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INTRODUCTION

During the last fifteen years a number of methods for simulating the
behavior of a sedimenting solute or system of solutes have been developed
and presented in the literature. These include the distorted grid model of
Cox(1-8), the countercurrent analogue of Bethune and Kegeles(9-10), the
finite difference models of Dishon et. al. and Cann and Goad(11-13), and
the finite element model of Claverie(1l4-16).

The method presented here offers three significant improvements over
earlier models., It has automatic control over temporal integration errors.
All terms of the continuity equation(s), including nonlinear coupling terms,
are addressed simultaneously. The method has been implemented as an option
in a sophisticated software package which is available for general distri-
bution. For these reasons it deserves careful consideration.

Automatic control of temporal errors is an important feature of this
method. It gives the user a great deal of control over errors which are
committed in the course of the simulation. The time step is taken to be as
large as is prudent in order to keep tempcral integration errors below a
specified maximum.

The fact that all terms of the continuity equation are addressed
together makes the method extremely flexible. Models presented previously
have generally required one or more intermediate steps in each step of time
integration. Cox's model, for example, uses separate rounds of sedimenta-

tion and diffusion for each step of time integration. C(Claverie's model,



on the other hand, employs a sedimentation-diffusion operator but requires
an intervening perturbation on the concentrations in order to accomplish
relaxation to chemical equilibrium. Since all terms of the continuity
equation are addressed together, the model presented here can account for
virtually any physical effect that can be incorporated into the continuity
equation(s).

The method presented here is available as an option in the code, PDECOL,
which has been developed by Madsen and Sincovec(l7). This code is available
for a nominal distribution charge from the Association for Computing
Machinery. PDECOL is currently in use in several hundred installations and
no errors have been discovered in it since its release. Some penalty must,
of course, be paid in overhead because of the generality of the methods
employed in PDECOL. The user is relieved of such an extensive programming
burden, however, that the overhead cost is nominal by comparison.

The method presented here is applicable to a wide range of transport
experiments. It is presented in the context of centrifugation because this
is the area in which the author has the most experience. It is anticipated
that in the future this method will play an important role im research
involving solutions of the continuity equations which govern transport

phenomena.



CONTINUITY EQUATIONS

The continuity equation for the ultracentrifuge is a partial differential
equation which governs the behavior of a sedimenting solute. In a fairly

general form it is given by
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denotes the number of species present,

is the angular wvelocity and is a function of time ¢t ,

and Dk are the sedimentation and diffusion coefficients

respectively and are usually functions of é‘,

is a chemical coupling term and is a function of ¢ .



MATHEMATTCAL MODEL

The method presented here uses a piecewise cubic collocation procedure
for the discretization of the spatial wvariable, r . The collocation pro-
cedure reduces the original partial differential equation to a system of
ordinary differential equations. The ODE system is an initial value system,
which depends only on the temporal variable, t . Abstractions of this sort
are generally referred to as the method of lines(18, 19, 20). The resulting
system of ODE's is then integrated using fairly standard techniques discussed
below.

One begins by partitioning the interval [rm, rb] into N subintervals.
These intervals need not be of uniform length. One chooses PR
i=1, ..., N+ 1, so that any fine detail of the problem can be resolved.
As a matter of notational convenience H3 is defined to be the space of all

functions which are continuous, continuously differentiable, and which are

cubic on each of the subintervals [ri, r, This method uses members of

1+l] '

HB to approximate the solutioms, ck(r, t) , to the continuity equations at

any point in time.
A significant result from approximation theory(2l) states that an arbi-
trary function, =z , having four continuous derivatives can be approximated
f o ; G
as a member of H within a maximum error of (1/384)h z (¢) where h
is the maximum value of (r

-r;) ,and r <E <

i+l 1 N+l

For a relatively smooth function this is an excellent approximation.

The high order of accuracy of this approximaticon is the key to achieving

good accuracy using a relatively coarse grid,
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A basis for H3 consists of 2N + 2 linearly independent basis functions,

g; - These basis functions are sometimes referred to as elements. Each of
the 2N - 2 interior basis functions is nonzero on precisely one double

interval, I[r 1 . That is, and 8yy0 i=2, ..., N, are

82i-1

nonzero on the interval [ri—l’ ri+l] and zero elsewhere. 8 and g, are

i-17 Ti+l

nonzere on the interval [rl, r2} v are nonzero on the

Bone1 204 Bopyo

interval I[r 1.

N° Tn+l

The principal assumption of this method is that at any time t , each

component of the solution to equation (1) can be approximated by a member of

H3 . Thus the approximate solution is given by
2N+2
e, (r, t) = igl 75 p(0g; () (4)

where the ¥ . are scalars which depend only on time t , and the 8
»
depend only en r .
The ordinary differential equations are obtained by requiring the

approximate ¢ in equation (4) to satisfy the continuity equation(s), (1),

k

at a set of 2N collocation points pj . The way in which the Pj are

chosen is very important. As might be expected pl =T and p =r

aN+2 b’

The choice of the interior collocation points is considerably more subtle.
Theory(22) predicts that a dramatic increase in the accuracy of the

solution can be obtained by cecllocating at the roots of the second degree

Legendre polynomial in each subinterval [ri, r.,.] . These points are

i+l

given by

ey

1
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Using equations (5) and substituting equation (4) into equation (3), and

requiring equation (3) to be valid at the interior collocation points gives

2N+2 dyi K
i-—z-l gi(pj) _dt_,_z Lk(t’ pj’ c(t’ pj)) cr(t! pj)} crr(tl Pj)) »: (6)

To determine equations corresponding to j =1 and j = 2N + 2 the
boundary conditions are imposed. At the left boundary the usual zero flux
condition is used. For a fairly general case the boundary condition for the

kth component is given by

2
S UTE e = Dk‘"’rk =0, 7

where sk or Dk or both are usually functions of ¢ , and ®w 1is considered
to be a function of t whose initial value is zero. Acceleration must be
simulated because of the way that the boundary conditions are introduced.

No provision is made for boundary conditions that are inconsistent with initial
conditions. The initial distribution of mass in a centrifuge cell is generally
uniform. Each crk is therefore initially zero everywhere. In particular

it is zero at the meniscus. It follows that equation (7) can only be satis-

fied initially if the first term is initially zero. This is accomplished by

introducing acceleration into the simulation. Rearranging (7) gives

For notational expedience we define

chrk
B (s B, ) wEe——— (9)
k r skckrm

Using this notation and employing the chain rule to differentiate both sides

of equation (8) with respect to t gives
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The basis functions By and g, are the only basis functions which have
nonzero derivatives at rm . In addition to this omly 81 has a nonzero

value at rm . Using these facts the appropriate ODE is easily seen to bhe
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It seems quite reasonable to employ an analogous method to construct the

ODE corresponding to the boundary condition at the cell bottom, r This

b
is, however, not recommended. The reasons for this will be discussed in a
subsequent section. Instead the so called "free end" condition is imposed.
This is accomplished by collocating the differential equations in the usual
manner at r, .
Combining the system of equations (6} with the boundary condition infor-
mation yields a system of K(2N + 2) initial value ordinary differential

equations. This system of ODE's is dependent only on the temporal variable,

t . The system of equations has the form

&
=30, 0 (12)

The matrix A 1is banded, having maximum bandwidth of 6K - 1 . This is
because of the very local nature of the basis functions used. The banded
nature of A expedites the solution of the system of equations (12). With
the exception of the rows corresponding to boundary condition information atthe

meniscus, the entries of A are simply basis function values at collocatien points.



ODE INTEGRATION

Having fully discretized the original PDE problem with respect to the
spatial variable, r , it is necessary to integrate the resulting system of
ODE's. This is accomplished by using the stiffly stable methods of Gear(23).
(Some authors refer to these methods as backward difference formulas.)

Gear's methods are indicated because of their good stability properties when
one or more terms of an ODE problem is decaying to an asymptotic value. They

are based on the predictor formula

m
Vo= L oy 4 tobey' o, l<m<s, (13)

and the corrector formula

m
¥ = .Z a: Vo1 + nOAty'n s, 1l <m <5, (14)
i=1

The Integer m is the order of the method. The a's and n's are coeffi-
cients which define the method.

Predictor—-corrector methods have several important properties. The
error committed in each step can be easily estimated. The stepsize, At , can
be adjusted accordingly. And, when indicated, the order of the method can
be easily changed. For these reasons ODE integrators using these metheds
give excellent performance while maintaining the integration errors committed
at each step below a pre-specified level.

A bound, EPS, is chosen as the relative error tolerance for the integra-
tion., EPS is used in three different places. It is used to test convergence

of the corrector equation. It is a bound on the estimated error calculated
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after each step. And it is employed as a parameter for determining what
change of order and stepsize is appropriate for the subsequent step,

The corrector equation 1s implicit. It includes both the value of the
function y and its derivative y' , at the new time, t . The corrector
equation cannot, therefore, be solved explicitly. It must instead be solved
by an iterative technique. A modified Newton's method is used for this
iteration{24). Following each iteration the L2 norm of the weighted
differences in the values of y' are compared with a scaled value of EPS.
(The L2 norm is sometimes called the root-mean-square norm.) EPS is scaled
to account for the number of ODE's and the current order of the integratiom
method. Each difference is weighted by dividing by the maximum absolute
value which the corresponding y has previously attained. If the value of
the norm is smaller than the scaled value of EPS the iteration is considered
to have converged.

After the corrector has converged, an estimate is made of the error in
each of the ODE's. This estimate is obtained by taking the weighted
difference in the predicted and corrected values of each component. The L2
norm of these estimates is compared with a different but similarly scaled
value of EPS. If the norm is smaller than EPS the step is accepted. If
it is greater than EPS the step is rejected, and the stepsize 4t is reduced.

Following each step EPS is employed as a parameter in selecting the
stepsize and order to be used on the subsequent step. Estimates are made for
the current order m and, when appropriate, for orders m+ 1 and m - 1 (23).
A choice is then made regarding whether the order and/or stepsize should be
increased, decreased, or retained.

The formulas, (13) and (14), are not used explicitly. The formulas

used are called the "normal form" of Gear's methods(23, 26). The wvalues of
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y and y' in equations (13) and (14) define a polynomial. These poly-
nomials can be equally well represented by the terms of a Taylor series.
The normal form of Gear's methods uses the Taylor series representation of
the extrapolating polynomial. This simplifies both the prediction process
and changes of stepsize.

The time integration techniques described above are quite efficient. The
automatic choice of stepsize and order are extremely useful features. The
use of these techniques frees the user from the burden of determining the
At which is appropriate for the particular problem at hand. Moreover,
choosing and changing At dynamically keeps the integration from being
bounded by a stepsize that is suitable for one phase of the problem, but
represents unnecessary and inefficient overkill for another phase. The user

must of course choose a suitable wvalue of EPS for his problem.



IMPLEMENTATION

The procedures outlined above are available as options in the FORTRAN IV
code PDECOL which has been developed by N. K. Madsen and R. F. Sincovec(l7).
This is an extremely powerful package which implements collocation techniques
for a large class of PDE problems. The user is allowed to specify the order
of the polynomial space used, the number of continuity conditions to be
satisfied by the space, and a temporal integration technique.

The user is required to provide subroutines which specify the initial

RN
conditions, the boundary conditions, and the wvalue of c, given r, t, c,
A A » . . 3 a 3 - - - -
cr, crr . In addition a driving routine is required. The driving routine

has several responsibilities. It must set the values of parameters used by
PDECOL. It must call the package. It should incorporate logic for handling
any error returns from PDECOL. It is responsible for the output of the
results.

The manner in which boundary conditions are implemented in PDECOL
requires that the initial and boundary conditions agree. For this reason, -it
is necessary to provide some means of interpolating w during the interval

between the initial time ¢t and the time ¢t

0 1 when the centrifuge rotor

achieves its terminal velocity. The recommended procedure is the construction

of the cubic spline interpolate of w(t) between the times tO and tl

This is a very smooth interpolating functiom. The derivative, w' , is taken

to be zero at the times tD and t

derivatives. Use of this interpolation method allows the user to incorporate

1" The interpolate has two continuocus

data recorded during the acceleration phase of a centrifuge experiment.

12
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Three subroutines are given in Conte and de Boor(2l} which construct and
evaluate the cubic spline interpolate. These can be used with only minor
modification.

During early phases of testing this method some problems arose. It was
discovered that the numerical solution could become unstable in the regions
corresponding to the meniscus and the cell bottom. The reascns for the
development of the instabilities are quite different. The instability at
the bottom of the cell is a consequence of the spatial descretization., Near
the bottom of the centrifuge cell the buildup of mass corresponds to an abrupt
and severe rise in the values of the ceoncentration and its spatial derivatives.
As a consequence, the curvature of the cubic function approximating the solu-
tion over this interval is forced to become large. As is well known, if the
curvature of a cubic is very large, it will have a maximum or a minimum
nearby. When these maxima and minima appear they result in the development
of violent oscillations in the numerical solution in the region near the
bottom of the simulated cell., Since accurate answers in this region are
generally of little tangible benefit, the usual zero flux conditiom at T
has been abandoned in favor of the null boundary conditicn. This corresponds
physically to a semi-infinite cell. PDECOL allows the user to specify the
null boundary condition at one or both boundaries. When this option is
invoked, PDECOL collocates the differential equation in the usual manner at
the point involved.

The problems encountered at the boundary corresponding to the meniscus
are much more subtle. They arise as a consequence of the error committed
during the early steps of the integration. The zero flux condition at the
boundary is given by equation (7). The errors committed initially are kept

very small by the error control mechanisms in the temporal integration method.
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There are, however, errors committed. The resulting instability can be
visualized if one interprets the error physically. Rewriting equaticn (7)

to account for the error gives
2
Sw re - Dcr =d (15)

(The balance of this article is confined to the case of a single species.)
This corresponds to a small source (if d is positive) or sink (if d is
negative) of mass at the meniscus. The size of the discrepancy, d , is ini-
tially very small. However if d 1is positive the resulting influx of mass
into the system will tehd to make ¢ slightly larger and c. slightly
smaller than the correct values in the neighborhood of T, As a consequence
of these effects d will tend to be slightly larger on the following time
step.

The case of a negative d results in a similar "widening gap'" between
the first and second terms of equation (15). The outflow of mass through
the top of the simulated solution column results in a tendancy to increase
c and decrease ¢ . Once again the discrepancy tends to become larger on
the subsequent step. As the simulation proceeds [d[ becomes larger than
can be accounted for by the accumulation of truncation errors. When the
smaller of the two left hand terms of equation (15) is close to zero the
larger can still have a significant positive value. Because of this, the
smaller term goes straight through zero and takes up residence at some nega-
tive value.

Things begin to get bad. With opposite signs on the two terms of the
left side of equation (15), the growth of the discrepancy is accelerated.
Serious artifacts begin to. appear. In the case where ¢ has gone through

zero, negative concentrations appear and are propogated along the radial



15
axis by the sedimentation term in the continuity equation. If the sedimen-
tation term includes a correction for concentration dependent sedimentation,
the negative concentrations will be propogated straight into the sedimenta-
tion boundary. The already suspect solution is ruined. In the case where
the derivative c_  goes through zero, the concentration, ¢ , becomes
extremely large at rm and this enormous excess of mass is propogated along
the solution column,

Several schemes for eliminating these artifacts from the simulation were
tested before settling on one that works best. The ODE's involved in the
solution at the meniscus were given greater weight in the error estimates
used in PDECOL. An attempt was made to attenuate the residual error d in
the subroutine that defines the boundary conditions. When the concentration
had reached some threshold value, the boundary was released, and the null
boundary condition was imposed. None of these schemes was completely success-
ful.

The error estimates in PDECOL are all weighted by dividing the estimated
error for each Vs by the largest absolute value which Vs has previously
attained. The place in PDECOL where these weights are set is well documented
and quite easy to change. The weights on ¥y and v, were changed to .01 .
This resulted in a reduction in the size of the artifacts and postponed the
development of severe instabilities. It did not, however, eliminate the
artifacts entirely. The effectiveness of this scheme was, moreover, not
very general. Although nearly acceptable results were seen in some cases,
other cases would persist in showing artifacts that became quite large.

This scheme also degraded the performance of the model.
The attempt to attenuate d 1in the subroutine BNDRY which is responsible

for conveying boundary condition information to PDECOL was completely
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unsuccessful. The differential equation defining the behavior of the sclute

at the meniscus was taken to be

a 2 1,2
e (sw're Dcr) sl (sw'rc Dcr) (16)

where a was the last At used successfully. In this case PDECOL was
unable to achieve convergence in the corrector part of the temporal integra-
tion.

Another scheme involved releasing the boundary after the concentration
had fallen below a prespecified threshold. The basis of this scheme was to
impose the null boundary condition when the concentration had fallen to a
relatively insignificant value. The idea was that, freed from the constraint
of the boundary condition, the values of ¢ and cr would fall to zero
together. This did not prove to be true. Although this scheme did stabilize
the solution, it did so erroneously.

After a period of considerable vexation an effective solution was dis-
covered. The best scheme for stabilizing the solution at the meniscus is to
force the boundary condition to be satisfied., This is accomplished by modify-
ing the core integrator of PDECOL so that the discrepancy, d , is forced
to be no larger than the roundoff error of the machine used. After the corrector
iteration has converged, a correction is made on the values of the ODE's that
are involved with the boundary conditions, As a precaution the correction is
incorporated into the error control mechanism responsible for accepting or
rejecting a step.

The correction is based on a knowledge of 81 and g, at the meniscus.,

For i > 3, 8; and g'i are identically zero at T The values of 2,

and g2 at r 5

o 2fe 1 and 0 respectively. The values of g'l and g

are —3/(r2 - r.) and 3/(r2 - r.) respectively. Armed with this information

1 1
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and the value of Y1 it is a relatively easy matter to calculate ¥, SO that
the discrepancy, d , will be zero within the precision of the computer. The
correction is made on y because this greatly simplifies the algebra involved.
It is not known whether a given correction pushes the value of the numerical
solution closer to or further from the true solution. Because of this it is
important to incorporate the correction into the error control used by PDECOL.

As might be expected, the largest time integration errors occur in the
region corresponding to the sedimentation boundary. During the early phases
of the integration, this region corresponds to the region near rm . The
magnitude of the correction, and of the estimated error on Yis Yo Yy s and
y, are quite comparable during this phase. If st/D is sufficiently
large, ¢, cr , and the error estimates fall to wvirtually negligible levels
at the later stages. The size of the correction in the later stages is
generally several orders of magnitude smaller than that of the estimated
errors. The modification to PDECCL implementing this cocrrection is considered
to be of considerable importance. For this reason an example of this correc-
tion for a fairly general case is given verbatim in the appendix. It is
accompanied by enough of the original code to allow the interested reader to
employ it in his own research without inordinate attention to the internal
workings of the package.

A suitable choice of grid spacing and EPS are required for effective
use of PDECOL. Although PDECOL contrels time integration errors, it has no
control over errors resulting from the choice of grid spacing. The grid
spacing must be chosen, therefore, with some care. For cases where su2/D is
much larger than about 80 , a non-uniform grid is recommended. This grid
should have a higher density of points in the region near T This facili-

tates the approximation of the steeper, narrower sedimentation boundary in
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this region. The gradient profile corresponding to larger values of Swle
is narrower and steeper everywhere than for smaller values of this parameter.
The density of the grid spacing should reflect this distinction if reliable
results are to be obtained.

The choice of EPS is also quite important. PDECOL uses the L, norm
of the estimated error in each component of the ODE system for calculations
involving error estimates. Since time integration errors are much larger in
the region corresponding to the sedimentation boundary, errors much larger
than EPS are allowed to occur in this region. This effect becomes nronounced
when the breadth of the sedimentation boundary is limited. Furthermore, the
finer grid demanded by larger values of st/D places a smaller upper bound
on At , This results in more time steps being required to "push" the sedi-
mentation boundary along the grid. For example, when st/D is about 10 ,
excellent results can be obtained using 1.E-4 for EPS and an evenly spaced
grid consisting of 50 subintervals., When smz/D is about 80 a grid of
100 subintervals and an EPS of 1.E-6 are more appropriate. These values
of EPS are sufficiently small to allow the errors in the solutigns to be
dominated by the errors due to the spatial discretization. It should be
pointed out that the simulation in the second case will take three to four

times longer to execute.



TEST OF VALIDITY

For the simple case where only one species is present and the values of

s and D are constant, the flux, J , is given by

J = szrc - De_ .

r

The validity of the method is determined by considering the data

generated during

the course of the simulation to be "experimental" data.

Observed sedimentation and diffusion coefficients are calculated using the

=q + s*wzt , and
= D, (-55) lexp (25,07 = 1)] %))
S*m

the point where the gradient achieves its maximum.
a2 constant.

the calculated sedimentation coefficient.

the angular velocity of the rotor.

the temporal variable.

the area under the gradient and is equivalent teo the

plateau concentration.

equations

ln(r*)
A2

)

T, is
q is
S, is
w is
t is
A is
H is
D* is

Values for

the maximum height of the sedimentation boundarv gradient.

the calculated diffusion coefficient. (253)

s, and D, are calculated using the method of linear least

squares. The walues of s and D used for input into the simulation correspond

15
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roughly to a macromolecule having a molecular weight of 75,000 .

s = 5.25E-13
D = 6.3E~7
N =50

The results of these calculations are given in Table 1. The accuracy
of these findings is quite striking. The results regarding the diffusion
coefficients in particular are an order of magnitude better than Claverie
has reported for his model(l4). The computation time is of course a function
of the machine used. TFor purposes of compariscn a Cox model on the computer

used executes in about 20 seconds whereas a Claverie model requires several

minutes.
TARLE 1
EBS s ls-s*l (%) D [D—D*| (Z)  Computation time
1.E-4 5.262E-13 0.237% 6.264E~7 0.58% 37 seconds

l.E=6 .5.248E-13 0.057% 6.273E-7 0.42% 53 seconds




CONCLUSIONS

Collocation represents a considerable advance in the techniques
available for the simulation of velocity sedimentation experiments. The
extreme flexibility of the method makes it suitable for cases where the
sedimentation is accompanied by chemical interaction of the sedimenting
species. The high degree of accuracy that can be obtained at relatively
low cost for low to moderate values of suZ/D makes it the method of chocice
in the case of small macromolecules where the shape of the sedimentation
boundary is affected by the meniscus.

PDECOL is a useful tool for implementing collocation methods., Using
the modification given in the appendix (or a similar modification) one can
construct simulations for a variety of ultracentrifuge experiments with

remarkably little effort.

21
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LEGEND FOR FIGURE 1

Figure 1. Simulation of a boundary sedimentation experiment., The parameters
s and D are the same as in Table 1, Rotor speed is given by a cubic
accelerating from 0 to 60,000 RPM in 90 seconds. r and r, are

6.00 cm and 7.00 c¢m respectively. These curves show the distribution

2
3r

first curve corresponds to a time of 1400 seconds. The interval between

R . ] c . .
of the concentration, ¢ , and its gradient, —— , at successive times. The

observations is 200 seconds.
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APFENDIX

B e i o 2 R B e B R e R R R A e S R s o = COL17550
C THE CORRECTOR HAS CONWERGED. IWEWAL IS SET TO -1 TOD SIGNAL COL17340
C THAT PW MAY HEED UPDATING ON SUBSEQUENT STEPS., THE ERROR TEST CoL17570
£ IS MADE AND COMTROL PASSES TO STATEMENT 500 IF IT FAILS. CoL173580
B i o i COL175%90
430 IHEVAL = -1 COL17600
NFE = NFE + H COL17610
Crrsrctrsxsxsrrrrirdbhrbdskdrirr bbb drsbetenprbretcekske skt ANEND
C ANEND
C THE MODIFICATION TO PDECOL BEGINS HERE. AMEND
c Y(I+{(K-1)*NCPTS,J) CONTAINS THE (J-1)TH SCALED DERIVATIVE OF THE AMEND
C DDE GOVERMING THE ITH BASIS FUNCTION OF THE KTH SPECIES. AHEND
C AMEND
€ ERROR(I)+EL{1) I5 THE DIFFERENCE BETWEEN THE PREDICTED AND AMEND
€ CORRECTELD VALUES OF Y{(I,1). AMEND
C AKEND
c THE CORRECTIOH THAT IS ILLUSTRATED HERE IS FOR THE CASE ANEND
C IN WHICH THERE ARE NPDE DIFFERENT SPECIES PRESENT. AHREND
C RMEN IS5 THE RADIUS OF THE HENISCUS. AMEND
£ DX1 IS THE LENGTH OF THE FIRST SUBINTERVAL. AMEND
C DIFFUS(I) IS THE DIFFUSION COEFFICIENT FOR THE ITH SPECIES. AREND
C THE SEDIMENTATION COEFFICIENT IS TAKEN TO BE A FUNCTIONM AHEND
C OF THE CONCENTRATIONS OF ALL THE SPECIES PRESENT. AMEND
C THE NONLINEAR FORM OF THE CONCENTRATION LDEPENDANCE IS USED, AMEND
C AMENT
C THE FORM USED IS ANEND
C ABEND
c S(IM=80(I)/(1, + SUM{HDK(I,.>» = C(J)) AREND
G ANEND
C HOK(I,J) 15 THE CONSTANT THAT REPRESENTS THE INFLUENCE OF AHENTD
C THE CONCEMTRATION OF THE JTH SPECIES ON THE SEDIMENTATION AHMEND
C COEFFICIENT OF THE ITH SPECIES. AMEND
C SOMS@0(I) IS THE UNCORRECTED (FOR CONCENTRATION DEPENDANCE) AMEND
C SEDIMENTATION COEFFICIENT OF THE ITH SFECIES MULTIFPLIED BY AMEND
C THE SOUARE OF THE ANGULAR VELOCITY, OMEGA. . AMENT
L 504500, DIFFUS, HOK, DX\, AND RMEN HAVE BEEN PASSED 70 THE AMEND
C SUBROUTINE STIFIB IN A COHHON AREA WHICH WAS CREATED FOR AMEND
C THAT PURFOSE. ANEND
N ANEND
c Y1 IS THE NEW (IF THE STEP IS ACCEPTED) COEFFICIENT FOR AMEND
C THE FIRST EASIS FUNCTION. ABEND
L Y2 IS5 THE VALUE WHICH I5 BEING FORCED ONTO THE COEFFICIENT FOR AMEND
C SECOND BASIS FUNCTION IN OGRIER TD ASSURE THAT THE BOUNDARY - —  AHEND-
£ CONDITION IS SATISFIED. AHEND
c AMEND
Cresssersesddrexkkeker kbR RET LR R bhERARBRRRbRRb Rk ket bbb bRt e sk ANEND
PO 455 1I=1,NPDE AMEND
[t=1+(I-1)+#NCPTS AMEND
[2=11+1 AREND
HSUK=1.00 AHENT
DO 4530 J=1,NPDE ANEND
J1=1+{J-11#NCPTS AMEND
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27

4330  HSUN=HSUM+HDK(I,J)#(Y(J1,1)+ELC1)+ERROR(J1)) AMEND
ERROLD=ERROR(I2) AMEND
Yi=Y(I1)+EL{1)*ERROR(I1) AMEND
12=Y1#(S0MSQRO(I ) *RHEN/HSUN+3. DO#DIFFUS(I)/DX1 ) #DX1/3.00/DIFFUS(I)AMEND
ERROR(IZ2)=(Y(I2,1)-Y2)/EL(1} AMEND
CORSUM(I)=ERKDR(I2J-ERROLD ANEND

453 CONTINUE AMEND
CHes ke kR 6 S FRRXRFEFRREIFRRRRRRNLRREREF RN RRR bR Erar ke cANEND
L ERROR{2+H+NCPTS) M=0,...,HPDE-1  HAS BEEN CHANGED TO ANMEND
C FORCE THE BOUNDARY CONDITIONS TO BE SATISFIED AMEND
CRELEXRLFATFRXERRRFFARXF AR XK ST TRRERA PR R A TR TRk SRR RR BT ROk RR ek ek e AHENT
I = 0. COL17620
D0 460 I = t,N COL17630
440 b =D + (ERRORCI)/YHAX(I))=*+2 COL17640
Ceetserxtkrkbbbspreprorhixhbkhkkdrdedrsitsbrprb sk ereneec ANEND
C THE FOUR LINES OF CODE THAT FOLLOW INCORPORATE THE CHANGE AREND
C HAIE INTO THE ERROR CONTROL OF PDECOL AMEND
CHess 3R e k333X RRFRREFRFRTXTRFFXRXRRFITBRB B ERTRETE R e R beeeEe e ANEND
D 445 [=1,NPDE AMEND
I12=2+{1-1)1%NCPTS AHEND
D=0+ {CORSUM(I)/YHAX(IZ) ) %=%2 AMEND
465 CONTINUE AMEND
IF (0 .GT. EJ GO TO 300 CAL174350
I o o e o e i e S e e S COL17440
C AFTER A SUCCESSFUL STEP, UPDATE THE Y ARRAY. CoL17670

C CONSIDER CHANGING H IF IDOUB = t. OTHERUISE DECREASE IDOUB BY 1, COL17480

C IF IDOUB IS THEN 1 AND NO .LT. MAXDER, THEN ERROR I3 SAVED FOR COL174690

C USE IN A POSSIBLE ORDER INCREASE ON THE NEXT STEP. CoL17700

C IF A CHANGE IN H IS COWSIDERED, AN INCREASE OR DECREASE IN ORDER CoL17710

C BY ONE IS CONSIDERED ALSD. A CHANGE IN H IS5 HMADE ONLY IF IT IS BY A COL17720

C FACTOR OF AT LEAST t.1., IF NOT, IDOUB IS SET TO 10 TO PREVENT COL17730

C TESTING FOR THAT MANY STEPS. COL17740

e e e e e o L L L o o R CoL17730
KFLAG = 0 COL17740
IREDOD = § coL1 777

NSTEP = NSTEP + | CoL17780
HUSED = H CoL17770
NGUSED = N@ COL17300

po 470 J = 1,L COL17810

D0 470 I = 1,N COL17820

470 Y(I,J) = Y(I,J) + EL{JY*ERROR(I) CoL17830
IF (1DDOUB .EQ@. 1) 6O TO 520 CoL17840
I1p0UB = IDOUB - 1 COL17830

IF (IDOUB .GT. 1) 50 TO 700 COL178690

IF (L .EQ. LHAX) GO 7O 700 CoL17870

DO 4%0 I = t,N CoL17880

490 Y{I,LHAX) = ERROR(I) COL17890
GO 10 700 COL17900

[ om0 e o o e goLt7910

€ THE ERROR TEST FAILED. KFLAG KEEPS TRACK OF HULTIFLE FAILURES. CaL1792¢

C RESTORE T AND THE Y ARRAY TO THEIR PREVIOUS VALUES, AND FREPARE COL17930

C TO TRY THE STEP AGAIN. COMPUTE THE OPTIMUH STEP SIZE FOR THIS OR COL17%40

C ONE LOWER ORDER. COL17730

Do o e s COL17960
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ABSTRACT

This paper briefly describes the development of cubic collocation
techniques for solving the continuity equations for the ultracentrifuge. An
extremely flexible method is presented, taking into account cell geometry,
the effect of the meniscus on the sedimentation boundary, chemical kinetics,
etc. A powerful, publicly available software package is introcduced and its
utility in implementing the method described here is discussed. Results

are given for a simple but typical case.



