRRRRRERNRRRERRRRRRRRRRNRR\)
return(4);

}

.
’

/® copy argument pointers to SCCS argrument pointer list #/
for (i=z0; i<arge ; i++)

xargv[i] = argv[i];
xarge = arge;

/% create path for prs execution ¥/

strepy(path,home); /®* HOME #/

strcat(path,sem); /% HOME/scm #/

strcat(path,slash);

strecat(path,xargv[0]); /® HOME/scm/projid/projfile #/

strecat(path,slash);
strcat (path,sprefix);
strcat(path,star); /% HOME/scm/projid/projfile/s.® #/

/* create t.blist file via system %/

strepy(emd,blprs);

strecat(emd,path);

strcat(emd,blist);

rc = system{cmd);

if (re == =1)
{fprintf(stderr’l‘l\nﬁ"*ﬁilllll ERROR ill!l"'il*i\n") H
fprintf(stderr,"” execution of prs failed.\n");
fprintf(stderr, SoEstssanssEEEREss s snsssREnEn\pnn);

return(16);

}

/* sort and merge t.blist with inexfile (3rd arg) to create t,srtblist #/
if (arge >z 4)
{

108

strepy(emd,blsort);

strcat(emd,xargv[3]);

rc¢ = system(cmd);

if (re == =1)
{fprintf(stderr,"\n*¥*¥#ExE524% ERROR HEREERREEXEE\n"),;
fprintf(stderr,” execution of sort failed.\n");
fprintf(stderr’ﬂ!ll!!lll!liIll*l!li!lllli!llliill\nﬂ);
return(16);
}

/% remove t.blist %/

rc = system("rm t.blist");

if (re == =1)
{fprintf(stderr ,"\n¥E¥tsEsEnss WARNING H*¥EEEREEXREE\n");
fprintf(stderr," execution of 'rm t.blist' failed.\n");
fprintf(stderr M HEEEssiss s e e RunRRRRRRRRRARRR\nn),

}

}
else {
rc = system("mv t.blist t.srtblist");
if (re == =1)
{fprintf(stderr,"\n¥*sexsexnes YARNING HERRENEERREE\n");
fprintf(stderr," execution of 'mv t.blist t.srtblist' failed.\n");
fprintf(stderr MEFEsssssrenn s s e s i ARRRRRRRRRRRRE\ ") ¢
}
}

/% create t.blinput from t.srtblist #/
if ((inptr = fopen("t.srtblist","r")) == NULL)

{fprintf(stderr ’H\nl!l§!*§**.! ERROR I"i!*‘l‘!l‘!\n“) -
fprintf(stderr," can not open t.srtblist.\n");
fprintf(stderr,"AEees i SRR RERERRRRRRRNNRERLRRRE\ ") ;
return(16);

}

else {
outptr = fopen("t.blinput","w");
if (outptr == NULL)

{fprintf(stderr,"\n#&ssxesssss ERROR H*¥¥EXEEEERE\nn);
fprintf(stderr," open failed for t.blinput.\n");
fprintf(stderr'ﬂ*'*'illllI!ﬁliiilllllliiill!iiﬂli\nﬂ);
return(16);

}

sp = &cur;
while ((fgets(line,MAXLINE=1,inptr)) 1= NULL)
{

cur.action = '"\0';

strepy(cur.ciname,"\0");

strepy(cur.rel,”\0");

x=sscanf(line,"%c %s %s",&((%*sp).action), (¥sp).ciname, (®*sp).rel);

if ((cur.action == 'i') && (x == 3))

109

last.action = cur.action;
strepy(last.ciname,cur.ciname);
strepy(last.rel,cur.rel);
sprintf(line,"%s ¥s %s",(¥sp).ciname, (¥sp).rel, nline);
fputs(line,outptr);
continue;
}
if ((cur.action == t'e') && (x == 2))
{
last .action = cur,action;
strepy(last.ciname,cur.ciname);
strepy(last.rel,cur.rel);
continue;
}
if ((cur,action == 'z') && (x == 3))
{
rc = stremp(cur.ciname,last.ciname);
if (re == 0)
continue;
else
{
last .action = cur.action;
strepy(last.ciname,cur.ciname);
strepy(last.rel,cur.rel);
sprintf(line,"%s %s %s",(¥*sp).ciname, (¥sp).rel, nline);
fputs(line,outptir);
continue;
}
}
fprintf(stderr,"\n¥¥#sssssss% FRROR ®E¥ERZZRSERR\pn).
fprintf(stderr,” include/exclude entry invalid.\n");
fprintf(stderr,"entry = %s\n",line);
. fprintf(stderr i llIl!IilI'I'IlilllllIiiil!li!!l!li!il\nﬂ) :

stat = 163
continue;
}

}

fclose(inptr);
fclose(outptr);
if (stat == 16)

{fprintf(stderr,"\n¥#sEsssssss FRROR SEEREFSEXERE\nn"),
fprintf(stderr,” execution terminated due to errors.\n");
fprintf(stderr ,"HEdEEEEERaanERaRuusERuERERRRRRRRRE\ "),
return(stat);

}

/% remove t.srtblist #/
re = system("rm t.srtblist");
if (re == =1)

110

{fprintf(stderr, "\n¥e#E&esesss WARNING **#EEREEREsaz\nn).

fprintf(stderr," execution of 'rm t.srtblist' failed.\n");
fprintf(stderr ,MEENER R ERRRRERRRRRRRRRRNRERRNERE\1) .

}

/% recreate path for admin argrument list #/

strepy(path,home); /% HOME ®/

strecat(path,scm); /% HOME/scm %/

strecat(path,slash);

strcat(path,xargv[0]); /% HOME/scm/projid/projfile %/
strcat(path,slash);

streat (path,bldir);

strcat (path,slash);

strcat(path,sprefix);

streat(path,xargv[1]1); /% HOME/scm/projid/projfile/bldir/s.blname #/

/% set xargv[0] to point to "admin" ¥/
xargv[0] = admin;

/% set xargv[1] to point to path #/
xargv[1] = path;

/% put '-t' prefix on descfile #*/
alent][0] = '-';

alent][1] b AL
strepy(&alent][2],xargv[2]);
xargv[2] = alent];

cnt++;

/® put creator's LOGNAME in the list of authorized users #/
afent][0] = '=';

alent][1] = 'a';

strepy(&alent][2],1logname);

xargv[3] = alent];

cnt++;

/% set '=i' and '-n' argruments ®/
alent][0] = -t

alent][1] = 'i';
strepy(&alent][2],"t.blinput™);
xargvixarge++] = alent]:

cnt++;

alent][0] = '=';
alent][1] = 'n';
alent][2] = "\O';
xargv[xarge++] = alent];
cnt++;

/% fork to create a child process #/
pid = fork();

if (pid == =1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try createbl again later.\n");
return(16);

}

/® child process => execute SCCS command ¥/
if (pid == 0)
execv("/usr/bin/admin®,xargv);

/% wait in parent process for child to finish #/
while ((wpid = wait(&stat)) 1= pid);
if (stat != 0)

{fprintf(stderr,"\n¥**&sx%%x%%% ERROR !!!l!!li!lli\nn);
fprintf(stderr,"SCCS admin request failed.\n");
fprintf(stderr MESFEEEERERERREXRRRENERERRRRRENRRR\ ") ;
return(stat);

}

/® remove t.blinput #/

rc = system("rm t.blinput");

if (re == =1)
{fprintf(stderr,"\n¥**xxsEusss YARNING S¥REXREERERE\qn).
fprintf(stderr,"” execution of 'rm t.blinput' failed.\n"};
fprintf(stderr, M s EE e et R RN RRRRRRRERRRRRRNE\ O)

}

return(0);
}

fetchbl (argec,argv)

int argc;

char #*argv([];

{

int i, j, re, pid, wpid, stat, cnt;

char path[MAXPATH], ¥®sptr;
stat = 0;

/% check the number of arguments supplied #/

if (arge < 2)
{fprintf(stderr,"\n¥**E%E2%%%" FRROR ®EEREXREXXIER\n").
fprintf(stderr,"” fetchbl requires at least 2 arguments.\n");
fprintf(stderr,MERusEEEEa s et NEu R RN RN RRRRRRRERE\) &

return(4);

}

/* copy argument pointers to SCCS argrument pointer list #/

for (i=0; i<arge ; i++)
xargv[i] = argv[i];
xarge = argc;

/% check for valid flags in the argument #/
i = xarge;
re = j= 03
while (-=i > 0)
if (¥*xargvl++j] == '=')
{
sptr = xargv[jl+1;
switch(®sptr)
{
case 'e';
/® check authorization #/
if (strcmp(owner,logname) != 0)

{fprintf(stderr,"\n*********** ERROR ll!!llliiil&\nn);

fprintf(stderr,"” This function is retricted for \n"};
fprintf(stderr," use to the administrator.\n");
fprintf(stderr’“!!l’lll‘i!llllillllIlilllil!lll!!\n");
return(256);
}
break;
case 'r!
break;
default:
fprintf(stderr.“\n!!'.'.***!' ERROR """"*"l\nﬂ);
fprintf(stderr,"” Invalid '-' option encountered\n");
fprintf(stderr,"FRERasEsREEnNE R ERERARERNRNRRERRR\n");
rc = 8;
break;

}
}
if (rc != 0)
return(rc);

/* create path for admin argrument list #/

strepy(path,home); /% HOME #/

strcat(path,scm); /% HOME/scm ¥/

strecat (path,slash);

strcat(path,xargv[0]); /% HOME/scm/projid/projfile #/

strcat(path,slash);
streat(path,bldir);
strcat(path,slash);
strcat (path,sprefix):

112

strecat(path,xargv[1]1): /% HOME/scm/projid/projfile/bldir/s.blname

/% set xargv[0] to point to "get" ¥/
xargv[0] = get;

L4

113

/% set xargv[1] to point to path ¥/
xargv[1] = path;

/% fork to create a child process #/
pid = fork():
if (pid == -1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try fetchbl again later.\n"};
return(16);
}

/% child process => execute SCCS command #/
if (pid s 0)
execv("/usr/bin/get",xargv);

/% wait in parent process for child to finish #/
while ((wpid = wait(&stat)) != pid);
if (stat != 0)

{fprintf(stderr,"\n**#¥X#EREREE FRROR SHEEXEXAERERE\nn).
fprintf(stderr,"SCCS get request failed.\n");
fprintf(stderr, " #EsEEssr s R R R s sRRRRRRRRRERRRRRRI\ V) ;
return(stat);

}

return(0);

}

updatebl (argc,argv)

int arge;

char ®argv[];

{

int i, j, k, re, pid, wpid, stat, cnt;

char path[MAXPATH], #sptr, cmnt[200];

/% check authorization ¥/
if (strcmp(owner,logname) != 0)

{fprintf(stderr ,"\n¥*##EX¥E#RE% FRROR #*#ERRRXFERFF\nn) .
fprintf(stderr,” This function is retricted for \n");
fprintf(stderr,” use to the administrator.\n");
fprintf(stderr.nl!!!!llll!llllliiiii!l*!li!llllll\nn):
return(256);

}

stat = 0;

/% check the number of arguments supplied #/
if (arge < 2)
{fprintf(stderr,"\n®%#xsssExss ERROR ®EREEREZNRERE\nn).

fprintf(stderr,” updatebl requires at least 2 arguments.\n");
fprintf(stderp,MFEEEEsEE SR auEE R iR NN RERRRRRRUREN\ V) 4

return(i);

}

/% copy argument pointers to SCCS argrument pointer list #/

for (i=0; i<arge ; i++)
xargv[i] = argv[i];
xarge = argc;

/% check for valid flags in the argument ¥/
i = xargce;
rec = j = 03
while (--i > 0)
if (®xargv{++j] == '=")
{
sptr = xargv[jl+1;
switch(¥®sptr)
{
case 'y':
k = 33
strepy(emnt ,xargv[jl);
while (—=i > 0)
{
strcat(emnt,blank);
strecat(emnt ,xargvl++k]);
Xarge=--;
}
xargv(j] = emnt;
xargv[l++j] = NULL;
break;
default:

fprintf(stderr,“\n**’*i*'*"' ERROR *".""'l"'\n") H

fprintf(stderr,"” Invalid '=' option encountered\n");
fprintf(stdery , " EEEEEERERERERNRRAERRERNRRARNRRERN\ 1),

re = 8;
break
1
}
if (re !'= 0)
return(re);

/% create path for admin argrument list ¥/
strepy(path,home); /% HOME #/
strcat(path,sem); /® HOME/scm #/
strcat(path,slash);

strcat(path,xargv([0]): /% HOME/scm/projid/projfile #/

strcat(path,slash);
strcat(path,bldir);
strcat(path,slash);
strcat(path,sprefix);

114

strcat(path,xargv[1]); /% HOME/sem/projid/projfile/bldir/s.blname %/

115

/% set xargv[0] to point to "delta" #/
xargv[0] = delta;

/% set xargv[1] to point to path #/
xargv[1] = path;

/% fork to create a child process ¥/

pid = fork();

if (pid = —1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try updatebl again later.\n");
return(16);

}

/% child process =)> execute 3SCCS command #*/
if (pid == 0)
execv("/usr/bin/delta” ,xargv);

/% wait in parent process for child to finish #/
while ((wpid = wait(&stat)) != pid);
if (stat != 0)

{fprintf(stderr,"\n#*#sssunssss ERROR H*FEEEBEEEE\n"),
fprintf(stderr,"SCCS delta request failed.\n");
fprintf(stderr,"SREENERARRAREERRERNRERRRRRNRRRRRE\ON) »
return(stat);

}

return(0);

}

listbl(argc,argv)

int arge;

char #®argv[];

{

int i, j, rec, pid, wpid, stat, cnt, cflag, dflag;

char path[MAXPATH], ®sptr, argstr[300], 1[3], e[3], al3];
stat = 0;
cflag = dflag = 0;

/% check the number of arguments supplied ¥/

if (arge < 2)
{fprintf(stderr‘ﬂ\nliiiiiiilii ERROR llliiillllli\nﬂ) :
fprintf(stderr,” listbl requires at least 2 arguments.\n");
fprintf(stderr MEdsErE s s R s s RN R NRERRRNRRRRRRRN\ "),

return(4);

}

/% copy argument pointers to SCCS argrument pointer list ¥/
for (i=0; i<arge ; i++)

116

xargv[i] = argv[il;
Xarge = arge;

/* check for valid flags in the argument #/
i = xarge;
re = j = 03
while (==i > 0)
if (*xargv[++j] == '=")

|

sptr = xargv[jl+1;

switch(¥sptr)

case 'd':
dflag = 1}
break;
default:
fprintf(stderr,"\n*#*¥#¥%#¥#%% ERROR EEFEXEXFXERI\nn) .
fprintf(stderr," Invalid '-' option encountered\n");
fprintf(stderr , " #EEEsrEssner R aRRa R s RRERRERRI\n01)
rc:B;
break;
}
}
if (re 1= O)
return(rc);

/% greate path for admin argrument list #/

strepy(path,home); /% HOME #/
strcat (path,scm); /®* HOME/scm ¥/
strcat(path,slash);
streat (path,xargv[0]); /% HOME/scm/projid/projfile #/
strcat(path,slash);
strecat (path,bldir); /® HOME/scm/projid/projfile/bldir ®/
if (¥xargv[1] 1= '.")
{

strecat(path,slash);

strecat(path,sprefix);

strcat(path,xargv(1]); /% HOME/scm/projid/projfile/bldir/s.blname %/
}

/® set xargv[0] to point to "prs" ¥/
xargv[0] = prs;

/% set xargv[1] to point to path %/
xargv[1] = path;

/% determine output required ¥/

17

argstr[0] = '=';
argstr{1] = 'd’;
if (cflag == dflag)
cflag = dflag = 1;
if (dflag == 1)
{

strepy(&argstr[2],bldprs);
xargv[2] = argstr;
xargv[3] = NULL;
xarge = 3;
/® fork to create a child process ¥/
pid = fork();
if (pid == =1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try listbl again later.\n");
return(16);
}
/® child process => execute SCCS command #/
if (pid == 0)
execv("/usr/bin/prs",xargv);

/% wait in parent process for child to finish #/

while ((wpid = wait(&stat)) != pid);

if (stat != 0)
{fprintf(stderr,"\n'*""*'***' ERROR llll!i!l!!!!\nn);
fprintf(stderr,"SCCS prs request failed.\n");
fprintf(stderr,"liliilllli!lii'**!ll!!i!li!l!ll!l\n");

return(stat);

}
}
if (cflag == 1)

{

100] = '-';

1[1] = '1';

1[2] = "\0';
e[0] = '=-";

e[1] = 'e';

e[2] = '"\0';
al0] = '-";

a[1] = 'a';

al2] = "\0';

if (dflag == 1)
strepy(&argstr[2],bleprs);

else strepy(&argstr[2],blcprs2);

xargv[2] = argstr;

Xarge++;
xargv[3] = 1;
Xarge++;
xargv[4i] = e;

Xarge++;

}

xargv[5] = a3
xargv[6] = NULL;

xarge = 63

/% fork to create a child process ¥/

pid = fork();

if (pid == =1)

{fprintf(stderr,"Can't service fork request at this time.\n"};
fprintf(stderr,"Try listbl again later.\n");
return(16);

}

/% child process => execute SCCS command ¥/
if (pid == 0)

execv("/usr/bin/prs",xargv);

/% wait in parent process for child to finish #/
while ((wpid = wait(&stat)) != pid);
if (stat 1= 0)

{fprintf(stderr,"\n*#&E&Es¥x%%% ERROR H*SFERSEZERE¥\nn).
fprintf(stderr,"SCCS prs request failed.\n");
fprintf(stderr, " S e S E RN A RFRRRRRRRRRESERRRRI\ON) .
return(stat);

}

return(0);

}

rbld
int

esc{argec,argv)
arges

char ®argv(];

{
int

i, j, k, re, pid, wpid, stat, cnt;

char path[MAXPATH], ®sptr, a[100];

/¥ check authorization %/

if (
{

}
stat

stremp(owner ,logname) != 0)
fprintf(stderr,"\n*##E¥¥*¥%%% FRROR HEEEEERAZTREI\nn):
fprintf(stderr," This function is retricted for \n");
fprintf(stderr," use to the administrator.\n"):
fprintf(stderr, " FEtEEREEREERERERRRERRRRRERERRERRE\NN)

return(256);

= 03

/% check the number of arguments supplied #/

if (
{

}

arge < 3)
fprintf(stderr,"\n#**&#¥E%s8s ERROR SEEREXRESEEE\nn),

fprintf(stderr," rbldesc requires at least 3 arguments.\n");
fprintf(stderr ,"EsssrsEssEne R R R RN R ERRRRRRERRRRE\ON) »

return(ld);

18

119

/% copy argument pointers to SCCS argrument pointer list ¥/
for (i=0: i<arge ; i++)

xargv[i] = argvl[i]l:
xargc = arge;

/% create path for admin argrument 1ist #/

strepy(path,home); /% HOME #®/

strecat (path,scm}; /% HOME/scm ¥/

strecat(path,slash);

strcat(path,xargv[0]); /® HOME/sem/projid/projfile #/

strcat(path,slash);

strcat (path,bldir);

streat(path,slash);

streat (path,sprefix);

strecat (path,xargv[1]); /® HOME/scm/projid/projfile/sbldir/s.blname #/

/%® set xargv[0] to point to "admin" %/
xargv[0] = admin;

/% set xargv[1] to point to path ¥/
xargv[1] = path;

/% put "-t" prefix on descfile ®/
8[0] = '-';

al1] = *t';
strepy(&al2],xargv(2]);

xargv[2] = a;

/® fork to create a child process #/

pid = fork();

if (pid == -1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try rbldesc again later.\n");
return{16);

}

/% child process => execute SCCS command #/
if (pid == 0)
execv("/usr/bin/admin",xargv);

/% wait in parent process for child to finish %/

while ((wpid = wait(&stat)) != pid);

if (stat != 0)
{fprintf(stderr,"\n#¥#E&xxxusss ERROR ERWEEEENEZRE\n");
fprintf{stderr,"SCCS admin request failed.\n");
fprintf(stderr ,"#FREEEEEssss s s RN RERRRRRRRRRRNRI\ON) ;

return(stat);
}
return(0);

120

}

blvdesc(argc,argv)

int arge;

char *argv[]:

{

int i, j, k, rc, pid, wpid, stat, cnt;

char path[MAXPATH], #sptr, cmnt[200];

/% check authorization %/

if (strcmp(owner,logname) != 0)
{fprintf(stderr,"\n®###sEszexs FRROR #*Eseusyssss\nn),
fprintf(stderr,"” This function is retricted for \n");
fprintf(stderr," use to the administrator.\n");
fprintf(stderr, M EsassEsssEnEssa s Ru e R s sE\nn);
return(256);
}

stat = 0;

/* check the number of arguments supplied ¥*/
if (arge < 3)

{fprintf(stderr,"\n#¥#¥£*¥¥%8% ERROR FERREREREFRE\n");
fprintf(stderr," blvdesc requires at least 3 arguments.\n");
fprintf(stderr MEsEssssssERanxERnm iR ERRREReunE\nn)
return(ld);

}

/% copy argument pointers to SCCS argrument pointer list #/
for (i=0; i<arge ; i++)

xargv[i] = argvli]l;
xarge = argc;

/% check for valid flags in the argument ¥/
i = xarge;
re = j = 03
while (=-=i > 0)
if (#xargvl++j] == '=")
{
sptr = xargv[jl+1;
switch(®sptr)
{
case 'y':
k = j;
strepy(emnt ,xargv[jl);
while (—i > 0)
{
strcat (cmnt,blank};
strcat(cmnt,xargvl++k]);
Xargc==;

121

}
xargv[j] = cmnt;
xargv[++3j] = NULL;
break;
case 'r':
break;
default:
fprintf(stderr,"\n¥##E¥%E¥u%% FRROR FEFEREEIEREE\nn),

fprintf(stderr," Invalid '-' option encountered\n");
fprintf(stderr M Esrssss e RRE RN R RRRRRNRRRRRI\) &

rc = 8;
break;
}
}
if (re 'z 0)

return(re);

/® create path for admin argrument list #/

strepy(path,home); /% HOME #/

strcat(path,scm); /% HOME/scm #/

strcat(path,slash);

strcat(path,xargv[0]); /% HOME/scm/projid/projfile ¥/

streat(path,slash);

strcat(path,bldir);

strcat(path,slash);

strecat (path,sprefix);

streat (path,xargv[1]); /* HOME/scm/projid/projfile/bldir/s.blname #/

/% set xargv[0] to point to "cde" #/
xargv[0] = cdc;

/% set xargv[1] to point to path ¥/
xargv[1] = path;

/% fork to create a child process #/
pid = fork();
if (pid == =1)
{fprintf(stderr,"Can't service fork request at this time.\n");
fprintf(stderr,"Try blvdesc again later.\n");
return(16);
}

/%® child process => execute SCCS command #/
if (Pid == 0)
execv("/usr/bin/cde" ,xargv);

/% wait in parent process for child to finish #/
while ((wpid = wait(&stat)) != pid);
if (stat != 0)

122

{fprintf(stderr,"\n**##¥E¥EE¥%% ERROR WHAREEEREREE\nn),
fprintf(stderr,"SCCS cdec request failed.\n");
fprintf'(stderr ’"!'.’"l‘l’*""’*""'**".!'**l**l‘.\n") ;
return(stat);

1
return{0);

1

A CONFIGURATION ITEM AND BASELINE
IDENTIFICATION SYSTEM
FOR SOFTWARE CONFIGURATION MANAGEMENT

by

WILLIAM H. WILSON, IV.

B.S., Virginia Polytechnic Institute and State University, 1970
M.B.A. University of North Carolina at Greensboro, 1983

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

Software Configuration Management (SCM) is one of the relatively new
product assurance disciplines which have grown in response to the many
software failures of the 1970's. S3CM is concerned with the consistent
labeling of software elements and with tracking and controlling the
evolution of all software elements within a software system throughout
its 1life cycle. The primary goal is the development of software which

exhibits product integrity.

A survey of current SCM literature was undertaken. Emphasize was placed
on 1literature which explores the nature of SCM thought and literature

which describes the implementation of SCM tools.

A SCM configuration item and baseline identification system was
developed which can be used to identify and control the evolution of
text oriented configuration items, such as specifications, source code,
and data definitions. The system also supports the establishment of
configuration baselines at critical points during a configuration's life
cycle. Facilities were provided for the identification of individual
configuration items and baselines, establishing and enforcing access
privileges, maintenance of multiple versions of configuration items and

baselines, and controlling configuration item and baseline evolution.

The system was designed to be used by other development tools (e.g.,
activity specification tools, data definition tools, etc.) as the

vehicle through which text data is stored and retrieved.

