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1.0 INTRODUCTION

1.1 Objective
The beta distribution has been used frequently to fit sample

data (1). It has been used, for example, as a prior distribution
for a binomial proportion ((1) Chapter 8). For a given set of data,
different methods can be used to estimate the beta parameters,
usually yielding different estimates. In order to distinguish
between a pair of beta distributions, it may be desirable to
invent an index, or indices, that reveal the extent of these
differences.

The objective of this investigation was to develop a measure
(or measures) of separation between a pair of beta distributions,
and to correlate these measures with some standard test of signifi-
cance, such as the XZ goodness-of-fit test. An important sub-
objective of this research was to develop a computer code that can

be used to obtain these correlations for a wide variety of beta

distributions.

1.2 Literature Search

Several coefficients have been suggested in statistical litera-
ture to reflect the fact that some probability distributions are
"closer together" than others, and consequently that it may be
"easier to distinguish" between the distributions of one pair than
between those of another (2). Such coefficients have been variously

called measures of distance between two distributions (3), measures



of separation (4), measures of discriminatory information (5,6)

and measures of variation distance (7). These coefficients have
the common property of increasing as the two distributions involved
"move apart".

Rao (4) states the need for a distance function between two
populations, and describes mathematical concepts involving the con-
struction of such a function. Mahalanobis (9) defined a generalized
distance to be used in comparing normal populations. Karl Pearson
proposed a measure of racial likeness (10) which has been used by
anthropologists for analyzing skeletal remains. He defined a coefficient
of racial likeness (C.R.L) which is a measure of the distance between
two populations. Adhikari and Joshi (3) give a complete summary of

the various coefficients of distance developed by several investigators.

1.3 The Problem

The concept of significance has been developed for analyzing
sample data and for making inferences about the populations being
sampled. Various tests have been developed for comparing groups
of sample data with each other or for comparing a sample with a
population (or model). The question to be asked when comparing two
populations is: How different is different?

The type of distribution considered here is the beta family

described by the density function

f(x|a,b) = m—‘ﬁxa“ (1-0)2" (0 <x < 1) (1.1)
where
B{a,p) = ZiaL> TLb (1.2)



and the gamma function r(a) is defined as

@

fa) = f e dx [0<a <. (1.3)
0

For convenience of terminology, such a density function (or a
random variable thus distributed) is described as beta {a,b).

In general, by varying the parameter a and b of the beta distri-
bution, a variety of curve shapes are obtained (Figure 1.1). For
this reason, the beta distribution is often suitable in modeling
work for random variables over the interval (0,1).

Density A can be called significantly different from density B
if a random sample from A does not pass a X2 goocdness-of-fit test,
when tested against B (or vice versa). The significance level of an
observed random sample (or perhaps the average of many)} can be noted
and compared with some index which depends only on the parameters of
the curves. However, the construction of random samples presents
some difficulties:

(i) Beta random samples are expensive to generate, when concen-
trated over a small range in (0,1)

(ii) True random samples would require many points to ascertain the
relationship between any two indices of non-equality, because
there would be the random fluctuation effect which would
obscure the basic relationship.

For this reason, emphasis is placed in this study on "pseudo-

samples" where the "observed" frequency for a class is taken to be

the same as the "expected" frequency for that class for the particular
distribution under consideration. The chi-squared value obtained from
testing density A against density B under these conditions is referred

to as a "pseudo-chi-squared" statistic, and has the following properties:



(a) It is zero when density A and density B are the same

(b) It has no random component and is purely a measure of lack of fit,
since the "sample" is a perfect replica of its generating density
function.

The objective, as explained in more detail below, is to

i) Compute a pseudo-chi-square test statistic for a sample from
density A tested against density B. Here B is defined as the
"model" and A is defined as the "alternative".

ii) Compute an "index of non-congruity", denoted by &§, and relate this
to the pseudo chi-square value.

iii) Compute certain other indices that are easily determined from the
parameters of both distributions.

iv) Generate a random sample from A and test against B using the chi-
square goodness-of-fit test.

v) Lastly, study the variation of the chi-square value obtained in iv)
with the indices obtained in iii).

1.4 Analysis

Theoretically, two distributions are considered equal only if their
density functions are identical. But in practice minor variations in
the parameters may be of no consequence because two "nearby" densities
may yield samples that are indistinguishable from each other. For ex-
ample, it may be impossible to detect any difference in a random sample
from a beta (3,3) density and one from a beta (3.2, 3.5) density. If
it were possible to find the sampling distribution of the statistics
i and b (the estimates of a and b), then the two distributions could be
considered indistinguishable if it were possible, using the computed

A

G Bi (i = 1,2), to accept the null hypothesis:



HO: a = a2
by = b,
against the alternative:
H]: 3, # 2,
by # By

In the absence of knowledge of the distribution of & and b, other
techniques must be employed.

An alternative approach would be to first construct "expected"
frequencies for each class interval for each distribution. These are
called "perfect" samples. One distribution is then referred to as
the "model", and can be tested against the "alternative”, using a cni-
squared goodness of fit. The chi-square value thus obtained will be
a "pseudo" chi-square value whenever we construct "perfect" samples
from each distribution. If a genuine random sample were drawn from
the "alternative" and compared with the "model" using the chi-squared
test statistic, the chi-square value thus obtained would be the usual
chi-squared test statistic. Discussion of the computation of the chi-
squared value is given in Chapter II.

1.4.1 Measures of Separation

Let beta (a],b]) and beta (a2,b2) be the beta distributions under
consideration (Figures 3.1 (i) and (ii)). The "index of non-congruity",

is defined as

1
5 = JO [#(x|a;by) - F(x]a,.b,)]dx (1.4)



where
0<s8 <2
If the two curves are identical, then § = 0. However, if the two
curves are very different, § may be near the maximum possible value of 2.
Various other indices of non-equality are also computed in this

study. These are defined as

my = g gl ey - gy (1.5
N
e [ -2 (1.6)

where M3 and oF are, respectively, the mean and standard deviation of

the ith

distribution, i = 1,2.

Results have been obtained using beta_(4,4) as the model and beta
(3,b2) as the alternative, where b2 has been varied in the interval
[2,4] in steps of 0.1. The pseudo sample size used is 100. Relation-
ships have been gbtained between al and &, & and 2, " and 2, and
Ny and ¥2. Lastly, random samples have been drawn from the alternative

beta and the 2 value thus obtained (xg) has been plotted against "

and Ny
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2.0 THE x2 TEXT STATISTIC

2.1 Construction of the Test

Let f(x[a],b]) represent the density function for the model and
f(xlaz,bz) represent the density function for the alternative distri-
bution. The first step in computing the chi-squared value is to obtain
a frequency distribution for both the model and the alternative.

The ordinate of the density function at a point does not represent
the probability at that point. For this reason, a finite number of
classes are constructed over the interval [0,1]. The probability

element for each class interval is normally computed using the eguation
X

2
F s J ‘ f(x|a,b} dx x],xze[0,1] {2.1)
X
1

where X and X, are the lower and upper limits, respectively, of the
class interval. Since it is not possible in general to analytically
evaluate the integral in Eq. (2.1), an approximation is made by
evaluating the ordinate at the midpoint of the class interval and
multiplying by the class width. This probability element has the
physical meaning of relative frequency, since it denotes the prob-
ability of an event occurring in that class interval. 1In the case of
the alternative curve, these probability elements are "pseudo" relative
frequencies, since they are obtained from an exact model and not from
some random process occurring in nature.

In the computer program in Appendix I the probability element is
designated as PRBEL. Using the subscript 1 for the model and 2 for the
alternative, let N be the number of class intervals (cells) chosen. Then

the pseudo chi-square statistic is defined for pseudo-sample size M as



N [(PRBEL), - (PRBEL),1°

2 =
M (PRBEL ;

i=1

with degrees of freedom DF = N-1.
The following example illustrates the construction of the chi-square

test statistic.

EXAMPLE Let beta (4,4) be the model and beta (3,3) be the alternative.

A sample size M = 50 is assumed, and N = 10. Thus

1 3

f(x|4,4) = W)—x3(1-x) [0<x < 1] (2.3)
£(x]3,3) = E(;_3T x2(1-x)% [0 < x < 1] (2.4)

The "observed" frequencies, designated OF, and the "expected"
frequencies, designated EF, were obtained using the program developed
for this investigation (Appendix 1). These results are illustrated in
Table 2.1, which also illustrates the probability elements for each
class interval. If a sample of M observations is assumed, then each
probability element must be multiplied by M to obtain the "frequency
count" for that particular cell. In the computer program, OF and EF

h th

were designated as PRBEL(L,I,M), (for the Lt curve, I class, sample

size M), Thus

PRBE(L,I,M) = PRBEL(L,I) *M (2.5)

where

—
n

1, (model) I =1, ..., N

2 (alternative)
The OF and EF values in Table 2.2 correspond to the PRBE values computed

above.
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In order to compute the pseudo-chi square test statistic a classical
(though perhaps overly strict) requirement is that the expected frequency
count in each interval be at least 5. This is ensured by grouping
adjacent intervals whenever necessary. This reduces the effective number
of intervals. In the above problem classes 1, 2 and 3 are grouped to-
gether to form one interval and intervals 8, 9, and 10 are grouped to-
gether to form another, the othersremaining unaltered. The effective
number of intervals is then reduced to 10-6+2 = 6. The pseudo chi-
square statistic then becomes

_u 2 (PRBEL(1,1) - PRBEL(Z,1))? (2.6)
ps =M L PRBEL(T,1) :

and carrying out the computations yields:

X%s = 1.474 with df = 6-1 = 5.
As explained below, the next step is to calculate the significance
level a of the test.

The usual x2 table gives the critical point for a given a. But
it is desired to know what significance level, called a, is associated
with an observed x2 value. In the present work a function subprogram
CADTR (12) is employed for this purpose. The input parameters of the
subroutine are the known chi-square value and the degrees of freedom,
both of which are treated as real continuous parameters (abbreviated
as y2and DF, respectively, for convenience).

The resultant & value calculated by subprogram CADTR is « = 0.9161,

for XES = 1.474 with df = 5.
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CLASS MARK (PRSEL)2i (PRBEL)H
.05 -0068 .0015
118 .0488 .0290
25 .1055 .0923
35 .1553 .1648
.45 .1838 .2123
+95 .1838 .2123
.65 - 1553 .1648
.75 .1055 .0923
.85 .0488 .0290
95 .0068 .0015

TOTAL 1.0 1.0

TABLE 2.1 Probability elements for model beta (4,4) and alternative

beta (3,3).
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3.0 DETERMINATION OF THE INDEX OF NON-CONGRUITY

3.1 Introduction

The index of nan-congruity, &, is calculated in the following manner.
As before, let f(x|a],b]) and f(x]az,bz) be two beta distributions described
in the manner of Figure 3.1.

It can be proved that there will be at least one point of inter-
section for the two distributions but never more than two. Let the points

of intersection be denoted by

X = X i=1, 2 (3.1)
At each such x
f(x|a1,b]) f(x]az,bz) (3.2)
Thus,
b,=-1
hence

F(a1) r(bl) r(a2+b2)
) T{a;%b;) " T(a,) T(b,) =C (3.3)

The right hand side of equation (3.3) is easily evaluated by subroutine
GMMA, documented in [12], which evaluates the gamma function for real
arguments.

In order to determine the points of intersection, it is necessary

to determine the zeros of the equation
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beta(al,bl)

f(x/a,b)

Fig. 3.1(i). Graphs of beta (a ;b1) and beta -(h,,b;) showing
%n points). = o=

8 {two intersecti

beta(az,bzl

——— beta(al;bl)

82

2
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a Xq 1.0
X —— -
Fig. 3.1{11). Gragiis of beta (a],b ) and beta (ai,baj showing

5 {one intersection nocint).
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Fig. 3.2.

Graph of g(x) against x.
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b,-b

ad,-~a

g(x) = x 2 _¢=0 (3.4)

The critical point is determined by differentiating Eq. (3.4)

and setting the result to 0 at X=Xqs the critical point. Thus,

a,-a,-1 b,-b
dg(x) _ 172 172
o] = (amag)xg (1-x)
X=X
(a;-2,) b, =b,-1
+ Xg (b]-bz)(1-x) =0
hence,
a1-a2-1 b]-bz-l
Xq (]-xo) [(a]-az)(T-xo) - (b1—b2)xo] =0

(a]-az)(1-x0) - (bl-bz)xO =0

-
Xo * (a;-a,] + (B;-D,) (3.5)

Equation (3.6) reveals that there is only one critical point over

[0,1], given by Xg- Furthermore

g(x)x=0 ol

(3.6)
-C

g(x)

Using (3.6) and (3.7) one can describe the general shape of g(x)
over x as shown by curve 1 and curve 2 in Figure 3.2.

Curve 1, Figure (3.2), illustrates the case where two intersection
points at X and X were obtained. Curve 2 in the same figure illustrates
the case where one intersection point was obtained. Referring to curve 1,
Xq is the maximum point and g(xo), from equation (3.5), is positive.

Referring to curve 2, xé is the maximum point and g(xa) is zero. In
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the Tatter case, the point of maximum is also the point of intersection

of the two curves.

3.2 Procedure for Determining the Points of Intersection

A first step in determining the intersection points X and X is
to establish whether the function g{x) is of the type represented by
curve 1 or by curve 2, referring to Figure 3.1. To do this, first
evaluate

_ il i

B (a;-a,) + (b;-b,)

(3.7)

and then evaluate g(xo) from equation (3.5). The value of g(xo) deter-
mines the number of intersection points. Two cases are possible:
(1) g(xo) = 0 => one root at Xq

(1) g(xoj >0 => two roots, x; and x,

3.2.1 Evaluation of & for case (i) (one intersection point)

The intersection point Xg is determined by equation (3.6). The

"index of non-congruity" & then becomes

X
0 1
= [ [ Flx]aysby) = Flx|ayby)| dx + Jf [flxtagby} - flzlagsby)| dx
0 X0
= O.-‘ + 52 (3'8)

]f(x]a f(x[az,bz)[ dx (3.9)

) J|f(x ) - F(x]a,.b,)] dx (3.10)
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3.2.1.1 Evaluation of 61

Since f(x|a,b) is a positive function, Eq. (3.9) can also be
written as:
*0 *0
8y = [ F(x|ag.by )dx - J F(x|ay.b,) dx
0 0
Each of the integrals is evaluated separately. However, neither of
them can be evaluated analytically. Some form of series expansion method

must be used, and subroutine BDTR [12] does this. The subroutine,

documented in [12], computes Ix(a,b) defined by:

X
I(a,b) = j fly|a,b) dy. (3.11)
X 0
Then
5y = |Ix0(a1,b1) - Ixo(az,bz)l (3.12)
3.2.1.2 Evaluation of 85
Recall the formula for P (Eq. (3.10)) as

1
; = Jxolf(x;a],b1) - F(x]a,.b,)] dx

(5
|

L 1
| fixlapbex - | fixlayubylex|  (3.13)
X X

where Xg is the intersection point. Each of the above two integrals can

be evaluated separately. Using the relationship:

1

X
L) = [ flylasiy = 1 - | ftlan)ay (3.14)
0 X

each of the integrals in equation (3.12) is expressed as:
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X

1 0
f fx ai,bi)dx =1 - I fx ai,bi)dx
Xg 0
=1-1 (agb) i=1,2 (3.15)
0
hence
8,y = |I - Ixo(a],b1) - {1 - Ixo(aE’bZ))
= | 1. [3sebs) = I {aysby) (3.16)
M toglipl - By fagatipd

Equation (3.16) for 8y is identical to equation (3.12) for 8. Thus
8§y = &, (3.17)

3.2.2 Evaluation of & for two intersection points (case (ii))

Let x, and Xo be the intersection points shown in Figure 1.2(1).
The index of non-congruity & is given by
§ = 5] + 62 + 53

where

X+
roi
5y = Jo {f(x|a],b]) - f(x1a2,b2)]dx (3.18)
4
8y = J, |f(x|a1,b1) - f(x]az,bz)[dx (3.19)
1
e
83 = J lf(x[a],b}) - f(x|az,b2)]dx (3.20)
2

Before computing each of the above integrals, it is necessary
to evaluate the points of intersection, Xq and X5 using equation

(3.5) which is reproduced below:

a,-a b, -b
g(x) =x ! 2 (x) '+2¢c=0 (3.5)
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Knowing that g(xo) > 0 (recall Figure 3.1, curve 1) the roots
of the nonlinear equation g(x) must be obtained using a search tech-
nique. Mueller’'s iterative scheme, documented in [12], pages 217-
218, is a convenient scheme to use, and has been incorporated into

the computer program in Appendix 1.

3.3 Random Sampling from a Beta Distribution

Several methods can be used for generating random beta variates
[13]. The method used here is a table look-up procedure with linear
interpolation. Briefly, this method involves setting up a table of
values of the cumulative distribution of beta (a,b) in the range. A
random number is then interpolated directly into the cumulative
tabled value to yield the desired beta variate. A discussion of the
procedure used follows:

Let f(x|a.b) defined by equations (1.1) and (1.2) be the given
beta density function. The first step in generating a random sample
is to set up a table of cumulative distribution function (c.d.f.)
values. Subroutine BDTR, documented in [1], pages 78-80, can be
employed for this purpose. The shape of the cumulative distribution

function
X
F(x) =f F(t)a,b)dt (3.25)
0

has the form depicted in Figure (3.3).
The next step is to generate a random number in the interval
[0,1] and set this value equal to F(x). Using linear interpolation

(if necessary) the corresponding beta variate x can then be ogbtained.
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Fig. 3.3.

Shape of curulative gdistribution function for
beta (a,b).
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Referring to Figure 3.3, R] is a uniform random number and the
corresponding beta variate is Xy -

The random number generator used in this investigation was ob-
tained from the random number package "Super Duper" [14]. The
function UNI(Q) generates a uniform random variable in the half open
interval [0,1].

The cumulative table is constructed with the beta variate x
ranging from 0.0 (0.005) 1.0. For example, let RANUM(I) be the 1th
random number generated, and let PROB(K) and PROB(K-1) be the tabu-

lated cumulative probability values with associated values of the

beta variate X(K) and X(K-1), respectively, such that

PROB(K-1) < RANUM(I) < PROB(K) (3.26)
and
X(K-1) < DEV(I) < X(K) (3.27)

where DEV(I) is the desired variate.

DEV(I) = X{K-1)[PROB(K) fx?ANUM(I) )3( K)[RANUM(I) - PROB(K-1)]

(3.28)
which is a Tinear interpolation method.

The next step is to group these random beta deviates into a
frequency distribution.

This grouping is done as before for the case of the pseudo-
random samples (Chapter 2). To compare these random frequencies
(which may correspond to a real 1ife situation) to the model {(which
is an assumed beta distribution) the x? goodness-of-fit test is
used (as was done for the case of the pseudo-random samples). The

x2 value obtained in this manner is designated y2
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Comparisons were made between § (discussed in this chapter),
" and ny (presented in Chapter 1) and the yx2 values obtained between
a pair of beta distributions. These comparisons will be discussed

in the next chapter.
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4.0 RESULTS

Results are presented in this chapter for a few special cases of
beta distributions. A beta (4,4) was used as the model, and beta
(3 bz) were used as alternative distributions, where b2 was varied
in the range (2,4) in steps of 0.1. Eight sets of relationships
between the various measures of separation were studied, and each
is briefly described below:
i) ny versus § The results indicate that the index no defines
certain ranges over which N and § are related. Referring to
Figure 4.1, we see that an increase in § {associated with a pair of
curves that are increasingly different) corresponds to an increase in
nqys @S might be expected.

ii) & versus Xés Again here the index no plays an auxiliary descrim-

inating role in the functional relationship. Two distinct ranges of
n, over which the relationship of § against X%s is valid have been
established, as shown in Figure 4.2. As might be expected, an increase

in & corresponds to an increase in y2

ps’
iii) ny Versus X;s Referring to Figure 4.3, we see that over two ranges
of ngs Ny increases as XES increases.

iv) ny versus XES Figure 4.4 depicts this relationship. A minimum value

of )és is obtained at n, = 0.354. This corresponds to a XSS value of 2.947,
indicating that beta (4.,4) and beta (3,3) are the least different from

each other among those tested.
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V) ny versus § Figure 4.5 shows the relationship between ny and 6. A
parabolic type relaticonship is again obtained, with a minimum at Ny = 0.379.
The value of § at this point is 0.144. Comparing Figures 4.4 and 4.5,

it appears that s is a better index to work with, since the relation-

ships obtained have been independent of ny or any other index.

vi) ny Versus (x2 -xé) Figure 4.6 shows the relationship. [t was

ps
expected that in general X%s < xg. and a fixed quantity R (i.e., a

random component) would have to be added to the XES value to obtain a
more "realistic" approximation to a random sample value. Further, it
was expected that R would be approximately constant from distribution to
distribution and would always be postive. Figure 4.6, however, reveals
something quite different. We see that Xg fluctuates around XSS’
indicating that in the limit, i.e., an x% increases indefinitely,

X% would approach the ng value.

. . 2 2 - - . . - .
vii) Xos versus xg This relationship is shown in Fig. {4.7). A

least squares linear fit has been obtained for the data.
Z = 42 -
e 1.518 Xps 2.949
The correlation coefficient for this case is

r2 = (0.944.

viii) x§ versus & Figure (4.8) depicts this relationship. A power curve
of the form

y = axb, X,y > 0
has been fitted to the data. This fit is given by
x2 = 298.35 5%
and the correlation coefficient is

2 = 0.91
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4.1 Conclusions
The results have been obtained for a few particular cases of
beta distributions. Certain limited conclusions can be drawn from
these cases, which may not apply for other model and alternative distri-
butions. These conclusions are presented briefly below:

(i) For & » .27 (see Figures (4.2) and (4.8)), a x§ test would show
significance at the a = .05 level of significance. This would
apply for a, = 3 and b2 > 3.7 or b2 < 2.5. For &= .01, then for
§ > .26 a xg test would show significance. This would apply for

a, = 3 and b, > 3.8 or b, < 2.4.

2 2 2

(ii) The ranges of n, over which the ng

are illustrated in Figure 4.4. At & = .05 and .01, and an

test would show significance

approximate range ny > .5 or ny < .2 a XSS test would show
significance.
The results obtained from the investigations for these special
cases have been disappointing to the investigator in that the measures
of separation developed are shown to be only moderately good, and are

probably nct promising enough to warrant further investigation.
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APPENDIX I

This appendix contains the computer program used to compute
nys Nps & and x2 for a pair of beta distributions. Also included

is an explanation of the symbols used in the program.
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ALPHA(L), BETA(L)

¢Cs CD CE

PMU(T)

SI1G(1)

CON
DELTA
DEV(L,I)

DENS(L,I)
PRBEL(L,I)

PRBE(L,I,M)
PRB(1,J,M)

CHSQ(M)
J-1

PROBAB(M)

39

SYMBOLS USED IN PROGRAM

input parameters, a and b, of the beta distri-
butions. L=1 (model, L-2 (alternative).

symbols used in the calculation of

r{a) P(b
B(a.b) = L2} 20

mean of It distribution, I=1 (model), I=2 (alter-
native).

std. deviation Ith distribution, I=1 {model),
I=2 (alternative).

B(a,b)
index of non-congruity

midpoint %; class intervals for the Lth distri-
bution, I*" class

ordinates at the DEV(L,I) points.
probability element for the Lth distribution,
Ith c1ass.

frequency at the Ith class for sample size M.

"corrected" frequency taking into C%Rsideration
the requirement that E.>5 for the J" class and
sample size M.

the Chi-square statistic for sample size M.
degrees of freedom after computing the "effective"
number of classes to satisfy the reguirement that
E«#5,

‘I—

right hand tail area of suitably chosen chi-square
distribution for sample size M.
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CCCCCcocooLLeLooococcceoocoeccococoocceccocLccoeacoocececcecc
PURPOSE

c
c
c
Cc
C THE PURPOSE OF THIS PRUGRAM IS5 TU CCMNPUTE

C INDICES OF OIFFERENCES BETWEEN SEVERAL

c PAIRS OF BETA DISTRIBUT IONS. AND RELATE

C THFM TO A GUOUONESS OF FIT TEST. A DESCRIPTICN
C OF PARAMETERS IS INCLUUED SEPARATELY

c

c

c

c

c

OcoconpoOO

| o o o 8 o 8 o o o o o o8 A o o 8 o G o i o o o8 o il oot o o o o ¥ o ot o o o O o 8 ol o o o8 o o8 o o o A Y o8

NIMENS IUN PROBI2)1.PRO(2)CCT{2).CO02).CEL2)R0E2),PUL2),510012),
XPROBAI242) +DEVIZ410) PRAEL(2,L0)+UENS(2,10),PRBE(2+10.,5120),
XPRBI2,10.500),CHS5Q(500).PROBALL50)]

COMMUN ALPHAL2),BETAL2).CON

EXTERNAL FCT

INITIALIZE VALUES OF ALL VARIABLES

2N zX 3l

D0 2 I=1.2
PROBII)=0.0
PROLIL)=0.0
CC{I)=0.0
CDE1)=0.0
CE(1)=0.0
RtII=0.0
PMULT )=0.0
2 SiGiI)=0.0
0a 3 J=1.2
ul) & K=1.2
4 PRUBA{J.KI=0.0
Dil 5 L=1.10
DEVIJ.LI=0.0
PRBEL(J.L)=0.0
DENS{J.L)=0.0
DO 6 M=1.,5030
PRBE(J.L,H)=0.0
PRBIJ.L.M)=0,0
CUNTINUE
CLNT L NUE
DO T N=1.,500
CHSO{AN)}=0.0
7 PROBABIN)=0.0

W

READ IN VALUES OF THE PARAMETERS ALPHA AND BETA UF THE TWU UVISTRIGUTIONS
THE CLASS WIOTH ULINCR.THE NUMBFR OF CLASS INTERVALS LNUM, THu MAXIMUM SAMPLE
SIZE MMAX. AND THE STEP SIZE FOR COMPUTAT IONS.N

[aNaNaNalyl

KEAD 1(S5S+1) ALPHA{L)BETALL) ALPHA{Z2) HETA(2) +UINCAINUMMMAX i
1 FURMAT {5F10.4.3110)

DETExMIink THE VALUE OF THE CUNSTANT (LON)

[a¥aNgl

DO 102 I=1.2
XX=ALPHALL)

CALL GHMMMA (XX GXCIER)
CCil)=06xX



o000

[a N gl gl

XX=HETALI)
CALL GMMMA [ XX,5X. [EH)
Cuall)=6GX
Xx=ALPHA(L}+BETAILL)
CALL GMMMA {(XX.GX. [ER}
102 CE{1}=GX
CLN=(I{CCIL)eCOtL)}/ICL(2).CDI2))*CEL2)/CE(L)
WRITE (6.103) CON

103 FORMAT ([*1'«'THE VYALUE OF THE COCNSTANT IS*.2X,F7.%)

DETERMINE THE NUMBER OF [NTERSECTION POINTS

AA=ALPHA(L)-ALPHALZ2)

BB=BETALL}-BETALZ)

IF (AA.EJ.0.AND.ADBSIBB).GT.0) GO TC 121
IF {ABSlAA).GT.0.AND.UB.EQ.D) GU TO 122
1IF {AA.LT.0.AND.BB.uT.0} GO TO 123

IF (AA.LT.0.AND.BB.LT.0) GO TQ 124

IF (AA.GT.0.AND.BB.GT.0) GU TO 125

DETERMINE THE INTERSECTIUN PUINTS RIL1 AND R{2)

121 XO=1-(CON*={]1/B81]}
G]) TO 104

122 X0 = CON¥®[1/AA)
60 TO 104

123 AaA=0.01
B=1.0
EP5=0.01
IEND=30
Call. RTM]I [XeFoFCT BeAAALEPS«IENDe LER)
R{ll=X
WRITE (6.107) RLL)
GO 1O L15

124 AaA=0.0
B=0.99
EP5=0.01
[ENW=30
CALL RTMI [(X+F+FCT +BoAAALEPS,IEND. IER}
RULI=X
HWRITE (6.107) RI1)
Gn TO L1S

125 xu=aA/(14A+80)

FXO= [ XO®e(ALPHAL L) =ALPHA(2) ) I *{{ l-XU)*«(BETALL]-BETALZ2))I=CUN

IF [FXO) 104,104,105
104 WRITE (46,1071 X0

107 FORYAT('1'.'THERE IS ONE INTERSECTION POLINT'/Y ' ,'THIS

X' eF7.9)

RUELI=X0

Gl TO Li5

105 AAA=0.0

BHB=1.0

B=Xx4

EPS=0.01

1END=20

CALL RTHI IXeF+FCT A aANJEPS  TENGY TERD
R{11=X

CALL HTMI (X F FLTB.ABRLEPSsENU. lCR)
RiZ2)=X

WIITE (6.108) RULI.RE2)

41



c

42 FNRMAT{'Ll* . 'FREQUENCY OISTRIBUTICH FCR MOUDEL BI*sFTo%e 'y ' sFT.%,:")

43

44
45

XAND ALTERNATIVE Bl' o FT.4,"2"sFT.40'1/!

'« 'THE MCDEL

FrEu.

XE DENUTED BY EF AND THE ALTERNATIVE FREJUENCIES BY UF'///7)

WRITE (&.43)

AR

FIRMAT [*0*,T32,"CLASS MARK® o 8X, "UF "o L4Xo"EF "/T324120'=0)45X,5 (="

X)el2Xus('=2))
D0 44 I=1.10UM

WRITE (6+45) VEVIL.[}+PRBEL(2Z,I),PRBELIL.II

FURMAT{'0" ¢T354F5.248XoFT7.6,8%X4FT.4)

C COMPUTE THE PSEUDU CHI-SQUARE FIR SAMPLES OF SIZE M

c

WRITE (6.481)

48 FORMAT('L1l*.T30,"SAMPLE SI1ZE".8X,'"CHI-SOQUARE'.8X,"UEGRLES UF FREELD
XM? o BX,"ALPHA' /T30, 101" =").8X,10("'=").8X,18(*="),8X,5(*'="])

132
131

52

53

54

55

75

56
133

DO 130 M=50,MMAX.N

00 131 L=L.2

DO 132 I=1l.lNUM

PRBE(L 1 +MI=PRBELIL.1)*M
CONTINUE

J=2

YY=PRBE(2.,1.,M)
Y=PRAE(L+]1+H)

CHSQUIMI=0.0

I=1

IFIY.GE.5.0) GO 7O 53
Y=Y#PRBE(Lo{+1 .M}
YY=YY+PRBE(2,I+1.H4)

[=1+1

IFLI+1.EQ.INUM) GO TO 54
GO TO S2

[=1+1

IF{I+1.EQ.INUM) GO TO 54
J=J+l

PRBILaJeMl=Y

PRBI2.JeMI=YY

Y=PRBEI(L«l o M)
YY=PRBE(2.1.M)

GO Ta 52
[F(PRBElL. T+l +M}.GE.5.0) GO TQ 55
JaJ+l

PRA(L+JeM)=Y+PRBE( L, [+ 1+ M) ¢PRDBE( L1, . M)
PRBIZ2:JeM)=YY+PRBE(L I #1 . MI+PRBE(2.,1.M)
G T 56
IF{PHBEILl,1+M).GE.5.0) GO TO 75
J=J+l
PRBULeJeMI=Y+PRBE( L. 1¢1:M)
PRBIZ2+JeM)I=YY+PRAEL? 41 +1 «M)
GU Td 56

J=J+1

PRABILeJe MI=PRBE(L.1.M)
PRBI2:,JeM)=PRBE(2. 1M}
J=Jd+l

PHAI L+ JoM)=PHBELL I#] .M}
PRBLZ2.JeMI=YY+PRUBE[Z241 +1 M)
DO 133 K=l.Jd

CHSOUIM)I=CHSQIM) +{{(PRBIZ2 K. ,M)-PRBIL.K.M)}=#21/PiB(1l.K.M}]}

DF=J-1.
CHSQE=CHSQUM}

42
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43

108 FURMATIE*L? o 'TilERE AKRE ToU INTeRSELTION PULINTS® /'O, *THe>E AME X[ 1)
=V FTa4s2Xe ' X{2)=0,017.4)

G TO 120
115 XXA=r{l)

DETEKRMINE THE INWEX uF RUN=CUONGRULTY, JELTA

ono

DL Lle I=142
ALPH=ALPHALL)
BET=bETAL{IL]
CALL HDBETA [XXX.ALPH.BET.P,lER)
Pxlbl [ }=P
llo PRULTII=SL.=P
DELTL=ABS{PRUBILI=PRUE (2))
DELT2=A0S{PruUlZi=PRUO{L1)}
DELTA=DELTL+DELT2
GL TU 300
120 DO 118 1I=l.2
AXX=R{41)
D3 Ll8 J4=1.,2
ALPH=ALPHAC(J)
BET=BETA(J)
CALL MUBETA (XXX.ALPH.BET,?,IER)
L18 PHRUBALI.J)=P
VELTLI=PrOvALL L) -PROBALL ,2)
DELT2=PROBA(2,1)—-PRUBA(Ll,1)
DELT3=PROGALZ.2) -PRUBA(L 2]
DELT4=1-PRUdAL2.2])
DELTS=1-PROBAL2.11)
DELTA=ABS{DELTL) +ABS(DELTI-DELT2) rABS{ DELTS-0ELT4)
300 WRITE foL.l01) WELTA
L0l FURMAT('0*'y'THE VALUE OF UELTALTHE INUEX OF NON—-LUHGRUITY] 15 oFy.b)
X&l
c
C DETERMNINE PROUBABILITY INTERVALS FOR EACH CLASS INTEAVAL Fur CALH UISTRIGBUTICH
C
DO 301 L=1,2
DEVIL.1)=0.0
PRHBEL{L.,1)=0.0
Ul 10 1=2,1HUM
DEVILLl)=UEVIL,I=-1)+0INCR
10 CONT{RUE uuQualdg
1=2
20 XXX=ubviL.l)
BET=8ETAIL)
ALPH=ALPHALL)
CALL MOMETA (XXX,ALPH,BET,P, [ER)
PRBELIL EI}=P-PHBEL{L.[~1)

IF (IER.EQ.D) wu TU 30 (LVIVIERe) B
WRITE 164+22) I,1ER
22 FIAMAT (1HOLYERRUR IN ITTEKATIUNY j14,%, BOTR ERROR CULE §S',14. GJoaolles
1'. ENU UF PRULGKAM,.') QduoallLy
WRITE (6+23) 0gdualls
23 FORMAT (1HOI Jouuolly
GG Tu 200
30 IF(TILEQ.UINUM+L)IGU TO 301
I=l+1 J00uaLee
GO TO 20 QI 0123

301 CINTINUE
ARITE (6442) ALPHA(L}oBETAIL) ,ALPHAL2) ,8ETA(2)
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DETENMINE THe wiunT HANU TAIL AHcA (PROBABIM)) OF A SJiTausLy CHUSEN
CAl-SULAKED ulSTRIDBUY lune M DENUTES ThE SAM4PLE SI1ZE.

PRUBABIM)=CADTRICHSIESLCF)

DETERMINE AFAN alU STANDARD UEVIATION,(PMU AND 51U me SPeCTIVELY) GF 1THE
Twd OISTRIBUTIUONS.
Ll 134 L=1.2
PUJ(LI=ALPHAILI/(ALPHA(L ) +HBETAIL))
136 SIGILISSURTIALPHALLI*BETAIL)I/LCLALPHAIL) ¢BETALL)) #22) #{ ALPHAL L} +b
XETalLlei.l}))
WRITc{6e57) MsLHSULM]OF .PROBABIMI
[F{PKGBABIM] ccda0.0) GO TO 200
57 FIAMAT('0', 132,13, 13X,E13.4+L13X.F5.2,134,E13.%)
130 CuUNTINUE

COMPUTE THE VALUES OF THE PARAMETEARS ETA(Ll) AAD ETA(2)

200 D=PMUL L)-PMUL(2)
DU=SLll)=-S1GI{2)
EL=ABS{D)+ASS (DD
E2={PRULLI/SIGLLII-(PMUL2)/51512))
duuL=u /b

PRINT RESULTS

nWRITE(&6,98)

98 FURMAT L' 1Y TL5«? 1", TLTo'PHULLI=PMUL2)? T3 L, sl Xet3lulL)=51GL2),
KT@T o' § P lXo"PHUL LI -PMULCZ 1t oTa3s ' 1" g 1Xe "UELTA s TTLs 0 LA, PALPHAY JTTwe® )07
X790 1" o TH2CHIT T8, 1" o IXe"ETAIL Y hTO74 1 o LXK PETAL2),TLUS,
XPo 000 P15 | VT3, )t TaTa VI IX L300 ) /00 ,TLS5 40", T3L,0 ¢,
KTal o0 ' lXKo'SIGELI=SIGI2 )1 oT630 1 *TTLa* 1o TT9s" 1" o1Xks *SUUARE? »
XTad, "} 2 TOTo 1, TLO5, 1" /%0, TLS5,L0Q("-1))

WRITE (62 99) DU, JUUUy DELTA,PROBABE50) »CHSIL50) JEL ,E2

99 FURMATU'O! yT19,:F6e34135:0F6.3,151FT.3:T64sFuedsT12.FT7.3,T80,.F0.3,

XTa9.F6.3,198.,F6.3)
STag
END
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ABSTRACT

Computational procedures have been developed for estimating
measures of separation between a pair of beta distributions. These
measures were variously defined as:

\a) the amount of non-congruity of the two density curves

(b) the measure of separation of the two means and standard

deviations and

(c) the discrepancy of the p/o ratios.

They have been compared with each other and with a XZ goodness-of-
fit test for a specific group of model and alternative distributions.
The results obtained were not conclusive, i.e., the measures of
separation developed were shown to be only moderately good for the
particular cases studied, and are probably not promising enough to

warrant further investigations.



