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Abstract: Combining an asymptotic method and computational modelling
the authors propose a method for creating materials with the desired
electrodynamical characteristics, in particular, with a desired refraction
coefficient. The problem of wave scattering by many small particles is
solved asymptotically under the assumptions ka � 1, d � a, where a is
the size of the particles and d is the distance between the neighbouring
particles. On the wavelength one may have many small particles.
Impedance boundary conditions are assumed on the boundaries of small
particles. The results of numerical simulation show good agreement with
the theory. Constructive conclusions are given for creating materials with
a desired refraction coefficient on the basis of the obtained numerical
results. Engineering realisation of the theory is of practical interest.
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1 Introduction

Theory of wave scattering by small particles of arbitrary shapes was developed
by Ramm (2005a) (see also Ramm, 2005b), where analytical formulas for S-matrix
for acoustic and electromagnetic wave scattering by small bodies were derived.
This theory is a foundation for the proposed approach for creating materials with
a desired spatial dispersion, i.e., one can create the refraction coefficient n2(x, ω)
with a desired ω-dependence, where ω is the wave frequency. In particular, one can
create materials with negative refraction. Such materials are of interest in many
applications, see, e.g., Seo et al. (2003), Shonbrun et al. (2005), von Rhein et al.
(2007), Gregorchyk et al. (2005), and Hansen (2009).

The proposed theory allows one to calculate the S-matrix with an arbitrary
accuracy and can be used in many practical problems. An asymptotically exact
solution of the many-body wave scattering problem was developed in Ramm
(2007) under the assumptions ka � 1, d = O(a1/3), M = O(1/a), where a is the
characteristic size of the particles, k = 2π/λ is the wave number, d is the distance
between neighbouring particles, and M is the total number of the particles embedded
in a bounded domain D ⊂ R3. It was not assumed in Ramm (2007) that the particles
were distributed uniformly in the space, or that there was any periodic structure
in their distribution. In this paper, the uniform distribution of particles in D for
the computational modelling is assumed (see Figure 1). An impedance boundary

Figure 1 Geometry of problem with M = 27 particles
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condition on the boundary Sm of the mth particle Dm was assumed, 1 ≤ m ≤ M .
In Ramm (2008) the above assumptions were generalised as follows:

ζm =
h(xm)

aκ
, d = O(a(2−κ)/3), M = O

(
1

a2−κ

)
, κ ∈ (0, 1), (1)

where ζm is the boundary impedance, hm = h(xm), xm ∈ Dm, and h(x) ∈ C(D) is
an arbitrary continuous in D function, D is the closure of D, Imh � 0.

The initial field u0 satisfies the Helmholtz equation in R3 and the scattered field
satisfies the radiation condition. We assume in this paper that κ ∈ (0, 1) and the
small particle Dm is a ball of radius a centred at the point xm ∈ D, 1 � m � M .

2 The solution of the scattering problem

The scattering problem is

[∇2 + k2n2
0(x)]uM = 0 in R3\

M⋃
m=1

Dm, (2)

∂uM

∂N
= ζmuM on Sm, 1 � m � M, (3)

where

uM = u0 + vM , (4)

u0 is a solution to problem (2), (3) with M = 0 (i.e., in the absence of the embedded
particles) and with the incident field eikα·x. The scattered field vM satisfies the
radiation condition. The refraction coefficient n2

0(x) of the material in a bounded
region D is assumed for simplicity a bounded function whose set of discontinuities
has zero Lebesgue measure in R3, and Imn2

0(x) ≥ 0. In D′ := R3\D we assume that
n2

0(x) = 1.
It was proved in Ramm (2008) that the unique solution to problem (2)–(4) exists

and is of the form

uM (x) = u0(x) +
M∑

m=1

∫
Sm

G(x, y)σm(y)dy, (5)

where G(x, y) is Green’s function of the Helmholtz equation (2) in the case when
M = 0, i.e., when there are no embedded particles, and σm(y) are some unknown
functions. If these functions are chosen so that the boundary conditions (3) are
satisfied, then formula (5) gives the unique solution to problem (2)–(4).

Let us define the “effective field” ue, acting on the mth particle:

ue(x) := ue(x, a) := u(m)
e (x) := uM (x) −

∫
Sm

G(x, y)σm(y)dy, (6)

where |x − xm| ∼ a. The effective field is a correction to uM (x) which is essential
only in the region |x − xm| ∼ a. If |x − xm| � a, then uM (x) ∼ u

(m)
e (x). The ∼ sign
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denotes the same order as a → 0. The function σm(y) solves an exact integral
equation (see Ramm, 2008). This equation is solved in Ramm (2008) asymptotically
as a → 0. These results are given in Section 3, see formulas (12)–(15) in Section 3.

Let h(x) ∈ C(D), Imh � 0, be arbitrary, ∆p ⊂ D be any subdomain of D, and
N (∆p) be the number of the embedded particles in ∆p. We assume that

N (∆p) =
1

a2−κ

∫
∆p

N(x)dx[1 + o(1)], a → 0, (7)

where N(x) � 0 is a given continuous function in D. The following result was
proved in Ramm (2008) (Theorem 1): there exists the limit u(x) of ue(x) as a → 0:

lim
a→0

‖ue(x) − u(x)‖C(D) = 0, (8)

and u(x) solves the following equation:

u(x) = u0(x) − 4π

∫
D

G(x, y)h(y)N(y)u(y)dy. (9)

This is the equation, derived in Ramm (2008) for the limiting effective field in the
medium, created by embedding many small particles with the distribution law (7).

3 Approximate representation of the effective field

Let us derive an explicit formula for the effective field ue. Rewrite the exact
formula (5) as:

uM (x) = u0(x) +
M∑

m=1

G(x, xm)Qm

+
M∑

m=1

∫
Sm

G(x, y) − G(x, xm)σm(y)dy, (10)

where

Qm =
∫

Sm

σm(y)dy. (11)

Using some estimates of G(x, y) (see Ramm, 2007) and the asymptotic formula for
Qm from Ramm (2008), one can rewrite the exact formula (10) as follows:

uM (x) = u0(x) +
M∑

m=1

G(x, xm)Qm + o(1), a → 0, |x − xm| � a. (12)

The number Qm(x) is given by the asymptotic formula

Qm = −4πh(xm)ue(xm)a2−κ[1 + o(1)], a → 0, (13)
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and the asymptotic formula for σm is (see Ramm, 2008):

σm = −h(xm)ue(xm)
aκ

[1 + o(1)], a → 0. (14)

The asymptotic formula for ue(x) in the region |x − xj | ≤ a, 1 ≤ j ≤ M , is
(see Ramm, 2008):

u(j)
e (x) = u0(x) − 4π

M∑
m=1,m �=j

G(x, xm)h(xm)ue(xm)a2−κ[1 + o(1)]. (15)

Equation (9) for the limiting effective field u(x) is used for numerical calculations
when the number M is large, e.g., M = 10b, b > 3. The goal of our numerical
experiments is to investigate the behaviour of the solution to equation (9) and
compare it with the asymptotic formula (15) in order to establish the limits of
applicability of our asymptotic approach to many-body wave scattering problem for
small particles.

4 Reduction of the scattering problem to solving linear algebraic systems

The numerical calculation of the field ue by formula (15) requires the knowledge of
the numbers um := ue(xm). These numbers are obtained by solving the following
Linear Algebraic System (LAS):

uj = u0j − 4π

M∑
m=1,m �=j

G(xj , xm)h(xm)uma2−κ, j = 1, 2, . . . , M, (16)

where uj = u(xj), 1 ≤ j ≤ M . This LAS is convenient for numerical calculations,
because its matrix is sometimes diagonally dominant. Moreover, it follows from the
results in Ramm (2009), that for sufficiently small a this LAS is uniquely solvable.

Let the union of small cubes ∆p, centred at the points yp, form a partition of D,
and the diameter of ∆p be O(d1/2). For finitely many cubes ∆p the union of these
cubes may not give D. In this case we consider the smallest partition containing D
and define n2

0(x) = 1 in the small cubes that do not belong to D.
To find the solution to the limiting equation (9), we use the collocation method

from Ramm (2009), which yields the following LAS:

uj = u0j − 4π

P∑
p=1,m �=j

G(xj , xp)h(yp)N(yp)up|∆p|, p = 1, 2, . . . , P, (17)

where P is the number of small cubes ∆p, yp is the centre of ∆p, and |∆p| is volume
of ∆p.

From the computational point of view solving LAS (17) is much easier than
solving LAS (16) if P � M .

We have two different LAS: one is (16), the other is (17). The first corresponds
to formula (15). The second corresponds to a collocation method for solving
equation (9). Solving these LAS, one can compare their solutions and evaluate the
limits of applicability of the asymptotic approach from Ramm (2008) to solving
many-body wave scattering problem in the case of small particles.
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5 Numerical experiments

The numerical approach to solving the wave scattering problem for small particles was
developed in Andriychuk and Ramm (2009). There some numerical results were given.
These results demonstrated the applicability of the asymptotic approach to solving
many-body wave scattering problem by the method described in Sections 3 and 4.

From the practical point of view, the following numerical experiments are of
interest and of importance:

a For not very large M , say, M = 2, 5, 10, 25, 50, one wants to find a and d, for
which the asymptotic formula (12) (without the remainder o(1)) is no longer
applicable

b One wants to find the relative accuracy of the solutions to the limiting
equation (9) and of the LAS (17)

c For large M , say, M = 105, M = 106, one wants to find the relative accuracy
of the solutions to the limiting equation (9) and of the solutions to LAS (16)

d One wants to find the relative accuracy of the solutions to LAS (16) and (17)

e Using Ramm’s method for creating materials with a desired refraction
coefficient, one wants to find out for some given refraction coefficients n2(x)
and n2

0(x), what the smallest M (or, equivalently, largest a) is for which the
corresponding n2

M(x) differs from the desired n2(x) by not more than, say,
5%–10%. Here n2

M(x) is the value of the refraction coefficient of the material
obtained by embedding M small particles into D accoring to the recipe
described below.

We take k = 1, κ = 0.9, and N(x) = const for the numerical calculations. For k = 1,
and a and d, used in the numerical experiments, one can have many small particles
on the wavelength. Therefore, the multiple scattering effects are not negligible.

5.1 Applicability of asymptotic formulas for small number of particles

We consider the solution to LAS (17) with 20 collocation points along each
coordinate axis as the benchmark solution. The total number P of the collocation
points is P = 8000. The applicability of the asymptotic formulas is checked by
solving LAS (16) for small number M of particles and determining the problem
parameters for which the solutions to these LAS are close. A standard interpolation
procedure is used in order to obtain the values of the solution to (17) at the
points corresponding to the position of the particles. In this case the number P
of the collocation points exceeds the number M of particles. In Figure 2, the
relative error of real (solid line) and imaginary (dashed line) parts, as well as the
modulus (dot-dashed line) of the solution to (16) are shown for the case M = 4;
the distance between particles is d = a(2−κ)/3C, where C is an additional parameter
of optimisation (in our case C = 5, that yields the smallest error of deviation of
etalon and asymptotic field components), N(x) = 5. The minimal relative error of
the solution to (16) does not exceed 0.05% and is reached when a ∈ (0.02, 0.03).
The value of the function N(x) influences (to a considerable degree) the quality of
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approximation. The relative error for N(x) = 40 with the same other parameters is
shown in Figure 3. The error is smallest at a = 0.01, and it grows when a increases.
The minimal error that we were able to obtain for this case is about 0.01% .

Figure 2 Relative error of solution to (16) vs. size a of particle, N(x) = 5

Figure 3 Relative error of solution to (16) vs. size a of particle, N(x) = 40

The dependence of the error on the distance d between particles for a fixed a
was investigated as well. In Figure 4, the relative error vs. parameter d is shown.
The number of particles M = 4, the radius of particles a = 0.01. The minimal error
was obtained when C = 14. This error was 0.005% for the real part, 0.0025% for
the imaginary part, and 0.002% for the modulus of the solution. In Figure 4 and
in Figures 5–11, the solid, dashed, and dot-dashed lines correspond to error of real,
imaginary parts, and modulus of solution, respectively.

The error grows significantly when d deviates from the optimal value, i.e., the
value of d for which the error of the calculated solution to LAS (16) is minimal.
Similar results are obtained for the case a = 0.02 (see Figure 5). For example, at
M = 2 the optimal value of d is 0.038 for a = 0.01, and it is 0.053 for a = 0.02.
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The error is even more sensitive to changes of the distance d in this case.
The minimal value of the error is obtained when C = 8. The error was 0.0078% for
the real part, 0.0071% for the imaginary part, and 0.002% for the modulus of the
solution.

Figure 4 Relative error of solution vs. distance d between particles, a = 0.01

Figure 5 Relative error of solution vs. distance d between particles, a = 0.02

The numerical results show that the accuracy of the approximation of the solutions
to LAS (16) and (17) depends on a significantly, and it improves when a decreases.
For example, the minimal error, obtained at a = 0.04, is equal to 0.018%.

The optimal values of d are given in Tables 1 and 2 for small and not so small
M respectively. The numerical results show that the distribution of particles in the
medium does not influence significantly the optimal values of d. By optimal values of
d we mean the values at which the error of the solution to LAS (16) is minimal when
the values of the other parameters are fixed. For example, the optimal values of d for
M = 8 at the two types of the distribution of particles: (2 × 2 × 2) and (4 × 2 × 1)
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differ by not more than 0.5%. The numerical results demonstrate that to decrease
the relative error of solution to system (16), it is necessary to make a smaller if the
value of d is fixed. One can see that the quality of approximation improves as a → 0,
but the condition d � a is not valid for small number M of particles: the values of
the distance d is of the order O(a).

Table 1 Optimal values of d for small M

M value

M = 2 M = 4 M = 6 M = 8

a = 0.01 0.038 0.025 0.026 0.027
a = 0.02 0.053 0.023 0.027 0.054

Table 2 Optimal values of d for medium M

M value

M = 10 M = 20 M = 30 M = 40

a = 0.01 0.011 0.0105 0.007 0.006
a = 0.02 0.016 0.018 0.020 0.023

5.2 Accuracy of the solution to the limiting equation

The numerical procedure for checking the accuracy of the solution to equation (9)
uses the calculations with various values of the parameters k, a, lD, and h(x).
The absolute and relative errors were calculated by increasing the number of
collocation points. The dependence of the accuracy on the parameter ρ, where
ρ = 3

√
P , P is the total number of small subdomains in D, is shown in Figures 6

and 7 for k = 1.0, lD = 0.5, a = 0.01 at the different values of h(x). The solution
corresponding to ρ = 20 is considered as ‘exact’ solution (the number P for this case
is equal to 8000).

Figure 6 Relative error vs. the ρ parameter, h(x) = k2(1 − 7i)/(40π)



Scattering by many small particles 111

Figure 7 Relative error vs. the ρ parameter, h(x) = k2(1 − 3i)/(40π)

The error of the solution to equation (9) is equal to 1.1% and 0.2% for real and
imaginary part, respectively, at ρ = 5 (125 collocation points), it decreases to values
of 0.7% and 0.05% if ρ = 6 (216 collocation points), and it decreases to values 0.29%
and 0.02% if ρ = 8 (512 collocation points), h(x) = k2(1 − 3i)/(40π). The relative
error smaller than 0.01% for the real part of solution is obtained at ρ = 12, this
error tends to zero when ρ increases. This error depends on the function h(x) as
well, it diminishes when the imaginary part of h(x) decreases. The error for the real
and imaginary parts of the solution at ρ = 19 does not exceed 0.01%.

The numerical calculations show that the error depends much on the value of k.
In Figures 8 and 9 the results are shown for k = 2.0 and k = 0.6 respectively (h(x) =
k2(1 − 3i)/(40π)). It is seen that the error is nearly 10 times larger at k = 2.0.
The maximal error (at ρ = 5) for k = 0.6 is less than 30% of the error for k = 1.0.
This error tends to zero even faster for smaller k.

Figure 8 Relative error vs. the ρ parameter, k = 2.0
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Figure 9 Relative error vs. the ρ parameter, k = 0.6

5.3 Accuracy of the solution to the limiting equation (9) and
of the asymptotic LAS (16)

As before, we consider as the ‘exact’ solution to (9) the approximate solution to LAS
(17) with ρ = 20. The maximal relative error for such ρ does not exceed 0.01% in
the range of problem parameters we have considered (k = 0.5 ÷ 1.0, lD = 0.5 ÷ 1.0,
N(x) ≥ 4.0). The numerical calculations are carried out for various sizes of the domain
D and various function N(x). The results for small values of M are presented in
Table 3 for k = 1,N(x) = 40, and lD = 1.0. The second line contains the values of aest,
the estimated value of a, calculated by formula (7), with the number N (∆p) replacing
the number M . In this case the radius of a particle is calculated as

aest =
(

M/

∫
∆p

N(x)dx

)1/(2−κ)

. (18)

The values of aopt in the third line correspond to optimal values of a which
yield minimal relative error of the modulus of the solutions to equation (9) and
LAS (16). The fourth line contains the values of the distance d between particles.
The maximal value of the error is obtained when µ = 7, µ = 3

√
M and it decreases

slowly when µ increases. The calculation results for large number of µ with the same
set of input parameters are shown in Table 4. The minimal error of the solutions is
obtained at µ = 60 (total number of particles M = 2.16 × 105.

Table 3 Optimal parameters of D for small µ, N(x) = 40.0

µ 7 9 11 13 15

aest 0.1418 0.0714 0.0413 0.0262 0.0177
aopt 0.1061 0.0612 0.0382 0.0261 0.0172
d 0.1333 0.1105 0.0924 0.0790 0.0688
Rel. error 2.53% 0.46% 0.45% 1.12% 0.81%
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Table 4 Optimal parameters of D for big µ, N(x) = 40.0

µ 20 30 40 50 60

aest 0.0081 0.0027 0.0012 6.65 × 10−4 4.04 × 10−4

aopt 0.0077 0.0025 0.0011 6.61 × 10−4 4.04 × 10−4

d 0.0526 0.0345 0.0256 0.0204 0.0169
Rel. error 0.59% 0.35% 0.36% 0.27% 0.19%

Tables 5 and 6 contain similar results for N(x) = 4.0, other parameters being the
same. It is seen that the relative error of the solution decreases when number of
particles M increases. This error can be decreased slightly (on 0.02%–0.01%) by
small change of the values a and lD as well. The relative error of the solution to
LAS (16) tends to the relative error of the solution to LAS (17) when the parameter
µ becomes greater than 80 (M = 5.12 · 105). The relative error of the solution to
LAS (17) is calculated by taking the norm of the difference of the solutions to (17)
with P and 2P points, and dividing it by the norm of the solution to (17) calculated
for 2P points. The relative error of the solution to LAS (16) is calculated by
taking the norm of the difference between the solution to (16), calculated by an
interpolation formula at the points yp from (17), and the solution of (17), and
dividing the norm of this difference by the norm of the solution to (17).

Table 5 Optimal parameters of D for small µ, N(x) = 4.0

µ 7 9 11 13 15

aest 0.0175 0.0088 0.0051 0.0032 0.0022
aopt 0.0179 0.0090 0.0052 0.0033 0.0022
d 0.1607 0.1228 0.0990 0.0828 0.0711
Rel. error 1.48% 1.14% 1.06% 1.05% 0.91%

Table 6 Optimal parameters of D for big µ, N(x) = 4.0

µ 20 30 40 50 60

aest 9.97 × 10−4 3.30 × 10−4 1.51 × 10−4 8.20 × 10−5 4.98 × 10−5

aopt 1.02 × 10−3 3.32 × 10−4 1.50 × 10−4 8.21 × 10−5 4.99 × 10−5

d 0.0542 0.0361 0.0265 0.0209 0.0172
Rel. error 0.21% 0.12% 0.11% 0.07% 0.03%

5.4 Investigation of the relative difference between
the solution to (16) and (17)

A comparison of the solutions to LAS (16) and (17) is done for various values of
a, and various values of the number ρ and µ. The relative error of the solution
decreases when ρ grows and µ remains the same. For example, when ρ increases by
50% , the relative error decreases by 12% (for ρ = 8 and ρ = 12, µ = 15).

The difference between the real parts, imaginary parts, and moduli of the
solutions to LAS (16) and (17) are shown in Figures 10 and 11 for ρ = 7, µ = 15.
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The real part of this difference does not exceed 4% when a = 0.01, it is less than
3.5% at a = 0.008, less than 2% at a = 0.005; d = 8a, N(x) = 20. This difference
is less than 0.08% when ρ = 11, a = 0.001, N = 30, and d = 15a (µ remains the
same). Numerical calculations for wider range of the distance d demonstrate that
there is an optimal value of d, starting from which the deviation of solutions
increases again. These optimal values of d are shown in Table 7 for various N(x).
The calculations show that the optimal distance between particles increases when the
number of particles grows. For small number of particles (see Tables 1 and 2) the
optimal distance is the value of the order a. For the number of particles M = 153,
i.e., µ = 15, this distance is about 10a.

Figure 10 Deviation of component field vs. the distance d between particles, N(x) = 10

Figure 11 Deviation of component field vs. the distance d between particles, N(x) = 30

The values of maximal and minimal errors of the solutions for the optimal values
of distance d are shown in Table 8.
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Table 7 Optimal values of d for various N(x)

N(x) value

N(x) = 10 N(x) = 20 N(x) = 30 N(x) = 40 N(x) = 50

a = 0.005 0.07065 0.04724 0.04716 0.04709 0.04122
a = 0.001 0.08835 0.07578 0.06331 0.06317 0.05056

Table 8 Relative error of solution in % (max/min) for optimal d

N(x) value

N(x) = 10 N(x) = 20 N(x) = 30 N(x) = 40 N(x) = 50

a = 0.005 0.77/0.12 5.25/0.56 0.52/0.1 0.97/0.12 0.32/0.05
a = 0.001 2.47/0.26 1.7/0.3 0.5/0.1 2.7/0.37 1.5/0.2

One can conclude from the numerical results that optimal values of d decrease slowly
when the function N(x) increases. This decreasing is more pronounced for smaller
a. The relative error of the solution to (16) also smaller for smaller a.

5.5 Evaluation of difference between the desired and obtained
refraction coefficients

The recipe for creating the media with a desired refraction coefficient n2(x) was
proposed in Ramm (2008). It is important from the computational point of view
to see how the refraction coefficient n2

M (x), created by this procedure, differs from
the one, obtained theoretically. First, we describe the recipe from Ramm (2008) for
creating the desired refraction coefficient n2(x). By n2

0(x) we denote the refraction
coefficient of the given material.

The recipe consists of three steps.

Step 1: Given n2
0(x) and n2(x), calculate

p̄(x) = k2[n2
0(x) − n2(x)] = p̄1(x) + ip̄2(x). (19)

Step 1 is trivial from the computational and theoretical viewpoints.
Using the relation

p̄(x) = 4πh(x)N(x) (20)

from Ramm (2008) and equation (19), one gets the equation for finding
h(x) = h1(x) + ih2(x), namely:

4π[h1(x) + ih2(x)]N(x) = p̄1(x) + ip̄2(x). (21)

Therefore,

N(x)h1(x) =
p̄1(x)
4π

, N(x)h2(x) =
p̄2(x)
4π

. (22)

Step 2: Given p̄1(x) and p̄2(x), find {h1(x), h2(x), N(x)}.
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The system (22) of two equations for the three unknown functions h1(x),
h2(x) ≤ 0, and N(x) ≥ 0, has infinitely many solutions {h1(x), h2(x), N(x)}.

If, for example, one takes N(x) to be an arbitrary positive constant, then
h1 and h2 are uniquely determined by (22). The condition Imn2(x) > 0 implies
Im p̄ = p̄2 < 0, which agrees with the condition h2 < 0 if N(x) ≥ 0. One takes
N(x) = h1(x) = h2(x) = 0 at the points at which p̄1(x) = p̄2(x) = 0.

One can choose, for example, N to be a positive constant:

N(x) = N = const, (23)

h1(x) =
p̄1(x)
4πN

, h2(x) =
p̄2(x)
4πN

. (24)

Calculation of the values N(x), h1(x), h2(x) by formulas (24)–(25) completes Step 2
our procedure.

Step 2 is easy from computational and theoretical viewpoints.

Step 3: This step is clear from the theoretical point of view, but it requires solving
two basic technological problems. First, one has to embed many (M ) small particles
into D at the approximately prescribed positions according to formula (7). Secondly,
the small particles have to be prepared so that they have prescribed boundary
impedances ζm = h(xm)a−κ, see formula (1).

Consider a partition of D into union of small cubes ∆p, which have no common
interior points, and which are centred at the points y(p), and embed in each cube ∆p

the number

N (∆p) =

[
1

a2−κ

∫
∆p

N(x)dx

]
(25)

of small balls Dm of radius a, centred at the points xm, where [b] stands for the
integer nearest to b > 0, κ ∈ (0, 1). Let us put these balls at the distance O(a

2−κ
3 ),

and prepare the boundary impedance of these balls equal to h(xm)
aκ , where h(x) is

the function, calculated in Step 2 of our recipe.
It is proved in Ramm (2008) that the resulting material, obtained by embedding

small particles into D by the above recipe, will have the desired refraction coefficient
n2(x) with an error that tends to zero as a → 0.

Let us emphasise again that Step 3 of our procedure requires solving the
following technological problems:

(i) How does one prepare small balls of radius a with the prescribed boundary
impedance?

(ii) How does one embed these small balls in a given domain D, filled with the
known material according to the requirements formulated in Step 3?

Our numerical results allow one to understand better the role of various parameters,
such as a, M, d, ζ, in an implementation of our recipe.

We give the numerical results for N(x) = const. For simplicity, we assume
that the domain D is a union of small cubes subdomains ∆p (D =

⋃P
p=1 ∆p).

This assumption is not a restriction in practical applications.
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Let the functions n2
0(x) and n2(x) be given. One can calculate the values h1

and h2 in (24) and determine the number N (∆p) of the particles embedded into
D. The value of the boundary impedance h(xm)

aκ is easy to calculate. Formula (25)
gives the total number of the embedded particles. We consider a simple distribution
of small particles. Let us embed the particles at the nodes of a uniform grid at the
distances d = O(a

2−κ
3 ).

The numerical calculations are carried out for the case D =
⋃P

p=1 ∆p, P = 8000,
D is cube with side lD = 0.5, the particles are embedded uniformly in D. For this P
the relative error in the solution to LAS (16) and (17) does not exceed 0.1%. Let the
domain D be placed in the free space, namely n2

0(x) = 1, and the desired refraction
coefficient be n2(x) = 2 + 0.01i. One can calculate the value of N (∆p) by formula
(25). On the other hand, one can chose the number µ, such that M = µ3 is closest
to N (∆p). The corresponding n2(x) for this M , calculated by the formulas

ñ2
1(x) = −4πMh1

k2 + n2
0, ñ2

2(x) = −4πMh1

k2 , (26)

differs from the desired coefficients n2
1(x) and n2

2(x). To obtain minimal error, we
chose two numbers µ1 and µ2 such that M1 < N (∆p) < M2, where M1 = µ3

1 and
M2 = µ3

2. Hence, having the number N (∆p) for the fixed a, we can estimate the
numbers M1 and M2, and calculate the approximate values of n2

1(x) and n2
2(x) by

formula (26).
In Figure 12, the minimal relative error of the calculated value ñ2(x) depending

on the radius a of particle is shown for the case N(x) = 5 (the solid line corresponds
to the real part of the error, and the dashed line corresponds to the imaginary part
of the error in Figures 12–14).

Figure 12 Minimal relative error for calculated refraction coefficient ñ2(x), N(x) = 5

These results show that the error depends significantly on the relation between the
numbers M1, M2, and N (∆p). The error is smallest when one of the values M1
and M2 is sufficiently close to N (∆p). The error has periodic nature with respect
to value of a (it is clear from behaviour of the function N (∆p) and values M1 and
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Figure 13 Minimal relative error for calculated refraction coefficient ñ2(x), N(x) = 20

Figure 14 Minimal relative error for calculated refraction coefficient ñ2(x), N(x) = 50

M2). The average error on a period increases as a grows. Similar results are shown
in Figures 13 and 14 for N = 20 and N = 50 respectively.

The minimal error is reached at a = 0.015 and equals to 0.49% , it is equal
to 0.51% at a = 0.008, and it is equal to 0.26% at a = 0.006 for N(x) = 5, 20, 50
respectively.

Uniform (equidistant) embedding small particles into D is simple from the
practical point of view. The results in Figures 12–14 allow one to estimate the
number M of particles needed for obtaining the refraction coefficient close to a
desired one in a given domain D. The results for lD = 0.5 are shown in Figure 15.
The value µ = 3

√
M is marked on the y axes here. Solid, dashed, and dot-dashed line

correspond to N(x) = 5, 20, 50, respectively.
One can see from Figure 15 that the number of particles decreases if radius a

increases. The value d = O(a(2−κ)/3) gives the distance d between the embedded
particles. For example, for N(x) = 5, a = 0.01 d is of the order 0.1359, the calculated
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Figure 15 Optimal value of µ vs. the radius a for various N(x)

d is equal to 0.12 and to 0.16 for µ = 5 and µ = 4, respectively. The calculations
show that the difference between the both values of d is proportional to the relative
error for the refraction coefficients.

By the formula d = O(a(2−κ)/3), the value of d does not depend on the diameter
of D. This value can be used as an additional optimisation parameter in the
procedure of the choice between two neighbouring µ in Tables 9 and 10. On the
other hand, one can estimate the number of the particles embedded into D using
formula (24). Given N (∆p), one can calculate the corresponding number M of
particles if the particles distribution is uniform. The distance between particles is
also easy to calculate if lD is given. The optimal values of µ, µ = 3

√
M are shown in

Tables 9 and 10 for lD = 0.5 and lD = 1.0 respectively.

Table 9 Optimal values of µ for lD = 0.5

a N (∆p) Optimal µ

0.02 92.42 4 ≤ µ ≤ 5
0.01 198.11 4 ≤ µ ≤ 5
0.008 253.22 6 ≤ µ ≤ 7
0.005 424.66 7 ≤ µ ≤ 8
0.001 2494.1 13 ≤ µ ≤ 14

Table 10 Optimal values of µ for lD = 1.0

a N (∆p) Optimal µ

0.02 739.38 9 ≤ µ ≤ 10
0.01 1584.9 11 ≤ µ ≤ 12
0.008 2025.8 12 ≤ µ ≤ 13
0.005 3397.3 15 ≤ µ ≤ 16
0.001 19953 27 ≤ µ ≤ 28
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The numerical calculations show that the relative error of ñ2(x) for respective µ can
be decreased when the estimation of d is taken into account. Namely, one should
choose µ from Tables 9 or 10 that gives value of d close to (a(2−κ)/3).

6 Conclusions

The numerical results based on the asymptotical approach to solving the scattering
problem in a material with many small particles embedded in it help to understand
better the dependence of the effective field in the material on the basic parameters
of the problem, namely, on a, M, d, ζm, N(x), h(x).

It is shown that, for small number M of particles there is an optimal value
of a, for which the relative error to asymptotic solution is minimal. When a → 0
and M is small the matrix of (16) is diagonally dominant and the error goes to 0.
This is confirmed by the numerical results as well. The relative error can be decreased
by changing function N(x) or by decreasing a, d being fixed, but the condition d � a
is not necessary to have if M is small.

The accuracy of the solution to the limiting equation (9) depends on the values
of k, a, and on the function h(x). The accuracy of the solution improves as the
number P increases.

The relative error of the solution to asymptotic LAS (16) depends essentially
on the function N(x) which is at our disposal. In our numerical experiments
N(x) = const. The accuracy of the solution is improved if N(x) decreases. The error
of the solution decreases if M grows.

The relative difference between the solutions to LAS (16) and (17) can
be improved by changing the distance d between the particles, a being fixed.
The optimal values of d change slowly in the considered range of function N(x).
The relative error is smaller for smaller a.

The constructive procedure for prescribing the function N(x), calculating the
numbers µ, and determining the radius a allows one to obtain the refraction
coefficient approximating better the prescribed one.

These results help to apply the proposed technique for creating materials
with a desired refraction coefficient using the recipe, formulated in this paper.
Technological methods for embedding many small particles into a given domain
D according to our recipe, and for preparing small balls with the desired large
impedances ζ = h(x)

aκ are two basic technological problems that should be solved for
an immediate practical implementation of our recipe.
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