AN EVALUATION OF VARIOUS MICROPROCESSOR IMPLEMENTATIONS OF AN ADAPTIVE DIGITAL PREDICTOR FOR INTRUSION DETECTION

by

DONOVAN J. NICKEL

B. S., Kansas State University, 1978

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas 1979

Approved by:

Major Professor

Spic. Coll LD 2668 .R4 179 N52 C.2

TABLE OF CONTENTS

Chapter		Page
ı.	Introduction	. 1
II.	The Widrow Algorithm	. 3
III.	The Minimal Z80 Microprocessor	. 7
IV.	Z80 Widrow Algorithm Software	. 29
٧.	The 8748 Microprocessor Implementation	. 35
VI.	The RCA ATMAC Implementation	. 39
VII.	Comparison of the Various Implementations	. 43
VIII.	Conclusions	. 46
	Acknowledgements	. 47
	References	. 48
	Appendix 1	. 49
	Appendix 2	. 59
	Appendix 3	. 77

LIST OF TABLES

Table	P	age
3.1	Printed Circuit Board Edge Connections	10
3.2	Minimal Z80 Discrete Components	16
3.3	82S123 PROM Contents	18
3.4	Wire-Wrap Board Edge Connections	20
3.5	Printed Circuit Board Edge Connections	22
4.1	Z80 Program Timing	33
5.1	8748 Program Timing	38
6.1	ATMAC Program Timing	42
	LIST OF FIGURES	
Figure	e P	age
2.1	Widrow Algorithm Block Diagram	4
3.1	Minimal Z80 Block Diagram	14
3.2	Minimal Z80 Circuit Schematic	15
3.3	Minimal Z80 Memory Map	19
3.4	Wire-Wrap Board Component Layout	21
3.5	Printed Circuit Board Component Layout	25
3.6	Printed Circuit Board Artwork	26
3.7	Printed Circuit Board Artwork	27
3.8	Completed Minimal 280	28
4.1	Z80 Program Flowchart	31
4.2	Graph of Results	34
5.1	8748 Algorithm Block Diagram	37
6.1	ATMAC Algorithm Block Diagram	41

CHAPTER I

INTRODUCTION

In communication theory, control systems theory, and other areas of electrical engineering which deal with signal detection, a common problem which is encountered deals with some type of a received signal which consists of the real or desired signal plus noise. In most instances it is useful to attempt to filter out as much of the noise component as possible and thus form a reasonable approximation to the desired signal. Often, the characteristics of the desired signal are known and conventional linear filters can be designed accordingly to produce a satisfactory solution to the stated problem. However, in the case of the problem of intrusion detection, the desired signal characteristics are not so easily determined and can vary according to many different circumstances. Therefore, a more inventive approach is needed to solve this signal detection problem.

Recent research in the area of digital signal processing by Ahmed [1] has led to a signal processing algorithm which is designed to deal with the problem stated above. The algorithm involves an Adaptive Digital Predictor and other more conventional digital filters. Its purpose is to effectively detect noise produced by an intruder in the presence of random ambient noise.

The emphasis of the work done by the author was in the development of working microprocessor implementations of the algorithm and subsequent

evaluations of the various microprocessors with respect to this task. Three microprocessors were considered. The first was the Zilog Z80. A minimal hardware system was designed and built, and complete software routines were written and tested to form a Z80 algorithm implementation. The second microprocessor considered was Intel's 8048 (8748) and the third was the RCA ATMAC. Since development systems were not available, the work on these two devices consisted of paper studies to evaluate the potential use of these microprocessors for this application. The studies included the writing of untested software routines required by the algorithm.

Chapter II of this report presents a brief review of the operation of the algorithm. After that, the various implementations are discussed beginning with the Z80 hardware and software developments in Chapters III and IV. Chapters V and VI present the implementation considerations relating to the 8748 and the ATMAC, respectively. Finally, some comparisons between the different implementations are made, and some conclusions are formed in Chapters VII and VIII.

CHAPTER II

THE WIDROW ALGORITHM

For purposes of intrusion detection, a typical input data signal is considered to have two components. They are the following:

- 1) random ambient noise
- 2) intruder-produced noise.

The objective in designing a signal processing algorithm is to be able to reliably detect the intruder-produced signal, if any, in the presence of random ambient noise.

Figure 2.1 shows a block diagram of this intrusion detection technique. The algorithm consists of two main parts. The first section is an Adaptive Digital Predictor (ADP) which is implemented using Widrow's Least-Mean-Square (LMS) algorithm [2]. The primary purpose of the ADP is to statistically decorrelate the noise component of the data signal. This causes the error sequence, $\mathbf{E}_{\mathbf{M}}$, to be less correlated and to have a smaller variance than the input sequence, $\mathbf{F}_{\mathbf{M}}$. Thus, the ADP reduces the detection problem to one of determining whether or not an intruder-produced signal is present in noise which is uncorrelated.

The second section of the algorithm is a conventional Moving Average Filter (MAF). Since the output of the ADP will tend to be band-limited white noise, and since the resulting uncorrelated noise samples will tend to average out in a MAF, the output of the MAF will consist primarily of

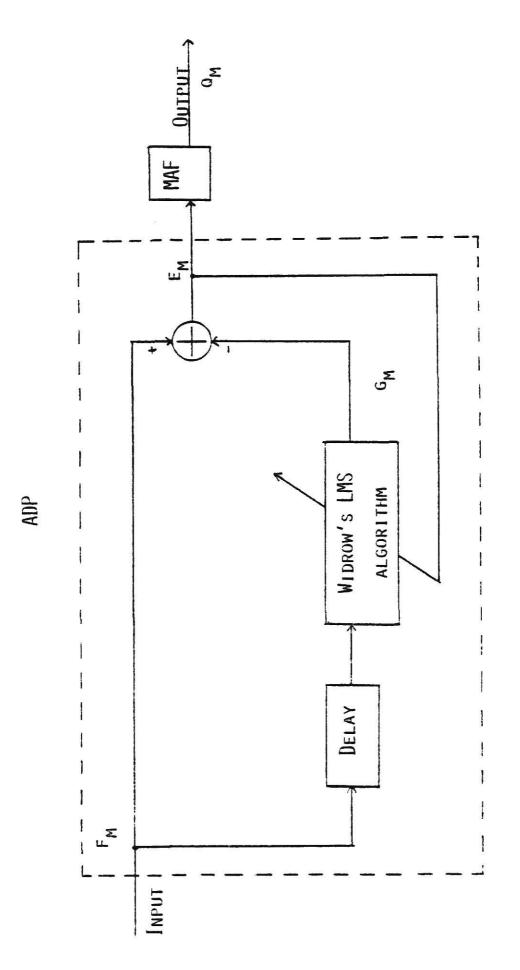


FIGURE 2.1. WIDROW ALGORITHM BLOCK DIAGRAM

intruder-produced noise, if any. Thus an output which reaches a certain predetermined magnitude threshold indicates the presence of an intruder.

It is important to realize that certain trade-offs exist between the accuracy of the algorithm with respect to correct detections versus false alarms, and the complexity of the implementation with respect to processor speed, system memory size, and fixed-length processor word size. For example, the random noise cannot be completely decorrelated by the ADP without using an unlimited number of samples in the estimate of input F_{M} . Yet the system constraints on memory size and operation speed prohibit such computations. However, if the noise component of the data signal is not sufficiently decorrelated by the ADP, the MAF will be less effective, and the false alarm rate will increase.

Another problem encountered in producing a working algorithm implementation was the difficulty in scaling the inputs to a filter with a varying transfer function. Since any overflow causes the system to break down and since the system must remain stable over long, continuous periods of time, the input sample scaling must be adequate to prevent overflow in the worst case. Due to these problems and others, it is obvious that reasonable approximations and trade-offs must be made to produce a satisfactory algorithm implementation.

There are many possible algorithm structures which could be effective in dealing with this intrusion detection problem. Therefore, as the work on the project progressed, some additions and changes were made to the algorithm. The Z80 implementation uses the algorithm as it is presented

in this chapter. The 8748 and the ATMAC implementations, however, used algorithms which are slightly different than the one described here. These differences are pointed out during the discussions of the implementations to which they apply.

CHAPTER III

THE MINIMAL Z80 MICROPROCESSOR

The objective in designing this minimal Z80 microprocessor was to develop a small, inexpensive system capable of implementing one channel of the algorithm described in Chapter II at a rate of at least 128 Hz. The Zilog Z80, which is an 8-bit, NMOS microprocessor, was chosen for this application for several reasons. Since most of the arithmetic required by the software program needed to be performed on 16-bit operands, the powerful instruction set of the Z80, which includes many 16-bit operations, was a very attractive feature. Another important constraint involved the program speed. The Z80, at 4 MHz, was comfortably able to meet the algorithm speed requirements. Although the Z80 used in this design was constructed with NMOS technology, the total system's power consumption was typically less than 250 milliamperes at 5 volts due to a mixture of CMOS and NMOS support components. This system was designed for a specific application, but imaginative users will find the system useful for a variety of tasks such as discrete time control systems and other digital signal processing operations.

Due to the possibility that the user, given a completed system, will desire only the knowledge necessary to make the system work without digging through the design and construction details, the following section will provide operation information which will hopefully be sufficient to allow the user to implement his application. Following the operation information,

the system configuration will be discussed in more detail and finally, the system construction will be presented including the design and construction of a printed circuit board. The assumption is made throughout this report that the user is familiar with the Z80 microprocessor and instruction set [3,4].

Minimal Z80 Operation

There are three main blocks of support devices used in this minimal 280 system. They are program memory, data memory, and input/output devices. An understanding of the system's use of these support devices along with an understanding of the proper power supply and other edge board connections is all that is needed for proper operation of the system.

The program memory consists of a selected Intel 2716, 2k X 8, EPROM which is capable of 250 nanosecond access time operation. Thus the maximum total program length is 2048 bytes of code. The addresses which select the program memory begin at 0000H and end at 07FFH. Since a reset occurs when the system is turned on as well as when the reset switch is closed, the Z80 will begin executing the program starting at location 0000H when either of the two events takes place. It is important to remember that all program executions must begin at 0000H and that program execution can only be started by turning the power to the system from off to on or by pressing the reset switch. Thus when the 2716 EPROM is programmed, either the desired program or a branch to the desired program must begin in location 0000H.

The data memory consists of 128 bytes of static RAM. It can be read from or written to at address locations 4000H to 407FH.

One octal latch is available for use as an output port. Any output instruction such as OUT (01), A will enable the latch. The output data will be available until it is changed by another output statement. Since 74Cxx series CMOS is used, the output port is TTL compatible and is capable of driving one standard TTL load. The output data is available at the O/P socket on the board where socket pin 1 = least significant bit and socket pin 8 = most significant bit.

An eight bit A/D converter serves as the only means of input to the Z80. An input voltage in the range ±10 volts is converted to an eight bit binary number for use by the Z80. Since the A/D converter is not free running, a "Start Conversion" pulse must precede a read statement by at least two milliseconds. A typical sequence of operations for obtaining an input byte from the A/D is listed below. The user is responsible to maintain the proper timing with software.

1. Send Start Conversion Pulse: This is achieved by an LD A, (8000) command or some other suitable command which puts 8000H on the address bus.

2. Pause:

A pause of at least 2 msec. is necessary. Other routines may run during this time.

Input From A/D:

The data word is input to the Z80 with the command LD A, (C000).

Data from the A/D is received in offset binary form. Two's complement numbers are obtained by inverting the most significant bit of the data word.

The power supply connections and other edge connections are listed in Table 3.1 for the standard 22-pin edge connector. A -5 volt source is needed only if the A/D converter is used. The system will typically require less than 250 milliamperes at 5 volts d.c. The connections listed are those for the PC board. The connections for the wire-wrapped board are given in the section on System Construction.

Table 3.1. PC Board Edge Connections

Pin #	Function
2	-5 volts
14	V _{IN} (input to the A/D converter = ±10 volts)
20	φ (clock out)
22	+5 volts
D	GND.
т	WAIT signal in

Some software application examples are given on the following two pages.

Sample Program 1

This program will alternately output AAH and 55H to the output port. The bit patterns should be 1010 1010 and 0101 0101. This program tests the Z80 CPU, the 2716 EPROM, and the output port. The pattern should alternate at a rate of about 1/2 second.

location	instruction	code	comments
0000Н	LD A, n	3E	A = AA
1		AA	
2	OUT (n), A	D3	output to port
3 4		00	
	LD HL, nn	21	set up counter
5		FF	
6		FF	
7	DEC HL	2B	
8	LD A,n	3E	
9		00	delay
A	ADD A, H	84	
В	JR NZ,e	20	
С		FA	
D	LD A,n	3E	A = 55
E		55	
F	OUT (n), A	D3	output to port
10		00	
1	LD HL, nn	21	
2		FF	
3		FF	
4	DEC HL	2B	
5	LD A, n	3E	
6 7		00	delay
	ADD A, H	84	
8	JR NZ, e	20	
9		FA	
A	JP nn	C3	go again
В		00	580 5
C		00	

Sample Program 2

This program will input a data sample from the A/D converter, store it in the data memory, read it from the data memory, send it out to the output port, and repeat the process. The data word is changed from offset binary form to two's complement form prior to its output. The output port information can be used as an input to a D/A converter to form a wrap-around sampled test signal to aid in adjusting the A/D offset. This program tests all the components of the system.

location	instructioh	code	comments
0000Н	LD A, (nn)	3A	input sample
1		00	from A/D
2		CO	
3	LD B, A	47	B = sample
4	LD A, (nn)	3A	send "start
5 6		00	conversion" pulse
6		80	
7	LD A, n	3E	A = mask
8		80	
9	XOR B	A8	convert sample
A	LD (nn), A	32	to 2's comp.
В		00	store sample in
C		40	data memory
D	XOR A	AF	clear A
E	LD A, (nn)	3A	
F	70	00	A = sample
10		40	_
1	OUT (n), A	D3	output sample
2		00	
3	LD B, n	06	
4	•	FF	
4 5 6	NOP	00	
6	NOP	00	delay for A/D
7	NOP	00	conversion time
8	NOP	00	
9	NOP	00	
A	DJNZ e	10	
В		F9	
C	JP nn	C3	go again
D		00	A Design of the second of the
E		00	

System Design

The block diagram in Figure 3.1 and the circuit diagram in Figure 3.2 illustrate the structure of this system. The system, which is based on the 4 MHz version of the powerful eight bit Z80 microprocessor, involves a minimum number of packages for maximum system simplicity. The total system is relatively low in power consumption due to a mixture of CMOS and NMOS components. The discrete components are listed in Table 3.2.

The oscillator is crystal controlled and runs at 4 MHz. It uses a 74CO4 CMOS hex inverter chip to form ϕ for the Z8O as well as a copy of the clock signal which is available at the edge connector. It is TTL compatible and can drive one standard TTL load.

The output port is a 74C374 CMOS octal latch. It is enabled by any output instruction, regardless of the address. It is also TTL compatible and can drive one standard TTL load.

A Teledyne 8703 CMOS, eight bit, A/D converter with 3-state outputs is used for data input. It is a current integrating A/D converter and in this configuration yields an offset binary output. An input voltage in the range of ± 10 volts is passed through a resistor to form a current input. This current is shifted from ± 5 microamperes to 0 to 10 microamperes by a simple op amp circuit prior to conversion. R_{OFF} is used to trim this offset to its correct position. To set R_{OFF} , ground the input and adjust R_{OFF} until 80H is output from the A/D. The value of R_{OFF} can be calculated as follows:

$$R_{OFF} = \frac{V_o}{5(10^{-6})}$$
 , where $V_o = \text{output voltage of the op amp}$

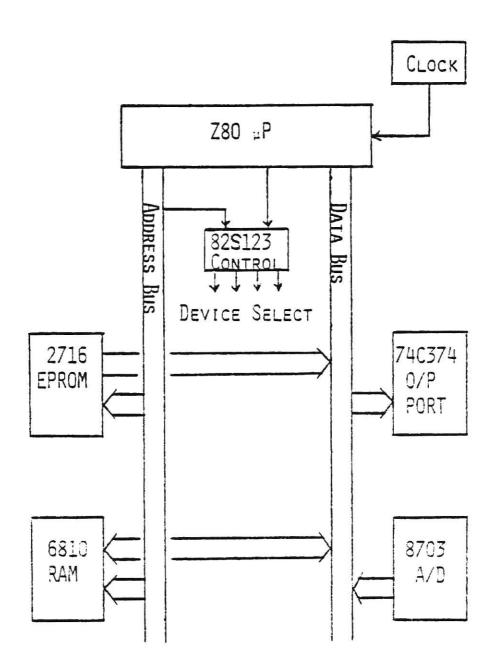


FIGURE 3.1. MINIMAL Z80 BLOCK DIAGRAM

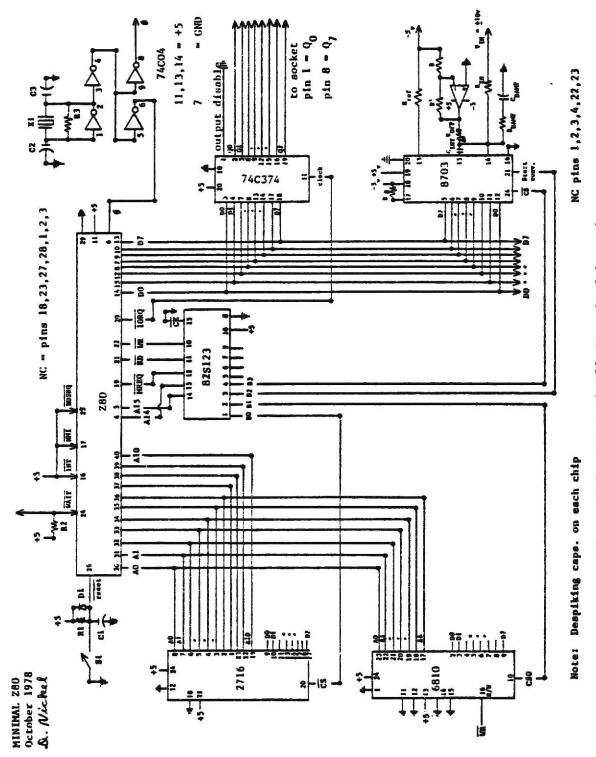


Figure 3.2. Minimal Z80 Circuit Schematic

Table 3.2. Minimal Z80 Discrete Components

Clock:

X1 = 4 MHz crystal

C2 = C3 = 33 pF

 $R3 = 10 M\Omega$

Z80:

S1 = momentary push button N.O. switch

 $R1 = 10 k\Omega$

 $R2 = 2 k\Omega$

 $C1 = 1.5 \mu F.$

D1 = 914 diode

8703 A/D:

 $R_B = 100 \text{ k}\Omega$

 $R_{ref} = 250 k\Omega$

 $R = R^{\dagger} = 4 k\Omega$

 $R_{OFF} = 1 M\Omega$ trimmer potentiometer

 $R_{TN} = 2 M\Omega$

 $R_{DAMP} = 100 \Omega$

 $C_{DAMP} = 270 pF.$

 $C_{INT} = 68 pF.$

Power Supplies:

The system requires +5 volts, -5 volts, and GND.

Notes:

- 1. All resistors are 1/2 watt, $\pm 5\%$, except R_{IN} , R, R', and R_{ref} , which are $\pm 1\%$.
- 2. 0.1 μF capacitors were used to despike the power lines on all chips.

The operation of the A/D converter is completely controlled by the software program. The user is referred to Sample Program 2 for the correct operation procedure.

The system memory includes program memory and data memory. Program memory is realized in the form of an Intel 2716, 2k X 8, EPROM. The user is referred to an Intel Memory Data Book for the programming and erasing procedures. The 2716 must be programmed prior to insertion in its socket. Either the power on reset circuitry or the reset switch can be used to start the execution of the program stored at 0000H. Although 2716's are not specified to run at 250 nanoseconds, many of them will run that fast. However, it is possible that some will not work with this system, and therefore the specifications for this system call for "selected" 2716's.

Data memory consists of a Motorola 68B10P, 128 X 8, RAM. It can be used for data storage, buffer storage, and other scratch pad storage.

Recall that this is a volatile device, and it can only remember data as long as power is supplied to it.

All of the device select control logic is performed by an Intel 82S123, 32 X 8, PROM. Inputs to the 82S123 which form its address lines are Al5, Al4, MREQ, RD, and WR. Thus, a certain combination of two address lines and three control lines is used to select various support devices. The contents of the 82S123 are given in Table 3.3. A memory map of the system is given in Figure 3.3.

Table 3.3. Contents of the 82S123 PROM

The following bit pattern was burned into the PROM to achieve the correct device select logic.

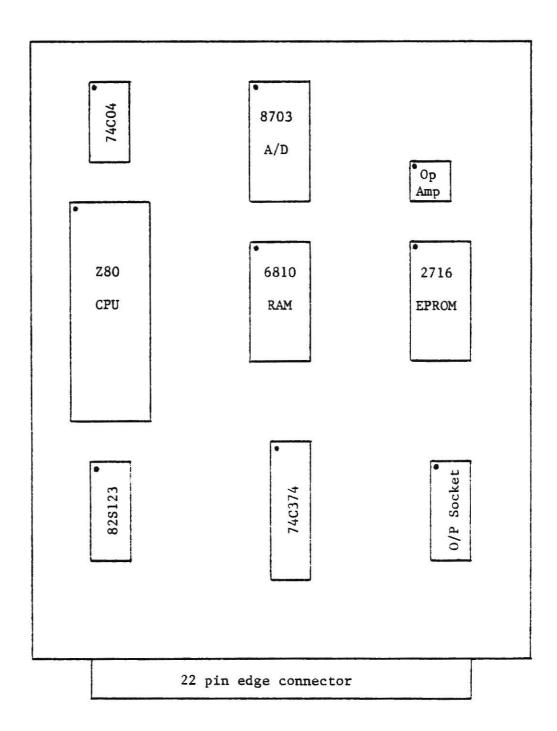
A ₄ A ₃ A ₂ A ₁ A ₀ B ₇ I	B ₆ 1	D					
$\frac{A_4 A_3 A_2 A_1 A_0}{B_7 B_7}$	<u> </u>	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀
	-4000	x	x		000000000000000000000000000000000000000	000000001100000000000000000000000000000	

FIGURE 3.3. MINIMAL Z80 MEMORY MAP

0000	
	2716 EPROM Program Memory
	TROCKALL NETICKT
07FF	
	ı
4000	ı
	6810 RAM
	Data Memory
407F	
	1
	ı
8000	"START CONVERSION" PULSE
C000	A/D CONVERTER
	1

System Construction

The prototype minimal Z80 system was originally put together on a 6-1/2" x 4-1/2" Vector board using wire-wrap construction. For this board, the edge connections are shown in Table 3.4.


Table 3.4. Wire-Wrap Board Edge Connections

Pin #	Function
A	GND.
С	φ
E	WAIT
٧	V _{IN} = A/D Converter Input
X	-5 volts
Z	+5 volts

The board layout is shown in Figure 3.4. The output port information is available at pins 1 to 8 of the output socket. Pin 1 holds the least significant bit and pin 8 holds the most significant bit of the output byte.

After the prototype board had been tested, a printed-circuit board was designed for the minimal Z80 system. Although this board has the same dimensions as the Vector board, it has some important differences. In addition to a revised package layout, these differences include a changed edge connector scheme, a mounted reset switch, and a series of

Figure 3.4. Wire-Wrap Board Component Layout (Vector 3677-2)

Top View Component Side

DIP pads for additional package placement on the board by the user.

Room for two 24 pin packages or three 16 pin packages has been defined on the board and connections to the existing circuit can be made via wire-wrap techniques. A listing of the edge connections is given in Table 3.5.

Table 3.5. PC Board Edge Connections

Pin #	Function
2	-5 volts
14	V _{IN} = A/D Converter Input
20	ф
22	+5 volts
D	GND.
T	WAIT

Since the capability to form plated-through holes was not available, wire-wrap sockets, placed about 1/4" above the component side of the board, were used to form the connections through the board by soldering the pins to both sides of the board. A step by step summary of the procedure followed in the production of the printed-circuit board and the construction of the minimal Z80 system is given below. For correct component placement and connections, the user is referred to the drawings and artwork which appear in Figures 3.5, 3.6, and 3.7 as well as the circuit schematic in Figure 3.2. Figure 3.8 shows a completed system.

Step 1:

From the circuit design, a trial and error process was used to obtain a reasonable package layout.

Step 2:

The printed circuit board artwork was then drawn at 2X.

Step 3:

Clear plastic was placed over the 2X artwork, and Bishop Graphics material, such as tape and DIP patterns, was placed over the plastic to trace all the connections and form all the component pads.

Step 4:

A negative reduction was made from the plastic sheet photographically to yield a IX negative of the desired pattern.

Step 5:

A presensitized, double-sided, copper clad board, obtained from Kepro, was exposed through the negatives to a sun lamp for about 5 to 6 minutes.

Step 6:

The exposed board was developed in a Trichloroethylene bath for about 1-1/2 minutes.

Step 7:

The board was then baked at 180°F for 5 minutes to set the pattern.

Step 8:

The board was etched in an etching solution spray until the pattern was clear.

Step 9:

For a longer lasting finish, the board was tin plated.

Step 10:

The board was completed by cutting it to the proper size and drilling the holes.

Z80 Construction, Step 1:

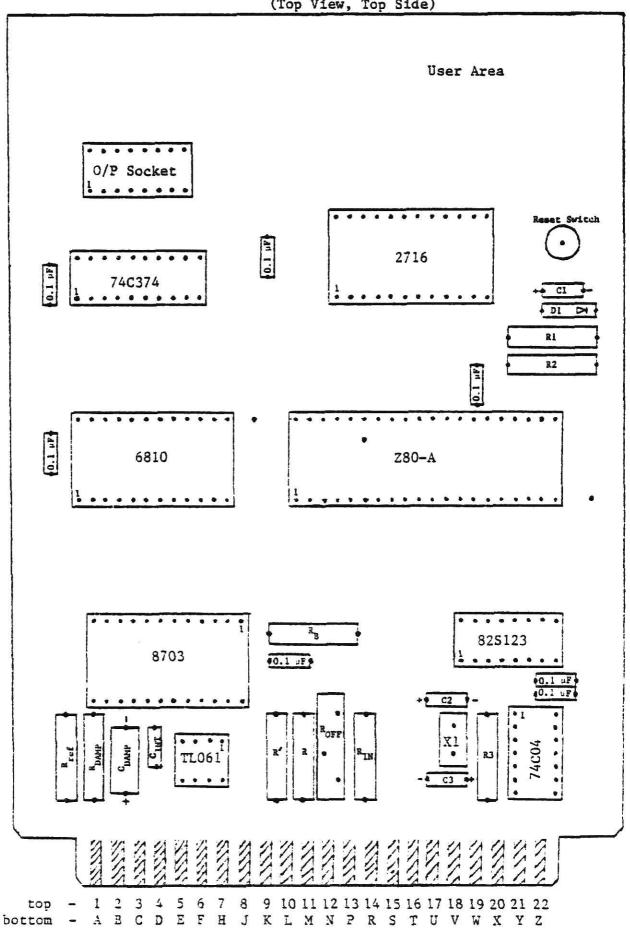
The three connections through the board where no components are placed were made first using bare wire-wrap wire.

Step 2:

Wire-wrap sockets were placed in their proper position about 1/4" above the component side of the board and were soldered to both sides of the board.

Step 3:

The discrete components were placed in position and soldered to both board sides.


Step 4:

The reset switch was mounted to the board and was connected via short lengths of wire-wrap wire to the two sides of capacitor Cl.

Step 5:

The chips were placed in the sockets with pin 1 of each chip placed as is indicated by the markings on the board.

Figure 3.5. Printed Circuit Board Component Layout (Top View, Top Side)

bottom

Figure 3.6. Printed Circuit Board Artwork (Top View, Top Side)

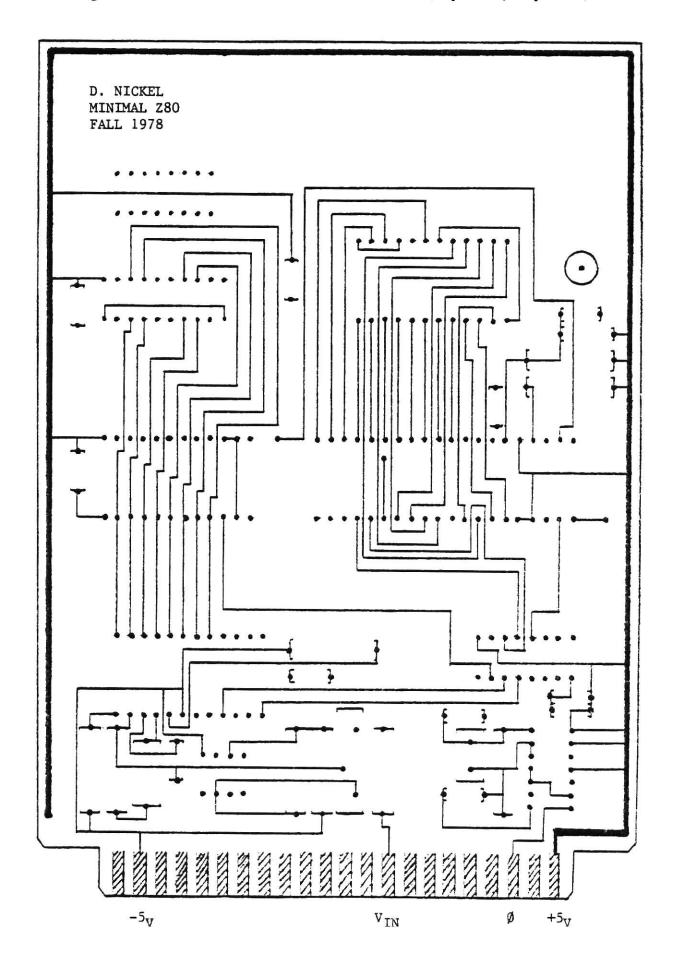


Figure 3.7. Printed Circuit Board Artwork (Top View, Bottom Side)

GND

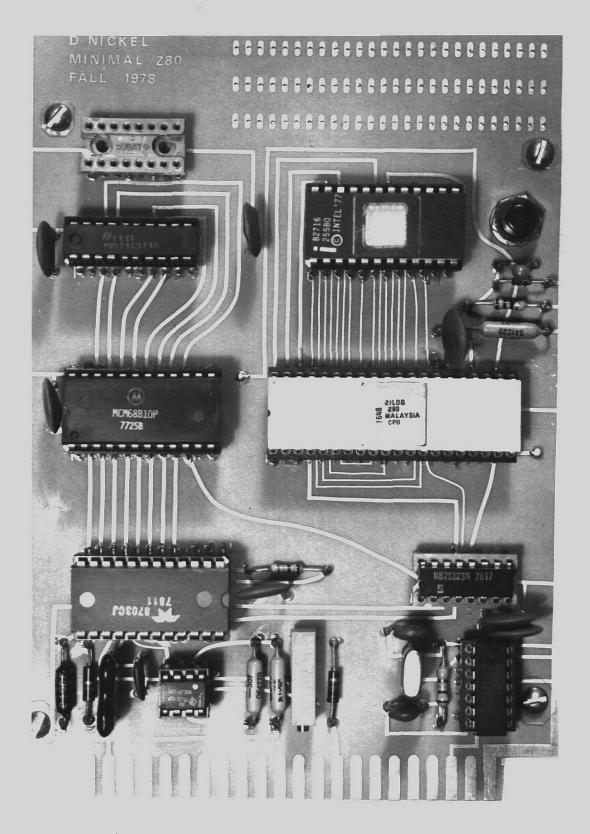


Figure 3.8. Completed Minimal Z80

CHAPTER IV

Z80 WIDROW ALGORITHM SOFTWARE

The algorithm which was implemented using the Z80 is the one described in Chapter II. At the time of the development of this program, the timing constraint required that the operation rate of the program needed to be at least 128 Hz.

The software implementation of the algorithm proved to be a rather demanding task for an 8-bit microprocessor. In order to maintain sufficient accuracy in the various filtering operations with a fixed-point implementation, 16-bit arguments and arithmetic operations were desired throughout the program. Included in the program were thirty-three signed multiplications and many other arithmetic operations. Therefore, the single biggest problem became that of developing a method of performing thirty-three 16-bit signed multiplies in less than seven milliseconds. Since no software method of doing this could be found, and since the use of an external hardware multiplier implied a significantly greater total system cost and power consumption, the use of signed 16-bit multiplies became impractical. Consequently, an 8-bit software signed multiply routine was used which operated on the most significant bytes of the two 16-bit arguments to form a reasonable approximation to the actual product.

As in any fixed-point digital filter implementation, the inputs and filter coefficients needed to be scaled to avoid the possibility of over-flows. Thus the binary point was assumed to be to the left of the most significant bit of the 16-bit word and one arithmetic shift right was performed on the input samples to further limit the dynamic range of the arguments.

Figure 4.1 shows a software program flowchart which summarizes the necessary algorithm computations; the symbols are identified in Figure 2.1. Three sixteen member buffers, each containing 16-bit words and pointers to them must be maintained throughout the program.

The $\mathbf{F}_{\mathbf{M}}$ buffer contains the sixteen most current input samples. The buffer is circulating in the sense that a given element, say \mathbf{F}_{k-1} , becomes \mathbf{F}_{k-2} in the succeeding program iteration. As a result, either the entire buffer must be repositioned in memory every time a new sample is obtained, or a pointer to a specific sample, such as the single most recent sample, must be maintained and updated each time a new sample is read.

Sixteen filter coefficients or weights are stored in the ${\tt B}_{\!M}$ buffer. The values of the weights are recalculated during each program iteration. This buffer is not circulating.

The third buffer contains the most recent sixteen values of the error, $\mathbf{E}_{\mathbf{M}}$, which are computed by the program. Like the $\mathbf{F}_{\mathbf{M}}$ buffer, this is a circulating buffer.

The flowchart indicates one possible sequence of calculations for the algorithm. All the buffers are cleared during the initialization. This results in a slightly delayed output corresponding to a certain input, but this property of most digital filters is generally acceptable.

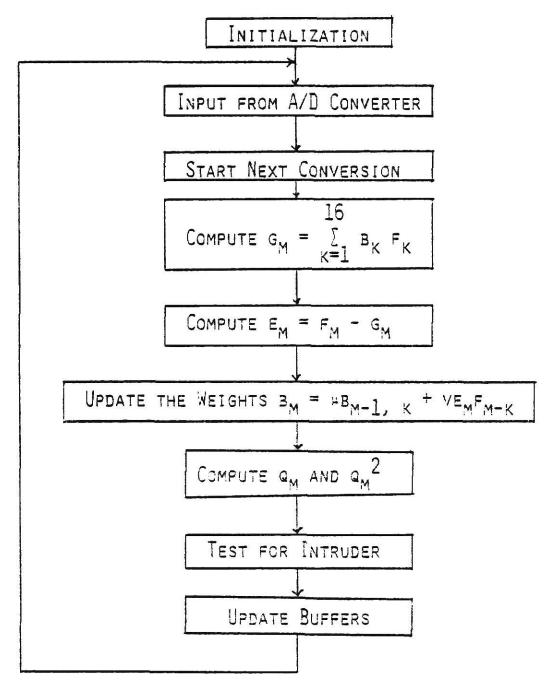


Figure 4.1. Z80 Program Flowchart

µ and V are constants,

K is the delay length,

B_K are the weights used

in the LMS Algorithm.

A new sample is read from the A/D converter at the start of the program. Immediately thereafter, a "start conversion" pulse is sent to the A/D converter to allow it to compute the next sample while the rest of the program is being executed.

The calculation of G_M , which is the output of Widrow's LMS routine, and of the error, E_M , represent the operation of the ADP. It is then convenient to update the B_M buffer by computing the new set of weights.

The final stage of the algorithm is the MAF which operates on the elements of the E_M buffer to form the output Q_M . This output is squared to yield an idea of the magnitude of the output. This magnitude is compared to a predetermined alarm threshold. If the output magnitude exceeds the threshold, an alarm occurs. After updating the buffers and pointers, the routine returns to input a new sample.

The total program length was approximately 300 bytes of code and the necessary data memory length was about 110 bytes. The program execution rate was above 130 Hz, which was faster than the specified requirements. A complete assembler program listing is given in Appendix 1. The timing analysis appears in Table 4.1.

Results

Data files made available by Sandia Laboratories were used to test the system. These files were stored in digital form in a Data General NOVA 1200 minicomputer. The files were output through a D/A converter by the NOVA to create the analog input for the Z80 system's A/D converter. The output of the algorithm computed by the Z80 was sent back to the NOVA for evaluation. The graphs shown in Figure 4.2 compare the input

Table 4.1. Z80 Program Timing

Routine	Time in microseconds	+	Multiply Times in microseconds	=	Total Time in microseconds	
Initialization	707.25	+	0.0	=	707.25	
Input from A/D	21.5	+	0.0	=	21.5	
Compute g	1107.25	+	16 x 147.25	=	3463.25	
Compute e _m	29.75	+	0.0	=	29.75	
Update the weights	1265.75	+	16 x 147.25	=	3621.75	
Compute q _m	50.75	+	1 x 147.25	=	198.0	
Block move of buffers	351.0	+	0.0	=	351.0	
Total Times (excluding Initialization	2826.0 on)	+	4859.25	=	7685.25	
Program execution rate ≅ 130 Hz.						

Note: These times were calculated for a Z80 CPU clock rate of 4.0 MHz.

data signal, which in this case consisted of an intruder signal in the presence of noise generated by heavy equipment, with the Z80 algorithm output. The negative peaks result from the use of an inverting D/A converter at the output of the Z80. It is obvious that the algorithm effectively separated the input data signal into two components and eliminated the random noise generated by the equipment.

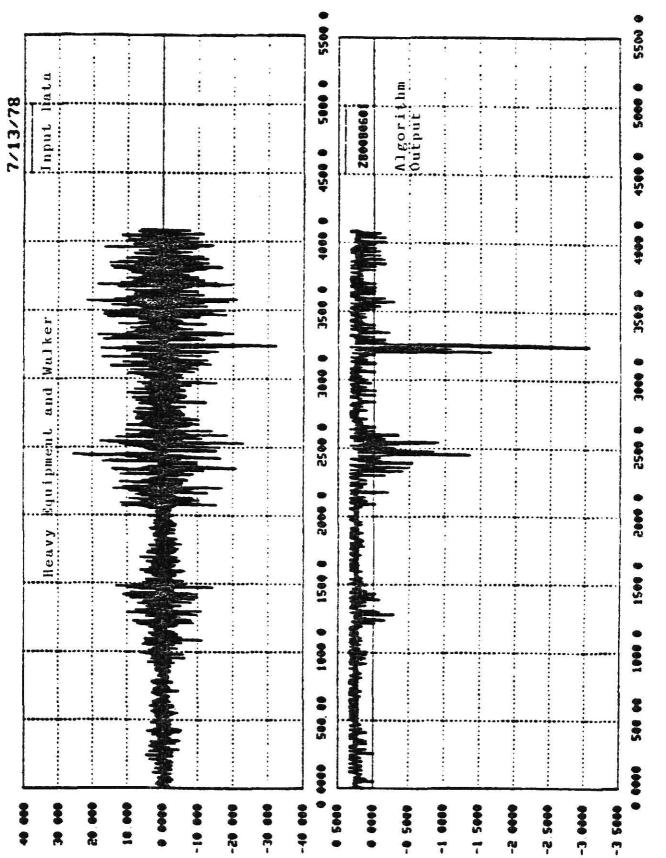


Figure 4,2

CHAPTER V

THE 8748 MICROPROCESSOR IMPLEMENTATION

The 8748 is a member of Intel's single chip microprocessor family [5]. Included on the CPU chip are 1k x 8 words of EPROM program memory, 64 x 8 words of RAM data memory, 27 lines of input/output functions, and an 8-bit timer/counter. A production version, the 8048, has mask programmable ROM in place of the EPROM program memory of the 8748. Since a development system was not available for program testing, the evaluation of the 8748 consisted of a paper study which included the development of untested software routines used in the implementation of the algorithm. The assumed system was an NMOS version of the 8748 operating with a 6 MHz crystal to yield 2.5 microsecond cycle times.

Like those used in the Z80 implementation, the software routines maintain all the elements of the buffers as 16-bit words. All of the necessary arithmetic operations are performed on 16-bit arguments except the multiply subroutine, which performs an 8-bit x 8-bit signed multiply on the most significant bytes of the two arguments and returns a 16-bit result.

There appears one major difference between the routines presented here and those written for the Z80. It is due to the modification of the algorithm discussed in Chapter II to include an Adaptive Threshold

Detection Routine (ATD). Figure 5.1 shows a block diagram of the ATD technique. The output value of $q_{\rm m}^2$ is compared with an average of previous outputs to test for an intruder.

Table 5.1 lists the software routine execution times. Obviously, the 80 Hz program operation rate is far short of the 128 Hz goal. However, selected CMOS devices at ten volts are capable of operating at more than twice their typical speed at five volts. Also, there is reason to believe that CMOS versions of the 8748 will be available in the near future. Thus a CMOS 8748 at ten volts could probably run one channel of the algorithm comfortably.

The instruction set of the 8748 lacks some important, often needed, instructions. Programming ease as well as program speed would be much improved if some of the following operations were added to the existing 8748 instruction set:

- 1. Binary or 2's complement multiply
- 2. Subtraction
- 3. Arithmetic shifts
- 4. Data transfers between registers
- Any 16-bit operations.

A further inconvenience resulted from the need for external RAM to supplement the internal RAM data memory.

Complete software program listings are given in Appendix 2. Also included are some comments on a possible system structure.

For this version of the algorithm, the program length was about 500 bytes of code. 500 bytes of RAM were also required for data memory.

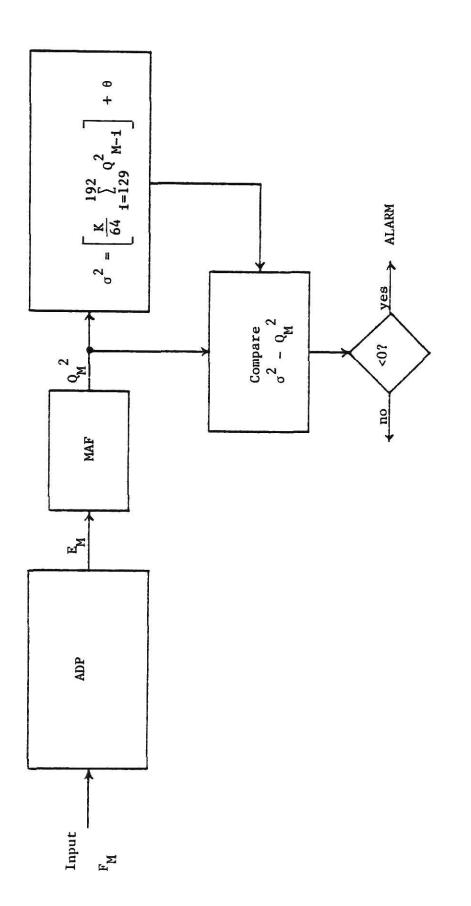


Figure 5.1. 8748 Algorithm Block Diagram

Table 5.1. 8748 Program Timing

Routine	Time in microseconds		Multiply Times in microseconds		Total Time in microseconds	
Initialization	6082.5	+	0.0	=	6082.5	
Input from A/D	77.5	+	0.0	=	77.5	
Compute g	1235.0	+	16 x 252.5	=	5275.0	
Compute e m	87.5	+	0.0	=	87.5	
Update the weights	2025.0	+	16 x 252.5	=	6065.0	
Compute q and q^2	135.0	+	1 x 252.5	=	387.5	
ATD	317.5	+	1 x 252.5	=	570.0	
Update F and E buffers	102.5	+	0.0	=	102.5	
Total	3980.0	+	8585.0	=	12565.0	
Program Execution Rate	Program Execution Rate ≅ 80 Hz					

All times are calculated for a 2.5 μsec cycle time. Totals do not include Initialization time.

CHAPTER VI

THE RCA ATMAC IMPLEMENTATION

Referring to the RCA ATMAC as a microprocessor stretches the meaning of the word considerably. The ATMAC is a CMOS/SOS, very low power device which is designed with an 8-bit-slice architecture that is meant to be used in high speed signal processing and array processing applications [6]. It has an excellent instruction set and, when combined with a hardware multiply and accumulate special function unit, is capable of very fast algorithm operation. Unfortunately, the capabilities of the ATMAC are currently more than matched by the system's cost and complexity.

The ATMAC CPU uses two 8-bit modular chip types, each of which is a 64-pin package. One is the Data Execution Unit. It contains eight general registers, performs the arithmetic and logic functions on the data, and supplies the operands for any Special Function Unit. The other chip is the Instruction and Operand Fetch Unit. It contains eight indirect address registers, the program sequence counter, and a four-word program counter stack. This study assumed the use of a 16-bit system which would require two of each of these CPU chips. Since four separate busses are provided for the program memory address and data lines and the data memory and input/output address and data lines, the ATMAC can execute one instruction while it is fetching the next. The result is a very fast processor with instruction execution times of 280 nanoseconds for short cycle instructions and 350 nanoseconds for long cycle instructions.

For machine configurations with data words of 16 bits or less, the minimum instruction word length is 24 bits [6]. Two types of instructions are used by the ATMAC. Type I instructions allow the contents of various registers to be used as operands, and Type II instructions specify an immediate operand. Since a total of four register operands as well as a processor mode control can be specified by one instruction, the ATMAC instruction set is very flexible and powerful. The disadvantage of this is that assembler program writing and reading is rather difficult and clearly understanding the operation of a program is not an easy task.

The algorithm used for the ATMAC implementation was somewhat different than those used in the previously discussed implementations. The ADP as was originally shown in Figure 2.1 was left unchanged. However, the MAF was eliminated, and a new version of the ATD was inserted. Figure 6.1 shows a block diagram of the revised algorithm used here. In addition to the algorithm components shown in Figure 6.1, a low pass digital filter was included at the point of sample input. This filter and the routine to input a sample from an A/D converter were omitted from this study. Also changed from the original algorithm was the required speed of operation. It was decided that program operation rates of 32 Hz or less were adequate.

Table 6.1 lists the timing of the software routines. The 11.5 kHz operation rate indicates that the ATMAC is indeed an extremely fast processor. Even faster times could probably be achieved, but their value would be minimal for this application. The ATMAC would be most valuable for applications requiring much faster speeds than this algorithm needs such as real time speech processing or array processing.

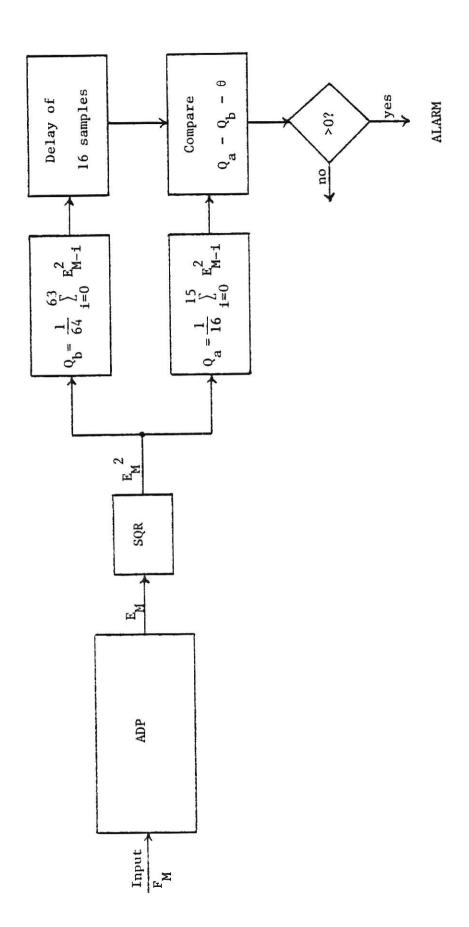


Figure 6.1. ATMAC Algorithm Block Diagram

The complete software routines and supporting documentation appear in Appendix 3. None of the routines have been tested. They were written only for the purpose of evaluating the capabilities of the ATMAC with respect to this application.

Table 6.1. ATMAC Program Timing

	Program Routine	Execution Time(microseconds)
1.	Initialization	42.77
2.	Input from A/D (estimate)	1.00
3.	Compute g	11.90
4.	Compute e m	0.56
5.	Update the weights	39.69
6.	Adaptive Threshold Detection	6.02
7.	Update buffers	23.03
8.	Digital Filter and other I/O Routines not included	5.00

Total Program Time (without Initialization Routine) is,

T = 87.20 microseconds

Program Operation Rate is,

 $1/T \approx 11.5 \text{ kHz}$

Note: These times were calculated as follows:
short cycle instruction time = 280 nsec.
long cycle instruction time = 350 nsec.

CHAPTER VII

COMPARISON OF THE VARIOUS IMPLEMENTATIONS

Having thoroughly studied three possible algorithm implementations, it is useful to form some ideas about how they compare with each other. However, since the 8748, Z80, and ATMAC represent a full range of microprocessor sophistication levels, comparisons are hard to make. For instance, all three of the devices have many advantages with respect to the type of tasks they were designed to perform. Yet the ATMAC and 8748 fall on opposite ends of the spectrum of available microprocessor systems in terms of cost, complexity, and capability while the Z80 falls somewhere in the middle of that spectrum. In this chapter, some ideas regarding the merit of the respective implementations will be formed based on various attributes of the microprocessors. Some of the criteria used will be deterministic and fixed while others will be subjective in nature and will to a large extent reflect the opinions of the author.

The 8748 has several nice features. It was designed to simplify many microprocessor system designs by including program and data memory on the chip. A CMOS version would allow operation at ten volts and thus all of the advantages of CMOS, including very low power consumption and good noise immunity as well as the potential for sufficient program operation speeds, would add to the attractiveness of the 8748.

The 8748 suffers from a number of disadvantages. The intended system simplicity limits the ability of the device to perform programs which require more data or program memory than is available internally. The instruction set is not as complete or versatile as one would desire. This results in more lengthy programs which are not always easily understood. It also restricts the ease of data flow to and from external memory.

An implementation based on the 8748 would use a very simple hardware configuration. It would include a minimum number of chips and would be easy and relatively inexpensive to build. The software limitations, however, would become annoying if many program changes were necessary.

Initially, the major disadvantages of the Z80 implementation seemed to stem from the fact that an NMOS version of this 8-bit microprocessor at five volts lacked the necessary speed to perform an algorithm which required the use of 16-bit operands and that it consumed a significant amount of power. However, since National Semiconductor recently began to produce CMOS versions of the Z80, the problem of power consumption has been eliminated, and the speed of the device can probably be improved.

The Z80 is a very capable 8-bit microprocessor. It has the advantage of an excellent instruction set. The problem of implementing an algorithm which requires the use of 16-bit operands is greatly reduced by the many 16-bit operations included in the Z80's instruction set. The only serious problem remaining is due to the lack of a multiply instruction. The need to call a multiply subroutine repeatedly throughout the program limits the possible operation speed of the program, but sufficient speeds can still be achieved for this algorithm. In general, the software capabilities of the Z80 are much better than those of the 8748.

The minimal Z80 hardware system described in Chapter III illustrates the simplicity of a possible implementation as well as the relatively low cost of such a system. Although it is slightly more complex than a minimal 8748 system might be, the difference is insignificant compared to the advantage of the Z80's superior instruction set.

The ATMAC is in a class of its own at the top end of the microprocessor spectrum. Its CMOS/SOS construction yields extremely fast program execution speeds and requires only a small amount of power. In no way does it have difficulty meeting the requirements of the algorithm. The instruction set is excellent and is very well suited to signal processing applications.

Unfortunately, the few disadvantages that the ATMAC does have are very major. A fairly high degree of system complexity is expected for a device of this nature and in this case the system complexity is not out of line with the capabilities of the ATMAC. A more severe problem comes from the fact that the ATMAC is not a particularly friendly microprocessor. The long instruction word includes fields to specify several variations for any instruction and thus makes the interpretation of a program quite difficult. Again, this problem is not out of line with the capabilities of the ATMAC and to some extent it is an expected problem. The biggest disadvantage of the ATMAC is its cost, which currently is excessive even for a microprocessor with its ability.

CHAPTER VIII

CONCLUSIONS

It is the opinion of the author that none of the implementations described here make use of the available microprocessors which would be most closely matched to the task of implementing this algorithm. The excessive overkill capabilities of the ATMAC would be an advantage and would allow a great deal of flexibility in future algorithm modifications. The ATMAC's present cost, however, is too high to justify its use for this particular algorithm.

CMOS versions of the 8748 and of the Z80 would both be capable of implementing the algorithm. The hardware systems would take on slightly different appearances due to their architectures and would vary somewhat in terms of cost. These differences would probably not be significant. Therefore, the Z80, due to its superior instruction set and operation speed, would seem to be the most practical implementation of the three described in this report. At lower speeds, the Z80 could perform 16-bit x 16-bit multiplies in addition to performing all of the other necessary 16-bit arithmetic and logic operations. Although this would not be an ideal solution to the implementation of this algorithm, it would be a reasonable one.

ACKNOWLEDGEMENTS

This work was sponsored and funded by the Base and Installation
Security Systems Programs Office, Electronics Systems Division of the
Air Force Systems Command, Hanscom Air Force Base, MA 01731.

The author would like to thank Sandia Laboratories for their support of this project. Appreciation is also due to Dr. N. Ahmed and to Dr. D. H. Lenhert, who served as committee members. Finally, the author would like to express sincere thanks to Dr. M.S.P. Lucas who served as the author's major advisor and provided a great deal of assistance.

REFERENCES

- 1. N. Ahmed, On Intrusion-Detection via Adaptive Prediction, SAND77-1591, Sandia Laboratories, Albuquerque, NM, April 1978.
- 2. B. Widrow, et al., "Stationary and Nonstationary Learning Characteristics of the Adaptive LMS Filter," <u>Proc. IEEE</u>, Vol. 64, p. 1151, August 1976.
- 3. "Z80-Assembly Language Programming Manual," Zilog Corporation.
- 4. "Z80-CPU Technical Manual," Zilog Corporation.
- 5. "MCS-48 Microcomputer User's Manual," Intel Corporation.
- 6. "ATMAC Programmer's Reference Manual," RCA Advanced Technology Laboratories, Camden, NJ.

APPENDIX 1
Z80 WIDROW ALGORITHM ASSEMBLER PROGRAM

Memory Organization:

Location	Contents	Location	Contents	
4000 HEX	f _{m-16} L.O.	4Ø42	e _{m-16} L.O.	_
4001	f _{m-16} H.O.	4Ø43	e _{m-16} H.O.	_
4002	f _{m-15} L.O.	4Ø44	e _{m-15} L.O.	
4003	f _{m-15} H.O.	4Ø45	e _{m-15} H.O.	_
:	•	:	•	
401E	f _{m-1} L.O.	4Ø6Ø	e _{m-1} L.O.	_
401F	f _{m-1} H.O.	4Ø61	e _{m-1} H.O.	
4020	f _m L.O.	4Ø62	e L.O.	_
4021	f _m H.O.	4Ø63	e _m H.O.	
4022	b _{m,16} L.O.	4Ø64	g(1.s.b.)L.0.	_
4023	b _{m,16} H.O.	4Ø65	g(1.s.b.)H.O.	
4024	b _{m,15} L.O.	4Ø66	g(m.s.b.)L.0.	
4025	b _{m,15} H.O.	4Ø67	g(m.s.b.)H.O.	_
:	:	4Ø68	q _m L.O.	-
:	•	4Ø69	q_ H.O.	-
4040	b _{m,1} L.O.	4Ø6A	Ve L.O.	-
4041	b _{m,1} H.O.	4Ø6B	Ve _m H.O.	_

Note: The F buffer and the E buffer are circulating buffers. However, rather than maintaining circulating pointers to these buffers, they are updated each program iteration by block moves.

Multiply Subroutine

Note: This subroutine performs an 8-bit x 8-bit signed multiply of the contents of registers D and H. The result is returned in register pair HL with DE = 0000. This routine uses the FUDGE method.

	Location	Instruction	Code	Comments
	Ø2ØØH	LD E,H	5C	D=MPX ,E=MPY
	1	XOR A	AF	clear A
	2	LD H, A	67	clear H
	3	LD L,A	6F	clear L
	4	LD C,A	4F	clear C
	5	LD B, Ø8	Ø 6	B=iteration counter
	6	5 .3	Ø8	
	7	BIT 7,D	CB	test sign of MPX
	8		7A	
	9	JR NZ, ADJ1	2 Ø	if negative, go to
	A		18	ADJ1, else, continue
RET1	В	BIT 7,E	СВ	test sign of MPY
	С		7B	-
	D	JR NZ,ADJ2	20	if negative, go to
	E		18	ADJ2, else, continue
RET2	F	SRL D	CB	shift right logical
	10		3A	MPX
	1	JR NC, SKIP	3Ø	test 1.s.b. of MPX
	2		Ø3	if Ø, go to SKIP
	3	LD A,H	7C	else, add MPY to
	4	ADD E	83	high part of the
	5	LD H,A	67	result
SKIP	6	RR H	CB	shift right HL
	7		1C	
	8	RR L	CB	
	9		1D	
	A	DJNZ,e	1Ø	decrement iteration
	В		F3	counter and repeat if $> \emptyset$
	C	LD A, H	7C	subtract contents
	D	SUB C	91	of FUDGE register
	E	LD H,A	67	from high part of result
	F	XOR A	\mathbf{AF}	
	2 ø	LD D,A	57	clear DE
	1	LD E,A	5 F	
31.100.0 (dags)	2	RET	C9	return to calling program
ADJ1	3	LD A,E	7B	e salv associations on a
	4	LD C,E	4B	if MPX < Ø, add
	5	JR RET1	18	MPY to FUDGE
	6		E4	
ADJ2	7	ADD D	82	if MPY < Ø, add
	8	LD C,A	4F	MPX to FUDGE
	9	JR RET2	18	
	Ø22A		E4	

Initialization

This routine clears the buffer contents in memory. The program execution begins here at location 0000.

Location	Instruction	Code	Comments
ØØØИ 1	LD B,n	Ø6 6C	set up iteration counter
2	XOR A	AF	clear A
3	LD HL, nn	21	load HL with
4		6B	memory pointer
5		40	
6	LD (HL),A	77	clear memory byte
7	DEC HL	2B	decrement HL
8	DJNZ,e	10	decrement iteration counter
9		FC	and repeat if $> \emptyset$

Input from A/D Converter

This routine inputs the new sample from the A/D converter as is explained in Chapter III. This input is scaled by an arithmetic shift right and is stored in memory.

Location	Instruction	Code	Comments
ØØØAH	XOR A	AF	clear A
В	LD L,A	6 F	clear L
C	LD A, (nn)	3A	input sample
D		ØØ	from A/D
E		CØ	
F	LD B,A	47	B = sample
1Ø	LD A, (nn)	3A	start the next
1		ØØ	conversion
2		80	
3	LD A,n	3E	A = mask
4		8Ø	convert sample to
5	XOR B	A8	2's complement form
6	LD H,A	67	H = sample
7	SRA H	CB	scale sample
8		2C	by arithmetically
9	RR L	CB	shifting right HL
A		1D	
В	LD (nn),HL	22	store f_{m} in memory
C		2 ø	ш
ØØlD		4 Ø	

Compute $g = \sum_{k=1}^{16} f_{m-k} b_{m,k}$

Location	Instruction	Code	Comments
ØØ1E F 2Ø	LD HL,nn	21 ØØ ØØ	clear HL
1 2 3	LD (nn),HL	22 64 4 ø	clear low order 16 bits of g
4 5 6	LD (nn),HL	22 66 4 Ø	clear high order 16 bits of g
7 8 9	LD IX,nn	DD 21 22	load index register X with address of L.O. byte of b m,16
A B C D	LD IY,nn	4Ø FD 21 ØØ	load index register Y with address of L.O. byte of f m-16
E F 3Ø	LD B,n	4Ø Ø6 1Ø	set up iteration counter
1 2 3	LD L,(IX+D)	DD 6E ØØ	HL = bm,k
4 5 6	LD H, (IX+D)	DD 66 Ø1	
7 8	LD E,(IY+D)	FD 5E	DV - 5
9 A B	LD D,(IY+D)	ØØ FD 56	$DE = f_{m-k}$
C D E F 4Ø	PUSH BC CALL	Ø1 C5 CD ØØ Ø2	save the counter call multiply subroutine
1 2 3	INC IX	DD 23 DD	increment buffer pointer
4 5 6 7	INC IY	23 FD 23 FD	increment buffer pointer
ØØ48	AND THE STREET	23	

Location	Instruction	Code	Comments
ØØ49	LD BC, (nn)	ED	load BC with L.O.
A		4B	16 bits of g
В		64	
C		4 Ø	
D	EX DE, HL	EB	update L.O. 16 bits
E	ADD HL,BC	Ø9	of g and store
F	LD (nn), HL	22	in memory
5Ø		64	
1		4 Ø	
2	EX DE, HL	EB	
3	LD BC, (nn)	ED	load BC with H.O.
4		4B	16 bits of g
5		6 6	, - ,
6		40	
7	ADC HL, BC	ED	update H.O. 16 bits
8		4A	of g and store
9	LD (nn), HL	22	in memory
A		66	•
В		4Ø	
С	POP BC	C1	retrieve counter
D	DJNZ,e	10	decrement counter and
ØØ5E	9 • •	D2	repeat if > Ø

Compute $e_m = f_m - g$

Note: Enter this routine with HL = g (H.O. 16 bits).

Location	Instruction	Code	Comments
ØØ5F	EX DE, HL	EB	DE = g (H.O. 16 bits)
6Ø	LD HL, (nn)	2A	
1		2Ø	$HL = f_{m}$
1 2 3		4 Ø	
3	XOR A	AF	clear A, clear carry
4	SBC HL, DE	ED	$HL = f_m - g = e_m$
5		52	ш
6	SRA H	CB	
4 5 6 7		2C	
8	RR L	CB	
9		1D	
A	SRA H	CB	4
В		2C	divide by 2 ⁴
C	RR L	CB	to form
D		1D	$HL = e_{\underline{m}}/2^4$
E	SRA H	CB	ш
F		2C	
7Ø	RR L	CB	
		1D	
2	SRA H	CB	
1 2 3 4 5 6		2C	
4	RR L	CB	
5		1D	
	LD (nn),HL	22	store $e_m/2^4$ in memory
7	one 30 000	62	ш
ØØ78		4Ø	

Update the Weights $b_{m+1,k} = ub_{m,k} + Ve_{m} f_{m-k}$

Note: Enter this routine with $Ve_m = e_m/2^4$ in HL.

Location	Instruction	Code	Comments
ØØ 79	LD IX,nn	DD	load index register X
A		21	with the address of
В		22	the L.O. byte of b m,16
C		40	
D	LD IY, nn	FD	load index register Y
E		21	with the address of
F		ØØ	the L.O. byte of f
8Ø	TD / - \ 17	4Ø	
1	LD (nn),HL	22	store ${ t Ve}_{ t m}$ in memory
2		6A	
3	TD D	40	
4 5	LD B,n	Ø6 1Ø	set up iteration counter
6	PUSH BC	C5	come country
7	LD HL, (nn)	2A	save counter HL = Ve
8	(سا) وساء سا	6A	m - ve
9		4Ø	
Ā	LD E, (IY+D)	FD	
В	25 2, (22.5)	5E	$DE = f_{m-k}$
Č		ØØ	m-k
D	LD D, (IY+D)	FD	
E		56	
F		Ø1	
9 ø	CALL	CD	call multiply subroutine
1		ØØ	• •
2		Ø 2	
3	LD E, (IX+D)	DD	
4		5E	
5		ØØ	$DE = b_{m,k}$
6	LD D, (IX+D)	DD	ш, к
7		56	
8		Ø1	
9	EX DE, HL	EB	. 10
A	LD B,H	44	form $b_{m,k}/2^{10}$
В	LD C,H	4C	m, K
C	SRA C	CB	
D	CD 4 C	29	
E	SRA C	CB	
ØØ9F		29	

Location	Instruction	Code	Comments
ØØAØ	XOR A	AF	clear A
N 800 US	RL B	CB	rotate m.s.b. into
2		10	carry
1 2 3	JR NC,e	3Ø	fill B with sign
4	% 	Ø1	bit
5	CPL A	2F	
6	LD B,A	47	
7	XOR A	AF	clear A
8	SBC HL, BC	ED	$HL = ub_{-1}$
9		42	$= b_{m,k} (1 - 2^{10})$
A	ADD HL, DE	ED	ш — h
В	AND THE SERVICE OF PROPERTY	5A	$m = b_{m+1,k}$
С	LD (IX+D),L	DD	store updated
D	3 5.53	75	b _{m+1,k} in memory
E		ØØ	m+1,K
F	LD (IX+D),H	DD	
ВØ	3 55	74	
1		Ø1	
2	INC IX	DD	increment pointers
3		23	•
3 4	INC IX	DD	
5		23	
6	INC IY	FD	
7		23	
8	INC IY	FD	
9		23	
A	POP BC	C1	retrieve counter
В	DJNZ,e	10	decrement counter and
ØØBC	5,	C9	repeat if > Ø

Compute $q_m = \frac{1}{16} \sum_{k=1}^{16} e_{m-k}$

Location	Instruction	Code	Comments
ØØBD	LD HL, (nn)	2A	$HL = e_{m-16}/16$
E	000 00 00 00 00 00 00 00 00 00 00 00 00	42	m-10
F		40	
CØ	EX DE, HL	EB	exchange DE and HL
1	LD HL, (nn)	2A	perfective of the contract of
2		62	$HL = e_m/16$
3		4Ø	II .
4	XOR A	AF	clear A, clear carry
5	SBC HL, DE	ED	$HL = (e_m - e_{m-16})/16$
6		52	m m-10
7	EX DE, HL	EB	exchange DE and HL
8	LD HL, (nn)	2A	
9		68	HL = old q _m
A		4Ø	.
В	ADD HL, DE	19	HL = new q _m
С	LD (nn), HL	22	store new value of
D		68	q_{m} in memory
E		4Ø	1
F	LD D,H	54	$DE = HL = q_{m}$
DØ	LD E,L	5D	ш
1	CALL	CD	call multiply subroutine
2		ØØ	form $q_m^2/16^2$
3		Ø 2	TIL.
4	SLA L	CB	
5	*	25	
6	RL H	CB	
7		14	
8	SLA L	CB	
9		25	multiply by 16
A	RL H	CB	to form
В		14	$HL = q_m^2/16$
C	SLA L	CB	'm'
D		25	
E	RL H	CB	
F		14	
EØ	SLA L	CB	
1		25	
2	RL H	CB	
3		14	
4	LD A,H	7C	output result to
5	OUT [n],A	D3	output port
ØØE6		ØØ	

NOTE:

The information at the output port can be used as an input to a D/A converter to obtain the algorithm output. This is the quantity which was plotted in the results given in Chapter IV.

Block move of E and F buffers

Location	Instruction	Code	Comments
ØØE7 8 9	LD DE, nn	11 42 4 0	load target address
A B C	LD HL,nn	21 44 4ø	load source address
D E F	LD BC,nn	Ø1 2Ø ØØ	load number of bytes to be moved
FØ 1	LDIR	ED BØ	block move of E buffer
2 3 4	LD DE, nn	11 ØØ 4Ø	load target address
5 6 7	LD HL,nn	21 Ø2 4Ø	load source address
8 9 A	LD BC,nn	Ø1 2Ø ØØ	load number of bytes to be moved
B C	LDIR	ED BØ	block move of F buffer
d E ØØFF	JP nn	C3 ØA ØØ	jump to Input from A/D Routine

APPENDIX 2

8748 WIDROW ALGORITHM SYSTEM ORGANIZATION

The 1k x 8 internal ROM program memory is more than enough for this program. Some care must be taken to place the routines in memory so that the conditional jumps are to a location on the same page.

The internal 64 bytes of RAM are not enough to contain the buffers.

512 bytes of external RAM are organized as two 256 byte pages. A bit of

Port 1 is used to select the page and the 8 bit BUS is used for address

and data transfer.

Only the T buffer uses page 1, so user flags F0 and F1 are used to remember the page that T buffer pointers TLPTR and TLPTR+64 are currently pointing to. All other buffer pointers refer to page 0.

I/O Port 2 is used to input from the A/D converter, and I/O Port 1 is used for control.

Bit 0 - external RAM page select
Bit 1 - ALARM
Bit 2 - control to A/D, D/A
Bit 3 - control to A/D, D/A

The internal timer is used to maintain constant program speed.

Internal RAM

Bank O registers are selected on reset.

2E H 2F H

3F		
20 1F	R7'	User RAM
18 17	R1' R0'	Bank 1 registers
		Stack
08	R7	
07	K/	Bank O registers
00	R1 R0	
Location	Contents	
20 H	FLPTR	points to f (m-16)
21 H	ELPTR	points to e (m-16)
22 H	f _(m) (H.O.)	new sample from A/D
23 H	f _(m) (L.O.)	
24 H	e _(m) (H.O.)	f _(m) - g
25 H	e _(m) (L.O.)	f _(m) - g
26 H	g (H.O.)	
27 H	g (L.O.)	
28 H 29 H	g (L.0.) q/2 ⁴ (H.0.) q/2 ⁴ (L.0.)	sum of elements of E buffer
2A H	$q^2/2^4$ (H.O.)	n odilei
2B H	q ² /2 ⁴ (L.O.)	
26 H	TLPTR	points to t (m-192)
2D H	TLPTR+64	points to t (m-128)
25 11	CIDY (H O)	(m-128)

SUM (H.O.) sum of oldest 64 elements SUM (L.O.) of T buffer

External RAM

Page 0

00	f _(m-16) (H.O.)	
01	f _(m-16) (L.O.)	
	:	F buffer
		circulating
1E	f _(m-1) (H.O.)	
1F	f _(m-1) (L.0.)	
20	b _(m,16) (H.O.)	
21	b _(m,16) (L.0.)	
	:	B buffer non-circulating
	•	non-circulating
3E	b(m,1) (H.O.)	
3 F	b(m,1) (L.U.)	
40	e _(m-16) (H.U.)	
41	e _(m-16) (L.O.)	
	:	E buffer
	*	circulating
5E	e _(m-1) (H.O.)	and the state of t
5F	e _(m-1) (L.0.)	
60	t _(m-192) (H.O.)	
61	t _(m-192) (L.O.)	
	•	T buffer
	: -	circulating
FE	t (m-113) (H.O.)	
FF	t _(m-113) (L.O.)	
	Page 1	
00	t(m-112) (H.O.)	
01	t _(m-112) (L.O.)	
	•	T buffer
	•	(cont.)
DE	t _(m-1) (H.O.)	
DF	t _(m-1) (L.O.)	

8748 Widrow Algorithm Program

8-bit x 8-bit signed multiply

This routine is called by the standard subroutine CALL command. Call this subroutine with R2 = MPX and R3 = MPY. The result is returned in A (H.O.) and R2 (L.O.).

R4 = counter R5 = FUDGE

Ø5Ø	MLT	MOV	R5,#ØØ	BD	clear FUDGE
1				ØØ	
2		MOV	A,R2	FA	A = MPX
3		JB7	FIX1	F2	test sign, if neg.
4				5A	go to FIX1
5	TEST	MOV	A,R3	FB	A = MPY
6		JB7	FIX2	F2	test sign, if neg.
7				5E	go to FIX2
8		JMP	GO	Ø4	if pos., go to GO
9				61	
A	FIX1	MOV	A,R3	FB	if MPX is neg.,
В		MOV	R5,A	AD	add MPY to FUDGE
C		JMP	TEST	Ø4	
D				55	
E	FIX2	MOV	A,R5	FD	if MPY is neg.,
F		ADD	A,R2	6A	add MPX to FUDGE
6 Ø		MOV	R5,A	AD	
1	GO	MOV	R4,#Ø8	BC	initialize counter
2				Ø8	
3		CLR	A	27	clear A
4		CLR	С	97	clear carry bit
5	MLOOP	RRC	A	67	rotate right A
6		XCH	A,R2	2A	and R2
7		RRC	A	67	carry = bit shifted
8		XCH	A,R2	2A	out of MPX
9		JNC	MCONT	E6	if no carry, go to
A				6C	MCONT
В		ADD	A,R3	6B	if carry, add MPY
C	MCONT	DJNZ	R4,MLOOP	EC	to A
D				65	decrement and repeat until
					counter = 0
E		RRC	A	67	rotate right
F		XCH	A,R2	2A	A and R2
70		RRC	A	67	
1		XCH	A,R2	2A	
2		XCH	A,R5	2D	subtract FUDGE
3		CPL	A	37	from high
4		INC	A	17	part of
5		ADD	A,R5	6D	result
Ø76		RET		83	return to calling program

Total number of cycles = 101 Time at 2.5 µsec/cycle = 252.5 µsec.

Initialization

This routine clears all external RAM buffer locations and initializes all pointers and flags used by the program.

ØD8	INIT	VOM	RØ,#2Ø	В8	$R\emptyset$ = location of
9				2Ø	FLPTR
A		CLR	A	27	
В		MOV	@RØ,A	ΑØ	set FLPTR = Ø
C		INC	RØ	18	$R\emptyset = location of$
D		MOV	A,#4Ø	23	ELPTR
E			,	40	
F		MOV	@RØ,A	AØ	set ELPTR = 40
ΕØ		MOV	RØ,#2C	B8	RØ = location of
1			, ,	2C	TLPTR
2		MOV	A,#6Ø	23	220 244
3		110 1	11, 11 0 p	6Ø	
4		MOV	@RØ,A	AØ	set TLPTR = 60
5		INC	RØ	18	$R\emptyset = \text{location of}$
6		MOV	A,#9E	23	TLPTR+64
7		MOV	A, If JE	9E	THE INTO
8		MOV	and A	AØ	set TLPTR+64 = 9E
			@RØ,A		
9		CLR	FØ	85	clear FØ
A		CLR	F1	A5	clear F1
В		CLR	A	27	clear A
C		MOV	RØ,A	A8	clear RØ
D		MOV	R7,#ØØ	BF	set counter = 00
E			"	ØØ	
F		ANL	P1,#FE	99	select external
FØ			a_ a .	FE	RAM page Ø
1	ICONT	XVOM	@RØ,A	90	clear all of
2		INC	RØ	18	external RAM
3		DJNZ	R7, ICONT	EF	page Ø
4				F1	
5		ORL	P1,#Ø1	89	select external
6				Ø1	RAM page 1
7		CLR	A	27	clear A
8		VOM	RØ,A	A8	clear RØ
9		MOV	R7,#EØ	BF	set counter = $E\emptyset$
\mathbf{A}				EØ	
В	ICONT2	MOVX	@RØ,A	9Ø	clear locations
C		INC	RØ	18	ØØ to DF in
D		DJNZ	R7, ICONT2	EF	external RAM
E				FB	page 1
ØFF		OUTL	P1,A	39	output 00 to page 1,
					sets ALARM = \emptyset , selects
					external RAM page Ø

Total number of cycles = 2433 Time at 2.5 µsec/cycle = 6082.5 µsec

Input from A/D

This routine controls the internal timer and inputs the samples from the A/D converter. It also stores the new sample at a temporary location in internal RAM. This routine was written for the 8-bit Teledyne 8700 A/D converter.

100	AD	STOP	T	65	stop timer
1		MOV	A,#	23	load timer with
2					the desired
3		VOM	T,A	62	constant
4		STRT	T	45	start timer
5		MOV	R2,#ØØ	BA	clear R2
6			# # # # # # # # # # # # # # # # # # #	ØØ	
7		IN	A,P2	ØA	input sample
8		ORL	P1,#Ø4	89	output control
9				Ø 4	pulse to start
A		XRL	A,#8Ø	D3	next conversion
В			-	8Ø	convert offset
C		RRC	A	67	binary to 2's comp.
D		XCH	A,R2	2A	•
E		RRC	A	67	
F		XCH	A, R2	2A	arithmetic shift
10		JB6	SET7	D2	right A
				16	and R2
1 2 3		ANL	A,#7F	53	
3				7 F	
4		JMP	NCONT	24	
5				18	
6	SET7	ORL	A,#8Ø	43	
7				8Ø	
8	NCONT	VOM	RØ,#22	В8	store sample
9				22	at internal
A		VOM	@RØ,A	AØ	locations 22
В		INC	RØ	18	and 23
C		XCH	A,R2	2A	
D		MOV	@RØ,A	AØ	
E		ANL	P1,#FB	99	output control
11F				FB	pulse to A/D

Total number of cycles = 31 Time at 2.5 µsec/cycle = 77.5 µsec

Calculation of
$$g = \sum_{k=1}^{16} b_{(m,k)} f_{(m-k)}$$

This routine calculates g. The b's and f's are in external RAM page 0. The result is stored in internal RAM.

12				8	
12Ø		CLR	A	27	clear A
1		MOV	RØ,#26	B8	$R\emptyset$ = location of
2 3 4 5 6 7 8				26	g (H.O.)
3		MOV	#RØ,A	AØ	clear g (H.O.)
4		INC	RØ	18	
5		MOV	@RØ,A	ΑØ	clear g (L.O.)
6		VOM	RØ,#2Ø	В8	$R\emptyset = location of$
7				2 Ø	FLPTR
		MOV	A,@RØ	FØ	A = FLPTR
9		MOV	RØ,A	A8	$R\emptyset = \text{location of } f_{(m-16)}$
A		MOV	R1,#2Ø	В9	(n.u.)
В				2 ø	R1 = location of b $(m,16)$
C		MOV	R7,#1Ø	BF	(H.O.)
D				10	R7 = loop counter
E	GLOOP	MOVX	A, @RØ	8 ø	$A = f_{(m-k)} (H.O.)$
F		MOA	R2,A	AA	$R2 = f_{(m-k)} (H.0.)$
3Ø		MOVX	A,@R1	81	$A = b_{(m,k)} (H.0.)$
1		MOV	R3,A	AB	$R3 = b_{(m,k)}$ (H.O.)
2		CALL	MLT	14	call multiply
3				5Ø	subroutine
3 4 5 6		MOV	R3,A	AB	R3 = result (H.O.)
5		VOM	A, ŔØ	F8	A = location of f
6		INC	A	17	(H.O.)
7		INC	A	17	update f (m-k) pointer
8		ANL	A,#1F	53	(m-k)
9			<i>5.</i> 1	1F	
A		MOV	R4,A	AC	save pointer
В		INC	R1	19	update b (m,k) pointer
C		INC	R1	19	(m,k)
D		MOV	RØ,#27	B8	$R\emptyset$ = location of
E				27	g (L.O.)
F		MOV	A, @RØ	FØ	8 (=101)
40		ADD	A,R2	6A	update g (L.O.)
1		MOV	@RØ,A	AØ	arease 8 (2101)
2		DEC	RØ	C8	$R\emptyset = location of g (H.O.)$
3		MOV	A, @RØ	ГØ	update g (H.O.)
4		ADDC	A,R3	7B	charge & (mos)
5		MOV	@RØ,A	ΑØ	
4 5 6 7		MOV	A,R4	FC	restore fnointer
7		MOV	RØ,A	A8	restore f (m-k) pointer to RØ
8		DJNZ	R7,GLOOP	EF	decrement R7 and branch to
149		20112	11, , 02001	2E	GLOOP if R7 ≠ Ø
,				~~~	OTOOL TT III P

Total number of cycles = 494 Time at 2.5 μ sec/cycle = 1235 μ sec (without multiplies)

Calculation of
$$e_{(m)} = f_{(m)} - g$$

This routine calculates $e_{(m)}$. To prevent overflows, $e_{(m)}$ is shifted right arithmetically 4 times to form $e_{(m)}/2^4$. The value $e_{(m)}/2^4$ is stored in internal RAM. Note that the elements of the E buffer in external RAM are of the form $e_{(m-k)}/2^4$. This is to prevent overflows when the sum q is formed. Also note that in updating the weights, $V = 2^{-4}$. This factor is taken care of by using $e_{(m)}/2^4$.

 $A = e_{(m)}/2^4$ (L.O.) and $R2 = e_{(m)}/2^4$ (H.O.). Exit this routine with RØ = location of f(m) RØ,#22 14A MOV **B8** B 22 A, @RØ $A = f_{(m)} (H.0.)$ C MOV FØ R2,A $R2 = f_{(m)} (H.0.)$ D MOV AA RØ increment RØ E INC 18 $A = f_{(m)} (L.0.)$ A, @RØ FØ F MOV RØ,#27 RØ = location of 5Ø MOV **B8** 27 1 g (L.O.) 2 CPL 37 3 ADD A, @RØ 60 16 bit subtract 4 to form CPL 37 5 DEC RØ **C8** $f_{(m)} - g$ 6 A,R2 XCH 2A 7 CPL 37 $A = e_{(m)}$ (H.O.) A, @RØ 8 ADDC 70 9 $R2 = e_{(m)} (L.0.)$ CPL 37 R1,#02 **B9** VOM R1 = pointer to R2 A 02 В exchange L.O. nibbles A, @R1 C XCHD 31 of A and R2 D XCH A,R2 2A exchange of A and R2 E SWAP 47 swap nibbles of A F A,R2 2A XCH exchange A and R2 60 47 SWAP swap nibbles of A 1 NEG 72 JB3 test sign bit 2 67 3 A,#ØF ANL 53 4 ØF fill top nibble 5 JMP SKIP 24 with sign bit 6 69 $A = e_{(m)}/2^4$ (H.O.) 7 A.#FØ ORL 43 NEG $R2 = e_{(m)}^{(m)}/2^4$ (L.O.) 8 FØ RØ = location of e (m) 9 RØ,#24 SKIP MOV **B8** (H.O.) store e_(m)/2⁴ (H.O.) A 24 @RØ.A AØ B MOV C INC RØ 18 store $e_{(m)}/2^4$ (L.0.) A,R2 D XCH 2A

AØ

Total number of cycles = 35 Time at 2.5 µsec/cycle = 87.5 µsec

@RØ.A

MOV

16E

Update the Weights:
$$b_{(m,k)} = \mu b_{(m-1,k)} + \nu e_{(m)} f_{(m-k)}$$

This routine updates the weights by forming the sum,

$$b_{(m,k)} = b_{(m-1,k)} - (2^{-10}) b_{(m-1,k)} + ve_{(m)} f_{(m-k)}$$

The constants are μ = $(1-2^{-10})$ and $v=2^{-4}$. Enter this routine with $A = ve_{(m)}$ (L.O.) and $R2 = ve_{(m)}$ (H.O.).

16F		MOV	RØ,#2Ø	В8	RØ = location of
7Ø				20	FLPTR
1		MOV	A, @RØ	FØ	A = FLPTR
2		MOV	RØ,A	A8	$R\emptyset = \text{location of } f_{(m-16)}$
			And the second		(m-16)
3		MOV	R1,#20	В9	R1 = location of b (m,16)
4				2Ø	
5		MOV	A,R2	FA	$A = ve_{(m)} (H.0.)$
6		MOV	R6,A	AE	$R6 = ve_{(m)}^{(m)}$ (H.O.)
7		MOV	R7,#1Ø	BF	R7 = loop counter
8			, , , _ ,	10	2007 000000
9	BLOOP	MOV	A,R6	FE	$A = ve_{(m)} (H.0.)$
Α		MOV	R2,A	AA	$R2 = ve_{(m)} (H.0.)$
В		XVOM	A, @RØ	8 ø	$A = f_{(m-k)}^{(m)} (H.0.)$
C		MOV	R3,A	AB	$R3 = f_{(m-k)}$ (H.O.)
D		CALL	MLT	14	call multiply
E		5		5Ø	subroutine
F		MOV	R3,A	AB	
			,		R3 = $ve_{(m)} f_{(m-k)}$ (H.O.)
8Ø		INC	R1	19	R1 = location of $b_{(m,k)}(L.0.)$
1		MOVX	A,@R1	81	R1 = location of b A = b _(m,k) (L.0.) (m,k)
2		ADD	A,R2	6A	$A = ve_{(m)} f_{(m-k)}$
3		MOV	R2,A	AA	+ b _(m,k) (L.0.)
4		DEC	R1	C9	
5		MOVX	A,@R1	81	$A = b_{(m,k)} (H.0.)$
6		VOM	R4,A	AC	save b (H.O.) in R4 (m,k)
7		ADDC	A,R3	7B	in R4 (m, k)
8		VOM	R3,A	AB	$R3 = ve_{(-)}f_{(-)} + b_{(-)}$
9		MOV	A,R4	FC	$R3 = ve_{(H.0.)}^{f}(m-k)^{+b}(m,k)$
A		RR	A	77	$A = b_{(m,k)} (H.0.)$
18B		RR	A	77	rotate right twice

Update the Weights: (cont.)

	JZ	BCONT	C6	if $A = \emptyset$, go to
			9 F	BCONT
	CPL	A	37	complement A
	JB5	BSKIP	B2	test sign bit
			98	3 — 6 W 150 5755
	ANL	A,#3F	53	
		500.2	3F	
	INC	A	17	form 2's comp.
	ADD	A,R2	6A	of (2 ⁻¹⁰) b (m,k)
	MOV	R2,A	AA	and add to (m,k)
	JMP	BCONT	14	previous sum
			9 F	to form the
BSKIP	INC	A	17	updated b (m,k)
	ADD	A,R2	6A	(m, k)
	MOV	R2,A	AA	
	MOV		FB	
	ADDC	A,#FF	13	R3 = new $b_{(m,k)}$ (H.O.)
			FF	$R2 = \text{new } b_{(m,k)}$ (L.O.)
	MOV	R3,A	AB	
BCONT	MOV	A,R3	FB	store the new b (m,k)
	MOVX	@R1,A	91	in the (m, k)
	INC	R1	19	B buffer
	MOV	A,R2	FA	
	MOVX	@R1,A	91	
	INC	R1	19	update b (m,k) pointer
	MOV	A,RØ	F8	(m, k)
	INC	A	17	$\frac{\text{update f}}{(m-k)}$ pointer
	INC	A	17	(m-k)
	ANL	A,#1F	53	
			1F	
	MOV	RØ,A	A8	
	DJNZ	R7,BLOOP	E F	decrement counter and
		- 17	79	repeat if $\neq \emptyset$
		CPL JB5 ANL INC ADD MOV JMP BSKIP INC ADD MOV MOV ADDC MOV MOV LINC MOV LINC MOV LINC LINC MOV	CPL A JB5 BSKIP ANL A,#3F INC A ADD A,R2 MOV R2,A JMP BCONT BSKIP INC A ADD A,R2 MOV R2,A MOV A,R3 ADDC A,#FF MOV R3,A BCONT MOV A,R3 MOVX @R1,A INC R1 MOV A,R2 MOVX @R1,A INC R1 MOV A,R6 INC A	CPL A 37 JB5 BSKIP B2 98 ANL A,#3F 53 3F INC A 17 ADD A,R2 6A MOV R2,A AA JMP BCONT 14 9F BSKIP INC A 17 ADD A,R2 6A MOV R2,A AA MOV R2,A AA MOV R2,A AA MOV A,R3 FB ADDC A,#FF 13 FF MOV R3,A AB BCONT MOV A,R3 FB MOVX @R1,A 91 INC R1 19 MOV A,R2 FA MOVX @R1,A 91 INC R1 19 MOV A,R2 FA MOVX @R1,A 91 INC R1 19 MOV A,R2 FA MOVX @R1,A 91 INC R1 19 MOV A,R0 F8 INC A 17 INC A 17 INC A 17 INC A 17 ANL A,#1F 53 IF MOV RØ,A A8 DJNZ R7,BLOOP EF

Total number of cycles = 810Time at 2.5 µsec/cycle = 2025 µsec (without multiplies)

Calculation of
$$q = q_{(old)} + e_{(m)} - e_{(m-16)}$$

This routine calculates the new value of q which is the sum of the elements of the E buffer. To do this, the oldest value of e, $e_{(m-16)}$, is subtracted from the old q and the newest value of e, $e_{(m)}$, is added to form the new value of q. Since the values in the E buffer are stored as $e/2^4$, the sum formed is actually $q/2^4$. This value is squared and scaled by 2^4 to form $q^2/2^4$ which is sent to the D/A converter for testing.

1AD	VOM	R1,#21	В9	R1 = location of
E			21	ELPTR
F	MOV	A,@R1	F1	R1 = location of e (m-16)
ВØ	MOV	R1,A	A9	(n.u.)
1	MOVX	A,@R1	81	$A = e_{(m-16)}$ (H.O.)
2	VOM	R3,A	AB	$R3 = e_{(m-16)}$ (H.O.)
3	INC	R1	19	(m-10)
4	MOVX	A,@R1	81	$A = e_{(m-16)}$ (L.O.)
5	MOV	R4,A	AC	$R4 = e_{(m-16)} (L.0.)$
6	MOV	RØ,#24	B8	$R\emptyset = \text{location of e}_{(m)}$
7			24	(H.O.) (m)
8	VOM	A, @RØ	FØ	$A = e_{(m)}$ (H.O.)
9	VOM	R2,A	AA	$R2 = e_{(m)} (H.0.)$
A	INC	RØ	18	(m)
В	VOM	A, QRØ	FØ	$A = e_{(m)} (L.0.)$
С	CPL	A	37	(m)
D	ADD	A,R4	6C	16 bit subtract to form
E	CPL	A	37	$e_{(m)} - e_{(m-16)}$
F	XCH	A,R2	2A	(m) (m-10)
CØ	CPL	A	37	
1	ADDC	A,R3	7B	$R2 = e_{(-)} - e_{(-)} = 16$
2	CPL	A	37	R2 = e (m) - e (m-16)
3	XCH	A, R2	2A	$A = e_{(m)} - e_{(m-16)}$ (L.0.)
4	MOV	RØ,#29	В8	RØ = location of
5		8 e	29	q (L.O.)
6	ADD	A, @RØ	6 Ø	update q (L.O.)
7	MOV	@RØ,A	AØ	and store
8	XCH	A,R2	2A	
9	DEC	RØ	C8	update q (H.O.)
A	ADDC	A, @RØ	7Ø	and store
В	VOM	@RØ,A	A Ø	
С	MOV	R2,A	AA	R2 = q (H.O.)
D	MOV	R3,A	AB	R3 = q (H.0.)
E	CALL	MLT	14	form q ²
F			50	(actually $q^2/2^8$)
1DØ	SWAP	A	47	

Calculation of q (cont.)

1D1	XCH	A,R2	2A	shift right
2	SWAP	A	47	4 times
3	VOM	RØ,#Ø2	в8	arithmetically
4		36000 3040034000	Ø 2	CONTROL BESIDENCE AND CONTROL AND SHOW SHOW
4 5	XCHD	A, @RØ	3Ø	
6	ANL	A,#FØ	53	2 /
7			FØ	$A = q^2/2^4$ (H.O.)
8	хсн	A,R2	2A	$R2 = q^2/2^4$ (L.O.)
9	ORL	P1,#Ø8	89	output control
A			Ø8	bit to select
A B	OUTL	P2,A	3A	D/A
C	ANL	P1,#F7	99	output to D/A
1DD		•	F7	output control bit to select A/D

Exit this routine with A =
$$q^2/2^4$$
 (H.O.)
R2 = $q^2/2^4$ (L.O.)

Since almost all jump commands are to locations within the same 256 byte page of memory, we now go to page 3 for the ATD routine.

1DE JMP ATD 44 jump to location F 00 200

Total number of cycles = 54 Time at 2.5 µsec/cycle = 135 µsec

Adaptive Threshold Detection

This routine maintains the T buffer which contains 192 sixteen bit words. The routine forms the sum of the oldest 64 elements in the buffer. A constant σ^2 is formed as follows:

$$\sigma^2 = K(SUM) + \theta$$

where SUM = the sum of the 64 oldest buffer elements. σ^2 is compared with $q^2/2^4$ to determine ALARM status.

Enter this routine with
$$A = q^2/2^4$$
 (H.O.)
 $R2 = q^2/2^4$ (L.O.)

200		MOV	RØ,#2A	в8	$R\emptyset = 1$ ocation of $q^2/2^4$
1				2A	(H.O.)
2		MOV	@RØ,A	AØ	$(\text{H.O.})_2$ store $q^2/2^4$ (H.O.)
3		INC	RØ	18	
4		XCH	A,R2	2A	$A = q^2/2^4$ (L.O.)
5		MOV	@RØ,A	AØ	store q ² /2 ⁴ (L.0.)
6		RLC	A	F7	
7		XCH	A, R2	2A	2 / 7
8		RCL	A	F7	form $t_{(m)} = (q^2/2^4) 2^{-7}$
9		XCH	A,R2	2A	(ш)
Α		CLR	A	27	
В		JNC	ACONT	E6	
C				ØE	
D		CPL	A	37	$R3 = t_{(m)}$ (H.O.)
E	ACONT	MOV	R3,A	AB	$R2 = t_{(m)}$ (L.O.)
F		INC	RØ	18	$R\emptyset = 1$ ocation of TLPTR
1Ø		VOM	A,@RØ	FØ	A = TLPTR
1		MOV	RØ,A	A8	RØ = location of t (m-192)
2		JFO	SWTCH	В6	TI LA-I' SETECT
3			_	16	external RAM
4		JMP	ACONT2	44	page 1
1 2 3 4 5 6		200-20-		18	else, continue
	SWTCH	ORL	P1,#Ø1	89	
7				Ø1	
8	ACONT2	MOVX	A, GRØ	80	$A = t_{(m-192)}$ (H.O.)
9		MOV	R4,A	AC	$R4 = t_{(m-192)} (H.0.)$
A		INC	RØ	18	
В		MOVX	A, @RØ	80	$A = t_{(m-192)}$ (L.O.)
C		MOA	R5,A	AD	$R5 = t_{(m-192)}$ (L.O.)
D		MOV	A,R2	FA	$A = t_{(m)} (L.0.)$
21E		MOVX	@RØ,A	9 ø	store t (m) (L.O.)

ATD (cont.)

21F		DEC	RØ	C8	
20		MOV	A,R3	FB	$A = t_{(m)} (H.0.)$
1		MOVX	@RØ,A	9 ø	store t (m) (H.O.)
2		INC	RØ	18	(m)
3		INC	RØ	18	
4		MOV	A,RØ	F8	update T buffer
5		JFO	ONE	В6	by storing t (m) at old
6			V	2B	location of (m)
7		JZ	SWTCH2	C6	of t
8		5 2	5110112	34	of t _(m-192)
9		JMP	ACONT3	44	update TLPTR
A		OFIL	HOOMIS	35	dpdate ILLIA
В	ONE	ADD	A,#2Ø	Ø3	update FØ
	ONE	עעא	A, Ir ZW		
C		TO	DECEMBE	20	to point to
D		JZ	RESTART	C6	correct page
E			4	32	in external
F		VOM	A,RØ	F8	RAM
3Ø		JMP	ACONT3	44	
1		20024043	N 5 ST	35	
2	RESTART	MOV	A,#6Ø	23	
3				6 Ø	
4	SWTCH2	CPL	fø	95	
5	ACONT3	MOV	RØ,#2C	В8	store updated
6				2C	TLPTR
7		VOM	@RØ,A	ΑØ	
8		MOV	R1,#2E	В9	R1 = location of
9			SA GOLD OF THE SAME OF THE SAM	2E	SUM (H.O.)
A		MOV	A, @R1	F1	A = SUM (H.O.)
В		MOV	R2,A	AA	R2 = SUM (H.O.)
C		INC	R1	19	The same same same same same same same sam
D		MOV	A, @R1	F1	A = SUM (L.O.)
E		CPL	A	37	16 bit subtract
F		ADD	A, R5	6 D	to form
40		CPL	A	37	SIIM - +
1		XCH	A, R2	2A	$SUM - t_{(m-192)}$
2		CPL	A A	37	
3		ADDC	A, R4	7C	D2 - CIM + /I ()
3		ADDC	A, 14	70	$R2 = SUM - t_{(m-192)}$ (L.O.)
4		CPL	A	37	$R3 = SUM - t_{(m-192)}$ (H.O.)
5		VOM	R3,A	AB	(m-192)
5 6		INC	RØ	18	$R\emptyset$ = location of
7		VOM	A, @RØ	FØ	TLPTR + 64
7 8		MOV	RØ,A	A8	$R\emptyset = location of$
9		JF1	SETB	76	
Ā				4 F	t(m-128)
В		ANL	P1,#FE	99	select proper
Č			,	FE	page of
D		JMP	ACONT4	44	external RAM
24E				51	ontornar Mil

ATD (cont.)

24F	SETB	ORL	P1,# Ø 1	89	
5Ø 1	ACONT4	MOVX	A, @RØ	Ø1 8Ø	$A = t_{(m-128)}$ (H.O.)
2		MOA	R4,A	AC	$R4 = t_{(m-128)}$ (H.O.)
3		INC	RØ	18	
4		MOX	A, @RØ	8 ø	$A = t_{(m-128)} (L.0.)$
5		ADD	A,R2	6A	form SUM - t (m-192)
6		XCH	A,R4	2C	(m-128)
7		ADDC	A,R3	7B	R3 = new SUM (H.O.)
8		MOV	R3,A	AB	R4 = new SUM (L.O.)
9		INC	RØ	18	
A		MOV	A,RØ	F8	
В		JF1	ONE2	76	1 m nm + 6 t
C		7.07	OT TO CALL	61	update TLPTR+64
D		JZ	SWTCH3	C6	
E		73.00	1.001mF	6A	update F1 to
F		JMP	ACONT5	44	point to the
6Ø			, "ad	6B	correct page
1	ONE2	ADD	A,#2Ø	Ø3	in external
2			2000	20	RAM
3		JZ	RST2	C6	
4		340		68	
5		MOV	A,RØ	F8	
6		JMP	ACONT5	44	
7			. Il e el	6B	
8	RST2	MOV	A,#6Ø	23	
9		c=-		6 Ø	
A	SWTCH3	CPL	F1	B5	store updated
B C	ACONT5	MOV	RØ,#2D	B8 2D	TLPTR+64
D		MOV	@RØ,A	AØ	
E		VOM	R2,#k	BA	R2 = K
F		1104	RZ , II R	DA	KZ - K
7Ø		CALL	MLT	14	form K(SUM)
		OLULI	1101	50	TOTM K(SOH)
2		XCH	A,R2	2A	
3		ADD	A,#0(L.O.)	Ø3	form K(SUM) + $\theta = \sigma^2$
1 2 3 4 5 6 7		11111	11, 110 (12.0.)	7	IOIM R(BOH) : 0 - 0
5		XCH	A, R2	$\overline{2}\overline{A}$	
6		ADDC	A,#0(H.O.)	13	
7		HUDO	H, # 0 (H.O.)	1.7	$A = K(SUM) + \theta (L.0.)$
2		XCH	A,R2	$\overline{2}\overline{A}$	$R2 = K(SUM) + \theta (H.O.)$
8 9 A		MOV	R1,#2B	B9	R1 = location of
Δ				2B	
В		CPL	A	37	$q^2/2^4$ (L.O.)
C		ADD	A,@R1	61	16 bit subtract to form
D		CPL	A	37	
27E		XCH	A,R2	2A	$\sigma^2 - q^2/2^4$
لطاديت		WOII			

ATD (cont.)

27F 8Ø 1		DEC CPL ADDC	R1 A A,@R1	C9 37 71	$A = \sigma^2 - q^2/2^4$ (H.O.)
2		CPL	A	37	$R2 = \sigma^2 - q^2/2^4$ (L.0.)
3		JB7	ALARM	F2	if result is < Ø,
4				89	sound alarm
5		ANL	P1,#FD	99	else, clear
6 7				FD	alarm bit
7		JMP	DONE	44	
8				8B	
9	ALARM	ORL	P1,#Ø2	89	set alarm bit
A				Ø 2	
В	DONE	ANL	P1,#FE	99	select external
28C				FE	RAM page Ø

Total number of cycles = 127 Time at 2.5 µsec/cycle = 317.5 µsec

Update F and E buffers

This routine replaces $f_{(m-16)}$ with $f_{(m)}$ and $e_{(m-16)}$ with $e_{(m)}$. Pointers FLPTR and ELPTR are updated to point to the new $f_{(m-16)}$ and $e_{(m-16)}$.

28D E F		MOV	RØ,#2Ø A,@RØ	B8 2Ø FØ	RØ = location of FLPTR
9 ø		MOV	RØ,A	A8	RØ = location of f (m-16)
1 2		VOM	R1,#22	B9 22	R1 = location of f(m)
3		MOV	A,@R1	F1	$A = f_{(m)} (H.0.)$
4 5		MOVX INC	@RØ,A RØ	9 ø 18	store in buffer
6		INC	R1	19	
7		MOV	A, @R1	F1	$A = f_{(m)} (L.0.)$
8		MOVX	@RØ,A	9 ø	store in buffer
9		MOV	A, RØ	F8	1
A		INC	A	17	update FLPTR
В		ANL	A,#1F	53	
С				1F	
D		MOV	RØ,#2Ø	В8	store new
E			10 420	2Ø	FLPTR
F		MOV	@RØ,A	AØ	
ΑØ		INC	RØ	18	RØ = location of ELPTR
1		MOV	A, @RØ	FØ	
2		VOM	RØ,A	A8	RØ = location of e (m-16)
3		INC	R1	19	R1 = location of e (m)
4		VOM	A, @R1	F1	$A = e_{(m)} (H.0.)$
5		MOVX	@RØ,A	9Ø	store in buffer
6		INC	RØ	18	
7		INC	R1	19	
8		MOV	A, @R1	F1	$A = e_{(m)} (L.0.)$
9		MOVX	@RØ,A	9 ø	store in buffer
A		MOV	A, RØ	F8	
В		INC	A	17	
C		ANL	A,#5F	53	update ELPTR
D				5 F	
E		MOV	RØ,#21	В8	store new
F				21	ELPTR
вø		MOV	@RØ,A	AØ	
1	HERE	JMP	HERE	44	wait for timer
2B2				B1	interrupt

Total number of cycles = 41 Time at 2.5 µsec/cycle = 102.5 µsec The timer, which was preset in the Input from A/D routine, will count continuously until it is stopped. When the count changes from FF to $\emptyset\emptyset$, a timer interrupt will set the PC = $\emptyset\emptyset$ 7. From here, the program branches back to the Input from A/D routine.

A reset will set the PC = 000. From here, the program branches to the Initialization routine.

ØØØ 1 2	EN JMP	TI INIT	25 Ø4 D8	enable timer interrupt jump to initialize
ØØ7 8	JMP	AD	24 ØØ	jump to input from A/D

APPENDIX 3

ATMAC WIDROW ALGORITHM PROGRAM

Memory: Assume a data memory structure as is shown below.

<u>Pointers</u>		Contents	Address
В1		bm, 1 bm, 2	B1 = ØØØØ H
FØ Fl		bm,16 fm	B16 = ØØØF H FØ : F1
		f _{m-2}	F1
E1		$ \begin{array}{r} $	F16 ETOP
E16	Circu- lating	e _{m-16} ² /16 e _{m-17} ² /64	ETOP+16
E8Ø	Buffer	e _{m-17} /64 : : e _{m-80} /64	EBOTTOM
200		Q _a	QA
		Q _b	QB

Note: E1, E16, and E80 are maintained as pointers to a circulating buffer. The F buffer is updated by a block move. Thus the pointers to the F buffer as well as to the B buffer are stationary.

Registers:

General Registers

GRØ - general purpose

GR1 - general purpose

GR2 - general purpose

GR3 - general purpose

GR4 - g

GR5 - e_m

GR6 - general purpose

GR7 - general purpose

Indirect Address Registers

IARØ - general purpose

IAR1 - Bl address

IAR2 - FØ address

IAR3 - Fl address

IAR4 - El address

IAR5 - E16 address

IAR6 - E80 address

IAR7 - loop counter and initialization

ATMAC Widrow Program

Initialization:

This routine clears all buffers in data memory and sets up the buffer pointers.

	Instruction		Comments
	ILDI Ø;	B1	<pre>IAR∅ ← location of the first element in data memory to be cleared.</pre>
	ZR Ø, ;	Ø, ; MNOP	Clear GRØ
	ILDI 7;	= 114	Set loop counter = 114 D and identify the next instruction as the first instruction in the loop.
LOOP1	NOP 1, ;	ST Ø,Ø; RNBP1	Store the contents of GRØ at the address contained in IARØ. IARØ + IARØ + 1. Decrement loop counter and branch to LOOP1 if > 0, else continue.
	ILDI 1;	B1	IAR1 ← B1
	ILDI 2;	F∅	IAR2 ← FØ
	ILDI 3;	F1	IAR3 ← F1
	ILDI 4:	ETOP	IAR4 ← E1
	ILDI 5;	ETOP + 16	IAR5 ← E16
	ILDI 6:	EBOTTOM	IAR6 ← E8Ø

Input from A/D:

This routine obtains the new \boldsymbol{f}_m sample and stores it at FØ. It also starts the next conversion. The routine begins at program location START.

Compute
$$g = \sum_{k=1}^{16} b_{m,k} f_{m-k}$$

Instruction

Comments

MDCH1 0,2; LD 1,1; AUTP1

Clear SFU accumulator 1 and set SFU to multiply and accumulate mode.

NOP 0, ; LD 3,3; AUTP1

$$GR3 \leftarrow f_{m-1}$$

$$IAR3 \leftarrow IAR3 + 1$$

ILDI 7; = 15

Set loop counter = 15 D and identify next instruction as beginning of loop.

LOOP2 FMUL1 1,3; LD 1,1: AUTP1

NOP , ; LD 3,3; RNBP1

$$GR3 \leftarrow f_{m-k}$$

IAR3 + IAR3 + 1

decrement loop counter and branch to LOOP 2 if > Ø, else continue

RDWD1 0,4; 4,; MNOP

GR4 ← g (rounded)

ILDI 1; B1

restore pointer

ILDI 3: F1

restore pointer

Compute $e_m = f_m - g$

Instruction

Comments

$$GR5 \leftarrow f_m$$

$$GR5 \leftarrow e_m = f_m - g$$

Update the Weights: $b_{m+1,k} = ub_{m,k} + ve_{m} f_{m-k}$

	Instructions	Comments
	LDI 1; V	GR1 ← V
	MDCH1 Ø,1; Ø, ; MNOP	Clear SFU accumulator and set to non-accumulate mode.
	FMUL1 1,5; 1, ; MNOP	acc. + ve
	RDWD1 Ø,4; 3, ; MNOP	GR3 ← ve _m (rounded)
	LDI 1; u	GR1 ← u
	NOP 1, ; LD Ø,3; AUTP1	$GR\emptyset \leftarrow f_{m-k}$ $IAR3 \leftarrow IAR3 + 1$
	ILDI 7; = 15	<pre>Set loop counter = 15 D and identify next instruction as the first in loop.</pre>
LOOP3	FMUL1 Ø,3; LD 2,1; MNOP	acc. + ve f m-k GR2 + b m, k
	RDWD1 Ø,4; 6,; MNOP	GR6 ← ve f (rounded)
	FMUL1 1,2; 1, ; MNOP	acc. ← ubm,k
	RDWD1 0,4; 7,; MNOP	GR7 ← ub _{m,k} (rounded)
	ADD 6,7; LD Ø,3; AUTP1	$GR6 \leftarrow b_{m+1,k}$ $GRØ \leftarrow next f_{m-k}$ $IAR3 \leftarrow IAR3 + 1$
	NOP Ø, ; ST 6,1; AUTP1	store $b_{m+1,k}$ at B buffer IAR1 \leftarrow IAR1 + 1
	NOP Ø, ; Ø, ; RNBP1	<pre>decrement loop counter. If > 0, go to LOOP3, else continue.</pre>
	ILDI 1; B1	restore pointer
	ILDI 3; F1	restore pointer

Adaptive Threshold Detection

This routine does the following.

- 1. Form $e_m^2/16$
- 2. Substract $e_{m-16}^2/16$ from Q_a
- 3. Add $e_m^2/16$ to Q_a to form the new Q_a
- 4. Store the result
- 5. Form $e_{m-16}^2/64$
- 6. Subtract $e_{m-80}^2/64$ from Q_b
- 7. Add $e_{m-16}^2/64$ to Q_b to form the new Q_b
- 8. Store the result
- 9. Form $Q_a Q_b \theta$
- 10. Test for alarm, i.e., $Q_a Q_b \theta > 0$

Instruction	Comments
CPGR 1,5; 1, ; MNOP	$GR1 \leftarrow GR5 = e_m$
FMUL1 1,5; 1, ; MNOP	acc. $\leftarrow e_{m}^{2}$
RDWD1 Ø,4; 1, ; MNOP	$GR1 \leftarrow e_{\underline{m}}^2 \text{ (rounded)}$
SHRA 1,1; 1, ; MNOP	divide by 2
SHRA 1,1; 1, ; MNOP	divide by 2
SHRA 1,1; 1, ; MNOP	divide by 2
SHRA 1,1; 1, ; MNOP	divide by 2 GR1 $\leftarrow e_{m}^{2}/16$
ILDI Ø; QA	IARØ ← QA
NOP Ø, ; LD 2,Ø; AUTP1	$GR2 \leftarrow Q_a$ $IAR\emptyset \leftarrow IAR\emptyset + 1 = QB$
NOP Ø, ; LD 3,5; MNOP	$GR3 + e^2 \cdot 16$

Instruction

Comments

$$GR2 \leftarrow Q_a - e_{m-16}^2/16$$

$$GR3 + e_{m-16}^2/32$$

$$GR3 \leftarrow e_{m-16}^2/64$$

$$GR\emptyset \leftarrow e_{m-80}^{2}/64$$

$$GR6 \leftarrow Q_b - e_{m-80}^2/64$$

$$GR2 \leftarrow Q_a - Q_b$$

store
$$Q_b$$
 at QB

SUBI 2; =
$$\theta$$

$$GR2 \leftarrow Q_a - Q_b - \theta$$

if result < 0, branch to NALARM

BOT Ø; ALARM

if result > 0, branch to ALARM

NALARM is a routine to output a "0" to signal no alarm. Note: ALARM is a routine to output a "1" to signal an alarm.

Control from both of these routines, which are not included here, would be to the routine which updates the buffers.

Note:

Leave this routine with,

$$GR1 = e_m^2/16$$

$$GR3 = e_{m-16}^2/64$$

Update the Buffers:

This routine does the following.

- 1. Block move of the F buffer.
- Update pointers El, El6, and E8Ø.

Instruction Comments IARØ + address of f ILDI Ø; F16-1 ILDI 1; F16 IAR1 + F16 ILDI 7; = 15 set loop counter = 15 D and identify the next instruction as the first in the loop. GRØ ← f_{m-k} LOOP4 NOP 2, ; LD Ø,Ø; AUTM1 IARØ + IARØ - 1store f_{m-k} at location of f_{m-k-1} NOP 2, ; ST Ø,1; AUTM1 IAR1 + IAR1 - 1 NOP \emptyset , ; \emptyset , ; RNBP1 decrement loop counter. If > 0, go to LOOP4, else continue. ILDI 1; B1 restore pointer store $e_{m-16}^{2}/64$ at E16 NOP \emptyset ,; ST 3,5; MNOP store $e_{\rm m}^2/16$ at E80 NOP Ø, ; ST 1,6; MNOP CPIG 4, ; 1, ; MNOP GR1 + IAR4 DECR 1,1; 1, ; MNOP $GR1 \leftarrow GR1 - 1$ SUBI 1; F16 Test if pointer has gone beyond the end of the E buffer. BOT 1; FIX1 If so, go to FIX1, else continue. CPGI Ø,1; Ø,4; MNOP IAR4 + GR1 BOT Ø; NEXT1 go to NEXT1 ILDI 4; EBOTTOM FIX1 IAR4 ← EBOTTOM NEXT1 CPIG 5, ; 1, ; MNOP GR1 + IAR5 DEC 1,1; 1, ; MNOP GR1 + GR1 - 1

Instruction

Comments

SUBI 1; F16

Test if pointer has gone beyond the end of the E buffer.

BOT 1; FIX2

If so, go to FIX2, else continue.

CPGI Ø,1; Ø,5; MNOP

IAR5 + GR1

BOT Ø; NEXT2

go to NEXT2

FIX2 ILDI 5; EBOTTOM

IAR5 + EBOTTOM

NEXT2 CPIG 6, ; 1, ; MNOP

GR1 + IAR6

DEC 1,1; 1, ; MNOP

GR1 + GR1 - 1

SUBI 1; F16

Test if pointer has gone beyond the end of the E buffer.

BOT 1; FIX3

If so, go to FIX3, else continue.

CPGI 0,1; 0,6; MNOP

IAR6 + GR1

BOT Ø; NEXT3

go to NEXT3

FIX3 ILDI 6; EBOTTOM

IAR6 + EBOTTOM

NEXT3 BOT ∅; START

go to START

AN EVALUATION OF VARIOUS MICROPROCESSOR IMPLEMENTATIONS OF AN ADAPTIVE DIGITAL PREDICTOR FOR INTRUSION DETECTION

by

DONOVAN J. NICKEL

B. S., Kansas State University, 1978

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas 1979

ABSTRACT

Recent research by Ahmed in the area of digital signal processing has led to an interesting new application for microprocessors. The signal processing algorithm which was developed for Sandia Laboratories involves the use of an Adaptive Digital Predictor and other conventional digital filters to detect the presence of noise produced by an intruder in a random ambient noise environment.

This report describes the implementation of the algorithm using three different microprocessors. First, a Zilog Z80 implementation is presented and includes both the software development and a minimal hardware configuration designed for the algorithm. Secondly, a possible implementation using Intel's 8048 (8748) microprocessor is discussed, and, finally, a similar study is presented on a possible implementation using the RCA ATMAC.

Included in this report is a review of the operation of the algorithm and a comparison of the various methods of implementation. Some test results are also presented.