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ABSTRACT

Software architectures—abstract interrelation models which decompose complex artefacts into modular func-
tional units and specify the connections and relationships among them—have become an important factor in
the development and maintenance of large scale, heterogeneous, information and computation systems. In
system development, software architecture design has become a main starting point, and throughout the
life-cycle of a system, conformance to the architecture is important to guarantee a system’s integrity and
consistency.

For an effective use of software architectures in initial development and ongoing maintenance, the interre-
lation models themselves have to be clear, consistent, well-structured, and—in case substantial functionality
has to be added, reduced, or changed at any stage of the life-cycle—flexible and manipulable. Further, en-
forcing the conformance of a software artefact to its architecture is a non-trivial task. Implementation units
need to be identifiable and their association to the abstract constructs of the architecture has to be maintained.
Finally, since software architectures can be employed at many different levels of abstraction, with some ar-
chitectures describing systems that span over multiple different computing platforms, associations have to be
flexible and abstractions have to be general enough to capture all parts and precise enough to be useful.

An efficient and widely used way to employ software architecture in practice are middleware-based com-
ponent architectures. System development within this methodology relies on the presence of a service layer
called middleware which usually resides between operating system (possibly spanning over multiple oper-
ating systems on various platforms) and the application described by the architecture. The uniform set of
logistic services provided by a middleware allows that communication and context requirements of the func-
tional units, called components, can be expressed in terms of those services and therefore more shortly and
concisely than without such a layer. Also, component development in the middleware context can focus on
high-level functionality since the low-level logistics is provided by the middleware.

While type systems have proved effective for enforcing structural constraints in programs and data struc-
tures, most architectural modeling frameworks include only weak notions of typing or rely on first-order logic
constraint languages instead. Nevertheless, a consequent, adherent, use of typing can seamlessly enforce a
wide range of constraints crucial for the structural integrity of architectures and the computation systems
specified by them without the steep learning curve associated with first-order logic. Also, type systems scale
better than first-order logic both in use and understandability/legibility as well as in computational complex-
ity.

This thesis describes component-oriented architecture modeling with CADENA and introduces the CA-
DENA Architecture Language with Meta-modeling (CALM). CALM uses multi-level type systems to specify
complex interaction models and enforce a variety of structural properties and consistency constraints rele-
vant for the development of large-scale component-based systems. Further, CALM generalizes the notion
of middleware-based architectures and uniformly captures and maintains complex interrelated architectures
integrated on multiple, differing, middleware platforms. CADENA is a robust and extensible tool based on
the concepts and notions of CALM that has been used to specify a number of industrial-strength compo-
nent models and applied in multiple industrial research projects on model-driven development and software
product lines.
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INTRODUCTION

“Divide each difficulty into as many parts as is feasible and necessary to resolve it”

— René Descartes. Le Discours de la Méthode.

1.1 MOTIVATION

Maintaining long-lived, large, distributed, information and computation systems involves a number of chal-
lenges. Overall system functionality must be carefully decomposed and arranged into a modular architecture
with precisely negotiated interfaces and a clear, hierarchical, organization. Requirements from multiple stake-
holders competing in various dimensions such as separate domains of expertise (e. g., hardware interfacing,
network, application logic), different levels of abstraction (e. g., supervision, team management, implemen-
tation), individual stages of development (e. g., integration of legacy-code, new implementation) etc., have to
be systematically reconciled while incrementally adding concerns to the system architecture, a process which
continually grows more and more complex throughout the system evolution. Architecture models have to be
accurate and robust, i. e., their elements have to faithfully reflect capabilities of the system’s execution en-
vironment, cater to the abstractions used by various domain experts, and adapt to architecture refinement,
globally as well as in detail, while maintaining overall integrity.

The architectural integrity and internal consistency of long-lived, large-scale, projects face many threats,
starting with initial design and continuing throughout the system life-cycle. Industrial experience reports
indicate a serious need for tools and processes that (a) enable concise, rigorous specification of architectural
constraints and (b) provide mechanical checking of conformance to architecture constraints and ensure con-
sistency between various architecture aspects [11, pp. 477-478]. This is even more the case in the context of
a product line approach, where the degree of cost savings is directly tied to the ability to constrain and impose
discipline on architecture elements to increase their potential for re-use over multiple related projects.

At the programming language level, type systems have proven to be a very effective paradigm for enforc-
ing constraints on interaction of system units (e. g., class/method types must be compatible with their use), for
ensuring that data structures conforming to certain structural invariants (e. g., tree shaped, list shaped), and for
characterizing requirements for converting data between different formats. While previous work on architec-
tural definition languages (ADL) and meta-modeling frameworks (frameworks for creating domain-specific
modeling languages and environments) has made significant strides toward supporting higher-level archi-
tecture development tasks involving specification of architecture units (e. g., components and subsystems),
composition of those units, and interactions between units, many existing ADLs use weak type systems and
incorporate only limited forms of type checking. Some existing frameworks that have been designed for
architecture exchange [26, 13] defer type checking to other tools or provide external constraint languages
[64, 51] based on first-order logic that, while powerful, are sometimes difficult for engineers to understand,
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require verbose definitions to capture simple forms of type checking, become unwieldy and hard to man-
age as systems scale. Finally, existing ADLs often fail to support several important capabilities needed for
large-scale system development including the ability to (a) specify domain or platform specific languages
for building open-ended collections of component and interface types, (b) incorporate multiple component
models within a single system (as often needed when multiple systems are integrated to form a “system of
systems”, or for describing multiple levels of abstraction within a system), (c) specify relationships between
architectural layers in multi-layered systems, and (d) flexibly combine and extend architectures as system
development unfolds.

This work introduces the CADENA Architecture Language with Meta-modeling CALM, a type-centric
framework for rigorous meta-modeling and architecture definition of component-oriented systems. CALM
enables rapid specification and scalable checking of many common forms of architectural interrelation con-
straints that occur in the context of large-scale system development. In detail, this thesis contains the follow-
ing contributions.

• An intuitive, example-based, description of the nature of the information and computation systems
targeted by CALM, together with a semi-formal overview of the concepts and design rationale of
CALM and a summary of CALM’s multi-tiered (meta-) modeling approach;

• An in-depth, formal presentation of the core concepts of CALM, together with a specification of
CALM’s language and type-based interrelation semantics, and a rigorous, mechanically leverageable
architecture meta-model that can specify industrial component models, component middleware plat-
form capabilities, and domain-specific component modeling languages;

• An example-driven illustration of how CALM can capture widely used middleware-based component-
oriented architecture frameworks and concrete architectures within them, with an illustration on how
these architectural styles can be enriched with new, useful, abstractions; and

• A detailed presentation of how CALM can be used to interrelate heterogeneous, complex, architecture
models from different styles on different levels of abstraction and different layers of functionality
and to form traceable integration of planning-level abstractions and implementation-level artefacts,
generalizing the concept of middleware platforms.

CALM concepts are implemented in an IBM-Eclipse-based framework called CADENA, a robust and ex-
tensible environment for modeling and development of component-based systems that is freely available for
download [7].

The generality and expressiveness of CALM has been demonstrated by using it to capture the definition of
a number of realistic component models including Enterprise Java Beans (EJB) [45], the CORBA Component
Model (CCM) [54], Boeing’s PRiSM component model, and the nesC sensor network component model
[28, 29] (see also chp. 5). Further, the suitability of CALM/CADENA to integrate into industrial product-
development process standards (see also [11]) has been discussed in previous works [8]. An earlier version
of CADENA was used by Boeing engineers to develop the mission-control software (built using Boeing’s
PRiSM framework) for two SCAN Eagle unmanned aircraft flown in the DARPA PCES Capstone Demo at
White Sands Missile Range [12]. Also, complete end-to-end model-based development environments for
the OpenCCM Java-based CCM implementation and for the nesC component model for highly distributed,
embedded, systems have been realized and are available in the CADENA distribution.

The current version of CADENA/CALM has been partially funded and used by Lockheed Martin Ad-
vanced Technology Laboratory (ATL) to evaluate the effectiveness of advanced architecture tools as part
of their internally funded Software Technology Initiative that seeks to develop innovative technologies for
tackling challenges in large-scale system design and integration.

1.2 THE CALM/CADENA PROJECT

1.2.1 BACKGROUND

The CADENA project forked from an approach to apply advanced model checking techniques to industrial-
size aviation control systems. From the architecture of the aviation software enhanced with behavioral infor-
mation, a model would be extracted and fed into the model checker. The model checker would then verify
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simple temporal properties against the model that were identified to be crucial based on the experience of
the industry’s developers, yet extremely hard to verify without tool support. Finally, a refinement relation
between the architectural model and the actual code would guarantee that the verified properties persist.

To make the model checking feasible for large scale software systems, models of the recurring parts of
the software model (for example the communication infrastructure) would be expressed in terms of highly
optimized extensions of the model checker. With the modular model checking framework Bogor [5], which
is also developed at Kansas State University, the approach could rely on a model checking engine which
allows to easily introduce the complex extensions. A particular success was the development of the quasi-
cyclic checking which exploited the fact that in periodic real-time contexts it is often possible to restrict the
state-space to be explored by the model checker to a single hyper-period [17]. Additional value was added
by introducing mode-dependent (i. e., state-dependent) slicing and dependence analysis [32].

CADENA 1 was developed in this context to integrate the various analysis and checking methodologies
into a single tool which allows to specify a software architecture with additional behavioral information which
can be mechanically leveraged [15, 31, 9]. To be useful for a wide variety of systems, the open standard of the
CORBA Component Model (CCM) [54] was chosen as a basis for describing the architectures. Nevertheless,
it quickly became apparent that a fixed architecture description language cannot feasibly capture even a small
variety of real-life systems. As a patchwork solution in CADENA 1 the discrepancy between standard CCM
and the actual industrial system was bridged with a “project” file specifying amendments to CCM properties.

To address the problem of capturing various kinds of system architectures in a uniform, tractable, way,
the Cadena Architecture-description Language with Meta-Modeling (CALM) was developed to be the con-
ceptual basis of CADENA 2, a completely re-worked architecture specification framework. Adding a meta-
modeling layer on top of the existing two step process of first defining elements and then assembling them
into systems provided the notion of the architectural style. The architectural style as a manipulable modeling
tier turned out to be an extremely helpful concept to enable many important transformations and interrelations
of architectural models and to make them accessible to refinement, comparison, and interaction.

1.2.2 AIMS AND SCOPE

CALM and CADENA strive to capture a wide variety of component-oriented, middleware-based, software
architectures. Component-oriented means that the targeted architectures are built in a modular way around
well defined, identifiable, units called components which abstract the system’s functionality. Middleware-
based means that some specific, standardized, (and possibly complex) infrastructure is assumed to exist for
each architecture that glues the components together and enables their functionality and cooperation. An
architecture captures the topology and interrelations of the modeled system, which means it specifies which
component uses which infrastructure service, which components interact with each other, etc.. On the other
hand, an architecture is not primarily meant to capture behavioral or procedural aspects of a component
oriented system.

Consequently, CALM has no operational semantics in the traditional sense (i. e., defining run-time execu-
tion behavior, state transitions, or data manipulation). Rather, the semantics of a CALM artefact are a precise
network of interrelations of entities with declared names, gradually built by interpreting the CALM syntax.
Any operational semantics has to be added to CALM in form of model interpreters. Model interpreters can
work on the interrelations or on attributes of the elements within CALM, they can be abstract behavioral
descriptions added on top of CALM and executed within CADENA’s plugin system, or they can be concrete
implementations outside the scope of CALM associated to CALM architectural elements. From the per-
spective of CALM, such model interpreters are simply additional, more complex attributes to architectural
elements.

1.3 CONTRIBUTIONS

The development of CADENA and CALM rested on the shoulders of many people. The initial design team
included also Adam Childs, Jesse Grenwald, and Matt Hoosier, who all co-authored most of the CALM-
related publications.

Adam Childs contributed many core ideas to the initial design based on his extensive studies on existing
component frameworks, but later left the team to work in Chicago. Jesse Greenwald did the main software
engineering on CADENA and produced substantial amounts of the code. He also proposed the use of the
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Eclipse Modeling Framework (EMF) [19] (see sec. 4.5). The three-tier design of CALM and an initial stab
towards style refinement was a group achievement, from there I created the CALM formalization, syntax,
and formal semantics (deviating in many aspects from the initial design which was too focused on parallels
to object oriented programing). Jesse Greenwald, Matt Hoosier, and Adam Childs developed and maintained
CADENA, my own contributions to the tool were mostly design, concepts, and feature layout. Currently,
CADENA is maintained by Todd Wallentine.

Some examples in this work are taken from a publication co-authored by my advisor Dr. John Hatcliff
[35]. Together with [8], [35] is the main foundation of the ideas presented here, nevertheless the thesis goes
into far more detail, expands the concepts, and wherever parallels are found, the text is completely re-written.

Work I performed during my studies (after completing the Diplom degree at Saarbrücken University)
which is not directly relevant to the concepts presented here includes original work on modeling middleware
infrastructure in PROMELA for the model checker dSPIN [14] (see also sec. 1.2.1). During the work with the
CORBA Component Model, I developed a correlation framework for CCM which allows to optimize network
traffic and enables a smarter typing for components [36]. The paper will appear in an extended version also in
the International Journal on Software Tools for Technology Transfer (STTT). Unfortunately, since CCM does
not allow to easily introduce additional abstractions into the platform definition, the correlation model was
only implemented inside CADENA 1 and in the KSU Event Channel implementation developed at Kansas
State University by the Networking Research group under Dr. Singh, but did by far not receive the same
recognition in practice as it did in publication. One major benefit of the CALM specification framework is
that additional abstractions which are not part of an original platform but which allow clearer architecture or
strong performance optimization can now be integrated easily.

1.4 ORGANIZATION OF THIS THESIS

This work is organized as follows. Chapter 2 introduces three simple examples of component-oriented ar-
chitectures which informally outline (but not fully cover) the range of systems which CALM targets. The
examples are interconnected in the sense that they each represent a view onto the same system on different
levels of detail and abstraction. They reappear separately or together and among other examples throughout
the thesis to illustrate various details of CALM or CADENA.

Chapter 3 provides an overview over the concepts of CALM. It describes the modeling elements of
CALM and their relations, and gives rationale for the design choices made. Together with a description of
the three modeling tiers inside CALM, this chapter presents the meta-model behind CALM, and discusses
how it connects with CALM architectural models.

The syntax and interrelation semantics (structures) of core CALM are presented in depth in Chapter 4.
Core CALM stands for the part of CALM that can be used to specify three-tiered interrelation models
of software architectures. The three modeling tiers are each described with syntax generation rules and
interpretation rules which build CALM structures out of the syntax (semantics). The end of Chapter 4
discusses how CALM is realized in CADENA.

For an easier understanding of the definitions in Chapter 4, it is helpful to consult the examples given in
Chapter 5. The examples apply the formalisms to capture three widely used middleware architectures. The
first example goes in-depth and demonstrates how a given syntactical construct is transferred into CALM
structures. The following two examples are meant to show alternatives in the modeling details.

Chapter 6 illustrates how the core CALM constructs are used to realize a complex methodology of
model driven design. This chapter outlines the concepts of refinement of architectural styles and shows how
refinement is realized in CALM. Based on compliance of architectural models to architectural styles (as
specified in chp. 4), this chapter describes how models can be migrated between styles. An example shows
how these methods can be used to introduce new, useful, abstractions into existing middleware frameworks.

Finally, Chapter 7 shows how implementation/abstraction relations between architectural models from
different architectural styles are used to define heterogeneous multi-models of complex systems. Chapter 7
demonstrates how abstract architectural styles can be turned into concrete platforms through implementation
relations, and how concrete systems can be traceably connected to their abstract architectures.

The ideas of Chapter 6 and Chapter 7 are presented with much less formal rigor than those of Chapter 4
for two reasons. First, the concepts of core CALM (chp. 4) already almost completely entail the formal
manipulations needed to realize the more complex ideas (i. e., for the most part chp. 6 and chp. 7 are mere
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applications of the interrelation semantics of CALM). Second, the practical side (CADENA) lags behind
in implementing the ideas, eventually the formalism will have to adapt to practical aspects which are not
foreseeable without the experimentation platform of CADENA. The ideas in Chapter 6 and Chapter 7 should
therefore be seen as conceptual, although the concepts are worked out to the necessary level of maturity to
be applicable once tool support catches up.

In Chapter 8, CALM is contrasted to related work from the field of software architectures. Chapter 9
concludes and discusses directions of future work in the context of CALM and CADENA.
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2
EXAMPLES OF COMPONENT ARCHITECTURES

“Further there are two sorts of truths: those of reason and those of fact. The truths of
reason are necessary, their opposite impossible; The truths of fact are contingent, their opposite
is possible. If a truth is necessary, the cause can be found through analysis, by resolving into
simpler truths, until the primitives are reached.”

— Gottfried Wilhelm Leibniz. Monadologie, 33.

The development of CALM was mostly driven by very concrete problems of large-scale project development
and integration of heterogeneous systems. CALM targets descriptions of interconnections of a wide variety
of possible (software) systems at various levels of abstraction which all have in common that they are centered
around components and rely on what loosely can be identified as a middleware. To provide an intuition
as to the nature of artefacts which, from the perspective of CALM, are considered component oriented,
middleware based, software architectures (i. e., the systems targeted by CALM), this chapter informally
introduces a few small examples. The examples are meant to be “global” as they are picked up throughout
this thesis to illustrate various aspects of CALM. Also, the examples are interrelated in the sense that they
describe different levels of abstraction of what could be understood as a single computing system.

2.1 AN ABSTRACT SYSTEM OVERVIEW

Often in the early planning stages of a development project, a block diagram is drawn which identifies sub-
systems that form concluded units and specifies the interaction in between them. The development of this
diagram entails the process of decomposing the system functionality. Further, the diagram helps to understand
the place and responsibilities of each sub-system in the overall project and allows to delegate the sub-systems
to separate groups of developers.
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Sensor Bank Main Monitor
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Figure 2.1: Schematic overview of the sensor bank

Figure 2.1 shows a block diagram of a simple sensor bank system where multiple autonomous sensor-
banks continuously collect data at different physical locations and transmit the data to a central monitoring
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station. Each sensor-bank consists of some number of sensors, a controller unit which maintains a link to
the monitor, and a local network (the acquisition network) which connects the sensors to the controller. The
schematic visualization is helpful to identify the elements of the system, to clarify the separation of concerns,
and to assign specific tasks to teams of developers. Nevertheless the schematic omits important details, for
example the connection between the controller and the main monitor is inherently different from connections
from a sensor to the acquisition network or between the network and the controller, the former being a remote
connection, the latter two are local ones. Also, the box-diagram intentionally abstracts away the specifics of
individual elements, for example the form of the acquisition network, or the nature of the sensors.

Although the diagram does not specify any particular infrastructure, it does contain information on a high
level of abstraction about aspects of what sort of infrastructure the displayed functional units need to rely
on. For example, connections from the sensors to the local acquisition network and on to the controller as
a minimum need to be able to transmit the data generated by the sensors. The connections are directed, in
as much as the end-points of the connections (sensor—network, network—controller) have clearly different
roles in the communication. Further, the connection between controller and main monitor is non-local, it has
to be able to bridge some (unspecified) spacial distance greater than that of the local connections.

In summary, even in this abstract description the individual components rely on some infrastructure which
handles, for example, the communication and is abstracted by the lines between the components. This in-
frastructure is potentially trivial (if the concrete implementation of the communication is integrated in the
components themselves and the infrastructure is just the cable between the components) or it can be so-
phisticated (if the implementation inside the components amounts to calling, for example, a send command
which is understood by the logic of the connector, also if the infrastructure has additional responsibilities
such as power supply etc.). From the perspective of CALM the infrastructure can be described as an abstract
middleware.

2.2 COMPONENT ORIENTED SOURCE-CODE ORGANIZATION

The previous example describes a system on a very abstract level, without giving concrete details about any
possible implementation. Instead, the architecture could describe a wide variety of implementations unless
more details are added as to environment, infrastructure, or internals of the components. CALM can capture
this architecture formally due to the very general concept of middleware used in CALM. Any (even trivial)
set of services which glue components together into a system counts as middleware or platform infrastructure
in CALM.

(a) Data-link layer main assembly
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(b) Hardware clock wrapper
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Figure 2.2: Data-link layer assembly in nesC

Nevertheless, the term “middleware-based” usually denotes much more specific contexts in which an
existing infrastructure implementation offers a fixed set of services to components which are a priori planned
for using this infrastructure. Figure 2.2, for example, shows an architecture using the nesC middleware for
highly distributed embedded systems [28, 29]. The nesC component framework is chosen for this example
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for being representative of the concept of organizing source code in a component oriented way. The nesC
infrastructure is written in a C dialect for the TinyOS operating system, the components are written in the
same C dialect enhanced with nesC-specific commands which provide the infrastructure abstractions. An
architecture, together with the component implementations and the infrastructure code, can be translated into
standard C for TinyOS (i. e., the nesC specific extensions are merged with the C parts) and compiled for the
targeted computing platforms (both translation and compilation happens in a single, opaque, step). Therefore,
nesC can be seen as a set of abstractions added to C for embedded systems.

The abstractions which the nesC infrastructure offers serve two purposes. First, they obviously simplify
the communication between different components by abstracting low-level details of remote function calls.
Second, the services enforce a certain, modular, structure to a system using them, which makes the functional
units identifiable as components. The convenience of the standardized services enables the component ori-
ented design. The abstractions can be mechanically removed, by translating the whole system into standard
C, but the component-oriented organization is lost in this process.

A similar approach, which emphasizes the the structuring aspects of the component-oriented paradigm
by offering standardized infrastructure abstractions which are implemented in the same or in a closely related
language as the components, execute on the same operating systems (where often the middleware provides the
glue between different operating systems for different components), and could potentially, together with the
components, be translated into monolithic programs, can be identified for example in Enterprise Java Beans
(EJB) [45], or the CORBA Component Model (CCM) [54]. In all three examples (nesC, EJB, CCM), the
language constructs provided by the component framework are insufficient for implementing the components
themselves, instead, standard languages on which the platform is based are also used for the business logic
(e. g., C for TinyOS in nesC, Java in EJB, Java, C, C++, etc., for CCM).

The example in Figure 2.2 shows the architecture of a message sending system. The RadioNetworkLink
(fig. 2.2(a)) consists of a controller (LinkControl), a send queue (SendQueue) to buffer messages, a timer
(Timer) to determine re-send timeouts, and a hardware radio link (HWRadioLink) which performs the actual
sending of data and receiving of acknowledgements. The timer component is itself realized by and architec-
ture containing two components, a controller (TimerControl) and the actual clock (HWClock) (fig. 2.2(b)). The
hierarchical organization of architectures, where sub-systems (Timer) can reside inside architecture elements
of larger systems (RadioNetworkLink) is called nesting.

Compared to the example in Section 2.1, this example is much less abstract. Connecting lines between the
components describe specific nesC communication services, icons at the end-points of the lines distinguish
the directionality.1 In fact, the diagrams of Figure 2.2 could be mechanically translated into nesC code
skeletons. Both examples are interconnected: Later in this work, the architecture described by Figure 2.2
will be used to describe the implementation of the connection between the controller and the main monitor
of the architecture in Figure 2.1.

2.3 HARDWARE BUILDING BLOCKS

The previous section describes an example of the most common understanding of a middleware-based,
component-oriented, architecture. As described, components in this understanding are abstract software
units residing in a software-based environment.

Figure 2.3 illustrates an even more concrete take on the concept of integrating components on a platform.
The architecture describes the hardware configuration of a radio transmission implement. The implement
receives digital data from a connected computing device into a digital/analog transformer (D/A). The trans-
former relays the data in form of high/low voltage values to a combination of a frequency modulator and
a phase key shifting device (FM, PKS) which transform the values into a wave/frequency pattern that can
be used to send the data through electromagnetic waves. Through an amplifier (AMP), the wave pattern is
connected to the antenna of the device. Incoming radio transmissions are decoded in a signal decoder (DEC)
which also has control functions to adjust the power of the outgoing signal through a transmit power control
(TPC) and the dynamic setting of the transfer channel through the dynamic frequency selection (DFS). Re-
ceived signals are demodulated into digital signals by the analog/digital scanner (A/D) and transferred back
to the computing device through a hardware interrupt (Interrupt).

1More detailed descriptions about nesC are found in later chapters.
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Figure 2.3: Physical layer assembly

In this architecture, components are fixed hardware module blocks with given contacts while the platform
is a configurable hardware board. “Services” of the platform are, for example, energy supply for the modules
and connection of their contacts. The architecture can contain abstract distinctions which are not manifested
in the concrete implements. For example, the architecture can distinguish analog from digital connections
which both map to the same sort of electrical connector. Nevertheless the overall component structure is
fixed, independently from the abstractions of the infrastructure.

Again, this example has a possible connection to the previous architecture of Section 2.2, as the system
described by this architecture can serve as the implementation of the HWRadioLink of Figure 2.2(a).

2.4 SUMMARY

In general, CALM aims to capture specifications of interrelations (i. e., architectures) on various levels of
abstraction with various target domains. Commonality of these architecture is that they are decisively modular
with all their business logic contained in clearly identifiable, separate, units (component-oriented) which in
turn are glued together by some standardized service layer platform (middleware-based). Both the notion
of components as well as of middleware are deliberately general and encompass entirely abstract planning
constructs, organizational software containers, as well as physically tangible building blocks. Each time
CALM distinguishes platform functionality from component functionality.
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THE ELEMENTS OF CALM

“entia non sunt multiplicanda praeter necessitatem”

— Lex parsimoniae

As laid out in Chapter 1, CALM targets component-oriented, middleware-based, software architectures.
Unfortunately, although often used in literature and practice, none of these terms has a concise and generally
accepted definition. This chapter gives the descriptions/definitions of these terms which the concepts and
notions of CALM are based upon. Also, building on these notions, it provides the rationale for the choice
of CALM’s modeling primitives. Finally, embedded in this context the three-tier modeling layer concept of
CALM is explained.

3.1 BOXES, DOTS, AND LINES

3.1.1 BOXES (COMPONENTS)

A GENERAL DEFINITION OF COMPONENTS

Central to the concepts of CALM is the notion of the component. Producing an exact definition of a com-
ponent is not trivial. In [62] Szyperski offers three different definitions for the software component (Preface,
Chapter 4, Chapter 20). To illustrate the difficulties to arrive at a widely accepted definition, he references
many more given by other authors (Chapter 11). Nevertheless, his own definitions correspond in key aspects
and only differ in their level of abstraction. In Chapter 4 he defines

Definition 3.1 (Software Component ([62], p. 41)) A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject of composition by third parties.

CALM does not generally assume that a component is exclusively realized in software, but other aspects of
this definition more or less coincide with the requirements of CALM. Namely, according to the definition a
component is:

A UNIT OF COMPOSITION. A component is first and foremost a building block within a larger system of
similar elements with which it can be composed in some way. It is not required that the component itself
is atomic (i. e., elementary and indivisible in some way), but it is required that it is a conceptually complete
unit. Many definitions command this unit to be deployable independently, a requirement which emphasizes
a certain level of completeness of the component. For CALM, it is sufficient to assume that the component
can be deployed within a specific infrastructure which may complement its functionality.
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WITH CONTRACTUALLY SPECIFIED INTERFACES. The property of being compositional is manifested
through the interfaces of the component which allow interaction between the component and its environment.
The definition requires that these interfaces have a contract associated to it, which on both sides allows an
assume-guarantee approach. The component guarantees a specific input-output behavior if specified require-
ments are met by the environment and vice versa. Note that the definition does not state the level of detail
of the contracts (i. e., obviously, contracts can vary in whether or not they define timing, accuracy of results
of computations, behavior in case of divergence, etc.). In practice, the actual form of the contract may vary
greatly depending on the context of a component framework.

AND EXPLICIT CONTEXT DEPENDENCIES ONLY. The definition emphasizes the aspect of the deliver-
ables on the environment-side given by the contractually specified interfaces by particularly mentioning that
context dependencies need to be explicit. In the CALM view, the requirement of explicit context dependen-
cies is entailed in the requirement to have contractually specified interfaces only. In other words, CALM
does not distinguish between business-logic communication and technically necessary infrastructure interac-
tion. In CALM both forms of exchange need to be explicitly defined as interfaces on a component if they are
to be part of an architectural model (i. e., not abstracted in the modeling process).

Further, the definition states that a component has the following two properties, it:

CAN BE DEPLOYED INDEPENDENTLY. CALM views components as embedded into a specific infras-
tructure. In fact, the requirement for a software component to be deployed independently can always only
be seen relative to a computation environment, including existing software structures such as an operating
system or a middleware layer or even other components which serve to fulfill specific context requirements
of the component. CALM realizes that many aspects of this environment are only captured implicitly or
simply neglected for reasonably being considered obvious (e. g., any software component needs some kind of
computing platform to run). Nevertheless the requirement does apply to the technical process of deployment,
here independence can only mean that a component can be integrated into a system mechanically without
knowledge about anything else than the part of the environment the component immediately interacts with.

AND IS SUBJECT OF COMPOSITION BY THIRD PARTIES. The component oriented approach empha-
sizes the distinction between the developer of a component and the user of a component (third party). This
requirement states the motivation for all previous requirements. It entails various ideas of component oriented
development, such as off-the-shelf components, massive re-use, etc..

ASPECTS OF A CALM COMPONENT

One major difference between the approach to component oriented development by Szyperski versus the
approach by CALM is the level of abstraction. Szyperski’s definition is important in a practical setting of
software development where the value of concrete chunks of program code highly depends on how fit they are
for re-use in various concrete environments. CALM instead takes a more abstract, top-down, model-driven
approach.

THE SHELL. The most important aspect of a component in CALM (shared with the definition above) is
that all interaction with the component happens through contractually defined interfaces. Any interaction
of a concrete component with a concrete environment which is not captured by a CALM model of that
component has to be considered as abstracted away by the model; any such abstraction needs to be justifiable.
CALM calls the definition of a component’s interfaces the shell of the component. This shell is an abstract
entity, CALM does not generally require that the shell protects the component from illegal interaction of
the environment with the component’s internals. Nevertheless, the shell does guarantee that the component
behaves correctly (relative to the requirements of a component framework) if all interaction with it complies
to the specification of its shell.

MODEL DRIVEN DEVELOPMENT. The shell of a component depends on the level of abstraction of the
CALM model. CALM aims towards an evolutionary development, where the amount of information given
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by the shell is gradually increased from a high level of abstraction down to the requirements of a concrete
system. Relating to the idea of moving from platform independent to platform specific model, development
in CALM can be organized as a chain of more and more precise models.

THE CALM COMPONENT Based on the considerations above, an informal definition of a CALM com-
ponent is the following:

Definition 3.2 (CALM Component) A component is the abstraction of a functional unit wrapped into a
shell which completely defines the component’s interaction with the environment through typed interfaces.

In the CALM formalisms (outlined in Chapter 4), a component is given exclusively through its shell. Con-
siderations about the internals of a component are found in Chapter 7.

3.1.2 DOTS (INTERFACES)

Most commonly, the term interface denotes a definition of all operations supported by a class or service (e. g.,
publicly accessible fields, methods or procedures) in an abstract way (i. e., the interface gives type and name
of the fields, and signatures of the methods or procedures, but no implementations and no private fields).
Another common meaning of the term interface is a loose group of interaction options (e. g., user interface,
programming interface, etc.).

In CALM an interface is the definition of an interaction point. As such, the interface stands on its own,
which means it is not a part of a component. CALM interfaces abstract the contractual definitions required
for the access points of a component. CALM does not define a process algebra or any other language to
concretely define interaction contracts, instead CALM interfaces are nominally defined entities which carry
specification in form of generic attributes. An informal definition of an interface in CALM is:

Definition 3.3 (CALM Interface) An interface is an abstract, typed, definition of an interaction point.

In this definition, typed refers to a nominal type which distinguishes interfaces (i. e., an interface can be given
simply through a name). A formal definition of this notion is outlined in Chapter 4.

3.1.3 LINES (CONNECTORS)

GENERAL CONSIDERATIONS FOR ARCHITECTURAL CONNECTIONS

The interaction of components with their environment happens through connectors. Essentially, any com-
munication infrastructure (shared memory, token ring, bus, network, etc.) and any form of communication
(message passing, remote procedure/method calls, semaphores, etc.) can be abstracted as a connector.

In [58], Shaw argues that connectors deserve “first class status”, which means that, for a reasonable
and useful modeling of a software architecture, not only the components, but also the nature and form of
connections has to be included into the model. The paper states: “For a system to work well, however,
the relations among components, or connectors, require as much design and development attention as the
components.” ([58], p. 22). In [3], Allen and Garlan present a system to describe communication protocols
realized by connectors based on the communicating sequential processes calculus (CSP) [33]. Again, the
connection is emphasized as a crucial part of architectural design. “In particular, the ‘lines’ connecting the
computational elements of such a design clearly have a different status than the computational elements (the
‘boxes’), and further, those lines may often represent abstractions with their own nontrivial semantics.” ([3],
p. 242). Finally, in [62], Szyperski states that “A connector, when zooming in, can easily have substantial
complexity and really ask for partitioning into components itself.” ([62], p. 429). Szyperski adds that the
impression is created that the concept of the component and the concept of the connector are dual to each
other, but he does not follow the thought any further.

In essence, all cited authors see the connectors in an architecture as non-trivial entities. They argue for
the necessity to view connectors as an element of equal importance and complexity as the components within
an architectural model.



14 The Elements of CALM

THE CALM CONNECTOR

CALM does consider the connector the dual of the component (i. e., it is given by a shell which defines
its access points). The concept of the connector in CALM is based on the following observations about
component framework infrastructure (most of which are already discussed in literature as seen above):

COMMUNICATION IS COMPLEX. A simple line from one access point of one component to another access
point of another component suggests a one-to-one communication link. While most connections between
components actually can be described as such (at some level of abstraction), sometimes it is necessary in
an architectural model to consider how other communication influences this link. For example, if the link
denoted by a connector abstracts a shared memory communication between the two access points, any other
access points which communicate on the same line influence the data transfer. Similar considerations might
apply on a bus communication, if the architectural model needs to be precise. Therefore, CALM considers
also connectors which have more than two access points.1

INFRASTRUCTURE SERVICES MORE THAN COMMUNICATION. Most component frameworks are based
on complex middleware which offers more than communication services. For example, timeout signals, a
generic database access, or even specific power supplies, can be part of a complex infrastructure (note that
CALM was applied to systems with real-time requirements such as aviation software or to distributed embed-
ded system networks; i. e., systems where the context requirements of a component which have to be captured
by the architectural model include more than communication). Since CALM requires that all context depen-
dencies of a component are captured through interface definitions, the environment needs a structure which
can connect to access points which model non-communication requirements of a component. Therefore,
CALM allows to define connectors with less than two access points (unary connectors) to abstractly capture
such infrastructure units.2

SERVICES NOT NECESSARILY ATOMIC. As discussed above, services (communication or general) are
often non-trivial and warrant complex implementations themselves. This observation suggests that connec-
tors also can be seen as functional units abstracted by a shell which defines the connector’s access points.
The service unit abstracted by the shell can then be handled as a black box similar to components.

Based on these considerations, an informal definition of a CALM connector is closely related to that of a
component (def. 3.2)

Definition 3.4 (CALM Connector) A connector is the abstraction of a service unit wrapped into a shell
which completely defines the connector’s interaction with the environment through typed interfaces.

While they are very similar in structure, the main distinction between the component and the connector
in CALM is that components model business logic, while connectors model infrastructure (informally ex-
pressed in their definitions as functional unit or service unit). This difference is not structural, but rather
manifested in the relations between components and connectors and the different handling of the two through
the modeling tiers of CALM.

3.2 THREE TIERS OF MODELING IN CALM

CALM uses three distinct modeling tiers to specify architectures. Above these three tiers resides a concep-
tual meta-model which determines the expressiveness of CALM by providing the notions of the modeling
primitives. The highest and most abstract tier is called the style tier, the middle layer is called the module tier,
while the lowest layer is called the scenario tier. The use of three modeling tiers is motivated by two major
considerations.

1Note though that even an implementation of a connection through some central unit (such as a bus) can be displayed as multiple
one-to-one connections in an architectural model if the infrastructure guarantees the that the behavior of the central unit is equivalent to
what would be expected from individual connections.

2Syntactically, the CALM language allows zero-ary connectors too. This “feature” just simplifies the grammar, it is unlikely that
zero-ary connectors become useful.



3.2. Three tiers of modeling in CALM 15

3.2.1 FRAMEWORK, COMPONENTS, AND INTEGRATION

One motivation for CALM’s three tiers springs from the observation that in component oriented development
three tasks can naturally be distinguished. First, a framework or platform has to be developed, second,
individual components have to be created, and third, the components have to be integrated on the platform
to form a system or product. According to our industry collaborators, these tasks are usually performed by
separate teams. The division between these tasks also forms the basis of the proposed development models
in [11] (chp. 6, p. 316ff ).

PLATFORM DESIGN

The component framework or platform defines and implements services (communication, allocation, notifica-
tion, etc.) which the components can use. Relying on a thoroughly designed and specified platform simplifies
the task of component development substantially, since context dependencies and functional requirements of
a component can then easily be expressed relative to the platform infrastructure. Many recurring, low-level,
programming tasks can be abstracted by the platform definition so that the component design can focus on
high-level business logic implementation.

Consequently, there are various commercial and non-commercial general purpose component frameworks
(Microsoft’s .NET, the CORBA Component Model, Enterprise Java Beans, the Gnome Bonobo model, etc.)
and domain-specific component models (PRiSM, nesC, etc.). Often, the component model exists as an ab-
stract specification for which various implementations are available (e. g., the CORBA Component Model is
implemented for example by OpenCCM [55], CIAO [10], MicroCCM [50], or EJCCM [18]). The developer
of the component framework (often called the system architect, or, in the context of commercial product fam-
ilies, the product line architect) can either chose an existing platform, adapt an existing platform to specific
needs, or design a new, domain specific, component framework.

COMPONENT DEVELOPMENT

The component development produces business logic units which interact with the given framework. Teams
of component developers may split into two groups, the general component developers and the application
specific component developers.

SYSTEM INTEGRATION

Integrating the components into a cooperative network supported by the platform infrastructure is a non-
trivial task, since system-wide aspects of the development have to be considered (quality of service, real-time
aspects, inclusion of features, etc.). If the platform is well designed and the available components represent
a suitable decomposition of the functionalities of a family of software systems, the system integration should
be capable of rapidly producing robust systems within that family.

MATCHING THE DEVELOPMENT TASKS WITH CALM’S TIERS

Figure 3.1 illustrates how the three tasks influence each other. The platform defines shapes of components
and provides infrastructure elements, the component development produces individual components and the
system integration builds the product out of these building blocks.

In CALM, the model of a component infrastructure is captured at the style tier. The name style tier
derives from the notion that the specification of the platform of a component system shapes the form of
system architectures on that platform. The platform specification is therefore called the architectural style.

Individual components are captured in CALM by their type (informally: their shell). Libraries (called
modules) of such types, together with interface types, are specified on the module tier.

Finally, the scenario tier of CALM models component architectures (also called component scenarios)
as assemblies of instantiated types. As depicted in Figure 3.1, artefacts for these assemblies are drawn
immediately from the style tier as well as from the module tier.
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Figure 3.1: Three distinct tasks in component system development

3.2.2 KINDS—TYPES—INSTANCES

The other motivation to use a three tiered approach is the connection to the hierarchy of kinds, types, and
terms known from type theory. Types are named abstractions of the structures of terms. Named abstractions
in general are so common in programming languages and computing that they are taken for granted: variables
in an imperative language are named abstractions of memory locations, constants are named abstractions for
values, etc.. Types are names of classes of terms (e. g., int, bool, string, . . . ). Kinds are to types what
types are to terms, which means kinds are named abstractions of the structure of types.

In higher-order typed lambda calculus [57, 56], kinds are built from a single atomic kind (often written
∗ and pronounced “type”), where ∗ is the kind of all elementary (or proper) types (e. g., int, bool, also
function types such as int→ int), and ∗ → ∗ is the kind of higher-order functions (functions from types to
types, type operators), ∗ → ∗ → ∗ the kind of functions from types to type operators, etc..

CALM applies the principle of introducing types of types (kinds) taken from the theory of higher-order
functions (and also borrows the terminology of kinds, types, and instances or terms from higher-order typing),
but does so from a different angle. The declaration in CALM is top-down, which means instead of abstracting
the structure of terms to types and abstracting the structure of types to kinds, CALM defines kinds on the
style tier to provide named structures which can be populated with named types on the module tier, and
instantiated into concrete assemblies on the scenario tier. Instead of a single constructor “∗” and the function
kind “kind1 → kind2”, kinds in CALM are created as stand-alone structures within the three categories
component, connector, and interface.

The correspondence to higher-order lambda calculus is therefore remote, nevertheless the idea to intro-
duce kinds as types of types adapts nicely to the realm or architectures, where families of types naturally exist
which cannot be traversed (i. e., an interface type cannot be turned into a component type or inherit from a
connector type). CALM strives to use kinds, which define the shapes of types, to capture the possibilities
and requirements of a component framework.

3.3 THE CALM META-MODEL

As described in Section 3.1 three basic categories of elements (i. e., components, interfaces, connectors)
are considered sufficient to describe a substantial range of software architectures. Section 3.2 informally
introduces the three modeling tiers of CALM. The kinds defined at the style tier follow a fixed meta-model
given through three meta-kinds, one for each category. A CALM model then describes interrelations between
elements of these three categories on various levels.
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3.3.1 CLARIFICATION OF TERMS

The description of concepts which CALM is based on relies on a terminology which is used loosely in
literature, with the concrete meaning of most terms varying from publication to publication. While CALM
notions are all formally captured (see sec. 4), it turns out to be a great help if the informal terms are also
clarified and used consistently.

The terms kind, type, and instance are taken from type theory and denote the respective level of abstraction
of an entity. The term meta-kind describes a conceptual entity of CALM which is used to define kinds.

CALM styles define architectural styles, with the term product line architecture sometimes used as a
synonym for architectural style. Product line architecture should not be confused with software architecture
for the former describes a style, the latter describes a concrete architecture within a style. More precisely, a
software architecture is a concrete interaction model of the functional units of a software system expressed
in terms of components, connectors and interfaces. Such a model is called assembly, if only the topology is
considered, or scenario, if aspects beyond the topology are specified (particularly implementation specifics
of functional units). Sometimes, non-topological data is referred to as meta-data of a scenario, a term which
unfortunately is easily falsely associated with meta-kinds.

In CALM, the terms component, connector, and interface denote categories. An entity has the category
component (interface, connector) if it is ultimately derived from a component (interface, connector) meta-
kind. This allows, for example, to talk about component types although all types belong to a specific kind
and therefore should be called <kind-name>-types correctly; or about component instances, which correctly
should be called <type-name>-instances.

The access points of types or instances of category component are called ports. Ports can only be declared,
if a respective port option is defined on the kind from which a type/instance is derived. Port options are
characterized by three main properties. First, the number of ports complying to the port options which can
be or have to be declared on any type within this kind is expressed by an integer interval called multiplicity.
For each port within a port option, the minimum and maximum fan-out is captured by an integer interval
called multiplexity. Finally, a port option references an entity of category interface of the respective level
of abstraction (i. e., port options of component meta-kinds reference an interface meta-kind, port options of
kinds reference interface kinds).

The access points of types or instance of category connector are called roles. This nomenclature derives
from the idea that from the viewpoint of a connector the entities communicating over any one of its access
points take on a specific role in a communication associated with that access point, such as sender, receiver,
client, server, etc.. Besides the name (role instead of port) the genesis and structure of access points of
connector meta-kinds, kinds, types, and instances is analogous to that of components (i. e., there are role
options with multiplicity, multiplexity, and interface specification, and roles derived from these).

Interfaces in CALM are not access points per se, instead they are definitions of access points. Since each
interface defines a point of interaction there are a minimum of two roles associated with it: one entity provides
the interface, all other entities sharing the access point use the interface. Whether an interface is provided or
used by a port/role is called the parity of the port/role. CALM requires that ports can only connect to roles
of the opposite parity. Ports cannot connect to other ports, or to roles of the same parity, roles cannot connect
to other roles or to ports of the same parity. This guarantees that every interface in an assembly is complete,
having both the provider and the user side present.

3.3.2 INTERRELATIONS OF THE CALM META-KINDS

Figure 3.2 displays the relations between the categories in CALM in a way loosely taken from UML graphic
syntax.3 There are three independent entities, the component meta-kind, the interface meta-kind, and the
connector meta-kind. Each of these entities can have any number of attributes. Attributes only exist as
contents of a meta-kind. Next to attributes, a component meta-kind can have any number of port options as
contents, while a connector meta-kind can have any number of role options. Each port option and each role
option references exactly one interface meta-kind. This association (as opposed to the meta-kind–attribute
and meta-kind–port/role-option relation) is not containment, but reference (i. e., the interface meta-kinds exist
outside of the port/role options). This difference is expressed by the outlined diamond arrow head as opposed
to the solid one.

3The diagram is not exactly UML, since the entities described are neither objects nor classes nor components in the UML sense.
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Figure 3.3: Modeling tiers relations (component and interface)

Each of the three basic meta-kinds can be used to define kinds, and subsequently types and instances
through the CALM modeling tiers, always with the object to enrich the precision of their interrelations.
Figure 3.3 illustrates the development of these interrelations from the meta-kind to the instance level on the
example of the relations between component and interface. A component meta-kind contains some number
of port options, each associated with one interface meta-kind. The corresponding port option on a compo-
nent kind derived from the meta-kind is therefore associated with an interface kind which derives from the
respective interface meta-kind. When declaring types within the component kind, concrete ports are declared
according to the multiplicity constraints of the port options. Each such port is associated with an interface
type which lives within the interface kind of the respective port option. Finally, concrete component instances
are created from the types, which again through their ports associate with interface instances taken from the
respective types. The actual number of interface instances depends on the port parity and multiplexity.

3.3.3 A POSSIBLE EXTENSION TO THE CURRENT CALM META-MODEL

The meta-model of CALM is currently arranged with the three categories described above and their interre-
lations. Nevertheless, the meta-model is not entirely fixed, instead CALM tries to be open to relatively easy
change and experimentation. This openness is manifested in the fact that the categories are tangible through



3.3. The CALM meta-model 19

the meta-kinds which are part of the modeling framework. To introduce new notions into CALM it should be
sufficient to create a new category of meta-kind and integrate it with the existing ones. This section discusses
an example for a possible extension of the meta-model to illustrate this concept.

One possible extension to the current meta-model which has been discussed is a connection declaration
which resides above the actual connector. The problem which this connection declaration tries to address is
that the parity of a port/role, which has to be defined at the meta-kind level, may at times fix aspects of a
directionality of a connector at a premature level.

(a) directed, provided-used –
provided-used

(b) directed, used-provided –
used-provided

(c) not directed, connector provides
interfaces

(d) not directed, connector uses
interfaces

Figure 3.4: Directionality implied by port/role parities

To illustrate this problem, consider a connector kind which models a one-to-one connection of equal
interfaces. Figure 3.4 displays four possible ways of planning a one-to-one communication with different
parity arrangements. In the figure, the symbol “ ” describes the provides side of the interface, and “ ”
describes the uses side. Figure 3.4(a) and 3.4(b) describe a directed communication, where one component
provides the interface on one side of the connector and the other uses the corresponding interface on the other
side of the connector. In both cases (fig. 3.4(a), 3.4(b)) the implication of directionality springs from the fact
that the connector serves simply as a replicator of the components’ ports, and that the components’ ports have
opposite parity implies that they have different roles/tasks in the communication.

Figure 3.4(c) and 3.4(d) describe a situation where the component’s ports have the same parity, and there-
fore an equal status of the two components in terms of their roles in the communication could be assumed.
Two options exist to create such an undirected connector, either the connector provides the interfaces on both
sides (fig. 3.4(c)), maybe implying a more “active” connection service, or it uses the interfaces on both sides
(fig. 3.4(d)).

CALM has been criticized for the reason that such an early commitment to directedness or undirectedness
of a connection prohibits conceptual architectures, which only define that two components do communicate
but purposefully leaves the exact nature of that communication unspecified to allow refinement in multiple
directions.
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Channel meta−kind
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0
..*

0
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Port option Role option
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1
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multiplicity

multiplexity

multiplicity

multiplexity
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Figure 3.5: An extension to the meta-model of CALM
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One possibility to address this problem is to require that every connector is part of an entity of a new
category, in this example called channel, which is shared among a number of components. Figure 3.5 il-
lustrates a possible extension to the current CALM meta-model by integrating a channel meta-kind into the
model as shown in Figure 3.2. In this new model, the connectors become dependent part of a channel, so
a conceptual architecture can declare channels only and thereby constrain the use of connectors to specific
groups of components. Note that the case where only one channel exists as container for all connectors and
associated from all components is equivalent to the current, unconstrained, channel-free, model.
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SYNTAX AND STRUCTURAL INTERRELATIONS

“Hence whatever a wise man states he can always define, and what he so defines, he can
always carry into practice; for the wise man will on no account have anything remiss in his
definitions.”

— Confucius. Analects, XIII.iii.7

4.1 CALM/CADENA NOTATIONAL BASICS

4.1.1 NOTATIONAL CONVENTIONS

For better readability in the presentation of formalism and examples, the following notational conventions
are used. Concrete CALM syntax is printed in various typewriter fonts, with CALM general keywords
printed in bold, and keywords introduced within the examples printed in bold italic. Sets of syntactic
entities (i. e., non-terminals of the syntax-generation rules) are printed in sansserif.

CALM formalisms make extensive use of (lookup-) maps, which are sets of pairs (id , s) of an identifier
id and the structure term s denoted by the identifier. Such pairs will usually be written as id : s. The addition
of a new element e = id : s to an existing map M (i. e., the transition from M to M ∪ {(id : s)}) will be
written with the new element in brackets as M [id : s].

The syntax of CALM will be given inductively through syntax generation rules of the form

premises

conclusion

where premises is a set of expressions of the form t1 ∈ s1, . . . , tn ∈ sn and conclusion is a single expres-
sion t ∈ s with t1, . . . , tn being syntactical terms and t being a syntactical term which contains t1, . . . , tn
as subterms, and s, s1, . . . , sn being syntactical sets (non-terminals). Generally, the terms t1, . . . tn will be
given as variables v1, . . . , vn to summarize a set of rules into a single rule template, where each individual
rule can be obtained by replacing each variable vi by a term ti ∈ si. Every such rule template is equivalent
to a production of a Backus-Naur (BNF) grammar of the form

s ::= t[s1/v1, . . . , sn/vn]

(i. e., s produces t with all variables v1, . . . , vn replaced by the respective non-terminals s1, . . . , sn), which
means that a complete BNF grammar can be obtained by mechanically translating the rule templates.

The interpretation of the semantically sound subset of each syntactic set s is given through interpretation
relations s−→ of the form

e ` s−→: s× u
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where e is the environment containing already defined structures and u is the result of the interpretation,
which is most often manifested in an update of the environment under which the terms t ∈ s are interpreted.
Interpretation relations are inductively defined through rule templates which closely correlate to the syntax
generation rules (i. e., for each syntax generation rule template there is at least one interpretation rule tem-
plate). The respective rule templates have the same general form as the syntax generation rules, but the
premises are more complex, containing also predicates about the environment, and the conclusion describes
a set of elements of an interpretation relation instead of elements of the respective syntactic set.

The complete syntax generation rules of the CALM core language can be found in Appendix A, the
syntax interpretation rules in Appendix B.

4.1.2 ELEMENTARY SETS

Among the sets of syntactic entities, a specific set Identifier of alphanumeric identifiers id ∈ Identifier is
assumed to be available. Also, it is assumed that these identifiers id ∈ Identifier are capable of efficient
referencing, which means that each identifier can be mechanically linked to the structure it denotes in a way
that it is sufficient to use a name (i. e., the identifier) in lieu of a structure. Further, the base syntax of CALM
requires numeric literals of non-negative integers plus a special, non-numeric, character. Specifically, two
sets of numerals are assumed, the set of natural numbers including zero (non-negative integers), written N0,
and the same set with an additional symbol * (i. e., N0 ∪ {*}), written N*0 , where * stands for a number
z 6∈ N0 with z ≥ n for all n ∈ N0. For simplicity, the syntactic numerals are identified with the numbers
they represent. Finally, the syntactic sets Type-Spec and Literal are considered elementary in this work for
reasons laid out in Section 4.2.1.

4.2 THE STYLE TIER

A CALM style specifies the available elements of a component oriented architecture in a two-stage process.
First, so called meta-kinds are declared in an incremental, compositional, way. Meta-kinds are abstract
collections of structural specifications visible only on the style tier of CALM (see also sec. 3.3). In a second
step, the meta-kinds are used to define named kinds, fundamental families of architectural elements of fixed
structure which are visible to the lower tiers of CALM. It is the collection of kinds, which can be populated
with types on the module tier (according to typing constraints also set by the style) and instantiated on the
scenario tier, that forms the essence of a CALM architectural style.

Strictly speaking, CALM does not feature “component types” or “interface types” or “connector types”,
neither are there “component instances” etc.. Rather, types are defined within kinds, instances are constructed
within types. For example, if a component kind c is defined within a style, types declared and used within
this kind on the lower tiers of CALM are “c-types”, and if a c-type t is declared within c, then instances of
this type are t-instances. Nevertheless, instances of a type within a kind of category component will often be
referred to as component instances when the specific kind or type are irrelevant for the considered properties,
similarly types of component kinds can at times be referred to as component types.

CALM records the meta-kinds specified on the style tier in a meta-kind lookup table γ ∈ Γ. Elements of
a mapping γ are pairs id : s{i,l,c} of identifiers and the structures of either interface, connector, or component
meta-kinds they denote. Similarly, kinds are recorded in a kind table κ ∈ K. Further, a CALM style defines
a type system for platform-specific attribute types T̂ (sec. 4.2.1), as well as a set of type-assertions Ξ which
constrain the use of types of architectural elements on the lower tiers of CALM.

In summary, a CALM style is a named four-tuple (γ, κ, T̂,Ξ). The elements of this tuple are explained
in detail in the following sections, with an initial overview given in Table 4.1.

4.2.1 BASE-ELEMENTS OF THE STYLE TIER

ATTRIBUTE TYPES

While most of the CALM structure is nominal (i. e., based on declared structural interrelations of named
entities), attributes can be used for a more detailed, precise, specification of all architectural elements. The
type system for CALM’s attributes is part of a separate effort, therefore only some basic ideas will be laid
out in this section.
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Attribute types τ̂ ∈ T̂ Meta-kind level attribute type set for progressive valuation.
T̂ ∈ Â Set of all meta-kind level attribute type sets.

Attribute maps of meta-kinds α̂ ∈ Â Â = Identifier ⇀ (a T̂)

Role options of meta-kinds ρ̂ ∈ R̂ R̂ = Identifier ⇀ (r ({uses,provides} × Identifier∗ ×Q×Q))

Port options of meta-kinds π̂ ∈ Π̂ Π̂ = Identifier ⇀ (p ({uses,provides} × Identifier∗ ×Q×Q))

Meta-kind mapping, record-
ing interface, connector, and
component meta-kinds

γ ∈ Γ Γ = Identifier ⇀ (i Â)× (l (Â× R̂))× (c (Â× Π̂))

Attribute maps of kinds ᾱ ∈ Ā Ā = Identifier ⇀ (a T̄)

Role options of kinds ρ̄ ∈ R̄ R̄ = Identifier ⇀ (r ({uses,provides} × Identifier† ×Q×Q))

Port options of kinds π̄ ∈ Π̄ Π̄ = Identifier ⇀ (p ({uses,provides} × Identifier† ×Q×Q))

Kind mapping, recording in-
terface, connector, and com-
ponent kinds

κ ∈ K K = Identifier ⇀ (i Ā)× (l (Ā× R̄))× (c (Ā× Π̄))

Type constraints ξ ∈ Ξ Constraints limiting the use of interface types on the module tier.
ξ = variable1 ∼ variable2

ξ = type(kind0.port-option0) ∼ variable
ξ = type(kind1.port-option1) ∼ type(kind2.port-option2)

Style mapping, the collection
of CALM architectural styles
within a project

σ ∈ Σ Σ = Identifier ⇀ (s (2T̂ × Γ×K× 2Ξ))

∗ The identifier needs to denote an interface meta-kind.
† The identifier needs to denote an interface kind.

Table 4.1: CALM style structure sets and symbols

The possibility to attach attributes to architectural elements at any stage of inception (i. e., to element
kinds, types, or instances) is constrained by the meta-kind which the respective architectural element ulti-
mately derives from. This follows the rationale of CALM that the architectural style precisely defines the
information captured within architectures which follow this style. To enable the addition of information to
architectural elements on all tiers of CALM, the attribute type system has a built-in mechanism to mark
the stage at which an individual attribute can be introduced or valuated. The mechanism is based on two
concepts, which are type constructors with flexible arity and explicit binding times.

The most important concept of CALM’s attribute type system is the notion of binding time. A type
specification can contain the keywords STYLE, MODULE, or SCENARIO, which mark the type for valuation at
the kind, type, or instance level respectively. Combined with the use of type constructors with flexible arity
(e. g., list), the binding time allows to introduce and valuate attributes declared at the style level at any stage
within the progressive CALM hierarchy.

As an example, consider the common perception of interfaces as collections of method signatures. In
an architectural model using this view, a respective set of method signatures has to be specified for each
interface at the type level. To declare the attribute which holds this information at the type level, the architect
would introduce an attribute type (e. g., signature) as a structure (struct) containing the name (e. g., as a
CALM builtin STRING), the return type (constructed as an enumeration of the platform types), and a list of
arguments. Then, on the interface meta-kind, a type-level list of elements of type signature can be used as
receptacle for the type information:

attribute methods : MODULE signature list;
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The binding time modifier MODULE and the flexible arity of the type constructor list allow to specify an
arbitrary number of method signatures for each interface type of any kind derived from this meta-kind by
giving the appropriate literal at CALM’s module tier:

methods = {signature1, . . ., signaturen };

Generally speaking, the binding time modifiers STYLE, MODULE, and SCENARIO are used within the
attribute types at the meta-kind level for types τ̂ ∈ T̂. Through the hierarchy of CALM the attributes are
gradually valuated, and the respective modifiers eliminated. The gradual valuation progresses the respective
type through the CALM hierarchy

id : τ̂ ; id : τ̄ ; id : τ ; id : τ̇
meta-kind kind type value

where τ̂ is the meta-kind level structure denoted by the attribute name id , τ̄ the kind level structure, τ the type
level structure, and τ̇ the instance level structure. Note that the instance level structure is always completely
valuated, type and kind level structures might be, depending on the modifiers used. Further, the transition
does not necessarily mean a change in structure, for example kind and type structure are equal if the binding
time modifier MODULE does not appear in the type. Finally, delayed valuation allows for simple parametric
kinds, types, or values.

CALM attribute types can be either defined (i. e., constructed from existing types and from the CALM
base types INT, CHAR, STRING, BOOLEAN, and ENUM by use of type constructors such as struct, list, etc.)
or just declared. Declared types are type names which open a door for tool support of type constructs which
would be hard or complicated to express within the CALM type definition language. This tool support is
realized in CADENA through the plug-in mechanism.

Generally, a syntactic set of type specifiers t ∈ Type-Spec is assumed (containing, e. g., the aforemen-
tioned basic types INT, CHAR, . . . , and the constructors list, struct, union, . . . , as well as the binding
time modifiers, declared names, etc.) which can express specifications to build a set of attribute types τ̂ ∈ T̂.
This syntactic set is interpreted under a given attribute type set T̂ through the interpretation relation

T̂ ` Type-Spec−−−−−−→ : Type-Spec× T̂

which maps type specifiers t ∈ Type-Spec to the attribute types τ̂ ∈ T̂ they denote.
Syntactically a type definition in the syntactic set Attribute-Type-Spec is given through the rule template

id ∈ Identifier, t ∈ Type-Spec
typedef id = t ∈ Attribute-Type-Spec

(4.1)

while a type declaration is given through

id ∈ Identifier
typedecl id ∈ Attribute-Type-Spec

(4.2)

The syntactic set Attribute-Type-Spec is interpreted with a given attribute type set T̂ through the interpre-
tation relation

T̂ ` Attribute-Type-Spec−−−−−−−−−−−→ : Attribute-Type-Spec× Â

with Â being the set of all possible sets T̂. The interpretation relation is defined through the rules

id ∈ Identifier, id 6∈ dom(T̂), t ∈ Type-Spec, T̂ ` t Type-Spec−−−−−−→ τ̂ t

T̂ ` typedef id = t
Attribute-Type-Spec−−−−−−−−−−−→ T̂[id : τ̂ t]

(4.3)

and
id ∈ Identifier, id 6∈ dom(T̂)

T̂ ` typedecl id
Attribute-Type-Spec−−−−−−−−−−−→ T̂[id : τ̂ id ]

(4.4)

where τ̂ id is a new, nominally declared, type with unspecified structure.
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RANGES

A range q ∈ Q is a possibly infinite interval of non-negative integers denoted by elements of the syntactic
set Range. Ranges are used in the CALM style as a part of the port/role-option specification (sec. 4.2.4 and
4.2.5). A term s ∈ Range has the form s = [n..m], with n ∈ N0 and m ∈ N*0 , n ≤ m. The set Range is
therefore defined through the two rule-patterns

n ∈ N0, m ∈ N*0 , n ≤ m
[n..m] ∈ Range

(4.5)

and
n ∈ N0

[n] ∈ Range
(4.6)

The term s = [n..m] denotes the closed interval {n, . . . ,m} ⊆ N0 if m is a number (i. e., m ∈ N0), and
the open interval {n, . . .} ⊆ N0 if m = *. If n > m, the interval denoted by [n..m] is undefined, the
term is illegal in CALM. Further, s = [n..n] can be abbreviated to s = [n]. Formally, the semantics of
elements of Range is given through the interpretation relation

Range−−−−→ : Range×Q,

defined through the following rule patterns

n,m ∈ N0, n ≤ m

[n..m]
Range−−−−→ {n, . . . ,m}

,
n ∈ N0

[n..*]
Range−−−−→ {n, . . .}

(4.7)

and
n ∈ N0

[n]
Range−−−−→ {n}

(4.8)

In the following, the syntactical form [n..m] will be used in lieu of the denoted interval {n, . . . ,m} for
simplicity whenever the distinction is clear.

The use of ranges within the lower tiers of CALM warrants an arithmetic operation to be defined.
Namely, ranges can be shifted by a subtrahend c ∈ N0 with

[n..m]− c =

 [n− c..m− c], if n ≥ c
[0..m− c], if n < c,m ≥ c
undefined, if m < c

,

where

* > c and *− c = * for all c ∈ N0.

This operation represents a situation where c positions in the interval are already “occupied”. Note that the
third case, m < c, could be defined as [n..m] − c = [0..0] instead of being undefined, nevertheless
if the case occurs in a practical situation it indicates an error in the specification (see sections on port- and
role-options below).

4.2.2 ATTRIBUTES

An attribute on a meta-kind in CALM is a pair of an identifier id ∈ Identifier and a pair (a, τ̂) ∈ {a} × T̂
where a is a generic constructor which identifies the structure as an attribute on a meta-kind, and τ̂ ∈ T̂ is
a meta-kind level attribute-type. Attributes of each architectural element are recorded in individual attribute
mappings α̂ ∈ Â with

α̂ ∈ Â, Â ⊆ Identifier× ({a} × T̂).

Necessarily, the elements α̂ of Â are partial functions, each identifier id in Identifier maps to at most one
structure (a, τ̂). Therefore, Â can be written as

Â = Identifier→fin {(a, τ̂)|τ̂ ∈ T̂},
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or shorthand:
Â = Identifier ⇀ (a T̂).

Attribute mappings in CALM are built through elements of the syntactic set Attribute, which is defined by
the rule template

id ∈ Identifier, t ∈ Type-Spec
attribute id : t ∈ Attribute

(4.9)

Each element of the set Attribute specifies a single attribute which is added to an existing, possibly empty,
attribute mapping α̂ through the Attribute interpretation relation

Attribute−−−−−→ : T̂, α̂ ` Attribute× Â

which is defined by the rule template

id ∈ Identifier, id 6∈ dom(α̂), t ∈ Type-Spec, T̂ ` t Type-Spec−−−−−−→ τ̂

T̂, α̂ ` attribute id : t
Attribute−−−−−→ α̂[id : (a τ̂)]

(4.10)

The attribute mapping α̂ ∈ Â then allows a lookup of the attribute through its identifier id :

α̂ ` id 7→ (a τ̂).

4.2.3 INTERFACE META-KINDS

Interfaces in CALM are characterized by their (kind-, type-, and instance-) name and the set of attributes
associated with them. Therefore, CALM formalizes interfaces as named collections of attributes, recorded
in attribute mappings. The interface meta-kind is a pair of a name id ∈ Identifier and the interface meta-kind
structure given through its attribute map α̂ together with the generic constructor i.

id : (i α̂)

Since the attribute map α̂ is the defining structural part of the interface meta-kind id it can be referred as the
type of id .

The body of an interface meta-kind is specified by the syntactic set Interface-MK-Body. It is defined as
either empty or a semicolon-separated list of attribute declarations of the syntactic set Attribute by the rule
templates

ε ∈ Interface-MK-Body
(4.11)

t1, t2 ∈ Interface-MK-Body
t1; t2 ∈ Interface-MK-Body

(4.12)

and
a ∈ Attribute

a ∈ Interface-MK-Body
(4.13)

Under a given meta-kind level attribute type set T̂ and an initial attribute mapping α̂, the interpretation
relation

Interface-MK-Body−−−−−−−−−−→ T̂, α̂ ` Interface-MK-Body× Â

is given through the rule templates

T̂, α̂ ` ε Interface-MK-Body−−−−−−−−−−→ α̂
(4.14)

for an empty interface meta-kind body,

t1, t2 ∈ Interface-MK-Body, T̂, α̂0 ` t1
Interface-MK-Body−−−−−−−−−−→ α̂1,

T̂, α̂1 ` t2
Interface-MK-Body−−−−−−−−−−→ α̂2

T̂, α̂0 ` t1; t2
Interface-MK-Body−−−−−−−−−−→ α̂2

(4.15)
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for sequential composition, and

a ∈ Attribute, T̂, α̂0 ` a
Attribute−−−−−→ α̂1

T̂, α̂0 ` a
Interface-MK-Body−−−−−−−−−−→ α̂1

(4.16)

for an attribute declaration.
The complete interface meta-kind specification is defined by the rule template

id ∈ Identifier, i ∈ Extends-list, b ∈ Interface-MK-Body
metainterface id i { b } ∈ Meta-Kind-Spec

(4.17)

The list of identifiers i of the syntactic set Extends-list serves to include existing interface meta-kind attribute
maps as defined in Section 4.2.9. The interpretation relation for the syntactic set Meta-Kind-Spec will be
given in Section 4.2.8, after component and connector meta-kinds are introduced.

4.2.4 PORTS OPTIONS

Component meta-kinds specify the ability to define ports on components through port options. A component
meta-kind can have multiple port options which each describe a family of possible ports that can be estab-
lished on any type which lives within kinds derived from the meta-kind. Each family of ports is specified
through a parity, which is either provides or uses, an identifier which serves as a keyword to add ports to
the family on the module tier of CALM, an identifier which specifies the interface meta-kind which describes
the structure of interfaces associated through the port, and two ranges which describe the multiplicity and the
multiplexity of ports within the family.

{
(a) Multiplicity

}
(b) Multiplexity

Figure 4.1: Multiplicity vs. multiplexity

The multiplicity (fig. 4.1(a)) of a port option is a range specifying the minimum and maximum number
of ports within the family described by the port option. The multiplexity (fig. 4.1(b)) of a port option is a
range specifying the minimum and maximum fan-out/fan-in of a single port within the family described by
the port option. Note that, because the number of ports is part of the type of a component, the multiplicity is a
constraint for the module tier of CALM, while the multiplexity, constraining the connectivity of a component
inside an assembly, comes into effect on the scenario tier.

Port options are in the syntactic set Port-Option defined by the rule templates

t1, t2 ∈ Range, i1, i2 ∈ Identifier
uses t1 i1 : i2 t2; ∈ Port-Option

(4.18)

and
t1, t2 ∈ Range, i1, i2 ∈ Identifier

provides t1 i1 : i2 t2; ∈ Port-Option
(4.19)

Port options are recorded in a port option mapping π̂ ∈ Π̂ as a tuple

π̂ ⊇ Identifier× ({p} × ({uses, provides} × Identifier×Q×Q))

in the form
π̂ 3 id0 : (p (p, id i, q1, q2))

where id0 is the name (module-level keyword) of the port option, p is a generic constructor identifying the
structure as a port option, p is the parity, q1 the multiplicity range, and q2 the multiplexity range.
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The interpretation of the syntactic set Port-Option involves a lookup in the global meta-kind table γ to
verify the identifier id i specifying the interface meta-kind which provides the structure for interfaces in the
given port family. It is defined by the rule templates

t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(π̂), id2 : (i α̂) ∈ γ

γ, π̂ ` uses t1 id1 : id2 t2
Port-Option−−−−−−→ π̂[id1 : (p (uses, id2, q1, q2))]

(4.20)

for families of used ports, and

t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(π̂), id2 : (i α̂) ∈ γ

γ, π̂ ` provides t1 id1 : id2 t2
Port-Option−−−−−−→ π̂[id1 : (p (provides, id2, q1, q2))]

(4.21)

for families of provided ports.

4.2.5 ROLE OPTIONS

Role options on connector meta-kinds serve the same function as port options on component meta-kinds,
which is to specify families of interaction points that can/must be added to the architectural element on the
type level. Therefore, syntactically and in interpretation, role options are analogous to port options. The
syntax rule templates are

t1, t2 ∈ Range, i1, i2 ∈ Identifier
uses t1 i1 : i2 t2; ∈ Role-Option

(4.22)

and
t1, t2 ∈ Range, i1, i2 ∈ Identifier

provides t1 i1 : i2 t2; ∈ Role-Option
(4.23)

Role options are recorded in mappings ρ̂ ∈ R̂, again analogous to port options, in the form

ρ̂ 3 id0 : (r (p, id i, q1, q2))

with r being the generic constructor which identifies the structure as a role option on the meta-kind level.
The syntactic set Role-Option is interpreted according to the rule templates

t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(ρ̂), id2 : (i α̂) ∈ γ

γ, ρ̂ ` uses t1 id1 : id2 t2
Role-Option−−−−−−−→ ρ̂[id1 : (r (uses, id2, q1, q2))]

(4.24)

and
t1, t2 ∈ Range, t1

Range−−−−→ q1, t2
Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(ρ̂), id2 : (i α̂) ∈ γ

γ, ρ̂ ` provides t1 id1 : id2 t2
Role-Option−−−−−−−→ ρ̂[id1 : (r (provides, id2, q1, q2))]

(4.25)

4.2.6 COMPONENT META-KINDS

Component meta-kinds are name collections of port options, specifying the constraints for adding ports
to components derived from the meta-kind, and attributes, specifying the data associated with components
derived from the meta-kind. Formally, the structure is

id : (c (α̂, π̂))

with id being the name of the component meta-kind, c being a generic constructor for component meta-kind
structures, and α̂ and π̂ being the attribute and port option mappings.
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Analogous to interface meta-kinds, the body of component meta-kinds is in the syntactic set Component-
MK-Body, which is defined by the rules

ε ∈ Component-MK-Body
(4.26)

for an empty body,
t1, t2 ∈ Component-MK-Body
t1; t2 ∈ Component-MK-Body

(4.27)

for sequential composition,
a ∈ Attribute

a ∈ Component-MK-Body
(4.28)

for attribute definitions, and
p ∈ Port-Option

p ∈ Component-MK-Body
(4.29)

for port option definitions.
Given a set of attribute types T̂, a meta-kind map γ, an existing attribute mapping α̂, and an existing port

option mapping π̂, the interpretation relation for the syntactic set Component-MK-Body

T̂, γ, α̂, π̂ ` Component-MK-Body−−−−−−−−−−−−→ Component-MK-Body× (Â, Π̂)

is given by the rule templates

T̂, γ, α̂, π̂ ` ε Component-MK-Body−−−−−−−−−−−−→ α̂, π̂
(4.30)

for an empty body,

t1, t2 ∈ Component-MK-Body, T̂, γ, α̂0, π̂0 ` t1
Component-MK-Body−−−−−−−−−−−−→ α̂1, π̂1,

T̂, γ, α̂1, π̂1 ` t2
Component-MK-Body−−−−−−−−−−−−→ α̂2, π̂2

T̂, γ, α̂0, π̂0 ` t1; t2
Component-MK-Body−−−−−−−−−−−−→ α̂2, π̂2

(4.31)

for sequential composition,
a ∈ Attribute, T̂, α̂0 ` a

Attribute−−−−−→ α̂1

T̂, γ, α̂0, π̂ ` a
Component-MK-Body−−−−−−−−−−−−→ α̂1, π̂

(4.32)

for attribute definitions, and

p ∈ Port-Option, γ, π̂0 ` p
Port-Option−−−−−−→ π̂1

T̂, γ, α̂, π̂0 ` p
Component-MK-Body−−−−−−−−−−−−→ α̂, π̂1

(4.33)

for port option definitions.
The syntax of the complete component meta-kind is given by the rule option

id ∈ Identifier, i ∈ Extends-list, b ∈ Component-MK-Body
metacomponent id i { b } ∈ Meta-Kind-Spec

(4.34)

Again, the syntactic set Extends-list serves to mix in additional attributes and port options as explained in
Section 4.2.9.

4.2.7 CONNECTOR META-KINDS

Connector meta-kinds are declared analogously to component meta-kinds with the only exception that instead
of a map of port options they feature a map of role options

id : (r (α̂, ρ̂))

with r being the constructor to indicate connector meta-kinds. Syntactically, the rule templates
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ε ∈ Connector-MK-Body
(4.35)

t1, t2 ∈ Connector-MK-Body
t1; t2 ∈ Connector-MK-Body

(4.36)

and
a ∈ Attribute

a ∈ Connector-MK-Body
(4.37)

r ∈ Role-Option
r ∈ Connector-MK-Body

(4.38)

describe the set Connector-MK-Body analogous to the Component-MK-Body. The interpretation relation

T̂, γ, α̂, ρ̂ ` Connector-MK-Body−−−−−−−−−−−→ Connector-MK-Body× (Â, R̂)

is also defined analogously through the rule templates

T̂, γ, α̂, ρ̂ ` ε Connector-MK-Body−−−−−−−−−−−→ α̂, ρ̂
(4.39)

t1, t2 ∈ Connector-MK-Body, T̂, γ, α̂0, ρ̂0 ` t1
Connector-MK-Body−−−−−−−−−−−→ α̂1, ρ̂1,

T̂, γ, α̂1, ρ̂1 ` t2
Connector-MK-Body−−−−−−−−−−−→ α̂2, ρ̂2

T̂, γ, α̂0, ρ̂0 ` t1; t2
Connector-MK-Body−−−−−−−−−−−→ α̂2, ρ̂2

(4.40)

a ∈ Attribute, T̂, α̂0 ` a
Attribute−−−−−→ α̂1

T̂, γ, α̂0, ρ̂ ` a
Connector-MK-Body−−−−−−−−−−−→ α̂1, ρ̂

(4.41)

and
r ∈ Role-Option, γ, ρ̂0 ` r

Role-Option−−−−−−−→ ρ̂1

T̂, γ, α̂, ρ̂0 ` r
Connector-MK-Body−−−−−−−−−−−→ α̂, ρ̂1

(4.42)

Finally, the complete connector meta-kind is given by the syntax rule template

id ∈ Identifier, i ∈ Extends-list, b ∈ Connector-MK-Body
metaconnector id i { b } ∈ Meta-Kind-Spec

(4.43)

4.2.8 THE SET OF META-KINDS

The meta-kind map γ ∈ Γ, which contains all interface, component, and connector meta-kinds, is the first
fundamental set of a CALM style. As laid out in the preceding sections, it has the form

Γ = Identifier ⇀ (i Â) ∪ (c (Â× Π̂)) ∪ (l (Â× R̂)),

where the constituent mappings have the form

Â = Identifier ⇀ (a T̂)
Π̂ = Identifier ⇀ (p ({uses, provides} × Identifier×Q×Q))
R̂ = Identifier ⇀ (r ({uses, provides} × Identifier×Q×Q))

It is built through the interpretation of the syntactic set Meta-Kind-Spec

T̂, α̂ ` Meta-Kind-Spec−−−−−−−−−→ : Meta-Kind-Spec× Â

according to the rule templates

id ∈ Identifier, id 6∈ dom(γ), i ∈ Extends-list, γ ` i Extends-list−−−−−−→ α̂0, ∅, ∅,

b ∈ Interface-MK-Body, T̂, α̂0 ` b
Interface-MK-Body−−−−−−−−−−→ α̂1

T̂, γ ` metainterface id i { b }
Meta-Kind-Spec−−−−−−−−−→ γ[id : (i α̂1)]

(4.44)
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for interface meta-kinds,

id ∈ Identifier, id 6∈ dom(γ), i ∈ Extends-list, γ ` i Extends-list−−−−−−→ α̂0, ∅, π̂0,

b ∈ Component-MK-Body, T̂, γ, α̂0, π̂0 ` b
Component-MK-Body−−−−−−−−−−−−→ α̂1, π̂1

T̂, γ ` metacomponent id i { b }
Meta-Kind-Spec−−−−−−−−−→ γ[id : (c (α̂1, π̂1))]

(4.45)

for component meta-kinds, and

id ∈ Identifier, id 6∈ dom(γ), i ∈ Extends-list, γ ` i Extends-list−−−−−−→ α̂0, ρ̂0, ∅,

b ∈ Connector-MK-Body, T̂, γ, α̂0, ρ̂0 ` b
Connector-MK-Body−−−−−−−−−−−→ α̂1, ρ̂1

T̂, γ ` metaconnector id i { b }
Meta-Kind-Spec−−−−−−−−−→ γ[id : (l (α̂1, ρ̂1))]

(4.46)

for connector meta-kinds.

4.2.9 WEAVING IN ADDITIONAL ATTRIBUTES AND PORT/ROLE OPTIONS

Through a mechanism akin to multiple inheritance in object oriented languages, interface, component and
connector meta-kinds can include the attribute, port, and role maps from previously declared meta-kinds of
the same category. Nevertheless, as opposed to the concept of inheritance, the attributes, ports options, or
role options cannot be overloaded, instead the inclusion of existing maps amounts to a special case of disjoint
union, where particularly the left sides of the mappings have to be different.

The syntactical set Extends-list serves to build initial maps from existing meta-kinds which are then
extended with the current meta-kind specification as shown in Section 4.2.3, 4.2.6, 4.2.7. It is defined by the
rule templates

ε ∈ Extends-list
(4.47)

and
i ∈ Identifier-list

extends i ∈ Extends-list
(4.48)

with the syntactical set Identifier-list being defined through

id ∈ Identifier
id ∈ Identifier-list

(4.49)

and
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(4.50)

The interpretation of Extends-list is a lookup in the given meta-kind map γ,

γ ` Extends-list−−−−−−→ : Identifier× (Â× R̂× Π̂)

according to the rule templates

γ ` ε Extends-list−−−−−−→ ∅, ∅, ∅
(4.51)

and
i ∈ Identifier-list, γ ` i Extends-list−−−−−−→ α̂, ρ̂, π̂

γ ` extends i Extends-list−−−−−−→ α̂, ρ̂, π̂
(4.52)

where a given Identifier-list is used to build up the initial attribute map according to the rule templates

id ∈ Identifier, γ ` id : (i α̂)

γ ` id Extends-list−−−−−−→ α̂, ∅, ∅
,

id ∈ Identifier, γ ` id : (l (α̂, ρ̂))

γ ` id Extends-list−−−−−−→ α̂, ρ̂, ∅
, (4.53)

id ∈ Identifier, γ ` id : (c (α̂, π̂))

γ ` id Extends-list−−−−−−→ α̂, ∅, π̂
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and

id ∈ Identifier, γ ` id Extends-list−−−−−−→ α̂1, ρ̂1, π̂1,

i ∈ Identifier-list, γ ` i Extends-list−−−−−−→ α̂2, ρ̂2, π̂2,
dom(α̂1) ∩ dom(α̂2) = ∅, dom(ρ̂1) ∩ dom(ρ̂2) = ∅, dom(π̂1) ∩ dom(π̂2) = ∅

γ ` id,i Extends-list−−−−−−→ α̂1 ∪ α̂2, ρ̂1 ∪ ρ̂2, π̂1 ∪ π̂2

(4.54)

Note that the identifiers id ∈ Identifier used to denote the attributes, port options, and role options (referred
in the rule template as the domains dom(α̂), dom(ρ̂), dom(π̂)), need to be disjoint in the respective unions.
The correct-by-construction approach of CADENA does not allow identifiers to be re-used at all, nevertheless
attributes and port options on component meta-kinds as well as attributes and role options on connector meta-
kinds live in separate name-spaces in CADENA, so that the tool technically would not require, for example,
attribute and port option names on a component meta-kind to be disjoint in actual models. Nevertheless, the
requirement could be introduced into the formalism as well.

4.2.10 LITERALS AND CONSTANTS

When a kind is declared from a given meta-kind, some attributes declared on the meta-kind need to be
(partially) valuated. More precisely, the binding time modifier STYLE has to be eliminated from the types
through partial valuation. The details of this process are part of a separate effort (sec. 4.2.1), nevertheless in
most cases this means that certain attributes have to be completely valuated.

Generally, the partial valuation necessary for the transition of an attribute from the meta-kind to the kind
level is captured through a type transition of the meta-kind level attribute type τ̂ ∈ T̂ to a corresponding kind
level attribute type τ̄ ∈ T̄

id : τ̂ ; id : τ̄

where τ̂ is equal to τ̄ if the binding time modifiers are at most MODULE or τ̄ is a value of the specified type if
the binding time of τ̂ is STYLE entirely.

To (partially) valuate attributes, CALM features syntactic literals of (partial) values v ∈ Literal with kind
level types v : τ̄ (i. e., these literals can contain typed variables/attributes with binding modifiers being at
most MODULE). An attribute valuation (syntactic set Attribute-Valuation) is given through the rule template

id ∈ Identifier, v ∈ Literal
id = v ∈ Attribute-Valuation

(4.55)

The interpretation relation

α̂, ᾱ, C ` Attribute-Valuation−−−−−−−−−−→ Attribute-Valuation× T̄

is defined by the rule template

id ∈ Identifier, id : τ̂ ∈ α̂, id 6∈ dom(ᾱ), v ∈ Literal, T̂, τ̂ , C ` v Literal−−−→ τ̄

T̂, α̂, ᾱ, C ` id = v
Attribute-Valuation−−−−−−−−−−→ ᾱ[id : τ̄ ]

(4.56)

The identifier id has to be defined in an attribute mapping α̂, and the type of v has to be correct. Further, to
prevent double valuations within the same mapping, id cannot be in the domain of the mapping ᾱ.

Since the valuations can be repetitive as well as complex, CALM offers the possibility to define typed
constants c ∈ C for better organization. A defined constant can be used in literals in lieu of the literal they
stand for. They are defined according to the rule template

id ∈ Identifier, t ∈ Type-Spec, v ∈ Literal
id : t = v ∈ Constant

(4.57)

and interpreted according to the rule template

id ∈ Identifier, id 6∈ dom(C), t ∈ Type-Spec, T̂ ` t Type-Spec−−−−−−→ τ̂ ,

v ∈ Literal, T̂, τ̂ , C ` v Literal−−−→ τ̄

T̂, C ` id : t = v
Constant−−−−−→ C[id : τ̄ ]

(4.58)
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4.2.11 INTERFACE KINDS

To define a kind of an architectural element in CALM, a finished meta-kind is exported, which means that
a new name is defined and associated with the meta-kind’s structure, which in turn is transformed to the
kind level. Each kind separately copies and transfers the structure of the meta-kind it is derived from, the
kind does not record a nominal reference to the meta-kind (i. e., the original meta-kind is invisible outside
the style tier, and relationships among meta-kinds, including equality, do not imply type compatibilities or
similar correlations among kinds derived from them).1

The interface meta-kind structure (i α̂) is transferred during export into an interface kind structure (i ᾱ)
with i being the generic constructor for interface kinds. This transfer means a partial valuation of the associ-
ated attributes. Consequently, the syntactical set Interface-Export-Spec, which forms the body of an interface
kind definition

id1, id2 ∈ Identifier, b ∈ Interface-Export-Spec
interfacekind id1 : id2 { b } ∈ Kind-Definition

(4.59)

is a (possibly empty) list of attribute valuations as given by the rule templates

ε ∈ Interface-Export-Spec
(4.60)

t1, t2 ∈ Interface-Export-Spec
t1; t2 ∈ Interface-Export-Spec

(4.61)

and
t ∈ Attribute-Valuation

t ∈ Interface-Export-Spec
(4.62)

The interpretation of the interface kind definition is given through the rule template

id1, id2 ∈ Identifier, id1 6∈ κ, id2 : (i α̂) ∈ γ, b ∈ Interface-Export-Spec,

T̂, α̂, ∅, C ` b Interface-Export-Spec−−−−−−−−−−−−→ ᾱ1, Am
k (α̂) = ᾱ2, ᾱ = ᾱ1 ∪ ᾱ2, Qm

a (α̂, ᾱ)

T̂, γ, κ,Ξ,V, C ` interfacekind id1 : id2 { b }
Kind-Definition−−−−−−−−→ κ[id1 : (i ᾱ)],Ξ

(4.63)

where the identifier id1, the name of the interface kind which is created, has to be a new identifier, while id2

denotes the interface meta-kind which is used as the structural template for the creation. The interface kind
definition body b ∈ Interface-Export-Spec serves to valuate the attributes in α̂ which need (partial) valuation
on the kind level (binding-time modifier STYLE) to obtain a mapping ᾱ1. Other attributes which do not need
valuation on the kind level are copied to the kind by the function

Am
k : Â→ Ā.

Obviously the partial valuation can only be correct if ᾱ1 and ᾱ2 form a partition of the complete kind attribute
mapping ᾱ. The completeness of ᾱ = ᾱ1 ∪ ᾱ2 is checked through a completeness predicate

Qm
a ⊆ Â× Ā.

Assuming correctness of the partial valuation within the interface kind body, the completeness predicate can
be expressed through a simple comparison of the domains

Qm
a (α̂, ᾱ) ⇔ dom(α̂) = dom(ᾱ)

Nevertheless, depending on the concrete form of the attribute type system (sec. 4.2.1), a more complex
predicate can be defined. Result of the interpretation is an updated kind environment κ[id1 : (i ᾱ)] containing
the new interface kind.

1The invisibility of the meta-kind on lower tiers of CALM mainly concerns relations (or the lack thereof) between types of different
kinds, which are incompatible even if the kinds they live in are derived from the same meta-kind. Nevertheless structural relationships
between meta-kinds do come into effect if types are transfered from one kind to another for example to re-use architectural elements
over different platforms, a process called migration.
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The interpretation of the syntactic set Interface-Export-Spec assembles a kind level attribute mapping ᾱ1

according to the rule templates

T̂, α̂, ᾱ, C ` ε Interface-Export-Spec−−−−−−−−−−−−→ ᾱ
(4.64)

t1, t2 ∈ Interface-Export-Spec, T̂, α̂, ᾱ0, C ` t1
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ1,

T̂, α̂, ᾱ1, C ` t2
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ2

T̂, α̂, ᾱ0, C ` t1; t2
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ2

(4.65)

and
t ∈ Attribute-Valuation, T̂, α̂, ᾱ0, C ` t

Attribute-Valuation−−−−−−−−−−→ ᾱ1

T̂, α̂, ᾱ0, C ` t
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ1

(4.66)

4.2.12 TYPE VARIABLES AND ASSERTIONS

CALM allows to constrain the use of interface types in an architecture, a feature which mainly aims at the
definition of role options on connector kinds that model preconceived infrastructure elements with limited
flexibility, but can at times be useful to confine the interfaces of ports on components too. At the style tier,
interface kinds are introduced, nevertheless the types which populate the kinds are generally not known at this
stage. Therefore CALM allows to declare variables v ∈ V which stand for a fixed type in a given interface
kind. The syntactical set Type-Var-Decl, defined by the rule template

i ∈ Identifier-list, id ∈ Identifier
typevar i : id ∈ Type-Var-Decl

(4.67)

declares a set i of type variables within the kind id . Its interpretation is given by the rule template

i ∈ Identifier-list, id ∈ Identifier, id : (i ᾱ) ∈ κ, V0, id ` i
Type-Var-Decl-Id−−−−−−−−−→ V1

κ,V0 ` typevar i : id
Type-Var-Decl−−−−−−−−→ V1

(4.68)

where the identifier list i ∈ Identifier-list is interpreted through the rule template

id ∈ Identifier, id 6∈ dom(V0), i ∈ Identifier-list, V0[id : k], k ` i Type-Var-Decl-Id−−−−−−−−−→ V1

V0, k ` id,i
Type-Var-Decl-Id−−−−−−−−−→ V1

(4.69)

for a comma-separated sequence of identifiers id,i, and

id ∈ Identifier, id 6∈ dom(V)

V, k ` id
Type-Var-Decl-Id−−−−−−−−−→ V[id : k]

(4.70)

for a single identifier id . In these rules, k is name of the interface kind in which the types denoted by the new
variables live. The new variable id : k is stored in the set of variables V and its name id can be used in lieu
of the interface kind name k in component and connector kind definitions.

The variables allow to make assertions about unnamed types of interface kinds. Obviously, the re-use of
the same variable denotes type equality, but CALM also allows to introduce explicit constraints about the
types through assertions. The syntactic set Type-Var-Assert is defined through the rule template

id1, id2 ∈ Identifier, ∼ ∈ {<=, =, >=}
assert id1 ∼ id2 ∈ Type-Var-Assert

(4.71)

which allows three infix binary relation symbols, = for equality, and >= and <= for sub-type relationships,
where sub-typing means an asymmetric compatibility relation of the interface types (see sec. 4.3).

The interpretation of Type-Var-Assert includes every new assertion ξ = id1 ∼ id2 into the set of type
assertions Ξ, provided the variables are compatible, which means that they have to be declared in the same
interface meta-kind. It is given through the rule templates

id1, id2 ∈ Identifier, id1 : k1, id2 : k2 ∈ V, k1 = k2

Ξ,V ` assert id1 = id2
Type-Var-Assert−−−−−−−−−→ Ξ[id1 = id2]

(4.72)
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id1, id2 ∈ Identifier, id1 : k1, id2 : k2 ∈ V, k1 = k2

Ξ,V ` assert id1 <= id2
Type-Var-Assert−−−−−−−−−→ Ξ[id1 ≤ id2]

(4.73)

and
id1, id2 ∈ Identifier, id1 : k1, id2 : k2 ∈ V, k1 = k2

Ξ,V ` assert id1 >= id2
Type-Var-Assert−−−−−−−−−→ Ξ[id1 ≥ id2]

(4.74)

In the current version of CALM, interface typing constraints ξ ∈ Ξ apply (component-/connector-) type-
locally only, which means that even for globally declared variables the equalities/inequalities they denote
only have to hold inside every single component or connector type, but not across types or across kinds even.
This current restriction is due to the fact that CADENA only implements local variables (in fact, local to
single connector types only), and no experience has been collected as to what a practicable and widely useful
semantics for broader spectrum typing constraints would be. Type-local interface typing constraints on the
other hand have proven useful particularly for connectors.

4.2.13 EXPORTING PORT AND ROLE OPTIONS

Essential for the creation of a component or connector kind is the transition of port/role options from the
meta-kind to the kind level. Considering the structure of a port/role option on the meta-kind level

id : (p (p, idm, q1, q2)) and id : (r (p, idm, q1, q2)),

and the form of a port/role option on the kind level,

id : (p (p, idk, q1, q2)) and id : (r (p, idk, q1, q2)),

transitioning the port/role option essentially means to replace the interface meta-kind name idm by an ap-
propriate interface kind name idk. An element of the syntactic set Export-Kind-Spec is therefore simply a
pair of identifiers, one denoting the port/role option, the other denoting the interface kind which replaces the
interface meta-kind, and the transfer operator ->, as defined by the rule template

id1, id2 ∈ Identifier
id1 -> id2 ∈ Export-Kind-Spec

(4.75)

For the interpretation of Export-Kind-Spec there are four cases. First, the identifier id1 denotes a role option
and the identifier id2 a component kind directly (as opposed to a type variable as described in Section 4.2.12)

id1, id2 ∈ Identifier, id1 : (r (p, idm, q1, q2)) ∈ ρ̂, id2 : (i ᾱ) ∈ κ, D(idm, id2)

γ, ρ̂, ρ̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ ρ̄[id1 : (r (p, id2, q1, q2))],Ξ

(4.76)

The predicate D assures that the interface kind id2 : (a ᾱ) is derived from the meta-kind denoted by idm

required by the role option (i. e., (idm, id2) ∈ D iff id2 : (a ᾱ) is derived from idm : (a α̂)). Second,
identifier id1 denotes a role option and identifier id2 denotes a type variable id2 : idk ∈ V

id1, id2 ∈ Identifier, id1 : (r (p, idm, q1, q2)) ∈ ρ̂, id2 : idk ∈ V, D(idm, idk)

γ, ρ̂, ρ̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ ρ̄[id1 : (r (p, idk, q1, q2))],

Ξ[type(this.id1) = id2]

(4.77)

here, this.id1 stands for the fully qualified name of the role option. In cases four and three, id1 denotes a
port option instead, id2 again stands for either an interface kind directly or for a type variable

id1, id2 ∈ Identifier, id1 : (p (p, idm, q1, q2)) ∈ π̂, id2 : (i ᾱ) ∈ κ, D(idm, id2)

γ, π̂, π̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ π̄[id1 : (p (p, id2, q1, q2))],Ξ

(4.78)

and

id1, id2 ∈ Identifier, id1 : (p (p, idm, q1, q2)) ∈ π̂, id2 : idk ∈ V, D(idm, idk)

γ, π̂, π̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ π̄[id1 : (p (p, idk, q1, q2))],

Ξ[type(this.id1) = id2]

(4.79)
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Note that the cases where, instead of a meta-kind name, id2 is a type variable name, lead to an update of
the typing constraint set Ξ. For the complete style it is sufficient then to calculate the transitive hull of Ξ
and eliminate the constraints which contain variables. The relations between the types of the interface kinds
associated with specific roles and ports are thereby preserved without recording the variables. Note again
that all typing constraints apply component-/connector-type-locally only.

4.2.14 COMPONENT KINDS

To define a component kind, three things are necessary. First, a component meta-kind as template, second,
a partial valuation of the attributes, and third, transferring the port options from the meta-kind to the kind
level by selecting appropriate interface kinds. Syntactically, the component kind definition is given by the
rule template

id1, id2 ∈ Identifier, b ∈ Component-Export-Spec
componentkind id1 : id2 { b } ∈ Kind-Definition

(4.80)

with id1 being the name of the new component kind, id2 being the name of the meta-kind from which id1

is derived, and b being the body of the component kind definition. The body b is given through six rule
templates, which are

ε ∈ Component-Export-Spec
(4.81)

t1, t2 ∈ Component-Export-Spec
t1; t2 ∈ Component-Export-Spec

(4.82)

for an empty body and for sequential composition,

t ∈ Attribute-Valuation
t ∈ Component-Export-Spec

(4.83)
t ∈ Export-Kind-Spec

t ∈ Component-Export-Spec
(4.84)

for attribute valuations and port option transfers, and

t ∈ Type-Var-Spec
t ∈ Component-Export-Spec

(4.85)
t ∈ Type-Var-Assert

t ∈ Component-Export-Spec
(4.86)

for new type variables and assertions over interface types.
The interpretation relations are given straightforwardly on the basis of the previous sections. The body

b ∈ Component-Export-Spec is interpreted by the relation

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ,V, C ` Component-Export-Spec−−−−−−−−−−−−−−→ : Component-Export-Spec× (Ā× Π̄× 2Ξ × 2V)

where 2Ξ (powerset of Ξ) is the set of all possible typing constraint sets, and 2V is the set of all possible sets
of variables. The rule templates are

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ,V, C ` ε Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄,Ξ,V
(4.87)

for an empty body,

t1, t2 ∈ Component-Export-Spec,

T̂, γ, α̂, ᾱ0, π̂, π̄0,Ξ0,V0, C ` t1
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ1, π̄1,Ξ1,V1

T̂, γ, α̂, ᾱ1, π̂, π̄1,Ξ1,V1, C ` t2
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ2, π̄2,Ξ2,V2

T̂, γ, α̂, ᾱ0, π̂, π̄0,Ξ0,V0, C ` t1; t2
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ2, π̄2,Ξ2,V2

(4.88)

(i. e., sequential interpretation) for sequential composition,

t ∈ Attribute-Valuation, T̂, α̂, ᾱ0, C ` t
Attribute-Valuation−−−−−−−−−−→ ᾱ1

T̂, γ, α̂, ᾱ0, π̂, π̄,Ξ,V, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ1, π̄,Ξ,V

(4.89)
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(updating the attribute map ᾱ) for an attribute valuation, and

t ∈ Export-Kind-Spec, γ, π̂, π̄0,Ξ0,V, C ` t
Export-Kind-Spec−−−−−−−−−−→ π̄1,Ξ1

T̂, γ, α̂, ᾱ, π̂, π̄0,Ξ0,V, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄1,Ξ1,V

(4.90)

(updating the port map π̄) for fixing the interface kind of a port option. Further, (local) type variables can be
introduced through

t ∈ Type-Var-Decl, κ,V0 ` t
Type-Var-Decl−−−−−−−−→ V1

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ,V0, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄,Ξ,V1

(4.91)

and interface type assertions added by

t ∈ Type-Var-Assert, Ξ0,V ` t
Type-Var-Assert−−−−−−−−−→ Ξ1

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ0,V, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄,Ξ1,V

(4.92)

The complete component kind is added to the kind environment κ according to the rule template

id1, id2 ∈ Identifier, id1 6∈ κ, id2 : (c (α̂, π̂)) ∈ γ, b ∈ Component-Export-Spec,

T̂, γ, α̂, ∅, π̂, ∅,Ξ0,V0, C ` b
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ1, π̄,Ξ1,V1,

Am
k (α̂) = ᾱ2, ᾱ = ᾱ1 ∪ ᾱ2, Qm

a (α̂, ᾱ), Qm
p (π̂, π̄) Ξ2 = cls(V1\V0)(Ξ1)

T̂, γ, κ,Ξ0,V0, C ` componentkind id1 : id2 { b }
Kind-Definition−−−−−−−−→ κ[id1 : (c (ᾱ, π̄))],Ξ2

(4.93)

Analogous to the interpretation of interface kind definitions, attributes which are unchanged between the
meta-kind and the kind level are transferred by the functionAm

k : Â→ Ā, the completeness of the kind level
attribute environment is ensured by the predicate Qm

a . Similarly, the completeness of the port option exports
is assured through the predicate Qm

p : Π̂× Π̄. This predicate can be defined as

Qm
p (π̂, π̄) ⇔ dom(π̂) = dom(π̄),

(i. e., simple completeness) assuming that the transition through the interpretation of the set Export-Kind-Spec
is correct.

Locally declared interface type variables v ∈ V1\V0 are not added to the global set of type variables V0,
instead the transitive closure of Ξ1 is calculated and the new variables eliminated, so that only the (directly
or indirectly declared) relations between the fully qualified port options are recorded in the interface type
constraint set Ξ2, which is part of the result of the interpretation of the component kind definition. The
function

clsV : 2Ξ → 2Ξ, clsV(Ξ1) 7→ Ξ2

(where 2Ξ is the set of all possible type constraint sets Ξ) calculates the transitive closure of Ξ1 and eliminates
all constraints which contain variables v ∈ V from the result.

4.2.15 CONNECTOR KINDS

Connector kinds are defined from connector meta-kinds in exactly the same way as component kinds from
component meta-kinds. Namely, the overall syntax is given by the rule template

id1, id2 ∈ Identifier, b ∈ Connector-Export-Spec
connectorkind id1 : id2 { b } ∈ Kind-Definition

(4.94)

while the overall interpretation is given by the rule template

id1, id2 ∈ Identifier, id1 6∈ κ, id2 : (l (α̂, ρ̂)) ∈ γ, b ∈ Connector-Export-Spec,

T̂, γ, α̂, ∅, ρ̂, ∅,Ξ0,V0, C ` b
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ1, ρ̄,Ξ1,V1,

Am
k (α̂) = ᾱ2, ᾱ = ᾱ1 ∪ ᾱ2, Qm

a (α̂, ᾱ), Qm
r (ρ̂, ρ̄), Ξ2 = cls(V1\V0)(Ξ1)

T̂, γ, κ,Ξ0,V0, C ` connectorkind id1 : id2 { b }
Kind-Definition−−−−−−−−→ κ[id1 : (l (ᾱ, ρ̄))],Ξ2

(4.95)
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Similar to components, the body b of a connector kind definition allows for attribute valuations and role
option transitions

t ∈ Attribute-Valuation
t ∈ Connector-Export-Spec

(4.96)
t ∈ Export-Kind-Spec

t ∈ Connector-Export-Spec
(4.97)

as well as local interface type variables and respective typing constraints.

t ∈ Type-Var-Decl
t ∈ Connector-Export-Spec

(4.98)
t ∈ Type-Var-Assert

t ∈ Connector-Export-Spec
(4.99)

Finally, the interpretation of the syntactic set Connector-Export-Spec is analogous to the interpretation of
Component-Export-Spec.

4.2.16 STYLE HEAD AND ELEMENT INCLUSION

The elements described so far (i. e., attribute type specifications, constants, interface type variable declara-
tions and assertions, meta-kind declarations, and kind definitions) make the body of a CALM architectural
style. Syntactically, the body of a style is given by the set Style-Body, which is defined by the rule templates

ε ∈ Style-Body
(4.100)

t1, t2 ∈ Style-Body
t1; t2 ∈ Style-Body

(4.101)

for an empty body and sequential composition

t ∈ Meta-Kind-Spec
t ∈ Style-Body

(4.102)
t ∈ Kind-Definition
t ∈ Style-Body

(4.103)

for meta-kinds and kinds,

t ∈ Type-Var-Decl
t ∈ Style-Body

(4.104)
t ∈ Type-Var-Assert
t ∈ Style-Body

(4.105)

for interface type variables and assertions (constraint definitions), and

t ∈ Attribute-Type-Spec
t ∈ Style-Body

(4.106)
t ∈ Constant
t ∈ Style-Body

(4.107)

for attribute types and attribute value constants. The interpretation of the style body is straightforward, as
given, for example, for meta-kind declarations by the rule template

t ∈ Meta-Kind-Spec, T̂, γ0 ` t
Meta-Kind-Spec−−−−−−−−−→ γ1

T̂, γ0, κ,Ξ,V, C ` t
Style-Body−−−−−−→ T̂, γ1, κ,Ξ,V, C

(4.108)

or for the kind definitions by the rule template

t ∈ Kind-Definition, T̂, γ, κ0,Ξ0,V, C ` t
Kind-Definition−−−−−−−−→ κ1,Ξ1

T̂, γ, κ0,Ξ0,V, C ` t
Style-Body−−−−−−→ T̂, γ, κ1,Ξ1,V, C

(4.109)

The rules for an empty body or for sequential composition, for type variables and constraints, and for attribute
types and constants within Style-Body are omitted here, they can be found in Appendix B.

One of the main reasons to capture the architectural style within the overall model of the architecture is
the possibility to combine, refine, enrich, or reduce styles easily and adapt the architectural models within
the styles accordingly. The complete style specification, as given through the syntactic set Style, is defined
by the rule option

id0 ∈ Identifier i ∈ Import-Spec, b ∈ Style-Body
style id0 i { b } ∈ Style

(4.110)
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where the import specification i ∈ Import-Spec is defined by the rule templates

ε ∈ Import-Spec
(4.111)

t ∈ Union
include t ∈ Import-Spec

(4.112)

If the import specification is nonempty, the keyword include is followed by a term t ∈ Union, which is an
expression over identifiers denoting existing CALM architectural styles, using the operators + for union and
ˆ for intersection. In detail the syntax of the import specification is defined by the rule templates

t ∈ Intersection
t ∈ Union

(4.113)
t1 ∈ Intersection, t2 ∈ Union

t1 + t2 ∈ Union
(4.114)

t ∈ Atom
t ∈ Intersection

(4.115)
t1 ∈ Atom, t2 ∈ Intersection

t1 ˆ t2 ∈ Intersection
(4.116)

id ∈ Identifier
id ∈ Atom

(4.117)
t ∈ Union

( t ) ∈ Atom
(4.118)

The atom is either an identifier id ∈ Identifier, or a subterm t ∈ Union in parenthesis. In case of the atom
being and identifier, it needs to be the name of an existing CALM style. The interpretation of an atom of the
import specification is given through the rule templates

id ∈ Identifier, id : (s (T̂, γ, κ,Ξ)) ∈ σ

σ ` id Atom−−−→ T̂, γ, κ,Ξ
(4.119)

for an atom which denotes a single CALM style, and

t ∈ Union, σ ` t Union−−−→ T̂, γ, κ,Ξ

σ ` ( t ) Atom−−−→ T̂, γ, κ,Ξ
(4.120)

for an atom which contains a sub-term in parentheses. The interpretation of an intersection t ∈ Intersection
passes on the results of the involved atom in the unary case, as given by the rule template

t ∈ Atom, σ ` t Atom−−−→ T̂, γ, κ,Ξ

σ ` t Intersection−−−−−−→ T̂, γ, κ,Ξ
(4.121)

and combines the results in the binary case, as given by the rule template

t1 ∈ Atom, t2 ∈ Intersection, σ ` t1
Atom−−−→ T̂1, γ1, κ1,Ξ1,

σ ` t2
Intersection−−−−−−→ T̂2, γ2, κ2,Ξ2

σ ` t1 ˆ t2
Intersection−−−−−−→ T̂1 u T̂2, γ1 u γ2, κ1 u κ2,Ξ1 u Ξ2

(4.122)

Here, the intersection operator u requires uniqueness of names, which means that the set S = S1 u S2 is
only defined if there is no element e1 = id1 : s1 ∈ S1 with id1 ∈ dom(S2) but e1 6∈ S2. In other words, if
elements from S1 and elements from S2 have the same identifier but a different structure, the intersection is
undefined.2 Mainly, this implies

S1 u S2 defined ⇒ dom(S1 u S2) = dom(S1) ∩ dom(S2).

Similar, the interpretation of a union t ∈ Union either passes on the results in the unary case

t ∈ Intersection, σ ` t Intersection−−−−−−→ T̂, γ, κ,Ξ

σ ` t Union−−−→ T̂, γ, κ,Ξ
(4.123)

2It is natural, and in fact intended for realization in CADENA, to require that elements included in such an intersection actually
originate from the same definition, as opposed to just being structurally equal.
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or relies on a specific union operation t which requires unambiguous names analogously to the intersection
operation u

t1 ∈ Intersection, t2 ∈ Union, σ ` t1
Intersection−−−−−−→ T̂1, γ1, κ1,Ξ1,

σ ` t2
Union−−−→ T̂2, γ2, κ2,Ξ2

σ ` t1 + t2
Union−−−→ T̂1 t T̂2, γ1 t γ2, κ1 t κ2,Ξ1 t Ξ2

(4.124)

Result of the interpretation of the import specification is a tuple (T, γ, κ,Ξ) which provides the initial
sets for the interpretation of the set Style T0, γ0, κ0, and Ξ0, which are then supplemented by the style body
b ∈ Style-Body according to the rule template

id ∈ Identifier, id 6∈ dom(σ), i ∈ Import-Spec, σ ` i Import-spec−−−−−−−→ T̂0, γ0, κ0,Ξ0,

b ∈ Style-Body, T̂0, γ0, κ0,Ξ0, ∅, ∅ ` b
Style-Body−−−−−−→ T̂1, γ1, κ1,Ξ1,V, C

σ ` style id0 i { b }
Style−−−→ σ[id : (s (T̂1, γ1, κ1, clsV(Ξ1)))]

(4.125)

Interface type variables v ∈ V or literal constants c ∈ C are not collected from other styles, instead the re-
spective sets are supplied as empty in the environment under which the style body is interpreted. Also, similar
to the local case of component or connector kinds (sec. 4.2.14), type variables v ∈ V are eliminated within
the set of interface type constraints Ξ1 resulting from the interpretation of the style body after calculating the
transitive closure.

4.3 THE MODULE TIER

A CALM module is a library of types of component and interface kinds. Each module is defined within
precisely one style, which means all kinds which are populated by the module are drawn from that specific
style. The base for creating a module is therefore a kind mapping κ ∈ K with respective typing constraint set
Ξ. A complete module is a pair of the module constructor m and the module structure, which is a pair of the
attribute type set (recorded in its kind level form) T̄ and the mapping which records the types of architectural
elements (of interface and component kinds) of this module ψ ∈ Ψ. An overview of the module elements is
given in Table 4.2.

4.3.1 CONSTANTS

Next to the actual type declarations, constants t ∈ Constant are the one top-level syntactical entity within a
CALM module body. Much like the attributes on kinds on the style tier, which have to be partially valuated
in the transition from the meta-kind to the kind level (see sec. 4.2.1, sec. 4.2.10, sec. 4.2.11), attributes on
types have to be transferred from the kind to the type level through a partial valuation. Again, similar to the
style tier, constants can be used to facilitate this valuation. Their syntax is given through the rule template

id ∈ Identifier, t ∈ Type-Spec, v ∈ Literal
id : t = v ∈ Constant

(4.126)

Their interpretation, given through the rule template

id ∈ Identifier, id 6∈ dom(C), t ∈ Type-Spec, T̄ ` t Type-Spec−−−−−−→ τ̄ ,

v ∈ Literal, T̄, τ̄ , C ` v Literal−−−→ τ

T̄, C ` id : t = v
Constant−−−−−→ C[id : τ ]

(4.127)

adds the constants to the module-wide set C of constants.

4.3.2 TYPE DECLARATIONS FOR ARCHITECTURE ELEMENTS

Core of a CALM module is the declaration of types of the kinds of architectural elements defined by the
module’s style. Each type declaration starts with a nominal reference to the kind within which the type is
declared, followed by the name of the type. An identifier list of includes adds the structure of previously
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Attribute types τ̄ ∈ T̄ Kind level attribute type set, and
T̄ ∈ Ā set of all kind level attribute type sets.
τ ∈ T Type level attribute type set, and
T ∈ A set of all type level attribute type sets.

Attribute maps of types α ∈ A A = Identifier ⇀ (a T)

Ports on types π ∈ Π Π = Identifier ⇀ (Identifier∗ ({uses,provides} × Identifier† ×Q))

Type mapping, recording
interface and component
types

ψ ∈ Ψ Ψ = Identifier ⇀ (Identifier‡ A)× (Identifier§ (A×Π))

Type constraints ξ ∈ Ξ ξ = type(kind.port-option1) ∼ type(kind.port-option2)

Module mapping, a li-
brary of CALM archi-
tectural elements (compo-
nents and interfaces).

µ ∈ M M = Identifier ⇀ (m (2T̄ ×Ψ))

∗ The identifier denotes a port-option name which doubles as keyword for introducing ports.
† The identifier needs to denote an interface type within the required kind.

‡ The identifier is an interface kind name.
§ The identifier is a component kind name.

Table 4.2: CALM module structure sets and symbols

defined types of the same kind. Syntactically, the type declaration is given by the set Type, which is defined
in the rule template

id1, id2 ∈ Identifier, i ∈ Include, b ∈ Type-Body
id id i { b } ∈ Type

(4.128)

Note that this syntax does not explicitly distinguish the category of the types’ kind (i. e., whether the type is
declared within a component kind or interface kind), as it is rather meant to emphasize the kinds themselves.
The distinction of the category is only given through the referenced kind’s nature.

Types can include structure from previously declared types of the same kind. These are given through the
identifiers representing their names. The list (if nonempty) is given with the keyword include, as defined
by the rule templates

ε ∈ Include
(4.129)

i ∈ Identifier-list
include i ∈ Include

(4.130)

with the identifier list i ∈ Identifier-list being defined by the rule templates

id ∈ Identifier
id ∈ Identifier-list

(4.131)
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(4.132)

The body of a type declaration is a (possibly empty) sequence of attribute valuations and port declarations,
which have to comply with the attributes and port options given by the respective kind. The set Type-Body is
given by the rule templates

ε ∈ Type-Body
(4.133)

t1, t2 ∈ Type-Body
t1; t2 ∈ Type-Body

(4.134)

for an empty body and sequential composition, and
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t ∈ Attribute-Valuation
t ∈ Type-Body

(4.135)
t ∈ Port

t ∈ Type-Body
(4.136)

for attribute valuations and port declarations. Attribute valuations in Attribute-Valuation have the form

id ∈ Identifier, v ∈ Literal
id = v ∈ Attribute-Valuation

(4.137)

while port declarations in Port are given through the rule template

id1, id2, id3 ∈ Identifier
id1 id2 : id3 ∈ Port

(4.138)

While syntactically the declaration of a type within an interface kind is equal to the declaration of a type
within a component kind, the interpretation of both differs in details. Main difference is the fact that interface
kinds do not offer port options. Depending on the category of the kind referenced in the type head, the
interpretation of a type declaration splits into two rule templates, which are

id1, id2 ∈ Identifier, id1 : (i ᾱ) ∈ κ, id2 6∈ dom(ψ), i ∈ Include,

ψ, id1 ` i
Include−−−−→ α0, ∅, b ∈ Type-Body, T̄, ψ, ᾱ, α0, ∅, ∅, C ` b

Type-Body−−−−−−→ α1, ∅
Ak

t (ᾱ) = α2, α = α1 ∪ α2, Qk
a(ᾱ, α)

T̄, κ, ψ, C,Ξ ` id id i { b }
Type−−→ ψ[id2 : (id1 α2)]

(4.139)

for interface kinds (the port option mapping being empty), and

id1, id2 ∈ Identifier, id1 : (c (ᾱ, π̄)) ∈ κ, id2 6∈ dom(ψ), i ∈ Include,

ψ, id1 ` i
Include−−−−→ α0, π0, b ∈ Type-Body, T̄, ψ, ᾱ, α0, π̄, π0, C ` b

Type-Body−−−−−−→ α1, π

Ak
t (ᾱ) = α2, α = α1 ∪ α2, Qk

a(ᾱ, α), Qk
p(π̄, π), K(Ξ, π)

T̄, κ, ψ, C,Ξ ` id id i { b }
Type−−→ ψ[id2 : (id1 (α2, π2))]

(4.140)

for component kind, which have a port option mapping π̄. Similar to the transition between meta-kinds and
kinds, attributes which do not require valuation at the type level are copied from the kind level by the function

Ak
t : Ā→ A.

The attribute map resulting from the partial valuation within the body together with the attribute map copied
from the kind level have to be complete in as much as all attributes defined on the kind have to be handled
properly. This is checked by the predicate

Qk
a ⊆ Ā×A

A similar predicate checks the completeness of the declared ports within the type’s port map π against the
requirements given by the kind’s port option map π̄3

Qk
p ⊆ Π̄×Π

Finally, the interface types associated with the declared ports of the type’s port map π have to comply to the
typing constraints given by the constraint set Ξ. Recall that a constraint ξ ∈ Ξ has the form

ξ = type(kind.port-option1) ∼ type(kind.port-option2)

where ∼ is either =, ≤, or ≥, with = denoting type equality ≤ and ≥ denoting directed (asymmetric) type
compatibility (e. g., subtyping, see sec. 4.3.4). These constraints have to be checked for consistency with
expressions given through the declaration of ports, which have the form

type(type.port) = {t0},

3The definition of both predicates is straightforward.
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where type is a type within a component kind kind0 and port is a port declared within one of the kinds port
options port-option0, so that

t0 ∈ type(kind0.port-option0).

It is apparent, that this way of using type constraints to restrict the use of interface types on ports (and roles)
has limited expressiveness, nevertheless it proved sufficient in all component systems modeled so far. The
predicate

K ⊆ 2Ξ ×Π

embodies the validation of a type’s port map π against the interface typing constraints ξ ∈ Ξ.
Before evaluation of the body, a type can be complemented with the structures of existing types of the

same kind. The list of inclusions i ∈ Include is interpreted through the rule templates

ψ, id ` ε Include−−−−→ ∅, ∅
(4.141)

in case of no inclusions and
i ∈ Identifier-list, ψ, id ` i Include−−−−→ α, π

ψ, id ` include i Include−−−−→ α, π
(4.142)

for a nonempty list of inclusions. In both rules, id is the name of the kind within which the included types
live. The identifier list i ∈ Identifier-list is interpreted through the rule templates

id ∈ Identifier, id : (id i α) ∈ ψ

ψ, id i ` id Include−−−−→ α, ∅
(4.143)

for single interface types,
id ∈ Identifier, id : (idc (α, π)) ∈ ψ

ψ, idc ` id Include−−−−→ α, π
(4.144)

for single component types, and

id ∈ Identifier, i ∈ Identifier-list, id : (id i α1) ∈ ψ, ψ ` i Include−−−−→ α2, ∅
dom(α1) ∩ dom(α2) = ∅

ψ, id i ` id,i Include−−−−→ α1 ∪ α2, ∅
(4.145)

and

id ∈ Identifier, i ∈ Identifier-list, id : (idc (α1, π1)) ∈ ψ, ψ ` i Include−−−−→ α2, π2,

dom(α1) ∩ dom(α2) = ∅, dom(π1) ∩ dom(π2) = ∅
ψ, idc ` id,i Include−−−−→ α1 ∪ α2, π1 ∪ π2

(4.146)

for sequences of interface or component types respectively. Main precondition is that the domains of the
included attribute/port maps are disjoint to eliminate ambiguities. Result of the evaluation are initial attribute
and port maps α and π which are extended by the attribute valuations and port declarations in the type body.

The type body is interpreted under the kind level type set T̄ which is needed to determine the correctness
of attribute valuations, the module’s type map ψ as defined so far, the kind level attribute and port option
maps of the type’s kind ᾱ and π̄, the type’s initial type level attribute and port map α and π, and the global
set of constants c ∈ C. Result of the interpretation is a pair α′, π′ ∈ A,Π which contains the type’s final
attribute and port mapping. The interpretation is defined by the rule templates

T̄, ψ, ᾱ, α, π̄, π, C ` ε Type-Body−−−−−−→ α, π
(4.147)

for an empty body, and

t1, t2 ∈ Type-Body, T̄, ψ, ᾱ, α0, π̄, π0, C ` t1
Type-Body−−−−−−→ α1, π1

T̄, ψ, ᾱ, α1, π̄, π1, C ` t2
Type-Body−−−−−−→ α2, π2

T̄, ψ, ᾱ, α0, π̄, π0, C ` t1; t2
Type-Body−−−−−−→ α2, π2

(4.148)
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for sequential composition of type body elements, with

t ∈ Attribute-Valuation, T̄, ᾱ, α0, C ` t
Attribute-Valuation−−−−−−−−−−→ α1

T̄, ψ, ᾱ, α0, π̄, π, C ` t
Type-Body−−−−−−→ α1, π

(4.149)

for attribute valuations t ∈ Attribute-Valuation, and

t ∈ Port, ψ, π̄, π0 ` t
Port−−→ π1

T̄, ψ, ᾱ, α, π̄0, π, C ` t
Type-Body−−−−−−→ α1, π1

(4.150)

for port declarations in t ∈ Port. The interpretation of a single attribute valuation on a type when defining it
within a kind is closely analogous to that on a kind when exporting it from a meta-kind. The rule template

id ∈ Identifier, id : τ̄ ∈ ᾱ, id 6∈ dom(α), v ∈ Literal, T̄, τ̄ , C ` v Literal−−−→ τ

T̄, ᾱ, α, C ` id = v
Attribute-Valuation−−−−−−−−−−→ α[id : τ ]

(4.151)

defines the interpretation relation. It is a precondition that the attribute is not yet listed in the type’s attribute
mapping to avoid overwriting of already defined values. A single port declaration t ∈ Port is interpreted
according to the rule template

id1, id2, id3 ∈ Identifier, id1 : (p (p, k, q1, q2)) ∈ π̄, id2 6∈ dom(π), id3 : (k α) ∈ ψ

ψ, π̄, π ` id1 id2 : id3
Port−−→ π[id2 : (id1 (p, id3, q2))]

(4.152)

Recall that the correct handling of the multiplexity q1 of the port option id1 : (p (p, k, q1, q2)) ∈ π̄ is a
property which, instead of the single port, applies to the whole port map π of the type, and is checked for the
complete type by the predicate Qk

p ⊆ Π̄× Π. A summary of the genesis of a port from the meta-kind’s port
option is given in Table 4.3.

π̂ ` ido : (p (p, interface-meta-kind, q1, q2)) The original port option on a meta-kind with parity p,
↓ O interface meta-kind, multiplicity q1 and multiplexity q2.

π̄ ` ido : (p (p, interface-kind, q1, q2)) On the kind level, the shape (meta-kind) is replaced by a
↘ O concrete interface kind.

π ` idp : (ido (p, interface-type, q2)) The type declares a particular port within the port option
ido. The multiplicity is no longer relevant.

Table 4.3: Port genesis from meta-kind port option to concrete port on type

4.3.3 MODULE HEAD AND ELEMENT INCLUSION

Together, constant definitions c ∈ Constant and type declarations t ∈ Type make the body of a CALM
module. Syntactically, the complete module is given by the set Module, which is defined by the rule template

id0, id1 ∈ Identifier, i ∈ Input, b ∈ Module-Body
module id0 of id1 i { b } ∈ Module

(4.153)

where id0 is the name of the module, id1 is the style within which the module is defined, i is a list of module
names of the modules which are included into the current, and b is the body. The interpretation of elements
of Module revolves around looking up the style denoted by id1 to obtain the set of kinds which can be used
to declare types in the module. The rule template

id0, id1 ∈ Identifier, id0 6∈ dom(µ), id1 : (s (T̂, γ, κ,Ξ)) ∈ σ, T m
k (T̂) = T̄0,

i ∈ Input, µ ` i Input−−−→ T̄1, ψ0, id1−|=ψ0, T̄ = T̄0 ∪ T̄1

b ∈ Module-Body, T̄, κ, ψ0, ∅,Ξ ` b
Type-Body−−−−−−→ ψ1, C

σ, µ ` module id0 of id1 i { b }
Module−−−−→ µ[id0 : (m (T̄, ψ))]

(4.154)
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defines the interpretation of a module under a given style map σ ∈ Σ and an existing module mapping µ ∈ M.
In this rule template, the function

T m
k : Â → Ā

translates the meta-kind level attribute type set T̂ ∈ Â into the respective kind level attribute type set T̄ ∈ Ā.4

An additional attribute type set T̄1 and an initial map of architectural element types ψ0 are calculated from
the list of input modules i.

It is central to the idea of model migration in CALM that modules, although they have to be defined
within a specific style, are not bound to that style.5 Instead, since styles can “inherit” a set of kinds from
previously defined styles (sec. 4.2.16), a module complies to any style which features the complete set of
kinds used within the module. The expression

id1−|=ψ0

checks that the type map ψ0 indeed only contains types of kinds within the kind mapping κ of the style
denoted by id1.

Since the modules included through the input list i are not necessarily defined within the same style as
the current module but only have to comply to that style, the attribute type set T̄1 collected from the input list
is not necessarily equal to the attribute type set T̄0 computed from the module’s style. Therefore, the union
T̄ of both is taken to evaluate the module body b.

The input list i ∈ Input is either empty or an identifier list preceded by the keyword input. The set Input
is defined by the rule templates

ε ∈ Input
(4.155)

i ∈ Identifier-list
input i ∈ Input

(4.156)

And interpreted according to the rule templates

µ ` ε Input−−−→ ∅, ∅
(4.157)

i ∈ Identifier-list, µ ` i Input−−−→ T̄, ψ

µ ` input i Input−−−→ T̄, ψ
(4.158)

where the identifier list i ∈ Identifier-list, syntactically given by the rule templates

id ∈ Identifier
id ∈ Identifier-list

(4.159)
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(4.160)

is interpreted through the rule templates

id ∈ Identifier, id : (m (T̄, ψ)) ∈ µ

µ ` id
Input−−−→ T̄, ψ

(4.161)

for the singleton list, and

id ∈ Identifier, id : (m (T̄0, ψ0)) ∈ µ, i ∈ Identifier-list, µ ` i Input−−−→ T̄1, ψ1

dom(ψ0) ∩ dom(ψ1) = ∅

µ ` id,i
Input−−−→ T̄0 ∪ T̄1, ψ0 ∪ ψ1

(4.162)

for a sequence of identifiers.
Finally, the module body is given through the syntactic set Module-Body. The set is defined through four

rule templates, which are

4Note that the details of the attribute types are part of a separate effort. Nevertheless the transition mostly involves (partially)
eliminating types with binding time specifier STYLE.

5For detailed discussion of model migration see Chapter 6.
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ε ∈ Module-Body
(4.163)

t1, t2 ∈ Module-Body
t1; t2 ∈ Module-Body

(4.164)

for an empty body and for sequential combination of body elements, and

t ∈ Type
t ∈ Module-Body

(4.165)
t ∈ Constant

t ∈ Module-Body
(4.166)

for type declarations and constant definitions. The module body is interpreted under the attribute type set
T̄, the kind mapping of the module’s style κ, an initial type mapping ψ, a set of constants C, and the style’s
interface typing constraint set Ξ. The interpretation is defined by the rule templates

T̄, κ, ψ, C,Ξ ` ε Module-Body−−−−−−−→ ψ, C
(4.167)

for an empty module body,

t1, t2 ∈ Module-Body, T̄, κ, ψ0, C0,Ξ ` t1
Module-Body−−−−−−−→ ψ1, C1

T̄, κ, ψ1, C1,Ξ ` t1
Module-Body−−−−−−−→ ψ2, C2

T̄, κ, ψ0, C0,Ξ ` t1; t2
Module-Body−−−−−−−→ ψ2, C2

(4.168)

for sequentially composed body elements,

t ∈ Type, T̄, κ, ψ0, C,Ξ ` t
Type−−→ ψ1

T̄, κ, ψ0, C,Ξ ` t
Module-Body−−−−−−−→ ψ1, C

(4.169)

for type declarations, and
t ∈ Constant, T̄, C0 `

Constant−−−−−→ C1
T̄, κ, ψ, C0,Ξ ` t

Module-Body−−−−−−−→ ψ, C1
(4.170)

for constant definitions.

4.3.4 INSUFFICIENCY OF STRUCTURAL SUBTYPING

The fact that all interface and component types are essentially collections of constituents would suggest
defining a subtyping relation through inclusion in analogy to object oriented subtyping through inheritance.
For example, an obvious definition for a subtyping relation ≤ on component types would be

c1 : (k (α1, π1)) ≤ c2 : (k (α2, π2)) ⇔ α1 ⊆ α2, π1 ⊆ π2.

Nevertheless in the case of architecture models, this definition of subtyping does not capture a notion of
directed type replacement compatibility as the term “subtyping” intuitively would require.

As a counterexample, consider a typical component framework setting with two kinds of connectors,
a synchronous data connector and an asynchronous event connector in a data-pull, event-push architecture
internally realized through remote method calls (e. g., CCM, Bold Stroke/PRiSM, etc.). Data-pull means that
the data is transported as the return value of a method call, which means that data flow and control flow have
opposite directions. Event-push means that the event is transported as the argument of a method call, which
means that data and control flow have the same direction.

Figure 4.2 illustrates three cases within a data-pull, event-push architecture in which a component B can
be considered subtype of a component A in as much as B could replace A in an environment fitting for A.
Figure 4.2(a) shows A having two data interfaces α and β, with α having parity uses and β having parity
provides. Therefore, α represents a method call, while β represents a method implementation. Component
B features the same setup of interfaces, γ being an interface user and δ a provider. For B to be a subtype
of A, any method call made on β has to be handled by δ too, which means that the type of the interface
associated with δ has to be a subtype of that of β (covariance). Nevertheless, on the user side the situation
reverses, as calls made by γ on the environment cannot exceed those made by α. Moreover, as Figure 4.2(b)



4.4. The scenario tier 47

A
β

α

B
δ

γ

(a) CCM
Data-interface

Aα

B
δ

(b) Subtyping by ad-
dition/subtraction
of ports

A
β

α

B
δ

γ

(c) CCM
Event-interface

Figure 4.2: Inheritance with co- and contravariance

illustrates, B might not have any port matching α on A, as this means less requirements to the environment,
while B can introduce ports such as δ without corresponding port on A, as this means more service to the
environment. Finally, for event-push ports, where the data flows in the same direction as the control, the
covariance/contravariance relation between data provider and data user reverses again.6

For the reasons outlined above, CALM does currently not have a general subtyping policy, neverthe-
less the type system does naturally allow to identify component types which can replace others in given
environments.

4.4 THE SCENARIO TIER

As the style tier defines kinds of architectural elements and the module tier fills these kinds with types, the
CALM scenario tier instantiates the kinds and arranges the instances into a topology called assembly, which
abstractly represents a system. Similar to the modules, there has to be at least one style which the assembly
complies to.7 The elements for instantiation are drawn from a map of types ψ ∈ Ψ which is composed from
explicitly listed modules and from a map of kinds κ ∈ K which is constructed from the collected set of styles
which all included modules comply to.

The mechanism for instantiation is specific to each category of architectural elements. Types of compo-
nent kinds are instantiated explicitly by referencing the type found in the type mapping ψ. For connector
kinds no types are declared, hence the instances are manufactured directly from the kind found in κ to-
gether with an on-the-fly produced type for each connector instance. Finally, for each port/role with parity
provides an interface instance is created implicitly with the fully qualified name of the port/role which
provides it. To assemble the instances of architecture elements into networks of components and connectors,
ports and roles are linked together through link clauses λ ∈ Λ which associate one role instance with a list of
port instances.8

An overview of the main elements of the CALM scenario tier is given in Table 4.4.

4.4.1 CONSTANTS

Analogous to the style and module tier, constants can be defined on the scenario tier to more conveniently
valuate attributes. The syntactic set Constant is defined similar to the constants of the style and module tier
by the rule template

id ∈ Identifier, t ∈ Type-Spec, v ∈ Literal
id : t = v ∈ Constant

(4.171)

6It has therefore been proposed to assign the parity of a port always according to the control flow direction. Unfortunately, this
solution is often unintuitive, and it does not handle the case where control flow is bidirectional as in combined event/command interfaces
in nesC.

7For a discussion of compliance, see Chapter 6.
8Note that this is not a one-to-many association as ports can occur in multiple link clauses.
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Attribute values τ̇ ∈ Ṫ Instance level attribute value set, and
Ṫ ∈ Ȧ set of all instance level attribute value sets.

Attribute maps of values α̇ ∈ Ȧ Ȧ = Identifier ⇀ (a Ṫ)

Roles on instances ρ̇ ∈ Ṙ Ṙ = Identifier∗

Ports on instances π̇ ∈ Π̇ Π̇ = Identifier†

Value mapping, recording
interface, component and
connector instances

θ ∈ Θ Θ = Identifier ⇀ (Identifier‡ Ȧ) × (Identifier§ (Ȧ × Π̇)) ×
(Identifier¶ (Ȧ× Ṙ))

Port list (set of ports on
component instances)

~p = {(id1, id2) | id1 : (idc (α̇, π̇)) ∈ θ, with id2 ∈ π̇}

Link clause λ ∈ Λ λ = id1.id2 : ~p
Λ = {id1.id2 : ~p | id1 : (id l (α̇, ρ̇)) ∈ θ, with id2 ∈ ρ̇, ~p Port list}

Scenario mapping, record-
ing instances of compo-
nent, connector, and inter-
face kind types.

ζ ∈ Z Z = Identifier ⇀ (z (θ,Λ))

∗ Identifier is a connector type’s role name (since connector types are not declared on the
module tier, names for types and roles are assigned automatically by CADENA.)

† Identifier needs to be a component’s port name.
‡ Identifier denotes an attribute type.

§ Identifier denotes an component type.
¶ Identifier denotes an connector type.

Table 4.4: CALM scenario structure sets and symbols

Further, the interpretation of Constant is analogous to that of style and module tier

id ∈ Identifier, id 6∈ dom(C), t ∈ Type-Spec, T ` t Type-Spec−−−−−−→ τ,

v ∈ Literal, T, τ, C ` v Literal−−−→ τ̇

T, C ` id : t = v
Constant−−−−−→ C[id : τ̇ ]

(4.172)

Note that terms τ̇ ∈ Ṫ represent values, no part or subterm requires further valuation (see sec. 4.2.1).

4.4.2 ATTRIBUTE VALUATIONS

Like the constants in Constant, attribute valuations in Attribute-Valuation also closely correspond to the anal-
ogous constructs on style and module tier. Namely, the set Attribute-Valuation is defined by the rule template

id ∈ Identifier, v ∈ Literal
id = v ∈ Attribute-Valuation

(4.173)

and interpreted by the rule template

id ∈ Identifier, id : τ ∈ α, id 6∈ dom(α̇), v ∈ Literal, T, τ, C ` v Literal−−−→ τ̇

T, α, α̇, C ` id = v
Attribute-Valuation−−−−−−−−−−→ α̇[id : τ̇ ]

(4.174)

Again, as with the valuations on the style and module tier, the attribute cannot already be recorded in the
value level attribute map (i. e., id 6∈ dom(α̇)) to prevent overwriting of already set values.
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4.4.3 INSTANCES OF TYPES OF COMPONENT KINDS

Instances of component kinds are created by elements of the syntactic set Component, which is given through
the rule template

id0, id1 ∈ Identifier, b ∈ Component-Body
id0 id1 { b } ∈ Component

(4.175)

Here, id0 references a component type, while id1 is a new name for the component instance to be cre-
ated. Elements of Component are interpreted under a (type-level) attribute type set T, a type mapping for
architectural elements ψ, an instance mapping for architectural elements θ, and a set of constants C. The
interpretation is given through the rule template

id0, id1 ∈ Identifier, id0 : (idk (α, π)) ∈ ψ, id1 6∈ θ0, b ∈ Component-Body,

At
v(α) = α̇0, T, ψ, θ0, α, ∅, π, C ` b

Component-Body−−−−−−−−−−→ θ1, α̇1, α̇ = α̇0 ∪ α̇1, Qt
a(α, α̇)

Pt
v(π) = π̇, IntGen(θ1, π) = θ2, I[θ2, π]

T, ψ, θ0, C ` id0 id1 { b }
Component−−−−−−→ θ2[id1 : (id0 (α̇, π̇))]

(4.176)

A lookup of the type name id0 in the type map ψ yields the component type’s map of attributes α and of ports
π. Similar to the situation while declaring types of architectural elements within the module tier, attributes in
α which do not require further valuation are copied into an instance level attribute map α̇0 by the function

At
v : A→ Ȧ.

The union of α̇0 with the instance level attribute map α̇1 resulting from the interpretation of the component
body forms the instance’s attribute map α̇. The completeness of this map is checked by the predicate

Qt
a ⊆ A× Ȧ,

again analogous to the declaration of types on the module tier.
Ports on the component instance are created automatically if they do not provide interfaces which need

further attribute valuation (see sec. 4.4.4). The function

Pt
v : Π→ Π̇

generates an instance port map π̇ ∈ Π̇ from a type port map π ∈ Π. The function is defined as

Pt
v : π 7→ π̇ iff ∀id : (p, id i, q) ∈ π. id ∈ π̇, and

∀id ∈ π̇. id : (p, id i, q) ∈ π

(i. e., for each port in the type level port map, Pt
v generates a corresponding port of the same name in the

instance level port map). Table 4.5 illustrates the genesis of a port from the meta-kind level port option down
to the component instance port.

As mentioned above, interface instances are not created on their own, but as part of the instantiation
of a component type (or the creation/instantiation of a connector type) whose port (role) provides the in-
terface. Canonically, this creation of provided interface instances happens within the component instance
body. Nevertheless, oftentimes the creation can be fully implicit, namely whenever no further attribute valu-
ation is needed on the created interface (i. e., no attributes of the interface contains the binding time specifier
SCENARIO within their types), the interface instance can be produced directly from its type. Formally, if a
component with the name idc of type id t is created, all ports

idp : (provides, id i, q) ∈ π

with an interface type id i, given within the type map ψ as

id i : (idk α) ∈ ψ,

that does not need further attribute valuation, which is the case if

Qt
a(α,At

v(α))
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π̂ ` ido : (p (p, interface-meta-kind, q1, q2)) The original port option on a meta-kind with parity p,
↓ O interface meta-kind, multiplicity q1 and multiplexity q2.

π̄ ` ido : (p (p, interface-kind, q1, q2)) On the kind level, the shape (meta-kind) is replaced by a
↘ O concrete interface kind.

π ` idp : (ido (p, interface-type, q2)) The type declares a particular port within the port option
↓ O ido. The multiplicity is no longer relevant.

π̇ ` idp interface-instance The instance is created implicitly with the port type-level
name idp. The associated interface instance, if the port
has the parity p = provides, is created automatically
with the qualified port name idc.idp (idc = component
instance name).

Table 4.5: Port genesis from meta-kind port option to port instance (extension of Table 4.3)

(i. e., the copied attribute map At
v(α) is complete wrt. α), the interface instance can be produced implicitly

as
idc.idp : (id i At

v(α)).

Therefore, CALM provides the function

IntGen : (Θ×Π)→ Θ

which for all ports idp : (provides, id i, q) ∈ π adds the respective interface this.idp : (id i At
v(α)) to the

given instance map θ0 if Qt
a(α,At

v(α)) holds.
Within the premises of the rule template for interpreting Component, the function IntGen is applied to

the instance mapping θ1, which results from the interpretation of the component body b ∈ Component-Body.
Nevertheless, the function only complements the interfaces within θ1 whose attributes do not need further
valuation. Therefore, all provided interfaces whose attributes do need further valuation have to be created
within the component body b. Hence the predicate

I ⊆ Θ×Π

ensures the presence of all provided interfaces within the instance map, namely

I(θ, π)⇔ ∀idp : (provides, id i, q) ∈ π. this.idp : (id i α̇) ∈ θ

(i. e., I holds if for all ports with parity provides in π there is a corresponding interface in θ).

4.4.4 THE COMPONENT INSTANCE BODY

As mentioned above, the component instance body b ∈ Component-Body valuates the component’s instance
level attributes (binding time specifier SCENARIO), and creates the interfaces not created by the function
IntGen. The syntactic set Component-Body therefore consists of attribute valuations and interface specifica-
tions. It is defined by the rule templates

ε ∈ Component-Body
(4.177)

t1, t2 ∈ Component-Body
t1;t2 ∈ Component-Body

(4.178)

for empty component bodies and sequential composition of component body elements, and

t ∈ Attribute-Valuation
t ∈ Component-Body

(4.179)
t ∈ Interface

t ∈ Component-Body
(4.180)

for attribute valuations and interface specifications. Elements of Component-Body are interpreted under the
attribute type set T, the type and instance maps ψ and θ, the type level attribute mapping α, an instance level
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attribute map α̇, the type’s port map π and the set of constants C. The interpretation of the empty body returns
the given type map ψ and attribute map α̇ as given by the rule template

T, ψ, θ, α, α̇, π, C ` ε Component-Body−−−−−−−−−−→ θ, α̇
(4.181)

Sequential composition of body elements are interpreted according to the rule template

t1, t2 ∈ Component-Body, T, ψ, θ0, α, α̇0, π, C ` t1
Component-Body−−−−−−−−−−→ θ1, α̇1,

T, ψ, θ1, α, α̇1, π, C ` t2
Component-Body−−−−−−−−−−→ θ2, α̇2

T, ψ, θ0, α, α̇0, π, C ` t1;t2
Component-Body−−−−−−−−−−→ θ2, α̇2

(4.182)

Attribute valuations t ∈ Attribute-Valuation update the attribute mapping α̇ (sec. 4.4.2)

t ∈ Attribute-Valuation, T, α, α̇0, C ` t
Attribute-Valuation−−−−−−−−−−→ α̇1

T, ψ, θ, α, α̇0, π, C ` t
Component-Body−−−−−−−−−−→ θ, α̇1

(4.183)

while the interpretation of elements of Interface adds interface instances to the instance mapping θ

t ∈ Interface, T, ψ, θ0, π, C ` t
Interface−−−−−→ θ1

T, ψ, θ0, α, α̇, π, C ` t
Component-Body−−−−−−−−−−→ θ1, α̇

(4.184)

The main component body elements besides the attribute valuations are the interface specifications t ∈
Interface. The set Interface is defined by the rule template

id ∈ Identifier, a ∈ Attributes
id { a } ∈ Interface

(4.185)

where the set Attributes is a list of attribute valuations as defined by the rule templates

ε ∈ Attributes
(4.186)

t1, t2 ∈ Attributes
t1;t2 ∈ Attributes

(4.187)

for empty9 lists and sequential composition of attribute valuations, and

a ∈ Attribute-Valuation
a ∈ Attributes

(4.188)

for a specific attribute valuation. The syntactic set Interface is interpreted according to the rule template

id ∈ Identifier, id : (idp (provides, id i, q)) ∈ π, id i : (idk α) ∈ ψ, At
v(α) = α̇0,

a ∈ Attributes, T, α, ∅, C ` t Attributes−−−−−→ α̇1, α̇ = α̇0 ∪ α̇1, Qt
a(α, α̇)

T, ψ, θ, π, C ` id { a }
Interface−−−−−→ θ[this.id : (id i α̇)]

(4.189)

which requires the respective port to have the parity provides. The interface’s attribute mapping is partly
copied from the type to the instance level by the function At

v(α), and complemented by the results of the
interpretation of t ∈ Attributes. Again, the completeness is checked by the predicate Qt

a(α, α̇). The set
Attributes is then interpreted according to the rules

T, α, α̇, C ` ε Attributes−−−−−→ α̇
(4.190)

t1, t2 ∈ Attributes, T, α, α̇0, C ` t1
Attributes−−−−−→ α̇1, T, α, α̇1, C ` t2

Attributes−−−−−→ α̇2

T, α, α̇0, C ` t1;t2
Attributes−−−−−→ α̇2

(4.191)

and
a ∈ Attribute-Valuation, T, α, α̇0, C ` a

Attribute-Valuation−−−−−−−−−−→ α̇1

T, α, α̇0, C ` a
Attributes−−−−−→ α̇1

(4.192)

9Note that the syntactic possibility of empty attribute valuation lists allows to explicitly introduce attributes which are again implic-
itly added by the function IntGen. This has to be observed when implementing this function.
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4.4.5 INSTANCES OF CONNECTOR KINDS

The creation of connector instances differs from that of component instances in two major points. First, no
types are declared within connector kinds, instead, connector instances are drawn directly from the kind,
the type being created on-the-fly for each connector instance. Therefore, interface typing rules (which for
the components are already manifested within the component types) have still to be observed when creating
connector instances. Also, no roles can be created implicitly, since no type exists as a template. Second,
connector instance definitions also introduce the topology of the assembly, which means that each connector
not only specifies its roles and type and creates all provided interfaces, it also captures the connection between
its roles and ports of existing component instances.

Instances of connector kinds together with their respective types are created through the syntactic set
Connector, which is defined by the rule template

id ∈ Identifier, b ∈ Connector-Body
id1 { b } ∈ Connector

(4.193)

where the identifier id denotes a connector kind. Elements of the set Connector are interpreted under the
type level attribute type set T, the kind, type, and instance mappings κ, ψ, and θ, the link clauses set Λ, the
set of constants C, and the set of interface typing constraints Ξ. The interpretation rule template for the set
Connector is

id ∈ Identifier, id : (l (ᾱ, ρ̄)), Ak
t (ᾱ) = α, At

v(α) = α̇0, b ∈ Connector-Body

T, ψ, θ0, α, ∅, ρ̄, ∅,Λ0, C ` b
Connector-Body−−−−−−−−−→ θ1, α̇1, ρ,Λ1, α̇ = α̇0 ∪ α̇1, Rt

v(ρ) = ρ̇,

K(Ξ, ρ), Qk
r (ρ̄, ρ), Qk

a(ᾱ, α), Qt
a(α, α̇), id t

l , id
v
l ∈ Identifier,

id t
l 6∈ dom(ψ), idv

l 6∈ dom(θ), this = idv
l

T, κ, ψ, θ,Λ0, C,Ξ ` id { b }
Connector−−−−−−→ ψ[id t

l : (id (α, ρ))], θ[idv
l : (id t

l (α̇, ρ̇))],Λ1

(4.194)

The identifier id is looked up in the kind map κ to retrieve its attribute and role option mappings ᾱ and ρ̄.
The attribute map ᾱ is then translated twice, through the functions

Ak
t : Ā→ A, and, At

v : A→ Ȧ

The resulting instance level attribute map α̇0 is then complemented with the attribute map α̇1 resulting from
the interpretation of the body b ∈ Connector-Body.10 Further, the interpretation of the body yields an updated
instance map θ which contains all interfaces provided by the connector, a type level role map, and an updated
link clauses set Λ1. The function

Rt
v : R→ Ṙ

is defined analogously to the function Pt
v (sec. 4.4.3), which means

Rt
v : ρ 7→ ρ̇ iff ∀id : (p, id i, q) ∈ ρ. id ∈ ρ̇, and

∀id ∈ ρ̇. id : (p, id i, q) ∈ ρ

(i. e., for each role in the type level role map, Rt
v generates a corresponding role of the same name in the

instance level role map). It yields the corresponding instance level role map ρ̇ to the type level map ρ
resulting from the interpretation of the body. Finally, four predicates check the completeness of the results,
namely

K ⊆ 2Ξ × R

verifies that all typing constraints in Ξ are honored by the type level role mapping ρ,

Qk
r ⊆ R̄× R

10To be absolutely precise, the type level mapping α is not necessarily complete (the original mapping ᾱmight contain types with the
binding time specifier MODULE). For the formalism it seemed overly complicated to include type level valuations while every instance
has its own type, although they are not formally forbidden on the meta-kind level. In CADENA nevertheless, the problem is solved
through delayed valuation, which is discussed in Section 4.5.
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checks whether the multiplicity constraints of the role options in ρ̄ are correctly manifested in ρ,

Qk
a ⊆ Ā×A, and, Qt

a ⊆ A× Ȧ

confirm the completeness of the attribute mappings against their respective predecessor.
Since the connector instance and its type are both not named explicitly (only the kind has a name), CALM

introduces random names as references for them. Specifically, the premises of the interpretation rule template
contain the identifiers id t

l and idv
l , of which only two properties are required:

id t
l , id

v
l ∈ Identifier,

and
id t

l 6∈ dom(ψ), idv
l 6∈ dom(θ)

(i. e., they are both in Identifier, but not in the domain of their respective type or instance mappings ψ and
θ). Here, id t

l is the (randomly selected) name of the newly created connector type, and idv
l the (randomly

selected) name of the newly created connector instance (therefore this is set to idv
l ).

Further, note that unlike the instantiation of component types no implicit generation of interface instances
is performed. This is, as mentioned above, due to the fact that no template for creating roles (connector type)
exists a priori. As a result of the evaluation of an element of Connector the type map ψ is fitted with the new
connector type, the instance map θ, which already contains the new interfaces, is complemented with the new
connector instance, and the list of link clauses is updated.

4.4.6 THE CONNECTOR INSTANCE BODY

The body of a connector type/instance specification has two major elements, the attribute valuations, and the
binding specifications. The syntactic set Connector-Body is defined by the rule templates

ε ∈ Connector-Body
(4.195)

t1, t2 ∈ Connector-Body
t1;t2 ∈ Connector-Body

(4.196)

for an empty body and for sequential composition, and

t ∈ Attribute-Valuation
t ∈ Connector-Body

(4.197)
t ∈ Binding

t ∈ Connector-Body
(4.198)

for attribute valuations and bindings. Elements of Connector-Body are interpreted under the type level at-
tribute type set T, type and instance mapping (ψ and θ), attribute maps for type and instance level, and role
maps for kind and type level (α, α̇, ρ̄, and ρ), the list of link clauses (Λ), and the set of constants (C). The
interpretation rule templates are straightforward:

T, ψ, θ, α, α̇, ρ̄, ρ,Λ, C ` t Connector-Body−−−−−−−−−→ θ, α̇, ρ,Λ
(4.199)

for an empty body,

t1, t2 ∈ Connector-Body, T, ψ, θ0, α, α̇0, ρ̄, ρ0,Λ0, C ` t1
Connector-Body−−−−−−−−−→ θ1, α̇1, ρ1,Λ1,

T, ψ, θ1, α, α̇1, ρ̄, ρ1,Λ1, C ` t2
Connector-Body−−−−−−−−−→ θ2, α̇2, ρ2,Λ2

T, ψ, θ0, α, α̇0, ρ̄, ρ0,Λ0, C ` t1;t2
Connector-Body−−−−−−−−−→ θ2, α̇2, ρ2,Λ2

(4.200)

for sequential composition,

t ∈ Attribute-Valuation, T, α, α̇0, C ` a
Attribute-Valuation−−−−−−−−−−→ α̇1

T, ψ, θ, α, α̇0, ρ̄, ρ,Λ, C ` t
Connector-Body−−−−−−−−−→ θ, α̇1, ρ,Λ

(4.201)

for attribute valuations, and

T, ψ, θ0, ρ̄, ρ0,Λ0, C ` t
Binding−−−−→ θ1, ρ1,Λ1

T, ψ, θ0, α, α̇, ρ̄, ρ0,Λ0, C ` t ∈
Connector-Body−−−−−−−−−→ θ1, α̇, ρ1,Λ1

(4.202)
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for binding specifiers.
The purpose of binding specifiers t ∈ Binding is threefold. First, it creates a role on the connector

instance which immediately involves creating the respective role on the instance’s type. The type level role
map ρ records the new role.11 Next, the binding creates an interface instance for every interface provided
by the role. This explicit creation involves all provided interfaces of a connector, not just those which need
attribute valuation (as seen with component instances). Finally, each thus created role is stored with a list of
ports it connects to. Syntactically, the set Binding is defined by two role templates.

id ∈ Identifier, l ∈ Port-list
id = l ∈ Binding

(4.203)

describes bindings for roles which either do not create interfaces (parity uses), or create interfaces which do
not need further attribute valuation.

id ∈ Identifier, l ∈ Port-list, a ∈ Attributes
id { a } = l ∈ Binding

(4.204)

describes bindings for roles which provide interfaces that do need further attribute valuation (manifested by
a ∈ Attributes in braces). The interpretation of elements of Binding involves the type level attribute type set
T, type and instance mapping (ψ and θ), role maps for kind and type level (ρ̄ and ρ), the list of link clauses
(Λ), and the set of constants (C). For roles with parity uses, the interpretation of Binding is given by the rule
template

id ∈ Identifier, id : (r (uses, idk, q1, q2)) ∈ ρ̄, l ∈ Port-list,

provides, θ ` l Port-list−−−−→ ~p, id i, id i : (idk α) ∈ ψ, id t
r ∈ Identifier, id t

r 6∈ dom(ρ)

T, ψ, θ, ρ̄, ρ,Λ, C ` id = l
Binding−−−−→ θ, ρ[id t

r : (id (uses, id i, q2))],Λ[this.id t
r : ~p]

(4.205)

The identifier id is looked up in the role option map ρ̄ of the component kind to retrieve parity, interface kind,
multiplicity and multiplexity. This data is used to create the role in the connector type’s role map ρ.

The list of port specifiers l ∈ Port-list, which defines the ports that will be linked to the role, is interpreted
under the opposite parity (in this case: provides) than that of the role itself (in this case: uses) and the
instance map θ. In result it yields a vector ~p of port specifiers (id1, id2) where id1 is the name of a component
instance and id2 is a port of id1, and an interface type id i which has to be of the correct kind idk. It is the
type of all interfaces associated with all ports in the list. For the result of the interpretation a new role

id t
r : (id (uses, id i, q2))

with the (randomly selected) name id t
r is added to the type level role map ρ, and a new clause

λ = this.id t
r : ~p

is added to the list of link clauses Λ to reflect the link between the new role and all ports in its port list.
For roles with parity provides the interpretation falls into two cases. First, roles which provide inter-

faces whose type does not require instance level valuation of attributes are interpreted according to the rule
template

id ∈ Identifier, id : (r (provides, idk, q1, q2)) ∈ ρ̄, l ∈ Port-list,

uses, θ ` l Port-list−−−−→ ~p, id i, id i : (idk α) ∈ ψ, At
v(α) = α̇, Qt

a(α, α̇),
id t

r ∈ Identifier, id t
r 6∈ dom(ρ), this.id t

r 6∈ dom(θ)

T, ψ, θ, ρ̄, ρ,Λ, C ` id = l
Binding−−−−→ θ[this.id t

r : (id i α̇)],
ρ[id t

r : (id (provides, id i, q2))],Λ[this.id t
r : ~p]

(4.206)

In addition to the case of a role with parity uses, this rule includes a transition of the interface type’s attributes
to the instance level through the function

At
v : A→ Ȧ.

11The type level role map ρ is sufficient to create the instance level role map ρ̇ implicitly, therefore the instance level role map is not
built at the same time. See Section 4.4.5.
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The fact that no further valuation is needed is reflected in the predicate

Qt
a ⊆ A× Ȧ

which verifies that the transition of attributes into α̇ without further valuation is in fact, complete with respect
to α. Besides adding the new role to the role map ρ and the new link clause to the link list Λ, the new provided
interface

this.id t
r : (id i α̇)

is added to the instance map θ.
Second, roles which provide interfaces that have a type which does require instance level valuation of

attributes are interpreted according to the rule template

id ∈ Identifier, id : (r (provides, idk, q1, q2)) ∈ ρ̄,
l ∈ Port-list, uses, θ ` l Port-list−−−−→ ~p, id i,

id i : (idk α) ∈ ψ, At
v(α) = α̇0, a ∈ Attributes, T, α, ∅, C ` a Attributes−−−−−→ α̇1,

α̇ = α̇0 ∪ α̇1, Qt
a(α, α̇), id t

r ∈ Identifier, id t
r 6∈ dom(ρ), this.id t

r 6∈ dom(θ)

T, ψ, θ, ρ̄, ρ,Λ, C ` id { a } = l
Binding−−−−→ θ[this.id t

r : (id i α̇)],
ρ[id t

r : (id (provides, id i, q2))],Λ[this.id t
r : ~p]

(4.207)

In addition to the previous rule, this rule interprets the given attribute list a ∈ Attributes to complement the
instance level attribute mapping α̇ of the newly created interface instance.

The port list l ∈ Port-list serves two main purposes within the binding specification. First, it yields a list
of port specifiers which denote the ports in the system which the new role is linked to. Second, by looking
up the interface type of each port involved, it yields the interface type of the new role, which hence does not
have to be given explicitly. The set Port-list is defined by the rule templates

p ∈ Port
p ∈ Port-list

(4.208)
p ∈ Port, l ∈ Port-list

p,l ∈ Port-list
(4.209)

with the base case (the syntactic set Port) defined by the rule template

id1, id2 ∈ Identifier
id1.id2 ∈ Port

(4.210)

Port-list is interpreted with a given parity c according to the rule templates

p ∈ Port, c, θ ` p Port−−→ (idc, idp), id i

c, θ ` p Port-list−−−−→ {(idc, idp)}, id i

(4.211)

for a singleton list, and

p ∈ Port, c, θ ` p Port−−→ (idc, idp), id i, l ∈ Port-list, c, θ ` l Port-list−−−−→ ~p, id i

c, θ ` p,l Port-list−−−−→ ~p[(idc, idp)], id i

(4.212)

for a list with head p and tail l. Note that both head and tail must evaluate to the same interface type id i,
which will be the interface type of the role which the ports link to. Elements of Port are interpreted according
to the rule template

id1, id2 ∈ Identifier, id1 : (idc (α̇, π̇)) ∈ θ, id2 : (idp (c, id i, q)) ∈ π̇

c, θ ` id1.id2
Port−−→ (id1, id2), id i

(4.213)

Note that the port’s parity c has to match the one given. This ensures that provides-roles only connect to uses
ports and uses-roles only to provides ports.
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4.4.7 COMPLETING THE ASSEMBLY

The whole assembly is described by elements of the set Scenario. It is defined by the rule template

id ∈ Identifier, i ∈ Identifier-list, b ∈ Scenario-Body
scenario id includes i { b } ∈ Scenario

(4.214)

where i ∈ Identifier-list is (as opposed to previous identifier lists on the module or style tier) a nonempty list
of identifiers. Identifier-list is defined by the rule templates

id ∈ Identifier
id ∈ Identifier-list

(4.215)
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(4.216)

for the case of a single identifier and for sequential composition of two lists. The body b ∈ Scenario-Body is
defined by the rule templates

ε ∈ Scenario-Body
(4.217)

t1, t2 ∈ Scenario-Body
t1; t2 ∈ Scenario-Body

(4.218)

for an empty body and sequential composition,

t ∈ Component
t ∈ Scenario-Body

(4.219)
t ∈ Connector

t ∈ Scenario-Body
(4.220)

for component and connector instances, and

t ∈ Constant
t ∈ Scenario-Body

(4.221)

for definitions of constants.
An element of Scenario is interpreted under the style mapping σ, the module mapping µ, and the scenario

mapping ζ. Result of the interpretation is an updated scenario map ζ which contains the new assembly. The
interpretation is defined by the rule template

id ∈ Identifier, id 6∈ dom(ζ), i ∈ Identifier-list, µ ` i Include−−−−→ T̄0, ψ,

Collect(S(ψ)) = (T̂, γ, κ,Ξ), T m
k (T̂) = T̄1, T̄ = T̄0 ∪ T̄1, T k

t (T̂) = T,

b ∈ Scenario-Body, T, κ, ψ, ∅, ∅, ∅,Ξ ` b Scenario-Body−−−−−−−−→ ψr, θ,Λ, C, M(Λ), S(ψr) 6= ∅

σ, µ, ζ ` scenario id includes i { b }
Scenario−−−−−→ ζ[id : (z (θ,Λ))]

(4.222)

where the identifier list i ∈ Identifier-list is the list of modules which the assembly draws its types from. It is
interpreted according to the rule templates

id ∈ Identifier, id : (m (T̄, ψ)) ∈ µ

µ ` id Include−−−−→ T̄, ψ
(4.223)

which interprets a single identifier id ∈ Identifier as the name of a module and returns the module’s attribute
type set T̄ and type map ψ, and

id ∈ Identifier, id : (m (T̄1, ψ1)) ∈ µ, i ∈ Identifier-list, µ ` i Include−−−−→ T̄2, ψ2

µ ` id,i Include−−−−→ T̄1 t T̄2, ψ1 t ψ2

(4.224)

which combines the attribute type sets and type maps from head and tail of the identifier list. The union
symbol t stands for a union with unique names, which unambiguously map to their respective structures.
For example for the attribute type set T̄ = T̄1 t T̄2 that means that

∀id1 : τ̄1, id2 : τ̄2 ∈ T̄. id1 = id2 ⇒ τ̄1 = τ̄2
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has to hold (i. e., if the type name is the same, the type specification has to be the same). The result is a single
kind level attribute type set T̄0 and a single type map ψ.

The function
S : Ψ→ 2Identifier

is defined on top of the compliance relation −|= (see sec. 4.3.3) which holds between a style name id with
id : (s (T̂, γ, κ,Ξ)) and a type map ψ if all types in ψ live in kinds of κ. S is defined as

id ∈ S(ψ) ⇔ id −|=ψ

(i. e., S(ψ) is the set of all styles (by name) which ψ complies to). On this set, the function

Collect : 2Identifier → Â × Γ×K× 2Ξ

takes the set of style names and creates a collected style specification (T̂, γ, κ,Ξ)) out of the given styles by
forming name-unambiguous unions (see above) of the sets in the given style’s specifications. The constituents
of this collected style’s specification serve as the base for the interpretation of the assembly’s body.

The predicate
M⊆ L,

applied to the list of link clauses resulting from the interpretation of the assembly’s body, verifies whether all
multiplexity constraints of the ports and roles within the assembly are observed.12

Note that the type map ψr is complemented with the on-the-fly created types for the connector instances.
Since the kind mapping κ which they are drawn from is collected from possibly multiple styles, it is not
automatically given that there is still a single style which entails all kinds used by the assembly. Therefore,
a second application of S on the type mapping ψr resulting from the interpretation of the body verifies that
there is at least one style which the assembly complies to.

Finally, elements of the set Scenario-Body are interpreted according to the rule templates

T, κ, ψ, θ,Λ, C,Ξ ` ε Scenario-Body−−−−−−−−→ ψ, θ,Λ, C
(4.225)

and
t1, t2 ∈ Scenario-Body, T, κ, ψ0, θ0,Λ0, C0,Ξ ` t1

Scenario-Body−−−−−−−−→ ψ1, θ1,Λ1, C1,

T, κ, ψ1, θ1,Λ1, C1,Ξ ` t2
Scenario-Body−−−−−−−−→ ψ2, θ2,Λ2, C2

T, κ, ψ0, θ0,Λ0, C0,Ξ ` t1; t2
Scenario-Body−−−−−−−−→ ψ2, θ2,Λ2, C2

(4.226)

for an empty body and for sequential composition of body elements,

t ∈ Component, T, ψ, θ0, C ` t
Component−−−−−−→ θ1

T, κ, ψ, θ0,Λ, C,Ξ ` t
Scenario-Body−−−−−−−−→ ψ, θ1,Λ, C

(4.227)

and
t ∈ Connector, T, κ, ψ0, θ0,Λ0, C,Ξ ` t

Connector−−−−−−→ ψ1, θ1,Λ1

T, κ, ψ0, θ0,Λ0, C,Ξ ` t
Scenario-Body−−−−−−−−→ ψ1, θ1,Λ1, C

(4.228)

for component and connector instantiations, and

t ∈ Constant, T, C0 ` t
Constant−−−−−→ C1

T, κ, ψ, θ,Λ, C0,Ξ ` t
Scenario-Body−−−−−−−−→ ψ, θ,Λ, C1

(4.229)

for the definition of constants.

12While this is a non-local property and therefore in the formalism is easier to check globally, CADENA checks the property incre-
mentally (see sec. 4.5)
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4.5 REALIZATION OF CALM IN CADENA

CALM was developed as a conceptual language, and various aspects of CALM make it hard to use it in its
written form in practice. For example, the kinds defined on the style do not only carry their own structure,
but also their own language (e. g., the kind names are needed to create types, or port-option names are needed
to create ports; these are essentially keywords of a style-specific language, so are platform specific attribute
type names, connector names, etc.). While the creation of style-specific languages is desired and meant to
simplify the use of CALM (e. g., by offering the possibility to introduce already established terminology for
specific middleware frameworks into CALM models as meaningful keywords), one consequence is that a
user of CALM has to memorize new keywords for each style, which can be confusing even if the same user
created the respective style himself, yet much more so if the style was created by another person.

Therefore, from the start of the CALM project, CADENA 2 [8, 7] was created in parallel to make the
CALM concepts accessible. As CALM is the base concept for CADENA 2, the capabilities of CADENA 2
influenced the features of CALM.

4.5.1 ADAPTIVE FORM- AND GRAPH-BASED EDITORS

Figure 4.3: CADENA style editor (defining nesC)

Figure 4.3 shows the CADENA style editor displaying a nesC style which slightly differs from the one in
Listing 5.1 (i. e., the main component kind is called NesCComponent instead of nesCModule, bare command
and event interfaces are included in the model). The form based editing of architectural styles in CADENA is
very close to the CALM textual form. In the Figure, the NesCComponent kind is opened, the port-options
and their associations with interface kinds is visible. Note the user-defined port option names provides,
providesCommand, providesEvent, uses, usesCommand, and usesEvent.
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Figure 4.4: CADENA module editor (adding a port in nesC)

Figure 4.4 shows the module editor in CADENA, with a module within the nesC style defined by Fig-
ure 4.3. Analogous to the CALM textual form, the CADENA module tier declares types of component and
interface kinds. To support the module developer, the editor automatically adapts to the architectural style.
The highlighted NesCComponent type Checkpoint is displayed in the Outline area (bottom-left), with the
provided interfaces on the left and the used interfaces on the right. As an example for the context sensitive
(i. e., style adapted) editing, the context menu for adding a port is open in the screenshot. Note that the menu
lists the port option names of the nesC style to add ports. Also, the component and interface icons are custom
defined for the given style. Similar style adapted editing exists for the scenario tier in CADENA.

4.5.2 EMF AUTOMATIC REFERENCING

Another problem of textual CALM in practical use is the massive interconnectedness between declared
entities throughout the tiers. Especially, any change to an established style can orphan modules and scenarios
which had been complying to that style before. Yet for a realistic development process it cannot be expected
that a style is perfect before modules and assemblies are defined and never subject to change afterwards.

To address this issue, CADENA needs to be able to immediately propagate any changes to a model,
regardless of whether the changes happen at the style, the module, or the scenario tier, to any place affected
by the change, and report any problem arising with existing artefacts due to the change. To accomplish this,
CADENA makes extensive use of the Eclipse Modeling Framework (EMF) [6, 19] which allows to connect
objects through a reference and notification service. Through EMF, each object in CADENA gets notified if
any object it directly depends on gets updated.13 This update transitively propagates through all dependents.

13Therefore, EMF also guarantees the referencing property which is assumed for CALM’s identifiers (see also 4.1.2).
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Figure 4.5: CADENA EMF-supported problem report

Figure 4.5 illustrates such a change-dependence situation (for better legibility the three artefacts of fig. 4.5
are displayed separately in apx. D.1, fig. D.1, D.2, and D.3). On the style tier, the multiplexity of the
providesCommand port option of the mNesCComponent meta kind is changed from [0..*] to [1..*],
thereby requiring a minimum fan-out of 1 for each port declared within this port option (upper-left). Within
the project there exist several scenarios which use instances of types within the kind NesCComponent which
is created from mNesCComponent. One example is the timerC assembly (graph, upper right), which fea-
tures the component HPLPowerManagementM of the NesCComponent type HPLPowerManagement. The
component has two providesCommand ports, called Disable and Enable, which in this scenario are not
connected. Therefore, the new fan-out requirement defined on the meta-kind which this instance ultimately
depends on is not met. CADENA reports this problem immediately (marked with the error symbol “ ”), as
can be seen in the form-based scenario editor (lower left) at the component instance view, but also in the
globally visible list of problems in the lower part of the CADENA window.

Next to propagating changes and checking consistency, the EMF automatic cross referencing framework
used for engineering CADENA also simplifies the checking of the numerous completeness predicates intro-
duced in the previous sections (e. g., whether all port options of a component meta-kind are specified on a
kind derived from that meta-kind, or if all multiplexity constraints are fulfilled in a scenario). It also serves
for incremental type checking, where only those parts of a model are re-checked where an actual change
happened.

4.5.3 CONCEPTUAL EXTENSIONS

Finally, CADENA is not only a frontend for CALM or the tool for practical testing of CALM, it also adds
conceptual extensions to pure CALM. One way this is done is through the various plugin points offered by
CADENA. Beyond modeling the interrelations of a component architecture (as pure CALM does), CADENA
can be enhanced to do code generation for modeled architectures (implemented, e. g., for nesC and CCM in
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end-to-end development projects), perform basic feasibility checks (data-flow and dependence analysis, im-
plemented for PRiSM) or support developers by mechanically providing development heuristics (rate seeding
in PRiSM).

Another capability of CADENA which has been discussed but is not fully implemented yet and which also
reaches conceptually beyond CALM is automatic typing and kinding through delayed attribute valuation.
The idea is to leave, for example, a type-level attribute unvaluated on the module tier of CADENA to create
an incomplete or parametric type. This parametric type then can be extended into multiple different complete
types depending on the valuation of that attribute given on instances created with the parametric type.

In summary, CADENA serves as an experimentation platform for CALM but also tries to investigate
functionality which is not yet entirely formalized.
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COMPONENT-FRAMEWORKS

“The nice thing about standards is that you have so many to choose from.”

— Andrew S. Tanenbaum. Computer Networks, 2nd ed, p.254

CALM and CADENA 2 have been used to capture various component frameworks, both industrial and ex-
perimental/educational. This chapter introduces three styles, nesC, ccm, and Prism, and gives examples
of a module and an assembly within each style. All three of the selected styles have been developed and
used in larger research/industry-cooperation projects: The nesC style is part of a current joined research
effort at Kansas State University about sensor networks, where nesC and TinyOS-based devices are used in
areas such as veterinary telemedicine or environmental/hydrological sensing. The ccm style was used in a
cooperative effort with the Lockheed Martin Advanced Technology Laboratories towards robust support for
model-driven development on the base of CADENA 2. Finally, the Prism style springs out of a cooperation
with the Boeing Company on their Bold Stroke project in the context of the DARPA Program Composition for
Embedded Systems (PCES), where CADENA has been used by Boeing to develop the avionics software flown
on the Scan Eagle UAV platform for the PCES capstone demo (i. e., the programs final life demonstration of
achievements, see DARPA press release [12]).

Also, for all three styles CADENA plugins have been developed to support end-to-end development of
systems within the given frameworks. For nesC and ccm, code generation facilities are integrated into CA-
DENA 2, for Prism some analysis tools (slicing, dependency analysis) and development heuristics had al-
ready been implemented for CADENA 1.

The description of the nesC style and its artefacts is detailed and in-depth to supplement the CALM
semantics described in Chapter 4 (i. e., substantial parts of the CALM structures generated by the syntactical
representation of nesC are presented for illustration). The ccm and Prism styles are presented in less detail
with more focus on modeling decisions made to capture the respective frameworks.

5.1 THE NESC ADL FOR HIGHLY DISTRIBUTED, EMBEDDED, SYSTEMS

5.1.1 ARCHITECTURAL ELEMENTS OF NESC

The nesC component ADL [29, 28] features one kind of component, depending on its internals either called
module (not to be confused with the module tier of CALM) or configuration. Components in nesC are
black-boxes in as much as for the use of a component within a project its internals do not have to be known;
nevertheless nesC terminology distinguishes between modules and configurations, the former being com-
ponents which are implemented directly by code, the latter being components which internally consist of
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assemblies of smaller components, again either modules or configurations. This duality provides a flexible
way of nesting, a whole system being one configuration, which on each level of nesting features similar
structures. Modules and configurations exist for a number of small device-cores called motes. Often, the
same module/configuration is implemented for multiple different motes. In these cases, the respective imple-
mentation for the modules/configurations is automatically selected at compile-time to fit to the target mote
of the compilation. This bind-by-name strategy allows the nesC developer to assemble systems for multiple
target motes at once. Unfortunately, the selection mechanism is based on complex conditionals within Unix
make-files, and therefore error prone, a situation which at times leads to a failure to build a project occurring
very late in the development process, but mostly works acceptably well in practice.

Each nesC module/configuration can have any number of ports drawn from three kinds of interfaces. The
three interface kinds of nesC are called command, event, or interface. A nesC command is a single message-
interface to the command provider (internally realized through a method call on the provider), a nesC event
a message from the event-provider (usually a return value of a method of the provider). NesC interfaces
are collections of commands and events, offering to structure commands and events into larger units. Since
interfaces can contain a single command or a single event, it is possible without loss of expressiveness to
omit the pure commands and events not contained inside interfaces to enforce more structure when modeling
nesC.

Connectors in nesC are always binary. As there are three kinds of interfaces, there are also three kinds
of connectors, which require strict type equality of the command/event/interface types of both of their roles.
NesC terminology does not distinguish between command, event, or interface connectors since nesC itself
does not entail the concept of kinds. In diagrams in nesC standard iconography, connectors are always
double-arrow tipped lines, with solid tipped arrows for commands (pointing from user to provider), outlined
tipped arrows for events (pointing from provider to user), and bundles of multiple solid and outlined arrows
for interfaces corresponding to the events and commands an interface contains.

Being based on the C programming language and targeted for embedded systems, nesC features a subset
of primitive C data-types, usually with reduced word lengths to accommodate small embedded processors.
These types tend to have names which describe their domain, a typical nesC platform type being for example
uint8_t, which is an unsigned 8-bit integer (and thus has the integer interval {0, . . . , 255} as its domain).
Other nesC platform types are predefined enumeration types of domains which are commonly used in nesC
projects such as the type result_t, which has the domain {success, fail}.

5.1.2 A NESC STYLE

A possible CALM model of the (simplified) nesC architectural style is given in Listing 5.1. The CALM style
nesC starts with the definition of a few of the nesC platform types in terms of CALM primitive data-types
(l. 2–8). For example, Line 3

typedef uint8_t = INT[0..255];

defines the CALM representation of the nesC type uint8_t (an 8-bit unsigned integer) as a CALM builtin
INT which has been constrained to cover the limited interval from 0 to 255. Lines 11–19 define the CALM
type nesc_operation, which is meant to capture the commands and events contained in the interface kind
nesCInterface. Note that the type nesc_operation is not a platform type but a type used for modeling
within CALM. The interpretation of all type definitions builds the attribute type set

T̂ = {result_t : τ̂0, uint8_t : τ̂1, . . .},

with τ̂0 being the type defined by ENUM{success, fail}, τ̂1 being the type defined by INT[0..255],
etc.. The interface meta-kind mNesCInterface is declared in Lines 21 and 22

metainterface mNesCInterface {
22 attribute operations : MODULE nesc_operation list };

The interface meta-kind—meant to provide the structure for the nesC interface kind—features a single at-
tribute operations which is a list with members of the type nesc_operation, which is set to be valuated
on the type level through the binding time modifier MODULE. The whole meta-kind is recorded as

mNesCInterface : (i {operations : (a τ̂o-list)}),
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Listing 5.1: nesC-ADL style
style nesC {

2 typedef result_t = ENUM { success, fail };
typedef uint8_t = INT[0..255];

4 typedef uint16_t = INT[0..65536];
typedef uint32_t = INT[0..4294967296];

6 typedef int8_t = INT[-128..127];
typedef int16_t = INT[-132768..32767];

8 typedef int32_t = INT[-2147483648..2147483647];
typedef nesc_type = union { result_t, uint8_t,

10 uint16_t, uint32_t, int8_t, int16_t, int32_t }
typedef nesc_operation_type = ENUM { event, command };

12 typedef nesc_parameter = struct {
name : STRING, type : nesc_type };

14 typedef nesc_operation = struct {
async : BOOLEAN,

16 name : STRING,
operation_type : nesc_operation_type,

18 parameters : nesc_parameter list,
return_type : nesc_type };

20
metainterface mNesCInterface {

22 attribute operations : MODULE nesc_operation list };
interfacekind nesCInterface : mNesCInterface {};

24
metacomponent mNesCModule {

26 provides [0..*] provides : mNesCInterface [0..*];
uses [0..*] uses : mNesCInterface [0..*] };

28 componentkind nesCModule : mNesCModule {
provides -> nesCInterface;

30 uses -> nesCInterface };

32 metaconnector mNesCWire {
uses [1] provider_side : mNesCInterface [1];

34 provides [1] user_side : mNesCInterface [1] };
connectorkind nesCWire : mNesCWire {

36 typevar a : nesCInterface;
provider_side -> a;

38 user_side -> a }
}

where τ̂o-list is the type defined for operations in Line 22. The meta-kind mNesCInterface is the only
interface meta-kind defined within the simplified nesC style nesC, the “naked” commands or events have to
be wrapped into interfaces in this style. This is a restriction compared to nesC itself, but it provides the same
expressiveness while requiring more structure. Lines 25–27 define the component meta-kind mNesCModule.

metacomponent mNesCModule {
26 provides [0..*] provides : mNesCInterface [0..*];

uses [0..*] uses : mNesCInterface [0..*] };

Two port options (l. 26–27) specify the possibility to declare an arbitrary number (the multiplicity equals
[0..*]) of provides- or uses-ports that feature interfaces from the structural realm defined by the interface
meta-kind mNesCInterface and can be arbitrarily connected (the multiplexity equals [0..*]). The port
options define the words “provides” and “uses” as keywords for provides- and uses-ports on the module
tier respectively. These keywords coincide with the CALM internal keywords for port parities “provides”
and “uses”, but are not directly related. The style does not declare any attributes on the component meta-
kind. The complete meta-kind is recorded with its empty attribute mapping and its port option mapping
containing the two port options provides and uses:

mNesCModule : (c (∅, { provides : (p (provides, mNesCInterface, {0, . . . , *}, {0, . . . , *})),
uses : (p (uses, mNesCInterface, {0, . . . , *}, {0, . . . , *})) })).

Finally, Lines 32–34 define the sole connector meta-kind mNesCWire, which captures the structure of the
nesC wire connection

metaconnector mNesCWire {
33 uses [1] provider_side : mNesCInterface [1];

provides [1] user_side : mNesCInterface [1] };
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nesC : (s (T̂, γ, κ,Ξ))

CALM data types (platform
types and types for modeling)

T̂ = {result_t : τ̂0, uint8_t : τ̂1, uint16_t : τ̂2, uint32_t : τ̂3, . . .}

Meta-kind set γ = {mNesCInterface : (i α̂i), mNesCModule : (c (∅, π̂c)),
mNesCWire : (l (∅, ρ̂l))}

Individual mappings α̂i = {operations : (a τ̂0)}
π̂c = {provides : (p (provides,mNesCInterface, {0, . . . ,*}, {0, . . . ,*})),

uses : (p (uses,mNesCInterface, {0, . . . ,*}, {0, . . . ,*}))
ρ̂l = {provider_side : (r (uses,mNesCInterface, {1}, {1})),

user_side : (r (provides,mNesCInterface, {1}, {1}))

Kind set κ = {nesCInterface : (i ᾱi), nesCModule : (c (∅, π̄c)),
nesCWire : (l (∅, ρ̄l))}

Individual mappings ᾱi = {operations : (a τ̄0)}
π̄c = {provides : (p (provides,nesCInterface, {0, . . . ,*}, {0, . . . ,*})),

uses : (p (uses,nesCInterface, {0, . . . ,*}, {0, . . . ,*}))
ρ̄l = {provider_side : (r (uses,nesCInterface, {1}, {1})),

user_side : (r (provides,nesCInterface, {1}, {1}))

Interface typing constraints Ξ = {type(nesCWire.provider_side) = type(nesCWire.user_side)}

Table 5.1: Formalization of nesC in CALM

The “wire” in nesC is a one-to-one connection between two ports. One is the provider of the interface,
connected to the provider_side role, the other is the user, connected to the user_side. Both roles have
multiplicity and multiplexity one ([1]). The whole meta-kind is captured as

mNesCWire : (l (∅, { provider_side : (r (uses, mNesCInterface, {1}, {1})),
user_side : (r (provides, mNesCInterface, {1}, {1})) })).

The kinds, essence of a style, are exported immediately after their respective meta-kinds. Line 23 defines the
kind nesCInterface as having the structure of mNesCInterface

interfacekind nesCInterface : mNesCInterface {};

The export is straightforward, the sole attribute on mNesCInterface (i. e., operations) has no style-tier
elements which would have to be valuated. The kind is recorded as

nesCInterface : (i {operations : (a τ̄o-list)}),

where (again) τ̂o-list is the type defined for operations in Line 22. Lines 28–30 define the component
kind nesCModule

componentkind nesCModule : mNesCModule {
29 provides -> nesCInterface;

uses -> nesCInterface };

Both port options of the meta-kind, provides and uses, which on the meta-kind are defined with the
interface meta-kind mNesCInterface, are specified to the kind nesCInterface. The resulting kind is

nesCModule : (c (∅, { provides : (p (provides, nesCInterface, {0, . . . , *}, {0, . . . , *})),
uses : (p (uses, nesCInterface, {0, . . . , *}, {0, . . . , *})) })).

The export of the sole connector kind nesCWire in Lines 35–38

connectorkind nesCWire : mNesCWire {
36 typevar a : nesCInterface;

provider_side -> a;
38 user_side -> a }
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differs from the export of nesCModule in the export of the roles provider_side and user_side. Instead
of exporting the roles by giving the respective interface kind directly, Line 36 defines a type variable a within
nesCInterface. The result of this is twofold. First, the connector kind is recorded with the interface kind
in its role options

nesCWire : (l (∅, { provider_side : (r (uses, nesCInterface, {1}, {1})),
user_side : (r (provides, nesCInterface, {1}, {1})) })).

Second, CALM defines interface typing constraints

ξ1 = type(nesCWire.provider_side) = a, and
ξ2 = type(nesCWire.user_side) = a.

The transitive hull of ξ1 and ξ2 yields ξ3 with

ξ3 = type(nesCWire.provider_side) = type(nesCWire.user_side),

resulting in an extended constraint set Ξ = {ξ1, ξ2, ξ3}. Reduced by the constraints ξi ∈ Ξ which contain
local variables (i. e., the variable a, which is local to the connector kind definition and is contained in ξ1 and
ξ2), the set

cls{a}(Ξ) = {ξ3},

which is the new global set of type constraints. The complete formalization of the nesC ADL through the
CALM nesC style is summarized in Table 5.1.

5.1.3 A NESC MODULE

Listing 5.9 defines a short module called sensornet within the nesC architectural style. Lines 2–37 declare
constants, in this case all of them of the type nesc_operation. For example, Lines 17–19 declare the
constant stop by giving the respective structure as a literal.

stop : nesc_operation = struct { async = false,
18 name = "stop", operation_type = command,

parameters = [], return_type = result_t }

Recall that the type name nesc_operation denotes a kind level type τ̄0 ∈ T̄. The literal therefore has to
evaluate to the corresponding type level attribute type τ0 ∈ T. Here this is trivially the case, since the original
type nesc_operation : τ̄0 does not contain any binding time specifiers.

Lines 40–46 declare nesCInterface types. For example, Line 43 declares a nesCInterface type
called Timer.

nesCInterface Timer { operations = [start, stop, fire] };

nesCInterface is an interface kind defined by the nesC style (lst. 5.1) as

nesCInterface : (i {operations : (a τ̄o)})

where τ̄o is defined by the style as

MODULE nesc_operation list

(i. e., the attribute operations is a list with elements of the type nesc_operation which by the binding
time specifier MODULE needs to be valuated at the type level). The body of Timer contains one attribute
valuation, assigning a list of nesc_operation constants to the attribute operations. Altogether, Lines
40–46 define seven different nesCInterface types. Note that in the body of the type RSend in Line 42

nesCInterface RSend include Send { };
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Listing 5.9: Module within the nesC-ADL
module sensornet of nesC {

2 init : nesc_operation = struct { async = false,
name = "init", operation_type = command,

4 parameters = [], return_type = result_t };
send : nesc_operation = struct { async = false,

6 name = "send", operation_type = command,
parameters = [struct { name = "payload",

8 type = uint32_t }], return_type = result_t };
sendDone : nesc_operation = struct { async = false,

10 name = "sendDone", operation_type = event,
parameters = [struct { name "result",

12 type = result_t }], return_type = result_t };
start : nesc_operation = struct { async = false,

14 name = "start", operation_type = command,
parameters = [struct { name = interval,

16 type = uint32_t }], return_type = result_t };
stop : nesc_operation = struct { async = false,

18 name = "stop", operation_type = command,
parameters = [], return_type = result_t }

20 fire : nesc_operation = struct { async = false,
name = "fire", operation_type = event, parameters =[],

22 return_type = result_t };
setRate : nesc_operation = struct { async = false,

24 name = "setRate", operation_type = command,
parameters = [struct { name = interval,

26 type = uint32_t }], return_type = result_t };
queue : nesc_operation = struct { async = false,

28 name = "queue", operation_type = command,
parameters = [struct { name = payload,

30 type = uint32_t }], return_type = result_t };
dequeue : nesc_operation = struct { async = false,

32 name = "dequeue", operation_type = command,
parameters = [], return_type = result_t };

34 deliver : nesc_operation = struct { async = false,
name = "deliver", operation_type = event,

36 parameters = [struct { name = payload,
type = uint32_t }], return_type = result_t };

38

40 nesCInterface StdControl {operations = [init] };
nesCInterface Send { operations = [send, sendDone] };

42 nesCInterface RSend include Send { };
nesCInterface Timer { operations = [start, stop, fire] };

44 nesCInterface Clock { operations = [setRate, fire] };
nesCInterface Queue { operations = [queue] };

46 nesCInterface Dequeue { operations = [dequeue, deliver] };

48 nesCModule LinkControl {
provides init : StdControl;

50 provides input : Send;
uses reset : StdControl;

52 uses clock : Timer;
uses queue : Queue;

54 uses dequeue : Dequeue;
uses output : Send }

56 nesCModule Timer_ {
provides init : StdControl;

58 provides timer : Timer }
nesCModule Link {

60 provides init : StdControl;
provides input : Send;

62 uses output : RSend }
nesCModule Clock_ {

64 provides clock : Clock }
nesCModule Queue {

66 provides init : StdControl;
provides queue : Queue;

68 provides dequeue : Dequeue }
nesCModule TimerControl include Timer {

70 uses clock : Clock }
}
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the attribute operations is not valuated. Instead, it inherits the valuation from the type Send through
inclusion. The two nesCInterface types are structurally equal, but not interchangeable (see discussion in
Section 4.3.4).

Finally, Lines 48–70 declare nesCModule types. Each nesCModule type declares some number of
ports using the port option names provides and uses as keywords. For example, Lines 56–58 declare the
nesCModule type Timer_.

nesCInterface RSend include Send { };

As with types of interface kinds, types of component kinds can include structure from already declared types.
For example, the type TimerControl includes the two provides ports from timer and adds the uses port
clock. Table 5.2 shows the complete structure of the nesCModule Timer_.

sensornet : (m (T̄, ψ))

Types of the interface kind StdControl : (nesCInterface {operations : [init]}) ∈ ψ
nesCInterface Timer : (nesCInterface {operations : [start, stop, fire]}) ∈ ψ

The port map of Timer_ {timer : (provides (provides, Timer, [0..*])),
init : (provides (provides, StdControl, [0..*]))} = π0

The type Timer_ of Timer_ : (nesCModule (∅, π0)) ∈ ψ
the component kind
nesCModule

Table 5.2: Some elements of sensornet in nesC in CALM

5.1.4 A NESC ASSEMBLY

Listing 5.14: Simple assembly within the nesC-ADL
scenario NetworkLink includes sensornet {

2 LinkControl linkControl { };
Timer_ timer { };

4 Link hwRadioLink { };
Queue sendQueue { };

6
nesCWire { user_side = linkControl.reset;

8 provider_side = timer.init };
nesCWire { user_side = linkControl.reset;

10 provider_side = sendQueue.init };
nesCWire { user_side = linkControl.reset;

12 provider_side = hwRadioLink.init };
nesCWire { user_side = linkControl.clock;

14 provider_side = timer.timer };
nesCWire { user_side = linkControl.queue;

16 provider_side = sendQueue.queue };
nesCWire { user_side = linkControl.dequeue;

18 provider_side = sendQueue.dequeue };
nesCWire { user_side = linkControl.output;

20 provider_side = hwRadioLink.input };
}

Listing 5.14 shows a simple assembly which uses the sensornet module. For the purpose of presenta-
tion it will be assumed that the style nesC (lst. 5.1) is the only style which sensornet complies to, which
means that for

sensornet : (m (T,Ψ)) ∈ µ

we have that
S(ψ) = {nesC}
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which means that, by drawing types from the module sensornet, the assembly is evaluated with the set of
attribute types, kinds and interface typing constraints associated with the nesC style. This allows to create
instances of the kind nesCWire, which is a kind of nesC.

Lines 2–5 instantiate various nesCModule types. For example, Line 2 creates the instance linkControl
of the type LinkControl.

LinkControl linkControl { };

Superficially, this line creates the instance

linkControl : (LinkControl (∅, {init, input, reset, clock, queue, dequeue, output}))

Note though, that two of the ports of the type LinkControl, namely init and input, provide their inter-
faces. Therefore Line 2 implicitly also creates two interfaces according to the port types:

linkControl.init : (StdControl {operations : [init]})

and
linkControl.input : (Send {operations : [send, sendDone]})

Lines 7–20 create and instantiate nesCWire types. For example, Lines 11–12 define an implicitly
named connector which links to the port linkControl.reset on its sole user_side role and to the port
hwRadioLink.init on its sole provider_side role.

nesCWire { user_side = linkControl.reset;
12 provider_side = hwRadioLink.init };

The effect of these lines is fourfold. First, a nesCWire type is created according to the kind definition and
the types of the roles inferred from the interface instances they link to

type-name3 : (nesCWire (∅, { role-name1 : (user_side (provides, StdControl, [1]))
role-name2 : (provider_side (uses, StdControl, [1])) })).

This type has to comply with multiplicity and interface typing constraints of the nesCWire kind. Namely it
has to have exactly one user_side role and exactly one provider_side role which both feature the same
nesCInterface type (in this case StdControl). Second, an instance of the on-the-fly created nesCWire
type is created

instance-name3 : (type-name3 (∅, {role-name1, role-name2}))

(note that CALM picks random names for almost every structural entity of connectors). Third, the provided
interfaces are created. In this case, role-name1 provides an interface of type StdControl.

instance-name3.role-name1 : (StdControl {operations : [init]})

Fourth and finally, the set of link clauses Λ receives two new clauses, one for each new role

λ1 = instance-name3.role-name1 : {linkControl.reset}
λ2 = instance-name3.role-name2 : {hwRadioLink.init}

which reflect the connection defined by this instantiation. Table 5.3 illustrates the resulting assembly with its
interrelations.

5.1.5 SEMANTIC CAVEATS

As described above, components in nesC fall into two categories, namely modules and configurations,
which from the outside are indistinguishable (hence they are represented by only one component kind,
nesCModule, in the CALM nesC style). The difference between the two entities lies in their implementa-
tion, where modules are implemented by (nesC-specific) C code, while configurations are implemented as
networks of other components, those in turn again being either modules or configurations. Therefore, the
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NetworkLink : (z (θ,Λ))

The set of instances θ = {
linkControl : (LinkControl (∅, {init, input, reset, clock, queue, dequeue, output})),

timer : (Timer_ (∅, {init, timer})),
hwRadioLink : (Link (∅, {init, input, output})),

sendQueue : (Queue (∅, {init, queue, dequeue}))},

linkControl.init : (StdControl {operations : [init]}),
linkControl.input : (Send {operations : [send, sendDone]}),

timer.init : (StdControl {operations : [init]}),
timer.timer : (Timer {operations : [start, stop, fire]}),

hwRadioLink.init : (StdControl {operations : [init]}),
hwRadioLink.input : (Send {operations : [send, sendDone]}),

. . . ,
instance-name1 : (type-name1 (∅, {role-name1, role-name2})),
instance-name2 : (type-name2 (∅, {role-name1, role-name2})),
instance-name3 : (type-name3 (∅, {role-name1, role-name2})),
instance-name4 : (type-name3 (∅, {role-name1, role-name2})),

. . . ,
instance-name1.role-name1 : (StdControl {operations : [init]}),
instance-name2.role-name1 : (StdControl {operations : [init]}),
instance-name3.role-name1 : (StdControl {operations : [init]}),
instance-name4.role-name1 : (Clock {operations : [setRate, fire]}),

. . . , }

The set of link clauses Λ = {
instance-name1.role-name1 : {linkControl.reset}
instance-name1.role-name2 : {timer.init}
instance-name2.role-name1 : {linkControl.reset}
instance-name2.role-name2 : {sendQueue.init}

. . . ,
instance-name7.role-name1 : {linkControl.output}
instance-name7.role-name2 : {hwRadioLink.input} }

Table 5.3: The NetworkLink assembly formalized in CALM

equivalent of a CALM assembly (i. e., the arranging of instances of architectural elements into a cooperative
topology) in nesC itself is the internals of a configuration.

While superficially a nesC configuration and a CALM assembly in nesC style look similar, there is no
trivial correspondence between the two. Most importantly, nesC does not distinguish strictly between a mod-
ule/configuration type and an instance thereof. Instead of creating possibly multiple instances of a component
type, every component in nesC is introduced once into a system, multiple references always point to that same
instance. For example, Listing 5.17 shows the top level configuration of the nesC Surge application.1 On
Lines 42 and 43 multiple components are introduced or allocated (e. g., Main, SurgeM, TimerC, LedsC,
. . . ), on Lines 45–64 connections between the ports of these components are defined (since nesC only knows
one kind of connector which is restricted to one-to-one connections, explicit mentioning of the connectors is
unnecessary). Among the components used is the configuration TimerC, which is defined in Listing 5.18.2

Another component introduced in Surge application next to TimerC is GenericCommPromiscuous (l. 43)
(which in the body of the configuration appears as Comm, e. g., l. 51). The GenericCommPromiscuous con-
figuration is shown in Listing 5.19.3 Like Surge (lst. 5.17) it uses the component TimerC (l. 76, 85–86). Yet
this is not a new instance, instead the connections defined in this configuration link to the same timer instance
as the enclosing configuration Surge. Chapter 7 (particularly sec. 7.1.4, 7.1.5) discusses a CALM specific

1Listing 5.17 is an excerpt, for the full listing with copyright notice see Appendix C.1.
2Listing 5.18 is an excerpt, again, for the full listing with copyright notice see Appendix C.1.
3Listing 5.19 is an excerpt of GenericCommPromiscuous, for the full listing with copyright notice see Appendix C.1.
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Listing 5.17: Excerpt of the nesC Surge application’s main configuration
includes Surge;

35 includes SurgeCmd;
includes MultiHop;

37

39 configuration Surge {
}

41 implementation {
components Main, SurgeM, TimerC, LedsC, NoLeds, Photo, RandomLFSR,

43 GenericCommPromiscuous as Comm, Bcast, MultiHopRouter as multihopM, QueuedSend, Sounder;

45 Main.StdControl -> SurgeM.StdControl;
Main.StdControl -> Photo;

47 Main.StdControl -> Bcast.StdControl;
Main.StdControl -> multihopM.StdControl;

49 Main.StdControl -> QueuedSend.StdControl;
Main.StdControl -> TimerC;

51 Main.StdControl -> Comm;
// multihopM.CommControl -> Comm;

53
SurgeM.ADC -> Photo;

55 SurgeM.Timer -> TimerC.Timer[unique("Timer")];
SurgeM.Leds -> LedsC; // NoLeds;

57 SurgeM.Sounder -> Sounder;

59 SurgeM.Bcast -> Bcast.Receive[AM_SURGECMDMSG];
Bcast.ReceiveMsg[AM_SURGECMDMSG] -> Comm.ReceiveMsg[AM_SURGECMDMSG];

61
SurgeM.RouteControl -> multihopM;

63 SurgeM.Send -> multihopM.Send[AM_SURGEMSG];
multihopM.ReceiveMsg[AM_SURGEMSG] -> Comm.ReceiveMsg[AM_SURGEMSG];

65 //multihopM.ReceiveMsg[AM_MULTIHOPMSG] -> Comm.ReceiveMsg[AM_MULTIHOPMSG];
}

Listing 5.18: Excerpt of TimerC configuration
configuration TimerC {

52 provides interface Timer[uint8_t id];
provides interface StdControl;

54 }

56 implementation {
components TimerM, ClockC, NoLeds, HPLPowerManagementM;

58
TimerM.Leds -> NoLeds;

60 TimerM.Clock -> ClockC;
TimerM.PowerManagement -> HPLPowerManagementM;

62
StdControl = TimerM;

64 Timer = TimerM;
}

approach to these semantics.
The identity of entities created through reference to the same name is a design choice in nesC which

acknowledges the limited availability of resources in embedded systems. Nevertheless it does not mean that
all facets of the concept of types are absent in nesC. Specifically for the timer configuration TimerC, but also
for other configurations and modules, there are multiple implementations which reflect different platforms
for which an executable can be compiled. Depending on an argument to the make program which drives
the compilation of a nesC system, a platform specific implementation is chosen during the building process.
TimerC can be seen as defining the type of each of its implementations.

5.2 THE CORBA COMPONENT MODEL

5.2.1 ARCHITECTURAL ELEMENTS OF CCM

The CORBA Component Model (CCM) offers a single component kind. Two communication mechanisms
are available, an asynchronous publish-subscribe event notification service and a synchronous remote method
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Listing 5.19: Excerpt of GenericCommPromiscuous configuration
configuration GenericCommPromiscuous

46 {
provides {

48 interface StdControl as Control;
interface CommControl;

50
// The interface are as parameterised by the active message id

52 interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];

54
// How many packets were received in the past second

56 command uint16_t activity();

58 }
uses {

60 // signaled after every send completion for components which wish to
// retry failed sends

62 event result_t sendDone();

64
}

66 }
implementation

68 {
// CRCPacket should be multiply instantiable. As it is, I have to use

70 // RadioCRCPacket for the radio, and UARTNoCRCPacket for the UART to
// avoid conflicting components of CRCPacket.

72 components AMPromiscuous as AM,
RadioCRCPacket as RadioPacket,

74 UARTFramedPacket as UARTPacket,
NoLeds as Leds,

76 TimerC, HPLPowerManagementM;

78 Control = AM.Control;
CommControl = AM.CommControl;

80 SendMsg = AM.SendMsg;
ReceiveMsg = AM.ReceiveMsg;

82 sendDone = AM.sendDone;

84 activity = AM.activity;
AM.TimerControl -> TimerC.StdControl;

86 AM.ActivityTimer -> TimerC.Timer[unique("Timer")];

88 AM.UARTControl -> UARTPacket.Control;
AM.UARTSend -> UARTPacket.Send;

90 AM.UARTReceive -> UARTPacket.Receive;

92 AM.RadioControl -> RadioPacket.Control;
AM.RadioSend -> RadioPacket.Send;

94 AM.RadioReceive -> RadioPacket.Receive;
AM.PowerManagement -> HPLPowerManagementM.PowerManagement;

96
AM.Leds -> Leds;

98 }

call service. Ports which interface with the event notification service are called event ports, or depending on
whether they send or receive notifications, event sources or event sinks. Ports which interface with the
remote method call service are called facet if they provide methods (method execution site) or receptacle if
they call methods (method call site). Interfaces of the remote method call service are expressed as bundles
of method signatures and other attributes. In the CCM interface definition language version three (IDL3)
they are declared with the keyword interface. Interfaces to the event notification service are method
signatures of so called push-methods which carry the event data as their arguments. In the CCM IDL3 they
are introduced as bundles of attributes that represent the arguments and hence the payload of the push method.
As these bundles of arguments represent the data generated by an event about which the notification is sent,
they are identified as the event structure and introduced in IDL with the keyword eventtype. Due to the
choice of keywords it has become common to refer to the asynchronous notification service sloppily as event
connection while the synchronous call service is referred to as interface connection.

The asynchronous event notification service is usually implemented through a (conceptually monolithic,
centralized) functional unit called the event channel (EC). The EC in CCM is responsible for maintaining
the connection between source and sink and for queueing of events (usually according to thread groups).
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Figure 5.1: Abstracting a central communication unit in favor of intended connections

Nevertheless, instead of integrating the service unit EC into the architectural model as a concrete entity
(fig. 5.1(a)), it is usually abstracted to show the intended connections instead (fig. 5.1(b)).

CCM is designed around object oriented languages for implementation. Therefore, a general object
oriented inheritance subtyping is assumed for all entities of CCM. For example, for interfaces to the remote
method call service the (explicitly declared) typing hierarchy is based on inclusion of the list of method
signatures and fields analogous to classes or object signatures in an object oriented language. For reasons
outlaid in Section 4.3.4, CALM does not implement this kind of structural subtyping in a generic way. To
identify and respect subtyping relations in CADENA, the plug-in mechanism has to be used.

5.2.2 A CCM STYLE

Listing 5.20 shows a possible style for the CCM architecture framework. Line 3 includes CORBA data
types from a separate file (shown in excerpts in Appendix C.2) which has a form similar to the first part of
the nesC style (lst. 5.1, l. 2–19).4 Based on the interface meta-kind mCCMInterface (l. 5–6) two specific
interface meta-kinds are declared, mCCMEventHandler (l. 8) and mCCMDataInterface (l. 11–12). The
kind CCMEvent (l. 9) is defined with the former, the kind CCMInterface with the latter (l. 13).

The sole component kind in CCM is captured with the meta-kind mCCMComponent (l. 15–21), which
contains five different port options modeled after the respective keywords of the CCM IDL3, which are
provides and uses for facets and receptacles, consumes for event sinks and publishes and emits
for event sources. Ports introduced with the keyword emits differ from ports introduced with the keyword
publishes through their multiplexity; while the former has a maximum fan-out of one, the fan-out is
unbounded for the latter. The mCCMComponent meta-kind is used to define the CCMComponent kind (l. 22–
28).

Two connector meta-kinds and kinds are declared/defined in the ccm style. The first one models the
connection through the event service. Lines 30–32 declare the meta-kind mCCMEventService with two role
options, consumer and publisher. When defining the kind CCMEventConnector (l. 33–37), two type
variables (a and b) are used to express the property of the connector that the consumer-side event-service
interface type (a) needs to be the same as or a subtype (in the object oriented sense) of that on the publisher
side (b). This is due to the implementation of the event notification by a so called push method, which in
this context means that the publisher calls a method on the consumer to notify about the occurrence of an
event. Note that CALM can declare this property, yet the checking depends on tool support, specifically on
a CADENA plugin.

The second connector models the data service connection. The meta-kind mCCMDataService is declared
in Lines 39–41. It contains two role options (facet and receptacle). The meta-kind is used to define the
kind CCMInterfaceConnector (l. 42–46). Again, the types for roles within the role options are constrained
by two type variables (a and b) for which a subtype relation is declared. Here, the type of a facet interface
has to be a subtype of a receptacle interface.

4Since most architectural models do not require any literals of platform types for their definition, it seems unnecessary to faithfully
model the whole (rather extensive) CORBA type system. Listing C.4 is only a conceptual experiment.
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Listing 5.20: CCM-ADL style
style ccm {

2
include CorbaTypes;

4
metainterface mCCMInterface {

6 attribute fields : MODULE field list };

8 metainterface mCCMEventHandler extends mCCMInterface {};
interfacekind CCMEvent : mCCMEventHandler {};

10
metainterface mCCMDataInterface extends mCCMDataInterface {

12 attribute methods : MODULE method_signature list };
interfacekind CCMInterface : mCCMDataInterface {};

14
metacomponent mCCMComponent {

16 provides [0..*] provides : mCCMDataInterface [0..*];
uses [0..*] uses : mCCMDataInterface [0..*];

18
provides [0..*] consumes : mCCMEventHandler [0..*];

20 uses [0..*] publishes : mCCMEventHandler [0..*];
uses [0..*] emits : mCCMEventHandler [0..1] };

22 componentkind CCMComponent : mCCMComponent {
provides -> CCMInterface;

24 uses -> CCMInterface;

26 consumes -> CCMEvent;
publishes -> CCMEvent;

28 emits -> CCMEvent };

30 metaconnector mCCMEventService {
uses [1] consumer : mCCMEventHandler [1];

32 provides [1] publisher : mCCMEventHandler [1] };
connectorkind CCMEventConnector : mCCMEventService {

34 typevar a, b : CCMEvent;
assert a <= b;

36 consumer -> a;
publisher -> b };

38
metaconnector mCCMDataService {

40 uses [1] facet : mCCMDataInterface;
provides [1] receptacle : mCCMDataInterface };

42 connectorkind CCMInterfaceConnector : mCCMDataService {
typevar a, b : mCCMInterface;

44 assert a <= b;
facet -> a;

46 receptacle -> b }
}

5.2.3 A CCM MODULE

Figure 5.2 shows a module of the ccm style within the CADENA module editor. This specific module is
part of the “Robot Model”, which served as a semi-realistic industrial example of CCM development used
to communicate features, capabilities, requirements, and feedback about CADENA between Kansas State and
Lockheed Martin.

The CCMComponent type SwitchController is highlighted in the Component Types area and thus a
graphic representation is shown in the Outline view. To again illustrate the adaptiveness of CADENA’s editors,
the Add Port context menu is open in the screenshot, where the keywords introduced on the style tier (uses,
provides, publishes, emits, and consumes) are visible as menu options.

A textual representation of the same module in CALM syntax is shown in Listing C.7 in Appendix C.2.
The CCMComponent type SwitchController, which is highlighted in Figure 5.2, is defined declared in
Lines 140–143 of this listing as

CCMComponent SwitchController {
141 consumes status : SwitchStatus;

provides Control : SwitchControl;
143 publishes switchChanges : switchChanged };
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Figure 5.2: A module within CCM in CADENA (Robot-model)

Figure 5.3: A CCM scenario (Robot Model) in the CADENA graphical scenario editor
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5.2.4 A CCM SCENARIO

Figure 5.3 shows the main assembly of the “Robot Model”. The top component Communications is an
instance of the type Communications declared in the module robot (lst. C.7, l. 58–65).

CCMComponent Communications {
59 consumes ProductionReport : ProductionStatus;

consumes ShutdownOrder : Shutdown;
61 consumes ShutdownWarning : PrepareToShutdown;

consumes UrgentReport : IntrusionStatusReportManagement;
63 emits ShutdownResponse : ShutdownStatus;

emits WorkOrder : ProductionWorkOrder;
65 provides Controller : MWIController };

The provided interfaces are on the left, the used interfaces on the right side of the component (CADENA
standard layout). Interfaces are displayed by pairs of matching icons, one of which represents the provider
side (socket), the other the user side (plug). Table 5.4 outlines the ancestry for the Communications

γ ` mCCMComponent : ( c (α̂, π̂))
⇓ O

κ ` CCMComponent : ( c (ᾱ, π̄))
↘ O

ψ ` Communications : ( CCMComponent (α, π))
↘ O

θ ` Communications : (Communications (α̇, π̇))

Table 5.4: Ancestry of the Communications component

instance from the meta-kind level through the kind and type level to the instance level.

5.3 THE BOEING BOLD STROKE/PRISMCOMPONENT MODEL

5.3.1 ARCHITECTURAL ELEMENTS OF BOLD STROKE/PRISM
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Figure 5.4: Schematics of the PRiSM event channel

The PRiSM component model was developed by the Boeing Company within the Bold Stroke project
to implement aviation control software. It is conceptually based on CCM, but internally highly optimized
towards real-time guarantees. PRiSM features one main component kind (PRiSM Components) as con-
tainer for business logic (i. e., device drivers, computation units, etc.) and an additional component kind for
network-traffic optimization called correlator.5 Similar to CCM, two communication services are offered,

5During our cooperation phase with Boeing correlators were in a conceptual stage. It is unknown to the author whether and in
which form they are included in the actual current development at Boeing.
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an asynchronous, purposefully simple, event notification service, and a synchronous data transfer service.
As in the CORBA model, the asynchronous notification service is supported by a conceptually monolithic
infrastructure unit called event channel. As opposed to CCM though, the PRiSM EC does not only receive,
queue, and dispatch event notifications, it also maintains and controls the execution thread pool, dispatches
events according to rate groups, generates timeout notifications, and houses the correlator components.

Figure 5.4 shows a schematic overview of the PRiSM EC. Event notifications (often shortly called events)
are received by proxy consumers (i. e., interfaces similar to the event sink interfaces on components), and
queued into dispatch queues according to the connections stored in the proxy’s subscriber list, optionally
after being passed through correlators. The Thread Pool controls the dispatch of event notifications through
proxy suppliers (i. e., interfaces similar to the event source interfaces on components) to the receiving com-
ponent. This mechanism ensures that each component can be assigned a specific run rate regardless of the
run rates of other components it communicates with, since the buffering of the event notifications in the
dispatch queues serves to bridge differing run rates without synchronization problems. Consequently, com-
ponents are organized in thread groups according to their run rate, which in turn is determined by the main
data/notification channels and the required real-time guarantees. To aide determining the suitable run-rate of
any particular component, event notification messages carry the rate at which they occur as an attribute. In a
complex setting, individual run-rates of components are then initially assigned (or seeded) by analyzing the
propagation of event notifications starting from the initial timeout events through data accumulation and data
processing components to display or actor components.

Because of the availability of an asynchronous notification service which can bridge thread groups, a
control-push—data-pull strategy has been used frequently in PRiSM systems. When new data is generated by
a (usually timeout-driven) device, the push-method based asynchronous event notification service is used to
notify other components about the new data (control-push). Upon receiving the notification, the subscribing
components then actively retrieve the data through the synchronous data service (data-pull). This strategy
guarantees that processing components only become active when data is available and never block waiting
for new input. It also means that many conceptual connections are formed by pairs of concrete connectors,
one asynchronous notification connection and one synchronous data connection. Nevertheless, PRiSM lacks
the necessary instruments of abstraction to merge these pairs into single connectors. CALM and CADENA’s
approach to add such an abstraction to a model is discussed in Section 6.3 and 7.2.2.

5.3.2 A PRISM STYLE

Listing 5.23 shows a CALM style modeling the PRiSM architecture framework. It strives to provide an
abstract view to the PRiSM infrastructure. As seen in the CCM style in Section 5.2, the event channel is
not modeled as a single-block entity but instead as individual one-to-one connectors. For structural reasons,
the style distinguishes between timeout event notifications and general event notifications which are indis-
tinguishable in PRiSM’s underlying implementation. Correlators and sources of timeout notifications are
factored out of the event channel to allow the event notification communication itself to be abstracted into
one-to-one connections easily.

In detail, the style defines three interface kinds, PrismEvent for interfaces to the event notification
service, PrismInterface for interfaces to the data transfer service, and PrismTimeout for interfaces
communicating timeout events (l. 4–9).

The main component kind, PrismComponent (l. 11–16, 17–22), contains port options, both used and
provided, for all three interface kinds. Besides PrismComponent the Prism style defines two additional
component kinds which model functions of the event channel that cannot easily be captured as infrastructure
abstractions.

The PrismCorrelator kind (l. 23–25, 26–28) models correlators, a specialized kind of components
which resides inside the event channel and filters event notifications according to defined patterns.6 Through
correlators the network traffic is optimized and, more importantly, components which subscribe to corre-
lated event notifications instead of every single event notification which participates in a correlation pat-
tern can be leaner in their implementation and are activated less often in a concrete environment. The
PrismCorrelator is defined with two port options, one of them, consumer (l. 24), allowing an arbi-

6It has been proposed to use correlators or a similar semi-business–semi-infrastructure entity to perform standard communication
tasks which go beyond pattern recognition but are still feasible for automatization, such as source selection or data-consistency control.
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Listing 5.23: PRiSM-ADL style
style Prism {

2 typedef PrismRunRate = ENUM { 1, 5, 10, 20, 40 };

4 metainterface mPrismEvent {};
interfacekind PrismEvent {};

6 metainterface mPrismInterface {};
interfacekind PrismInterface {};

8 metainterface mPrismTimeout {};
interfacekind PrismTimeout {};

10
metacomponent mPrismComponent {

12 provides [0..*] provides mPrismInterface [0..*];
uses [0..*] uses mPrismInterface [0..*];

14 provides [0..*] consumes mPrismEvent [0..*];
uses [0..*] publishes mPrismEvent [0..*];

16 provides [0..*] timeout mPrismTimeout [0..*] }
componentkind PrismComponent {

18 provides -> PrismInterface;
uses -> PrismInterface;

20 consumes -> PrismEvent;
publishes -> PrismEvent;

22 timeout -> PrismTimeout };
metacomponent mPrismCorrelator {

24 provides [0..*] consumer mPrismEvent [0..*];
uses [1] publisher mPrismEvent [0..*] };

26 componentkind PrismCorrelator {
consumer -> PrismEvent;

28 publisher -> PrismEvent };
metacomponent mPrismTimer {

30 uses [0..1] timeout mPrismTimeout [0..*] };
componentkind PrismTimer {

32 timeout -> PrismTimeout };

34 metaconnector mPrismEventConnector {
attribute run_rate : SCENARIO PrismRunRate;

36 provides [1] source : mPrismEvent [1];
uses [1] sink : mPrismEvent [1] };

38 connectorkind PrismEventConnector {
typevar a : PrismEvent;

40 source -> a;
sink -> a };

42 metaconnector mPrismInterfaceConnector {
provides [1] user_side : mPrismInterface [1];

44 uses [1] provider_side : mPrismInterface [1] };
connectorkind PrismInterfaceConnector {

46 typevar a : PrismInterface
user_side -> a;

48 provider_side -> a };
metaconnector mPrismTimeoutConnector {

50 provides [1] source : mPrismTimeout [1];
uses [1] sink : mPrismTimeout [1] };

52 connectorkind PrismTimeoutConnector {
typevar a : PrismTimeout;

54 source -> a;
sink -> a }

56 }

trary number of event sink interfaces (i. e., provided interfaces to the event notification service), models the
correlator input, the other one, publisher (l. 25), requiring exactly one event source interface (i. e., used
interface to the event notification service), models the correlator output.

The PrismTimer (l. 29–39, 31–32) models the source of timeout events within the event channel’s thread
pool. Its port options allow at most one used interface to the timeout notification service. Canonically, this
service should be modelled in CALM as a connector with one single role. Problems with the graph layout in
CADENA at the time of the development of this style led to the modeling as a component kind.

Three connector kinds are defined in the Prism style. The PrismEventConnector (l. 34–37, 38–41)
abstracts the communication mechanism of the event channel as one-to-one connections. As it is the case
with similar connector kinds of other styles described above, PrismEventConnector requires the interfaces
associated with its two roles to be of equal type (assured through the type variable a, l. 39). But instead of
just modeling and infrastructure restriction of PRiSM, this typing requirement is a CALM abstraction. The
type of an event notification in the actual PRiSM framework is a vague concept since each event notification
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has the same structure (i. e., it is essentially a record of numerals which encode information about the event,
such as its time of occurrence, its source, etc.). Instead of denoting an actual structural compatibility between
different event notifications, the CALM type is used to add a nominal structure to the event notifications
which is not present in PRiSM itself. In other words, while PRiSM only features generic event notifications,
the CALM model of PRiSM adds the possibility to nominally distinguish the nature of the event about which
a notification is given, and thereby helps to prevent false connections.

The PrismInterfaceConnector (l. 42–44, 45–48) connects data transfer service interfaces. As op-
posed to the event notifications in PRiSM, interfaces to the data transfer service do have an underlying type,
that is manifested in the signature of the data retrieval method. Again, the interface type on both roles of the
connector has to be equal.

Finally, PrismTimeoutConnector (l. 49–51, 52–55) serves to connect timeout notification ports. In
addition to the distinction between timeout notifications and general event notifications, which is introduced
on top of PRiSM itself by the CALM model, timeout event notifications can also be separated into nominal
types. To support the use of these nominal types for structuring assemblies, the PrismTimeoutConnector
also requires type equality for its two roles.

5.3.3 A PRISM MODULE

Figure 5.5: CADENA module editor within PRiSM style

Figure 5.5 shows the modalsp module of the Prism style in CADENA. The PRiSM makes a very high-
level use of component types. For example, the PrismComponent type BMDevice (opened in fig. 5.5) entails
all possible sorts of sensor device drivers. They all have in common that they provide one timeout notifica-
tion port which drives their data accumulation, they use an event notification port to publish a notification
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whenever new data has been produced, and they provide a data transfer interface for other components to
retrieve the data. This single type is used for devices like GPS, accelerometer, altitude meter, etc..

5.3.4 A PRISM ASSEMBLY

Figure 5.6: The ModalSP PRiSM assembly in CADENA

Figure 5.6 shows the Prism modalsp assembly in CADENA. The event channel is displayed in the sce-
nario as a single timeout notification source with four timeout ports. An example for the control-push–data-
pull strategy is the double connection between the PrismComponent instances GPS and Airframe. The GPS
is a timeout driven device. Whenever it produces new data, it sends a notification on the outDataAvailable
port (control-push). The Airframe receives this notification on its inDataAvailable port and retrieves
the data through its dataIn port, which is connected back to the dataOut port on the GPS through the
synchronous data transfer service (data-pull). Similar double connections exists for example between the
Airframe and the TacticalSteering, between the Airframe and the NavSteering, or between the
NavSteeringPoints and the and the NavSteering. These double connections sometimes cannot be iden-
tified without additional knowledge about the intended semantics of an assembly (see also sec. 6.3).
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6
STYLE INTERRELATIONS AND STYLE REFINEMENT

6.1 IDEAS OF MODEL DRIVEN DEVELOPMENT

In 2001, the Object Management Group (OMG, www.omg.org) started the Model Driven Architecture (MDA)
initiative to contribute to the ideas of model driven development. Core of the initiative is the attempt to make
software in general more integrated (i. e., less effort in composing software from different sources) and more
easily maintainable (i. e., less effort with debugging, decomposing, re-organizing, or repairing) by providing
abstract models of the software architecture. These abstract models have to be capable of being mechanically
translated into concrete, platform specific, systems. Therefore, a key factor of the abstract models is that
they are provided in a standardized, machine manipulable/employable, form. In [53], the authors explain the
process of leveraging an abstract model to obtain a concrete system as a transition from what they call the
Platform Independent Model (PIM) to what they call the Platform Specific Model (PSM) (fig. 6.1(a)). The
description of the proposed process is purposefully vague, the OMG suggests that both the transformation
(oval) as well as any input to the transformation (empty rectangle) can be accomplished through various
different mechanisms. Nevertheless, the OMG is working on a particular mechanism, namely on mappings
of abstract modeling elements to services on all sorts of concrete platform specifications and implementations.
The OMG explicitly states that multiple PIMs on succeeding levels of abstraction are intended in their process
before a PSM is reached.

PSM

PIM

Transformation

(a) OMG MDA Refinement (from [53])

PSM

PIM

Cadena
tool−
support

Transformation

interrelations
structural
declared

CALM

inheritance

refinement

migration
−

−

(b) CALM/CADENA support for MDD transition

Figure 6.1: The CALM/CADENA support for a model driven architecture approach

CALM takes a similar approach of moving successively through models of different levels of abstraction,
but it proposes a more specific methodology (fig. 6.1(b)). Abstractions and concretizations of architectural

www.omg.org
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models are accomplished in CALM by moving the models through styles which are conceptually related
through sharing kinds. Key factor in this approach is that CALM styles are a concrete, tangible (i. e., manip-
ulable), part of the modeling framework. The interconnectedness of all CALM artefacts allows to easily iden-
tify operations that can be accomplished mechanically vs. operations which intrinsically require interaction.
Further, CALM/CADENA can offer extensive support for those operations which cannot be automatized.

6.2 REFINEMENT STRATEGIES IN CALM

6.2.1 MODEL MIGRATION

The process of transferring CALM architectural models (i. e., CALM assemblies and their associated mod-
ules) from one style to another, related, style is called model migration. Roughly speaking, the relation
between the source style and the receiving style is given through shared or even just related kinds. While the
relation of sharing kinds can be seen from the point of various interpretations, it serves the intuition in most
cases to think of one of the styles as a more abstract style and the other as the more concrete style to un-
derstand how this approach correlates with the OMG MDA proposal. Other (and not necessarily hierarchic)
interpretations of a shared kind relation among styles include styles modeling different versions of the same
platform, different implementations of the same infrastructure, the same platform in different computing en-
vironments, the same platform enhanced with various features, etc.. In summary, whereas the ideas of model
migration are explained in terms of refinement, other uses are possible and intended in CALM.

The concepts of style refinement and model migration first of all build on CALM’s notion of compliance.
A set of types of architectural entities is said to comply to a style if all kinds of the types are defined in that
style. The formalization of CALM captures compliance through the relation

−|= ⊆ Identifier×Ψ

(sec. 4.3.3, 4.4.7) which relates a style id : (T̂, γ, κ,Ξ) given through its name id to a type map ψ of
architectural elements iff all types in ψ live in kinds of κ, or formally speaking

id −|=ψ ⇔ id : (T̂, γ, κ,Ξ) ∈ σ, and


∀id i

t : (id i
k α) ∈ ψ. id i

k : (i ᾱ) ∈ κ, and
∀idc

t : (idc
k (α, π)) ∈ ψ. idc

k : (c (ᾱ, π̄)) ∈ κ, and
∀id l

t : (id l
k (α, ρ)) ∈ ψ. id l

k : (l (ᾱ, ρ̄)) ∈ κ.

Recall that not only from modules, but also from assemblies, maps of types can be extracted to verify com-
pliance to a style. The discussion in this section will nevertheless focus on types and modules, since the
methodology for assemblies and instances is subsumed in the handling of types.

(a) Model Specialization (b) Model Abstraction (c) Model Transfer

(d) Hybrid-model
Construction

(e) Attribute-sheet
Attachment

Style

Inheritance

Model Transformation

Figure 6.2: Examples for using the style hierarchy as a tool for model driven design

Figure 6.2 illustrates the use of (hierarchical) style interrelations to accomplish various operations in
MDD through model migration which will be explained in the following sections. A style A′ in this il-
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lustration is said to inherit from a style A if it includes kinds from A through its header declaration (see
sec. 4.2.16).

6.2.2 SPECIALIZATION

Figure 6.2(a) illustrates the migration from more general to more specific styles in CALM. In this section,
the migration of an architectural model from a style A to a A′ which inherits from A will be referred to as
specialization. Nevertheless, for reasons discussed in Section 6.3, CALM generally assumes a broader view
and refers to all of the transfers illustrated in Figure 6.2 simply as migration.

Style A

Style A’’

Style A’

Figure 6.3: Refinement among styles related through shared or related kinds

Figure 6.3 exemplifies the relations between a style A and two successors A′ and A′′ which would be
interpreted as successive levels of abstraction withA being more abstract thanA′′. StyleA contains two com-
ponent kinds for illustration (depicted as rounded rectangles with different port-icons standing for differing
port options). Both kinds are inherited by style A′ (turned grey). Therefore, any module or scenario created
inA which makes use of these kinds ofA (all other aspects neglected) also complies toA′. A migration from
style A to style A′ is therefore trivial, no change has to be made to the architectural models.

Nevertheless, style A′ is not identical to style A. Instead it defines one original component kind which is
a more specific version of one of the kinds of A (depicted through the “attribute sheet” in the new component
kind). Therefore, architectural models which have been taken over from A can be gradually moved towards
more specific versions by translating types of the inherited kind into types of the original kind. This process
of transferring types from one kind to another is what CALM specifically refers to as migration, it is the core
of translating whole modules and scenarios.

Migrating types can be trivial if the additional information is optional, or it can be done mechanically, if
mappings, rules or heuristics for adding the new information exist, or it might intrinsically require interaction
if the information has to be supplied from outside. The key for any mechanization or tool support is to
exactly identify the information which needs to be added. Let id : (c (ᾱ, π̄)) be the inherited kind and
id′ : (c (ᾱ′, π̄′)) the original kind. The migration of a type id t : (id (α, π)) into a type id t : (id ′ (α′, π′))
then depends on the differences between ᾱ and ᾱ′ and π̄ and π̄′.

id : (c (ᾱ, π̄)) id ′ : (c (ᾱ′, π̄′))
O O

id t : (id (α, π)) ; id t : (id ′ (α′, π′))

Any relationship between the meta-kinds from which inherited kind and original kind are produced might
help in this step, nevertheless CALM does not require such a relationship to exist.



86 Style Interrelations and Style Refinement

Listing 6.2: Migration example: A transitional style
style ccm_T include ccm {

2
metacomponent mCCMComponent_M extends mCCMComponent {

4 provides [1] monitor : mCCMDataInterface [0..1] }

6 componentkind CCMComponent_M : mCCMComponent_M {
provides -> CCMInterface;

8 uses -> CCMInterface;

10 consumes -> CCMEvent;
publishes -> CCMEvent;

12 emits -> CCMEvent;

14 monitor -> CCMInterface };
}

Finally, style A′′ inherits from A′. In A′′, the original component kind, which stems from style A, is not
present any more (depicted by its crossed-out shape); styleA′′ either did not include the kind while inheriting
from style A′ or explicitly purged the kind from its list of kinds by elision through the elide command.
Elision allows to conveniently reduce inherited kinds from a style if, for example, the infrastructure does not
provide for it anymore or, as in this case, a more specific version of the same kind has been defined.

The reason for removing the inherited kind from A′′ is to use the compliance check of CALM to de-
termine the completeness of migrations. Any architectural model from A′ which complies to A′′ can be
considered completely migrated, since it does not contain types and instances of the old, abstract, inherited
kind from style A anymore. Instead, all types which previously lived in the inherited kind have been trans-
ferred into the new kind of A′. In other words, style A′ can be considered a transitional style in the gradual
migration of architectural models from style A to style A′′. Naturally, this same process can be repeated
multiple times with a several transitional styles which form “check points” along the way of specializing
architectural models.

As an example please consider the component kind CCMComponent of the ccm style, as defined in List-
ing 5.20 (pp. 75).

metacomponent mCCMComponent {
16 provides [0..*] provides : mCCMDataInterface [0..*];

uses [0..*] uses : mCCMDataInterface [0..*];
18

provides [0..*] consumes : mCCMEventHandler [0..*];
20 uses [0..*] publishes : mCCMEventHandler [0..*];

uses [0..*] emits : mCCMEventHandler [0..1] };
22 componentkind CCMComponent : mCCMComponent {

provides -> CCMInterface;
24 uses -> CCMInterface;

26 consumes -> CCMEvent;
publishes -> CCMEvent;

28 emits -> CCMEvent };

Assume that there is a testing platform for CCM, which requires every component to have an additional
port for monitoring its activity. Assemblies of the ccm style have to be migrated to a style called ccm_M

which models the testing platform. A transitional style ccm_T can be defined as in Listing 6.2. The style
ccm_T defines a new kind CCMComponent_M which differs from CCMComponent though one port option
monitor, which requires exactly one port (multiplicity [1]) to a CCMDataInterface. Therefore, for any
CCMComponent type to fit into the new kind, a single monitor port has to be added.

Finally, ccm_M (lst. 6.3) represents the finished transition. It contains all the kinds of ccm_T minus the
inherited kind CCMComponent, which contains components without the monitor port.

Another example for the specialization of architectural models is a differentiation of the component kind
nesCModule of the style nesC (lst. 5.1, pp. 65). Listing 6.4 refines the original nesC style by introducing
three new kinds, and at the same time eliding the nesCModule kind. This new style will be used to connect
nesC to other styles by distinguishing the components with respect to their possible implementation contents.
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Listing 6.3: Migration example: Monitored CCM
style ccm_M include ccm_T {

2 elide CCMComponent
}

Listing 6.4: More specific components in nesC
style nesC_refined extends nesC {

2 elide nesCModule;

4 componentkind nesCSoftModule : mNesCModule {
provides -> nesCInterface;

6 uses -> nesCInterface };
componentkind nesCHWModule : mNesCModule {

8 provides -> nesCInterface;
uses -> nesCInterface };

10 componentkind nesCNWModule : mNesCModule {
provides -> nesCInterface;

12 uses -> nesCInterface };
}

The new component kinds nesCSoftModule (for software-implemented components), nesCHWModule (for
hardware wrappers), and nesCNWModule (for network-infrastructure wrappers) are not distinguished by the
nesC definition; instead, the example shows how CALM allows to hand-tailor an existing component model
such as nesC to a specific development context, in this case by introducing a distinction on structurally equal
entities to enforce additional structure within architectural models. Note that no transitional style is needed
in this case since the migration of types from nesCModule into any of the new kinds is trivial.

6.2.3 ABSTRACTION AND TRANSITION

The abstraction (fig. 6.2(b)) of an architectural model is the reverse operation of the specialization as de-
scribed in Section 6.2.2. Horizontal transfer of models as illustrated in Figure 6.2(c) can be seen as either a
single operation or as successive steps of abstraction and specialization.

6.2.4 HYBRID-MODEL CONSTRUCTION

Hybrid styles (fig. 6.2(d)) model a situation of cooperating component infrastructures, which means they
formally capture the practice of integrating components from different sources with related yet dissimilar
context requirements (e. g., Bonobo and CORBA components within the Linux Desktop).

Figure 6.4 illustrates the underlying concept of hybrid styles. Two styles A and B model different com-
ponent platforms. A hybrid style can be created by first forming a union of the two styles A + B, and then
introducing “bridging elements” into the style. Bridging elements are components or connectors which can
associate interfaces of both styles and therefore can close the gap between assemblies of the different styles.

Figure 6.5 shows a hybrid between CCM and PRiSM in CADENA. The CCM and PRiSM elements are in-
herited (not visible in this view, the style editor only displays original meta-kinds and kinds) and a component
meta-kind (mPrismCCMBridge) and component kind (PrismCCMBridge) are added. PrismCCMBridge

types can be used as “translators” between CCM and PRiSM elements.
A hybrid scenario is shown in Figure 6.6. In this figure, PRiSM components are yellow, CCM components

blue, and hybrid original components white. Two data-acquisition components and a correlator from PRiSM
communicate their results through one bridge component to the CCM data consumer.

6.2.5 ATTRIBUTE SHEETS

A refinement/specialization situation which can be seen as orthogonal to the style inheritance hierarchy is
illustrated in 6.2(e). The idea is to separate parts of the attribute declarations from the declared-name-based
specification of structural interrelations. Instead of within the styles themselves, the separated attribute dec-
larations are then captured in so called attribute sheets which can be attached to existing styles.
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Style BStyle A

Style A + B

Hybrid Style

Figure 6.4: Construction of a hybrid style through inheritance

Figure 6.5: Defining a hybrid style in CADENA
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Figure 6.6: An assembly of the hybrid style

In this approach, the presence or absence of an attached attribute sheet distinguishes a more specific vs. a
more abstract version of a style. The transfer of types from the abstract version of a style without attributes to
the specific version of that style with attributes attached and vice versa is a migration operation corresponding
to the transfer between different styles.

Separate attribute sheets are not discussed formally in Chapter 4, but they are available as a functionality
of CADENA.

6.3 DISCUSSION

In the previous sections, a style which only features a subset of the kinds of another is considered more
general and abstract, while the style with more kinds is assumed to be more specific and concrete. Also, a
style in which more attributes are declared is regarded to be more specific, a style with less attributes more
general. Nevertheless, the generalized assumption that a style is more specific if it contains more information
(more kinds, more attributes) falls short when applied to complex development contexts.

As an example consider the Boeing Bold Stroke/PRiSM development as described in Section 5.3. As
described, PRiSM architectures frequently use a combination of one asynchronous notification connection
and one synchronous data transfer connection to implement a single conceptual connection which spans
different thread groups.

CALM allows to easily define a new kind of connector which does not model a single connection service
provided by the infrastructure, but instead abstracts a bundle, which concretely is a pair out of two services
and therefore manifests what in the Bold Stroke/PRiSM context is merely a suggested assembling strategy
as a modeling element. Figure 6.7 for example shows a different version of the ModalSP assembly in a
PRiSM style, called prism-extended, revised from the prism style (sec. 5.3) to contain the connector kind
PrismPushPullConnector which models the paired connection. In the prism-extended style, the main
component kind PrismComponent is elided in favor of a new, original, kind PrismExtendedComponent,
which features a port option to interface with the new, abstract, PrismPushPullConnector service.

Figure 6.7: The ModalSP PRiSM assembly with abstract connections (compare to fig. 5.6, pp. 81)
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The benefit of introducing this abstraction is not substantial in the reduction of the number of connections
(the ModalSP example in its form in Figure 6.7 only has four connections less than in its form in Figure 5.6),
instead it is mainly found in the fact that the abstraction helps to prevent “wrong wiring” when assembling
scenarios in the Bold Stroke context.

Nevertheless, the introduction of the new connector kind and the refined component kind (and also of a
new interface kind describing the interaction between the new connector and the new ports) is not necessarily
a step towards a more platform specific model. Instead, the architecture model in the prism-extended

style has to be seen as more abstract than the one in the prism style with regards to faithful modeling of the
infrastructure or to the number of steps necessary to translate the model into concrete, deployable, code.

On the other hand it can be argued that, seeing PRiSM as a general platform for component systems and
Bold Stroke as a specific development context using PRiSM, the style prism-extended is more specific
than prism, since it supports the particular development of Bold Stroke more faithfully than the style prism.

Realizing that a transition from a PIM to a PSM can mean both, either adding or reducing information (the
conceptual link between a notification connection and a data connection given through the push-pull strategy
is not visible in the finished implementation, i. e., this particular piece of information is reduced), CALM
abstains from generally calling a migration from a parent style to a child style specialization. Instead, CALM
offers to specialize by adding implementation information in form of related CALM models to architectural
elements. Chapter 7 describes how abstractions, such as the one described in this section, can be introduced
on multiple levels into a model without losing the tie to concrete platform implementations.



C
H

A
P

T
E

R

7
ADVANCED TYPING OPERATIONS OF CALM

“the psychological profiling [of a programmer] is mostly the ability to shift levels of abstrac-
tion, from low level to high level.”

— Donald Knuth. in Jack Woehr. “An Interview with Donald Knuth”
(Dr. Dobb’s Journal, April 1996)

Various existing component frameworks include some notion of nesting, which means that (sub-) archi-
tectures can reside within elements of enclosing architectures. From the perspective of a component-oriented
paradigm, nesting is an apparent and trivial strategy; the very idea of components is to abstract functionality
by (speaking in CALM terminology) hiding it inside a shell, it therefore naturally suggests itself as a tool to
structure assemblies by hiding sub-assemblies in a similar shell as is done with base functionality.

Usually, the idea of nesting is realized by some way of “making ports available to the outside”, which
means that some existing assembly can be integrated into another, and the ports of the inner assembly, as far
as they are available in some way (e. g., if they still have potential for additional connections, or if they are
explicitly assigned to be available), can be connected to fitting ports of the outer assembly. In this approach,
two strategies can be distinguished. First, ports can be available to the outside of an assembly by default, in
which case any assembly can be naturally considered a sub-assembly of larger architectures. Second, ports
might only be available through explicit exposure, in which case an assembly needs additional specification
to be usable in a larger context, but also is more protected from unintended use. One example for this second
approach is nesC, where ports of inner components of an assembly can be identified with declared ports of
an enclosing type through the “->” operator. Another example is J-Sim (www.j-sim.org) where ports of inner
components (in J-Sim called “child components”) have to be connected to ports of the shell component (in
J-Sim called “parent component”) through a “shadow” connection.

CALM tries to put this approach on a formal basis. To do so, CALM can build on its foundation of
clearly specified interrelations of nominally declared entities. This basis allows to present a methodology of
architecture nesting which is more general, more flexible, and at the same time more precise than previous
approaches known to the author.

7.1 TYPING ASSEMBLIES

Obviously it is possible in CALM to integrate existing assemblies into others by some copy-and-paste mech-
anism. Given any adequate scoping method (not realized in CALM), the integrity of the integrated assemblies
can also easily be maintained. In fact, various combinations of copy-and-paste with aliasing for ports, and a
scoping which maintains pasted assemblies as recognizable entities, have been proposed for CADENA. Cur-
rently, CADENA features an “Add Scenario Instance” menu item on the scenario tier which allows to integrate

www.j-sim.org
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a previously defined assembly as a single unit into a new one. Ports of the integrated assembly which are to
be available to the new one have to be exposed explicitly.

Nevertheless, besides just integrating assemblies, CALM features a more elegant approach to the idea of
nesting. To treat existing CALM assemblies as architectural elements of other CALM assemblies in a sound
way, they have to be embedded into the CALM type system. Nesting is then based on inferring a type for an
assembly and wrapping the assembly into a shell which represents the inferred type. The shell can then be
used as an abstraction in different assemblies like any other (also abstract) architectural modeling element.
Naturally, every shell can be associated with multiple assemblies as possible alternatives, analogous to the
concept of normal components being defined by their shell, but free in the way they are implemented.

7.1.1 THE CALM STRUCTURE OF AN ASSEMBLY

For the discussion of the typing of assemblies, recall the structure of the types of elements of the three basic
categories in CALM, as discussed informally in Chapter 3 and formally in Chapter 4. Next to the kind name,
interfaces are specified through their name and their map of attributes, components are specified through their
name, their map of attributes, and their map of ports, and connectors are specified through their name, their
map of attributes, and their map of roles.

interface type : id i
t : (id i

k α)
component type : idc

t : (idc
k (α, π))

connector type : id l
t : (id l

k (α, ρ))

The same structure is given for instances of the three categories

interface instance : id i
v : (id i

t α̇)
component instance : idc

v : (idc
t (α̇, π̇))

connector instance : id l
v : (id l

t (α̇, ρ̇))

An assembly is a collection of instances of these three categories together with a link list Λ. Specifically, an
assembly contains a collection of attributes given by the union of all attribute maps of its elements. Further, it
contains ports, again as a collection of all ports of its elements, and similarly it contains roles. Summarizing
all these elements into single maps yields a structure for assemblies

(α̇, π̇, ρ̇),

with α̇ being an instance level attribute mapping which is the union of all attribute mappings of the individual
instances, π̇ being, likewise, the union of all port mappings of the individual (component) instances, and ρ̇
finally being the union of all role mappings of the (connector) instances of the assembly. Given this structure,
it is obviously possible to infer the type level equivalent

(α, π, ρ),

with α, π, and ρ being the type level mappings corresponding to α̇, π̇, and ρ̇. This would suggest to generally
type an assembly with the name id according to the form

assembly type : id : (assembly-kind-name (α, π, ρ))

with its kind being inferred and named in some standard way. Nevertheless, this is not a qualitative step be-
yond a copy-and-paste approach, instead the main problem, that the typing is ad-hoc and somewhat random,
persists. This inferred type does not characterize the assembly as a unit rather then a group of individual
building blocks for two reasons. First, it seems much effort with little benefit to create named kinds for
assemblies, for once since an assembly can comply to multiple styles (which makes it hard to determine the
most sensible style to house the kind) and further since there is no unique way to turn ports into port options
or roles into role options, and finally, related to the ambiguities when creating port/role options, it is unclear
when two different assemblies should be given the same kind and when not. Second, and more importantly,
it is not even unambiguous how the basic structure on the instance level (α̇, π̇, ρ̇) is collected, even before it
is turned into a type level structure (α, π, ρ).
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7.1.2 THE TYPE SPECTRUM

The problem of finding a unique type for an assembly springs from the existing links between elements
of the assembly. As opposed to architectural elements from the three base categories, whose connectivity
options are constrained at the style level, an assembly might have additional constraints introduced or existing
constraints relaxed through the standing connections on the scenario tier. On the style tier, connectivity
constraints are given mainly through the port and role options’ multiplexity, which defines minimum and
maximum fan-out for the respective ports. Existing links on the scenario tier shift the multiplexities and
therefore change the minimum and maximum fan-out of ports and roles which is visible from the outside
(see examples in Table 7.1).

Given multiplexity Number of connections Outside-visible
narrower constraint [0..5] 3 [0..2]

relaxed constraint [3..*] 4 [0..*]

invariant constraint [0..*] 1 [0..*]

closed off [0..5] 5 [0]

Table 7.1: Examples for shifting multiplexities (see definition in sec. 4.2.1)

Naturally, ports or roles whose connectivity options are completely used internally in an assembly (such
as the last example in tbl. 7.1) are of little interest when determining a type for an assembly. In fact, including
such ports/roles into the type of an assembly would mean to encode information about the internals of the
assembly which is irrelevant to the assembly’s environment. At the same time, ports/roles whose minimum
connectivity requirements are fulfilled internally (i. e., their shifted multiplexity being [0..n] for some
number n > 0), do not necessarily have to be included into the type of an assembly, since the concept of a
shell only demands context requirements to be stated explicitly, context options can be omitted.

CALM defines two concepts to capture the significance of ports and roles for inferring the type of an
assembly. Both concepts are based on the term adjusted multiplexity which is the multiplexity of a port/role
shifted by the number of existing connections.

Definition 7.1 (Open—Closed) A port (role) with adjusted multiplexity [n..m] (0 ≤ n ≤ m) is called
open iff m > 0, otherwise it is called closed.

Definition 7.2 (Complete—Incomplete) A port (role) with adjusted multiplexity [n..m] (0 ≤ n ≤ m) is
called complete if n = 0, otherwise it is called incomplete.

An open port/role represents connectivity potential of an assembly and therefore may be included in the type,
an incomplete port/role represents connectivity requirements and therefore must be included in the type. The
overall impact of the open—closed and complete—incomplete properties on whether a port or role has to be
included into the type of an assembly is displayed in Table 7.2.

Open Closed
Complete may be included cannot be included

Incomplete must be included error

Table 7.2: Open—closed, complete—incomplete, and the significance for the type spectrum

In summary, an assembly in CALM does not have a single type, but rather a type spectrum. This type
spectrum contains as a minimum all incomplete ports (πmin) and roles (ρmin) and as a maximum all open
ports (πmax) and roles (ρmax). Any mappings π, ρ with

πmin ⊆ π ⊆ πmax and
ρmin ⊆ ρ ⊆ ρmax

can be used for the type of the assembly. The exact form of the type spectrum of an assembly and how a type
can be chosen within that spectrum is discussed in the following.
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7.1.3 A SHELL FROM ANOTHER CATEGORY

In the previous sections, assemblies were implicitly assumed to be in a category of their own. Nevertheless,
it was also discussed that a kind chosen for given assembly types, which would then in turn be of category
“assembly”, would be contingent or random, since no general unique and justifiable way of finding the
most reasonable kinds for a collection of assembly types has been presented. It is however possible under
circumstances to unify the type of an assembly with some declared type of one of the existing categories.

If for example the minimum port map πmin is empty (i. e., all ports are complete), the port map can
be omitted from the assembly type. The type then only contains an attribute map α and a role map ρ and
therefore resembles the category connector. In summary, depending on completeness properties, the relations
are as follows

πmin = ∅ ; (α, ρ) ∼ category connector
ρmin = ∅ ; (α, π) ∼ category component
πmin = ∅
ρmin = ∅

}
; α ∼ category interface

Note though, that, however appealing in theory, the idea of reducing an assembly into a single interface
type has not ben sufficiently explored within the CALM project as of yet to determine its practical value.
Eventually the plan is to encode the protocol represented by an interface using an assembly (e. g., in form of
components as nodes and connectors as edges encoding a state transition system). This part falls into future
work and is only mentioned here for completeness. Also note that outfitting assemblies with the shell of
a component is a concept which (using different terminology, and often a less formal approach) is already
present in previous work. The novelty which is introduced by CALM so far is that infrastructure abstractions
can be created by outfitting an assembly with a connector shell. Examples for this approach and a discussion
of its benefits are given below.

7.1.4 A WRAPPING EXAMPLE

One of the most often used library components in nesC is a timer component called TimerC, which was
already shown in Section 5.1.5 (lst. 5.18, pp. 72). In its original form, it contains a sub-assembly of four inner
components, which are TimerM (the main control of the timer), ClockC (the actual hardware clock), NoLeds
(a dummy replacing visual feedback LEDs), and HPLPowerManagementM (the power socket). Within the
CALM nesC style nesC, a simplified version (without LEDs and power management) was modeled by the
assembly in Listing 7.1.1

Listing 7.1: The timer assembly in CALM (sensornet module in lst. 5.9, pp. 68)
scenario timer_assembly includes sensornet {

2 TimerControl control { };
Clock_ hwClock { };

4
nesCWire { user_side = control.clock;

6 provider_side = hwClock.clock }
}

This CALM assembly features two nesCModule instances, which are control of type TimerControl,
and hwClock of type Clock_. Associated with these components, the scenario contains three provided
interfaces, control.init of type StdControl, control.timer of type Timer, and hwClock.clock of
type Clock, and one used interface, control.clock of type Clock, which means the assembly has four
ports. Also, it contains one unnamed instance of a nesCWire-kind connector, through which it features two
roles. A graphical representation of the assembly in nesC standard iconography is found in Figure 7.1(a).2

The multiplexity of all ports (before being connected) of types of the nesCModule kind is [0..*].
This multiplexity stays invariant also for the two ports hwClock.clock and control.clock which are
connected inside the assembly.

[0..*]− 1 = [0..*]

1Components such as LEDs or power are often omitted in nesC tutorials.
2Note that nesC iconography displays single connectors as “bundles” of lines if the connected interfaces contain multiple commands

or events.
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The situation is different for the two roles unnamed.user_side and unnamed.provider_side. Their
declared multiplexity is [1], and each of them has one connection, their adjusted multiplexity hence being
[0].

[1]− 1 = [0]

Therefore, the four ports are open, πmax contains all four of them; also they are complete, πmin is empty.
Further, the two roles are closed, so ρmin = ρmax = ∅.

Timer

TimerControl

Clock

HWClock

Clock

StdControl

(a) the timer assembly

StdControl Timer

TimerControl

Clock

Clock

HWClock

(b) as component

StdControl Timer

TimerControl

Clock

Clock

HWClock

(c) as connector (service)

Figure 7.1: Wrapping the timer-assembly

Given these constraints, it is for example possible to choose a shell of category component. If in this
specific case the ports control.init of type StdControl and control.timer of type Timer are chosen
for π (and considering that α happens to be empty), the resulting (component) type corresponds exactly to
the nesCModule type Timer_ (compare to module in lst. 5.9, pp. 68).

nesCModule Timer_ {
57 provides init : StdControl;

provides timer : Timer }

This example provides the intuition for a definition of the type spectrum of an assembly which does not
assume a category “assembly”:

Definition 7.3 (Type Spectrum) The type spectrum of an assembly is the set of all component, connector,
and interface types which can be chosen as the type of the assembly.

To associate an assembly with a declared type which is element of the type spectrum of the assembly, CALM
uses the concept of wrapping. A wrap exposes ports (or, in the case of connectors, roles) and identifies them
with ports (roles) of an existing component/connector type (i. e., a shell), thereby naming the assembly as a
possible implementation of the shell. In the case of the discussed timer assembly the respective wrap which
identifies it as an implementation of the nesCModule type Timer_ from the module sensornet is

implementation HWTimer :
2 wrap timer_assembly into sensornet.Timer_ {

expose init = control.init;
4 expose timer = control.timer };

with HWTimer being the name of the wrap. The wrap is also illustrated in Figure 7.1(b), a view of the same
wrap in CADENAis offered in Figure 7.2.

Alternatively, the type spectrum can be changed by adding two nesCWire-kind connectors attached to
the previously exposed ports control.init and control.timer with the respective user_side role left
open (fig. 7.1(c)). As a result, the two unconnected roles become minimum members of every type in the
type spectrum, the assembly now has to be typed as a connector by exposing only the two open roles, and
hiding the (complete) ports.

7.1.5 EXTENDING THE SERVICE LAYER

Unary connectors or better service connectors such as the timer described above (which has two roles, but
does not “connect” different components) have turned out to be an elegant means to abstract services provided
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Figure 7.2: The Timer assembly modeled as component of Radio-Link in CADENA

by library functions such as the timer. They also serve to structure assemblies conceptually and to narrow the
focus even more towards functional aspects and away from low level infrastructure.

As an example of the potential of service abstractions in a component oriented environment, recall the
discrepancy between standard CALM semantics and the approach of nesC which is exposed in Section 5.1.5.
The approach to resolving this discrepancy as proposed by CALM is exemplified in Figure 7.3, which shows
an essential part of the nesC Surge application (see also listings in apx. C.1) with emphasis on the Timer

component.
Figure 7.3(a) illustrates how a connection to the Timer component is seen internally in nesC. The shell of

the timer is present in multiple places, but its functionality is really instantiated only once. The Timer inside
the Comm component therefore maps to the same instance as the one in the global Surge application. Two
ports are offered by the Timer component, one featuring the StdControl interface, the other the Timer in-
terface. The Timer interface is implemented in nesC in a way that it distinguishes the different connections,
which means that commands coming in from two different connections do not influence each other, events
sent on these connections reflect only the respective commands received on that same connector. In summary,
the observable behavior of the Timer port with multiple connections is equivalent to multiple Timer compo-
nents. For the StdControl port the opposite is true. StdControl is essentially a reset button, it is usually
only invoked at the start or re-start of an application. In the case of the Surge application, the observable
behavior of a single vs. multiple instantiations of Timer is still equivalent, but only by coincidence, since the
reset signal arriving at the StdControl port of the global Timer originates from the Main component, and
so does the one on the Timer inside the Comm component (routed through the AM component), so essentially
the sole instance of Timer is connected twice to the same reset source. Nevertheless there is no guarantee
that the observable behavior is always indistinguishable as to the number of instantiations. In the case of the
Timer, developers instead must keep in mind that the StdControl port is “global”, while the Timer port is
local.3

The alternative to having multiple component shells which might or might not influence each other (a
breach of the component oriented paradigm!) is defining the timer as a connector, which, as described
above, means as a service of the infrastructure ( 7.3(b)). The advantage lies (besides allowing the assembly

3To be precise, the Timer port is not local to the instance of the Timer shell, rather its locality is decided by numeric identifiers. To
have a “local” connection to the Timer port, a unique ID has to be generated.
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Figure 7.3: Hidden (abstracted) semantics of library services

to be clearer) mainly in the intuition. The StdControl role on such a service can be declared as a reset
for the service, while using the service can be local. This approach can be applied to all sorts of often
used functionality and services (fig. 7.3(c) also abstracts the power connector and the LED visual feedback).
Another advantage (specifically in nesC) is that, combined with the possibilities of style refinement and
specialization of models as described in Chapter 6, the abstraction of (library) functionality as services allows
to even more precisely hand tailor styles to platforms and product lines (e. g., by abstracting exactly those
library functions into services which are implemented for specific device cores or motes and summarizing
them in a device-core-specific architectural style, to and from which models can be migrated).

Finally, note that the difficulty in fitting the introduction of the push-pull connector in the PRiSM style
prism-extended into the OMG proposed PIM to PSM structure (discussed in sec. 6.3) can be resolved
easily, if the newly introduced connector is considered as a shell for an “assembly” which consists of two
parallel connectors, one synchronous and one asynchronous. This way, the information about how to realize
the push-pull connector is still contained in the architectural model, which then can be clearly considered
more platform specific (and product specific) then the style prism.

7.1.6 STRUCTURAL PITFALLS

Unfortunately, not always can a shell from a base category be found for a given assembly. An example where
an assembly which warrants abstraction (potential for frequent re-use) cannot b outfitted with a shell because
no appropriate kind is present is the LogicalGates style which models abstract semiconductor circuits.

LogicalGates features three kinds of components which are exemplified in Figure 7.4. The component
kind source must have exactly one provided port (fig. 7.4(a)), gate can have any number of used ports and
must have a single provided port (fig. 7.4(b)), and finally sink must have a single used port (fig. 7.4(c)).
The single interface kind Plug represents the contacts of the semiconductors. Multiplexity constraints model
the requirements of a common semiconductor circuit, for example the multiplexity of used (input-) ports is
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(a) A source component (b) A gate component (c) A sink component

Figure 7.4: Examples of the component kinds in the LogicalGates style

[1], which means a minimum of one since unconnected input contacts tend to produce constant high-values
because of the missing mass and a maximum of one because multiply connected inputs can lead to contingent
behavior of the circuit. Further, the multiplexity of the provided (output-) contacts is [1..*], which means
at least one since every signal has to be terminated. Multiple connections are not a problem for output ports.4

Figure 7.5: A flip-flop circuit realized in LogicalGates

Figure 7.5 puts four gate components together. Two And gates and two Not gates are assembled to form
the standard flip-flop (or “alternating solid state”) circuit. The contacts which are supposed to be visible to
the outside of this assembly are shown as “dangling” ports. Figure 7.6 embeds the flip-flop circuit into a
simple environment, and aliases the ports (Set, UnSet, Q, and NotQ). Nevertheless, this abstraction cannot
be typed with a component shell: It has two input ports and therefore cannot be a source, and two output
ports and hence can neither be a gate nor a sink. Still, the assembly can be used as a typed component
architectural pattern. In this context, recall the “Add Scenario Instance” menu item of CADENA mentioned
in the introduction to this section.

7.1.7 THE IMPLEMENTATION TABLE

Hiding functionality inside monolithic architectural entities per se only adds a quantitative improvement
to the concepts of architectural development by reducing the number of elements which are visible at one
time and thereby clarifying complex system assemblies. To add a qualitative improvement, nesting has to
blend with the black-box notion of the component oriented paradigm, which means that the implementations

4For realistic semiconductors, the output would actually only support connections up to some certain maximum which can range
between about four to up to a hundred depending on the technology used. Of course, the output multiplexity can be adjusted to given
maxima.
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Figure 7.6: The flip-flop assembly used in realizing a one-bit register

associated with the architectural elements have to be easily exchangeable. Therefore, CALM separates the
topology from the specification of the components’ and connectors’ internals.

TERMS AND NAMES

In Section 3.3.1, a distinction is introduced between the term assembly and scenario. The term assembly
is used for the topology, whereas the scenario is described as an assembly with additional (meta-) data.
Since data is added when moving from an assembly to a scenario, there can be multiple scenarios for every
assembly. The connection between the scenario and the assembly is the implementation table.

An assembly is a collection of interconnected shells. The implementation table maps every element of
an architectural assembly to an implementation. Possible implementations can be other (sub-) assemblies
which, by means of wraps, are identified to have the type of the respective shell, or atomic implementations,
which are references to source code implementations which are outside of the scope of CALM (but can be
handled through the plugin system of CADENA).

To support incremental supply of the meta-data, CALM distinguishes different stages of completeness
of a scenario. A scenario is said to describe a system, iff all multiplexity constraints of the underlying
assembly are met (i. e., no connections have to be added), otherwise it is said to be a subsystem. Further,
a scenario is said to be complete, iff every shell of the underlying assembly is assigned an implementation.
If instead some elements of the assembly are only represented by a shell with no further information, the
scenario is called incomplete. The completeness of a scenario only considers one level, which means that
some implementations might be done in terms of sub-scenarios which in turn are still incomplete. Therefore,
scenarios are distinguished as being either abstract, which means that they might be still incomplete at some
level of nesting, or deployable, which is the equivalent of recursive completeness.

TOP-DOWN AND BOTTOM-UP SPECIFICATION

CALM suggests two strategies of assigning sub-scenarios (as opposed to atomic implementations) as imple-
mentations to architectural elements (fig. 7.7). The first strategy is to record assemblies as implementations.
Having chosen an assembly for a given element, an implementation sheet has to be chosen for that assembly
in a recursive step. This method can intuitively be thought of as a top-down approach since first the global as-
sembly is outfitted with implementation data, and then recursively the nested assemblies are handled. Other
intuitions for this strategy are branching, call-by-name, or lazy specification. Figure 7.7(a) illustrates this
method, following the nested specification of the grey elements. A deployable (sub-) system in this strategy
has to feature a tree of implementation sheets.
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Figure 7.7: Two strategies to define scenarios

The second strategy is to record scenarios in the implementation table. This approach can be thought of as
bottom-up specification, since when choosing an implementation for an element of a scenario, all recursive
implementations are already given. Other intuitions are linear, call-by-value, or eager specification. This
strategy is illustrated in Figure 7.7(b). Instead of a tree of implementation sheets, the single implementation
sheet on the top level describes the deployable (sub-) scenario.

Note that, if incomplete scenarios (or incomplete implementation tables) are allowed in either of the two
strategies, they become very similar in their practical aspects (i. e., the bottom up strategy would no longer
mean that sub-scenarios are completely specified when they are included into a table). CALM favors a
bottom-up strategy with possibly incomplete scenarios because it allows to concisely specify (incomplete)
multi-level topologies which manifest the concept of reference architectures.

FORM AND CONTENT

An implementation table has to contain one entry for each architectural element of the assembly it describes.
In practice, interfaces are naturally included with the element which provides them. Connectors often have
a standard or automatic implementation and therefore their entries might be supplied by the supporting tool
(CADENA).

An entry for a component (or connector) so far can contain one out of two entities. First, it can contain a
reference to some atomic implementation. The term atomic does not necessarily describe a monolithic or in-
divisible unit, it merely means an entity outside the scope of the CALM model itself and therefore indivisible
from the perspective of CALM (e. g., source code, hardware, etc.). Therefore the atomic implementations
are the leave nodes of a nested implementation specification.5

Second, the entry can contain a reference to an artefact within the scope of CALM. In this second case,
the entry has to specify an assembly and a mapping between ports or roles of that assembly to ports and roles
of the shell (component or connector) to which the entry belongs. To do so, it references a wrap (sec. 7.1.3,
7.1.4) which provides exactly that information. Further, if using the bottom-up approach, the entry has to
specify the next level implementation sheet for the referenced assembly to turn it into a scenario (in the

5As mentioned before, although atomic implementations are outside the scope of CALM, the CADENA plugin system can offer
extensive support such as source code generation, deployment support, etc..
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top-down approach the implementation sheets are “factored out”). The possible entries are summarized in
Table 7.3.

element-name 7→ atomic implementation A leave node entry

element-name 7→ wrap A top-down CALM artefact implementation
(specifying an assembly)

element-name 7→ wrap + implementation-sheet A bottom-up CALM artefact implementation
(specifying a scenario)

Table 7.3: Implementation table entries

7.2 INTER-STYLE WRAPPING

So far, nesting of architecture models has been discussed as a means of organizing assemblies within a
single architectural style, and as an elegant way to abstract recurring functionality into complex platform
extensions. Further, it has been shown how CALM separates an architectural topology (assembly) from the
intended implementations (implementation table) to fully exploit the flexibility of the component oriented
paradigm within CALM scenarios.

This section tries to extend the notion of sub-architectures beyond hierarchical organization of assemblies
and their implementations towards the concept of domain specific layers.

7.2.1 COMPONENTS AND LAYERING

The concept of layering is very common in system development. For example, computing systems are
often structured by more or less the following layers: hardware, basic input-output system (BIOS), operating
system (OS), application layer, graphical user interface (GUI). Another well known and widely used example
is the Open Systems Interconnection (OSI) seven layer reference model of the International Organization for
Standardization (ISO) [34], which divides network communication implementations into physical layer, data
link layer, network layer, transport layer, session layer, presentation layer, and application layer.

A defining characteristic of a layered system are the layering constraints, which normally express the
basic requirement that programs of one layer can only access functionality within the same layer or of the
layer immediately below (e. g., in ISO/OSI the physical layer can only be accessed by the data link layer,
the data link layer only by the network layer, etc.). Nevertheless, it is often advantageous or necessary to
shortcut through layers to reduce overhead or to access functionality which would otherwise be covered up
by intermediate layers. For example, most personal computing platforms offer some way to cut through GUI,
application, and OS layer to directly access hardware (e. g., directX or simple direct media SDL, which both
access hardware acceleration features of graphic hardware circumventing the GUI layer). Also, layers are
not always stacked perfectly on top of each other, sometimes they rather exist in parallel with overlapping
functionality (such as the BIOS and the OS layer, which exchange responsibilities depending on the stage of
the boot or shutdown sequence). Also, layers are not always stacked in a linear way, instead they are most
often multi-dimensional, For example, a network application on a personal computer resides on top of both,
the network stack and the hardware-BIOS-OS-GUI stack, with various interdependencies.

While layer constraints are often treated in a lax way to enable various optimizations, the main reason
divide systems in layers is the fact that this organization often closely reflects distinguishable fields of exper-
tise. For example, the physical layer in the communication stack focusses on signal processing and hardware
(pins, voltages, cable specifications, adapters, etc.), whereas the data-link layer is concerned with flow con-
trol, sequencing, error correction, an so on. In short, each layer represents a specific domain knowledge. The
abstractions presented to higher layers reflect the domain specific functionality.

CALM approaches system layering through nested architectures. The basic idea to this approach is to
provide functionality of lower layers as services or components and thereby offer hand-tailored architectural
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styles and infrastructure abstractions for each layer which encode access capabilities and layering constraints
in a component oriented way. To do so, CALM has to present the option of wrapping artefacts which
represent different domain knowledge into a (component or connector) shell. Together with the fact that
domain specific modeling contexts are expressed in CALM through architectural styles, this means that
wrapping in CALM needs to be extended to transition architectural styles.

7.2.2 COERCION
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Figure 7.8: Layering: implementation/abstraction relation between styles

Wrapping an assembly into a shell of the same style as the assembly is straightforward: ports or roles
of the assembly have to be identified with ports or roles of the shell. The problem which arises when cross-
ing style boundaries is that ports and roles of shell and assembly do not feature interfaces from the same
architectural style anymore. Therefore, a conversion has to be defined which specifies how ports/roles of the
assembly implement ports/roles of the shell, while ports/roles of the shell abstract ports/roles of the assembly
(fig. 7.8).

As a quick example recall the push-pull connector introduced in the style prism-extended as an ex-
tension of the style prism in Section 6.3 and further discussed at the end of Section 7.1.5. Figure 7.9(a)
illustrates a small, simplified, prism assembly with a device component, a notifier component, and a data-
delivery component. The used asynchronous PrismEvent port of the notifier (which is also connected to the
PrismTimeout, which is shown as a service in the figure) and the provided synchronous PrismInterface
port of the data-delivery component (which also connects to the device component and the PrismTimeout
service) are conceptually coupled to form a push-pull interface. Figure 7.9(b) shows the same assembly out-
fitted with a shell from the style prism-extended. The new, provided, non-blocking, push-pull interface
has to be implemented by the used asynchronous port of the notifier component and the provided synchronous
port of the data-delivery component.

The example exposes multiple important aspects of a port (role) conversion. First, a single port of the
shell can be implemented by more than one port of the assembly. Further, the multiplexities of each port of
the assembly involved in the implementation all have to contain the multiplexity of the implemented port on
the shell. Also, ports can participate with covariant parities (i. e., a used port participates in implementing
a used port, a provided port participates in implementing an provided port) as well as with contravariant
parities (i. e., a used port participates in implementing a provided port and vice versa).

CALM requires conversions (i. e., the actual translation of a group of implementing ports/roles into an
abstracting port/role and back) to be enabled by a respective coercion on the style tier. A coercion is a style-
level (kind-level) declaration which specifies how interfaces can be translated over different styles, which
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Listing 7.4: PRiSM to PRiSM-extended coercion
coercion prism_to_prism-extended :

2 from prism build prism-extended.PrismPushPullInterface {
uses [1] notify : PrismEvent;

4 provides [1] data : PrismInterface }

means they capture knowledge about the abstractions which the (nominally declared) interfaces are supposed
to stand for.

Because the concepts of coercions and conversions defined by them and wraps using the conversions
are very similar to the way kinds, types, and instances relate in the CALM core language, the explanation
is kept informal and centered around the prism to prism-extended example. The coercion for the ex-
ample is given in Listing 7.4. In the listing, name of the coercion (prism_to_prism-extended) is given
in Line 1. Line 2 specifies the interface kind (in this case the PrismPushPullInterface of the style
prism-extended) whose build is defined by this coercion, and the style (prism) from which the con-
stituents of the interface can be drawn. Lines 3 and 4 contain the body of the coercion. Generally, the form
of a coercion is

coercion id : from id0 build id1.id2 { b },

with id being the name of the coercion, id0 the implementing style, id1 the style which holds the interface to
be implemented, and id2 the interface kind name. The body b of a coercion contains a semicolon-separated
list of options of how interfaces from style id0 (given as kinds) can participate in a conversion. Each such
option generally has the form (closely resembling port/role options)

p q id : id0,

with p being a parity, meant for provided ports (i. e., provides stands for covariant parity, uses for con-
travariant parity), q ∈ Q being a range specifying the multiplicity, which (similar to port/role options) spec-
ifies minimum and maximum number of respective interfaces to be involved, id declaring a module level
keyword to specify the actual interfaces, and id0 specifying the interface kind from which they are drawn.

Listing 7.5: PRiSM to PRiSM-extended conversion
prism_to_prism-extended PushPullConversion :

2 render modalsp-extended.PushPull-ReadData in modalsp {
notify available : DataAvailable;

4 data deliver : ReadData }

Much like with the elements of CALM’s core framework, the coercion defines a language of coercions.
Listing 7.5 shows an application of the coercion from Listing 7.4. The conversion is called with the name of
the coercion which enables it. In its body it uses the keywords introduced by the coercion. Generally, the
form of a conversion is

idc id : render id0.id1 in id2 { b },

with idc being the name of a coercion and id being the name of the conversion. The qualified name id0.id1

gives module (id0) and interface type (id1) to be implemented, and id2 is the module holding the interfaces
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used for the implementation. The body b contains a semicolon-separated list of element interface specifica-
tions of the form

id0 id1 : id2,

where id0 is a keyword for the option defined by the coercion, id1 is the name of the interface within the
conversion, and id2 gives the interface type, which has to be of the kind defined by the coercion for this
respective option.

Listing 7.6: PRiSM to PRiSM-extended conversion
implementation PushPullConnector :

2 wrap push_pull_assembly into modalsp-extended.PushPull-ReadData {
expose provides_side = PushPullConversion {

4 available = unnamed_PrismEventConnector_001.usesSide;
deliver = unnamed_PrismInterfaceConnector_001.providesSide };

6 expose uses_side = PushPullConversion {
available = unnamed_PrismEventConnector_001.providesSide;

8 deliver = unnamed_PrismInterfaceConnector_001.usesSide }
}

Finally, Listing 7.6 shows an application of the PushPullConversion. The push_pull_assembly

(not shown, it contains one PrismEventConnector and one parallel PrismInterfaceConnector) is
wrapped into a single connector called PushPullConnector, which features two role (provides_side
and uses_side). The roles are identified with pairs of roles from the assembly converted by using the
PushPullConversion.

7.2.3 A LAYERING EXAMPLE

Using the main example laid out in Chapter 2, this section illustrates how a CALM assembly can be layered
for example to correspond to the three lowest tiers (called “media layers”) of the ISO/OSI model. Recall that a
conceptual architecture was presented without any specific component framework associated to it. Listing 7.7
shows a possible style called global_a which allows to turn the abstract architecture into a concrete CALM
artefact. It defines three simple kinds, the interface kind Plug, the component kind Box, and the connector
kind Link. Obviously, this style allows to draw the simple box-diagram given in Figure 2.1 (pp. 7).

Listing 7.7: A conceptual architecture style
style global_a {

2 metainterface mPlug { };
interfacekind Plug : mPlug { };

4
metacomponent mBox {

6 attribute name : SCENARIO STRING;
provides [0..*] in : mPlug [0..*];

8 uses [0..*] out : mPlug [0..*] };
componentkind Box : mBox {

10 in -> Plug;
out -> Plug };

12
metaconnector mLink {

14 uses [1] source : mPlug [1];
provides [1] sink : mPlug [1] };

16 connectorkind Link : mLink {
typevar a : Plug;

18 source -> a;
sink -> a }

20 }

As a refinement step, Listing 7.8 introduces a distinction between local connections and remote connec-
tions by defining the connector kinds LocalLink and RemoteLink.

RemoteLink connectors describe communication channels between parts of the system which are not
collocated. This functionality is generally associated with the network layer of the ISO/OSI model (connec-
tivity and routing services).
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Listing 7.8: A conceptual architecture style, refined
style global_b extends global_a {

2 elide Link;
metaconnector LocalLink : mLink {

4 typevar a : Plug;
source -> a;

6 sink -> a }
metaconnector RemoteLink : mLink {

8 typevar a : Plug;
source -> a;

10 sink -> a }
}

The network layer relies on the data-link layer which, along the routed path, is responsible for secure
transfer and error correction. The example in Chapter 2 offers a straightforward assembly for a buffered send
with re-send capability, consisting of a controller, a send queue for buffering of data, a timer which allows
to determine re-send timeouts, and a communication component being capable of sending data and receiving
acknowledgements over a wireless connection. The assembly is realized in nested nesC (see fig. 2.2, pp. 8,
which shows the main assembly and the nested timer assembly, also compare sec. 7.1.4 ff.)

Finally, the data-link layer relies on a concrete infrastructure (the actual hardware) provided by the phys-
ical layer. The nesC assembly hides the functionality of the physical layer within the HWRadioLink compo-
nent. While it is technically possible to realize the functionality of this layer in nesC as well, the example
delegates the physical layer to a more hardware specific model (fig. 2.3, pp. 10). Listing 7.9 presents a style
radioComm which represents the radio hardware model in CALM.

Overall, the layering of the styles in CALM and their correspondence to the media layers of the ISO/OSI
model is displayed in Figure 7.10. The relations between the styles are given through respective coercions,
conversions, and wraps. For example between global_b and nesC the coercion

coercion nesC_to_global :
2 from nesC build global_b.Plug {

provides [1..*] available : nesCInterface
4 uses [1..*] required : nesCInterface };

specifies that interfaces from global_b (Plug) can be expressed in terms of an arbitrary number of elements
from nesCInterface. The conversion

nesC_to_global sensornet_to_bank :
2 render sensorbank.Send in sensornet {

available send : Send,
4 available control : StdControl };

is an example for the use of the coercion. This conversion packs one sensornet.Send interface type and
one sensornet.StdControl interface type into the interface type sensorbank.Send, with sensorbank
being a module in global_b. The conversion allows to wrap the data-link layer assembly into a remote
connector of the global style as illustrated in Figure 7.11.

By relating styles to each other through implementation/abstraction relationships which enable wrap-
ping across architectural domains and manifest layering requirements in a component oriented way, CALM
offers an elegant way to attach concrete realizations to otherwise abstract modeling artefacts such as the
box-and-line diagram which captures the global architectural layout of the sensor bank system. With the
style global_a, its refined version global_b, and the connection to concrete component platforms (nesC,
radioComm), the box-and-line diagram turns from a picture into a development artefact which is traceably
linked to the actual system implementation.



106 Advanced Typing Operations of CALM

Listing 7.9: A network hardware style
style radioComm {

2 typedef Volt = INT[0..*];
typedef Watt = INT[0..*];

4 typedef Modulation = ENUM { AM, FM, PK };
typedef Freq_Unit = ENUM { KHz, MHz };

6 typedef Frequency = struct {
class : Freq_Unit;

8 value : INT[0..*] };

10 metainterface mDigital {
attribute max_rate : MODULE INT[0..*] };

12 interfacekind Digital : mDigital { };
metainterface mSignal {

14 attribute Max_Amp : MODULE Volt;
attribute Class : MODULE Modulation;

16 attribute Band : MODULE Frequency };
interfacekind Signal : mSignal { };

18 metainterface mWave extends mSignal {
attribute Power : Watt };

20 interfacekind Wave : mWave { };
metainterface mPower {

22 attribute Voltage : Volt };
interfacekind Power : mPower { };

24
metacomponent mController {

26 provides [0..*] data_in_port : mDigital [0..1];
uses [0..*] data_out_port : mDigital [0..1] };

28 componentkind Controller : mController {
data_in_port -> Digital;

30 data_out_port -> Digital };
metacomponent mDevice extends mController {

32 provides [0..*] signal_in : mSignal [1];
uses [0..*] signal_out : mSignal [1] };

34 componentkind Device : mDevice {
data_in_port -> Digital;

36 data_out_port -> Digital;
signal_in -> Signal;

38 signal_out -> Signal };
metacomponent mActiveDevice extends mDevice {

40 uses [1] power : mPower [1] };
componentkind ActiveDevice : mActiveDevice {

42 data_in_port -> Digital;
data_out_port -> Digital;

44 signal_in -> Signal;
signal_out -> Signal;

46 power: -> Power };
metacomponent mSupply extends mController {

48 provides [1..*] power : mPower [0..*] };
componentkind Supply : mSupply {

50 data_in_port -> Digital;
data_out_port -> Digital;

52 power -> Power };

54 metaconnector mBus {
provides [1] source : mDigital [1];

56 uses [1] sink : mDigital [1] };
connectorkind Bus : mBus {

58 typevar a : Digital;
source -> a;

60 sink -> a };
}
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RELATED WORK

“There are two ways of constructing a software design: One way is to make it so simple that
there are obviously no deficiencies, and the other way is to make it so complicated that there are
no obvious deficiencies. The first method is far more difficult.”

— Charles Antony Richard Hoare. 1980 Turing Award Lecture.

8.1 INDUSTRIAL TOOLS

In current industrial practice, initial design (and commercial tool-support for design) is almost exclusively
based on UML (www.uml.org). Over one hundred tools from academia, industry, and open-source projects
support subsets of UML.

UML is an extremely extensive set of modeling languages mixing graphic elements with keywords and
symbols. UML draws its generality and wide applicability (particularly in the context of object oriented
programming) from this complexity, having a specific modeling construct for almost any situation. Unfortu-
nately, the complexity of UML (a now already obsolete summary of the different notations from 1997 alone
is a 148-page document [63], more recent summaries on notation were not found) make it difficult to identify
clear concepts or determine applicable methodologies.

UML 2.0, the most recent main version, defines thirteen types of diagrams, divided into three categories.
Structure Diagrams include the Class Diagram, which might be the most widely used UML specification, the
Object Diagram, the Component Diagram, the Composite Structure Diagram, the Package Diagram, and the
Deployment Diagram. Behavior Diagrams include the Use Case Diagram, used to gather requirements, the
State Machine Diagram, which defines state transition systems, and the Activity Diagram, which is a special-
ization of the State Machine Diagram, expressing actions as states and activities which follow on completion
of actions as edges. Interaction Diagrams, all derived from the more general Behavior Diagram, include the
Sequence Diagram, Communication Diagram, Timing Diagram, and Interaction Overview Diagram. Mod-
eling elements of any type of diagram can appear in almost any other type of diagram, again adding to the
complexity of UML modeling (UML 2.0 introduces some restrictions).

Most UML diagrams and specifications were designed directly for the task of modeling object oriented
organizational patterns and techniques (Class Diagram, Object Diagram, Package Diagram, to some extend
the Composite Structure Diagram, etc.), but a shift is made (in UML 2.0 more than in previous versions) to-
wards capturing component oriented design principles. UML features modeling elements called components
and named interfaces (primarily as elements of the Component Diagram). Components (in UML 2.0) are
rectangles marked by the stereotype “ ”, or alternatively by the word “component”. Interfaces are given
by the symbol “ ”, if they are provided, or (new in UML 2.0) by “ ” for used, or (in UML terminology)
required, interfaces.

www.uml.org
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Although UML is recommended by the OMG for the OMG MDA approach (see also 6.1) to specify
platform independent models (PIM), no notion of connectors is given (i. e., interfaces on component ports
simply plug into each other). Neither components nor interfaces are kinded, and typing is very basic, which
both makes it difficult to concisely capture platform requirements and restrictions. Higher-level architectural
subsystem and layering constraints might be possible, especially since with the object constraint language
(OCL) [64] a first order logic constraint language is included in many UML settings, but a direct support
which only requires feasible effort is lacking. To move from the PIM to the platform specific model (PSM)
OMG’s MDA guide [53] recommends using one of the following modeling languages: custom meta-object
facility (MOF) meta-models (www.omg.org/mof/), UML extended with profiles, or custom MOF meta-models
extended with UML profiles [23]. CALM by no means claims to subsume capabilities of UML and MOF,
because the focus of CALM only lies on modeling component-based architectures (platforms, libraries of
types, and system scenarios). Nevertheless, the generality of the UML/MOF approach makes it hard to assert
a system’s internal consistency, the burden for this lying with the user. CALM in contrast is able to leverage
the more limited context and provide a structured, incremental specification approach to platform model
refinement through tailored language constructs for style refinement, omitting modeling concepts which are
object oriented and problematic in a component oriented setting. For example, beyond concepts that can be
easily captured in CALM, the UML Component Diagram also exhibits inheritance relations which capture
a structural subtyping on components, but it is unclear how the problem of the insufficiency of structural
subtyping in a component oriented setting (discussed in sec. 4.3.4) is addressed.

Further, the most widely used tools, such as Rhapsody and Rational Modeler only provide limited aspects
of even the most basic typing capabilities (e. g., that interface instances have to conform to types, typed
interfaces on ports, or type-correct connections). Instead, tool support often focuses on lower-level class
architectures, restricting the tools’ applicability to object oriented system organization.

8.2 AADL

AADL [20, 22, 21] (www.aadl.info) is an architectural modeling and analysis framework based on MetaH [4].
It was initially developed under the name Avionics Architecture Description Language but was later renamed
to Architecture Analysis & Design Language to account for the focus on analysis and for the applicability
beyond the avionics domain. AADL strives to capture real-time embedded systems, complex systems of
systems, and specialized performance capability systems. Similar with CALM, the overall aim of AADL is
to serve for effective model-based design and analysis of architectures, but instead of having a manipulable
architecture model like CALM, AADL uses a rich but fixed set of highly specialized modeling entities. The
emphasis of AADL lies less in the modeling than in the built-in, fine-tuned, support for analysis capabilities.

The focus of AADL lies on the real-time aspects of complex systems. As a strategy to make the real-time
behavior explicit within the modeling framework, AADL offers separate primitives for hardware entities and
software abstractions and features a fixed set of options on how to associate both.

Being highly successful in the domain of avionics and generally in complex real-time systems, AADL
was adopted and standardized by the Society of Automotive Engineers (SAE, www.sae.org) in 2004.

8.2.1 ABSTRACTIONS AND PRIMITIVES

AADL does not include an architectural meta-layer comparable to the CALM style. Nevertheless it features,
for example, a rich set of predefined component kinds which are called categories in AADL terminology.
The ten categories of components are organized into three groups: Application software components are
abstractions for functional aspects and data and include thread, thread group, process, data, and subprogram.
Execution platform components describe hardware and include processor, memory, device, and bus. The
system is the only member of the last group called composite components.

A general notion of connectors as services in the sense of CALM is absent in AADL. Instead, exchange
and control of data is modeled through a set of primitives for various communication mechanisms, while
resource-use is captured by the interrelations between application software components and execution plat-
form components within a system. The primitives for data and control exchange are message passing, event
passing, and synchronized access to shared (resource-) components, further there are thread scheduling pro-
tocols, timing requirements, and remote procedure calls. Being restricted to these fixed choices, connectors
cannot be considered first-class modeling entities in AADL.

www.omg.org/mof/
www.aadl.info
www.sae.org
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The term “interface” in AADL is used for collections of “ports”, which in turn are again drawn from a
fixed set of primitives. Port primitives exist for five different directed flows of either data or control (unqueued
state data, queued message data, asynchronous events, synchronous subprogram calls, and explicit access to
data components). Hence, compared to the declarative interface specification of CALM, AADL follows a
synthetic approach. Similarly, the semantics of an interface specification in AADL are a function of the fixed
semantics of the ports composing the interface.

8.2.2 DYNAMIC BEHAVIOR

Components in AADL feature operational modes and mode transition to model dynamic behavior in a way
akin to the component property specification (CPS) in CADENA 1 [15]. Unlike the CPS, the modes and mode
transitions of AADL are not only used to describe dynamic internal control states of the components, but
also capture run-time reconfigurations of the interconnections, a feature which the fixed architecture-model
of CADENA 1 (i. e., CCM) did not allow as an explicit option. CALM on the other hand focuses on structural
modeling and relies on model-interpreters for any operational semantics, hence a dynamic state-transition
specification like in AADL is absent.

Additional support for analysis of the dynamic behavior of AADL models springs from the explicit map-
ping of behavioral and data components to specific execution platforms, whose real-time capabilities are part
of the fixed semantics of the respective execution platform components.

8.2.3 EXTENSIBILITY

Similar to CALM, the AADL core-language only describes architecture topologies. In AADL, annexes
are used to introduce further specification. Annexes are distinguished according to whether they are offi-
cial annexes (annex documents) which are approved by an SAE committee, or local annex libraries. Annex
subclauses can be used within component type and implementation declarations if the annex library contain-
ing them is included. Existing annex documents include, for example, behavioral specification (sec. 8.2.2),
programming language bindings, and real-time property specifications.

Annexes are comparable to the CADENA plugin mechanisms (i. e., they do not describe new architectural
elements but instead add interpretation and specification to existing ones, namely to components). Never-
theless, they are essential to the real-time, behavioral, and QoS analysis offered by the AADL framework,
and therefore an integral part of the discussion in AADL. Consequently, the most important annexes are very
powerful and go through an extensive approval process to be standardized in annex documents by the SAE.

While annexes extend the AADL core language, they have only limited power for introducing new archi-
tectural abstractions (see sec. 6.3). Nevertheless, the concrete specification they can add to modeling elements
in effect adds new new or more specialized notions of components to the concepts of AADL, a feature which
is extremely important for the ambition of AADL to provide flexible real-time architecture analysis.

8.2.4 TYPING

Similar to CALM, AADL defines component types within a kind (category) by specifying the component
type’s interfaces (ports). Also, a component type can be instantiated multiple times within a given assembly.
Since the interfaces are constructed as a synthesis of primitives, there is no explicit typing of them. Neverthe-
less the options of attaching connectors to the interfaces are intrinsically determined by the fixed semantics
of each primitive. Further, the synthetic interfaces determine a directionality of control and data-flow which
(although not explicitly mentioned) necessarily also enforces at least semantically some sort of parity on the
resulting ports, but it is unclear whether this parity is structurally enforced.

Next to the type, a component is determined by its implementation and visible attributes. The imple-
mentation can be another assembly within AADL with intricate rules governing how components can be
nested based on their category. These rules are set because the concept of the implementation in AADL
not only serves to achieve a hierarchical, nested, organization of assemblies, but also as the mechanism to
unambiguously associate application software components with the execution platform components they use
as resources.1 This strategy is the basis of the real-time analysis capabilities of AADL.

1To emulate this concept in CALM, multiple styles are needed, one for each different group of component categories. The coer-
cion/conversion constraints in CALM then have to be used to implement the nesting rules of AADL.
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Judging from its graphical syntax, AADL would relatively easily allow to associate multiple implemen-
tations to the same component type, comparable to the concept of the implementation table in CALM.
Nevertheless this does not seem to be regarded as a key feature by the developers of AADL, at least there is
no explicit support for such libraries.

The component types allow a structural subtyping akin to the classes in object oriented programming
languages (i. e., a component subtype contains all the defining elements of its ancestor and can add new
elements). Since on one hand there is no mention of minimum or maximum fan-in/fan-out constraints com-
parable to CALM’s multiplexity, and on the other hand there is an implicit parity on the synthetic, directional,
interfaces, it is unclear how this subtyping strategy addresses the problems of structural subtyping in a compo-
nent oriented setting (see sec. 4.3.4). Other notions of subtyping (e. g., weak or strong behavioral subtyping),
or the use of typing to directly enforce connectivity constraints are not mentioned in the documentation and
do not seem to be an emphasis in AADL.

8.3 ARCHITECTURAL STYLES

Previous work on architectural definition languages (ADL) and meta-modeling frameworks (frameworks for
creating domain-specific modeling languages and environments) has made significant strides toward sup-
porting higher-level architecture development tasks involving specification of architecture units (e. g., com-
ponents and subsystems), composition of those units, and interactions between units.

Abowd, Allen, and Garlan [1, 2] first proposed the notion of architectural styles to capture the environ-
ment vocabulary of a software configuration by providing component and connector types, structural con-
straints, and (optionally) a semantic model (see also Garlan and Shaw, [61]). Nevertheless, existing ADLs
vary in their ability to specify and enforce styles. Di Nitto and Rosenblum investigate ADL suitability for
modeling component systems, noting the need for support of architectural styles and style refinement [16].
Of ADLs evaluated they found only Acme/Armani [26, 51] satisfactorily supporting style refinement for
modeling middleware compliant software through Acme family extensions.

Nevertheless, there are important distinctions and tradeoffs between CALM styles and Acme’s approach
to representing architectural styles via families. An Acme family is simply an enumeration of types (at the
level of a CALM module) that form the “palette” from which instances can be drawn to represent a particular
style of architecture. There is no higher-level typing or kinding mechanism in Acme to enforce that the types
of an Acme family conform to particular constraints on structure or that new types added to the enumeration
are aligned with capabilities of a particular execution environment. For example, the Acme user manual notes
that “Typically, a family also embodies a set of rules that specify design rules that constrain how designs can
be pieced together and declare certain ‘well-formedness’ rules. However, the Acme type model is actually
quite weak, which places a burden on someone defining the family to include either language descriptions
about these assumptions, or to specify the constraints in some form that can be interpreted by a tool (e. g.,
Armani).” [38] Thus, when style constraints are to be enforced, they must be specified and checked by a
mechanism external to the type system – with the suggested approach being to use Armani’s first order logic
constraint language. While Acme does support the typing of component instances (i. e., instances conform to
component types), even basic typing capabilities relevant for constraining assemblies (such as the restriction
of port interfaces to specific types or the requirement for type-correct port/interface/role connections) must
be specified in first order logic.

Further, Acme does not provide strict separation of type declarations and the modeling of type instances.
Organizing type declaration separate from type instantiation is allowed, but separation is neither required,
nor enforced by the Acme language [27]. Acme type declarations are collected within the families, but types
may be extended and created within Acme systems, resulting in a mixed model. Without constraints over
type creation, model interpreters (even if associated with an Acme family) are expected to handle all types
expressible in the language.

In contrast, CALM goes beyond the notion of families by introducing a separate modeling tier which
captures the architectural style in a mechanically leverageable way, thereby defining precisely what can
appear within a style and what cannot (i. e., CALM styles appear at a meta-level above Acme families).
While this type-based CALM meta-modeling tier does not provide the same expressive power as first order
logic, it is much easier to use, more scalable, and it directly captures most common component system
capabilities and structural constraints. Further, the complexity of first order constraint languages arguably
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limits the accessibility to developers, making constraints more difficult to specify, maintain, and evolve,
while typing on the other hand, being a familiar concept to engineers, seamlessly integrates into development
processes and scales easily. Therefore, while first order constraint languages are necessary, they should only
be applied after simpler, more directly integrated, notions of typing are applied. Also, CALM emphasizes the
distinction between the meta-modeling tier and the typing and instantiation levels to provide an environment
for manipulation, combination, evolution, and cooperation of styles (chp. 6, 7.1). These capabilities are
not supported in Acme and supporting them in any constraint framework based on first order logic seems
difficult.

Like Acme, xADL 2.0 has been designed as architecture exchange language, but seeks greater robustness
and the ability to adjust by using a flexible framework of XML schemas [13]. xADL provides basic notions
of component and interface types but type checking, as well as constraint specification and enforcement
mechanisms are not directly integrated and not intrinsic to the supported process of xADL, but rather rely on
external tools (e. g., OCL or Armani constraints).

xADL 2.0 does distinguish design-time types and run-time instances. Using xADL XSD schemas [65],
all type definitions must reside within element xArchTypes, and instances of these types model a run-time
system under element xArchInstance (CALM provides a similar separation of design-time types within the
module tier, and run-time system description within scenario tier). However, xADL 2.0 provides no way
to strictly separate a platform definition (style) from libraries of design-time types. Using xADL 2.0 it is
possible to define a platform vocabulary through a set of types collected under element xArchTypes, then
provide a schema extension, extending elements representing platform kinds to arrive at a library of types,
but this only yields a two-tiered capability similar to that of Acme again, with any conformance checking
deferred to other tools. Also, using such an extension to bridge the gulf between platform specification and
library types forces the elements of the specification and design-time types to be considered the same type
category. This may be contrasted to CALM, where the platform definition happens on the meta-modeling
level (style), and type libraries are grouped naturally through their conformance to the style specification
(kinds). While there is value in a tool engineering approach that enables separate tools to provide constraint
enforcement, the CALM/CADENA project pursues a research agenda that enables exploitation of the benefits
and synergy that result from directly integrating a variety of forms of typing into the modeling framework
itself.

Both xADL 2.0 and CALM support product-line modeling. As laid out in Section 3.2.1, the CALM
modeling tiers are designed to align with established product-line organizational models. To capture vari-
abilities, xADL and CALM offer very different support. xADL 2.0 uses first class constructs to express
variants and options of the run-time architectural model, a concept not present in current CALM/CADENA.
CALM instead integrates the notion of architecture variabilities into the relations between separate styles
and the idea of inter-style migration. Therefore, while xADL 2.0 captures multiple assemblies in one model
(containing variabilities), thereby expressing a product family without having to strictly specify the platform,
CALM models product lines from the perspective of their equal platform infrastructure, eliminating the need
to summarize multiple assemblies in one model (i. e., the approaches can be seen as dual to each other). Nev-
ertheless, interaction with industrial collaborators during the development of CALM indicate that the main
concern is with appropriately modeling and refining infrastructure models for product-line development as
captured by styles and style refinement constraints, supporting a platform-oriented approach.

8.4 META-MODELING

The Generic Modeling Environment (GME) is a powerful framework supporting the graphic definition of
domain-specific modeling languages and the capability to generate domain-specific graphic modeling envi-
ronments [39, 37]. GME allows users to define a meta-model using a notation based on the UML class dia-
gram and first order logic constraints written in OCL. Each GME meta-model specifies a paradigm (roughly
corresponding to a style in CALM), which can be used to mechanically generate domain specific archi-
tecture modeling environments. Within the modeling environment derived from a paradigm, architectural
models can be graphically defined (with entities defined in the paradigm) and stored either in an internal
database or serialized into XML format. These models then serve as a base for analysis or code genera-
tion (similar as in core CALM), which in GME terminology is called model-integrated program synthesis
(MIPS). The modeling environment of a paradigm is consequently termed the MIPS environment, whereas
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the set of models defined within the same MIPS environment (and therefore adhering to the same paradigm)
is called a family (which is conceptually close to a product line). GME offers some support for composing
paradigms from elements defined in existing paradigm definitions [40]. Nevertheless, in contrast to CALM,
GME focusses on refining separate modeling elements, mechanisms to relate paradigms to describe concepts
corresponding to CALM’s style refinement (chp. 6) are lacking in GME.

Similar to CALM/CADENA, GME focusses on entity-interrelations. A dynamic semantics has to be
added to the GME models through a model interpretation process.

An example of a GME paradigm is the Component Synthesis using Model-Integrated Computing (CoS-
MIC) project which defines a graphic architecture language called Platform-Independent Component Model-
ing Language (PICML) [30]. CoSMIC captures platform component, connector, and interface templates, but
such fundamental notions of type-checking as type correct connections (i. e., port/interface/role connections
based on correct typing) must be accomplished through OCL constraints. Further, among other projects,
GME has been used to generate a graphic modeling tool for OMG’s MOF or a development environment for
nesC called Gratis (www.isis.vanderbilt.edu/projects/nest/gratis/).

8.5 OTHER FRAMEWORKS

8.5.1 ARCHITECTURES AND TYPING

In [47], Medvidovic, Rosenblum, and Taylor present a type theory for architectures based on notions from
programming languages (specifically object oriented languages). Focus is the development of a subtyping
relationship for architecture elements based on the concepts of name compatibility, interface conformance,
behavioral equality, and implementation conformance, together with the derived notions behavioral confor-
mance and strictly monotone subtyping. As architectural elements, the work considers components, connec-
tors, and configurations (i. e., assembly definitions), in contrast to CALM which considers interfaces to be
separate, type-able, entities, and develops a distinct typing methodology for assemblies (see sec. 7.1). As a
result of the work, Medvidovic, Rosenblum, and Taylor propose the use of multiple (sub-) typing relation-
ships, noting the complexity of an architectural setting in comparison to programming languages (compare
sec. 4.3.4). While the work presents a sophisticated and useful solution for the subtyping problem, unlike
CALM it does not use typing and in particular not kinding to enforce platform requirements or to incorporate
domain-specific knowledge.

8.5.2 ARCHITECTURE DESCRIPTION LANGUAGES

Multiple ADLs have been developed either for specific platforms (e. g., the interface description language
IDL for CCM) or general purpose for academia and industry. While CALM focusses on interrelation models
and nominally typed structures, other ADLs and meta modeling frameworks emphasize functional aspects
directly (as opposed to handling these through a plugin/model-interpretation mechanisms as in CALM). For
example, various ADLs provide tool support for analysis, for implementation generation, or they directly
capture dynamic reconfiguration of assemblies.

In [49], Medvidovic and Taylor provide an extensive overview over existing approaches to software ar-
chitectures, compare methods and clarify the terminology. Their work moreover identifies the main modeling
concepts and compares their realization in existing approaches. Among the ADLs they describe are Acme
as an architecture exchange language (see sec. 8.3), Aesop [24, 25] which, like Acme, features a notion of
architectural styles, and SADL [52] which is designed for formal refinement of architectures with increasing
level of detail.

As more specific ADLs (i. e., rather for specific architectural styles rather then for exchange) they present
the following. C2 [46, 48] emphasizes notions from object-oriented type systems to describe interesting
concepts of component type refinement (sec. 8.5.1). C2 supports a particular class of architectures (layered
message passing systems, also described as highly distributed systems) and confines type descriptions to a
modeling tier analogous to CALM’s module tier. Darwin [43, 44] also focusses on highly distributed systems
and features a basic dynamism within the described architectures. MetaH [4] is designed for architectures
within the guidance, navigation and control (GN&C) domain, featuring a specific programming language
for algorithms in GN&C. Rapide [42, 41] addresses the dynamic behavior and dynamic reconfiguration of

www.isis.vanderbilt.edu/projects/nest/gratis/
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a described architecture. Finally, UniCon [60] synthesizes glue-code (i. e., communication and run-time
infrastructure implementation form components) in C.

CALM/CADENA seeks to complement and add value to previous work by emphasizing a variety of
forms of typing to enforce structural constraints. There are other important notions that are orthogonal and
can be weaved into CADENA (e. g., through plugins). Behavioral descriptions [3] and dynamic reconfigura-
tion mechanisms [44] can be added to support specifications of interaction protocols between components.
Notations for specifying variability points and variations for software product lines (e. g., as in xADL) could
also be incorporated. Nevertheless, CALM focusses on enabling variation through providing a well struc-
tured environment in which alternatives can be constrained rather than through enumerating some alternatives
by explicit encoding. The rationale behind CALM is that the strong typing capabilities are the key for sup-
porting a product-line approach in which variants are plugged into a reference architecture at component and
subsystem variability points; CALM’s typing at these points serve as a contract on the variation point that
potential variants must satisfy to accurately conform to product line architecture. Similarly, behavioral as-
pects or dynamism in CALM have to be provided as extensions/interpretations based on the well structured
nominal interrelation systems defined within CALM.

8.6 SUMMARY

In previous work, important constraint specification and enforcement mechanisms are often not directly in-
tegrated into an ADL and not intrinsic to the supported process. While existing ADLs sometimes feature
very expressive, complex constraint languages based on first-order logic like Armani and OCL as means of
complementing specification, many forms of architecture constraints, basic notions of compatibility between
components, or style/platform constraints, can be captured through much simpler notions of type schemas
and type checking that are much more familiar to both architects and developers. The complexity of first-
order constraint languages arguably limits accessibility to engineers, makes constraints more difficult specify,
maintain, and evolve in the context of large-scale systems, and negatively impacts the scalability of check-
ing. Therefore, although first order logic is more expressive than the (nominal, massively interrelated) typing
of CALM, it should only be used to complement the more intuitive integration of constraints into the very
structure of the modeling language.

Often, ADLs go beyond the specification of interrelation models and include various orthogonal concepts
such as behavior, dynamism, code generation, analysis, etc.. CALM and CADENA are designed to support
such extensions on a case-to-case basis using plugins. This way, CALM can encompass and benefit from
previous solutions, potentially combining different orthogonal aspects.

While previous frameworks offer many innovative ideas which inspired various aspects and concepts
of CALM, they seem insufficient to support several important capabilities needed for large-scale system
development including the ability to (a) specify domain or platform specific languages for building open-
ended collections of component and interface types architectural styles rather than simply specifying a closed
enumeration of available types, (b) incorporate multiple architectural styles within a single system (as often
needed when multiple systems are integrated to form a “system of systems”, or for describing multiple
levels of abstraction within a system), (c) specify relationships between architectural layers in multi-layered
systems, and (d) flexibly combine and extend architectural styles.
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CONCLUSIONS

“I have had my results for a long time: but I do not yet know how I am to arrive at them.”

— Carl Friedrich Gauß. in A. Arber. “The Mind and the Eye” (1954)

While CALM and CADENA have been outlined in various previous publications, this thesis gives the first in-
depth, comprehensive, presentation of the CALM core syntax and interrelation semantics (chp. 4). Further,
(with less rigor) it describes in detail the extensions which broaden the view from intra-style interrelations to-
wards complex, multi-style, models which express refinement, abstraction, specialization, and other relations
of architectural styles and artefacts relevant for model driven development (chp. 6, 7).

By introducing a style tier able to model component frameworks in a uniform way, and by integrating the
artefacts of the style tier (i. e., styles) into the overall modeling concept to be manipulable, first-class, entities,
CALM allows to capture interdependencies of architectural styles on differing levels of abstraction or pre-
cision. CALM therefore moves beyond merely capturing existing, widely used, component frameworks or
abstract, conceptual component models or even highly specific, domain-tailored modular styles and architec-
tures realized within any of them. Instead, the whole development from abstract relations of planned entities
towards concrete architectures of fixed building blocks with completed implementations can be captured in
CALM. This allows to re-visit and change abstractions and re-factor their concrete manifestations at any
stage of the development process, preventing decay of the architectural integrity.

As a side effect of the uniform capturing of architectural styles, conceptual architectures which are not
grounded in a concrete middleware setting and previously would have been exchanged in form of informal
graphs with attached natural language descriptions (e. g., as PowerPoint slides) receive the same status in
CALM as architectures which are anchored in available platform implementations. Such conceptual styles
therefore become formally well defined entities which in CALM can be connected with more concrete arte-
facts until a level is reached which satisfiably allows code development or even mechanic code generation.

With CADENA, CALM has an experimentation platform to apply the otherwise complex notions in a
convenient way to practical development tasks. CADENA itself is highly modular and allows substantial
extensions, such as code generation, analysis, and verification tools.

9.1 SHORTCOMINGS OF CALM

Even though CALM was evaluated against many common, middleware-based, component frameworks, var-
ious details of CALM are not “hardened” enough by experience. Also, few elements of the core calculus
seem verbose and could maybe be tightened without loss of expressiveness or generality.
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Moreover, the already introduced notions of CALM and the experiments with modeling systems using
these notions uncover some aspects of the basic modeling elements which open doors to a diverse set of
questions, insights, and directions for future work.

9.1.1 THE ATTRIBUTE SYSTEM

Currently, the category of CALM artefacts is centered around the trinity of attributes, ports, and roles. An
artefact with attributes only can be typed as interface, attributes and ports are defining for a component,
attributes and roles classify a connector, while all three can appear in an assembly.

Even under a shallow assessment, attributes do not fit elegantly enough into this pattern. Also, most
architectures developed for demonstration and experimentation do not make use of attributes at all, as all
interfaces/component/connector kinds, types, and instances are nominally identifiable, and their interrelations
are independent from attributes anyways. Consequently, factoring out attributes into separate attribute sheets
is a feature which had been introduced early into the CALM development and the CADENA tool-set. These
attribute sheets (shortly mentioned in sec. 6.2.5) can be added to a style to create an unnamed, ad-hoc, refined
style with more precision (a refinement step independent from kind elision/addition based style refinement).
Finally, along through the inception of core CALM the decision was taken to separate out development of
the attribute type system from the rest of CALM.

All these considerations suggest that a CALM core completely without attributes could provide a more
focused, less cluttered, formal capture of a system’s entities’ interrelations. A separate “attribute style”
can still be used to complement interrelation models with meta-data. Note that one strength of CALM is
that every modeling element is uniquely identifiable and easy to reference, which greatly simplifies linking
information to it from outside of CALM.

With the attributes factored out, the duality of ports and roles is left to distinguish four different classes
of modeling elements (interface, component, connector, assembly) through their presence or absence, which
seems more justifiable. It should be mentioned that the importance of attributes in a model depends mostly
on the presence of extensions available for that model such as code generation (which depends on attributes
to provide meta-data) or static analysis (which needs attributes for operational semantics).

On the other hand, a qualitatively improved attribute system might integrate other entities which stand
aside of the CALM core, such as the implementation table, including coercions and conversions. Finally, it
might serve to add operational semantics to the interrelation skeleton provided by core CALM.

9.1.2 INTERFACES AND PARITIES

The parities provides and uses on ports and roles have been subject of much discussion. For abstract,
conceptual, styles they seem unnecessary or even inhibiting a certain level of generality (the problem is
discussed from a different perspective in sec. 3.3.3). For concrete styles on the other hand, two distinguishable
sides of an interface, which models an interaction point and therefore links with at least two agents, seem
absolutely necessary.

An important direction of future research would be the concept of a variable number of parities defined
per interface (meta-) kind. Background to this idea (which has not been published in this form as of yet)
is the observation that, specifically since an interface might represent an interaction point with a complex
protocol, any number of agents might participate in different roles in the interaction. The task of introducing
this idea into CALM in non-trivial because the parities of current CALM, beyond distinguishing actors in
an interaction, also take part in the instantiation of interfaces in an assembly (i. e., an interface is currently
instantiated together with the element which provides it).

9.1.3 FLEXIBLE COMPONENT TYPES

Often, architectural styles allow component types with a variable number of ports or at least with spe-
cific ports which can be replicated. An example is again the nesC timer component (e. g., sec. 2.2, 5.1.5,
7.1.4) whose timer-port can be replicated with each individual copy carrying a numeric identifier (apx. C.1.3,
lst. 5.18, l. 52: the uint8_t-typed variable id holds the identifier)

provides interface Timer[uint8_t id];
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Port options (or role options) in CALM do not offer the possibility to define replicable ports. Moreover,
CALM type-level component artefacts are declared with the number of ports as part of the type. The current
workaround to capture replicable ports in CALM and CADENA is to create types “on-the-fly” with tool
support, nevertheless the distinction between the type of a timer instance with for example three timer ports
vs. four timer ports persists.

Also, CALM could potentially benefit from the introduction of parametric types where not only the num-
ber of ports but also the valuation of some of the attributes on a component could be supplied as parameters
to a component type-template. Again, currently such constructs can be approximated in CADENA through
tool support. Future research has to decide which of these features (flexible port numbers, parametric types,
etc.) adds a fundamental or qualitative benefit to the modeling concepts of CALM.

9.1.4 STANDARD OPERATIONAL SEMANTICS

CALM aims to provide a comprehensive interrelation semantics capturing architectures within component
oriented frameworks. An obvious step for extension is to add uniform operational specifications to CALM
to enable static analysis of system behavior. An interesting approach to accomplish uniform operational
specification in CALM (besides using the attribute system, see sec. 9.1.1) would be a CALM style modeling
some automaton-based input/output process description (Mealy/Moore finite state machines, petri nets) with
components being nodes and connectors being edges, carrying an intrinsic (and well defined) operational
semantics. Assemblies in that style can then be connected to modeled component architectures in the same
way that inter-style sub-assemblies are handled now (sec. 7.2.2).

Additional benefit of this approach would be that the abstraction-implementation relation between styles
which in current CALM is based on declaration (i. e., coercion and conversion, sec. 7.2.2), can then be
grounded on the relations of every style to the common operational sub-style. To illustrate, consider a style
A whose elements can (due to respective coercions) be implemented in terms of two different styles B1 and
B2.1

(a) A
↗ ↖

B1 B2

...
...

(b) A
↗ ↖

B1 B2

↖ ↗
C

In the current, declarative approach (a), the relation between B1 and B2 is not clear, nevertheless assuming a
uniform operational style C (b) the inter-style relations can be formally scrutinized.

9.1.5 SUBTYPING ON MODULE-LEVEL ARTEFACTS

Section 4.3.4 discusses the fact that the common notions of subtyping which are drawn from object oriented
programming do not transfer easily into the world of component oriented development.

Because object oriented programming is the most widely used paradigm in current practice, most working
developers nowadays are familiar with the concepts of inheritance, where a subtype extends or overwrites
functionality inherited from a supertype in a way that subsequently instances of the subtype can be used in
lieu of instances of the supertype. Although the component oriented paradigm offers a different approach to
module—environment relations (i. e., the exchangeability is based on stated context dependencies as opposed
to declarative sub-typing), some component oriented frameworks (e. g., CCM) offer the possibility to create
component types by inheriting from existing types, a functionality which working programmers often would
expect out of habit despite the differences between the object oriented and the component oriented paradigm.
CALM allows to extend component types as a convenient way to create new types (see sec. 4.3.2), but for
reasons mentioned above (sec. 4.3.4) does not consider the new types to be related to the existing type.

Future research would have to find a way to capture covariance and contravariance properties of ports to
turn this structural extension mechanism into real subtyping.

1It is irrelevant for this illustration whether the styles B1 and B2 are mutually exclusive alternatives or options that can be used
simultaneously on different elements of the same assembly.
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9.2 CADENA DEVELOPMENT

9.2.1 SYNCHRONIZING OF CALM AND CADENA

The first version of CADENA has been developed before the start of the CALM project, while the develop-
ment of CADENA 2 happens simultaneously with the work on CALM. Naturally, some concepts developed
inside CALM did not find their way into the complex CADENA tool-set yet, some deprecated ideas of CALM
which in CALM itself have been revised or even abandoned are still manifested in CADENA, and finally some
CADENA original concepts are not formalized thoroughly in CALM.

Extensive work needs to be done on CADENA to more faithfully reflect CALM concepts. Nevertheless,
the aim with this work is not to turn CADENA into a one-to-one manifestation of CALM, since a tool offers
different opportunities than a calculus. Instead the current system of mutual inspiration between theory and
tool can persist, if most core concepts of CALM find their way into the implementation.

OBJECT ORIENTED PROGRAMMING NOTIONS

The first drafts of CALM were based on analogies to object oriented concepts. The three categories would
be expressed in terms of three basic meta-kinds (mComponent, mConnector, and mInterface), with every
new meta-kind being derived directly or indirectly from one of these three using one-inheritance (i. e., every
meta-kind would have exactly one ancestor). The category of a meta-kind would not be given by a keyword
(in current CALM “metacomponent”, etc.) but rather through the root of the inheritance tree in which they
are created. For the three basic meta-kinds to be available, every style would have to directly or indirectly
inherit from a core style.

This system was designed to ensure that categories can easily be added to the concept (by adding a new
base meta-kind). Nevertheless practical realization in CALM as well as (independently) in CADENA proved
to be overly complicated, so that a clear distinction of the categories based on keywords was introduced in
CALM. CADENA still features the core style and the three base meta-kinds mComponent, mConnector, but
only on the surface. Data structures holding meta-kinds instead are tailored to individual categories.

Therefore, one important improvement for CADENA would be to eliminate the core style and the three
base meta-kinds from the input wizards and dialogs.

MODEL MIGRATION FACILITIES

Another issue where CADENA lags behind CALM is due to the concept of migration. Data structures of
CALM module and scenario artefacts hard-link to the style in which they are created. It is therefore extremely
difficult to transfer architectural models from one style to the next within CADENA, even if compliance is
already established (i. e., no alterations to the models would be necessary).

Extensive tool support for migration is crucial for the concept to be accepted. Therefore, after adapting
the main data structures to be more independent from the style they were created in (and instead reference
more clearly individual kinds), various user interaction and feedback features can be added to CADENA to
support migration in a convenient way.

IMPLEMENTATION TABLES

The last major block of improvements needed for CADENA is a more thorough support for nesting and flex-
ible attachment of implementation information to the elements of an architectural assembly (Chapter 7).
Currently, CADENA only supports the integration of existing assemblies into new ones, linking assemblies to
declared types is still under construction. These features will be crucial for CADENA to move beyond homo-
geneous architectural styles and development support through simple code generation. With these planned
capabilities CADENA will not only be able to capture a component framework and to support (end-to-end)
development therein but also to enhance the modeled frameworks capabilities, introduce useful abstractions
which the modeled framework itself cannot offer, and connect the models with other domain expertise on
different levels of abstraction.
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9.2.2 ENGINEERING

While some of the core data-structures of CADENA need to be revisited (see, e. g., sec. 9.2.1), the overall
design of CADENA is extremely robust and stable. Being a tool for software engineering, CADENA’s own
engineering problems are worth looking at.

IDIOSYNCRASIES OF CALM AND EMF

As described, the representation of the massively interconnected CALM models in CADENA relies on the
automatic referencing service of EMF (sec. 4.5.2). The reference chains of artefacts within CADENA can be
as complex as in CALM itself.

To allow efficient work with CADENA most of the hidden functionality of update propagation is forked
into separate concurrent threads. The programming of CADENA is very robust with respect to the end-
results, which means that once the threads converge, the model will be consistent. Unfortunately the use of
concurrency gives rise to various race conditions which EMF itself does not always handle. This leads to
thrown exceptions in CADENA. An example of such an error (which, due to the underlying race conditions,
cannot always be reproduced) occurs when a complex hybrid style is loaded and immediately after some
model elements (modules, scenarios) in that style are opened. The first opening of the model elements might
lead to a long list of exceptions (which CADENA catches and displays), if the same elements are closed and
subsequently opened, they do not yield any errors.

While from the view of CADENA this is a technical problem which can be fixed with defensive program-
ming, it also raises research questions about the impact of timing and thread dependencies in interrelation
models.

MODULARITY AND EXCHANGE

To enable industrial size development on the base of CADENA, CADENA artefacts have to be exchangeable
between groups of developers through various mechanisms (e. g., version/revision control systems such as
CVS, PRCS, or subversion, web repositories, or simply e-mail attachments). The problem is, that what is cap-
tured by CALM is only a part of the data which CADENA manipulates. Next to the core concepts (which are
inside of CALM), meta information such as form data (opened or closed input forms), visualizations (inter-
face icons, component/connector visual styles), or layout information (position of components in graphical
view, routing of connectors, size, hidden/visible parts, etc.) is also crucial for a working communication
inside and in between different development teams.

CADENA has to solve the problem that on the one hand, the essential parts of a model (the actual CALM
model) has to be recognizable and uncluttered by visual meta-data, while on the other hand, visual meta-data
needs to be available to accompany the core model in a convenient way to enable conversation between de-
velopers. Considering that the core models (containing styles, modules, assemblies, coercion and conversion
data, attribute sheets, implementation tables, etc.) are already complex sets of data, separating out visual and
development state meta-information is non trivial.

9.3 SUMMARY

To eventually arrive at a general, widely applicable, theory of interrelation models of modular systems, the
concepts of CALM have to be constantly questioned and re-visited with continuing careful evaluation against
real-life component-based development. Nevertheless, just generalizing from currently used industry stan-
dards and procedures is not likely to add fundamental improvements to CALM, instead, new concepts which
are invented inside the realm of CALM’s theoretical background need to be carried into the development
practice to prove their applicability in and improve working development methods and abstractions. It there-
fore seems important to maintain the current duality between CALM and CADENA to work on both, concept
and practical application.
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A
GRAMMARS

The syntax of CALM is given in form of sets s of syntactic entities which are inductively defined as the
smallest sets generated by rule templates of the form

v1 ∈ s1, . . . , vn ∈ sn

t ∈ s
,

where v1, . . . , vn are variables for terms in the already defined sets s1, . . . , sn, and t is a term which contains
v1, . . . , vn. By the rule template above, for any set of terms t1, . . . , tn we have that

t1 ∈ s1, . . . tn ∈ sn ⇒ t[t1/v1, . . . , tn/vn] ∈ s.

The syntactic sets s, s1, . . . , sn can be seen as non-terminals of a Bakus-Naur-Form grammar (BNF), since
each rule template

v1 ∈ s1, . . . , vn ∈ sn

t ∈ s
,

is equivalent to a BNF grammar production

s ::= t[s1/v1, . . . , sn/vn].

Thus, a complete BNF grammar for CALM can be obtained by mechanically translating the rules into pro-
ductions.

CALM assumes a given set Identifier of alphanumeric identifiers id which serve as names, style-specific
keywords, and lookup references. Further, two sets of syntactic entities are used without further definition
on each of the three levels. These two are Type-Spec and Literal. Both are tied to the attribute type system of
CALM which is part of a separate effort.

A.1 STYLE TIER

id0 ∈ Identifier i ∈ Import-Spec, b ∈ Style-Body
style id0 i { b } ∈ Style

(A.1)

ε ∈ Import-Spec
(A.2)

t ∈ Union
include t ∈ Import-Spec

(A.3)

t ∈ Intersection
t ∈ Union

(A.4)
t1 ∈ Intersection, t2 ∈ Union

t1 + t2 ∈ Union
(A.5)

t ∈ Atom
t ∈ Intersection

(A.6)
t1 ∈ Atom, t2 ∈ Intersection

t1 ˆ t2 ∈ Intersection
(A.7)



128 Appendix: Grammars

id ∈ Identifier
id ∈ Atom

(A.8)
t ∈ Union

( t ) ∈ Atom
(A.9)

ε ∈ Style-Body
(A.10)

t1, t2 ∈ Style-Body
t1; t2 ∈ Style-Body

(A.11)

t ∈ Meta-Kind-Spec
t ∈ Style-Body

(A.12)
t ∈ Kind-Definition
t ∈ Style-Body

(A.13)

t ∈ Type-Var-Decl
t ∈ Style-Body

(A.14)
t ∈ Type-Var-Assert
t ∈ Style-Body

(A.15)

t ∈ Attribute-Type-Spec
t ∈ Style-Body

(A.16)
t ∈ Constant
t ∈ Style-Body

(A.17)

id ∈ Identifier, i ∈ Extends-list, b ∈ Interface-MK-Body
metainterface id i { b } ∈ Meta-Kind-Spec

(A.18)

id ∈ Identifier, i ∈ Extends-list, b ∈ Connector-MK-Body
metaconnector id i { b } ∈ Meta-Kind-Spec

(A.19)

id ∈ Identifier, i ∈ Extends-list, b ∈ Component-MK-Body
metacomponent id i { b } ∈ Meta-Kind-Spec

(A.20)

ε ∈ Extends-list
(A.21)

i ∈ Identifier-list
extends i ∈ Extends-list

(A.22)

id ∈ Identifier
id ∈ Identifier-list

(A.23)
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(A.24)

ε ∈ Interface-MK-Body
(A.25)

t1, t2 ∈ Interface-MK-Body
t1; t2 ∈ Interface-MK-Body

(A.26)

a ∈ Attribute
a ∈ Interface-MK-Body

(A.27)

ε ∈ Connector-MK-Body
(A.28)

t1, t2 ∈ Connector-MK-Body
t1; t2 ∈ Connector-MK-Body

(A.29)

a ∈ Attribute
a ∈ Connector-MK-Body

(A.30)
r ∈ Role-Option

r ∈ Connector-MK-Body
(A.31)

ε ∈ Component-MK-Body
(A.32)

t1, t2 ∈ Component-MK-Body
t1; t2 ∈ Component-MK-Body

(A.33)

a ∈ Attribute
a ∈ Component-MK-Body

(A.34)
p ∈ Port-Option

p ∈ Component-MK-Body
(A.35)

id ∈ Identifier, t ∈ Type-Spec
attribute id : t ∈ Attribute

(A.36)

t1, t2 ∈ Range, i1, i2 ∈ Identifier
uses t1 i1 : i2 t2; ∈ Role-Option

(A.37)
t1, t2 ∈ Range, i1, i2 ∈ Identifier

provides t1 i1 : i2 t2; ∈ Role-Option
(A.38)

t1, t2 ∈ Range, i1, i2 ∈ Identifier
uses t1 i1 : i2 t2; ∈ Port-Option

(A.39)
t1, t2 ∈ Range, i1, i2 ∈ Identifier

provides t1 i1 : i2 t2; ∈ Port-Option
(A.40)
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n ∈ N0, m ∈ N*0 , n ≤ m
[n..m] ∈ Range

(A.41)
n ∈ N0

[n] ∈ Range
(A.42)

id1, id2 ∈ Identifier, b ∈ Interface-Export-Spec
interfacekind id1 : id2 { b } ∈ Kind-Definition

(A.43)

id1, id2 ∈ Identifier, b ∈ Connector-Export-Spec
connectorkind id1 : id2 { b } ∈ Kind-Definition

(A.44)

id1, id2 ∈ Identifier, b ∈ Component-Export-Spec
componentkind id1 : id2 { b } ∈ Kind-Definition

(A.45)

ε ∈ Interface-Export-Spec
(A.46)

t1, t2 ∈ Interface-Export-Spec
t1; t2 ∈ Interface-Export-Spec

(A.47)

t ∈ Attribute-Valuation
t ∈ Interface-Export-Spec

(A.48)

ε ∈ Connector-Export-Spec
(A.49)

t1, t2 ∈ Connector-Export-Spec
t1; t2 ∈ Connector-Export-Spec

(A.50)

t ∈ Attribute-Valuation
t ∈ Connector-Export-Spec

(A.51)
t ∈ Export-Kind-Spec

t ∈ Connector-Export-Spec
(A.52)

t ∈ Type-Var-Decl
t ∈ Connector-Export-Spec

(A.53)
t ∈ Type-Var-Assert

t ∈ Connector-Export-Spec
(A.54)

ε ∈ Component-Export-Spec
(A.55)

t1, t2 ∈ Component-Export-Spec
t1; t2 ∈ Component-Export-Spec

(A.56)

t ∈ Attribute-Valuation
t ∈ Component-Export-Spec

(A.57)
t ∈ Export-Kind-Spec

t ∈ Component-Export-Spec
(A.58)

t ∈ Type-Var-Spec
t ∈ Component-Export-Spec

(A.59)
t ∈ Type-Var-Assert

t ∈ Component-Export-Spec
(A.60)

id ∈ Identifier, v ∈ Literal
id = v ∈ Attribute-Valuation

(A.61)

id1, id2 ∈ Identifier
id1 -> id2 ∈ Export-Kind-Spec

(A.62)

i ∈ Identifier-list, id ∈ Identifier
typevar i : id ∈ Type-Var-Decl

(A.63)
id1, id2 ∈ Identifier, ∼ ∈ {<=, =, >=}
assert id1 ∼ id2 ∈ Type-Var-Assert

(A.64)

id ∈ Identifier
typedecl id ∈ Attribute-Type-Spec

(A.65)
id ∈ Identifier, t ∈ Type-Spec

typedef id = t ∈ Attribute-Type-Spec
(A.66)

id ∈ Identifier, t ∈ Type-Spec, v ∈ Literal
id : t = v ∈ Constant

(A.67)

A.2 MODULE TIER

id0, id1 ∈ Identifier, i ∈ Input, b ∈ Module-Body
module id0 of id1 i { b } ∈ Module

(A.68)

ε ∈ Input
(A.69)

i ∈ Identifier-list
input i ∈ Input

(A.70)
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id ∈ Identifier
id ∈ Identifier-list

(A.71)
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(A.72)

ε ∈ Module-Body
(A.73)

t1, t2 ∈ Module-Body
t1; t2 ∈ Module-Body

(A.74)

t ∈ Type
t ∈ Module-Body

(A.75)
t ∈ Constant

t ∈ Module-Body
(A.76)

id1, id2 ∈ Identifier, i ∈ Include, b ∈ Type-Body
id id i { b } ∈ Type

(A.77)

ε ∈ Include
(A.78)

i ∈ Identifier-list
include i ∈ Include

(A.79)

ε ∈ Type-Body
(A.80)

t1, t2 ∈ Type-Body
t1; t2 ∈ Type-Body

(A.81)

t ∈ Attribute-Valuation
t ∈ Type-Body

(A.82)
t ∈ Port

t ∈ Type-Body
(A.83)

id ∈ Identifier, v ∈ Literal
id = v ∈ Attribute-Valuation

(A.84)
id1, id2, id3 ∈ Identifier
id1 id2 : id3 ∈ Port

(A.85)

id ∈ Identifier, t ∈ Type-Spec, v ∈ Literal
id : t = v ∈ Constant

(A.86)

A.3 SCENARIO TIER

id ∈ Identifier, i ∈ Identifier-list, b ∈ Scenario-Body
scenario id includes i { b } ∈ Scenario

(A.87)

id ∈ Identifier
id ∈ Identifier-list

(A.88)
id ∈ Identifier, i ∈ Identifier-list

id,i ∈ Identifier-list
(A.89)

ε ∈ Scenario-Body
(A.90)

t1, t2 ∈ Scenario-Body
t1; t2 ∈ Scenario-Body

(A.91)

t ∈ Component
t ∈ Scenario-Body

(A.92)
t ∈ Connector

t ∈ Scenario-Body
(A.93)

t ∈ Constant
t ∈ Scenario-Body

(A.94)

id0, id1 ∈ Identifier, b ∈ Component-Body
id0 id1 { b } ∈ Component

(A.95)

ε ∈ Component-Body
(A.96)

t1, t2 ∈ Component-Body
t1;t2 ∈ Component-Body

(A.97)

t ∈ Attribute-Valuation
t ∈ Component-Body

(A.98)
t ∈ Interface

t ∈ Component-Body
(A.99)

id ∈ Identifier, v ∈ Literal
id = v ∈ Attribute-Valuation

(A.100)

id ∈ Identifier, a ∈ Attributes
id { a } ∈ Interface

(A.101)
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ε ∈ Attributes
(A.102)

t1, t2 ∈ Attributes
t1;t2 ∈ Attributes

(A.103)

a ∈ Attribute-Valuation
a ∈ Attributes

(A.104)

id ∈ Identifier, b ∈ Connector-Body
id1 { b } ∈ Connector

(A.105)

ε ∈ Connector-Body
(A.106)

t1, t2 ∈ Connector-Body
t1;t2 ∈ Connector-Body

(A.107)

t ∈ Attribute-Valuation
t ∈ Connector-Body

(A.108)
t ∈ Binding

t ∈ Connector-Body
(A.109)

id ∈ Identifier, l ∈ Port-list
id = l ∈ Binding

(A.110)

id ∈ Identifier, l ∈ Port-list, a ∈ Attributes
id { a } = l ∈ Binding

(A.111)

p ∈ Port
p ∈ Port-list

(A.112)
p ∈ Port, l ∈ Port-list

p,l ∈ Port-list
(A.113)

id1, id2 ∈ Identifier
id1.id2 ∈ Port

(A.114)

id ∈ Identifier, t ∈ Type-Spec, v ∈ Literal
id : t = v ∈ Constant

(A.115)
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Each syntactic set s of the CALM syntax has an interpretation relation which, assuming some given envi-
ronment of lookup mappings, terms and sets of definitions, maps elements of s to new formal entities, which
in most cases are updated versions of the entities found in the environment. The interpretation relations are
defined through rule templates of the form

premises

environment ` t s−→ result

Elements id of the syntactic set Identifier serve as names and references. An efficient mapping lookup
mechanism with elements of Identifier as keys is assumed for an implementation. Rules for interpreting
elements of Type-Spec and Literal, which depend on the actual form of the attribute type system, are not given
in this work. Also, CALM makes use of the sets N0 and N*0 (non-negative integers and non-negative integers
including the special character *). Elements of N0 and N*0 stand for both, their syntactical representation and
the numeral they denote.

The interpretation rule templates are arranged in such a way that their numbers correspond to the syntax
generation rule templates of the syntactic set they interpret.

B.1 STYLE TIER

id ∈ Identifier, id 6∈ dom(σ), i ∈ Import-Spec, σ ` i Import-spec−−−−−−−→ T̂0, γ0, κ0,Ξ0,

b ∈ Style-Body, T̂0, γ0, κ0,Ξ0, ∅, ∅ ` b
Style-Body−−−−−−→ T̂1, γ1, κ1,Ξ1,V, C

σ ` style id0 i { b }
Style−−−→ σ[id : (s (T̂1, γ1, κ1, clsV(Ξ1)))]

(B.1)

σ ` ε Import-spec−−−−−−−→ ∅, ∅, ∅, ∅
(B.2)

t ∈ Union, σ ` t Union−−−→ T̂, γ, κ,Ξ

σ ` include t Import-spec−−−−−−−→ T̂, γ, κ,Ξ
(B.3)

t ∈ Intersection, σ ` t Intersection−−−−−−→ T̂, γ, κ,Ξ

σ ` t Union−−−→ T̂, γ, κ,Ξ
(B.4)

t1 ∈ Intersection, t2 ∈ Union, σ ` t1
Intersection−−−−−−→ T̂1, γ1, κ1,Ξ1,

σ ` t2
Union−−−→ T̂2, γ2, κ2,Ξ2

σ ` t1 + t2
Union−−−→ T̂1 t T̂2, γ1 t γ2, κ1 t κ2,Ξ1 t Ξ2

(B.5)
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t ∈ Atom, σ ` t Atom−−−→ T̂, γ, κ,Ξ

σ ` t Intersection−−−−−−→ T̂, γ, κ,Ξ
(B.6)

t1 ∈ Atom, t2 ∈ Intersection, σ ` t1
Atom−−−→ T̂1, γ1, κ1,Ξ1,

σ ` t2
Intersection−−−−−−→ T̂2, γ2, κ2,Ξ2

σ ` t1 ˆ t2
Intersection−−−−−−→ T̂1 u T̂2, γ1 u γ2, κ1 u κ2,Ξ1 u Ξ2

(B.7)

id ∈ Identifier, id : (s (T̂, γ, κ,Ξ)) ∈ σ

σ ` id Atom−−−→ T̂, γ, κ,Ξ
(B.8)

t ∈ Union, σ ` t Union−−−→ T̂, γ, κ,Ξ

σ ` ( t ) Atom−−−→ T̂, γ, κ,Ξ
(B.9)

T̂, γ, κ,Ξ,V, C ` ε Style-Body−−−−−−→ T̂, γ, κ,Ξ,V, C
(B.10)

t1, t2 ∈ Style-Body, T̂0, γ0, κ0,Ξ0,V0, C0 ` t1
Style-Body−−−−−−→ T̂1, γ1, κ1,Ξ1,V1, C1,

T̂1, γ1, κ1,Ξ1,V1, C1 ` t2
Style-Body−−−−−−→ T̂2, γ2, κ2,Ξ2,V2, C2

T̂0, γ0, κ0,Ξ0,V0, C0 ` t1; t2
Style-Body−−−−−−→ T̂2, γ2, κ2,Ξ2,V2, C2

(B.11)

t ∈ Meta-Kind-Spec, T̂, γ0 ` t
Meta-Kind-Spec−−−−−−−−−→ γ1

T̂, γ0, κ,Ξ,V, C ` t
Style-Body−−−−−−→ T̂, γ1, κ,Ξ,V, C

(B.12)

t ∈ Kind-Definition, T̂, γ, κ0,Ξ0,V, C ` t
Kind-Definition−−−−−−−−→ κ1,Ξ1

T̂, γ, κ0,Ξ0,V, C ` t
Style-Body−−−−−−→ T̂, γ, κ1,Ξ1,V, C

(B.13)

t ∈ Type-Var-Decl, V0 ` t
Type-Var-Decl−−−−−−−−→ V1

T̂, γ, κ,Ξ,V0, C ` t
Style-Body−−−−−−→ T̂, γ, κ,Ξ,V1, C

(B.14)

t ∈ Type-Var-Assert, Ξ0,V ` t
Type-Var-Assert−−−−−−−−−→ Ξ1

T̂, γ, κ,Ξ0,V, C ` t
Style-Body−−−−−−→ T̂, γ, κ,Ξ1,V, C

(B.15)

t ∈ Attribute-Type-Spec, T̂0 ` t
Attribute-Type-Spec−−−−−−−−−−−→ T̂1

T̂0, γ, κ,Ξ,V, C ` t
Style-Body−−−−−−→ T̂1, γ, κ,Ξ,V, C

(B.16)

t ∈ Constant, T̂, C0 ` t
Constant−−−−−→ C1

T̂, γ, κ,Ξ,V, C0 ` t
Style-Body−−−−−−→ T̂, γ, κ,Ξ,V, C1

(B.17)

id ∈ Identifier, id 6∈ dom(γ), i ∈ Extends-list, γ ` i Extends-list−−−−−−→ α̂0, ∅, ∅,

b ∈ Interface-MK-Body, T̂, α̂0 ` b
Interface-MK-Body−−−−−−−−−−→ α̂1

T̂, γ ` metainterface id i { b }
Meta-Kind-Spec−−−−−−−−−→ γ[id : (i α̂1)]

(B.18)

id ∈ Identifier, id 6∈ dom(γ), i ∈ Extends-list, γ ` i Extends-list−−−−−−→ α̂0, ρ̂0, ∅,

b ∈ Connector-MK-Body, T̂, γ, α̂0, ρ̂0 ` b
Connector-MK-Body−−−−−−−−−−−→ α̂1, ρ̂1

T̂, γ ` metaconnector id i { b }
Meta-Kind-Spec−−−−−−−−−→ γ[id : (l (α̂1, ρ̂1))]

(B.19)

id ∈ Identifier, id 6∈ dom(γ), i ∈ Extends-list, γ ` i Extends-list−−−−−−→ α̂0, ∅, π̂0,

b ∈ Component-MK-Body, T̂, γ, α̂0, π̂0 ` b
Component-MK-Body−−−−−−−−−−−−→ α̂1, π̂1

T̂, γ ` metacomponent id i { b }
Meta-Kind-Spec−−−−−−−−−→ γ[id : (c (α̂1, π̂1))]

(B.20)

γ ` ε Extends-list−−−−−−→ ∅, ∅, ∅
(B.21)
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i ∈ Identifier-list, γ ` i Extends-list−−−−−−→ α̂, ρ̂, π̂

γ ` extends i Extends-list−−−−−−→ α̂, ρ̂, π̂
(B.22)

id ∈ Identifier, γ ` id : (i α̂)

γ ` id Extends-list−−−−−−→ α̂, ∅, ∅
,

id ∈ Identifier, γ ` id : (l (α̂, ρ̂))

γ ` id Extends-list−−−−−−→ α̂, ρ̂, ∅
, (B.23)

id ∈ Identifier, γ ` id : (c (α̂, π̂))

γ ` id Extends-list−−−−−−→ α̂, ∅, π̂

id ∈ Identifier, γ ` id Extends-list−−−−−−→ α̂1, ρ̂1, π̂1,

i ∈ Identifier-list, γ ` i Extends-list−−−−−−→ α̂2, ρ̂2, π̂2,
dom(α̂1) ∩ dom(α̂2) = ∅, dom(ρ̂1) ∩ dom(ρ̂2) = ∅, dom(π̂1) ∩ dom(π̂2) = ∅

γ ` id,i Extends-list−−−−−−→ α̂1 ∪ α̂2, ρ̂1 ∪ ρ̂2, π̂1 ∪ π̂2

(B.24)

T̂, α̂ ` ε Interface-MK-Body−−−−−−−−−−→ α̂
(B.25)

t1, t2 ∈ Interface-MK-Body, T̂, α̂0 ` t1
Interface-MK-Body−−−−−−−−−−→ α̂1,

T̂, α̂1 ` t2
Interface-MK-Body−−−−−−−−−−→ α̂2

T̂, α̂0 ` t1; t2
Interface-MK-Body−−−−−−−−−−→ α̂2

(B.26)

a ∈ Attribute, T̂, α̂0 ` a
Attribute−−−−−→ α̂1

T̂, α̂0 ` a
Interface-MK-Body−−−−−−−−−−→ α̂1

(B.27)

T̂, γ, α̂, ρ̂ ` ε Connector-MK-Body−−−−−−−−−−−→ α̂, ρ̂
(B.28)

t1, t2 ∈ Connector-MK-Body, T̂, γ, α̂0, ρ̂0 ` t1
Connector-MK-Body−−−−−−−−−−−→ α̂1, ρ̂1,

T̂, γ, α̂1, ρ̂1 ` t2
Connector-MK-Body−−−−−−−−−−−→ α̂2, ρ̂2

T̂, γ, α̂0, ρ̂0 ` t1; t2
Connector-MK-Body−−−−−−−−−−−→ α̂2, ρ̂2

(B.29)

a ∈ Attribute, T̂, α̂0 ` a
Attribute−−−−−→ α̂1

T̂, γ, α̂0, ρ̂ ` a
Connector-MK-Body−−−−−−−−−−−→ α̂1, ρ̂

(B.30)

r ∈ Role-Option, γ, ρ̂0 ` r
Role-Option−−−−−−−→ ρ̂1

T̂, γ, α̂, ρ̂0 ` r
Connector-MK-Body−−−−−−−−−−−→ α̂, ρ̂1

(B.31)

T̂, γ, α̂, π̂ ` ε Component-MK-Body−−−−−−−−−−−−→ α̂, π̂
(B.32)

t1, t2 ∈ Component-MK-Body, T̂, γ, α̂0, π̂0 ` t1
Component-MK-Body−−−−−−−−−−−−→ α̂1, π̂1,

T̂, γ, α̂1, π̂1 ` t2
Component-MK-Body−−−−−−−−−−−−→ α̂2, π̂2

T̂, γ, α̂0, π̂0 ` t1; t2
Component-MK-Body−−−−−−−−−−−−→ α̂2, π̂2

(B.33)

a ∈ Attribute, T̂, α̂0 ` a
Attribute−−−−−→ α̂1

T̂, γ, α̂0, π̂ ` a
Component-MK-Body−−−−−−−−−−−−→ α̂1, π̂

(B.34)

p ∈ Port-Option, γ, π̂0 ` p
Port-Option−−−−−−→ π̂1

T̂, γ, α̂, π̂0 ` p
Component-MK-Body−−−−−−−−−−−−→ α̂, π̂1

(B.35)

id ∈ Identifier, id 6∈ dom(α̂), t ∈ Type-Spec, T̂ ` t Type-Spec−−−−−−→ τ̂

T̂, α̂ ` attribute id : t
Attribute−−−−−→ α̂[id : (a τ̂)]

(B.36)
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t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(ρ̂), id2 : (i α̂) ∈ γ

γ, ρ̂ ` uses t1 id1 : id2 t2
Role-Option−−−−−−−→ ρ̂[id1 : (r (uses, id2, q1, q2))]

(B.37)

t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(ρ̂), id2 : (i α̂) ∈ γ

γ, ρ̂ ` provides t1 id1 : id2 t2
Role-Option−−−−−−−→ ρ̂[id1 : (r (provides, id2, q1, q2))]

(B.38)

t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(π̂), id2 : (i α̂) ∈ γ

γ, π̂ ` uses t1 id1 : id2 t2
Port-Option−−−−−−→ π̂[id1 : (p (uses, id2, q1, q2))]

(B.39)

t1, t2 ∈ Range, t1
Range−−−−→ q1, t2

Range−−−−→ q2,

id1, id2 ∈ Identifier, id1 6∈ dom(π̂), id2 : (i α̂) ∈ γ

γ, π̂ ` provides t1 id1 : id2 t2
Port-Option−−−−−−→ π̂[id1 : (p (provides, id2, q1, q2))]

(B.40)

n,m ∈ N0, n ≤ m

[n..m]
Range−−−−→ {n, . . . ,m}

,
n ∈ N0

[n..*]
Range−−−−→ {n, . . .}

(B.41)

n ∈ N0

[n]
Range−−−−→ {n}

(B.42)

id1, id2 ∈ Identifier, id1 6∈ κ, id2 : (i α̂) ∈ γ, b ∈ Interface-Export-Spec,

T̂, α̂, ∅, C ` b Interface-Export-Spec−−−−−−−−−−−−→ ᾱ1, Am
k (α̂) = ᾱ2, ᾱ = ᾱ1 ∪ ᾱ2, Qm

a (α̂, ᾱ)

T̂, γ, κ,Ξ,V, C ` interfacekind id1 : id2 { b }
Kind-Definition−−−−−−−−→ κ[id1 : (i ᾱ)],Ξ

(B.43)

id1, id2 ∈ Identifier, id1 6∈ κ, id2 : (l (α̂, ρ̂)) ∈ γ, b ∈ Connector-Export-Spec,

T̂, γ, α̂, ∅, ρ̂, ∅,Ξ0,V0, C ` b
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ1, ρ̄,Ξ1,V1,

Am
k (α̂) = ᾱ2, ᾱ = ᾱ1 ∪ ᾱ2, Qm

a (α̂, ᾱ), Qm
r (ρ̂, ρ̄), Ξ2 = cls(V1\V0)(Ξ1)

T̂, γ, κ,Ξ0,V0, C ` connectorkind id1 : id2 { b }
Kind-Definition−−−−−−−−→ κ[id1 : (l (ᾱ, ρ̄))],Ξ2

(B.44)

id1, id2 ∈ Identifier, id1 6∈ κ, id2 : (c (α̂, π̂)) ∈ γ, b ∈ Component-Export-Spec,

T̂, γ, α̂, ∅, π̂, ∅,Ξ0,V0, C ` b
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ1, π̄,Ξ1,V1,

Am
k (α̂) = ᾱ2, ᾱ = ᾱ1 ∪ ᾱ2, Qm

a (α̂, ᾱ), Qm
p (π̂, π̄) Ξ2 = cls(V1\V0)(Ξ1)

T̂, γ, κ,Ξ0,V0, C ` componentkind id1 : id2 { b }
Kind-Definition−−−−−−−−→ κ[id1 : (c (ᾱ, π̄))],Ξ2

(B.45)

T̂, α̂, ᾱ, C ` ε Interface-Export-Spec−−−−−−−−−−−−→ ᾱ
(B.46)

t1, t2 ∈ Interface-Export-Spec, T̂, α̂, ᾱ0, C ` t1
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ1,

T̂, α̂, ᾱ1, C ` t2
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ2

T̂, α̂, ᾱ0, C ` t1; t2
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ2

(B.47)

t ∈ Attribute-Valuation, T̂, α̂, ᾱ0, C ` t
Attribute-Valuation−−−−−−−−−−→ ᾱ1

T̂, α̂, ᾱ0, C ` t
Interface-Export-Spec−−−−−−−−−−−−→ ᾱ1

(B.48)

T̂, γ, α̂, ᾱ, ρ̂, ρ̄,Ξ,V, C ` ε Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ, ρ̄,Ξ,V
(B.49)

t1, t2 ∈ Connector-Export-Spec,

T̂, γ, α̂, ᾱ0, ρ̂, ρ̄0,Ξ0,V0, C ` t1
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ1, ρ̄1,Ξ1,V1

T̂, γ, α̂, ᾱ1, ρ̂, ρ̄1,Ξ1,V1, C ` t2
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ2, ρ̄2,Ξ2,V2

T̂, γ, α̂, ᾱ0, ρ̂, ρ̄0,Ξ0,V0, C ` t1; t2
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ2, ρ̄2,Ξ2,V2

(B.50)
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t ∈ Attribute-Valuation, T̂, α̂, ᾱ0, C ` t
Attribute-Valuation−−−−−−−−−−→ ᾱ1

T̂, γ, α̂, ᾱ0, ρ̂, ρ̄,Ξ,V, C ` t
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ1, ρ̄,Ξ,V

(B.51)

t ∈ Export-Kind-Spec, γ, ρ̂, ρ̄0,Ξ0,V, C ` t
Export-Kind-Spec−−−−−−−−−−→ ρ̄1,Ξ1

T̂, γ, α̂, ᾱ, ρ̂, ρ̄0,Ξ0,V, C ` t
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ, ρ̄1,Ξ1,V

(B.52)

t ∈ Type-Var-Decl, κ,V0 ` t
Type-Var-Decl−−−−−−−−→ V1

T̂, γ, α̂, ᾱ, ρ̂, ρ̄,Ξ,V0, C ` t
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ, ρ̄,Ξ,V1

(B.53)

t ∈ Type-Var-Assert, Ξ0,V ` t
Type-Var-Assert−−−−−−−−−→ Ξ1

T̂, γ, α̂, ᾱ, ρ̂, ρ̄,Ξ0,V, C ` t
Connector-Export-Spec−−−−−−−−−−−−−→ ᾱ, ρ̄,Ξ1,V

(B.54)

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ,V, C ` ε Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄,Ξ,V
(B.55)

t1, t2 ∈ Component-Export-Spec,

T̂, γ, α̂, ᾱ0, π̂, π̄0,Ξ0,V0, C ` t1
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ1, π̄1,Ξ1,V1

T̂, γ, α̂, ᾱ1, π̂, π̄1,Ξ1,V1, C ` t2
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ2, π̄2,Ξ2,V2

T̂, γ, α̂, ᾱ0, π̂, π̄0,Ξ0,V0, C ` t1; t2
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ2, π̄2,Ξ2,V2

(B.56)

t ∈ Attribute-Valuation, T̂, α̂, ᾱ0, C ` t
Attribute-Valuation−−−−−−−−−−→ ᾱ1

T̂, γ, α̂, ᾱ0, π̂, π̄,Ξ,V, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ1, π̄,Ξ,V

(B.57)

t ∈ Export-Kind-Spec, γ, π̂, π̄0,Ξ0,V, C ` t
Export-Kind-Spec−−−−−−−−−−→ π̄1,Ξ1

T̂, γ, α̂, ᾱ, π̂, π̄0,Ξ0,V, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄1,Ξ1,V

(B.58)

t ∈ Type-Var-Decl, κ,V0 ` t
Type-Var-Decl−−−−−−−−→ V1

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ,V0, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄,Ξ,V1

(B.59)

t ∈ Type-Var-Assert, Ξ0,V ` t
Type-Var-Assert−−−−−−−−−→ Ξ1

T̂, γ, α̂, ᾱ, π̂, π̄,Ξ0,V, C ` t
Component-Export-Spec−−−−−−−−−−−−−−→ ᾱ, π̄,Ξ1,V

(B.60)

id ∈ Identifier, id : τ̂ ∈ α̂, id 6∈ dom(ᾱ), v ∈ Literal, T̂, τ̂ , C ` v Literal−−−→ τ̄

T̂, α̂, ᾱ, C ` id = v
Attribute-Valuation−−−−−−−−−−→ ᾱ[id : τ̄ ]

(B.61)

id1, id2 ∈ Identifier, id1 : (r (p, idm, q1, q2)) ∈ ρ̂, id2 : (i ᾱ) ∈ κ, D(idm, id2)

γ, ρ̂, ρ̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ ρ̄[id1 : (r (p, id2, q1, q2))],Ξ

(B.62)

id1, id2 ∈ Identifier, id1 : (r (p, idm, q1, q2)) ∈ ρ̂, id2 : idk ∈ V, D(idm, idk)

γ, ρ̂, ρ̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ ρ̄[id1 : (r (p, idk, q1, q2))],

Ξ[type(this.id1) = id2]

id1, id2 ∈ Identifier, id1 : (p (p, idm, q1, q2)) ∈ π̂, id2 : (i ᾱ) ∈ κ, D(idm, id2)

γ, π̂, π̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ π̄[id1 : (p (p, id2, q1, q2))],Ξ

id1, id2 ∈ Identifier, id1 : (p (p, idm, q1, q2)) ∈ π̂, id2 : idk ∈ V, D(idm, idk)

γ, π̂, π̄,Ξ,V, C ` id1 -> id2
Export-Kind-Spec−−−−−−−−−−→ π̄[id1 : (p (p, idk, q1, q2))],

Ξ[type(this.id1) = id2]

i ∈ Identifier-list, id ∈ Identifier, id : (i ᾱ) ∈ κ, V0, id ` i
Type-Var-Decl-Id−−−−−−−−−→ V1

κ,V0 ` typevar i : id
Type-Var-Decl−−−−−−−−→ V1

(B.63)
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id ∈ Identifier, id 6∈ dom(V)

V, k ` id
Type-Var-Decl-Id−−−−−−−−−→ V[id : k]

id ∈ Identifier, id 6∈ dom(V0), i ∈ Identifier-list, V0[id : k], k ` i Type-Var-Decl-Id−−−−−−−−−→ V1

V0, k ` id,i
Type-Var-Decl-Id−−−−−−−−−→ V1

id1, id2 ∈ Identifier, id1 : k1, id2 : k2 ∈ V, k1 = k2

Ξ,V ` assert id1 <= id2
Type-Var-Assert−−−−−−−−−→ Ξ[id1 ≤ id2]

(B.64)

id1, id2 ∈ Identifier, id1 : k1, id2 : k2 ∈ V, k1 = k2

Ξ,V ` assert id1 = id2
Type-Var-Assert−−−−−−−−−→ Ξ[id1 = id2]

id1, id2 ∈ Identifier, id1 : k1, id2 : k2 ∈ V, k1 = k2

Ξ,V ` assert id1 >= id2
Type-Var-Assert−−−−−−−−−→ Ξ[id1 ≥ id2]

id ∈ Identifier, id 6∈ dom(T̂)

T̂ ` typedecl id
Attribute-Type-Spec−−−−−−−−−−−→ T̂[id : τ̂ id ]

(B.65)

id ∈ Identifier, id 6∈ dom(T̂), t ∈ Type-Spec, T̂ ` t Type-Spec−−−−−−→ τ̂ t

T̂ ` typedef id = t
Attribute-Type-Spec−−−−−−−−−−−→ T̂[id : τ̂ t]

(B.66)

id ∈ Identifier, id 6∈ dom(C), t ∈ Type-Spec, T̂ ` t Type-Spec−−−−−−→ τ̂ ,

v ∈ Literal, T̂, τ̂ , C ` v Literal−−−→ τ̄

T̂, C ` id : t = v
Constant−−−−−→ C[id : τ̄ ]

(B.67)

B.2 MODULE TIER

id0, id1 ∈ Identifier, id0 6∈ dom(µ), id1 : (s (T̂, γ, κ,Ξ)) ∈ σ, T m
k (T̂) = T̄0,

i ∈ Input, µ ` i Input−−−→ T̄1, ψ0, id1−|=ψ0, T̄ = T̄0 ∪ T̄1

b ∈ Module-Body, T̄, κ, ψ0, ∅,Ξ ` b
Type-Body−−−−−−→ ψ1, C

σ, µ ` module id0 of id1 i { b }
Module−−−−→ µ[id0 : (m (T̄, ψ))]

(B.68)

µ ` ε Input−−−→ ∅, ∅
(B.69)

i ∈ Identifier-list, µ ` i Input−−−→ T̄, ψ

µ ` input i Input−−−→ T̄, ψ
(B.70)

id ∈ Identifier, id : (m (T̄, ψ)) ∈ µ

µ ` id
Input−−−→ T̄, ψ

(B.71)

id ∈ Identifier, id : (m (T̄0, ψ0)) ∈ µ, i ∈ Identifier-list, µ ` i Input−−−→ T̄1, ψ1

dom(ψ0) ∩ dom(ψ1) = ∅

µ ` id,i
Input−−−→ T̄0 ∪ T̄1, ψ0 ∪ ψ1

(B.72)

T̄, κ, ψ, C,Ξ ` ε Module-Body−−−−−−−→ ψ, C
(B.73)

t1, t2 ∈ Module-Body, T̄, κ, ψ0, C0,Ξ ` t1
Module-Body−−−−−−−→ ψ1, C1

T̄, κ, ψ1, C1,Ξ ` t1
Module-Body−−−−−−−→ ψ2, C2

T̄, κ, ψ0, C0,Ξ ` t1; t2
Module-Body−−−−−−−→ ψ2, C2

(B.74)

t ∈ Type, T̄, κ, ψ0, C,Ξ ` t
Type−−→ ψ1

T̄, κ, ψ0, C,Ξ ` t
Module-Body−−−−−−−→ ψ1, C

(B.75)
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t ∈ Constant, T̄, C0 `
Constant−−−−−→ C1

T̄, κ, ψ, C0,Ξ ` t
Module-Body−−−−−−−→ ψ, C1

(B.76)

id1, id2 ∈ Identifier, id1 : (i ᾱ) ∈ κ, id2 6∈ dom(ψ), i ∈ Include,

ψ, id1 ` i
Include−−−−→ α0, ∅, b ∈ Type-Body, T̄, ψ, ᾱ, α0, ∅, ∅, C ` b

Type-Body−−−−−−→ α1, ∅
Ak

t (ᾱ) = α2, α = α1 ∪ α2, Qk
a(ᾱ, α)

T̄, κ, ψ, C,Ξ ` id id i { b }
Type−−→ ψ[id2 : (id1 α2)]

(B.77)

id1, id2 ∈ Identifier, id1 : (c (ᾱ, π̄)) ∈ κ, id2 6∈ dom(ψ), i ∈ Include,

ψ, id1 ` i
Include−−−−→ α0, π0, b ∈ Type-Body, T̄, ψ, ᾱ, α0, π̄, π0, C ` b

Type-Body−−−−−−→ α1, π

Ak
t (ᾱ) = α2, α = α1 ∪ α2, Qk

a(ᾱ, α), Qk
p(π̄, π), K(Ξ, π)

T̄, κ, ψ, C,Ξ ` id id i { b }
Type−−→ ψ[id2 : (id1 (α2, π2))]

ψ, id ` ε Include−−−−→ ∅, ∅
(B.78)

i ∈ Identifier-list, ψ, id ` i Include−−−−→ α, π

ψ, id ` include i Include−−−−→ α, π
(B.79)

id ∈ Identifier, id : (id i α) ∈ ψ

ψ, id i ` id Include−−−−→ α, ∅

id ∈ Identifier, id : (idc (α, π)) ∈ ψ

ψ, idc ` id Include−−−−→ α, π

id ∈ Identifier, i ∈ Identifier-list, id : (id i α1) ∈ ψ, ψ ` i Include−−−−→ α2, ∅
dom(α1) ∩ dom(α2) = ∅

ψ, id i ` id,i Include−−−−→ α1 ∪ α2, ∅

id ∈ Identifier, i ∈ Identifier-list, id : (idc (α1, π1)) ∈ ψ, ψ ` i Include−−−−→ α2, π2,

dom(α1) ∩ dom(α2) = ∅, dom(π1) ∩ dom(π2) = ∅
ψ, idc ` id,i Include−−−−→ α1 ∪ α2, π1 ∪ π2

T̄, ψ, ᾱ, α, π̄, π, C ` ε Type-Body−−−−−−→ α, π
(B.80)

t1, t2 ∈ Type-Body, T̄, ψ, ᾱ, α0, π̄, π0, C ` t1
Type-Body−−−−−−→ α1, π1

T̄, ψ, ᾱ, α1, π̄, π1, C ` t2
Type-Body−−−−−−→ α2, π2

T̄, ψ, ᾱ, α0, π̄, π0, C ` t1; t2
Type-Body−−−−−−→ α2, π2

(B.81)

t ∈ Attribute-Valuation, T̄, ᾱ, α0, C ` t
Attribute-Valuation−−−−−−−−−−→ α1

T̄, ψ, ᾱ, α0, π̄, π, C ` t
Type-Body−−−−−−→ α1, π

(B.82)

t ∈ Port, ψ, π̄, π0 ` t
Port−−→ π1

T̄, ψ, ᾱ, α, π̄0, π, C ` t
Type-Body−−−−−−→ α1, π1

(B.83)

id ∈ Identifier, id : τ̄ ∈ ᾱ, id 6∈ dom(α), v ∈ Literal, T̄, τ̄ , C ` v Literal−−−→ τ

T̄, ᾱ, α, C ` id = v
Attribute-Valuation−−−−−−−−−−→ α[id : τ ]

(B.84)

id1, id2, id3 ∈ Identifier, id1 : (p (p, k, q1, q2)) ∈ π̄, id2 6∈ dom(π), id3 : (k α) ∈ ψ

ψ, π̄, π ` id1 id2 : id3
Port−−→ π[id2 : (id1 (p, id3, q2))]

(B.85)

id ∈ Identifier, id 6∈ dom(C), t ∈ Type-Spec, T̄ ` t Type-Spec−−−−−−→ τ̄ ,

v ∈ Literal, T̄, τ̄ , C ` v Literal−−−→ τ

T̄, C ` id : t = v
Constant−−−−−→ C[id : τ ]

(B.86)
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B.3 SCENARIO TIER

id ∈ Identifier, id 6∈ dom(ζ), i ∈ Identifier-list, µ ` i Include−−−−→ T̄0, ψ,

Collect(S(ψ)) = (T̂, γ, κ,Ξ), T m
k (T̂) = T̄1, T̄ = T̄0 ∪ T̄1, T k

t (T̂) = T,

b ∈ Scenario-Body, T, κ, ψ, ∅, ∅, ∅,Ξ ` b Scenario-Body−−−−−−−−→ ψr, θ,Λ, C, M(Λ), S(ψr) 6= ∅

σ, µ, ζ ` scenario id includes i { b }
Scenario−−−−−→ ζ[id : (z (θ,Λ))]

(B.87)

id ∈ Identifier, id : (m (T̄, ψ)) ∈ µ

µ ` id Include−−−−→ T̄, ψ
(B.88)

id ∈ Identifier, id : (m (T̄1, ψ1)) ∈ µ, i ∈ Identifier-list, µ ` i Include−−−−→ T̄2, ψ2

µ ` id,i Include−−−−→ T̄1 t T̄2, ψ1 t ψ2

(B.89)

T, κ, ψ, θ,Λ, C,Ξ ` ε Scenario-Body−−−−−−−−→ ψ, θ,Λ, C
(B.90)

t1, t2 ∈ Scenario-Body, T, κ, ψ0, θ0,Λ0, C0,Ξ ` t1
Scenario-Body−−−−−−−−→ ψ1, θ1,Λ1, C1,

T, κ, ψ1, θ1,Λ1, C1,Ξ ` t2
Scenario-Body−−−−−−−−→ ψ2, θ2,Λ2, C2

T, κ, ψ0, θ0,Λ0, C0,Ξ ` t1; t2
Scenario-Body−−−−−−−−→ ψ2, θ2,Λ2, C2

(B.91)

t ∈ Component, T, ψ, θ0, C ` t
Component−−−−−−→ θ1

T, κ, ψ, θ0,Λ, C,Ξ ` t
Scenario-Body−−−−−−−−→ ψ, θ1,Λ, C

(B.92)

t ∈ Connector, T, κ, ψ0, θ0,Λ0, C,Ξ ` t
Connector−−−−−−→ ψ1, θ1,Λ1

T, κ, ψ0, θ0,Λ0, C,Ξ ` t
Scenario-Body−−−−−−−−→ ψ1, θ1,Λ1, C

(B.93)

t ∈ Constant, T, C0 ` t
Constant−−−−−→ C1

T, κ, ψ, θ,Λ, C0,Ξ ` t
Scenario-Body−−−−−−−−→ ψ, θ,Λ, C1

(B.94)

id0, id1 ∈ Identifier, id0 : (idk (α, π)) ∈ ψ, id1 6∈ θ0, b ∈ Component-Body,

At
v(α) = α̇0, T, ψ, θ0, α, ∅, π, C ` b

Component-Body−−−−−−−−−−→ θ1, α̇1, α̇ = α̇0 ∪ α̇1, Qt
a(α, α̇)

Pt
v(π) = π̇, IntGen(θ1, π) = θ2, I[θ2, π]

T, ψ, θ0, C ` id0 id1 { b }
Component−−−−−−→ θ2[id1 : (id0 (α̇, π̇))]

(B.95)

T, ψ, θ, α, α̇, π, C ` ε Component-Body−−−−−−−−−−→ θ, α̇
(B.96)

t1, t2 ∈ Component-Body, T, ψ, θ0, α, α̇0, π, C ` t1
Component-Body−−−−−−−−−−→ θ1, α̇1,

T, ψ, θ1, α, α̇1, π, C ` t2
Component-Body−−−−−−−−−−→ θ2, α̇2

T, ψ, θ0, α, α̇0, π, C ` t1;t2
Component-Body−−−−−−−−−−→ θ2, α̇2

(B.97)

t ∈ Attribute-Valuation, T, α, α̇0, C ` t
Attribute-Valuation−−−−−−−−−−→ α̇1

T, ψ, θ, α, α̇0, π, C ` t
Component-Body−−−−−−−−−−→ θ, α̇1

(B.98)

t ∈ Interface, T, ψ, θ0, π, C ` t
Interface−−−−−→ θ1

T, ψ, θ0, α, α̇, π, C ` t
Component-Body−−−−−−−−−−→ θ1, α̇

(B.99)

id ∈ Identifier, id : τ ∈ α, id 6∈ dom(α̇), v ∈ Literal, T, τ, C ` v Literal−−−→ τ̇

T, α, α̇, C ` id = v
Attribute-Valuation−−−−−−−−−−→ α̇[id : τ̇ ]

(B.100)

id ∈ Identifier, id : (idp (provides, id i, q)) ∈ π, id i : (idk α) ∈ ψ, At
v(α) = α̇0,

a ∈ Attributes, T, α, ∅, C ` t Attributes−−−−−→ α̇1, α̇ = α̇0 ∪ α̇1, Qt
a(α, α̇)

T, ψ, θ, π, C ` id { a }
Interface−−−−−→ θ[this.id : (id i α̇)]

(B.101)
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T, α, α̇, C ` ε Attributes−−−−−→ α̇
(B.102)

t1, t2 ∈ Attributes, T, α, α̇0, C ` t1
Attributes−−−−−→ α̇1, T, α, α̇1, C ` t2

Attributes−−−−−→ α̇2

T, α, α̇0, C ` t1;t2
Attributes−−−−−→ α̇2

(B.103)

a ∈ Attribute-Valuation, T, α, α̇0, C ` a
Attribute-Valuation−−−−−−−−−−→ α̇1

T, α, α̇0, C ` a
Attributes−−−−−→ α̇1

(B.104)

id ∈ Identifier, id : (l (ᾱ, ρ̄)), Ak
t (ᾱ) = α, At

v(α) = α̇0, b ∈ Connector-Body

T, ψ, θ0, α, ∅, ρ̄, ∅,Λ0, C ` b
Connector-Body−−−−−−−−−→ θ1, α̇1, ρ,Λ1, α̇ = α̇0 ∪ α̇1, Rt

v(ρ) = ρ̇,

K(Ξ, ρ), Qk
r (ρ̄, ρ), Qk

a(ᾱ, α), Qt
a(α, α̇), id t

l , id
v
l ∈ Identifier,

id t
l 6∈ dom(ψ), idv

l 6∈ dom(θ), this = idv
l

T, κ, ψ, θ,Λ0, C,Ξ ` id { b }
Connector−−−−−−→ ψ[id t

l : (id (α, ρ))], θ[idv
l : (id t

l (α̇, ρ̇))],Λ1

(B.105)

T, ψ, θ, α, α̇, ρ̄, ρ,Λ, C ` t Connector-Body−−−−−−−−−→ θ, α̇, ρ,Λ
(B.106)

t1, t2 ∈ Connector-Body, T, ψ, θ0, α, α̇0, ρ̄, ρ0,Λ0, C ` t1
Connector-Body−−−−−−−−−→ θ1, α̇1, ρ1,Λ1,

T, ψ, θ1, α, α̇1, ρ̄, ρ1,Λ1, C ` t2
Connector-Body−−−−−−−−−→ θ2, α̇2, ρ2,Λ2

T, ψ, θ0, α, α̇0, ρ̄, ρ0,Λ0, C ` t1;t2
Connector-Body−−−−−−−−−→ θ2, α̇2, ρ2,Λ2

(B.107)

t ∈ Attribute-Valuation, T, α, α̇0, C ` a
Attribute-Valuation−−−−−−−−−−→ α̇1

T, ψ, θ, α, α̇0, ρ̄, ρ,Λ, C ` t
Connector-Body−−−−−−−−−→ θ, α̇1, ρ,Λ

(B.108)

T, ψ, θ0, ρ̄, ρ0,Λ0, C ` t
Binding−−−−→ θ1, ρ1,Λ1

T, ψ, θ0, α, α̇, ρ̄, ρ0,Λ0, C ` t ∈
Connector-Body−−−−−−−−−→ θ1, α̇, ρ1,Λ1

(B.109)

id ∈ Identifier, id : (r (uses, idk, q1, q2)) ∈ ρ̄, l ∈ Port-list,

provides, θ ` l Port-list−−−−→ ~p, id i, id i : (idk α) ∈ ψ, id t
r ∈ Identifier, id t

r 6∈ dom(ρ)

T, ψ, θ, ρ̄, ρ,Λ, C ` id = l
Binding−−−−→ θ, ρ[id t

r : (id (uses, id i, q2))],Λ[this.id t
r : ~p]

(B.110)

id ∈ Identifier, id : (r (provides, idk, q1, q2)) ∈ ρ̄, l ∈ Port-list,

uses, θ ` l Port-list−−−−→ ~p, id i, id i : (idk α) ∈ ψ, At
v(α) = α̇, Qt

a(α, α̇),
id t

r ∈ Identifier, id t
r 6∈ dom(ρ), this.id t

r 6∈ dom(θ)

T, ψ, θ, ρ̄, ρ,Λ, C ` id = l
Binding−−−−→ θ[this.id t

r : (id i α̇)],
ρ[id t

r : (id (provides, id i, q2))],Λ[this.id t
r : ~p]

id ∈ Identifier, id : (r (provides, idk, q1, q2)) ∈ ρ̄,
l ∈ Port-list, uses, θ ` l Port-list−−−−→ ~p, id i,

id i : (idk α) ∈ ψ, At
v(α) = α̇0, a ∈ Attributes, T, α, ∅, C ` a Attributes−−−−−→ α̇1,

α̇ = α̇0 ∪ α̇1, Qt
a(α, α̇), id t

r ∈ Identifier, id t
r 6∈ dom(ρ), this.id t

r 6∈ dom(θ)

T, ψ, θ, ρ̄, ρ,Λ, C ` id { a } = l
Binding−−−−→ θ[this.id t

r : (id i α̇)],
ρ[id t

r : (id (provides, id i, q2))],Λ[this.id t
r : ~p]

(B.111)

p ∈ Port, c, θ ` p Port−−→ (idc, idp), id i

c, θ ` p Port-list−−−−→ {(idc, idp)}, id i

(B.112)

p ∈ Port, c, θ ` p Port−−→ (idc, idp), id i, l ∈ Port-list, c, θ ` l Port-list−−−−→ ~p, id i

c, θ ` p,l Port-list−−−−→ ~p[(idc, idp)], id i

(B.113)
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id1, id2 ∈ Identifier, id1 : (idc (α̇, π̇)) ∈ θ, id2 : (idp (c, id i, q)) ∈ π̇

c, θ ` id1.id2
Port−−→ (id1, id2), id i

(B.114)

id ∈ Identifier, id 6∈ dom(C), t ∈ Type-Spec, T ` t Type-Spec−−−−−−→ τ,

v ∈ Literal, T, τ, C ` v Literal−−−→ τ̇

T, C ` id : t = v
Constant−−−−−→ C[id : τ̇ ]

(B.115)
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ADDITIONAL SOURCE LISTINGS

C.1 NESC SOURCES

C.1.1 SURGE.NC

// $Id: Surge.nc,v 1.1 2007/06/25 19:11:47 jung Exp $
2

/* tab:4
4 * "Copyright (c) 2000-2003 The Regents of the University of California.

* All rights reserved.
6 *

* Permission to use, copy, modify, and distribute this software and its
8 * documentation for any purpose, without fee, and without written agreement is

* hereby granted, provided that the above copyright notice, the following
10 * two paragraphs and the author appear in all copies of this software.

*
12 * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR

* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
14 * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF

* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 *

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
20 * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO

* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
22 *

* Copyright (c) 2002-2003 Intel Corporation
24 * All rights reserved.

*
26 * This file is distributed under the terms in the attached INTEL-LICENSE

* file. If you do not find these files, copies can be found by writing to
28 * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,

* 94704. Attention: Intel License Inquiry.
30 */

/**
32 *

**/
34 includes Surge;

includes SurgeCmd;
36 includes MultiHop;

38
configuration Surge {

40 }
implementation {

42 components Main, SurgeM, TimerC, LedsC, NoLeds, Photo, RandomLFSR,
GenericCommPromiscuous as Comm, Bcast, MultiHopRouter as multihopM, QueuedSend, Sounder;

44
Main.StdControl -> SurgeM.StdControl;

46 Main.StdControl -> Photo;



144 Appendix: Additional Source Listings

Main.StdControl -> Bcast.StdControl;
48 Main.StdControl -> multihopM.StdControl;

Main.StdControl -> QueuedSend.StdControl;
50 Main.StdControl -> TimerC;

Main.StdControl -> Comm;
52 // multihopM.CommControl -> Comm;

54 SurgeM.ADC -> Photo;
SurgeM.Timer -> TimerC.Timer[unique("Timer")];

56 SurgeM.Leds -> LedsC; // NoLeds;
SurgeM.Sounder -> Sounder;

58
SurgeM.Bcast -> Bcast.Receive[AM_SURGECMDMSG];

60 Bcast.ReceiveMsg[AM_SURGECMDMSG] -> Comm.ReceiveMsg[AM_SURGECMDMSG];

62 SurgeM.RouteControl -> multihopM;
SurgeM.Send -> multihopM.Send[AM_SURGEMSG];

64 multihopM.ReceiveMsg[AM_SURGEMSG] -> Comm.ReceiveMsg[AM_SURGEMSG];
//multihopM.ReceiveMsg[AM_MULTIHOPMSG] -> Comm.ReceiveMsg[AM_MULTIHOPMSG];

66 }

C.1.2 GENERICCOMMPROMISCUOUS.NC

1 // $Id: GenericCommPromiscuous.nc,v 1.1 2007/07/06 21:12:15 jung Exp $

3 /* tab:4

* "Copyright (c) 2000-2003 The Regents of the University of California.
5 * All rights reserved.

*
7 * Permission to use, copy, modify, and distribute this software and its

* documentation for any purpose, without fee, and without written agreement is
9 * hereby granted, provided that the above copyright notice, the following

* two paragraphs and the author appear in all copies of this software.
11 *

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
13 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT

* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
15 * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*
17 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
19 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS

* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
21 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

*
23 * Copyright (c) 2002-2003 Intel Corporation

* All rights reserved.
25 *

* This file is distributed under the terms in the attached INTEL-LICENSE
27 * file. If you do not find these files, copies can be found by writing to

* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
29 * 94704. Attention: Intel License Inquiry.

*/
31 /*

*
33 * Authors: Jason Hill, David Gay, Philip Levis

* Date last modified: $Id: GenericCommPromiscuous.nc,v 1.1 2007/07/06 21:12:15 jung Exp $
35 *

*/
37

/**
39 * @author Jason Hill

* @author David Gay
41 * @author Philip Levis

*/
43

45 configuration GenericCommPromiscuous
{

47 provides {
interface StdControl as Control;

49 interface CommControl;

51 // The interface are as parameterised by the active message id
interface SendMsg[uint8_t id];

53 interface ReceiveMsg[uint8_t id];

55 // How many packets were received in the past second
command uint16_t activity();

57
}
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59 uses {
// signaled after every send completion for components which wish to

61 // retry failed sends
event result_t sendDone();

63

65 }
}

67 implementation
{

69 // CRCPacket should be multiply instantiable. As it is, I have to use
// RadioCRCPacket for the radio, and UARTNoCRCPacket for the UART to

71 // avoid conflicting components of CRCPacket.
components AMPromiscuous as AM,

73 RadioCRCPacket as RadioPacket,
UARTFramedPacket as UARTPacket,

75 NoLeds as Leds,
TimerC, HPLPowerManagementM;

77
Control = AM.Control;

79 CommControl = AM.CommControl;
SendMsg = AM.SendMsg;

81 ReceiveMsg = AM.ReceiveMsg;
sendDone = AM.sendDone;

83
activity = AM.activity;

85 AM.TimerControl -> TimerC.StdControl;
AM.ActivityTimer -> TimerC.Timer[unique("Timer")];

87
AM.UARTControl -> UARTPacket.Control;

89 AM.UARTSend -> UARTPacket.Send;
AM.UARTReceive -> UARTPacket.Receive;

91
AM.RadioControl -> RadioPacket.Control;

93 AM.RadioSend -> RadioPacket.Send;
AM.RadioReceive -> RadioPacket.Receive;

95 AM.PowerManagement -> HPLPowerManagementM.PowerManagement;

97 AM.Leds -> Leds;
}

C.1.3 TIMERC.NC

1 // $Id: TimerC.nc,v 1.1 2007/07/06 21:12:15 jung Exp $

3 /* tab:4

* "Copyright (c) 2000-2003 The Regents of the University of California.
5 * All rights reserved.

*
7 * Permission to use, copy, modify, and distribute this software and its

* documentation for any purpose, without fee, and without written agreement is
9 * hereby granted, provided that the above copyright notice, the following

* two paragraphs and the author appear in all copies of this software.
11 *

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
13 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT

* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
15 * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*
17 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
19 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS

* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
21 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

*
23 * Copyright (c) 2002-2003 Intel Corporation

* All rights reserved.
25 *

* This file is distributed under the terms in the attached INTEL-LICENSE
27 * file. If you do not find these files, copies can be found by writing to

* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
29 * 94704. Attention: Intel License Inquiry.

*/
31 /*

* Authors: Su Ping, (converted to nesC by Sam Madden)
33 * David Gay, Intel Research Berkeley Lab

* Phil Levis
35 * Date: 4/12/2002

* NesC conversion: 6/28/2002
37 * interface cleanup: 7/16/2002

* Configuration: 8/12/2002
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39 */

41 /**
* @author Su Ping

43 * @author (converted to nesC by Sam Madden)

* @author David Gay
45 * @author Intel Research Berkeley Lab

* @author Phil Levis
47 */

49

51 configuration TimerC {
provides interface Timer[uint8_t id];

53 provides interface StdControl;
}

55
implementation {

57 components TimerM, ClockC, NoLeds, HPLPowerManagementM;

59 TimerM.Leds -> NoLeds;
TimerM.Clock -> ClockC;

61 TimerM.PowerManagement -> HPLPowerManagementM;

63 StdControl = TimerM;
Timer = TimerM;

65 }

C.2 ADDITIONAL CALM SOURCES

C.2.1 SOME CORBA DATA TYPES

Listing C.4: Some CORBA data types
1 attributes CorbaTypes {

3 // Unspecified Types
typedecl any;

5
typedecl native;

7

9 // Boolean type
typedef BOOLEAN boolean;

11

13 // IDL character, CDR 8-bit encoding,
// GIOP codeset conversion:

15 // Illustrates need for plugin editor.
typedef char = INT[0..255];

17

19 // IEEE standard single- and double- precision
// floating point number

21 // Illustrates need for plugin editor.
// Faithful representation of the IEEE standard

23 // might not be required for most cases,
// abstractions are possible.

25 typedef NonNumerical = ENUM {
Zero, PosInf, NegInf, QuietNaN, SignallingNaN };

27
typedef SingleNormalized = struct {

29 Sign : INT[0..1],
Exponent : INT[-126..127],

31 Fraction : INT[8388608..16777216] };

33 typedef SingleDenormalized = struct {
Sign : INT[0..1],

35 Exponent : INT[-126],
Fraction : INT[0..8388608] };

37
typedef DoubleNormalized = struct {

39 Sign : INT[0..1],
Exponent : INT[-1022..1023],

41 Fraction : INT[4503599627370496..9007199254740992] };

. . .



C.2. Additional CALM Sources 147

58 typedef float = union {
SingleNormalized,

60 SingleDenormalized,
NonNumerical };

62
typedef double = union {

64 DoubleNormalized,
DoubleDenormalized,

66 NonNumerical };

68 typedef long_double {
LongDoubleNormalized,

70 LongDoubleDenormalized,
NonNumerical };

. . .

74 // Exception Types
typedef Member = struct {

76 name : STRING,
platformType : type };

78
typedef exception = struct {

80 ExcType : STRING,
Members : Member bag };

82

84 // The fixed type
typedef fixed = struct {

86 Digits : INT[1..31],
Scale : INT[0..*] };

88

90 // short, long, long long
typedef short = INT[-132768..32767]; // 16

92 typedef unsigned_short = INT[0..65536]; // 16

94 typedef long = INT[-2147483648..2147483647]; // 32
typedef unsigned_long = INT[0..4294967296]; // 32

96
typedef long_long = INT[-9223372036854775808.. 9223372036854775807]; // 64

98 typedef unsigned_long_long = INT[0..18446744073709551616]; // 64

. . .

C.2.2 THE ROBOT MODEL MODULE

Listing C.7: The Robot Model module
1 module robot of ccm {

3 CCMEvent AlarmControl {};
CCMEvent DescreteStatus {};

5 CCMEvent DescreteUpdate {};
CCMEvent DisplayAlert {};

7 CCMEvent DisplayWork {};
CCMEvent EquipmentControl {};

9 CCMEvent EquipmentStatus {};
CCMEvent IntrusionStatusReport {};

11 CCMEvent IntrusionStatusReportManagement {};
CCMEvent MovePalletRequest {};

13 CCMEvent PalletProcessingStatus {};
CCMEvent PalletStatusResponse {};

15 CCMEvent PrepareToShutdown {};
CCMEvent ProcessPallet {};

17 CCMEvent ProductionStatus {};
CCMEvent ProductionWorkOrder {};

19 CCMEvent RobotControlMessage {};
CCMEvent RobotStatusMessage {};

21 CCMEvent Shutdown {};
CCMEvent ShutdownStatus {};

23 CCMEvent switchChanged {};
CCMEvent SwitchStatus {};

25 CCMEvent TimeNotification {};

27 CCMInterface AlarmController {};
CCMInterface ClockControl {};

29 CCMInterface conveyorDriveControl {};
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CCMInterface DiscreteControl {};
31 CCMInterface HMIController {};

CCMInterface MWIController {};
33 CCMInterface PCMAnalysis {};

CCMInterface PCMController {};
35 CCMInterface PowerControl {};

CCMInterface RadioFrequencyNeededResponse {};
37 CCMInterface RMAnalysis {};

CCMInterface RMController {};
39 CCMInterface RobotControl {};

CCMInterface RobotMovement {};
41 CCMInterface SwitchControl {};

CCMInterface TextWindows {};
43 CCMInterface WorkOrderResponses {};

CCMInterface WSMAnalysisCalls {};
45 CCMInterface WSMAnalysisOne {};

CCMInterface WSMAnalysisTwo {};
47 CCMInterface WSMController {};

49 CCMComponent AlarmHandler {
consumes AlarmVolume : AlarmControl;

51 provides ControlAlarm : AlarmController };
CCMComponent ClockHandler {

53 consumes ShutdownOrder : Shutdown;
consumes ShutdownWarning : PrepareToShutdown;

55 emits ShutdownResponse : ShutdownStatus;
provides control : ClockControl;

57 publishes currentTime : TimeNotification };
CCMComponent Communications {

59 consumes ProductionReport : ProductionStatus;
consumes ShutdownOrder : Shutdown;

61 consumes ShutdownWarning : PrepareToShutdown;
consumes UrgentReport : IntrusionStatusReportManagement;

63 emits ShutdownResponse : ShutdownStatus;
emits WorkOrder : ProductionWorkOrder;

65 provides Controller : MWIController };
CCMComponent ConvoyerDriveHandler {

67 provides ConvoyerControl : conveyorDriveControl };
CCMComponent DiscreteController {

69 emits status : DescreteStatus;
provides Control : DiscreteControl };

71 CCMComponent GraphicalUserInterface {
provides Windows : TextWindows;

73 uses Responses : WorkOrderResponses };
CCMComponent PalletConveyor {

75 consumes PalletRequests : MovePalletRequest;
consumes ShutdownOrder : Shutdown;

77 consumes ShutdownWarning : PrepareToShutdown;
consumes update : DescreteUpdate;

79 emits Alert : DisplayAlert;
emits IntrusionReport : IntrusionStatusReport;

81 emits PalletStatus : PalletStatusResponse;
emits ShutdownResponse : ShutdownStatus;

83 emits SoundAlarm : AlarmControl;
provides CircleAnalysis : PCMAnalysis;

85 provides Controller : PCMController;
uses AnalysisTwo : WSMAnalysisTwo;

87 uses control : PowerControl;
uses convoyerControl : conveyorDriveControl };

89 CCMComponent PowerSwitchingHandle {
provides Control : PowerControl };

91 CCMComponent ProductionController {
consumes IntrusionReport : IntrusionStatusReport;

93 consumes PalletStatus : PalletStatusResponse;
consumes ProcessingStatus : PalletProcessingStatus;

95 consumes ProductionEquipmentStatus : EquipmentStatus;
consumes ShutdownReport : ShutdownStatus;

97 consumes WorkOrder : ProductionWorkOrder;
emits Alert : DisplayAlert;

99 emits Display : DisplayWork;
emits MovePallet : MovePalletRequest;

101 emits ProductionControl : ProcessPallet;
emits ProductionReport : ProductionStatus;

103 emits Reports : IntrusionStatusReportManagement;
emits SoundAlarm : AlarmControl;

105 provides AnalysisCalls : WSMAnalysisCalls;
provides AnalysisOne : WSMAnalysisOne;

107 provides AnalysisTwo : WSMAnalysisTwo;
provides Controller : WSMController;

109 provides DisplayResponse : WorkOrderResponses;
publishes ProductionEquipmentControl : EquipmentControl;

111 publishes ShutdownOrder : Shutdown;
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publishes ShutdownWarning : PrepareToShutdown;
113 uses Analysis : RMAnalysis };

CCMComponent RobotHardware {
115 provides control : RobotControl };

CCMComponent RobotMovementControl {
117 consumes ControlRobot : RobotControlMessage;

provides Movement : RobotMovement;
119 publishes RobotStatus : RobotStatusMessage;

uses control : RobotControl };
121 CCMComponent RobotWatchProduction {

consumes currentTime : TimeNotification;
123 consumes ProcessPalletCommands : ProcessPallet;

consumes ProductionEquipmentControl : EquipmentControl;
125 consumes RobotStatus : RobotStatusMessage;

consumes ShutdownOrder : Shutdown;
127 consumes ShutdownWarning : PrepareToShutdown;

emits Display : DisplayWork;
129 emits ProcessingStatus : PalletProcessingStatus;

emits ProductionEquipmentStatus : EquipmentStatus;
131 emits ShutdownResponse : ShutdownStatus;

provides Analysis : RMAnalysis;
133 provides Controller : RMController;

provides RadioFrequency : RadioFrequencyNeededResponse;
135 publishes ControlRobot : RobotControlMessage;

usues AnalysisOne : WSMAnalysisOne;
137 usues CircleAnalysis : PCMAnalysis;

usues Movement : RobotMovement;
139 usues RobotID : DiscreteControl };

CCMComponent SwitchController {
141 consumes status : SwitchStatus;

provides Control : SwitchControl;
143 publishes switchChanges : switchChanged };

CCMComponent SwitchDriver {
145 publishes status : SwitchStatus };

CCMComponent WatchProductionHMI {
147 consumes Alert : DisplayAlert;

consumes ShutdownOrder : Shutdown;
149 consumes ShutdownWarning : PrepareToShutdown;

consumes switchChanges : switchChanged;
151 consumes WorkDisplayUpdate : DisplayWork;

emits ShutdownResponse : ShutdownStatus;
153 provides Controller : HMIController;

provides responses : WorkOrderResponses;
155 uses HumanResponse : WorkOrderResponses;

uses RadioResponse : RadioFrequencyNeededResponse;
157 uses windowing : TextWindows };

}
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D.1 IMMEDIATE PROBLEM REPORT

Figure D.1: Changing the multiplexity of the providesComponent port option in CADENA
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Figure D.2: Effect of a changed multiplexity, affected scenario in CADENA

Figure D.3: Effect of a changed multiplexity in the CADENA scenario form editor
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