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'J! ABSTRACT

An approximate slip-line field is developed for a range of negative

rake angles beyond the range where ordinary metal cutting theory applies.

In this range of large negative rake angles, the flow of metal along the

tool is in opposite directions on either side of a stagnation point on the

tool. This divided flow results in frictional stresses which are also in

opposite directions. The slip-line field accounts for this complex friction

distribution and is used to calculate the cutting forces and frictional

stresses for various rake angles and friction coefficients.
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INTRODUCTION

Metal cutting is a very important process in industry, yet the

mechanics of it are not completely understood. Much research has been

done in the area of metal cutting to try to predict how chips form and

what forces are required to produce them. It is also hoped that learning

more about the metal cutting process will lead to a better understanding

of the friction between the tool and the workpiece and thus shed more

light on the related problem of tool wear.

Merchant [1] , [2] , [3] was about the first to study the problem

of metal cutting analytically. His work was based on the assumption of

a perfectly sharp tool and a single shear plane. But actually cutting

tools are not perfectly sharp. The tip of a cutting tool is rounded and

the material flow around the tip is very complex because the effective

rake angle is not constant around the tool tip.

Albrecht [4] studied the force due to a rounded tool tip and

called it the ploughing force. This new force allowed for the construction

of a more detailed force diagram which was a step towards a better analytical

solution to the metal cutting process.

A major problem in analyzing the ploughing force and the material

flow around the tool tip is that the effective rake angle varies around

the tool tip from a positive angle at the face of the tool through the

negative range to essentially -90 at the tool tip. The difficulty is that

the stresses and flow patterns of large negative rake cutting are unknown.

Since Merchant's model for metal cutting does not hold for large negative

rakes, the problem is still unsolved.
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In ordinary metal cutting the tool tip radius is small compared

to the undeformed chip thickness. However, there are many important

cutting situations in which the tool tip radius is large compared to the

undeformed chip thickness such as in metal grinding [5] or in rock cutting

with diamond cutting tools [6] . In these cases the cutting force may be

predominantly a ploughing force and it becomes important to know the

stresses and flow characteristics around the tool tip.

Rubenstein, et al [8] conducted cutting tests using single diamond

grains and high speed steel tools to simulate the cutting action of a

single abrasive grit in a grinding process. They found a critical angle,

at which the chip ceases to form and pure ploughing begins, to be about

-55 . From these experiments they developed a new model for the metal flow

around the rounded portion of the tool tip [9] . Their model included a

stagnation point on the tool tip located where the effective rake angle

was equal to the critical rake angle. Above this stagnation point the

material would flow up as part of the chip and below the point the material

would flow down under the tool.

Rowe and Wetton [10] developed slip-line fields for a truncated

conical tool. Their work indicated how a bulge could form in front and at

the sides of the tool, and they were able to predict the transition from a

bulge to a chip. Komanduri [11] conducted experiments with negative rake

tools and was able to obtain chips with rake angles down to -75 when

cutting steel. Below 75 negative rake, no chips were formed but the side

flow of the metal was considerably increased. Komanduri suggested that

there is a stagnation point on the tool face above which material flows up

the tool face and below which the material flows under the tool. The

location of the stagnation point depends on the rake angle.
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Lai and Shaw [12] conducted experiments with a hard spherical

ball. The sphere was scraped across various materials. They observed a

steady-state piling-up of material in front of the ball for small depths

of penetration. As penetration was increased to some critical depth, in

relation to the diameter of the ball, chips were formed.

Abdelmoneim and Scrutton [13] analyzed orthogonal cutting with

round nosed tools in which the depth of cut was less than the tool nose

radius. They assumed there was a stable build-up of material on the tool

tip below the critical rake angle.

Sakamoto and Tsukizoe [14] conducted scratch tests on copper using

conical diamonds. In their work they obtained an excellent series of

optical micrographs which show a prow forming in front of the diamond cone.

As the sliding distance was increased, the prow gradually grew until a chip

was formed. They found that for sufficiently large negative rake angles,

all of the material was displaced around the front and sides of the cone

but no chips were formed.

From this brief review of the literature it appears there is still

much uncertainty in the theory of negative rake metal cutting. A major

reason for this uncertainty and one of the most difficult facets of the

problem is that the boundary conditions of the problem are not completely

known a priori. When a rake angle is specified, the direction of chip flow

is known, but the size and shape of the chip and deformation zone remain

unknown. Hill [20] suggested that there may not be a unique steady-state

solution of the single shear-plane type. He used a method of eliminating

the configurations in which the material was overstressed to obtain a range

of possible solutions. The real solution for a given problem would then lie

in the range of possible solutions and would depend on the initial conditions,
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Experimental results obtained by Ramalingam and Hazra [21] suggest

that additional constraints on the metal cutting problem must come from

the structure and properties of the work material. They suggested that

the constancy of dynamic shear stress plays a dominant role in determining

the geometry of the cutting process. However they were not able to

determine the exact role of the dynamic shear stress. They concluded that

the geometric configuration of the problem could not be fully defined

knowing only the chip flow direction and the dynamic shear stress, and

that an additional constraint is necessary to determine the overall

configuration of the process.

When the process of large negative rake metal cutting is considered,

another major problem is encountered in addition to the unknown geometry.

Most experimental work with negative rake angles indicates a stagnation

point on the tool face. The location of the stagnation point for various

cutting conditions is far from being clearly understood. The presence of

a stagnation point on the tool face indicates that the work material is

flowing in opposite directions on either side of the stagnation point.

This results in the friction on the tool being in opposite directions

across the stagnation point which results in a complex force distribution

on the tool. Similarly the shear stress distribution in the material near

the tool is also more complex.



DESCRIPTION OF THE PROBLEM

This study was undertaken to develop an improved theoretical

model of orthogonal metal cutting with large negative rake tools. It was

desired to learn more about the flow of the material in the vicinity of

the tool as well as the stresses and forces involved in the process. The

basic problem is shown in Figures 1 and 2.

Most metal cutting applications are actually a three-dimensional

process but many can be idealized as two-dimensional without significant

loss of accuracy. In this study the problem will be considered a two-

dimensional plane strain problem. The tool is rigid and stationary with

a straight cutting surface of unit width. The negative rake angle is a

and the depth of cut is t as shown in Figure 2. The wcrkpiece is a rigid-

perfectly plastic material moving towards the tool with a velocity U. Work

hardening of the material as well as temperature effects will be neglected.

The plastic zone shown in Figure 1 is the region of the workpiece which has

yielded according to the von Mises yield criterion. The remainder of the

workpiece outside the plastic zone is rigid. The chip shown in Figure 1

is assumed to be stress free and thus exerts no force on the cutting tool.

The forces Fr and F
t
shown in Figure 2 are the normal and tangential

components of the cutting force. It is desired to obtain an upper bound for

the cutting force components as functions of rake angle, depth of cut, and

material properties.

The governing partial differential equations for two-dimensional

flow of a rigid-plastic material are well known, but there are no straight

forward approximate procedures to solve this type of boundary value problem,

5
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particularly when the shape of part of the boundary is not known a priori.

The general nature of solutions is however revealed in terms of the

characteristics of the differential equations which are designated as

slip-lines. Considerable intuition is required to use the slip-line method

to solve problems in which the shape of part of the boundary is unknown.

The quality of results obtained by the slip-line method is somewhat

dependent on the intuition of the investigator since the procedure of

obtaining a solution is not straight forward. However, the slip-line

method is well suited to the problem of negative rake metal cutting and

will be used here.

In many processes such as extrusion and sheet drawing the boundaries

are known and the slip-line theory can be applied directly to obtain an

upper bound solution. However since the boundaries for the metal cutting

problem are not known a priori the slip-line method results in a trial and

error process. A slip-line field can be constructed assuming a set of

boundaries based on intuition or observation of experimental work. Then

a valid velocity field (hodograph) must be found corresponding to the slip-

line field. If a valid hodograph cannot be found a new slip-line field must

be constructed. The process is repeated until a slip-line field with a

corresponding valid hodograph can be found. If the slip-line field satisfies

all of the requirements of the slip-line theory, it is an upper bound solu-

tion to the problem. This trial and error procedure with unknown boundaries

and two-way flow makes the process of solving the large negative rake

cutting problem very complex.



SLIP-LINE THEORY

The slip-line method is a practical method of solution for certain

plane plastic flow problems. The method is based on several simplifying

assumptions which are reasonably valid for the problem of large negative

rake metal cutting.

A plane flow problem is one in which the velocity of the material

is always parallel to a given plane, say the (x,y) plane. Thus, the

velocity and all material properties are functions of x and y but do not

vary with the third coordinate direction. This assumption is reasonable

for large negative rake metal cutting when the depth of cut is small

compared to the width of the tool.

The work material is assumed to be a rigid-perfectly plastic solid.

This means that the material is rigid and has infinite elastic moduli under

any state of stress below the yield stress of the material. When the

material is stressed above the yield stress it behaves plastically. This

assumption is valid for problems in which the material is not highly

constrained, in which case, the elastic strains are small compared to the

plastic strains. In the problem of large negative rake cutting the material

is not highly constrained and hence the assumption of rigid-plastic material

behavior is valid.

The von Mises yield criterion is commonly used in plasticity.

According to this theory the material yields plastically when the shear

stress in the material reaches the pure shear yield stress (k) . This is

easily visualized on a Mohr's circle as the condition of stress in which

the radius of the circle is equal to k. The shear stress in a perfectly

9
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plastic material never exceeds k. According to the von Mises yield

criterion the pure shear yield stress is equal to the yield stress for

pure uniaxial tension divided by /T. From this yield criterion the

following yield equation is obtained.

aJ - a *

y^+ x2y
= k2 (i)

There are three unknown stresses ax , a
y , and Txy . Compressive stresses

are considered negative and tensile stresses positive. To solve for these

unknown stresses two more equations are necessary. These are the equil-

ibrium equations of plane stress which are given below.

^ + ^=0 (2)
3x 3y

^xy +
_3ay m Q (3)

3x ^y

There are now three equations for the three unknown stresses. There are

also two velocity equations which must be satisfied throughout a plastically

deforming region. The first is the continuity equation (4) in which vx and

vy are the components of velocity in the x and y directions respectively.

9vx + _3vy = (4)

3X 3
y

The second velocity equation is the isotropy equation (5) which is obtained

from the assumption that for an isotropic rigid-plastic material the

principal axes of stress and strain rate coincide.

3vx 3v
y

3y 3x

3v„ 3vv ,_ %yl cot 2<J> (5)

3x S**

if

The angle <f> in equation (5) is defined such that (<{> +~) is the counter-

clockwise rotation of the direction of the algebraically greatest principal

stress from the positive x axis.
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It now appears that for a problem with given boundary conditions

there are enough equations to theoretically solve for the stresses and

velocities exactly. In general, however, problems of plane plastic flow

are statically indeterminate and cannot be solved exactly. This is the

case for the problem of large negative rake metal cutting and hence an

approximate technique must be used to obtain a solution.

The slip-line method is a semi-graphical approximate technique

involving the method of characteristics. A slip-line field which satisfies

the stress equations can be constructed graphically. The Hencky equations

which result from applying the method of characteristics to the stress

equations are used to calculate stresses along the slip-lines. Similarly

a velocity diagram or hodograph can be constructed which satisfies the

velocity equations. The Geiringer equations which are obtained by applying

the method of characteristics to the velocity equations can be used to

calculate velocities in the slip-line field. However, in many cases

velocity values obtained graphically from the hodograph are sufficient.

The hydrostatic stress p must be introduced to obtain the Hencky

equations.

p - -h (ax + ay) (6)

For a material in the plastic state, p is the normal stress coordinate of

the center of the Mohr's circle of radius k. From the Mohr's circle it

can be seen that the following relations are true and that they satisfy the

yield equations.

ax -p - k sin 2$ (7)

ay = -p + k sin 2$ (3)

t xy " k cos 2<j> (9)
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Substitution of equations (7-9) into (2) and (3) yields a pair of

hyperbolic equations which can be solved for p and <j> by the method of

characteristics. These equations are given below.

"|£ - 2k cos (20)1^- - 2k sin (2^)|^- = (10)
ax ox dy

"I
2- - 2k sin(2<fr)|*- - 2k cos(24>)-P- = (11)
dy dx dy

The characteristic directions for equations (10) and (11) obtained

by the method of characteristics are given by equations (12) and (13).

jjl - tan $ (12)

P- = tan (<> + V2 ) (13)
dx

The curves defined by these equations represent the directions of maximum

shear stress in the material and are called the slip-lines. The two

families of curves form an orthogonal net in the material which makes up

the slip-line field. The curves of the family denoted by the parameter <j>

will be called a-lines, and those denoted by the parameter (<j> + 12) will

be called 3-lines. At any point in the (x,y) plane of the material the

direction of the algebraically greatest principal stress bisects the right

angle between the a and 3 directions in the first and third quadrants of a

right handed (a, 8) coordinate system.

The Hencky equations which are another form of the plane-strain

equilibrium equations for a material in the plastic state are given below.

p + 2k $ = constant on an a-line (14)

p - 2k ij> = constant on a 8-line (15)

The Hencky equations can be used to find the hydrostatic stress anywhere

along a slip-line, provided p is known at some point, and the angle <j> is

known along the slip-line.
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The characteristics of the velocity equations coincide exactly

with the characteristics of the stress equations. Hence, the Geiringer

equations for velocity given below are applicable along the slip-lines

just as the Hencky equations are.

du - v d<j> = on an a-line (16)

dv + u d$ = on a B-line (17)

Using the Geiringer equations it is possible to numerically calculate

velocities from a slip-line field. However it is often more practical

to obtain velocities graphically by constructing a hodograph. A hodograph

is a diagram which graphically shows the velocity of every point in the

material. For complex slip-line fields the hodograph is usually constructed

numerically but for approximate slip-line fields, consisting only of straight

lines and circular arcs, the hodograph can be constructed graphically. The

hodographs used for the metal cutting problem will be simple enough to

construct graphically so it will not be necessary to use numerical techniques,

A simplified slip-line field, constructed of straight lines and

circular arcs, is an approximation to a true slip-line field which would

probably consist of curved slip-lines. In an actual problem the material

flows continuously and a hodograph corresponding to a true slip-line field

would also consist of curved lines. However, when a simplified slip-line

field is used, the corresponding hodograph will contain velocity disconti-

nuities. Velocity discontinuities may occur when the material crosses a

slip-line. At a velocity discontinuity only the component of velocity

tangent to the slip-line changes. The normal component of velocity must

remain constant across a slip-line.

Another type of discontinuity, often necessary in a simplified

slip-line solution, is a stress discontinuity. A stress discontinuity is

sometimes required to make the stress in different regions of the material



14

match up. In reality the stress may be changing through a small region

and could be represented by a field of curved slip-lines in that region.

However for a simplified solution it is assumed that the change in stress

occurs at a line of discontinuity.

The stress conditions at a stress discontinuity can be easily

visualized from the stress plane and corresponding Mohr's circle of Figure

3. To satisfy equilibrium the normal stress (an ) and the shear stress (t)

must be the same on both sides of the discontinuity. The tangential

component of stress changes across the line of discontinuity as does the

hydrostatic stress. The magnitude of the change in hydrostatic stress

across a stress discontinuity is given by equation (18)

.

Ap = 2k sin 20 (18)

A line of stress discontinuity can be oriented in any direction in the

material except parallel to a slip-line. If a discontinuity was oriented

parallel to a slip-line, the two Mohr's circles of Figure 3 would coincide.

When solving a problem using slip-line theory it is necessary to

consider the boundary conditions. One type of boundary condition encountered

in metal cutting problems is a stress free surface. On a stress free surface

the shear and normal stresses are zero and therefore the tangential stress

component must be -2k if the material is in the plastic state. The slip-

lines meet a stress free surface at 45 , since there is no shear stress on

the surface.

Another type of boundary condition encountered in metal cutting

occurs at the tool-workpiece interface. On this surface there can be both

shear and normal stresses acting. The shear stress arises from the friction

between the tool and the workpiece. If the magnitude of the shear stress is

known, the angle at which each family of slip-lines intersects the boundary

can be found from the Mohr's circle. In the frictionless case the shear
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stress is zero and the slip-lines intersect the boundary at 45 . For the

other extreme, called sticking friction, the shear stress is equal to k and

one family of slip-lines is perpendicular to the boundary while the other

family is parallel to it.

The magnitude of the frictional shear stress at the tool-workpiece

interface is not known a priori for the metal cutting problem. It is

generally agreed that the magnitude of the shear stress depends on the

normal stress. Recent theoretical work [22] has been done to determine the

relationship between shear and normal stress in the range of normal stresses

encountered in metal cutting. Results of this theoretical work will be used

when trying to determine the shear stress at the tool-workpiece interface.

In any two-dimensional plasticity problem it may be possible to

find many different slip-line fields with stress fields which satisfy the

boundary conditions and with valid hodographs. Any of these slip-line fields

are upper bound solutions to the problem. To be complete solution, however,

there are two more requirements which must be satisfied. The first require-

ment is that the rate of plastic work done in the deforming material must be

positive everywhere. Since the deformation in a slip-line field takes place

along the slip-lines, which are in the directions of maximum shear stress, a

velocity discontinuity across a slip-line must be in the same direction as

the shear stress across the slip-line to ensure that the work done by the

shear stress is positive. In a simplified slip-line field all deformation

occurs at velocity discontinuities, so it is only necessary to check for

positive work at the velocity discontinuities. The second requirement for

a complete solution is that the material adjacent to the plastic region is

not overstressed. To check this requirement it is necessary to find a stress

field in the adjacent regions which satisfies equilibrium without violating
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the yield criterion. If this can be done, and the first requirement is

also satisfied, then the slip-line field is the complete solution.



SLIP-LINE SOLUTION

The first step in obtaining a slip-line solution was to assume a

trial slip-line field. Based on intuition and experimental results, there

were certain features which were desired. When the tool is cutting, the

slip-line field has to contain a chip. Furthermore, most experiments have

indicated a stagnation point on the tool [9] , [11] . It was therefore

necessary that the slip-line field include a stagnation point above which

the material flows upwards along the tool and below which the material

flows down the tool. Experiments have also indicated a build up of

material ahead of the tool which is called a prow [10] . These features are

included in the possible slip-line field of Figure 4.

This slip-line field has a valid hodograph and appeared to be a

good solution. However, in determining the shear stresses on the tool

face, t
i
and ~

2 , corresponding to the normal stresses ffj and a2 it was

necessary to vary the friction angles Hi and H2 independently. From the

geometry of the assumed slip-line field it is seen that m and rfc have a

definite geometrical relationship and hence are not independent. Thus,

another requirement of the slip-line field is that the friction angles

must be independent.

Another trial slip-line field with independent friction angles

was developed as shown in Figure 5. With this slip-line field it was

possible to calculate upper bounds for the cutting forces F and F .

However, when the upper bounds were minimized the length R approached

zero and the stagnation point B moved to the bottom of the tool (point C).

The length of the slip-line DB remained constant, and the slip-line field

18
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was reduced to the single shear plane type (Figure 6) which is used in

conventional metal cutting theory. This type of slip-line field is valid

for positive rake angles and small negative rake angles. But, for given

friction conditions, the shear plane angle C decreases as the rake angle

becomes more negative. When the rake angle is sufficiently negative, Z

is equal to zero, and the solution is no longer valid. Thus, to obtain

a solution which was valid for large negative rake angles and which in-

cluded a stagnation point, it was necessary to develop a new slip-line

field which could not be reduced to the single shear plane type. Numerous

slip-line fields were tried but none could be found which met all of the

previously discussed requirements and also satisfied equilibrium. The

main difficulty was in getting the hydrostatic pressure in adjacent regions

to match at the common boundary between the regions. The slip-line field

of Figure 7 is the best approximate solution that could be developed using

simple slip-line theory.

This slip-line field has variable friction angles, ni and ri2 » and

it cannot be reduced to a single shear plane type slip-line field.

However, it contains a pressure mis-match in the region BGH due to the

stress discontinuity FG. The pressure along slip-line BE is P
2 , but the

pressure along slip-lines BH and GH is Pp It is believed that with a

more complex slip-line field the pressures in this region could be matched

up to satisfy equilibrium. Thus the pressures P-, and P
2
are reasonably

correct and the stresses on the tool are not appreciably affected by the

mis-match of pressures in the region BGH. Although this solution is an

approximation, it is believed to be the first slip-line solution which is

valid for large negative rake angles and includes a stagnation point.
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The slip-line field and the corresponding hodograph are shown in

Figure 8. The U vectors in the hodograph represent the velocities of the

regions in the slip-line field which have constant velocity. The U* vectors

represent the velocity discontinuities which occur along the slip-lines.

The arc aa in the hodograph represents the continuous change in velocity

from Uj to U3 which occurs in the fan DBE. The fan angle
<f>

in the slip-

line field is equal to the angle of arc aa in the hodograph.

There are several geometrical constraints on the angles a, m» t\z »

and in the slip-line field of Figure 7 which must be satisfied for the

slip-line field and hodograph to be valid. From slip-line theory the

friction angles m and n 2 must be less than or equal to 45 so that the

frictional stresses are in the proper directions. By observing the slip-

line field of Figure 7 it is seen that the sum of a and ri2 must be greater

than 90 . If the sum was less than 90 , all of the material entering the

slip-line field would be removed as a chip and there would not be a

stagnation point on the tool. Thus if ri2 is less than or equal to 45 ,

the range of a is 45° < a < 90° (19)

The minimum value of r)2 is dependent on a and thus the range of r\2 is

given by the expression

(90° - a) < n2 1 45° (20)

When m is decreased, for fixed values of a and ri2 » the depth of cut

decreases. Hence the lower bound on n 1 is obtained when the depth of cut

is reduced to zero. For zero depth of cut, n; is given by the following

expression which has been verified numerically.

"1
. -1 ("cos (a ) . va - Sln L^^tJ (21)
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SLIP-LINE FIELD

HODOGRAPH

Figure 8

Slip-line Field with Hodograph
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Therefore the permissable range of m is

a - sin —

:

-,—r < Hi < 45 U^;
|_sm (n^J

x -

The value of 8 may approach a maximum of 45 . The minimum value

of 6 occurs when the velocity Uj (Figure 8) becomes parallel to the slip-

line BF. On the hodograph this means that Uj and U2 * coincide. In this

case the material with velocity Dj will not cross the slip-line and hence

no chip will be formed. An expression for the minimum value of 9 can be

obtained from the hodograph of Figure 9.

Using the law of sines,

B = 23i (23a)
sin (it - t\2 ) sin (tt/2 - a)

n * U cos (a) f>-iu\or U 3
* = —

:

-
f—r— (23b)

J sin (ri2

)

and S . £1-*

sin (it - 29 min) " sin (a - m.) (23c)

Ox* =
U Sln

fe= ^l (23d)
1 sin (29 min)

But since Uj* and U3* occur on the same slip-line their magnitudes must be

equal. Combining equations (23b) and (23d) and solving for 9min leads to

9min = % sin
-

] [ sin (a - m) sin (n ? ) l
(24)

[_
cos (a) J

Thus the range of 9 is

H sin"
1

[
sin (a- ni ) sin (n2 )

] < 9 < 45
o

(25)
|_

cos (a) J

One of the requirements of a complete slip-line solution is that

the rate of plastic work done everywhere in the material must be positive.

In the slip-line field of Figure 7 all of the plastic work takes place at

the slip-lines where the velocity discontinuities occur. Thus the check

for positive work is done by checking the direction of the shear stresses

at the velocity discontinuities. For positive work to occur, the direction
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of the shear stress across a velocity discontinuity must be the same as

the direction of the velocity discontinuity. Figure 10 shows the directions

of the shear stresses on elements at the various slip-lines where disconti-

nuities occur. From Figure 10 and the hodograph of Figure 8 it is observed

that all of the shear stresses across velocity discontinuities are in the

same direction as the discontinuities and therefore all of the plastic work

done is positive.
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CUTTING FORCE COMPONENTS

The cutting forces were found using the slip-line field of Figure

7. The first step in calculating the cutting forces was to compute the

stresses acting on the work material. The stresses ffj, a2 , Tj, and t 2 are

shown in Figure 7 in the directions in which they act on the material.

These directions coincide with the directions of the external forces which

must be applied to the tool to make the cut. Hence calculating the forces

due to o"i, o" 2 , T 1» an<i t 2 will yield the desired cutting forces in the

proper directions.

The stresses Oj and T 1 can be found in terms of the friction angle

Hi using the Mohr's circle of Figure 11. The chip material which is to the

left of the stress discontinuity AF in Figure 7 is stress free and thus has

a Mohr's circle which is a point located at the origin of the a-t coordinate

system. The material on the other side of the stress discontinuity is in

the plastic state and has the Mohr's circle of Figure 11. The state of

stress at the stress discontinuity is shown in Figure 12a. By rotating

through the proper angle (90 + 2ni) on the Mohr's circle, the stress com-

ponents acting on the material adjacent to the tool are obtained. (Figure

12b) The stresses are given mathematically by the following equations.

<Ji - k [1 + sin (2ni)l (26)

ti = k cos (2ni) (27)

The other stresses, 02 and 1 2, were found from the Mohr's circles

of Figure 13 together with the Hencky equations and equation (18) for the

change in hydrostatic stress across a stress discontinuity. In Figure 13,

point A represents the normal and shearing stresses at slip-line BF of

30
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Figure 11

Mohr's Circle for o\ and tj

a. Stress Discontinuity AF Stresses on the Tool
at Section AB

Figure 12
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Figure 13

Mohr's Circle for 02 and t2

EDC

Figure 14

Determination of a and
8 Directions
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Figure 7. By rotating on the circle through the angle 26 the stresses at

the discontinuity FG are obtained (Point B) . Across the stress disconti-

nuity a new Mohr's circle is required. By rotating on the new circle

through the angle 28 the stresses at slip-line EF are obtained (Point C)

.

The change in hydrostatic stress Ap due to the stress discontinuity is

obtained from equation (18) as

Ap = 2k sin 29 (18)

The slip-line FEDC is a continuous slip-line and hence the hydrostatic

stress can be found anywhere along the slip-line given the stress at some

point on the slip-line and the angular change of the slip-line. By

examining the stresses in the region ABF of Figure 14 it is found that

slip-line FEDC is a g slip-line since the direction of the algebraically

greatest principal stress bisects the right handed a-g coordinate system

in the first and third quadrants. Hence the Hencky equation for a g

characteristic can be used to find the change in hydrostatic stress from

segment EF to segment CD. The Hencky euqation is of the form

p - 2k<(> = constant (15)

Thus P2 - 2k(J>2 = C (28)

and P 3
- 2k* 3

= C (29)

Combining (28) and (29) gives

P 3 - P2 - 2k (+ 3 - fc) (30)

or p 3 - p, = 2k* (31)

The final step in determining the stress components a 2 and t 2 is to rotate

from point D to point E on the Mohr's circle of Figure 13. Thus the stress

components can be written as

a2 = k [1 + 2<j> + 2 sin (26) + sin (2n2 )] (32)

t 2 = k cos (2n2 ) (33)
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To compute the cutting forces from the stresses on the tool face

it is necessary to know the area on which the stresses act. Assuming the

tool is of unit width, the area is equal to the length of the tool. The

length of the tool can be divided into two parts, &j and l2 • The length

over which ai and X\ act is &i, and the length over which a2 and t 2 act

is £2 • (Figure 15) These lengths can be determined in terms of the

radius (R) of the fan in the slip-line field.

Zl " S2 sin (26) sin (m + */k )

(34)

^ =
JlrTJ^T (35)

The cutting force components which are of interest are the force

tangential to the cutting direction and the force normal to the cutting

direction. These components will be labeled F and F respectively.

(Figure 15) The expressions for the force components are given below.

F
t

" faiAi + ^ih.) cos(a) + (x 2 ^2 - rili) sin(a) (36)

F
n

" 0*1*1 + a2^>) sin(a) + (x
l
l

l
- x 2 l2 ) cos(a) (37)

The dimensions of these forces are force/length since the tool area was

calculated per unit width of tool. For convenience the dimensionless

c
Ft,n . ^. ,

S
tk ° force components will be used. The depth of cut, t,

can be derived from the geometry of the slip-line field as

t = R f"
cos ( a ) . sin (q - m)]K

[sin (n2 ) sin (28) J
(38)

By substituting for the stresses and lengths in equations (36) and (37)

and using equation (38) for t the dimensionless forces are given as

follows.
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t =

tk t
1 + sin (2m)m) . 1 + 2$ + 2 sin (29) + sin (2n?)"

|

/z sin (29) sin (m + Vi+) sin (112)

fcosfcoi + r
c° s (2n^ - -f=

—cos ^m)—1 r =

[
K }

j L8ia (n2 ) /z sin (26) sin (m + */ k )j
[*"
sin(a)

cos (a) sin (a - m)
sin (r>2 ) sin (28)

(39)

Fn =
tk"

I" 1 + sin (2m) . 1 + 24) + 2 sin (29) + sin (2np)1

[v/i" sin (29) sin (m + Vi+) sin (r\2 )

. , C\ r cos (2ni) cos (2n2 )1 / nsin(a) + -7-—

;

tttt— 7 1
,

;—7—^
;

7

—

T*~ cos(a)
L J U^ sin ^ 2 ^

Sln ^ ni * ^ sin (^ L

cos (a) sin
sin (112) sii

(a - m) I

in (29)
(40)

The fan angle $ can be derived in terms of the friction angles and 9 as

<j) = 29 + ni + n2 - V2 (41)

Thus the dimensionless forces are dependent only on the back rake angle

a, the friction angles m and n 2 » and 9.

Another quantity which is of interest is the mean pressure ratio.

The mean pressure ratio for this problem is the average normal pressure

(Pm) on the tool divided by the pure shear yield stress (k) . The mean

pressure ratio is given by the following expression.

Pm 1 ai&i + J2 &2

k k li + 1%

By substituting for the stresses and lengths the mean pressure ratio

becomes

1 + sin (2m) . l + 24) + 2 sin (29) + sin (2n?

)

/l sin (29) sin (m+ V t+) sin (n2 )

Pm
k

=

1
+ _^

fl sin (29) sin (m + ir/i+) sin (ri2 )

(42)

(43)



NUMERICAL RESULTS: FRICTIONLESS CASE

The first case to be considered was the frictionless case. In this

case the shear stresses t x and t 2 are zero and the friction angles r\y and

H2 are 45 . The negative rake angle was varied from a minimum of 45° to

a maximum value at which the depth of cut, t, in the slip-line field became

zero. The following equation which is a form of equation (21) is a relation-

ship between the rake angle and the friction angles when the depth of cut is

zero.

sin (ni - a) +
cos

.

(a)
. = (44)sin (ri2)

Solving equation (44) for a yields

a - tan
-1

tan(ni) + p

—

^ . ,—r- (45)
j_

cos(m) sm(n2)_.

With the friction angles equal to 45° equation (45) gives a value of

approximately 71.6 for the maximum allowable negative rake angle in the

frictionless case.

Equations (39) and (40) for the dimensionless forces F
t and F are

only dependent on the rake angle and 9 for the frictionless case since m
and n2 are fixed. Hence for a given rake angle the only variable is 6.

In carrying out the numerical results it was found that for any rake

angle the dimensionless forces had definite minimums with respect to 9.

The relationship between F
fc
and 6 for a negative rake angle of 60° shown

in Figure 16 is typical of the variation of both F
t and Fn for any rake

angle. Since F
t

and Fn are upper bounds of the actual cutting forces, the

minimum values of the forces with respect to 9 were calculated for various

rake angles. The results are plotted in Figure 17.

37
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Figure 16

Variation of Tangential Cutting
Force with respect to 8



39

max

NEGATIVE RAKE ANGLE a (DEGREES)

Figure 17

Minimum Dimensionless Cutting Forces
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Varying 9 with a, m, and H2 fixed actually varies the depth of

cut. Thus, minimizing with respect to 9 determines the depth of cut which

requires the smallest cutting force per unit depth of cut. The dimensionless

parameter VR was calculated form equation (38) . Figure 18 shows how the

depth of cut which requires the least cutting force for a given rake angle

varies with respect to the rake angle.

As expected, the required cutting forces increase as the rake angle

becomes more negative, and the normal force which is required to force the

tool down into the workpiece increases much faster than the tangential force.

As the rake angle approaches its maximum value the depth of cut goes to zero

and thus the dimensionless forces become infinite.

The mean pressure ratio which was also minimized with respect to 9

is plotted in Figure 19. In Bowden and Tabor [23] a mean pressure ratio

defined as m/y, where Y is the yield stress in pure tension, is given for

indentation of a hard spherical ball into work-hardened steel. Their

experimentally oriented ratio is 2.8 which corresponds to ^W^ of approxi-

mately 4.9 as shown in Figure 19. The fact that the experimentally obtained

mean pressure ratio for indentation is in the range of mean pressure ratios

obtained for frictionless negative rake cutting is encouraging since the

two processes are similar.

A slip-line field and hodograph for frictionless cutting with a

negative rake angle of 60 is shown in Figure 20. In this case 9 is equal

to 32.0 and t
/R is equal to 0.42.
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Figure 18

Depth of Cut versus
Negative Rake Angle
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NEGATIVE RAKE ANGLE a (DEGREES)

Figure 19

Mean Pressure Ratio versus
Negative Rake Angle
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SLIP-LINE FIELD

HODOGRAPH

Figure 20

Frictionless Cutting with
a Equal to 60°



FRICTION AT HIGH NORMAL PRESSURES

Friction between the tool and the workpiece is a very significant

factor in determining the forces involved in metal cutting. In ordinary

cutting theory the frictional shear stress on the cutting tool is usually

assumed to be proportional to the normal stress. This is Amonton's law of

friction which is only applicable at low normal stress. In negative rake

metal cutting, the normal stresses are very high and thus a relationship

between friction and normal stress at high normal pressures is necessary.

It is a generally accepted fact that the shear stress within the

work material cannot exceed the yield stress. Thus, for a material with

constant yield stress, the relation between frictional shear stress and

normal stress must appear as illustrated in Figure 21. The relationship

is linear for low values of normal stress, but for higher normal stress,

the shear stress reaches a limiting value.

An exact relation for the shape of this curve has not been found

but a slip-line solution has been carried out by Wanheim, et al [22] which

appears to be a good approximation. The results are given in graphical

form, but for purposes of analysis it is more convenient to have equations

which adequately approximate the results.

Figure 7 of Wanheim shows graphically the real area of contact A

as a function of dimensionless normal stress (—) for various values of

the adhesion coefficient m. The limit of proportionality is given by

(™) = £ [I ±lL + 2g + sin 2j]
4k ;

lim 2/1 + 4 sin I
C46)

where m = cos 2E, (47)

and m i

44
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Figure 21

Relation between Frictional Shear
Stress and Normal Stress

in
A
Rliia (Radians)

(—

)

Slope

0.34 0.55 0.61194 1.3063 0.421

0.50 0.58 0.52360 1.3133 0.442

0.64 0.63 0.43815 1.3173 0.474

0.77 0.67 0.34598 1.3182 0.508

0.87 0.73 0.25780 1.3154 0.555

0.94 0.80 0.17408 1.3094 0.611

1.00 1.00 0.00000 1.2854 0.778

Table I

Numerical Values from
Figure 7 [22]
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The values of AR at the limit of proportionality as read from Figure 7 of

Wanheim are given in Table I. The following equation represents these

values reasonably well as shown in Figure 22.

ARl . * 1 - 0.52 (1 - m)
0,325

(48)

The nominal dimensionless friction is given by

L = m AR (49)

Thus, in the linear range the relation between frictional stress and normal

stress is given by

L-yf (50)

(51)
where u =

m ^^
C—

)

^lim

f°r 0i 2k- ^li.

The real area of contact approaches 1 as (-rr-) approaches infinity. Therefore

an exponential form will be assumed for AR beyond (•=£) .

AR - 1 - Bi e"
82 (2k}

(52)

,an N
an

for C2k\, - 2kZK lim ^K

To find the two constants, $\ and 82, two equations are required. The first

equation is obtained by evaluating equation (52) at (rr)
ZK

- lim

(—

)

ARl .m
=1-8, e"

S
*

2k 11- (53)

The second equation is obtained from the slope of the AR curve at the

proportional limit.
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d(
2k }

*liin

(—

)

C—

)

(54)

^2k v

lim

Differentiating equation (52) with respect to (—•) and evaluating at (§£)Zk 2k lim
yields

Si 82 e

(—

)

-S2 2k\ Ar
ltn _ lim

(—

)

(55)

liin

By solving equation (55) for 3i and substituting into (53), S 2 is obtained

as

82 -
Rlim

/?n,
(1 - ARliJ <5E>

(56)

lim

Then from equation (53) Si is given by

(—

)

Si = (1 - ARl . ) e
02 2k lim

Klim (57)

The above equations give a theoretical relationship between the frictional

shear stress and the normal stress for a material with constant yield stress

k in terms of the adhesive friction coefficient m.



NUMERICAL RESULTS: CUTTING WITH FRICTION

The numerical results were obtained by applying the theory of

friction from the previous section to the approximate slip-line solution.

From equation (19) it is seen that 0\ cannot exceed 2k, and thus -r^- will

not exceed (—) , as given by equation (46) , for all values of adhesion
'2k

J

lim

coefficient m. Hence the frictional shear stress x i is given by equations

(50) and (51) as

CFl

V-=mARl .
—-^ (58),

k Klim .an

From the slip-line solution, x i is given as

^- cos (2ni) (59)

Combining equations (58) and (59) and substituting equation (19) for m

yields the following equation for m in terms of m.

COs ( 2ni ) = m Rlim
[1 + sin (2m)] ,_.

2k i •ZK lim

This equation was solved numerically for m at given values of m, and the

shear stress xj was calculated from equation (59).

From equation (25) for the normal stress on the lower section of

the tool, it is not obvious whether the magnitude of =£ is less than or

greater than (-rr) . However it was assumed that =£ was greater than
Zk lim 2k

fe") and thus equation (52) was used to determine the real area of
'2k' lim

contact AR . This assumption was checked and found to be true for every

case. Using equation (52), the frictional shear stress xi is obtained as

49
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12. =
k

1 - Si e
^

(63)

r
_32 ^n« 1 " Si e

^
(61)

From the slip-line solution t 2 is given by

^2- = cos (2n2 ) (62)

Combining equations (61) and (62) yields the following equation for n2 in

terms of m and a2 .

The normal stress a2 is dependent on m, n2 , and 9. In solving for n 2 the

value of m obtained from equation (61) is used. The value of 6 is dependent

on a and n2 and thus it cannot be obtained directly. A double iteration was

required to solve equation (63) for n2 . First, equation (63) was solved by

an iterative process using an arbitrarily assumed value of 9 equal to 30°.

Then, for a given value of a, the dimensionless forces were calculated and

minimized with respect to 9. The new value of 9 corresponding to the

minimum cutting forces was then used to solve equation (63) for a new value

of n2 . This process was repeated until the change in 9 was less than 0.01°

which usually required 3 iterations. The value of n2 was then used to

calculate t 2 from equation (62). The computer program used for the numerical

work is listed in Appendix A.

The maximum allowable negative rake angle, amax> for a given adhesion

coefficient was calculated from equation (45). The minimum negative rake

angle, amin , is given by

Vn = (90° " n2) (64)

These expressions for the extremes of a both contain the friction angle n2 .

Since n 2 is dependent on a, the equations for c^^ and amin were solved

within the iteration used to find n2 . The value of n2 used to solve equations
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(45) and (64) was the value obtained from an a equal to the average of

amax and o^n from the previous time through the iteration. The results

are plotted in Figure 23 for a range of adhesion coefficients from 0.5 to

1.0. It is believed that the adhesion coefficient will be within this range

for most cutting conditions.

To observe the effect of varying friction, a negative rake angle

of 72 was chosen so that the adhesion coefficient could be varied from

0.5 to 0.8. The variations of the shear stresses, normal stresses, and

dimensionless forces with respect to m are shown in Figures 24, 25, and

26 respectively. Numerical values are given in Table II of Appendix B.

The effect of varying the rake angle for a constant adhesion

coefficient was found to be similar to the frictionless case. The relation

between the dimensionless forces and the negative rake angle for m equal to

0.7 is shown in Figure 27. The slip-line field for m equal to 0.7 and the

negative rake angle equal to 71 is shown to scale in Figure 28.
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Shear Stresses versus Adhesion Coefficient
with Constant Rake Angle
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Dimensionless Forces versus Negative Rake Angle
with Constant Adhesion Coefficient
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CONCLUSIONS

The slip-line solution which was developed is believed to be a good

approximate solution to the large negative rake cutting problem. Further-

more it appears to be the first slip-line solution which applies to large

negative rake angles and considers the two way flow of material on the

rake face. Although the solution is not exact, it allows for the extension

of metal cutting theory to negative rake angles beyond the range covered by

conventional metal cutting theory. The belief that the solution is a good

approximation is supported by the numerical results

.

The numerical results indicate a maximum negative rake angle,

depending on the adhesion coefficient, beyond which it is impossible to

form a chip. In reality there is probably no well-defined rake angle at

which chips cease to form, however some experimenters [8] [11] have reported

values of negative rake angle at which chips will not form under certain

cutting conditions. They report that beyond the critical rake angle

ploughing occurs and side flow of material is increased considerably.

Although other factors may influence this critical rake angle in addition to

the adhesion coefficient, the fact that a critical rake angle exists under

some real cutting conditions supports the solution obtained here.

By holding the rake angle constant and varying the adhesion

coefficient it was found that both cutting force components are lower when

the friction is higher. When the adhesion coefficient is decreased, the

cutting forces increase. For negative rake angles less than the maximum

negative rake angle obtained in the frictionless case, approximately 71.6 ,

the adhesion coefficient can be decreased all the way to zero. As shown in

58
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Figure 23, Omax decreases as the adhesion coefficient decreases. Thus for

a given negative rake angle greater than 71.6 , the adhesion coefficient

can only be decreased until amax becomes equal to the given rake angle.

This means that at rake angles greater than the maximum allowable negative

rake angle for the frictionless case, there is a minimum amount of friction

required which must be present before cutting can occur.

This result suggests that the role of friction is very important

in negative rake cutting, and at a given rake angle, the least cutting

force is required when friction is highest. Intuitively this result seems

correct since a negative rake tool cuts with a pushing action as opposed to

the slicing action of a positive rake tool, and with a high frictional shear

stress T2, the material is less likely to slide back under the tool and more

likely to be pushed out to form a chip. The other shear stress, t i,

opposes chip formation. However tj is always much smaller in magnitude

than xi since the normal stress adjacent to the stress free chip is much

lower than the normal stress on the lower section of the tool. Thus 12 is

the dominant shear stress and increasing it decreases the required cutting

force.

The cutting force increases rapidly as the rake angle approaches

the critical rake angle for a given friction condition. In the limit, at

the critical rake angle, no chip will form for any applied force. In a

real cutting situation this means that increased force would cause an

increase in side flow of the material but no chip formation. Figure 3 of

Komanduri [11] shows the variation of experimentally measured cutting force

components with rake angle for one set of cutting conditions. The experi-

mentally determined curves are similar in shape to the theoretical curves

of Figure 27 with the normal force component being larger and increasing
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more rapidly than the tangential component. Thus in a general sense the

theoretical results obtained here are comparable to experimental results

although no attempt has been made here to simulate the experimental tests.

Very little experimental data is available for negative rake cutting.

However, to enhance this work, it would be desireable to simulate some

experimental tests with the theoretical solution obtained here and compare

the numerical results.

Further work also needs to be done on this solution to clear up the

pressure mis-match caused by the stress discontinuity FG. Knowledge about

this type of stress discontinuity appears to be limited and possibly the

only way to avoid the pressure mis-match is to resort to numerical methods

to obtain a new slip-line field.
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APPENDIX A

COMPUTER PROGRAM



BRIEF DESCRIPTION OF PROGRAM

The program was written to calculate dimensionless forces and

stresses for a variety of adhesion coefficients and rake angles. The

first loop in the program varies the adhesion coefficient m. The initial

value of m, (M) , the step size (DM), and the number of steps over which m

is to be varied (NM) , are given before the loop begins. The adhesion

coefficient can be varied from zero to near 1.0. However for m equal to

1.0 the cutting forces become infinite.

The friction angle m is found by solving equation (60) by an

iterative process. The iteration is continued until the difference between

the left and right sides of equation (60) is less than 0.0001.

The next loop varies the negative rake angle a. Since a can only

be in the interval between ctm±n and o^x, the program selects NALP equally

spaced values of a within this interval. However since the forces become

infinite when a is equal to c%ax , the largest value of a used is 0.1 less

than 0^^.

At each value of a, the program solves equation (63) numerically

for ri2 by the same procedure which is used for nj,« However since H2 and

are related, the program first calculates ri2 using an arbitrarily assumed

value of 9 equal to 30 . Then using the calculated value of ri2 > a new value

of 9 is obtained from the next loop which minimizes the cutting forces with

respect to 0. This process is continued until the change in 9 is less than

0.01 . Then the numerical results are printed out and a is incremented.

When a has been incremented through its entire range, the adhesion coefficient

is incremented and all the iterations are performed again.

64



PROGRAM LISTING
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JJ08
75 FORMAT!' • , 'M =',F6.3)
89 FCRMAT< '-SlOXt 'DID NOT CONVERGE')

101 FORMAT (• % lOXf 10F10.31
REAL MUUMU2»M
PI04=ATAN< 1.0)
RA0DEG=-V5.0/PIO4
DEGRA0 =PI04M5.0
TTHST0=10.0
NAL?=5
ADIV=NALP-1
RT2=SQ«T(2.0)
PI02=2.0*PIC4
EPS=0.C)01
M=0.5
DM-0.1
NM»2

C *** LOO? FOR VARYING THE ADHESION COEFFICIENT M ***
DO 1 JJJ=1,NM
WP.ITE(6,75) M
AP.LI.M= 1.0-0. 52* ( (1.0-M)**0.325)
RH0=0.5*ARC0S(M)
TRH0-2.0*RH0
SIGNL M =RT2*U.0*PIC2+TRH0*SIN(TRHO))/(2.0*RT2*4.0*SIN(RHa))
MU1=0.5*M*ARLIM/SIGNLM
eETA2=ARLIM/(1.0-ARLIM)/SIGNLM
BETA1=(1.0-ARLIM)*EXP(BETA2*SIGNLM)
0E1=IC.0*CEGRA0
TETAl=2.0*PIG't

C *** ITERATION FOR ETA 1 ***
1ITER=0

210 IT£R=0
211 E1TEST=MUI*( 1.0+SINI TETA 1 ) )-COSl TETA1)

IFIEITEST.LT.0.0) GO TO 222
TE1SAV=TETA1
TETAI=TETA1-DE1
ITER=ITERU
IFIITER.GT.12) GO TO 77

GO TO 211
222 IITER=IITER+i

IFUITFR.CT.19) GO TO 900
DIFF=TE1SAV-TETA1
IF(ABSIF.ITEST).LT.EPS) GG TO 900
DEl=DIFF*0.1
TETA1=TE1SAV
GO TO 210

77 WRITE(6,39)
900 E1D=TEISAV*RA0D£G

ETAI=TETA1*0.5
SIGl=l.O*SIN(TETAl)
TAU1=CGS(TETA1)
TTH»60,0*0EGRA0

C *** LOOP FOR VARYING THE NEGATIVE RAKE ANGLE ALP ***
00 600 JALP=l,NALP
0ELALP=(JAL?-1)/A0IV

C *** BEGIN ITERATION FOR ETA 2 ***
JITEP=0

310 D£2»lO.O*OEGRA0
TFTA2=2.0*PI04
ETA2=0.5*TETA2
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IITER=0
312 ITER=0
311 E2 TEST=M*(l.o-BETAl* EXPC-0.5*8ETA2*{ 1. 0*2.0* <TTH*ETA1*ETA2-P 10 2)

12.0*SIN{TTH)+SIN(TETA2>) ) )-C0S( TETA2

)

IF(E2TEST.LT.0.0) GO TO 322
TE2SAV=TETA2
TETA2=TETA2-DE2
ITER=ITER+1
IHITER.GT.12) GO TO 377
GO TO 311

322 IITER=IITER*1
IF( IITFR.GT.19) GO TO 300
DIFF=TE2SAV-TETA2
IFtABS(E2TEST).LT.EPSJ GO TO 300
CE2=DIFF*0.l
TFTA2=TE2SAV
GO TO 312

377 WRITE(6,89)
300 E20=TE2SAV*RADDEG

ETA2=TETA2*0.5
fcTA145=ETAl+PI04
TTHMAX-PIC2
TTHDIV=50.0
NTH=TTHOIV
A'*AX=ATAf; (TAMETA1 1+1.0/ SI N(ETA2)/CCS(ETA1))
AMIN=PI02-ETA2
ALP=< AMAX-AMIN)*DEIALP+AMIN
IFUl_P.GE.AMAX) ALP= AUAX-O. 1*DEGRA0
ALPJ=ALP*45.0/PI04
CSE=CGS(ALP)/SIN(ETA2)
IF(CSE.GT.l.O) CSE=1.0
ElCK=ALP-AnSIN«CSE)
IFtElCK.GT.ETAl) GC TO 6C0
ALETI=ALP-ETA1
TTHMIN=ARSIN(SIN(ETA2)*SIN<ALET1)/C0S{ALP))
OTTW=(TTHMAX-TTHMI,N) /TTHOIV
TTH=TTH>IIN-H)TTH
T.MJ2 = C0S(TETA2)
CL2=1.0/SI,N(ETA2)

C *** LOOP TC MINIMIZE FORCES WITH RESPECT TO ThETA **
00 500 i = i,;ith

SIG2=1.0*2.0*(TTH+ETAl-fETA2-PI02)t2.0*SIN(TTH)+SIN(TETA2)
CU.1-1.0/(RT2*SIMTTH)*SIN(ETA145))
PRFS=SIGl*0Li+SIG2*OL2
TAUS^TAU2*C12-TAU1*QL1
T0LFNl = QLl + 0L2
T=C0SlALP)/SIiNIETA2)-SIN(ALETl)/SIN{TTH)
PAVG=PRES/TCLEN
FT=(PRES*CQS(ALP)+TALS*SIN{Al.P))/T
FN=(PRES*SIh(AlP)-TAUS*COS(ALP))/T
THiJ=TTH*45.0/PIC2
IF( I.EQ.l) GC TO 499
IFtFTSAVE.LT. FT) GC TO 450
IF! I .EC. NTH) GC TO 451
GO TO 499

450 THD=(TTH-0TTH)*45.0/PIC2
GO TC 550

451 THO=TTh*45.0/PI02
499 TTH-TTH+QTTH

FTSAVF=FT
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FNSAVE=FN
PAVGSV=PAVG
TSAVE=T

500 CONTINUE
TTH=THD*2.0*DEGRAD

550 CCNT1NUE
JITER = JITtR-H
IFUITER.GT.9) GO TO 899
CHECK=TTH-TTHSTO
CHECK0=CKECK.*RAO0EG
IFlAdSlCHECK). IT. 0.00034) GO TO 999

TTHSTC=TTH
GO TO 310

C *** £md ITERATION FOR ETA2 ***
899 WRITFt6 f a9)
999 CON! INUE

AMAXD=AMAX*RAO0EG
AMINO = A''11N*RAOOEG
WRITE (6, 10 I) ALP0,TAU1,SIG1,TAU2,SIG2,FTSAVE,FNSAVE,PAVGSV,THD,T

600 CCNTINUE
N«H*OM

1 Cr NT INUE
STOP
ENO

SENTRY
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TABLE II

NUMERICAL RESULTS

a tj^ £l 12 £2. Ft Fn £m 8

(Degrees) k k k k "tk~ "tic k (Degrees)

0.500 58.515 0.220 1.975 0.454 4.979 10.6 15.2 4.010 28.870

62.414 0.220 1.975 0.466 5.490 13.4 22.3 4.451 34.245

66.100 0.220 1.975 0.472 5.895 18.5 36.0 4.796 39.034

69.664 0.220 1.975 0.476 6.156 33.2 75.9 5.015 42.562

73.068 0.220 1.975 0.478 6.300 1007.0 2740.1 5.143 44.926

0.600 62.210 0.274 1.962 0.565 5.172 12.5 19.7 4.272 33.331

65.311 0.274 1.962 0.572 5.526 15.7 28.2 4.579 37.413

68.266 0.274 1.962 0.576 5.769 21.9 44.7 4.789 40.512

71.156 0.274 1.962 0.579 5.956 39.8 93.3 4.948 43.143

78.901 0.274 1.962 0.580 6.060 1004.3 2717.3 5.045 44.925

0.700 66.245 0.334 1.942 0.675 5.190 15.2 26.9 4.397 36.742

68.554 0.334 1.942 0.679 5.385 19.2 37.6 4.570 39.174

70.819 0.334 1.942 0.681 5.585 27.0 58.8 4.744 41.849

73.025 0.334 1.942 0.683 5.708 50.0 121.5 4.852 43.666

75.103 0.334 1.942 0.684 5.777 988.7 2685.3 4.922 44.924

0.800 70.900 0.402 1.916 0.786 5.087 19.9 40.3 4.438 39.775

72.457 0.402 1.916 0.787 5.197 25.3 55.4 4.537 41.263

73.993 0.402 1.916 0.788 5.292 36.1 85.3 4.624 42.631

75.513 0.402 1.916 0.789 5.391 68.1 174.8 4.714 44.130

76.908 0.402 1.916 0.790 5.431 951.5 2637.1 4.759 44.921
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TABLE II (Continued)

m
a

(Degrees)
T.l

IT k
12.
k

G2
k tk"

Fn
t¥

Pm
k (Degrees)

0.900 76.775 0.484 1.875 0.895 4.814 31.2 76.0 4.363 42.375

77.591 0.484 1.875 0.896 4.860 40.3 102.8 4.407 43.057

78.405 0.484 1.875 0.896 4.901 58.5 156.4 4.448 43.696

79.217 0.484 1.875 0.896 4.953 113.0 317.2 4.499 44.525

79.919 0.484 1.875 0.896 4.969 872.9 2554.1 4.522 44.913

0.999 88.750 0.646 1.764 0.999 3.956 481.5 1767.2 3.903 44.738

88.777 0.646 1.764 0.999 3.956 608.8 2247.9 3.921 44.999

88.782 0.646 1.764 0.999 3.956 640.4 2365.4 3.921 44.999

88.813 0.646 1.764 0.999 3.956 958.5 3548.2 3.921 44.999

88.845 0.646 1.764 0.999 3.956 1912.2 7094.3 3.921 44.999
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ABSTRACT

An approximate slip-line field is developed for a range of negative

rake angles beyond the range where ordinary metal cutting theory applies.

In this range of large negative rake angles, the flow of metal along the

tool is in opposite directions on either side of a stagnation point on the

tool. This divided flow results in frictional stresses which are also in

opposite directions. The slip-line field accounts for this complex friction

distribution and is used to calculate the cutting forces and frictional

stresses for various rake angles and friction coefficients.


