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Abstract

We introduce a new classification method that is applicable to classify image pixels. This

work was motivated by the test-based classification (TBC) introduced by Liao and Akritas

(2007). We found that direct application of TBC on image pixel classification can lead to

high mis-classcification rate. We propose a method that combines the minimum distance

and evidence from hypothesis testing to classify image pixels. The method is implemented in

R programming language. Our method eliminates the drawback of Liao and Akritas (2007).

Extensive experiments show that our modified method works better in the classification of

image pixels in comparison with some standard methods of classification; namely, Linear

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Classification Tree

(CT), Polyclass classification, and TBC. We demonstrate that our method works well in the

case of both grayscale and color images.
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Chapter 1

Introduction

The aim of this report is to provide a detailed description of a new image classification

method supplemented with examples of implementation. We use R programming language,

for the implementation of our method. The codes for our method and other methods for

comparison are also given in Appendix at the end of the report. We devote chapter 1 to

introduce image analysis in general and give a brief review of other existing methods of

image pixel classification which motivates our study and provide a background to describe

our new method.

1.1 Image

We begin this section with the mathematical definition of an image. Mathematically, an

image can be defined by a two dimensional function, say f(x, y), where x and y represent

plane coordinates and amplitude of f at (x, y) is called grey level or intensity of image at

that point. When the values given by x, y and the amplitude of f are all finite, discrete

quantities, the resulting image is called a digital image. These processes of digitizing the

coordinates and amplitudes are termed as sampling and quantization respectively. Thus the

process of sampling and quantization results in a representation of an image as a matrix

of real numbers. More precisely, a rectangular black-and-white image is a matrix of real

numbers in which all the entries represent the level of grey at that point. The level of grey

ranges from 0 to 255 in which 0 represents the darkest spot and 255 represents the brightest
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spot. The elements of the digital image are usually called pixels, short for picture elements.

Next, with the help of monochromatic images, we can generate color images. Precisely,

a color image is generated by taking a tensor product of three matrices which are the

decompositions of the original image into blue, green, and red components. These three

primary colors, red, blue and green (RGB) are linearly independent which means none of

the colors can be obtained by any combination of the other two. The tensor product of three

matrices can be viewed as three matrices stacked one on top of the other in the order of blue,

green and red from top to bottom. The multi-spectral images which have more than red,

green, and blue components can also be visualized as the stack of more than three matrices

stacked one on top of the other. Thus individual two-dimensional images (monochromatic

images) are combined to form color images so that a color or multi-spectral image is handled

by handling each monochromatic image, one at a time and repeating the process for the

rest of the color components in the tensor product. Due to this reason, we will mainly

consider monochromatic images in the first 3 chapters of the report and give comparisons

of classification methods on RGB colored images in chapter 4.

1.2 Image analysis

Simply speaking, image analysis is a study in which we analyze image features and solve

the image-related problems using matrix computations or some other mathematical tools.

Image analysis is also known as image processing. The objective of image analysis ranges

from observing and identifying image features to transforming images into different forms

using these features. There are many areas where image analysis is applied, such as remote

sensing, medicine, astronomy, space exploration, ultrasonic imaging etc. Now we discuss

a core process of the image analysis, known as image classification. Image classification is

the process of assigning the pixels of an image to a specific class or category to identify

the image features. We begin with the discussion of image pixels classification with the

introduction of image classes.
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1.2.1 Image classes

We recall that a digital image is a rectangular arrangement of many pixels (picture elements)

which are the smallest units of the digital image and that the level of grey or intensity of

these pixels ranges from 0 to 255 depending on the brightness of the locations in the image.

So the pixels representing a particular feature or a color in an image show more homogeneity

in terms of the distribution followed by the data set of pixels. Hence by comparing image

pixels with each other, and to pixels of known identity, we can form groups of similar image

pixels into different classes. In this way, classes in an image are formed.

Theoretically, these classes are homogeneous in the sense that pixels with classes are spec-

trally more similar to each other than they are to pixels in the other classes. Although, in

practice, pixels in a class will display some variations. These classes then represent different

informational categories of interest in the image. Now, in terms of distribution, pixels rep-

resenting any two classes, so formed, may follow either two different distributions or a same

distribution with different parameters. For example, let us consider two classes, say class1

and class2. Then the data in class1 may follow N(µ1, σ
2) and the data in class2 may follow

N(µ2, σ
2) which is an example of image classes with the same distribution with different

parameters. If, on the other hand, the data in class1 follows the N(µ, σ2) and the data in

class2 follows χ2 we get an example of image classes with two different distributions.

1.2.2 Image classification

Broadly speaking, classification is a multivariate analysis task and as the name suggests, it

basically deals with classifying a new observation into one of the classes of interest. Our

main focus in this report will be on the classification of image pixels. In the case of images,

classification is a process of observing and identifying features of an image. More generally,

it is a process of assigning pixels to different classes in the image.

Images can be considered as a finite collection of regions identified as a number of predeter-

mined classes. But these parts or the image itself may not be identifiable to the human eye.

In order to view the image parts as something familiar, we need to perform image classifica-
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tion. Thus with the help of image classification, we can observe and identify different image

features which have many practical applications. The main part of image classification is

to obtain a recognition system that classifies the parts of an image into different identified

classes. We use random sample of locations, called the training data, from each class of

interest to build the recognition system. All the classification methods assume that the

image in context depicts one or more image features on it and that each of these features is

from one of exclusive and distinct classes. The numerical properties of image features are

analyzed in the classification and it organizes the data into different categories. In classi-

fication algorithms there are usually two stages of processing namely training and testing.

Characteristic properties of typical image features are separated in the training phase which

is then followed by a formation of training classes.

In general, there are two different approaches of image classification: supervised and unsu-

pervised. The supervised classification is based on the idea that a user can select sample

pixels in an image that work as representative of classes of interest in the image and then

direct the image processing software to use these choices as references for the classification

of all other pixels in the image. In the unsupervised classification, as the name suggests,

groupings of pixels with common characteristics are based on the software analysis of an

image without user providing sample classes for the classification.

1.3 Applications of image classification

Here we present an overview of various applications of image classification techniques mostly

taken from Green (1983).

1.3.1 Remote Sensing

Remote sensing refers to collecting information about an object without coming into con-

tact with that object. Observations usually consist of measurements of electromagnetic

radiation with different wavelengths of the radiation carrying a variety of information about

the earth’s surface and atmosphere. There are many applications of multispectral image
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classification in earth applications remote sensing. The major subdivisons of remote sensing

that involve use of image classifications are;

Mineral Exploration

Mineral exploration involves the use of multispectral imagery for analysis of surface composi-

tion that may indicate mineral deposition for analysis of surface structure. Image classifica-

tions can be applied in these multispectral images which is helpful in the mineral exploration.

Along with the classification of images, image enhancment, correlation of image data with

geographically referenced data bases are also used in the mineral exploration.

Determination of surface composition

Surface composition can be estimated from a knowledge of the reflectance properties of

various types of materials. Multispectral imaging provides one mechanism for determining

surface composition. With the help of spectral reflectivity properties of various objects on

the surface, we can classify them and thus can determine the surface composition.

Land-Use Analysis

Remotely sensed imagery can be used to determine various categories of land utilization.

With the help of multispectral classification, we can get information about the land utiliza-

tion such as residential region, open space, agricultural, forest, water etc. Classification is

also useful to monitor the quality of ocean water, especially near coastlines.

1.3.2 Medical Applications

Digital image processing is becoming an increasingly important tool in medical diagnosis.

One of the applications of the image classification in medical is in chromosome karyotyping.

Analysis of chromosomes samples can provide important insight into disease and genetic

defects. A microscope slide containing a set of randomly oriented chromosome is obtained

and converted to digital format. Each of the chromosomes is isolated as a single object, and

the object is then classified to type using a variety of pattern-recognition techniques.

As a medical application of classification, we can take classification of database of 10000

grey-level anonymous x-ray images which are arbitrarily selected from clinical routine at
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some hospital. They represent different anatomic body parts and biological systems. Using

some classification technique, we can classify the database of x-ray into some categories.

Also comparing normal and abnormal blood vessel structures, via the analysis of cell images

is central to pathology and medicine.

1.3.3 Astronomy

Digital techniques are widely used in astronomical applications. Digital techniques and dig-

ital image sensors provide improved resolution and dynamic range for astronomical applica-

tions. Study of galaxies, stars, planets etc can be helpful using the classification technique.

1.4 Motivation

A classification method based on hypothesis testings was developed by Liao and Akritas

(2007). This is a powerful non-parametric classification method which works for data fol-

lowing any distributions. In this report, we employ Liao & Akritas’s classification in the

context of images and come up with a new method of image classification which works better

than any other popular classification methods.

The main objective of the image classification is to obtain a dependable object recognition

system that classifies all the locations in the image into a number of identified classes. There

are many classification methods such as Linear Discriminant Analysis (LDA), Quadratic Dis-

criminant Analysis (QDA), Bayesian method of classification, Classification Tree Method

(CTM), Random Forest, Test-based classification, to name just a few.

Although, the non-parametric test-based classification introduced by Liao and Akritas

(2007) is a powerful classification method, their implementation in the context of images

reveals that their method can completely fail to correctly classify all the image pixels in

the given image due to small p-values. This means that the Liao & Akritas’s method does

not work well for the image classification. A non-parametric test-based classification is an

effective method of image pixels classification because image pixel classes, in general, can

follow any distributions. So, we look for a test-based classification method that works in
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the context of images. We eliminate the drawback of Liao & Akritas’s classification by

introducing the minimum distance classification in it and come up with a new test-based

classification of image pixels. Thus Liao & Akritas’s classification method was the primary

motivation of our work in this report.

The idea of the minimum distance and sample evidence from the hypothesis testings are the

main tools of our modified classification method. In our implementation of Liao & Akritas’s

method, we observe that their method fails to classify the images when the test p-values

obtained from the hypothesis testings are very small. But our method works well even if the

test p-values are small. Again, we compare our method of classification with some of the

standard methods of classifications namely Linear Discriminant Analysis (LDA), Quadratic

Discriminant Analysis (QDA), Classification Tree Method (CTM), and Polyclass method of

image classification. We employ these standard methods of classification and our method in

some colored images. We verify with our experiments in different images that our method

of classification performs better than Liao & Akritas’s method and the standard methods

of classification in classifying the image pixels. We first employ our classification method

for a binary (two classes) classification of image pixels and then extend it for a multiclass

(more than two classes) classification of image pixels. We observe that our method prevails

in both cases.

Thus our method is a test-based classification where the minimum distance and sample

evidence from the hypothesis testings are combined to build the class recognition system

and performs better than other standard methods in the classification of image pixels.

1.5 Different methods of Classification

In this section, we give brief summaries of some popular classification methods.

1.5.1 Bayesian Classification

Bayesian classification is a statistical method for classification which assumes an underlying

probabilistic model, the Bayes theorem. Bayesian classification is named after Thomas
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Bayes, who proposed the Bayes theorem.

Now, we describe the classification of a pattern vector by the Bayes classifier. Suppose

that there are k classes of interest, given by ωj, j = 1, 2, · · · , k and x is a n dimensional

pattern vector. The probability that a pattern vector x belongs to a class ωj is given by

P (ωj|x). Using the Bayes theorem we have, P (ωj ∩ x) = P (x|ωj)P (ωj) where P (x|ωj) is

the probability density function of the pattern vector x in the class ωj and P (ωj) is the

probability of occurrence of class ωj. The decision function for the Bayesian classification is,

dj(x) = P (ωj|x) ∝ P (x|ωj)P (ωj)

Thus a pattern vector x belongs to class ωj if dj(x) > di(x) for i = 1, 2, · · · , k; i ̸= j. It is

often assumed that the data from a class of interest have Gaussian distribution, i.e.,

P (x|ωj) =
1

(2π)
n
2 |Cj|

1
2

exp

(
−1

2
[(x−mj)

TCj
−1(x−mj)]

)
where, Cj, mj are the covariance matrix and mean vector of class ωj and |Cj| is the deter-

minant of Cj.

As ln is a monotonic function, decision function remains invariant under the ln transforma-

tion. Then our decision function becomes,

dj(x) ∝ lnP (x|ωj)P (ωj) (1.5.1)

= lnP (x|ωj) + lnP (ωj) (1.5.2)

= −1

2
ln |Cj| −

1

2
[(x−mj)

TCj
−1(x−mj)] + lnP (ωj)−

n

2
ln(2π.) (1.5.3)

Since, the term −n
2
ln(2π) is independent of number of classes, the decision function for the

Bayesian classification is given by,

dj(x) = P (ωj|x) ∝ −1

2
ln |Cj| −

1

2
[(x−mj)

TCj
−1(x−mj)] + lnP (ωj)

1.5.2 Test-Based Classification (TBC)

The test-based classification was introduced by Liao and Akritas (2007). This test-based

classification does not need any assumptions on the form of the distribution of classes. We
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now discuss the main idea behind this test based classification.

Liao and Akritas (2007) employ hypothesis testing in their classification method. The p-

values of the hypothesis tests which are essentially the values that provide evidence to reject

or fail to reject the null hypothesis is the main idea behind Liao & Akritas’s classification

method.

Suppose that there are two classes, say class 1 and class 2. Let x0 be a test point. Suppose

that class means from two classes are µ1 and µ2. Let us consider training vectors with

observations (x11, x12, ....x1n1) and (x21, x22, ....x2n2) from class 1 and class 2 respectively.

For the classification of the test point x0, the following two tests are conducted:

• Test 1: Place x0 with the observations from class 1 and use (x0, x11, x12, x13.........x1n1)

and (x21, x22, x23.........x1n2) to test the null hypothesis H0 : µ1 = µ2.

• Test 2: Place x0 together with the observations from class 2 and use (x11, x12, x13.........x1n1)

and (x0, x21, x22, x23.........x1n2) to test the null hypothesis H0 : µ1 = µ2.

Then, the decision rule for the classification is that x0 belongs to class 1 if PV1 is less than

PV2. Similarly, x0 belongs to class 2 if PV2 is less than PV1. This binary classification is

then extended to more than two classes case.

1.5.3 Linear Discriminant Analysis(LDA)

Linear discriminant analysis (LDA) is a method in multivariate analysis and gives us the

separation of different classes of objects. It follows the principle of total probability of

misclassification and assume the normality distribution for data in each class. We now give

a brief overview of binary classification using LDA.

Let p1, p2 be the prior probabilities of two classes, say, π1 and π2. We would like to assign an

object Y to one of the two classes. Let Y be characterized by some vector X = [x1, ...., xp]
T .

Now by using the Bayes’s rule the conditional probability of each class is given by:

9



P (πi|X) =
P (X|πi)pi

2∑
i=1

P (X|πj)pj

where P (πi|X) is the posterior probability and P (X|πi) is called likelihood function

of πi. The prior probabilities are assumed to be given. If they are not known, then the

uniform distribution is used sothat p1 = p2. We assume that the conditional distributions

are multivariate normal, i.e.,

P (X|πi) =
1

(2π)
p
2 |
∑

i |
1
2

exp

(
−1

2
[(X − µi)

T
∑
i

−1
(X − µi)]

)
where µi,

∑
i are mean and covariance matrices.

log

[
P (π1|X = x

P (π2|X = x

]
= log

[
P (X = x|π1)P (π1)

P (X = x|π2)P (π2)

]
(1.5.4)

= log

[
p1 exp(−1

2
[(X − µ1)

T
∑−1(X − µ1)])

p2 exp(−1
2
[(X − µ2)T

∑−1(X − µ2)])

]
(1.5.5)

In LDA, it is assumed that the classes have common covariance matrix, i.e.,
∑

1 =
∑

2 .

Thus we have after simplification,

log

[
P (π1|X = x

P (π2|X = x

]
= log(

p1
p2
)− 1

2
(µ1 + µ2)

T
∑−1

(µ1− µ2) + xT
∑−1

(µ1 − µ2) (1.5.6)

Hence, by minimizing the posterior probability of misclassification, a new observation

x0 belongs to class1 if

xT
0

∑−1
(µ1 − µ2)−

1

2
(µ1 + µ2)

T
∑−1

(µ1 − µ2) > log(
p1
p2
)

The decision boundary between classes π1 and π2, i.e., the set where P (π1|X = x) =

P (π2|X = x), is linear in x and is a hyperplane in p-dimension with p > 1. In practice, the

mean µi and covariance matrix
∑

i of classes are unknown and are estimated by using the

training data.
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1.5.4 Quadratic Discriminant Analysis (QDA)

Quadratic discriminant analysis follows similar principle as LDA and also assume that the

distributions are normal. This method is different from the linear discriminant analysis in

the sense that it allows the classes to have different covariance matrices. Because of this the

decision boundary between the classes is quadratic.

Then using the discussion in the LDA, we have after simplification, an observation x0 belongs

to class π1 if

−1

2
xT
0

(∑−1

1
−
∑−1

2

)
x0 +

(
µT
1

∑−1

1
− µT

2

∑−1

2

)
x0 −K > ln

[
p2
p1

]
where

K =
1

2
log

[
|
∑

1|
|
∑

2|

]
+

1

2

(
µT
1

∑−1

1
µ1 − µT

2

∑−1

2
µ2

)
Here the surface that separates the classes, is quadratic. Hence, we use the term quadratic

in QDA. We estimate the class parameters µi ,
∑

i by using the training data.

1.5.5 Support Vector Machines (SVM)

Support vector machines are simply a set of related supervised learning methods which

analyze data and recognize patterns. The SVM’s perform pattern recognition between two

point classes with the help of a surface obtained by using certain points of training data

and these points are called support vectors. The SVM’s is a non-probabilistic binary linear

classifier which constructs a hyperplane or a set of hyperplane for the classification. We

consider both linearly separable and non-separable data.

The basic idea behind the SVM classification in the linearly separable data is to choose a

hyperplane which gives us the maximum separation of two groups of data. In other words,

we choose the hyperplane which has the largest margin where margin is the summation of

shortest distance from the separating hyperplane to the nearest data of both classes. Such

a hyperplane is called maximum-margin hyperplane. In order to address the non-linearly

separable data, SVM does a mapping from the input space to a higher dimensional space
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where the data is linearly separable and a maximal separating hyperplane is constructed

there. Now we give the basic theory of SVM, mostly taken from Vapnik (1982). Suppose

that we are given a set S of points xi, xi ∈ Rn, i = 1, 2, · · · , N and each xi belongs to

either of the two classes. We assign a label yi ∈ {1,−1}. We need to find equation of

hyperplane which divides S with all the points of one class in same side and maximizing the

minimum distance between either of the two classes and the hyperplane. A hyperplane can

be represented by, W ·X − b = 0 where · represents dot product, W is normal vector and b

is the distance from the origin. When the data are linearly separable, W and b are chosen

to maximize the distance between two parallel hyperplane which separate the data. These

hyperplanes are given by W ·X − b = 1,W ·X − b = −1. But the distance between these

hyperplanes is 2
∥W∥ , where, ∥W∥ is norm of W .

So we minimize ∥W∥. We need, W ·X − b ≥ 1 for xi to be in first class and W ·X − b ≤ −1

for xi to be in second class. Thus we need to minimize ∥W∥ subjected to the condition

yi(W ·X− b) ≥ 1, i = 1, 2, · · · , N. After the construction of the hyperplane, it separates the

data into two distinct classes.

1.5.6 Classification Tree

Classification tree method (CTM), also known as decision tree method, is an observational

method which is used in the classification of explanatory variable. Classification tree method

makes no prior assumptions about the data to be classified. Therefore, it is a non-parametric

technique. It is simply based on the idea of partition testing. By the means of this method,

the input domain of a test object is regarded under various aspects. Then for each such

aspect, we form disjoint and complete classification. The stepwise partition of the input

domain is represented graphically in the form of a tree. For this reason, it is called classifi-

cation tree method.

Tree structured classifiers are constructed by repeated splits of subsets of the feature space

into two descendent subsets beginning with the feature space itself. More precisely, the

decision tree is constructed by recursively partitioning the data set into purer, more homo-

12



geneous subsets depending on a set of tests applied to one or more attribute values at each

node in the tree. All the algorithms developed to split the training data at each internal

node of a decision tree into regions that contain examples from just one class, either min-

imize the impurity of the training data or maximize the goodness of split. The goodness

of split is measured by an impurity function defined for each node. The possible impurity

functions include entropy, the misclassification rate, and the Gini index. The details of these

can be found in Hastie, Tibshirani, and J. (2001). The procedure of creating a tree classifier

involves the following three steps:

(1) The selection of splits.

(2) The decisions when to declare a node terminal or to continue splitting it.

(3) The assignment of each terminal node to a class.

The class labels are assigned to terminal nodes based on a majority vote or a weighted vote

when it is assumed that certain classes are more likely than others. A tree is composed

of a root node which contains all the data, a set of internal nodes (splits), and a set of

terminal nodes which are called leaves. Each node in a decision tree has only one parent

node and two or more descendent nodes. The data is classified by moving down the tree and

sequentially subdividing it according to the decision framework defined by the tree until a

leaf is reached. Decision tree classifiers divide the data into subsets, which contain only a

single class.

1.5.7 Polyclass

Polyclass model fits a polychotomus logistic regression model using linear splines and their

tensor product. It provides estimates for conditional class probabilities which can be esti-

mated to predict class labels. We now give an overview of Polyclass model, most of which

has been taken from Stone et al. (1997). Suppose that Y is a qualitative random variable

that takes on a finite number K + 1 of values that we refer to as classes. Depending on a

vector of predictors X ∈ RM . We would like to predict Y .

As stated earlier, Polyclass uses piecewise linear splines and selected tensor products to
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model the conditional class probabilities. Precisely, suppose P (Y = k|X = x) > 0 for

k ∈ K = {1, . . . , K + 1} and x ∈ X, where X is a subset of RM over which X ranges. We

set,

θ(k|x) = log
P (Y = k|X = x)

P (Y = K + 1|X = x)
, x ∈ X and k ∈ K.

Then θ(K + 1|x) = 0 for x ∈ X and

P (Y = k|X = x) =
exp θ(k|x)

exp θ(1|x) + . . .+ exp θ(K + 1|x)
, x ∈ X and k ∈ K.

This is referred as the polychotomous regression model; when K = 1 it is known as the

logistic regression model.

Let J be a positive integer and G be a J dimensional linear space of functions on X with

basis B1, . . . , BJ . Let us consider the model

θ(k|x) = θ(k|x; βk) =
J∑

j=1

βjkBj(x), x ∈ X and k ∈ K;

where β is the JK−dimensional column vector consisting of the entries β1, . . . , βK . Then

we set,

P (Y = k|X = x; β) =
exp θ(k|x; β)

exp θ(1|x; β) + . . .+ exp θ(K + 1|x; β)

for β ∈ RJK , x ∈ X and k ∈ K.

The maximum likelihood estimate of θ(k|x) is given by θ̂(k|x) = θ(k|x; β̂) where β̂ is the

maximum likelihood estimate given by l(β̂) = maxβ l(β). Then the Polyclass rule of classi-

fication is to assign a case with X = x to a class k having the maximum value of θ̂(k|x)

In Polyclass, there are K parameters for each basis function which increases the amount of

computation needed for large data sets.

1.6 Organization of the report.

The purpose of this report is to introduce and apply a new method of classification in the

context of images with detailed theory and illustrated examples. As prior probabilities of

classes also play an important role in our classification, we need to take into account of both

14



equal and unequal prior probabilities. The rest of the report is organized as below.

Chapter 2 begins with the binary classification, i.e., classification of an image into two classes

of interest. In this chapter, we first apply Liao & Akritas’s classification method in some

images considering the case of equal prior probabilities of classes. After the illustration of

failure of Liao & Akritas’s method in some images, we introduce our modified method. We

illustrate that our classification method works in the images. After considering the case of

equal prior probabilities of classes, we then take classes with unequal priors in the images.

We then discuss Liao & Akritas in the unequal priors case. Finally, the chapter ends with

the application of modified classification in the case of unequal prior probabilities.

In chapter 3, we extend the idea of binary classification to the case of multi-classes. The

chapter begins with application of Liao & Akritas’s multiclass classification in some images

by assuming the equal priors of classes. Then the next section deals with the discussion of

theory and illustration with examples of application of our modified method in the images.

Similarly we discuss Laio & Akritas and the modified method by considering unequal prior

probabilities of classes in applications at the end of the chapter.

In chapter 4, we discuss the comparisons of our method of classification with some standard

methods of classifications. Comparisons in binary and multiclass classification of image

pixels are performed in colored images.

0.7137255 0.7176471 0.7215686 0.7254902 0.7019608 0.7215686

0.7098039 0.7098039 0.7137255 0.7137255 0.7215686 0.7372549

0.7294118 0.7176471 0.7294118 0.7490196 0.7254902 0.7411765

0.7294118 0.7137255 0.7176471 0.7372549 0.7215686 0.7333333

0.7294118 0.7137255 0.7098039 0.7215686 0.7098039 0.7215686

\\

0.1803922 0.2000000 0.2078431 0.2196078 0.2274510 0.1921569 0.1568627

0.1607843 0.1882353 0.2039216 0.2156863 0.2196078 0.1843137 0.1607843
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0.1647059 0.1843137 0.1882353 0.1882353 0.1882353 0.1725490 0.1803922

0.1921569 0.1764706 0.1490196 0.1529412 0.1764706 0.1725490 0.1764706

0.2235294 0.2117647 0.1921569 0.1960784 0.2196078 0.2117647 0.2078431

0.1960784 0.1960784 0.1843137 0.1960784 0.2156863 0.2078431 0.1960784

0.1568627 0.1686275 0.1686275 0.1803922 0.2039216 0.2000000 0.1843137

\\

0.8627451 0.8588235 0.8509804 0.8509804 0.8509804 0.8431373 0.8313725

0.8627451 0.8588235 0.8549020 0.8549020 0.8509804 0.8392157 0.8313725

0.8666667 0.8588235 0.8549020 0.8549020 0.8549020 0.8470588 0.8352941

0.8666667 0.8588235 0.8588235 0.8588235 0.8588235 0.8509804 0.8392157

0.8666667 0.8627451 0.8588235 0.8588235 0.8627451 0.8549020 0.8470588

0.8666667 0.8627451 0.8627451 0.8627451 0.8666667 0.8666667 0.8509804

0.8705882 0.8666667 0.8627451 0.8666667 0.8666667 0.8627451 0.8549020

0.8745098 0.8666667 0.8627451 0.8666667 0.8705882 0.8666667 0.8549020

\\

0.6039216 0.5764706 0.5882353 0.6039216 0.6117647 0.6313725

0.6039216 0.5725490 0.5843137 0.5960784 0.6000000 0.6156863

0.6078431 0.5764706 0.5843137 0.5921569 0.5921569 0.6039216

0.6196078 0.5882353 0.5921569 0.5960784 0.5882353 0.5960784

0.6274510 0.6039216 0.6078431 0.6078431 0.6000000 0.6039216
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Chapter 2

Binary classification of image pixels.

We begin this chapter with the application of test-based classification (TBC) introduced by

Liao & Akritas (2007) in the case of images. Liao & Akritas (2007) employ hypothesis testing

in their classification method. The p-values of the hypothesis tests which are essentially the

values that provide evidence to reject or fail to reject the null hypothesis is the main idea

behind Liao & Akritas’s classification method. We would like to do a binary classification

of image pixels and we use some grey scale images of size 512 × 512 for our purpose. In

this chapter, we consider only two classes of pixels in a given image and our goal is to

identify each pixel of the image as of one class or the other. After implementation of Liao

and Akritas (2007) for image pixel classification, we found that this method can completely

fail to give correct classification of image pixels when both test p-values are small. We will

develop a class recognition system or a classification function which assigns a class to every

pixel of the image. We will consider both cases of equal and unequal prior probabilities of

classes in the image.

2.1 Binary Classification with equal prior using Liao

and Akritas (2007).

Here, we give a description of Liao & Akritas’s binary classification with equal prior proba-

bilities of classes. Let p1, p2 be the prior probabilities of the classes of interest. Equal prior
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means p1 = p2 = 1
2
. We will describe how to apply Liao & Akritas’s binary classification

method in the context of images below.

2.1.1 Training data, classes and test points.

In this section we give a description about the formation of training data, classes and test

points in a given image. This will also be used in later chapters.

We first define our classes of interest in the given image. In an image, we can define our

classes of interest by selecting the regions marked with different colors in it. We use some

data that is known a priori to belong to the involved classes to train the system about these

classes and learn the class parameters. This data is referred to as training data. The train-

ing data of each class contains information about that class which is then used to compute

class parameters.

Let us now take a rectangular part of a region to acquire training data of that class. We do

this by choosing two points in the region which will be the end points of the main diagonal

of the rectangle. Then all the pixels in this rectangular region form the training data for

its corresponding class. In this way, we select two sets of pixel values in the given image

to define our classes and these sets serve as training data for the classes. These training

data may follow either two different distributions or the same distribution with different

parameters.

In the classification of images, we would like to classify a randomly selected pixel in the

images as belonging to one of the defined classes. This randomly selected pixel is called a

test point. We then use the information provided by the class parameters to classify the

test points in the image.
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2.1.2 Description of the method.

We take a standard grey scale image of size 512 × 512. Let class 1 and class 2 denote the

two classes of interest in the image. The training data in class 1 can be obtained by se-

lecting a rectangle from region1 as described in Section 2.1.1 which will be a submatrix of

the 512 × 512 matrix. Next, we put it into a vector form by adjoining each column of the

submatrix below its preceding column. We treat this vector of pixels as data from class 1.

As the name suggests we need to employ statistical tests for this classification and the type

of the test we use in this method strictly depends on how we define the classes of interest.

In some cases, the pixel data from a class may resemble a normal random variable while

others do not follow the normal distribution. For this reason, we need a flexible test that

applies to data with general distributions. We choose Wilcoxon rank sum test and student

t-test as our statistical tests. Since Wilcoxon rank sum test does not require assumptions

about the form of the distributions of the measurements, we use this test when pixel values

do not follow the normal distribution. On the other hand, we use the student t-test when

pixel values appear to be reasonably normal.

Let x0 be a test point. Suppose that class means from the two classes are µ1 and µ2. Let us

consider training vectors with observations (x0, x11, x12, x13.........x1n1) and (x21, x22, x23.........x1n2)

from class 1 and class 2 respectively. For the classification of the test point x0, the following

two tests are conducted.

• Test 1: Place x0 with the observations from class 1 and use (x0, x11, x12, x13.........x1n1)

and (x21, x22, x23.........x1n2) to test the null hypothesis H0. The H0 for the Wilcoxon

rank sum test is that class 1 and class 2 have identical distribution and the H0 for the

t-test is µ1 = µ2.

• Test 2: Place x0 with the observation from class 2 and use (x11, x12, x13.........x1n1) and

(x0, x21, x22, x23.........x1n2) to test the null hypothesis H0. The H0 for the Wilcoxon

rank sum test is that class 1 and class 2 have identical distribution and the H0 for the

t-test is µ1 = µ2.

19



Let PV1 and PV2 be the p-values from Test 1 and Test 2 respectively. In a hypothesis

testing, if the p-value is smaller than the significance level, we reject the null hypothesis. A

small PV1 and a large PV2 suggests that putting this observation in class 1 will maintain

the difference of the two classes. On the other hand, putting this observation in class 2 will

blur the boundary between the two classes. Therefore, the decision rule for the classification

is that x0 belongs to class 1 if PV1 is less than PV2. Similarly, x0 belongs to class 2 if PV2

is less than PV1.

Let us apply this method of classification to a specific image, namely the image in Figure

2.1(a). Classes are formed by choosing some regions which represent different levels of

gray-scale so that classes so formed will be different from each other. We choose regions

representing sky in the image as our class 1 and water regions as class 2 and form training

data for these classes. For the classification purpose, we select 20 observation (test) points

labeled with numbers such that first 10 of them are chosen from regions representing class

1 and the rest are taken from class 2 regions as shown in the Figure 2.1(a). Density plot of

the classes in Figure 2.1(b) shows that classes so formed are distinct and separated.

Figure 2.1
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(a) Image with training data and test points. (b) Density plot of classes.
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We employ Liao & Akritas method of classification as discussed above to classify the

selected test points in the given image. The classification of these test points are given in

Table 2.1. From the table, we see that all of the test points are classified correctly.

Table 2.1: Classification by Liao-Akritas method in image Figure 2.1(a)

TP LA PV1 PV2 Obs

1 class 1 2.281097e-08 4.160598e-07 0.8392157

2 class 1 2.281097e-08 4.160598e-07 0.8784314

3 class 1 2.281097e-08 4.160598e-07 0.8392157

4 class 1 2.281097e-08 4.160598e-07 0.8784314

5 class 1 2.281097e-08 4.160598e-07 0.8156863

6 class 1 2.281097e-08 4.160598e-07 0.8705882

7 class 1 2.281097e-08 4.160598e-07 0.8470588

8 class 1 2.281097e-08 4.160598e-07 0.8078431

9 class 1 2.281097e-08 4.160598e-07 0.8117647

10 class 1 2.281097e-08 4.160598e-07 0.8705882

11 class 2 3.526614e-07 2.19588e-08 0.7568627

12 class 2 3.775556e-07 2.198816e-08 0.6941176

13 class 2 3.775556e-07 2.198816e-08 0.7254902

14 class 2 3.775556e-07 2.198816e-08 0.7058824

15 class 2 3.775556e-07 2.198816e-08 0.7058824

16 class 2 3.775556e-07 2.198816e-08 0.7137255

17 class 2 3.775556e-07 2.198816e-08 0.6941176

18 class 2 3.775556e-07 2.198816e-08 0.682353

19 class 2 3.775556e-07 2.198816e-08 0.717647

20 class 2 3.775556e-07 2.198816e-08 0.6862745

PV1= p-value from test 1, PV2= p-value from test 2,

TP= Test point, Obs= Test point pixel,

LA= Liao & Akritas’s classification result

This classification method of Liao and Akritas (2007) works well as long as at least one

of the test p-values is large. When both p-values are very small, their method does not work.

We illustrate with an experiment that their method fails when both p-values are small. For
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this experiment, we consider a pepper image and form training data for the classes as given

in Figure 2.2(a). In this image, we take white color as our first class (class 1) and dark

color as our second class (class 2) so that classes are distinct with each other and form the

training data accordingly. Density plot of classes are shown in the Figure 2.2(b), where 1

and 2 represent the plot for class 1 and class 2 respectively. As before, we select 20 test

points labeled with numbers in the given image such that half of them are taken from class

1 and the rest are from class 2.

Figure 2.2
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(a) Image with training data and test points. (b) Density plot of classes.

The classification of these test points along with their test p-values are given in Table

2.2.

From the Table 2.2, we observe that the Liao & Akritas method classifies most of the

test points as class 2 even though half of the points were chosen from class 1 regions. This

means Liao & Akritas’s method misclassifies some test points in the given image. We note

that for all the test points selected, the corresponding test p-values are very small. This

misclassification is due to the fact that for a valid test, the p-values theoretically follow

the uniform (0, 1) distribution. In fact, both p-values that are smaller than the significance
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Table 2.2: Classification by Liao & Akritas method in image Figure 2.2(a)

TP LA PV1 PV2 Obs

1 class 2 2.298138e-76 2.057060e-76 0.2392157

2 class 2 2.298283e-76 1.991224e-76 0.2627451

3 class 2 2.298283e-76 1.991224e-76 0.2823529

4 class 2 2.298283e-76 1.991224e-76 0.2627451

5 class 1 2.291623e-76 1.069815e-75 0.2000000

6 class 1 2.296688e-76 2.960813e-76 0.2235294

7 class 2 2.298138e-76 2.057060e-76 0.2392157

8 class 2 2.298283e-76 1.991224e-76 0.3294118

9 class 2 2.298283e-76 1.991224e-76 0.3176471

10 class 2 2.298283e-76 1.991224e-76 0.3176471

11 class 2 1.791306e-75 1.99047e-76 0.7803922

12 class 2 2.298283e-76 1.991224e-76 0.6862745

13 class 2 2.298283e-76 1.991224e-76 0.717647

14 class 2 2.298283e-76 1.991224e-76 0.7058824

15 class 2 2.298283e-76 1.991224e-76 0.7058824

16 class 2 2.298283e-76 1.991224e-76 0.7098039

17 class 2 1.380736e-75 1.988376e-76 0.772549

18 class 2 2.233405e-75 1.991161e-76 0.7882353

19 class 2 3.423543e-75 1.991224e-76 0.8196078

20 class 2 4.695842e-76 1.987644e-76 0.7490196

PV1= p-value from test 1, PV2= p-value from test 2,

TP= Test point, Obs= Test point pixel,

LA= Liao & Akritas’s classification result

level do not give different level of evidence to reject the null hypothesis. Hence, the Liao &

Akritas method does not work well when both the test p-values are very small. In the next

section, we propose a modified classification method.
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2.2 Classification based on combined evidence from

minimum distance and hypothesis tests.

In this section, we present a new classification method and apply this method to some

images. In this modified method, we consider two different scenarios based on the test p-

values. When both the test p-values are very small, we make a decision rule depending on

the distance from the class means. When at least one p-value is larger than the significance

level, we make the decision rule same as that of Liao & Akritas discussed in Section 2.1. The

main idea behind the minimum distance classification method is to calculate the distance of

the test point to the classes and then decide the class of the observation with the minimum

distance. The following gives the detailed classification rule for the binary classification of

image pixels:

• If PV1 and PV2 are the test p-values obtained in the hypothesis testing discussed

in Section 2.1.2 and max(PV 1, PV 2) ≥ 0.0001(threshold), i.e., if at least one of the

p-values is larger than the threshold value, then assign the test point x0 to the class

with the smaller p-value.

• If max(PV 1, PV 2) < 0.0001(threshold), i.e., both p-values are smaller than the thresh-

old value, then assign the test point x0 to the class 1 if the distance of x0 to class 1

is less than the distance of x0 to class 2. If the distance of x0 to class 1 is larger than

that to class 2, we classify x0 to class 2.

The distance of a point x0 to a class can take one of the traditional forms such as complete

linkage, single linkage, average linkage, etc., or simply, the distance between x0 and the

central tendency of class pixel values. In our experiments, we employ the distance of x0 to

the mean pixel values of each class.

We now apply this modified classification method in the same image, namely, Pepper,

where Liao & Akritas’s method failed earlier. Similar to the image in the Figure 2.2(a), we

define white color and dark color as our class 1 and class 2 and form similar training data
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for the classes as shown in Figure 2.3(a) which also displays 20 test points. The density plot

of the classes show that the classes are distinct in the image.

Figure 2.3
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(a) Image with training data and test points. (b) Density plot of classes.

Table 2.3 compares the classification given by Liao & Akritas method with the modified

method discussed in this section. Liao & Akritas’s method misclassifies 8 out of 20 test

points whereas our method has no misclassifications. We note that for all the test points

selected, their corresponding test p-values from both the tests are very small. That is the

reason why we have many misclassifications of test points by Liao & Akritas’s method.

Finally, we also perform the above comparison between the Liao-Akritas method and

modified classification method in another image. We take the image in Figure 2.4(a) and

form two classes where pixels representing sky are taken as class 1 and pixels representing

vegetation are taken as class 2. These regions represent two different levels of gray-scale in

the image. Some test points are selected as before and density plot in Figure 2.4(b) indicates

that classes are distinct and well separated. Table 2.4 shows the classification results in this

image. We observe from Table 2.4 that modified classification method provides an accurate

classification of image pixels.
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Table 2.3: Comparison between Liao-Akritas and modified method in image Figure 2.3(a)

TP LA Obs Our PV1 PV2 d1 d2

1 class 1 0.294117 class 1 1.440798e-33 2.222016e-33 0.0983006 0.488840

2 class 1 0.309803 class 1 1.440798e-33 2.222016e-33 0.113986 0.473154

3 class 1 0.235294 class 1 1.440732e-33 2.253694e-33 0.0394771 0.547664

4 class 1 0.215686 class 1 1.440398e-33 3.447916e-33 0.0198692 0.5672722

5 class 1 0.223529 class 1 1.440598e-33 2.560586e-33 0.0277124 0.559429

6 class 1 0.309803 class 1 1.440798e-33 2.222016e-33 0.113986 0.473154

7 class 1 0.368627 class 1 1.440798e-33 2.222016e-33 0.172810 0.414331

8 class 1 0.317647 class 1 1.440798e-33 2.222016e-33 0.121830 0.465311

9 class 1 0.364705 class 1 1.440798e-33 2.222016e-33 0.168888 0.418252

10 class 1 0.168627 class 1 1.440398e-33 1.451305e-32 0.0271895 0.614331

11 class 1 0.749019 class 2 1.525001e-33 2.222016e-33 0.553202 0.0339388

12 class 1 0.749019 class 2 1.525001e-33 2.222016e-33 0.553202 0.0339388

13 class 1 0.756862 class 2 1.757262e-33 2.221709e-33 0.561045 0.0260957

14 class 1 0.760784 class 2 2.135574e-33 2.214053e-33 0.564967 0.0221741

15 class 1 0.721568 class 2 1.440798e-33 2.222016e-33 0.525751 0.0613898

16 class 1 0.631372 class 2 1.440798e-33 2.222016e-33 0.435555 0.151585

17 class 1 0.705882 class 2 1.440798e-33 2.222016e-33 0.510065 0.0770761

18 class 1 0.74509 class 2 1.482100e-33 2.221709e-33 0.549281 0.0378604

19 class 2 0.776470 class 2 6.992565e-33 2.216398e-33 0.580653 0.00648788

20 class 2 0.835294 class 2 6.523792e-32 2.222016e-33 0.639477 0.0523356

PVi= p-value for Test i, di= distance of the test point to the mean of class i

Our= Modified method discussed in Section 2.2, LA= Liao & Akritas’s method

Obs=Pixel of test point, TP= Test point.

2.3 Binary classification with unequal prior probabili-

ties using Liao and Akritas (2007).

In this section, we give a description of binary classification with unequal prior probabilities

of classes introduced by Liao & Akritas. We first discuss the main idea of binary classification

with unequal prior probabilities from Liao and Akritas (2007). Let p1 and p2 be the prior

probabilities of class 1 and class 2 where p1 and p2 are not necessarily equal. Then the equal
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Figure 2.4
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(a) Image with training data and test points. (b) Density plot of classes.

prior probabilities as in Section 2.1 is a particular case of this more general case. Following

Bayes theorem, An observational point x0 belongs to class 1 if

p1f1(x0)

p1f1(x0) + p2f2(x0)
>

p2f2(x0)

p1f1(x0) + p2f2(x0)
.

where f1(x0) represents the density function associated with x0 for class 1 and f2(x0) rep-

resents the density function associated with x0 for class 2. This classifier is the well known

Bayes classifier that achieves minimum misclassification error for 0−1 loss function. We can

think of
f1(x0)

f1(x0) + f2(x0)
as the relative probability that the point x0 is from class 1. Suppose

PV1(x0) and PV2(x0) are the test p-values described in Section 2.1.2. We incorporate the

idea of unequal prior probabilities in the test-based classification (TBC) methodology by

assuming
PV1(x0)

PV1(x0) + PV2(x0)
as the relative test-based probability that the point x0 is not

from class 1 so that

(
1− PV1(x0)

PV1(x0) + PV2(x0)

)
works as the relative test based probability

that the point x0 is from class 1. Hence the TBC classification rule for the case of unequal

prior probabilities is as follows:
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Table 2.4: Comparison between Liao-Akritas and modified method in image Figure 2.4(a)

TP LA Obs Our PV1 PV2 d1 d2

1 class 1 0.9686275 class 1 3.470301e-41 6.497954e-41 0.0160014 0.9424326

2 class 1 0.909804 class 1 3.475206e-41 3.842559e-41 0.07482493 0.883609

3 class 1 0.8745098 class 1 3.475206e-41 3.842559e-41 0.1101190 0.848315

4 class 1 0.972549 class 1 3.473843e-41 7.558878e-41 0.01207983 0.9463542

5 class 1 0.9254902 class 1 3.475206e-41 3.842559e-41 0.05913866 0.8992953

6 class 1 0.9372549 class 1 3.475206e-41 3.842559e-41 0.04737395 0.91106

7 class 1 0.7960784 class 1 3.475206e-41 3.842559e-41 0.1885504 0.7698836

8 class 1 0.8392157 class 1 3.475206e-41 3.842559e-41 0.1454132 0.8130208

9 class 1 0.8000000 class 1 3.475206e-41 3.842559e-41 0.1846289 0.7738051

10 class 1 0.8117647 class 1 3.475206e-41 3.842559e-41 0.1728641 0.7855699

11 class 1 0.04313725 class 2 3.518989e-41 3.842408e-41 0.9414916 0.01694240

12 class 2 0.02745098 class 2 1.300644e-40 3.768573e-41 0.9571779 0.001256127

13 class 2 0.01960784 class 2 5.152598e-40 3.807927e-41 0.965021 0.00658701

14 class 1 0.04313725 class 2 3.518989e-41 3.842408e-41 0.9414916 0.01694240

15 class 1 0.05490196 class 2 3.475206e-41 3.842559e-41 0.9297269 0.02870711

16 class 1 0.05098039 class 2 3.475206e-41 3.842559e-41 0.9336485 0.02478554

17 class 1 0.04705882 class 2 3.475206e-41 3.842559e-41 0.93757 0.02086397

18 class 1 0.08235294 class 2 3.475206e-41 3.842559e-41 0.902276 0.05615809

19 class 1 0.05490196 class 2 3.475206e-41 3.842559e-41 0.9297269 0.02870711

20 class 1 0.06666667 class 2 3.475206e-41 3.842559e-41 0.9179622 0.04047181

PVi= p-value for Test i, di= distance of the test point to the mean of class i

Our= Modified method discussed in Section 2.2, LA= Liao & Akritas’s method

Obs=Pixel of test point, TP= Test point.

We classify observation x0 to class 1 if

p1

(
1− PV1(x0)

PV1(x0) + PV2(x0)

)
> p2

(
1− PV2(x0)

PV1(x0) + PV2(x0)

)
.

More precisely, x0 is classified to class 1 if

(1− p2)PV2(x0) > (1− p1)PV1(x0).
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Similarly, the test point x0 belongs to class 2 if

(1− p1)PV1(x0) > (1− p2)PV2(x0).

Next, we describe the Liao & Akritas method with unequal prior probabilities in the case

of images.

2.3.1 Application of Liao & Akritas method with unequal prior

in image pixel classification.

Here, we describe the method by taking a grey scale image of 512 × 512. The classes are

defined in the given image and then training data and test points are formed by following

the procedure discussed in Section 2.1.1. Let (x11, x12, ....x1n1) and (x21, x22, ....x2n2) be the

observations for the training vectors for class 1 and class 2. Suppose that µ1 and µ2 are

the class means and x0 is a randomly chosen test point. We use Wilcoxon rank sum test

or student t-test as our statistical tests depending on the form of the distribution of data

set for the classes. Let λ =
µ1 + µ2

2
. Using this λ, we define the prior probabilities of the

classes in images as follows:

• If µ1 is less than µ2, then

Prior of class 1 =
Number of pixels in the training data which are less than the λ entrywise

Number of pixels in the training data.

∴ Prior of class 2 = 1− Prior of class 1.

• If µ2 is less than µ1, then

Prior of class 2 =
Number of pixels in the training data which are less than the λ entrywise

Number of pixels in the training data

∴ Prior class 1 = 1− Prior of class 2.

We can also define prior probabilities of classes as:

Prior of class 1 =
N1

N1 +N2

and Prior of class 2 =
N2

N1 +N2

where N1 and N2 are the number of pixel values in the training data for the classes 1 and 2

respectively. For the classification of the test point x0, we perform the following two tests:
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• Test 1: Place x0 with the observations from class 1 and use (x0, x11, x12, x13.........x1n1)

and (x21, x22, x23.........x1n2) to test the null hypothesis H0. The H0 for the Wilcoxon

rank sum test is that class 1 and class 2 have identical distribution and the H0 for the

t-test is µ1 = µ2.

• Test 2: Place x0 with the observation from class 2 and use (x11, x12, x13.........x1n1) and

(x0, x21, x22, x23.........x1n2) to test the null hypothesis H0. The H0 for the Wilcoxon

rank sum test is that class 1 and class 2 have identical distribution and the H0 for the

t-test is µ1 = µ2.

Then the decision rule for the classification is that the test point x0 belongs to class

1 or class 2 depending on PV1(1 − prior of class 1) is smaller or greater than PV2(1 −

prior of class 2). Hence, in terms of prior probabilities, we observe that the higher the prior

probability of a class, the higher the chance for a text point to be in that class.

Next, we apply this method to an image given in Figure 2.5(a). We define the pixels

defining vegetation (grass) as class 1 and that of sky as class 2. We then form training data

for the classes and select some test points in the image as shown in Figure 2.5(a). Density

plot of the classes in Figure 2.5(b) show that the classes are distinct with each other. The

prior probabilities of classes are calculated by the method discussed earlier and are displayed

in Table 2.5 which also exhibits test p-values and classification of selected test points. All

the test points are classified correctly.

As observed in the case of equal prior probabilities, Liao & Akritas method works well

for the images when at least one of the test p-values is large and that their method does

not work when both the p-values are small. In order to illustrate this, we consider an image

given in Figure 2.6(a). In this image we select sky region and vegetation region to represent

two different levels of gray-scale to form two distinct classes. The classes so formed are

distinct and separated as shown by Figure 2.6(a). Then training data are formed and test

points are selected from both regions for classification as shown in Figure 2.6(a). Using the
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Figure 2.5
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(a) Image with training data and test points. (b) Density plot of classes.

decision rule of Liao & Akritas, we classify these points and are shown in Table 2.6 which

also shows the test p-values and prior probabilities of classes.

From the Table 2.6, we observe that 10 test points are misclassified by Liao & Akritas’s

method. Since p-values in a valid test follow the uniform (0, 1) distribution, p-values smaller

than the significance level do not provide differential evidence in rejecting the null hypoth-

esis. Hence, we conclude that Liao & Akritas method for the unequal prior probabilities

does not work for the images when both p-values are small. In the next section, we propose

a modified classification method.

2.4 Modified classification based on combined evidence

from minimum distance and hypothesis tests.

In the modified method, classification decision depends upon both the p-values obtained

from the hypothesis tests and the distance of the test point to each class. The prior prob-

abilities of the classes are obtained by following the method in Section 2.3.1. When both

31



Table 2.5: Classification by Liao-Akritas in image Figure 2.5(a)

TP LA PV1 PV2 Pr1 Pr2 Obs

1 class 1 2.162039e-13 2.615103e-13 0.4929577 0.5070423 0.6313725

2 class 1 2.162039e-13 2.615103e-13 0.4929577 0.5070423 0.6313725

3 class 1 2.162039e-13 3.981934e-13 0.4929577 0.5070423 0.6117647

4 class 1 2.159146e-13 3.647074e-12 0.4929577 0.5070423 0.5803922

5 class 1 2.162039e-13 3.956792e-12 0.4929577 0.5070423 0.5568627

6 class 1 2.147611e-13 1.549740e-12 0.4929577 0.5070423 0.5960784

7 class 1 2.161074e-13 3.226799e-13 0.4929577 0.5070423 0.6235294

8 class 1 2.159146e-13 3.656894e-13 0.4929577 0.5070423 0.6156863

9 class 1 2.135179e-13 9.418029e-13 0.4929577 0.5070423 0.6000000

10 class 1 2.162039e-13 3.956792e-12 0.4929577 0.5070423 0.5058824

11 class 2 4.197354e-12 2.208323e-13 0.4929577 0.5070423 0.7647059

12 class 2 3.270928e-12 2.187733e-13 0.4929577 0.5070423 0.7294118

13 class 2 2.162039e-13 2.208323e-13 0.4929577 0.5070423 0.7098039

14 class 2 5.826353e-13 2.173134e-13 0.4929577 0.5070423 0.7215686

15 class 2 2.162039e-13 2.208323e-13 0.4929577 0.5070423 0.7137255

16 class 2 5.826353e-13 2.173134e-13 0.4929577 0.5070423 0.7215686

17 class 2 5.826353e-13 2.173134e-13 0.4929577 0.5070423 0.7215686

18 class 2 2.162039e-13 2.208323e-13 0.4929577 0.5070423 0.7098039

19 class 2 5.826353e-13 2.173134e-13 0.4929577 0.5070423 0.7215686

20 class 2 2.162039e-13 2.208323e-13 0.4929577 0.5070423 0.7137255

PVi= P-value for Test i, Pri= Prior probability of class i

LA= Liao & Akritas’s method, Obs=Pixel of test point, TP= Test point.

p-values are larger than the significance level, we follow the method of Liao & Akritas dis-

cussed in Section 2.3.1. On the other hand when test p-values are small, we make a decision

depending on the distance of the test point to the classes. For the distance of the test point

to the classes, we employ the distance between the mean of pixel values of the class and the

test point. The detailed classification rule is given below:

• If PV1 and PV2 are test p-values in the hypothesis testings discussed in 2.3.1 and

max(PV 1, PV 2) ≥ 0.0001(threshold), i.e., at least one of the test p-value is larger

32



Figure 2.6
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(a) Image with training data and test points. (b) Density plot of classes.

than the threshold value, then a test point x0 belongs to class 1 or class 2 depending

on PV1(1− prior of class 1) is smaller or greater than PV2(1− prior of class 2).

• If max(PV 1, PV 2) < 0.0001(threshold), i.e., both the test p-values are smaller than

the threshold value, then a test point x0 belongs to class 1 if the distance of x0 to the

mean of class 1 is less than distance of x0 to the mean of class 2. We classify x0 as

coming from the class 2 if the distance of x0 to the mean of class 2 is less than distance

of x0 to the mean of class 1.

Next, we exemplify our modified method by applying it to the same image where Liao &

Akritas’s method failed to classify image pixels. As earlier, we choose pixels representing

sky and vegetation as our class 1 and class 2 respectively and form training data and test

points as shown in Figure 2.7(a). Classification of test points can be observed from Table

2.7 which shows that there are many misclassifications of test points by Laio & Akritas’s

method while the modified method classifies all the selected test points accurately. Hence,

the modified method works well for the case of unequal priors.
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Table 2.6: Classification by Liao-Akritas method in image Figure 2.6(a)

TP LA PV1 PV2 Pr1 Pr2 Obs

1 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.9803922

2 class 1 1.259595e-23 3.284515e-23 0.3376992 0.6623008 0.9882353

3 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.9803922

4 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.945098

5 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.9254902

6 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.9490196

7 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.8352941

8 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.9764706

9 class 1 1.275044e-23 6.554281e-23 0.3376992 0.6623008 0.9921569

10 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.9411765

11 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.945098

12 class 2 2.080374e-23 1.287129e-23 0.3376992 0.6623008 0.02745098

13 class 2 8.030967e-23 1.246122e-23 0.3376992 0.6623008 0.01960784

14 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.04313725

15 class 2 8.030967e-23 1.246122e-23 0.3376992 0.6623008 0.01960784

16 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.03921569

17 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.05882353

18 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.05882353

19 class 2 1.288141e-23 1.288141e-23 0.3376992 0.6623008 0.03921569

20 class 2 2.080374e-23 1.287129e-23 0.3376992 0.6623008 0.02745098

PVi= P-value for Test i, Pri= Prior probability of class i

LA= Liao & Akritas’s method, Obs=Pixel of test point, TP= Test point.

2.5 Classification of a block of pixels

After the classification of a test point, we would like to classify a part of the given image,

i.e., a block of pixels. A block is a collection of many pixels in the image or it can be thought

as a collection of many test points in the image. Then each of the test points is classified

using the modified method of classification discussed in Section 2.4.
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Figure 2.7
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(a) Image with training data and test points. (b) Density plot of classes.
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Table 2.7: Comparison between Liao-Akritas and modified method in image Figure 2.7(a)

TP LA Obs Our Pr1 Pr2 PV1 PV2 d1 d2

1 class 1 0.97 class 1 0.46875 0.53125 9.701176e-23 1.285448e-22 0.011241 0.953460

2 class 2 0.94 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.038692 0.926009

3 class 2 0.93 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.054379 0.910323

4 class 2 0.86 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.124967 0.839734

5 class 2 0.82 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.164183 0.800519

6 class 2 0.96 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.019084 0.945617

7 class 2 0.89 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.093594 0.871107

8 class 1 1.00 class 1 0.46875 0.53125 9.735776e-23 1.566885e-21 0.012287 0.976989

9 class 2 0.92 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.058300 0.906401

10 class 2 0.82 class 1 0.46875 0.53125 9.749115e-23 1.070870e-22 0.160261 0.804440

11 class 2 0.06 class 2 0.46875 0.53125 9.749115e-23 1.070870e-22 0.924967 0.039734

12 class 2 0.02 class 2 0.46875 0.53125 4.191465e-22 1.061253e-22 0.964183 0.000519

13 class 2 0.03 class 2 0.46875 0.53125 1.584094e-22 1.064304e-22 0.956339 0.008362

14 class 2 0.08 class 2 0.46875 0.53125 9.749115e-23 1.070870e-22 0.905359 0.059342

15 class 2 0.03 class 2 0.46875 0.53125 1.584094e-22 1.064304e-22 0.956339 0.008362

16 class 2 0.07 class 2 0.46875 0.53125 9.749115e-23 1.070870e-22 0.909281 0.055420

17 class 2 0.05 class 2 0.46875 0.53125 9.749115e-23 1.070870e-22 0.932810 0.031891

18 class 2 0.03 class 2 0.46875 0.53125 1.021741e-22 1.070870e-22 0.948496 0.016205

19 class 2 0.07 class 2 0.46875 0.53125 9.749115e-23 1.070870e-22 0.913202 0.051499

20 class 2 0.03 class 2 0.46875 0.53125 1.146434e-22 1.068677e-22 0.952418 0.012283

PVi= P-value for Test i, di=distance of test point to the mean of class i,

Pri= Prior probability of class i, TP= Test points, Obs= Test point pixel

LA= Liao & Akritas’s classification, Our= Modified method discussed in Section 2.4.
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Chapter 3

Multiclass classification of image

pixels.

In this chapter, we consider more than two classes of image pixels in the given image and fo-

cus on the classification of a randomly selected pixel in one of the defined classes. We begin

with the extension of binary classification discussed in Section 2.1 to multiclass classification

given by Liao and Akritas (2007). Then we apply their method of multiclass classification

in the context of images. As was already discussed in Section 2.1, Liao and Akritas (2007)

use hypotheses testings in their classification. In their classification, hypotheses testings

are done as many times as the number of classes by placing the test observation in one of

the classes every time. The null hypothesis then is that these new classes have the same

distribution when the test observation is placed in only one of the classes and remaining

classes are left intact. The p-values from these hypotheses testings which provide evidence

to reject or fail to reject the null hypotheses, are the main tools of Liao and Akritas (2007)

multiclass classification.

In our implementation of the Liao and Akritas (2007) for multiclass classification of

image pixels, we observe that their classification method can completely fail to classify the

image pixels when all the test p-values are small. Then we introduce a modified multiclass

classification method which eliminates this drawback of the Liao & Akritas classification
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method. This modified classification is based on combined evidence from the minimum

distance and the hypothesis testings. We consider both cases of equal and unequal prior

probabilities of classes.

3.1 Multiclass classification of image pixels with equal

priors using Liao and Akritas (2007).

In this section, we give a description of Liao & Akritas’s multiclass classification with equal

prior probabilities of classes in the case of images. We take a standard grey scale image of

size 512× 512. Then we define classes of pixels in the selected image and form training data

for these classes by following the method discussed in Section 2.1.1.

Let π1, π2, ..., πk be the classes of pixels with class means µ1, µ2, ..., µk and prior proba-

bilities p1, p2, ..., pk. In this case, we have p1 = p2 = ... = pk = 1
k
. Suppose that we have

training data with observations (x11, x12, ..., x1n1), (x21, x22, ..., x2n2), ..., (xk1, xk2, ..., xknk
)

from the classes π1, π2, ..., πk respectively. Next, we take a randomly selected pixel value x0

which we would like to classify in one of the classes. For the classification of x0, we perform a

series of hypothesis testings in which we test to see the sample evidence that the observation

x0 belongs to each of the classes based on the training data. For this purpose, we need to

determine the statistical tests to perform. The choice of statistical tests for the hypothesis

testings mainly depends on the form of the distributions of pixel values representing classes.

We note that the pixel values in some classes may behave like normal distributions where as

others may not. So, we choose Kruskal-Wallis and ANOVA as our statistical tests. We use

Kruskal-Wallis test when the pixel values do not follow normal distribution. Kruskal-Wallis

test does not assume a normal population and is used to test the equality of class distri-

butions. On the other hand, when pixel values appear reasonably normal, we use ANOVA

which provides a statistical test of whether or not means of several classes are equal. Let fi

and Fi denote the probability density and cumulative density function of the class πi. The
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k tests are as follows:

• Test 1: Place x0 with the observation from class 1 and assume,

(x0, x11, x12, ..., x1n1) ∼ f1(x)

(x21, x22, ..., x2n2) ∼ f2(x)
...

(xk1, xk2, ..., xknk
) ∼ fk(x)

to test the null hypothesis, H0. The H0 for Kruskal-Wallis test is that all the distri-

bution functions are identical and H0 for ANOVA is µ1 = µ2 = . . . = µk.

• Test 2: Place x0 with the observation from class 2 and assume,

(x11, x12, ..., x1n1) ∼ f1(x)

(x0, x21, x22, ..., x2n2) ∼ f2(x)
...

(xk1, xk2, ..., xknk
) ∼ fk(x)

to test the null hypothesis, H0. The H0 for Kruskal-Wallis test is that all the distri-

bution functions are identical and H0 for ANOVA is µ1 = µ2 = . . . = µk.

and similarly,

• Test k: Place x0 with the observation from class k and assume,

(x11, x12, ..., x1n1) ∼ f1(x)

(x21, x22, ..., x2n2) ∼ f2(x)
...

(x0, xk1, xk2, ..., xknk
) ∼ fk(x)

to test the null hypothesis, H0. The H0 for Kruskal-Wallis test is that all the distri-

bution functions are identical and H0 for ANOVA is µ1 = µ2 = . . . = µk.

Let PV1(x0), PV2(x0), ...,&PVk(x0) denote the p-values of the Test 1, Test 2,...., & Test

k. Then the multiclass classification introduced by Liao and Akritas (2007) can be described

in the following four steps:
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• Step 1: We obtain p-values PV1(x0), PV2(x0), ..., PVk(x0) from Test 1, Test 2,....,Test

k as discussed above.

• Step 2: We compare the p-values and eliminate the class with the largest (1 − 1
k
) ×

PVi(x0).

• Step 3: We repeat Step 1 and Step 2 until there are two classes of pixels left.

• Step 4: We then repeat Step 1 for the remaining two classes and we classify x0 as

the one with the smaller (1 − 1
k
) × PVi(x0) which is exactly the binary classification

discussed in Section 2.1.

Now, we apply the Liao & Akritas multiclass classification to a specific image, as given

in Figure 3.1(a). Let us consider three different classes in the given 512 × 512 image. We

choose regions with different levels of gray-scale to form distinct classes. We choose grass

region as our first class (class 1), cloud region (white color) as our second class (class 2) and

water region (grey color) as our third class (class 3). Then, using the method discussed in

Section 2.1.1, we form training data for the classes. We use these training data to estimate

the class parameters. We select 21 test points labeled with numbers in such a way that first

seven of them are chosen from regions representing class 1, next seven test points are from

class 2 and the rest are from the class 3 regions as shown in Figure 3.1(a). Density plot of

the classes are shown in the Figure 3.1(b) in which 1, 2, and 3 denote density plot of classes

1, 2 and 3 respectively. Density plot shows that classes so formed are distinct and separated.

Then using decision rule discussed earlier, we classify selected test points. Classification of

the selected test points are given in Table 3.1 and all the test points are classified correctly.

We observe that the Liao and Akritas (2007) multiclass classification is applicable to

classify image pixels when all the test p-values from the hypotheses testings are not very

small. Their method of classification does not work when the p-values are small. With

the image shown in Figure 3.2, we show the failure of their classification method. Figure

3.2(a) is an image in which we choose three regions with different levels of gray-scale to form

classes. We choose sky region as our class 1, mountain region as class 2, and vegetation
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Figure 3.1
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(a) Image with training data and test points. (b) Density plot of classes.

as class 3 and form training data for the classes. The classes so formed are distinct and

well separated as shown by the their density plot. For classification purpose, we select 21

observational points as shown in the Figure 3.2(a).

Classification of these selected test points are shown in Table 3.2 in which we see that Liao

& Akritas’s method misclassifies test points 7-14. Hence, we have many misclassification of

test points.

The reason behind these misclassifications are the p-values which are very small as shown

in the table. The p-values in a valid test, theoretically follow the uniform (0, 1) distribution

so that two p-values that are both smaller than the level of significance do not provide

different level of evidence to reject the null hypothesis. Consequently, Liao & Akritas’s

method fails when all the p-values are small. Hence, we conclude that Liao & Akritas’s

multiclass classification is not applicable in the context of images when the test p-values are

small.
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Table 3.1: Classification by Laio-Akritas method in image Figure 3.1(a)

TP PV1 PV2 PV3 LA Obs

1 5.383e-19 1.426e-17 1.331e-18 class 1 0.6000000

2 5.376e-19 2.958e-18 6.612e-19 class 1 0.6235294

3 5.362e-19 3.991e-18 7.557e-19 class 1 0.6196078

4 5.376e-19 2.026e-18 5.565e-19 class 1 0.6313725

5 5.385e-19 1.480e-17 1.353e-18 class 1 0.5921569

6 5.376e-19 1.058e-17 1.167e-18 class 1 0.6078431

7 5.370e-19 5.604e-18 8.805e-19 class 1 0.6156863

8 2.752e-17 6.188e-19 2.840e-18 class 2 0.8705882

9 2.752e-17 6.188e-19 2.840e-18 class 2 0.8509804

10 2.752e-17 6.188e-19 2.840e-18 class 2 0.8705882

11 2.752e-17 6.188e-19 2.840e-18 class 2 0.8784314

12 2.752e-17 6.188e-19 2.840e-18 class 2 0.8549020

13 2.752e-17 6.188e-19 2.840e-18 class 2 0.8823529

14 2.752e-17 6.188e-19 2.840e-18 class 2 0.8235294

15 1.212e-18 6.188e-19 5.110e-19 class 3 0.7725490

16 8.389e-19 9.805e-19 5.096e-19 class 3 0.7411765

17 1.212e-18 6.188e-19 5.110e-19 class 3 0.7764706

18 1.409e-18 6.183e-19 5.558e-19 class 3 0.7843137

19 5.571e-19 1.610e-18 5.106e-19 class 3 0.7254902

20 5.385e-19 1.678e-18 5.110e-19 class 3 0.7098039

21 7.594e-19 1.113e-18 5.106e-19 class 3 0.7372549

PVi= p-value from test i, TP=Test point, Obs= Test point pixel

LA=Liao & Akritas’s method.

3.2 Multiclass classification based on combined evi-

dence from minimum distance and hypothesis tests.

In the last section, we observe that Liao & Akritas multiclass classification fails when the

hypotheses tests produce small p-values. In this section, we propose a modified multiclass

classification method which also works in the case of small p-values from the hypotheses

tests described in Section 3.1. We discuss multiclass classification rules for the modified

42



Figure 3.2
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(a) Image with training data and test points. (b) Density plot of classes.

classification method and employ this method in the context of images. Here, the classifi-

cation is based on both the p-values obtained from the hypothesis testings and distance of

test observation from the classes. When all the test p-values are large (larger than some

threshold value), we follow the decision rule given by Liao-Akritas (2007) as discussed in

Section 3.1. When at least one of the test p-values is small (smaller than the threshold), we

use the distance of the observation to the classes in our decision rule. The detailed classifi-

cation rule for the multiclass classification based on the combined evidence from minimum

distance and hypotheses tests are as follows:

• If max
1≤i≤k

PVi ≤ 0.0001 (threshold), i.e., all the test p-values are small, then we use

minimum distance classification. We assign x0 to the class with the smallest di where

di = min
1≤i≤k

Di and Di is the distance of the observation x0 to the class πi.

• If min
1≤i≤k

PVi ≥ 0.0001 (threshold), i.e., all the test p-values are large, then the decision

function follows the Liao & Akritas’s classification method discussed in Section 3.1.

• If m (1 < m < k) of the test p-values are less than or equal to the threshold (0.0001),
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Table 3.2: Classification by Laio-Akritas method in image Figure 3.2(a)

TP PV1 PV2 PV3 LA Obs

1 3.228e-121 5.621e-121 6.093e-120 class 1 0.97647059

2 3.233e-121 3.758e-121 2.358e-120 class 1 0.86666667

3 3.233e-121 3.758e-121 2.358e-120 class 1 0.80784314

4 3.233e-121 3.758e-121 2.358e-120 class 1 0.86274510

5 3.233e-121 3.758e-121 2.358e-120 class 1 0.84705882

6 3.233e-121 3.779e-121 2.388e-120 class 1 0.95686275

7 3.233e-121 3.758e-121 2.358e-120 class 1 0.92941176

8 3.242e-121 3.758e-121 2.349e-120 class 1 0.28627451

9 3.646e-121 3.757e-121 2.004e-120 class 1 0.25098039

10 4.413e-121 3.757e-121 1.547e-120 class 2 0.23529412

11 3.251e-121 3.758e-121 2.340e-120 class 1 0.28235294

12 3.304e-121 3.758e-121 2.289e-120 class 1 0.27058824

13 3.233e-121 3.758e-121 2.358e-120 class 1 0.29803922

14 3.233e-121 3.758e-121 2.358e-120 class 1 0.32156863

15 1.183e-119 1.408e-120 3.921e-121 class 3 0.01960784

16 2.438e-120 5.652e-121 3.929e-121 class 3 0.03529412

17 1.352e-120 4.018e-121 3.929e-121 class 3 0.05490196

18 2.062e-120 5.128e-121 3.925e-121 class 3 0.03921569

19 1.378e-120 4.063e-121 3.929e-121 class 3 0.05098039

20 1.204e-120 3.758e-121 3.929e-121 class 2 0.09411765

21 2.438e-120 5.652e-121 3.929e-121 class 3 0.03529412

PVi= p-value from test i, TP=Test point, Obs= Test point pixel

LA=Liao & Akritas’s method.

then we eliminate k − m classes which have p-values larger than the threshold. We

use the minimum distance method to determine suitable class from these m classes.

• If m = 1, we assign the observation to that class with the p-value less than the

threshold.

Now, we employ this modified classification method in the same image where the Liao

& Akritas classification was observed to fail in Section 3.1. We define 3 classes as it was
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defined earlier in the image 3.2(a) and form training data. Figure 3.3(a) shows the image

with training data and some test points. We classify these selected test points by employing

Liao and Akritas (2007) classification and modified classification method. The classification

results of both methods are shown in Table 3.3 which also shows the test p-values and

distances of the test points to their corresponding classes. We observe that the modified

method classifies all the test points accurately while the Liao & Akritas’s method have some

misclassifications.

Figure 3.3
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(a) Image with training data and test points. (b) Density plot of classes.

Finally, we employ the modified classification method in pepper image and define three

distinct classes in it. Figure 3.4(a) shows the training data for three image classes along

with some test points. Figure 3.4(b) shows that the classes so formed are well separated

and distinct. Employing the modified method and Liao & Akritas’s method, we classify

the selected test points and are shown in Table 3.4. From the table, we observe that the

modified classification method based on the combined evidence from minimum distance and

hypotheses tests provides an accurate multiclass classification of image pixels.
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Table 3.3: Comparison between Liao-Akritas and modified methods in image Figure 3.3(a)

TP LA PV1 PV2 PV3 d1 d2 d3 Our Obs

1 class 1 6.488e-128 7.816e-128 5.420e-127 0.027 0.733 0.922 class 1 0.949

2 class 1 6.488e-128 7.816e-128 5.420e-127 0.118 0.643 0.831 class 1 0.858

3 class 1 6.488e-128 7.816e-128 5.420e-127 0.106 0.655 0.843 class 1 0.870

4 class 1 6.486e-128 1.217e-127 1.530e-126 0.012 0.773 0.961 class 1 0.988

5 class 1 6.488e-128 7.816e-128 5.420e-127 0.02 0.741 0.929 class 1 0.956

6 class 1 6.488e-128 7.816e-128 5.420e-127 0.035 0.725 0.914 class 1 0.941

7 class 1 6.488e-128 7.816e-128 5.420e-127 0.145 0.616 0.804 class 1 0.831

8 class 1 6.732e-128 7.816e-128 5.159e-127 0.718 0.043 0.231 class 2 0.258

9 class 1 6.488e-128 7.816e-128 5.420e-127 0.671 0.09 0.278 class 2 0.305

10 class 1 6.488e-128 7.816e-128 5.420e-127 0.667 0.094 0.282 class 2 0.309

11 class 1 6.488e-128 7.816e-128 5.420e-127 0.631 0.129 0.318 class 2 0.345

12 class 1 6.714e-128 7.816e-128 5.177e-127 0.714 0.047 0.235 class 2 0.262

13 class 2 2.605e-127 7.815e-128 8.273e-128 0.776 0.016 0.173 class 2 0.200

14 class 1 6.679e-128 7.816e-128 5.214e-127 0.71 0.051 0.239 class 2 0.266

15 class 3 3.907e-127 9.640e-128 7.815e-128 0.925 0.165 0.024 class 3 0.050

16 class 3 3.298e-126 3.298e-127 7.803e-128 0.957 0.196 0.008 class 3 0.019

17 class 3 1.377e-126 1.991e-127 7.793e-128 0.949 0.188 0.000 class 3 0.027

18 class 3 5.858e-127 1.217e-127 7.802e-128 0.937 0.176 0.012 class 3 0.039

19 class 3 2.767e-127 7.900e-128 7.816e-128 0.902 0.141 0.047 class 3 0.074

20 class 3 4.338e-127 1.024e-127 7.814e-128 0.929 0.169 0.020 class 3 0.047

21 class 3 3.072e-127 8.391e-128 7.814e-128 0.914 0.153 0.035 class 3 0.062

PVi= P-value from test i, di=distance of test pt from mean of class i, TP= Test point,

LA= Liao & Akritas’s method , Our= Modified method, Obs= Test point pixel.

3.3 Multiclass classification of image pixels with un-

equal prior probabilities of classes, using Liao and

Akritas (2007).

This section illustrates Liao and Akritas (2007) multiclass classification in the context of

unequal prior probabilities of classes. The idea of classification in this case is similar to the
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Figure 3.4
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(a) Image with training data and test points. (b) Density plot of classes.

case of equal priors as discussed in Section 3.1.

We begin by taking a standard grey-scale image of size 512× 512 and forming training

data for the classes as described in Section 2.1.1. Let π1, π2, ..., πk be the classes of image

pixels and let µi and pi be the mean and prior probability of the class πi respectively for

i = 1, 2, . . . , k. Unequal prior probability means that these classes are not equally likely.

So, we have pi ̸= pj for some i, j where 1 ≤ i, j ≤ n. In order to define the prior of classes,

we first order the class-means. Let µ1, µ2, ..., µk be the ordered means of the classes, i.e.,

µ1 ≤ µ2 ≤ ... ≤ µk. We define the prior probability of class i as follows:

Prior of class i =

Number

(
µ(i−1) + µ(i)

2
< pixels in training data <

µ(i) + µ(i+1)

2

)
Number of pixels in training data.

(3.3.1)

This means, the prior of class i is the ratio of the number of pixels greater than the average

of means of classes (i-1)and i, and smaller than the average of means of classes i and (i+1)

entry-wise to the total number of pixels in the given image.
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Table 3.4: Comparison between Liao-Akritas and modified methods in image Figure 3.4(a)

TP LA PV1 PV2 PV3 d1 d2 d3 Our Obs

1 class 1 1.239e-135 1.971e-135 2.265e-135 0.027 0.271 0.275 class 1 0.482

2 class 1 1.239e-135 1.691e-135 2.533e-135 0.059 0.239 0.306 class 1 0.513

3 class 1 1.239e-135 3.021e-135 1.656e-135 0.02 0.318 0.227 class 1 0.435

4 class 1 1.239e-135 4.041e-135 1.336e-135 0.071 0.369 0.176 class 1 0.384

5 class 1 1.239e-135 1.638e-135 2.592e-135 0.078 0.22 0.325 class 1 0.533

6 class 1 1.239e-135 2.028e-135 2.217e-135 0.024 0.275 0.271 class 1 0.478

7 class 1 1.239e-135 1.871e-135 2.353e-135 0.035 0.263 0.282 class 1 0.490

8 class 2 3.469e-135 1.623e-135 1.555e-134 0.298 0.000 0.545 class 2 0.752

9 class 2 3.469e-135 1.623e-135 1.555e-134 0.298 0.000 0.545 class 2 0.752

10 class 1 1.239e-135 1.633e-135 2.598e-135 0.259 0.039 0.506 class 2 0.713

11 class 1 1.239e-135 1.633e-135 2.598e-135 0.231 0.067 0.478 class 2 0.686

12 class 1 1.239e-135 1.633e-135 2.598e-135 0.255 0.043 0.502 class 2 0.709

13 class 2 9.380e-135 1.633e-135 8.733e-134 0.373 0.075 0.62 class 2 0.827

14 class 2 2.035e-135 1.628e-135 6.153e-135 0.29 0.008 0.537 class 2 0.745

15 class 1 1.293e-135 4.571e-135 1.313e-135 0.22 0.518 0.027 class 3 0.235

16 class 3 2.911e-135 3.119e-134 1.313e-135 0.275 0.573 0.027 class 3 0.180

17 class 1 1.239e-135 4.135e-135 1.313e-135 0.129 0.427 0.118 class 3 0.325

18 class 1 1.239e-135 4.135e-135 1.313e-135 0.169 0.467 0.078 class 3 0.286

19 class 1 1.239e-135 4.135e-135 1.313e-135 0.188 0.486 0.059 class 3 0.266

20 class 3 1.982e-135 1.255e-134 1.312e-135 0.247 0.545 0 class 3 0.207

21 class 1 1.239e-135 4.135e-135 1.313e-135 0.192 0.49 0.055 class 3 0.262

PVi= P-value from test i, di=distance of test pt from mean of class i, TP= Test point,

LA= Liao & Akritas’s method , Our= Modified method, Obs= Test point pixel.

Another way to define prior probabilities of classes as are follows: Prior probability of ith

class :

Prior of class i =
Ni

N1 + . . .+Nk

where Ni represents the number of pixel values in the training data for the ith class and k

is the total number of classes in the image.

Suppose that the training vectors for the classes π1, π2, ..., πk are given by (x11, x12, ..., x1n1),
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(x21, x22, ..., x2n2), ..., (xk1, xk2, ..., xknk
), respectively. Let x0 denote a randomly selected pixel

in the given image. Then a series of hypotheses tests similar to the equal prior case discussed

in Section 3.1 is performed in order to classify the test point x0. These hypotheses testings

are done as many times as the number of classes by assuming that the test point belongs

to one of the classes each time. Each of these hypotheses testings will test that the new

classes have same the distribution under the assumption that the test point is in one of the

classes while the rest of the classes are kept as they are. Regarding the statistical tests,

when image pixels are normally distributed, we chose the ANOVA test whereas Kurskal-

Wallis test is preferred in the case of non-normal distributions in the hypotheses testings.

Then similar to the equal prior case, we perform Test 1, Test 2,... ,and Test k as described

in Section 3.1 which will provide us k p-values. Let us denote the p-values of these tests

by PV1(x0), PV2(x0), ..., andPVk(x0) respectively. Next, we summarize the Liao & Akritas’s

multiclass classification with unequal prior probabilities in the following four steps:

• Step 1: We obtain p-values PV1(x0), PV2(x0), ..., PVk(x0) from Test 1, Test 2,....,Test

k as discussed above.

• Step 2: We compare the p-values and eliminate the class with the largest (1 − pi) ×

PVi(x0).

• Step 3: We repeat Step 1 and Step 2 until there are two classes of pixels left.

• Step 4: We then repeat Step 1 for the remaining two classes and we classify x0 as the

one with the smaller (1− pi)× PVi(x0).

Now, we employ this multiclass classification of Liao & Akritas with unequal priors of

classes to an image as shown in Figure 3.5(a). We define three classes in the given image

depending on the gray-scale levels. We choose tree region, sky region, and grass region for

class 1, class 2 and class 3 respectively and form training data accordingly. These classes

are distinct and well separated with each other as shown by Figure 3.5(b) and Figure 3.5(a)

shows the training data and some test points for the classification. After computing class
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means from the training data, prior probabilities of these classes are obtained by using the

formula given in (3.3.1). Then the classification of these test points by the Liao & Akritas’s

method discussed above are shown in Table 3.5, which shows the classification result of the

selected test points along with p-values of the test and prior probabilities of the classes. All

the test points are classified accurately except test point 7.

Figure 3.5
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(a) Image with training data and test points. (b) Density plot of classes.

As in the case of equal prior case, the Liao & Akritas’s classification does not classify

image pixels correctly when all the test p-values are small. This is shown in the classification

of the test points considered in the image in Figure 3.6 where we define four classes of image

pixels depending on the levels of gray-scale in the image. Then we calculate the prior

probabilities of the classes as defined by the formula earlier. The selected test points are

classified by employing Liao & Akritas’s method and are tabulated in Table 3.6. We observe

that half of the test points are misclassified. The main reasons for these misclassifications

are the small p-values which are used to reject or fail to reject the null hypothesis. These p-

values theoretically follow the uniform (0, 1) distribution so that the small p-values (smaller

than the significance level) are not helpful in distinguishing among the classes. So, from
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Table 3.5: Classification by Laio-Akritas method in image Figure 3.5(a)

TP LA PV1 PV2 PV3 Pr1 Pr2 Pr3

1 class 1 3.618e-27 2.380e-25 2.328e-26 0.4472618 0.1961899 0.3565292

2 class 1 3.618e-27 2.380e-25 2.328e-26 0.4472618 0.1961899 0.3565292

3 class 1 3.615e-27 1.798e-26 4.988e-27 0.4472618 0.1961899 0.3565292

4 class 1 3.618e-27 1.366e-26 4.233e-27 0.4472618 0.1961899 0.3565292

5 class 1 3.618e-27 2.380e-25 2.328e-26 0.4472618 0.1961899 0.3565292

6 class 1 3.618e-27 2.650e-25 2.481e-26 0.4472618 0.1961899 0.3565292

7 class 3 7.760e-26 2.867e-27 5.928e-27 0.4472618 0.1961899 0.3565292

8 class 2 1.738e-26 2.875e-27 3.194e-27 0.4472618 0.1961899 0.3565292

9 class 2 1.738e-26 2.875e-27 3.194e-27 0.4472618 0.1961899 0.3565292

10 class 2 1.738e-26 2.875e-27 3.194e-27 0.4472618 0.1961899 0.3565292

11 class 2 1.738e-26 2.875e-27 3.194e-27 0.4472618 0.1961899 0.3565292

12 class 2 1.738e-26 2.875e-27 3.194e-27 0.4472618 0.1961899 0.3565292

13 class 3 1.603e-26 3.047e-27 3.194e-27 0.4472618 0.1961899 0.3565292

14 class 3 3.618e-27 8.536e-27 3.194e-27 0.4472618 0.1961899 0.3565292

15 class 3 9.082e-27 4.558e-27 3.190e-27 0.4472618 0.1961899 0.3565292

16 class 3 7.471e-27 5.228e-27 3.193e-27 0.4472618 0.1961899 0.3565292

17 class 3 4.334e-27 7.549e-27 3.188e-27 0.4472618 0.1961899 0.3565292

18 class 3 1.140e-26 3.883e-27 3.190e-27 0.4472618 0.1961899 0.3565292

PVi= P-value from test i; Pri=Prior probability class i

LA= Liao & Akritas’s method; TP= Test point.

this illustration, we conclude that in the case of unequal prior probabilities of classes, Liao

& Akritas multiclass classification does not work well when all the test p-values are small.

Next, we introduce a modified classification method which eliminates this drawback of the

Liao & Akrita’s method.
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Figure 3.6
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(a) Image with training data and test points. (b) Density plot of classes.

3.4 Multiclass classification, with unequal priors, based

on combined evidence from minimum distance and

hypothesis tests.

In this section, we give a modified multiclass classification method for unequal priors. The

decision rule for the classification in this modified method is similar to that of the modified

method discussed in Section 3.2. It depends both on the p-values from the hypotheses

testings and distances of the test points to the defined classes. Use of the distances in the

decision rule will overcome the drawback of the Liao & Akritas’s classification method when

all the p-values from the hypotheses testings are small. The detailed classification rule for

the modified method in the context of unequal priors of the classes based on the combined

evidence from minimum distance and hypotheses tests are as follows:

• If max
1≤i≤k

PVi ≤ 0.0001 (threshold), i.e., all the test p-values are small, then we use

minimum distance classification. We assign x0 to the class with the smallest di where

di = min
1≤i≤k

Di and Di is the distance of the observation x0 to the class πi.
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Table 3.6: Classification by Laio-Akritas method in image Figure 3.6(a)

TP LA PV1 PV2 PV3 PV4 Pr1 Pr2 Pr3 Pr4

1 class 1 1.125e-59 7.776e-58 1.986e-59 8.672e-59 0.33155 0.09981 0.44617 0.12247

2 class 1 1.126e-59 1.343e-58 1.148e-59 2.685e-59 0.33155 0.09981 0.44617 0.12247

3 class 1 1.125e-59 8.921e-58 2.073e-59 9.505e-59 0.33155 0.09981 0.44617 0.12247

4 class 1 1.125e-59 9.922e-58 2.142e-59 1.020e-58 0.33155 0.09981 0.44617 0.12247

5 class 1 1.126e-59 1.071e-57 2.194e-59 1.074e-58 0.33155 0.09981 0.44617 0.12247

6 class 4 1.647e-58 1.110e-59 3.378e-59 1.258e-59 0.33155 0.09981 0.44617 0.12247

7 class 4 2.105e-58 1.110e-59 4.004e-59 1.369e-59 0.33155 0.09981 0.44617 0.12247

8 class 4 1.502e-58 1.110e-59 3.171e-59 1.220e-59 0.33155 0.09981 0.44617 0.12247

9 class 4 1.391e-58 1.110e-59 3.007e-59 1.189e-59 0.33155 0.09981 0.44617 0.12247

10 class 4 1.526e-58 1.110e-59 3.205e-59 1.226e-59 0.33155 0.09981 0.44617 0.12247

11 class 1 1.515e-59 6.684e-59 1.131e-59 1.861e-59 0.33155 0.09981 0.44617 0.12247

12 class 1 1.404e-59 7.912e-59 1.131e-59 2.031e-59 0.33155 0.09981 0.44617 0.12247

13 class 1 1.257e-59 1.007e-58 1.131e-59 2.300e-59 0.33155 0.09981 0.44617 0.12247

14 class 1 2.173e-59 2.994e-59 1.131e-59 1.228e-59 0.33155 0.09981 0.44617 0.12247

15 class 1 1.748e-59 4.870e-59 1.131e-59 1.580e-59 0.33155 0.09981 0.44617 0.12247

16 class 1 2.400e-59 2.709e-59 1.175e-59 1.188e-59 0.33155 0.09981 0.44617 0.12247

17 class 4 3.229e-59 2.338e-59 1.378e-59 1.189e-59 0.33155 0.09981 0.44617 0.12247

18 class 4 7.742e-59 1.502e-59 2.201e-59 1.188e-59 0.33155 0.09981 0.44617 0.12247

19 class 1 2.235e-59 2.809e-59 1.131e-59 1.189e-59 0.33155 0.09981 0.44617 0.12247

20 class 1 2.235e-59 2.809e-59 1.131e-59 1.189e-59 0.33155 0.09981 0.44617 0.12247

PVi= P-value from test i, Pri=Prior probability class i

LA= Liao & Akritas’s method, TP= Test point.

• If min
1≤i≤k

PVi ≥ 0.0001 (threshold), i.e., all the test p-values are large, then the decision

function follows the Liao & Akritas’s classification method discussed in Section 3.3.

• If m (1 < m < k) of the test p-values are less than or equal to the threshold (0.0001),

then we eliminate k − m classes which have p-values larger than the threshold. We

use the minimum distance method to determine suitable class from these m classes.

• If m = 1, we assign the observation to that class with the p-value less than the
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threshold.

Now, we apply this modified method to the image where Liao & Akritas’s method failed

to classify image pixels. We choose classes as it was chosen in Figure 3.7(a) and form training

data. As before, we choose some test points representing the classes. Figure 3.7(b) shows

that defined class 4 has slight overlap with class 3 and 2. The prior probabilities of classes

are shown in Table 3.7.

Figure 3.7
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(a) Image with training data and test points. (b) Density plot of classes.

Table 3.7: Prior probabilities of classes in image Figure 3.7(a)

Prior1 Prior2 Prior3 Prior4

0.3315468 0.1094818 0.4273758 0.1315956

The classification of these test points by this modified method are shown in Table 3.8.

The table also shows the classification given by Liao & Akritas’s method and distances of

the test points to the classes. All the selected test points are classified accurately by the

modified method while there are some misclassifications by Liao & Akritas.
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Table 3.8: Classification of test points in image Figure 3.7(a)

TP LA Our PV1 PV2 PV3 PV4 d1 d2 d3 d4

1 class 1 class 1 2.7e-135 2.8e-134 2.9e-135 6.3e-135 0.023 0.552 0.215 0.388

2 class 1 class 1 2.7e-135 1.4e-133 5.2e-135 1.9e-134 0.015 0.592 0.254 0.427

3 class 1 class 1 2.7e-135 4.8e-134 3.5e-135 9.1e-135 0.007 0.568 0.231 0.403

4 class 1 class 1 2.7e-135 4.8e-134 3.5e-135 9.1e-135 0.007 0.568 0.231 0.403

5 class 1 class 1 2.7e-135 3.2e-133 6.9e-135 3.2e-134 0.039 0.615 0.278 0.450

6 class 4 class 2 4.7e-134 2.3e-135 7.7e-135 3.0e-135 0.556 0.019 0.317 0.145

7 class 4 class 2 1.0e-133 2.3e-135 1.3e-134 4.0e-135 0.603 0.027 0.364 0.192

8 class 4 class 2 3.3e-134 2.3e-135 6.1e-135 2.7e-135 0.505 0.070 0.266 0.094

9 class 4 class 2 5.1e-134 2.3e-135 8.1e-135 3.1e-135 0.564 0.011 0.325 0.152

10 class 4 class 2 7.8e-134 2.3e-135 1.0e-134 3.6e-135 0.584 0.007 0.345 0.172

11 class 1 class 3 4.0e-135 8.3e-135 2.4e-135 3.1e-135 0.250 0.325 0.011 0.160

12 class 1 class 3 3.9e-135 8.8e-135 2.4e-135 3.2e-135 0.247 0.329 0.007 0.164

13 class 1 class 3 4.2e-135 7.8e-135 2.4e-135 3.0e-135 0.254 0.321 0.015 0.156

14 class 1 class 3 4.9e-135 6.3e-135 2.5e-135 2.8e-135 0.278 0.298 0.039 0.133

15 class 1 class 3 3.0e-135 1.3e-134 2.4e-135 3.9e-135 0.223 0.352 0.015 0.188

16 class 4 class 4 1.5e-134 3.5e-135 4.2e-135 2.7e-135 0.419 0.156 0.180 0.007

17 class 4 class 4 1.5e-134 3.5e-135 4.2e-135 2.7e-135 0.419 0.156 0.180 0.007

18 class 4 class 4 2.3e-134 2.7e-135 5.2e-135 2.7e-135 0.443 0.133 0.203 0.031

19 class 4 class 4 9.5e-135 4.3e-135 3.3e-135 2.7e-135 0.392 0.184 0.152 0.019

20 class 4 class 4 1.9e-134 3.0e-135 4.7e-135 2.7e-135 0.431 0.145 0.192 0.019

PVi= p-value from test i, di=distance of test pt from mean of class i

LA= Liao & Akritas’s method, Our= Modified method, TP= Test point.

3.5 Classification of a block of pixels

In Sections 3.1-3.4, we discussed the classification of randomly chosen pixels, i.e., test points

in the images. The same idea used to classify the test points can be used to classify test

blocks. A block of pixel can be thought like a collection of many test points in the given

image. Then we apply the modified method of classification discussed in Section 3.4 to each

of the test point in the block. The classification of each of the test point will result in the

classification of the whole block.
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Chapter 4

Comparisons among classification

methods on colored images.

In this chapter, we employ some of the standard classification methods in the context of

images and compare their classification results with our modified classification method.

We consider some standard classification methods, namely, Linear Discriminant Analysis

(LDA), Quadratic Discriminant Analysis (QDA), Classification Tree Method (CTM), Test-

based classification (Liao & Akritas ) and Polyclass (PC) method which were introduced in

Section 1.5 for comparison with our own method. We begin the chapter with the comparison

in the case of binary classification of images.

4.1 Classification comparison in Binary Classification

In this section, we compare our modified method of classification with the other methods

by constructing two classes in the image (binary classification). With some standard col-

ored and grayscale images, we demonstrate that our method works better than the other

classification methods in the binary classification.

We begin the comparison with a standard color image as shown in Figure 4.1. In the

given image, we choose red pepper region as our first class and green pepper region as our

second class. The training data for the classes are formed as discussed in Section 2.1.1 and
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are shown in the Figure 4.1. For the sake of convenience, we select 10 test points labeled

with the numbers in such a way that first five of them are taken from class 1 regions and

the rest of the points are taken from class 2 regions.

Figure 4.1: Pepper image with training data and test points
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We consider the grayscale images of the three primary components of the given image,

namely, red, green and blue. We employ our modified method and the other methods

of classification methods to classify the selected test points in each of the components.

Componentwise classification of these test points are shown in Table 4.1 along with pixel

values of the test points which is scaled to [0, 1].

After the classification of a test point in each of the grayscale images corresponding to

red, green, and blue components, we use the majority of votes of classification to obtain the

final classification of the test point. For example, if a test point is classified as coming from

class 1 in the red component and as belonging to class 2 in the green and blue components,

the final classification for it will be in class 2. Table 4.2 gives us the final classification of

the selected test points.

From the Table 4.2, we observe that our method of classification has one misclassifica-

tion, namely test point 4, while the other methods have more misclassifications. Hence, in

this experiment, our method of classification works better than other methods.
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Table 4.1: Classification of test points in RGB components in image Figure 4.1

Compt TP LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.45

2 class 1 class 1 class 1 class 1 class 1 class 1 0.52

3 class 1 class 1 class 1 class 1 class 1 class 1 0.44

4 class 1 class 2 class 2 class 2 class 2 class 2 0.71

Red 5 class 1 class 1 class 1 class 1 class 1 class 1 0.44

6 class 1 class 2 class 2 class 2 class 2 class 2 0.85

7 class 1 class 2 class 2 class 2 class 2 class 2 0.81

8 class 1 class 2 class 2 class 2 class 2 class 2 0.90

9 class 1 class 2 class 2 class 2 class 2 class 2 0.81

10 class 1 class 2 class 2 class 2 class 2 class 2 0.74

1 class 1 class 1 class 2 class 2 class 1 class 2 0.51

2 class 1 class 1 class 2 class 2 class 1 class 1 0.49

3 class 2 class 2 class 2 class 2 class 2 class 2 0.20

4 class 1 class 1 class 1 class 2 class 2 class 2 0.64

Green 5 class 2 class 2 class 2 class 2 class 2 class 2 0.18

6 class 2 class 2 class 2 class 2 class 2 class 2 0.22

7 class 2 class 2 class 2 class 2 class 2 class 2 0.22

8 class 2 class 2 class 2 class 1 class 1 class 1 0.30

9 class 2 class 2 class 2 class 2 class 2 class 2 0.25

10 class 2 class 2 class 2 class 2 class 2 class 2 0.26

1 class 1 class 2 class 2 class 2 class 1 class 1 0.27

2 class 1 class 2 class 2 class 2 class 2 class 2 0.28

3 class 2 class 1 class 2 class 2 class 2 class 2 0.14

4 class 1 class 2 class 2 class 2 class 2 class 2 0.40

Blue 5 class 2 class 1 class 2 class 1 class 1 class 1 0.18

6 class 2 class 1 class 2 class 1 class 1 class 1 0.18

7 class 2 class 1 class 2 class 2 class 2 class 2 0.15

8 class 1 class 1 class 2 class 1 class 1 class 1 0.21

9 class 1 class 1 class 2 class 1 class 1 class 1 0.20

10 class 2 class 1 class 2 class 2 class 2 class 2 0.12

Next, we compare the classifications in another image as displayed in Figure 4.2 in which

we take sky region as our first class and vegetation region as our second class. After the

classes are defined, we form training data for the classes and select some test points as shown

in the Figure 4.2.

As in previous application, these selected test points in each of the grayscale images

corresponding to RGB components are classified applying all the methods and are shown in

Table 4.3.

After the classification of the test points in each component, we obtain their final clas-
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Table 4.2: Final classification of test points in Figure 4.1

TP LA NEW LDA QDA TREE POLY

1 class 1 class 1 class 2 class 2 class 1 class 1

2 class 1 class 1 class 2 class 2 class 1 class 1

3 class 2 class 1 class 2 class 2 class 2 class 2

4 class 1 class 2 class 2 class 2 class 2 class 2

5 class 2 class 1 class 2 class 1 class 1 class 1

6 class 2 class 2 class 2 class 2 class 2 class 2

7 class 2 class 2 class 2 class 2 class 2 class 2

8 class 1 class 2 class 2 class 1 class 1 class 1

9 class 1 class 2 class 2 class 2 class 2 class 2

10 class 2 class 2 class 2 class 2 class 2 class 2

LA= Liao & Akritas’s method; NEW= Our method;

LDA=Linear Discriminant Analysis; QDA=Quadratic Discriminant Analysis

TREE=Classification Tree; POLY=Polyclass method

TP=Test Point; Value=Pixel value of test point.

sification using majority of votes described earlier. The final classification of test points are

displayed in Table 4.4. As we have 2 classes and 3 components, we will not have any tie

while employing the majority of votes.

We note that first 7 of the 14 selected test points in the given image were taken from

class 1 (sky) and the rest of the test points were from class 2 (vegetation). Table 4.4 shows

that our method of classification has 1 misclassification, namely test points 11. Since the

other methods have even more misclassifications than our methods, we could say that our

method works better than the other methods in the given image.

From the above illustrations, we conclude that our method of classification works better

than the other methods in the case of binary classification of image pixels.
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Figure 4.2: Image with training data and test points
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4.2 Classification-comparison in Multiclass Classifica-

tion

In this section, we consider more than two classes (multiclass) of image pixels and compare

different methods of classifications with our method. We support our method of classification

with the help of some standard images.

We first carry out comparisons in a color image by considering the grayscale images of RGB

components one by one. We allow different training data and test data be used for Red,

Green and Blue components. We begin with the gray scale image of red component which

is shown in Figure 4.3 and specify three classes in it. Class 1 is sky region, class 2 is river

region and class 3 is vegetation and the training data are formed as described in Section

2.1.1 and are displayed in the Figure 4.3.

We now apply different methods of classification and our modified method to classify

the selected test points and present the results in Table 4.5.

We remark that the first seven test points are taken from class 1, another seven (from

8-14) test points are from class 2, and the last seven (from 15-21) are chosen from class 3.

Test point 19 is the only misclassified test point by our method of classification while we see

many misclassified test points by other methods as shown in the Table 4.3. This illustration
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Figure 4.3: Image with training data and test points, red component.
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proves that our method of classification works well in the grayscale image of red component

of the given image.

Likewise, we perform the comparisons in the grayscale images of green and blue com-

ponents of the original image. The same three classes and similar training data that were

used in the red component are used in the green component as displayed in Figure 4.4 and

in the blue component as displayed in Figure 4.5.

Figure 4.4: Image with training data and test points, green component
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From Table 4.6, we see that only two test points (19 an 21) are misclassified in the

green component whereas there are more misclassified test points by other methods. Table

4.7 shows the classification result by different methods in the grayscale image of the blue

component and shows that our method classifies all the test points correctly and there are

some misclassifications by some of the methods.

Figure 4.5: Image with training data and test points, blue component
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From the classification comparisons done in the three grayscale images of the original

image, we observe that our method of classification has fewer misclassifications than the

other methods. Hence, we infer that our method works better than the other methods in

the given image.

We do some further comparisons on more images to see if our method of classification

does work better than the other methods. We begin with a color image as shown in Figure

4.6. Let us take region of snow as class 1, vegetation as class 2, and sky as class 3. After the

regions are selected, we form training data for these classes and choose some test points.

For the sake of convenience, we select first 5 of the test points from the class 1, another

5 test points (test point 6 to 10) from class 2 and the last 5 points from the class 3. The

classification of these test points in all the primary components are shown in Table 4.8.
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Figure 4.6: Image with training data and test points
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Table 4.8 gives us the classification results of the selected test points in the grayscale

images of RGB components. To get the final classification, we use majority of votes as

explained earlier. Since we have only three components, agreed classification by two com-

ponents is the final decision. The classification of test points using the majority of votes is

shown in Table 4.9.

We observe that our method of classification has one misclassification where as other

methods have more misclassifications. Thus, in the given image, our method is relatively

better than the other methods of classification.

Finally, we close this section with the comparison of methods in another image as shown

in Figure 4.7. In this image we define four classes which are tree region as class 1, river as

class 2, grass as class 3, and sky as class 4. The training data are formed and some test

points are selected in the image. As shown in the image, first five test points are selected

from class 1, the next five from class 2 and so on.

The componentwise classification of these test points is displayed in Table 4.10.

Using the rule of majority of votes, the final classification of the selected test points are

given in Table 4.11.
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Figure 4.7: Image with training data and test points
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From Table 4.11, we observe that test points 10 and 12 are misclassified by our method.

But when we look at the decisions by the other methods, we see far more misclassified test

points. Thus, in this image too, our method beats other methods.

Hence, from all the above comparisons, we conclude that our modified method works bet-

ter than Liao & Akritas method, QDA method, LDA method, Classification tree method,

and Polyclass method in the context of binary and multiclass classification of image pixels

classification.
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Table 4.3: Classification of test points in RGB components in image Figure 4.2

Compt TP LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.08

2 class 1 class 1 class 1 class 1 class 1 class 1 0.09

3 class 1 class 1 class 1 class1 class 1 class 1 0.07

4 class 1 class 1 class 1 class 1 class 1 class1 0.07

5 class 1 class 1 class 1 class 1 class 1 class 1 0.09

6 class 1 class 1 class 1 class 1 class 1 class 1 0.08

Red 7 class 1 class 1 class 1 class 1 class 1 class 1 0.09

8 class 2 class 2 class 2 class 2 class 2 class 2 0.20

9 class 2 class 2 class 2 class 2 class 2 class 2 0.16

10 class 2 class 2 class 2 class 2 class 2 class 2 0.18

11 class 2 class 1 class 1 class 2 class 2 class 1 0.11

12 class 2 class 2 class 2 class 2 class 2 class 2 0.18

13 class 2 class 2 class 2 class 2 class 2 class 2 0.18

14 class 2 class 2 class 2 class 2 class 2 class 2 0.27

1 class 1 class 1 class 1 class 1 class 1 class 1 0.24

2 class 1 class 1 class 1 class 2 class 2 class 2 0.21

3 class 1 class 1 class 1 class 2 class 2 class 2 0.19

4 class 1 class 1 class1 class 2 class 2 class 2 0.16

5 class 1 class 1 class 1 class 2 class 2 class 2 0.21

6 class 1 class 1 class 1 class 1 class 1 class 1 0.22

Green 7 class 1 class 1 class 1 class 1 class 1 class1 0.22

8 class 2 class 2 class 2 class 2 class 2 class 2 0.29

9 class 2 class 2 class 1 class 2 class 2 class 2 0.28

10 class 1 class 1 class 1 class 2 class 2 class 2 0.20

11 class 1 class 1 class 1 class 2 class 2 class 2 0.13

12 class 1 class 1 class 1 class 2 class 2 class 2 0.20

13 class 2 class 1 class 1 class 1 class 1 class 1 0.25

14 class 2 class 1 class 1 class 2 class 2 class 2 0.27

1 class 2 class 1 class 1 class 1 class 1 class 1 0.51

2 class 1 class 2 class 1 class 2 class 1 class 1 0.45

3 class 1 class 2 class 1 class 2 class 2 class 2 0.40

4 class 1 class 2 class 1 class 2 class 2 class 2 0.33

5 class 1 class 2 class 1 class 2 class 2 class 2 0.42

6 class 1 class 2 class 1 class 2 class 1 class 1 0.45

Blue 7 class 1 class 2 class 1 class 1 class 1 class 1 0.46

8 class 1 class 2 class 1 class 2 class 2 class 2 0.42

9 class 1 class 2 class 1 class 2 class 2 class 2 0.43

10 class 1 class 2 class 2 class 2 class 2 class 2 0.21

11 class 1 class 2 class 2 class 2 class 2 class2 0.16

12 class 1 class 2 class 2 class 2 class 2 class 2 0.16

13 class 1 class 2 class 1 class 2 class 2 class 2 0.35

14 class 1 class 2 class 1 class 2 class 2 class 2 0.28
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Table 4.4: Final classification of test points in Figure 4.2

TP LA NEW LDA QDA TREE POLY

1 class 1 class 1 class 1 class 1 class 1 class 1

2 class 1 class 1 class 1 class 2 class 1 class 1

3 class 1 class 1 class 1 class 2 class 2 class 2

4 class 1 class 1 class 1 class 2 class 2 class 2

5 class 1 class 1 class 1 class 2 class 2 class 2

6 class 1 class 1 class 1 class 1 class 1 class 1

7 class 1 class 1 class 1 class 1 class 1 class 1

8 class 2 class 2 class 2 class 2 class 2 class 2

9 class 2 class 2 class 1 class 2 class 2 class 2

10 class 1 class 2 class 2 class 2 class 2 class 2

11 class 1 class 1 class 1 class 2 class 2 class 2

12 class 1 class 2 class 2 class 2 class 2 class 2

13 class 2 class 2 class 1 class 2 class 2 class 2

14 class 2 class 2 class 1 class 2 class 2 class 2

LA= Liao & Akritas’s method; NEW= Our method;

LDA=Linear Discriminant Analysis; QDA=Quadratic Discriminant Analysis

TREE=Classification Tree; POLY=Polyclass method

TP=Test Point; Value=Pixel value of test point.
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Table 4.5: Classification of test points in image Figure 4.3, Red component.

TP LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.68

2 class 1 class 1 class 1 class 1 class 1 class 1 0.80

3 class 1 class 1 class 1 class 1 class 1 class 1 0.75

4 class 1 class 1 class 1 class 1 class 1 class 1 0.72

5 class 2 class 1 class 1 class 1 class 1 class 1 0.65

6 class 1 class 1 class 1 class 1 class 1 class 1 0.71

7 class 1 class 1 class 1 class 1 class 1 class 1 0.70

8 class 3 class 2 class 3 class 2 class 2 class 3 0.37

9 class 3 class 2 class 3 class 3 class 2 class 3 0.37

10 class 3 class 2 class 3 class 3 class 3 class 3 0.35

11 class 3 class 2 class 3 class 3 class 2 class 3 0.37

12 class 2 class 2 class 3 class 2 class 2 class 2 0.39

13 class 3 class 2 class 3 class 3 class 3 class 3 0.35

14 class 3 class 2 class 3 class 3 class 3 class 3 0.34

15 class 3 class 3 class 3 class 3 class 3 class 3 0.30

16 class 3 class 3 class 3 class 3 class 3 class 3 0.25

17 class 3 class 3 class 3 class 3 class 3 class 3 0.06

18 class 3 class 3 class 3 class 3 class 3 class 3 0.25

19 class 3 class 2 class 3 class 3 class 3 class 3 0.34

20 class 3 class 3 class 3 class 3 class 3 class 3 0.29

21 class 3 class 3 class 3 class 3 class 3 class 3 0.14
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Table 4.6: Classification of test points in Figure 4.4, green component.

TP LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.86

2 class 1 class 1 class 1 class 1 class 1 class 1 0.84

3 class 1 class 1 class 1 class 1 class 1 class 1 0.86

4 class 1 class 1 class 1 class 1 class 1 class 1 0.85

5 class 1 class 1 class 1 class 1 class 1 class 1 0.85

6 class 1 class 1 class 1 class 1 class 1 class 1 0.85

7 class 2 class 1 class 1 class 1 class 1 class 1 0.82

8 class 2 class 2 class 3 class 3 class 3 class 3 0.43

9 class 2 class 2 class 3 class 3 class 3 class 3 0.48

10 class 2 class 2 class 3 class 3 class 3 class 3 0.46

11 class 2 class 2 class 3 class 3 class 3 class 3 0.43

12 class 2 class 2 class 3 class 3 class 3 class 3 0.44

13 class 2 class 2 class 3 class 3 class 3 class 3 0.60

14 class 2 class 2 class 3 class 3 class 3 class 3 0.45

15 class 3 class 3 class 3 class 3 class 3 class 3 0.10

16 class 3 class 3 class 3 class 3 class 2 class 3 0.36

17 class 3 class 3 class 3 class 3 class 3 class 3 0.21

18 class 3 class 3 class 3 class 3 class 3 class 3 0.13

19 class 3 class 2 class 3 class 2 class 3 class 3 0.38

20 class 3 class 3 class 3 class 3 class 3 class 3 0.18

21 class 2 class 2 class 3 class 3 class 3 class 3 0.58
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Table 4.7: Classification of test points in Figure 4.5, blue component.

Obs LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.99

2 class 1 class 1 class 1 class 1 class 1 class 1 1.00

3 class 1 class 1 class 1 class 1 class 1 class 1 0.98

4 class 1 class 1 class 1 class 1 class 1 class 1 0.98

5 class 1 class 1 class 1 class 1 class 1 class 1 0.99

6 class 1 class 1 class 1 class 1 class 1 class 1 0.99

7 class 1 class 1 class 1 class 1 class 1 class 1 0.97

8 class 2 class 2 class 2 class 2 class 2 class 2 0.38

9 class 2 class 2 class 2 class 3 class 3 class 3 0.48

10 class 2 class 2 class 2 class 3 class 3 class 3 0.49

11 class 2 class 2 class 2 class 3 class 3 class 3 0.49

12 class 2 class 2 class 2 class 3 class 3 class 3 0.49

13 class 2 class 2 class 2 class 2 class 2 class 2 0.44

14 class 2 class 2 class 2 class 2 class 2 class 2 0.36

15 class 3 class 3 class 3 class 3 class 3 class 3 0.16

16 class 3 class 3 class 3 class 3 class 3 class 3 0.11

17 class 3 class 3 class 3 class 3 class 3 class 3 0.00

18 class 3 class 3 class 3 class 3 class 3 class 3 0.22

19 class 3 class 3 class 3 class 3 class 3 class 3 0.04

20 class 3 class 3 class 3 class 3 class 3 class 3 0.01

21 class 3 class 3 class 3 class 3 class 3 class 3 0.17
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Table 4.8: Classification of test points in image Figure 4.6

Comp TP LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.64

2 class 1 class 1 class 1 class 1 class 1 class 1 0.79

3 class 1 class 1 class 1 class 1 class 1 class 1 0.74

4 class 2 class 1 class 1 class 1 class 1 class 1 0.51

5 class 2 class 1 class 1 class 1 class 1 class 1 0.57

6 class 2 class 2 class 2 class 2 class 2 class 2 0.20

7 class 3 class 3 class 2 class 2 class 3 class 3 0.15

Red 8 class 2 class 2 class 2 class 2 class 2 class 2 0.19

9 class 2 class 2 class 2 class 2 class 2 class 2 0.19

10 class 2 class 2 class 2 class 2 class 2 class 2 0.33

11 class 3 class 3 class 3 class 3 class 3 class 3 0.09

12 class 3 class 3 class 3 class 3 class 3 class 3 0.09

13 class 3 class 3 class 3 class 3 class 3 class 3 0.08

14 class 3 class 3 class 3 class 3 class 3 class 3 0.09

15 class 3 class 3 class 3 class 3 class 3 class 3 0.09

1 class 1 class 1 class 1 class 1 class 1 class 1 0.67

2 class 1 class 1 class 1 class 1 class 1 class 1 0.82

3 class 1 class 1 class 1 class 1 class 1 class 1 0.76

4 class 2 class 1 class 1 class 1 class 1 class 1 0.53

5 class 1 class 1 class 1 class 1 class 1 class 1 0.58

6 class 3 class 3 class 2 class 2 class 3 class 2 0.21

7 class 3 class 3 class 2 class 2 class 2 class 2 0.17

Green 8 class 3 class 3 class 2 class 2 class 2 class 2 0.18

9 class 3 class 3 class 2 class 3 class 3 class 3 0.24

10 class 2 class 2 class 2 class 2 class 2 class 2 0.38

11 class 3 class 3 class 2 class 2 class 2 class 2 0.20

12 class 3 class 3 class 2 class 3 class 3 class 3 0.22

12 class 3 class 3 class 2 class 2 class 2 class 2 0.20

14 class 3 class 3 class 2 class 2 class 3 class 2 0.21

15 class 3 class 3 class 2 class 2 class 3 class 3 0.22

1 class 1 class 1 class 1 class 1 class 1 class 1 0.73

2 class 1 class 1 class 1 class 1 class 1 class 1 0.86

3 class 1 class 1 class 1 class 1 class 1 class 1 0.80

4 class 3 class 3 class 3 class 1 class 1 class 1 0.57

5 class 3 class 3 class 1 class 1 class 1 class 1 0.61

6 class 2 class 2 class 2 class 2 class 2 class 2 0.17

7 class 2 class 2 class 2 class 2 class 2 class 2 0.20

Blue 8 class 2 class 2 class 2 class 2 class 2 class 2 0.16

9 class 2 class 2 class 2 class 2 class 2 class 2 0.26

10 class 3 class 3 class 2 class 2 class 2 class 2 0.42

11 class 3 class 3 class 2 class 2 class 2 class 2 0.42

12 class 3 class 3 class 3 class 3 class 3 class 3 0.46

13 class 3 class 3 class 2 class 2 class 2 class 2 0.41

14 class 3 class 3 class 3 class 2 class 2 class 2 0.43

15 class 3 class 3 class 3 class 2 class 2 class 3 0.44
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Table 4.9: Final classification of test points in image Figure 4.6

TP LA NEW LDA QDA TREE POLY

1 class 1 class 1 class 1 class 1 class 1 class 1

2 class 1 class 1 class 1 class 1 class 1 class 1

3 class 1 class 1 class 1 class 1 class 1 class 1

4 class 2 class 1 class 1 class 1 class 1 class 1

5 class 2 class 1 class 1 class 1 class 1 class 1

6 class 2 class 2 class 2 class 2 class 2 class 2

7 class 3 class 3 class 2 class 2 class 2 class 2

8 class 2 class 2 class 2 class 2 class 2 class 2

9 class 2 class 2 class 2 class 2 class 2 class 2

10 class 2 class 2 class 2 class 2 class 2 class 2

11 class 3 class 3 class 2 class 2 class 2 class 2

12 class 3 class 3 class 3 class 3 class 3 class 3

13 class 3 class 3 class 2 class 2 class 2 class 2

14 class 3 class 3 class 3 class 2 class 3 class 2

15 class 3 class 3 class 3 class 2 class 3 class 3

LA= Liao & Akritas’s method; NEW= Our method;

LDA=Linear Discriminant Analysis; QDA=Quadratic Discriminant Analysis

TREE=Classification Tree; POLY=Polyclass method

TP=Test Point.
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Table 4.10: Classification of test points in image Figure 4.7

Compt TP LA NEW LDA QDA TREE POLY Value

1 class 1 class 1 class 1 class 1 class 1 class 1 0.32

2 class 1 class 1 class 1 class 1 class 1 class 1 0.36

3 class 2 class 1 class 1 class 1 class 1 class 1 0.42

4 class 1 class 1 class 1 class 1 class 1 class 1 0.34

5 class 2 class 2 class 4 class 2 class 2 class 2 0.62

6 class 3 class 2 class 2 class 2 class 2 class 2 0.67

7 class 2 class 2 class 4 class 2 class 2 class 2 0.62

Red 8 class 2 class 4 class 4 class 2 class 2 class 2 0.55

9 class 3 class 3 class 3 class 3 class 3 class 3 0.76

10 class 3 class 3 class 3 class 2 class 2 class 2 0.72

11 class 3 class 3 class 3 class 2 class 3 class 3 0.85

12 class 2 class 2 class 2 class 2 class 2 class 2 0.65

13 class 2 class 4 class 4 class 4 class 4 class 4 0.59

14 class 2 class 4 class 4 class 2 class 2 class 2 0.60

15 class 2 class 4 class 4 class 4 class 4 class 4 0.58

16 class 2 class 4 class 4 class 4 class 4 class 4 0.58

1 class 1 class 1 class 1 class 1 class 1 class 1 0.26

2 class 1 class 1 class 1 class 1 class 1 class 1 0.11

3 class 2 class 2 class 2 class 2 class 2 class 2 0.49

4 class 1 class 1 class 1 class 1 class 1 class 1 0.10

5 class 2 class 2 class 4 class 2 class 2 class 2 0.72

6 class 2 class 2 class 4 class 2 class 2 class 2 0.75

7 class 2 class 2 class 2 class 2 class 2 class 2 0.69

Green 8 class 2 class 2 class 2 class 2 class 2 class 2 0.65

9 class 3 class 3 class 4 class 3 class 3 class 3 0.84

10 class 3 class 4 class 4 class 2 class 2 class 2 0.80

11 class 3 class 3 class 3 class 2 class 3 class 3 0.91

12 class 3 class 4 class 4 class 2 class 2 class 2 0.82

13 class 2 class 4 class 4 class 4 class 4 class 4 0.78

14 class 3 class 4 class 4 class 4 class 4 class 4 0.79

15 class 2 class 4 class 4 class 4 class 4 class 4 0.78

16 class 2 class 4 class 4 class 4 class 4 class 4 0.77

1 class 2 class 1 class 1 class 1 class 1 class 1 0.18

2 class 1 class 1 class 1 class 1 class 1 class 1 0.10

3 class 2 class 1 class 2 class 2 class 2 class 2 0.41

4 class 1 class 1 class 1 class 1 class 1 class 1 0.13

5 class 2 class 2 class 2 class 2 class 2 class 2 0.70

6 class 2 class 2 class 4 class 2 class 2 class 2 0.71

7 class 2 class 2 class 2 class 2 class 2 class 2 0.68

Blue 8 class 2 class 2 class 2 class 2 class 2 class 2 0.67

9 class 3 class 3 class 4 class 4 class 4 class 4 0.8 1

10 class 3 class 4 class 4 class 4 class 4 class 4 0.79

11 class 3 class 3 class 4 class 2 class 3 class 3 0.85

12 class 3 class 3 class 4 class 3 class 3 class 3 0.82

13 class 3 class 4 class 4 class 4 class 4 class 4 0.81

14 class 3 class 3 class 4 class 4 class 4 class 4 0.81

15 class 3 class 4 class 4 class 4 class 4 class 4 0.80

16 class 3 class 4 class 4 class 4 class 4 class 4 0.80
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Table 4.11: Final classification of test points in image Figure 4.7

Obs LA NEW LDA QDA TREE POLY

1 class 1 class 1 class 1 class 1 class 1 class 1

2 class 1 class 1 class 1 class 1 class 1 class 1

3 class 2 class 1 class 2 class 2 class 2 class 2

4 class 1 class 1 class 1 class 1 class 1 class 1

5 class 2 class 2 class 4 class 2 class 2 class 2

6 class 2 class 2 class 4 class 2 class 2 class 2

7 class 2 class 2 class 2 class 2 class 2 class 2

8 class 2 class 2 class 2 class 2 class 2 class 2

9 class 3 class 3 class 4 class 3 class 3 class 3

10 class 3 class 4 class 4 class 2 class 2 class 2

11 class 3 class 3 class 3 class 2 class 3 class 3

12 class 3 class 2 class 4 class 2 class 2 class 2

13 class 2 class 4 class 4 class 4 class 4 class 4

14 class 3 class 4 class 4 class 4 class 4 class 4

15 class 2 class 4 class 4 class 4 class 4 class 4

16 class 2 class 4 class 4 class 4 class 4 class 4

LA= Liao & Akritas’s method; NEW= Our method;

LDA=Linear Discriminant Analysis; QDA=Quadratic Discriminant Analysis

TREE=Classification Tree; POLY=Polyclass method

TP=Test Point; Value=Pixel value of test point.
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Conclusion

In this report, we considered image pixels classification problem. A test-based classification

method introduced by Liao and Akritas (2007) was first implemented in some grayscale

images to classify image pixels. Liao and Akritas employ hypothesis testings in their method

where the main idea is to use p-values obtained from the hypothesis testings as a distance

measure. We apply their method in binary and multiclass classification of image pixels

and observe that it fails to perform well in some images. Particularly, their method did

not work well in the case when the p-values from the hypothesis testings were very small.

This feature of Liao and Akritas’s method motivated us to introduce a new classification

method which make conclusions based on combined evidence from the minimum distance

and hypothesis testing. This method eliminated the drawback of Liao and Akritas’s method.

We implemented our method in several grayscale images and found in extensive experiments

that our method consistently worked well in the classification of image pixels for both binary

and multiclass cases.

Performance of the modified method was also compared with some standard classification

methods, namely, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis

(QDA), Classification Tree and Polyclass Classification. We also compared their perfor-

mances in color images and confirmed that the modified method gave less mis-classification

than the other methods in both binary and multiclass settings.
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Appendix A

R codes for Binary Classification.

library("rimage")

#A=read.jpeg("brain.jpg")

A=read.jpeg("goldhill.jpg")

Adat=imagematrix(A, type="grey")

library("rimage")

#A=read.jpeg("brain.jpg")

A=read.jpeg("goldhill.jpeg")

Adat=imagematrix(A, type="grey")

class.data.fun=function(Adat, histogram=T){

#if (histogram ==T) {par(mfrow=c(1,3)); scan(what="character", nmax=1) }

image(Adat, col=gray( (0:254)/255 ) )

find.data=list()

for ( i in 1:2){

z=unlist(locator(2) )

lines(x=c(z[1],z[2], z[2], z[1],z[1]),y=c(z[3], z[3],

z[4], z[4], z[3]), col=ifelse(i==1, "green", "purple"), lwd=2 )

class1.x=round(z[1:2]*nrow(Adat))
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class1.y=round(z[3:4]*ncol(Adat) )

class1.dat=Adat[class1.x[1]: class1.x[2], class1.y[1]: class1.y[2] ]

find.data[[i]]=class1.dat

}

if (histogram ==T) { hist(find.data[[1]]); hist(find.data[[1]]) }

find.data

}

#LIAO AND AKRITAS

new.obs.class.T.aka=function(Adat, class1, class2,p1,p2, method="Wilcox" ,

click=T, obsgiven=mean(Adat) ){

class1=classes[[1]]; class2=classes[[2]]

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

#obs=new.obs(Adat)

temp1=c(class1, obs)

if (method=="Wilcox") mytest=wilcox.test else mytest=t.test

p1=mytest(temp1, c(class2) )$p.value

temp2=c(class2, obs)

p2=mytest( c(class1), temp2 )$p.value

result=ifelse(p1<p2,"class 1","class 2")

#result

list (result=result,p1,p2)

}

#MODIFIED METHOD
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new.obs.class.T=function(Adat, d1,d2, method="Wilcox" ,

click=T, obsgiven=mean(Adat) ){

class1=classes[[1]]; class2=classes[[2]]

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

#obs=new.obs(Adat)

temp1=c(class1, obs)

if (method=="Wilcox") mytest=wilcox.test else mytest=t.test

p1=mytest(temp1, c(class2) )$p.value

temp2=c(class2, obs)

p2=mytest( c(class1), temp2 )$p.value

d1=abs(obs-mean(class1))

d2=abs(obs-mean(class2))

ind=abs(obs-mean(class1)) < abs(obs-mean(class2))

if (ind){

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 1"}

else{ result= ifelse( (p1<p2), "class 1", "class2") }

} else {

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 2"}

else{ result= ifelse( (p1<p2), "class 1", "class2") }

}

result
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list(result=result, p1,p2, d1,d2)

}

# with prior probability

new.obs.class.T.with.prior=function(Adat, method="Wilcox",

click=T, obsgiven=mean(Adat), no.prior=F ){

# calculate prior prob. If no.prior is necessary, set 1/2 for both prior prob

if (no.prior==T){ prior1=prior2=1/2} else {

mc1=mean(class1); mc2=mean(class2)

if (mc1<mc2) {prior1=mean(Adat< (mc1+mc2)/2); prior2=1-prior1 }

else {prior2=mean(Adat< (mc1+mc2)/2); prior1=1-prior2 }

}

# choose a point to classify

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs=obsgiven

# decide which class the point belongs to

temp1=c(class1, obs)

if (method=="Wilcox") mytest=wilcox.test else mytest=t.test

p1=mytest(temp1, c(class2) )$p.value

temp2=c(class2, obs)

p2=mytest( c(class1), temp2 )$p.value

ind=abs(obs-mean(class1)) < abs(obs-mean(class2))
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if (ind){

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 1"} else{ result=

ifelse( (p1*(1-prior1) <p2*(1-prior2)), "class 1", "class2") }

} else {

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 2"} else{ result=

ifelse( (p1*(1-prior1)<p2*(1-prior2)), "class 1", "class2") }

}

result

list(result=result, prior1, prior2)

}

## classify for a block of pixels

new.obs.class.T.block=function(Adat, click=F, blockpixels=Adat, use.prior=T){

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(2) )

obs.x=round(z[1:2]*nrow(Adat))

obs.y=round(z[3:4]*ncol(Adat) )

obs=Adat[obs.x[1]: obs.x[2], obs.y[1]: obs.y[2] ]

} else obs= blockpixels

classres=matrix("NA", nrow=nrow(obs), ncol=ncol(obs) )

for ( i in 1:nrow(obs) ){

for (j in 1:ncol(obs) ) {

if (use.prior ==T){

classres[i,j]=new.obs.class.T.with.prior(Adat, class1, class2,

method="Wilcox", click=F, obsgiven=obs[i,j], no.prior=F ) } else {
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classres[i,j]=new.obs.class.T.with.prior(Adat, class1, class2,

method="Wilcox", click=F, obsgiven=obs[i,j], no.prior=T ) }

}

}

list(individual.class=classres, summarys=table(c(classres) ))

}

# for comparing Liao-Aka and our method

common.obs.Liao.Aka.ours=function(Adat,labeluse=1){

z=unlist(locator(1))

points(z[1],z[2],lwd=2,col="orange")

text(x=z[1],y=z[2],labels=labeluse,font=2)

obs=Adat[round(z[1]*nrow(Adat)),round(z[2]*ncol(Adat))]

obs

}

# Define two classes classes=class.data.fun(Adat,histogram=F)

class1=class.data.fun(Adat) class2=class.data.fun(Adat)

fortable=character() for (i in 1:6){

commonobs=common.obs.Liao.Aka.ours(Adat,i)

akares=new.obs.class.T.aka(Adat,class1,class2, method="Wilcox" ,

click=F, obsgiven=commonobs) ours=new.obs.class.T(Adat,

method="Wilcox" , click=F, obsgiven=commonobs )

fortable=rbind(fortable, c(i, akares,ours)) }
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fortable
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Appendix B

R codes for Multiclass Classification.

class.data.fun.poly=function(Adat, histogram=T){

if (histogram ==T) {par(mfrow=c(1,3)); scan(what="character", nmax=1) }

image(Adat, col=gray( (0:254)/255 ) )

find.data=list()

for ( i in 1:2){

library(splancs)

n=scan(what=numeric(),nmax=1)

z=unlist(locator(n) )

polygon(x=z[1:n],y=z[(n+1):(2*n)])

myp=data.frame(x=z[1:n],y=z[(n+1):(2*n)])

x0=seq(nrow(Adat))/nrow(Adat)

y0=seq(ncol(Adat))/ncol(Adat)

indicator.map=inout(data.frame(expand.grid(x0, y0)), myp)

keeps=expand.grid(seq(nrow(Adat)), seq(ncol(Adat)) )[indicator.map,]

class1.dat=Adat[unlist(keeps[,1]), unlist(keeps[,2]) ]

find.data[[i]]=class1.dat

}

if (histogram ==T) { hist(find.data[[1]]); hist(find.data[[1]]) }

find.data
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}

class.data.fun=function(Adat, histogram=T){

if (histogram ==T) {par(mfrow=c(1,3)); scan(what="character", nmax=1) }

image(Adat, col=gray( (0:254)/255 ) )

find.data=list()

for ( i in 1:2){

z=unlist(locator(2) )

lines(x=c(z[1],z[2], z[2], z[1],z[1]),y=c(z[3], z[3], z[4], z[4], z[3]),

col=ifelse(i==1, "green", "purple"), lwd=2 )

class1.x=round(z[1:2]*nrow(Adat))

class1.y=round(z[3:4]*ncol(Adat) )

class1.dat=Adat[class1.x[1]: class1.x[2], class1.y[1]: class1.y[2] ]

find.data[[i]]=class1.dat

}

if (histogram ==T) { hist(find.data[[1]]); hist(find.data[[1]]) }

find.data

}

#consider multiple classes

class.data.fun.multiclass=function(Adat,k=3, histogram=T){

if (histogram ==T) {par(mfrow=c(1,k+1)); scan(what="character", nmax=1) }

image(Adat, col=gray( (0:254)/255 ) )

find.data=list()

for ( i in 1:k){

z=unlist(locator(2) )

lines(x=c(z[1],z[2], z[2], z[1],z[1]),y=c(z[3], z[3],
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z[4], z[4], z[3]), col=i, lwd=2 )

class1.x=round(z[1:2]*nrow(Adat))

class1.y=round(z[3:4]*ncol(Adat) )

class1.dat=Adat[class1.x[1]: class1.x[2], class1.y[1]: class1.y[2] ]

find.data[[i]]=class1.dat

}

if (histogram ==T) { for (i in 1:k){ hist(find.data[[i]]) }}

find.data

}

#consider multiple classes from colored image

# Adat is directly from read.jpeg command

class.3d.data.fun.multiclass=function(Adat,k=3, histogram=T){

if (histogram ==T) {par(mfrow=c(1,k+1)); scan(what="character", nmax=1) }

plot(Adat )

find.data=list()

for ( i in 1:k){

z=unlist(locator(2) )

lines(x=c(z[1],z[2], z[2], z[1],z[1]),y=c(z[3],

z[3], z[4], z[4], z[3]), col=i, lwd=2 )

class1.x=round(z[1:2])

class1.y=round(z[3:4] )

class1.dat=Adat[class1.y[1]: class1.y[2], class1.x[1]: class1.x[2], ]

find.data[[i]]=class1.dat

}

if (histogram ==T) { for (i in 1:k){ hist(find.data[[i]]) }}
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find.data

}

plot.classes=function(classes){

k=length(classes)

b=lapply(classes,density)

ally=numeric()

for (i in 1:k){

ally=c(ally, b[[i]]$y)

}

for (i in 1:k){

di=density(c(classes[[i]]))

if (i==1) {plot(di,xlim=range(classes),ylim=range(ally),col=1,

xlab="Pixel Values on scale [0,1]" ,main="Kernel Density Estimate")} else {

lines(di$x,di$y, col=i) }

ordy=(1:length(di$y))[di$y==max(di$y)]

text((di$x)[ordy],(di$y)[ordy]+1.5,labels=i)

}

}

#classification rule for multi classes

Aka.new.obs.class.T.multiclasses=function(Adat, classes, method="rank" ,

click=T, obsgiven=mean(Adat) ){

#class1=classes[[1]]; class2=classes[[2]]
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if (click==T){

#image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

points(z[1], z[2], lwd=2, col="orange")

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

temp=calculate.p.and.dist(classes, obs, method, 1:length(classes) )

p=temp$p

result= paste(’class’, Liao.Aka(p, classes, obs, method))

list(result=result,pvalue=p)

}

#classification rule for 3 classes

new.obs.class.T.3classes=function(Adat, classes, method="rank" ,

click=T, obsgiven=mean(Adat),threshold=1e-3 ){

#class1=classes[[1]]; class2=classes[[2]]

if (click==T){

#image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

points(z[1], z[2], lwd=2, col="orange")

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

k=length(classes)

temp=calculate.p.and.dist(classes, obs, method, 1:k)
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p=temp$p

all.abs.dist=temp$all.abs.dist

if (max(p)<threshold) result=paste(’class’, (seq(k))[order(all.abs.dist)[1] ] )

if (min(p)>threshold) result= paste(’class’, Liao.Aka(p, classes, obs, method))

if (sum(p<threshold)==1) result=paste(’class’,(seq(k))[p<threshold])

if (sum(p<threshold)==2) {whichclass=(seq(k))[p<threshold]

result=decide.2(p[whichclass[1]], p[whichclass[2]],

classes[[whichclass[1]]], classes[[whichclass[2]]], obs, threshold)

}

list(result=result,pvalue=p,distance=all.abs.dist)

}

# for comparing Liao-Aka and our method

#common.obs.Liao.Aka.ours=function(Adat,labeluse=1){

#z=unlist(locator(1))

#points(z[1],z[2],lwd=2,col="orange")

#text(x=z[1],y=z[2],labels=labeluse,font=2)

#obs=Adat[round(z[1]*nrow(Adat)),round(z[2]*ncol(Adat))]

#obs

#}

#for colored image

common.obs.Liao.Aka.ours=function(Adat,labeluse=1){

z=unlist(locator(1))

points(z[1],z[2],lwd=2,col="orange")

text(x=z[1],y=z[2],labels=labeluse,font=2)

if (length(dim(Adat))>2) obs=Adat[round(z[2]),round(z[1]),] else
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obs= Adat[round(z[1]*nrow(Adat)),round(z[2]*ncol(Adat))]

obs

}

#classification rule for multi classes for one obs without prior

new.obs.class.T.multiclasses=function(Adat, classes,classlab=1:length(classes),

method="rank" , click=T, obsgiven=mean(Adat),threshold=1e-3 ){

#class1=classes[[1]]; class2=classes[[2]]

if (click==T){

#image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

points(z[1], z[2], lwd=2, col="orange")

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

k=length(classlab)

temp=calculate.p.and.dist(classes, obs, method, classlab)

p=temp$p

all.abs.dist=temp$all.abs.dist

if (max(p)<threshold) result=paste(’class’, classlab[order(all.abs.dist)[1] ] )

if (min(p)>threshold) result= paste(’class’, Liao.Aka(p, classes, obs, method))

if (sum(p<threshold)==1) result=paste(’class’,classlab[p<threshold])

if (sum(p<threshold)==2) {whichclass=classlab[p<threshold]

result=decide.2(p[whichclass[1]], p[whichclass[2]],classes[[whichclass[1]]],

classes[[whichclass[2]]], obs, threshold)

}

if((sum(p<threshold)>2)&(sum(p<threshold)<k)){
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currentlab=classlab[p<threshold]

result=new.obs.class.T.multiclasses(Adat, classes,classlab=currentlab,

method, click, obsgiven,threshold)

}

list(result=result,pvalue=p,distance=all.abs.dist)

}

##############classification rule for multi classes for one obs with prior

multiclass.new.obs.class.T.with.prior=function(Adat, classes,

classlab=1:length(classes), method, click=F, obsgiven=0, no.prior=F,threshold=1e-3 ){

if (click==T){

#image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

points(z[1], z[2], lwd=2, col="orange")

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

k=length(classlab)

temp=calculate.p.and.dist(classes, obs, method, classlab)

p=temp$p

all.abs.dist=temp$all.abs.dist

if (max(p)<threshold) result=paste(’class’, classlab[order(all.abs.dist)[1] ] )

if (min(p)>threshold) result= paste(’class’, Liao.Aka.prior(p, classes, obs, method))

if (sum(p<threshold)==1) result=paste(’class’,classlab[p<threshold])

if (sum(p<threshold)==2) {whichclass=classlab[p<threshold]

result=decide.2(p[whichclass[1]], p[whichclass[2]],

classes[[whichclass[1]]], classes[[whichclass[2]]], obs, threshold)
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}

if((sum(p<threshold)>2)&(sum(p<threshold)<k)){

currentlab=classlab[p<threshold]

result=new.obs.class.T.multiclasses(Adat, classes,classlab=currentlab,

method, click, obsgiven,threshold)

}

result

}

#order(tt) gives 2, 3,1 for tt=c(1, 0.3, 0.4)

# it means second element gives smallest value; third element gives

#second smallest and first element gives largest.

Liao.Aka=function(p, classes, obs, method){

klist=1: length(classes)

while(length(klist)>1) {

eliminate=(seq(length(p)))[order(p )[length(klist) ] ]

klist=klist[klist!=eliminate]

if (length(klist)>1 ) {temp=calculate.p.and.dist(classes, obs, method, klist)

p=temp$p }

}

klist
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}

Liao.Aka.prior=function(p, classes, obs, method){

priors=numeric()

# calculate prior prob. If no.prior is necessary,

# set 1/k for each prior prob

k=length(classes)

if (no.prior==T){ priors=1/k} else {

mc=unlist(lapply(classes,median));

mc.order=order(mc)

sorted.mc=sort(mc)

LMC=c(-sorted.mc[1],sorted.mc[-k])

RMC=c(sorted.mc[-1],1e+16)

for (j in 1:k){

#when the variances of the different classes are different then

#the two terms average in the line below does not give the correct partition.

priors[mc.order[j]]=mean((Adat>(LMC[j]+sorted.mc[j])/2)&

(Adat<=(RMC[j]+sorted.mc[j])/2))

}

}

klist=1: length(classes)

while(length(klist)>1) {

eliminate=(seq(length(p)))[order(p*(1-priors) )[length(klist) ] ]

klist=klist[klist!=eliminate]

if (length(klist)>1 ) {temp=calculate.p.and.dist(classes, obs, method, klist)
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p=temp$p }

}

klist

}

#### calculate the pvalues for testing that all classes have

#identical distribution (or mean)

# when assigning the new obs to each of the classes

# If the method is ’rank’, use Kruskal Wallis test; otherwise, use anova

# Also calculate distance of the new obs to each class median

calculate.p.and.dist=function(classes, obs, method, klist){

#datv=as.numeric(c( unlist(obs), unlist(classes)))

datv=unlist(obs)

oldgroup=character()

for ( j in klist){ oldgroup=c(oldgroup, rep(paste("class", j),

nrow(classes[[j]])*ncol(classes[[j]]) ) )

datv=c(datv,unlist(classes[[j]]))

}

p=numeric(); all.abs.dist=numeric()

for ( i in klist){

all.abs.dist[i]= abs(obs-median(classes[[i]]) ) #absolute distance

group=c(paste("class", i), oldgroup )

if (method=="rank") {

p[i]=kruskal.test(datv~group, data=data.frame(datv, group) )$p.value
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} else {

p[i]=anova(lm(datv~group, data=data.frame(datv, group) ))$’Pr(>F)’[1]

}

}

list(p=p, all.abs.dist=all.abs.dist)

}

# Decciding two clsses

decide.2=function(p1, p2, class1,class2, obs,threshold=1e-3){

ind=abs(obs-mean(class1)) < abs(obs-mean(class2))

if (ind){

if ((p1 <threshold)&(p2<threshold) ) { result="class 1"}

else{ result= ifelse( (p1<p2), "class 1", "class2") }

} else {

if ((p1 <threshold)&(p2<threshold) ) { result="class 2"}

else{ result= ifelse( (p1<p2), "class 1", "class2") }

}

result

}

# Decciding two clsses incorporating prior

decide.2.prior=function(p, classes, obs,threshold=1e-3){

priors=numeric()

# calculate prior prob. If no.prior is necessary, set 1/k for each prior prob
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k=length(classes)

if (no.prior==T){ priors=1/k} else {

mc=unlist(lapply(classes,median));

mc.order=order(mc)

sorted.mc=sort(mc)

LMC=c(-sorted.mc[1],sorted.mc[-k])

RMC=c(sorted.mc[-1],1e+16)

for (j in 1:k){

#when the variances of the different classes are different then the two

#terms average in the line below does not give the correct partition.

priors[mc.order[j]]=mean((Adat>(LMC[j]+sorted.mc[j])/2)

&(Adat<=(RMC[j]+sorted.mc[j])/2))

}

}

#ind tells us class that this obs is closet to in terms of no.

#of std.dev. away from each center.

ind=(order(abs(obs-mc)/(unlist(lapply(classes,function(xs)sd(c(xs))))+1e-5)))[1]

if (max(p) <threshold ) { result=paste("class",ind)} else{ result=(order(p*(1-priors)))[1] }

result

}

#classification of block of pixel on multiclasses with prior

new.obs.class.T.block.multiclass=function(Adat, classes, click=F,

blockpixels=Adat, use.prior=T,threshold=1e-3,Method="rank"){

if (click==T){

#image(Adat, col=gray( (0:254)/255 ) )
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z=unlist(locator(2) )

lines(x=c(z[1],z[2], z[2], z[1],z[1]),y=c(z[3], z[3],

z[4], z[4], z[3]), col="orange", lwd=2 )

obs.x=round(z[1:2]*nrow(Adat))

obs.y=round(z[3:4]*ncol(Adat) )

obs=Adat[obs.x[1]: obs.x[2], obs.y[1]: obs.y[2] ]

} else obs= blockpixels

classres=matrix("NA", nrow=nrow(obs), ncol=ncol(obs) )

for ( i in 1:nrow(obs) ){

for (j in 1:ncol(obs) ) {

if (use.prior ==T){

classres[i,j]=multiclass.new.obs.class.T.with.prior(Adat, classes,

method=Method, click=F, obsgiven=obs[i,j], no.prior=F ) } else {

classres[i,j]=multiclass.new.obs.class.T.with.prior(Adat, classes,

method=Method, click=F, obsgiven=obs[i,j], no.prior=T ) }

}

}

list(individual.class=classres, summarys=table(c(classres) ))

}

# classify a point with no prior prob.

# This function is a special case of the other function though command

# new.obs.class.T.with.prior(Adat, class1, class2, method="Wilcox",

#click=T, obsgiven=mean(Adat), no.prior=T )

new.obs.class.T=function(Adat, classes, method="Wilcox" ,
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click=T, obsgiven=mean(Adat) ){

class1=classes[[1]]; class2=classes[[2]]

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

points(z[1], z[2], lwd=2, col="orange")

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs= obsgiven

#obs=new.obs(Adat)

temp1=c(class1, obs)

if (method=="Wilcox") mytest=wilcox.test else mytest=t.test

p1=mytest(temp1, c(class2) )$p.value

temp2=c(class2, obs)

p2=mytest( c(class1), temp2 )$p.value

ind=abs(obs-mean(class1)) < abs(obs-mean(class2))

if (ind){

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 1"}

else{ result= ifelse( (p1<p2), "class 1", "class2") }

} else {

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 2"}

else{ result= ifelse( (p1<p2), "class 1", "class2") }

}

result

}
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new.obs.class.T.with.prior=function(Adat, classes, method="Wilcox",

click=T, obsgiven=mean(Adat), no.prior=F ){

class1=classes[[1]]; class2=classes[[2]]

# calculate prior prob. If no.prior is necessary, set 1/2 for both prior prob

if (no.prior==T){ prior1=prior2=1/2} else {

mc1=mean(class1); mc2=mean(class2)

if (mc1<mc2) {prior1=mean(Adat< (mc1+mc2)/2); prior2=1-prior1 }

else {prior2=mean(Adat< (mc1+mc2)/2); prior1=1-prior2 }

}

# choose a point to classify

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(1) )

points(z[1], z[2], lwd=2, col="orange")

obs=Adat[round(z[1]*nrow(Adat)), round(z[2]*ncol(Adat) ) ]

} else obs=obsgiven

# decide which class the point belongs to

temp1=c(class1, obs)

if (method=="Wilcox") mytest=wilcox.test else mytest=t.test

p1=mytest(temp1, c(class2) )$p.value

temp2=c(class2, obs)

p2=mytest( c(class1), temp2 )$p.value
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ind=abs(obs-mean(class1)) < abs(obs-mean(class2))

if (ind){

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 1"} else{ result=

ifelse( (p1*(1-prior1) <p2*(1-prior2)), "class 1", "class2") }

} else {

if ((p1 <1e-3)&(p2<1e-3) ) { result="class 2"} else{ result=

ifelse( (p1*(1-prior1)<p2*(1-prior2)), "class 1", "class2") }

}

result

}

## classify for a block of pixels

new.obs.class.T.block=function(Adat, classes, click=F,

blockpixels=Adat, use.prior=T){

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

z=unlist(locator(2) )

lines(x=c(z[1],z[2], z[2], z[1],z[1]),y=c(z[3], z[3],

z[4], z[4], z[3]),

col="orange", lwd=2 )

obs.x=round(z[1:2]*nrow(Adat))

obs.y=round(z[3:4]*ncol(Adat) )

obs=Adat[obs.x[1]: obs.x[2], obs.y[1]: obs.y[2] ]
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} else obs= blockpixels

classres=matrix("NA", nrow=nrow(obs), ncol=ncol(obs) )

for ( i in 1:nrow(obs) ){

for (j in 1:ncol(obs) ) {

if (use.prior ==T){

classres[i,j]=new.obs.class.T.with.prior(Adat, classes,

method="Wilcox", click=F, obsgiven=obs[i,j], no.prior=F ) } else {

classres[i,j]=new.obs.class.T.with.prior(Adat, classes,

method="Wilcox", click=F, obsgiven=obs[i,j], no.prior=T ) }

}

}

list(individual.class=classres, summarys=table(c(classres) ))

}

new.obs.class.T.block.poly=function(Adat, classes, click=F,

blockpixels=Adat, use.prior=T){

if (click==T){

image(Adat, col=gray( (0:254)/255 ) )

library(splancs)

n=scan(what=numeric(),nmax=1)

z=unlist(locator(n) )

polygon(x=z[1:n],y=z[(n+1):(2*n)])

myp=data.frame(x=z[1:n],y=z[(n+1):(2*n)])
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x0=seq(nrow(Adat))/nrow(Adat)

y0=seq(ncol(Adat))/ncol(Adat)

indicator.map=inout(data.frame(expand.grid(x0, y0)), myp)

keeps=expand.grid(seq(nrow(Adat)), seq(ncol(Adat)) )[indicator.map,]

obs=Adat[unlist(keeps[,1]), unlist(keeps[,2]) ]

} else obs= blockpixels

classres=matrix("NA", nrow=nrow(obs), ncol=ncol(obs) )

for ( i in 1:nrow(obs) ){

for (j in 1:ncol(obs) ) {

if (use.prior ==T){

classres[i,j]=new.obs.class.T.with.prior(Adat, classes,

method="Wilcox", click=F, obsgiven=obs[i,j], no.prior=F ) } else {

classres[i,j]=new.obs.class.T.with.prior(Adat, classes,

method="Wilcox", click=F, obsgiven=obs[i,j], no.prior=T ) }

}

}

list(individual.class=classres, summarys=table(c(classres) ))

}

library("rimage")

#A=read.jpeg("brain.jpg")

A=read.jpeg("C:\\Users\\Santosh\\Documents\\Test images

\\test images\\coloredimage.jpg")

Adat=imagematrix(A, type="grey")

Adat0=imagematrix(A)
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Adat=Adat0[,,3]

#image(Adat)

plot(A)

par(mfrow=c(1,2))

classes=class.data.fun.multiclass(Adat, k=3, histogram=F)

Aka.new.obs.class.T.multiclasses(Adat, classes,

method="rank" , click=T )

fortable=character()

keepobs=numeric()

for (i in 1:20){

commonobs=common.obs.Liao.Aka.ours(Adat0,i)

keepobs=c(keepobs,commonobs)

akares=Aka.new.obs.class.T.multiclasses(Adat, classes, method="rank" ,

click=F, obsgiven=commonobs )

ours=new.obs.class.T.3classes(Adat, classes, method="rank" , click=F,

obsgiven=commonobs,threshold=1e-3)

fortable=rbind(fortable, c(i,format(akares$pvalue,digits=4),akares$result,

format(ours$pvalue,digits=4),round(ours$distance,3),ours$result))

#fortable=rbind(fortable, c(i,format(akares$pvalue,digits=4),akares$result))

}

write.csv(fortable,file="5class.csv")

k0=length(classes)

keeptable=fortable[ , -( k0+2+(1:k0))]

#write.csv(keeptable, file="5class.keep.csv", row.names=F)
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# keeptable=read.csv("5class.keep.csv")

# keeptable[, 8:12]=round(keeptable[, 8:12], 3)

colnames(keeptable)=c("obs", paste("PV", 1:k0, sep=""),

"LA", paste("d", 1:k0, sep=""), "New")

library(xtable)

xtable(as.matrix(keeptable[,-1]))

setwd("C:\\Users\\Santosh\\Documents\\Test images\\test

images\\riverboat5classes\\newtry")

# output the data to be used by other classification methods

alldata=numeric()

for (i in 1:k0){

alldata=rbind(alldata,cbind(c(classes[[i]]),

rep(i,length(c(classes[[i]])))))

write.csv(classes[[i]], file=paste("eg.five.classes.dat",

i, ".csv", sep="") )

}

colnames(alldata)=c("x","y")

write.table(keepobs,file="testobs.txt",row.names=F)

library(MASS)

ldares=lda(as.factor(y)~x,data=data.frame(alldata))

pred.lda=predict(ldares,newdata=data.frame(x=keepobs))$class

qdares=qda(as.factor(y)~x,data=data.frame(alldata))
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pred.qda=predict(qdares,newdata=data.frame(x=keepobs))$class

library(rpart)

tres=rpart(as.factor(y)~x,data=data.frame(alldata))

pred.tree=predict(tres,newdata=data.frame(x=keepobs),type="class")

#library(mgcv)

#gamres=gam(as.factor(y)~x,data=data.frame(alldata),family=)

alldata=data.frame(alldata)

alldata$y=as.factor(alldata$y)

attach(alldata)

library(polspline)

marsres=polyclass(y, x)

pred.polyclass=cpolyclass(cov=matrix(keepobs), fit=marsres)

allresult=data.frame(keeptable, lda=pred.lda, qda=pred.qda, tree=pred.tree,

polyclass=pred.polyclass,obsvalue=round(keepobs, 2))

write.csv(allresult, file="allresult.csv", row.names=F)

library(xtable)

xtable(as.matrix(allresult[,-1]))

plot.classes(classes)

#library(mlogit)
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#malldata= mlogit.data(alldata, shape = "wide", choice = "y")

#mlogitres=mlogit(y~x,data=malldata)

fortable=character()

for (i in 1:10){

commonobs=common.obs.Liao.Aka.ours(Adat,i)

akares=Aka.new.obs.class.T.multiclasses(Adat, classes, method="rank" ,

click=F, obsgiven=commonobs )

ours=new.obs.class.T.3classes(Adat, classes, method="rank" , click=F,

obsgiven=commonobs,threshold=1e-3)

fortable=rbind(fortable, c(i,akares$result,akares$pvalue, ours$result,

ours$pvalue,format(ours$distance,digits=4)))

}

fortable
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