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INTRODUCTION

The purposes of this report are the examination of existing

techniques of classifying a system of linear equations, and, if the

system is classified as ill-conditioned, the examination of iterative

methods available by use of which it is possible to obtain an accur-

ate representation of the solution of the system.

A system of equations is said to be "ill-conditioned" if it has a

solution that is extremely sensitive to slight changes in the coefficients

of the variables. Such sensitivity of the coefficients impairs the

accuracy and dependability of the solution obtained in the usual

iterative procedures, especially those involving matrix techniques,

because of round-off error which is inherent in these techniques.

Many systems of equations occur as a result of experimental

work. The coefficients are subject to error resulting from measure-

ment techniques, etc. Hence it is necessary that the stability of the

system be known so that appropriate precautions may be taken to

insure a reasonably accurate solution of the system.

The solution of a two-dimensional system is, in a geometric

sense, represented by the intersection of the graphs of the functions.

As illustration, consider the set of linear equations:



4. OOlx +4.012x =0.001 (a)
1 *-<

4. 012x +4. 014x =0.002. (b)
1 •—

It is obvious from the graph that a slight change in the coefficients

in this system may result in a relatively much greater change in the

coordinates of the point of intersection of the lines.



CLASSIFICATION TECHNIQUES

Consider the equations

a
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whereas the lines corresponding to these equations are nearly parallel.

The angle(s) between the lines must be nearly zero. To utilize this

fact, one classification technique is the consideration of the angle

2
between the lines. One can calculate cos or cos 9 and arbitrarily

2
decide how near unity must cos or cos be to term the system of

equations ill-conditioned. Stanton (11) infers that as a reference

point a criterion number could be set in the range 0. 90i. 05, and that

2
ill-conditionedness may result if cos 9 is greater than this number.

This would make 9 slightly less than 18 degrees. To calculate cos 9

recall,

|
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a
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cos 9 =
.. where 9 is the angle
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between the lines with direction numbers a , a and a , a .

(Recall that these are also the coefficients in the two equations.
)

Generalized to n dimensions this becomes:
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This criterion is not wholly satisfactory because of the

2
arbitrariness involved in choosing a critical value for cos 9.

One of the most widely used methods of classifying a system of

equations is in terms of the value of the determinant of coefficients.

If the determinant is near zero, or relatively small as compared

with the determinant formed by replacing the coefficients of one of

the variables by the constants, the system probably is ill-conditioned.

Another way of expressing this fact involves the determinant of the

normalized coefficient matrix. If the absolute value of this deter-

minant is very small as compared with unity (i.e. j A l«l) then

the system is probably ill-conditioned.

Neither of the two preceding methods is entirely satisfactory by

itself. As illustration, consider the set of linear equations already

discussed:

4. OOlx +4. 012x =0.001

4.012x +4.014x =0.002.

The true solution of this system is x = -1 and x = +1. The corres-

ponding solution obtained by method of elimination with round-off in



the twelfth position is x = -1.00000001819 and x
2
= +1.00000001819.

This solution agrees quite well with the true solution considering the

fact that the normalized determinant of the coefficient matrix is

computed to be 0. 000705 which is quite small relative to unity.

A. M. Turning (12), while considering the solution of the system

AX=B, suggests that instead of using the coefficient matrix A, the

matrix A-S be used where S is a small predetermined matrix which

he calls an average or typical matrix. The solution of this new

system will be X +A SX where X is the true solution. By averaging

the effect of the "average" transformation he arrives at two classifi-

cation schemes, one termed the "N- condition number of A" and the

other is the "M-condition number of A. " The "N-condition number is

equal to (l/n)N(A)N(A~ ) where n is the dimension of A and N(A) is

the norm of A. The second condition number is used in conjunction

with the first. The "M-condition number" is equal to n(M(A)M(A ) )

where n is again the dimension of A and M(A) is max I a..
J

. The
ij

1J

coefficients of a well- conditioned matrix give the "N-condition number"

of order n and the "M-condition number" approximately ln(n) times

larger. The larger the condition numbers, the more ill-conditioned

the system. However, as in the other classification procedures, this

scheme has its disadvantages. For one, it is often quite tedious to

compute A . For another, it is somewhat arbitrary as to how large



the condition numbers need be, before the system is considered ill-

conditioned.

Among the most popular measures of the ill-conditionedness of a

system are those which employ knowledge of eigenvalues and eigen-

vectors of the coefficient matrix, determination of which in itself is

often a challenging problem. The usual criterion is the quotient

I f\ I max. The larger the resulting quotient, the more ill-conditioned

T?iT
min

the system is. The disadvantage of this method, as previously men-

tioned, lies in the computation of the eigenvalues and eigenvectors.

The last classification scheme being considered in this report is

attributed to Riley (9). When attempting to solve a system AX=B where

A has real eigenvalues, it consists, instead, of considering the solu-

tion of the system CY=B where C=A+kI. The matrix C is "better

conditioned" than is the matrix A. This will be proved by showing that

if \ , ^ ,
• • • , A are the eigenvalues of A then A +k, n ?

+k,

* * *
. n +k are the eigenvalues of C.

To show that this is so, write the characteristic equation for C:

|rl-c| = 0.

It follows, successively, that



lrI-(A+kI)| = 0,

\rI-kI-Al'= 0,

|(r-k)I-A[ = 0.

If the eigenvalues of C are /\., then the eigenvalues of A are A.-k.

Now, without loss of generality, it is possible to assume that the

eigenvalue of least numerical value is positive.

Note, n.+k^. A. where A .+k and fl . are the minimum eigenvalues
J J J J

of C and A respectively. Thus ^ .+k ^ . where A.- n. is

positive. Hence, it follows, successively, that

A.+k n .

J '
J

h.- h- a- n
_i L l J <Q

•'
i ^j , ^i >

XTk".Yk /\j
+k

" A)

Xi
*

k A ^„
Aj+k A.+k A;

Yk - ^



Therefore

lVk
l IM"

Thus the matrix C is better conditioned than the matrix A.

Riley notes that his experience suggests that a reasonable choice

2-s
is for k, a small positive constant, to be somewhere between 10

3-s
and 10 where s is the number of decimals being carried. X is

computed from a series expansion in a matrix Y as follows:

C=A+kI implies A=C-kI. Thus one has

AA
_1

=(C-kI)A"
1

.

Hence it follows successively, that

I=CA
_1
-kA" ,

C"
1
=C"

1
CA"

1
-C~

1
kA" ,

A"
1
=C"

1
+kC" A" ,

A"
1
= C"

1
+kC"

1
(C"

1
+kC"

1
A"

1

)
=C"

1
+kC"

2
+k

2
c"

2A
_1

,

Hence, A
_1

= c"
1
+kC"

2
+ • • • +k

n
C
_(n+1)+- •. Thus

X=A
_1
B =C"

1
B+kc" B+ • • •+

k

n
C"

(n+1)
B+ • • • .

Now, letting Y =C~ B, it follows that

X=Y+kC
_1
Y+ • • • +(kC"

1

)

n
Y+ • • .

To obtain an indication of the condition of the system, use a value

of k of one in the next to last decimal place (k=0. 000* • • 010). Y is

then computed by an inversion technique such as the Cholesky or Square



Root method. Then using Y as the right member, one computes the

second term in the series expansion of X; this is then used to obtain

the next member of the series. If it appears that additional compu-

tation would contribute nothing, it is likely that the system is well-

conditioned, providing k was appropriately chosen. On the other hand,

if it appears that additional computation would contribute to the sum

of the series then the system is ill-conditioned and thus the original

system must have been quite ill-conditioned. The disadvantages of

the method lie in the choosing of suitable k and in the series computation

of X. It should be noted that in order for the condition of C to be better

than that of A, k must be approximately as large as ] A .Imin. However

it must not be too large, lest convergence of the series be slowed down.

The rate of convergence depends on k times the eigenvalues of C

This technique presents a method to improve an approximate

solution of the system. There exist matrices A such that A cannot

be expressed exactly carrying any specified number of decimals. How-

ever, for such matrices the inverse of the corresponding C can be

expressed exactly with appropriate choice of k and can be used to

improve the approximate solution. For example:

Let X be an approximate solution of AX=B.

Consider "CZ =B-AX ".
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Now C(X-(X +Z
Q

) )
= CX-CX -CZ

= AX+kX-AX -kX
Q
-CZ

= B-AX -CZ +k(X-X
Q
).

Thus X-(X +Z )=kC'
1
(X-X

Q
). Now letting X

l
=X

Q
+Z

Q
and Z^C" (B-AXj),

repeat the process. Continuing, one notes Z =C (B-AX ). Thus if

Z —* 0, one has X—*X . Convergence of Z is highly dependent upon the
n n n

appropriate choice of k, as is seen from the following development.

If one has

CZ =B-AX ,

CZ =B-AX
lf

CZ
2
=B-AX

2
,

CZ
3
=B-AX

3
,

CZ =B-AX ,

n n

then Z. = C"
1
(B-AX.),
v 0'

Z
1

= C"
1
(B-AX

1
) =C"

1

(B-A(X +Z
()

) ),

Z
2
= C"

1
(B-AX

2
)
=C

_1
(B-A(X

1
+Z

1
) ),

Z
3
= C"

1
(B-AX

3
)
= C"

1
(B-A(X

2
fZ

2
) ),

Z =C
-1
(B-AX ) =C

_1
(B-A(X ,+Z . ) ).n n n-1 n-1
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Consider:

Z
3
=C

_1
(B-A(X

2
+Z

2
) )

= z
2
-c

= z
2
-c"

= z
2
-c"

= z
2
-c"

= z
z-
c

'

AZ.

A(Zr C

AZ +(C"

AZ +(C"

AZ +(C"

AZ +(C"

AZ
X

)

A)
2
Z

X

A)
2
(Z -C

_1
AZ )

A)
2
Z -(C

_1
A)

3
Z

A)
2
Z

()

-(C"
1

A)
3
(C"

1
(B-AX ) ).

In general, for Z , one has
n

Z =Z ,-C
_1
AZ _ + • ' •+(-lC

-1
A)

n" 1
Z.+(-lC"

1
A)

n
(C"

1
(B-AXA ) ).n n-1 n-2

No- *'• L**G C .£envalues c — — T 1 i » h _, - - w 1

1
Thus since raising C to the nth power also raises the eigenvalues of

C to the nth power, the eigenvalues will approach zero. Recall, if

the eigenvalues of a matrix are zero, then the matrix is the zero matrix.

Thus an appropriate choice of k which will allow the eigenvalues of C

to approach zero rapidly, will insure convergence of the series.

MODIFICATION OF AN ILL-CONDITIONED MATRIX

The following technique is one which presents a method of improving

the condition of the coefficient matrix of a system of equations. The

procedure is concerned with the eigenvalues of the coefficient matrix,
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principally those which are very small. Thus, since most methods

for extraction of eigenvalues obtain the dominant eigenvalue first, a

technique for obtaining the smallest eigenvalue is presented in

Appendix A.

As illustration, it is convenient to apply the method to a four by

four system where the coefficient matrix is real and symmetric. Fur-

ther, for the present it is assumed that the eigenvalues are distinct

and are such that
| Ai)>l A ->! >l?wl >l?V4i ' A method attributed to

J. W. Head and G. M. Oulton (2) is as follows.

Consider the ill-conditioned system AX=D where

^11 a
i2

a
i3

a
i? with a..= a. ., X=

a a a a
21 22 23 24

a
31

a
32

a
33

a
34

a
41

a
42

a
43

a
44

X and D=
'
d|

l
y d

2

z d
3

t_ N
The equation f ir Aa i2

a a
—

1

13 14

a
21

a22'

^

a
23 24

u

31

k

41

32

42

a33-^ a
34

'43 44 \

=

is satisfied by the values A,, X? > )\?> ^ 4
which allow the column

vector X to have a non-trival solution. If to the non-trival solution

\ 2 2 2 2
sponding to A, the additional condition that x ^.0; x +y +z +t=lcorresj
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be imposed, the resulting X = Tx"^ will be a normalized eigenvector

corresponding to A ,. This vector furnishes the "mode", U =

xx.+yy.+zz +tt , associated with f\ . In a like manner the modes

corresponding to the other eigenvalues can be represented.

Since these eigenvectors X. correspond to distinct eigenvalues

of a real symmetric matrix they are orthogonal. Hence the matrix

P= £x, X
?
X X~J is normal, orthogonal, and unitary. Thus these

modes satisfy the orthornormal properties:

, . 2 2 2 2,
1. ) x +y +z +t =1

r r r r

2. ) x x +y y +z z +t t =0 for all r £ srsrs rs rs

3 -» iv 1
- &" 1

- I.V 1
- nt*

4. ) Vx y = Vx z = Vx t = K"y z = Cy t = Cz t =0
Z_i r r Zj r r <£j r r ^L» r r Z /

r r J «
r r

Then the solution of the original system is:

2\ x ^ 'x y \ 'x z

">k ">Br *'&

The limit of summation on all sums ranges from one to four.



x=d
£v*

+Sr-& -.VI -.V-^

t=diS
X t
r r

'r *£a,

d*LT + d
*

c-»z t

+ d
r—I 2

^ "It

14

To show that this is so, consider the original system AX-D.

Let X= ) a X where X is the eigenvector corresponding to A •

£j r r r r

Also let D= £b
r
X where b.=X!D. Thus AX=D becomes A( / a X )

=

r j j
*-* r r

\ b X . This is a finite sum, hence one has \a AX =Vb X . Thus

\ a X X =^\"T b X which implies a. =b./ A..
/ ,! r n r r^rr c ill Hence

\\b X *
> r r

r^x b
\ r r

X
l
X
2
X

3
X
4l

A
x
h
z

A
3
X4J

l

b
2

b
3

\

Now let \- ^000
o }\

2
o

o o X
3

o

J
^

Then X= [X
:
X
2
X
3 X^J A "* ^ X

£
X
3
X^ D

-1

Thus ~ Px
i

X
2

X
3

X?
y

l
y2 y3 y4

Z
l

Z
2

Z
3

Z
4

t
l

t
2

t
3 *4

£

J

s y
i

z
i *r

X
2 y 2

Z
2 *2

X
3 y3

Z
3 *3

x
4 ^4 z

4 *4

'

d
H
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From this expansion it is clear that large coefficients of d

are contributed mainly by terms having f\ in the denominator. The

terms involving this eigenvalue can be isolated by multiplying the

expression for x by x , the expression for y by y , the expression

for z by z , the expression for t by t and adding. The result is U
4
=

xx
4
+yy

4
+zz

4
+tt

4'
U
4
=

(
dlVd

2y4
+d

3
Z
4
+d

4
t
4
)/ ^ 4'

Head and °Ult°n

infer that all uncertainty in the solution of the system can be attributed

to the fact that U is uncertain. This is a consequence of the fact

that slight errors in the d. are greatly magnified when the expression

is divided by ^ .

The procedure in the next step is to replace one of the equations

of the original system by the expression for U . As for which equa-

tion to replace, it is suggested that if the left side of any equation is

approximately proportional to the expression for U ., then that equa-

tion is the one to be replaced. If no equation appears proportional to

U then the equation to replace to improve the condition of the system

is arbitrary. It may be necessary to try omitting several of the

original equations before the condition of the system is improved. The

condition will be improved when the determinant of coefficients of the

new system is greater than that of the original system. If, in the

example the fourth equation is replaced by xx +yy +zz +tt =U , the
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determinant of the coefficient matrix will be /\ f[ ^ fy _ I x X
2

X
3

*1 ^2 ^3

Z
l

Z
Z

Z
3l

To show that this expression is the determinant of the new system,

let B=Ta nl a,, a,, a,"\ . Consider
11 12 13 14

a
21

a
22

a
23

a
24

a
31

a
32

a
33

a
34

4 '4 4 4 _,

the matrix product B £x X X xl Note, since^X X^ X
3
X
4"J

is unitary, its determinant is one.

Now BV 11 12 13 14

a
21

a
22

a
23

a
24

a
31

a
32

a
33

a
34

L
X
4

a, 1 fx

V z ty 4 4 4

Thus

r
TanV^zV^V*!^!
a
21

X
l
+a

22>
r

l
+a

23
Z
l
+a

24
t
l

a
31

X
l
+a

32y l
+a

33
Z
l
+a

34
t
l

BXi= K X

:

A similar procedure
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confirms that BX ,= *,r and BX. -y r

However, BX = railVai2Va
i3

Z
4
+a

i4
t
4

a
21
X
4
+a

Z2y4
+a

Z3
Z
4
+a

24
t
4

a3lV a
32y4

+a
33

Z
4
+a

34
t
4

[
X
4
X
4

+y
4y4

+Z
4
Z
4

+V4=1

_

Hence if the determinant of B \X X X X~] is expanded in terms of

the elements of the fourth row the indicated expression is obtained.

Similar expressions are obtained when one of the other equations is

replaced by the expression for U .. These determinants have the pro-

perty that

X
l
y

l
Z

l

X
2 y2

Z
2

lx
3
y
3

z
3

X
l
y

l *1|

X
2

y
2 *2|

X
3 y

3 *3

+ X
l

Z
l *1

X
2

Z
2 *2

x
3

z
3

.
3s

y
l

z
l *ll

y 2
Z
2 *2l

y3
Z
3 H

= 1

since P is orthogonal and unitary. Thus not all of the determinants

can be small. Consequently, the condition of the system will be improved

when the equation which corresponds to one of these minors is replaced

byU
4

.

It should be noted that if additional data cannot be obtained to fix

the value of U very precisely, then useful information can be gained
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with U =0.
4

If there exist two small eigen values then the homogeneous

system of equations from which the eigenvectors are derived reduces

to two equations with four unknowns. Thus a non-trival solution must

be obtained in terms of two of the unknowns. The procedure is to

2 2 2 2
find the non-trival solution with the condition x +y +z +t =1 and the

additional condition that one of the unknowns be zero. Let this solution

be denoted as x , y , z , and t . Then another non-trival solution

2 2 2 2
is obtained with the condition x +y +z +t =1 and xx +yy +zz +tt=0.

These two non-trival solutions yield the corresponding "modes":

U
3
=xx3+yy3+zz 3+tt

3
=(x

3
d 1+y3

d2+ z
3
d3+t

3
d
4
)/ ^ 3

U
4
=xx

4
+yy

4
+zz4+tt4

=(x
4
d
i+y4

d2+ z4
d3+t

4
d
4
)/ ^ .

The procedure now is the same as that for the distinct eigenvalue case

with the exception that two equations of the original system are replaced

by the expressions for U and U .

After employing the preceding technique for improving the

condition of the coefficient matrix one may proceed to solve the resulting

system of linear equations by the same method used to solve a system

of well- conditioned equations.
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AN ITERATIVE TECHNIQUE

This technique employs a modification of the coefficient matrix

similar to that used by Riley in his classification technique. The pro-

cedure is, when contemplating the solution of the ill-conditioned system

AX=D, to consider instead the system (A+K)X=D+KX where K=kl and k

is a small positive constant. These two systems are mathematically

equivalent, but the matrix A+K is better conditioned, as was previously

shown.

The method is to delete the term KX and solve the resulting

system (A+K)Y=D. The solution is denoted as Y . Thus if X is the

true solution then X-Y =E is the error after the first iteration.

Now if one subtracts (A+K)Y=D from AX=D, the result is AX-(A+K)Y=0.

Thus A(X-Y)=KY. Therefore, AE^ -KY (
. Hence one has obtained a

new system with the same coefficient matrix A. Modifying the coefficient

matrix in the manner above one then solves the system (A+K)Y =KY

Then the error after the second iteration is given by E =E -Y " =

(1) (2) . ^(m) ^(m-1) „(m) „ "«r^ „(i)
X-Y V -Y v

'. After m iterations, E v '=E V
'-Y* -X- j>_j Y v

'.

i=l

Thus X=^r* Y^'+E* . The formula for the determination of the Y J

i=l

is (A+K)Y (j)=D if j=l

=KY(J_1) ifj>l.
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If the method converges, the solution of the original system is X-

To obtain conditions for convergence of the series, consider:

Y
(1 ^(A+K)

_1
D

Y^A+KfW™- 1
).

Therefore, let (A+K)
_1
D=C and (A+K)~ K=B. Thus

y
(m)

=BY
(m-l)

Y
(m-l)

=BY
(m-2)

Y(3LBy(2)

Y (2)=BY(D .

„(m) „m-l_
Hence Y v '=B C. Also

2yu, =(i+b+bV • •+B
m - i

)c

If 2 bJ converges then (A+K)X=D+KX implies

j =

X=(A+K)"
1
D+(A+K)"

1 KX

=C+BX.



«=*o

lc= 2 j,Thus X-BX=C and X=(I-B)

3=1

m oo
, m-1

Hence, X- ]T Y0) = ( 2 fiJ -
"S bJ

) C
j=l j=0 j=0

3 =

= 2 BJ C=(I-B)"
i
B

111
C

j_ ,_ „,-l„m,
j J r*—

i

m

^"^/T „,-l^, -^(m )=B (I-B) C=E V
'

cc
,(m).

Thus if S^ BJ converges then lim B =0. Therefore E^ '=0 and

J=0
oo

X=S Y {j)
.

j=0
CO

Since the choice of k, which will insure the convergence of ^ ]
B ,

(m) j
=
°

is a difficult problem and then, the computation of E can become

tedious, consider an expression for the upper bound of error. This

21

expression is developed as follows,

-1 (m)-^^™- 1
)Define (A+K)" =D= [d.1 . Recall Ylm'=DKY

Thus Y
(m) _ (m)

1

(m)

(m)

n r
d d
11 12

d d •

21 22

d d •

nl n2

'J

2n

nn

wm- iJ
\

ky

1

(m-1)

ky
(m-1)
n

__ (m) (m-1),. . (m-1) , , (m-1)
Hence, y

v =d . ky, '+d _ky; '+• • • +d ky v ':r=l,..n
r rl 1 r2 ' 2 rn ; n

Thus one has
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|y
(

r

m^hri<-
1,

|

+ K 2^m' 1,

l
+--- +

l
drn<

m- 1,

|

**WMY~
(m-1) (m-1) (m-1)

where y = max y.'m 1

Since this holds for all r, it will hold if |y^ I is replaced by

i^HMri • • • •• Ki}-
Therefore

y I : r= 1, 2, . . . n. (c)

Let d, =maxM (SIM- 2M ••••Bd4 •

Then define a convergence constant H and restrict H so that |k| d =H< 1

This restriction can always be satisfied by choosing k sufficiently small

From (c), for rn>l, one has

(m)
yM
/m-1)
m

1^ H provided y
(m_1 ^ 0.m (d)

Hence the series

CO

s:
m=l

(m)

M is absolutely convergent since H<1,

Considering the expressions for the individual components of

the matrix X one observes

m co
,(j>

j = l j =m+l
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Thus the error after m iterations for each x. is
1

m co
e.
(m)=x.-2 y.

(j) = TJ y.
(j) :i=l,2 n.

1 m+1

Also |e.
(m)

)£ YL jy^^^l.Z,..., n.

Now since ly. }<£ jy^ j
, from (d) one obtains

H

This technique is highly adaptable to machine computation as

the coefficient matrix used when obtaining a solution of the modified

system is the same for each of the Y . It is presented here merely

as a supplement to the usual methods for solution of systems of

equations.
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APPENDIX A

In the determination of small eigenvalues only those which are less

than 0. 2 in absolute value are being considered. This is so since if the

eigenvalue exceeds 0. 2, then the maximum contribution possible to any-

coefficient is numerically less than 5. 0.

In this procedure it is assumed that the evaluation of a determinant

or the solution of a polynomial in with numerical coefficients presents

no great problem.

Since attention is focused on those values of less than 0. 2, the

technique is to evaluate the determinant of the characteristic matrix with

= -0.2+0.4r/n, r = 0, 1, . . . n, where is possibly negative. The

evaluation of these determinants givesa rough idea of the number and

position of the roots.

To illustrate the procedure, consider the following characteristic

matrix:

-»
y

2.557- A 2.624 2.468

2.624 3.493-J\ 2.351

2.468 2.351 2.557-/\

2.351 1.532 2.624

2. 361
-

1. 532

2. 624

3. 493-
*J

Since all values of (i are positive for this example, the determinant,

A( ?\)» is evaluated with A =0, J\ =0. 04, ^\ =0. 08, 7\ =0. 12, }\ =0. 16.
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The corresponding values forAm) are

A(0) = 0.05

A(0. 04) = 0. 0019526

A(0.08) = 0.01761476

A(0. 12) = 0. 09101456

A(0. 16) = 0.2190776.

Now /\ ( {[) for a system of four equations is a polynomial of

degree four in j\ . Thus f( (\ ), defined by

*i\\. A/m (A -0. 04)( A-0. 08)( /\-0. 12)(A -0. 16)
H(\)-L\W) 0>04 0>08 012> 0l6

- A(0.04) /N(/S-0.08)(A-0.12)(^-0.16)
0.04 0.04 0.08 0.12

+ A(0-08) ?\(^-0.04)( A-0-12)(/\-0.l6)
0.08 0.04 0.04 0.08

- A(0.12) >\( /\-0.04)( ?\-0.08)()\-0. 16)

0.12 0.08 0.04 0.04

+ A(°- 16
) /V /N-0. 04)(>\-0. 08)( A-0. 12)

0.16 0.12 0.08 0.04

is identical to^(^) when A has these five values. Hence f{/\) will

represent j\ ( (\) very accurately for small values of f\.

Thus
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f( A) = 0. 05 (?\
4
-0.4 /\

3
+0.056^

2
-0. 0032^+0.00006144

0.00006144

0.,0019526 (/V-0. 36^
3
+0.04l6?l

2
-0. 001536/^)

0.00001536

+ 0, 0171476 (/V-°- 32/\
3
+0.0304 }\ -0. 000768?!)

0.00001024

_ 0,,09101456 (/\
4
-(). 28 ?\

3
+0.0224 ?\

2
-().000512^)

0.00001536

+ 0,,2190776 (A
4
-0. 24 /\

3
+0.0176 A

Z
-0.,000384/\) .

0.00006144

This simplifies to

£{}[) = 9449.49115?i
4

- 835. 28266 A3
+ 74. 19092^

- 3.8285^ + 0.05.

The technique at this point is to equate £{f\) to zero and solve

by an iterative measure for f\ .

In this particular example the value of f\ obtained is 0. 05.
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The purposes of this report are to define "111- Conditioned

Equations, " and examine existing methods of classifying a system

of equations, develop a procedure to improve the condition of the

system of equations, and present an iterative technique for use in

the solution of a system of "111- Conditioned Equations. "

A set of "111- Conditioned Equations" is a system of equations

which has a solution that is extremely sensitive to slight changes in

the coefficients of the variables. As a result, the accuracy and

dependability of the solution obtained in the usual iterative procedures

is impaired.

The classification techniques considered are:

1. The (generalized) angle(s) between the "lines" which

represent the system of equations in a geometric sense.

2. The ratio of the determinant of the coefficient matrix to

the determinant formed from it by replacing the coefficient

of one of the variables by the constant.

3. The consideration of the determinant of the normalized

coefficient matrix as compared with unity.

4. The use of "M-condition numbers" and "N-condition

numbers. "

5. The largest ratio of the absolute values of two eigenvalues.



6. A consideration of the convergence of a series expansion

of the system of equations.

A procedure developed to improve the condition of the original

system is to replace one of the original equations with a "mode. "

These modes are derived from eigenvalues and their corresponding

eigenvectors. A technique for determination of eigenvalues less in

absolute value than 0. 2 is presented in Appendix A.

The remainder of the report deals with an iterative technique

which is highly adaptable to electronic computation. An expression

for the determination of the error after m iterations is also presented.


