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CHAPTER I

INTRODUCTION

In communication theory, control systems theory, and other areas of
electrical engineering which deal with signal detection, a common problem
which is encountered deals with some type of a received signal which con-
sists of the real or desired signal plus noise. In most ipstances it is
useful to attempt to filter out as much of the noise component as possible
and thus form a reasonable approximation to the desired signal. Often,
the characteristics of the desired signal are known and conventional lin-
ear filters can be desigmed accordingly to produce a satisfactory solution
to the stated problem. However, in the case of the problem of intrusion
detection, the desired signal characteristics are not so easily deter-
mined and can vary according to many different circumstances. Therefore,
a more inventive approach is needed to solve this signal detection problem.

Recent research in the area of digital signal processing by Ahmed
{1] has led to a signal processing algorithm which is designed to deal
with the problem stated above. The algorithm involves an Adaptive Digi-
tal Predictor and cther more conventional digital filters. Its purpose
is to effectively detect noise produced by an intruder in the presence
of random ambient noise.

The emphasis of the work done by the author was in the development

of working microprocessor implementations of the algorithm and subsequent



evaluations of the various microprocessors with respect to this task.
Three microprocessors were considered. The first was the Zilog Z80.

A minimal hardware system was designed and built, and complete software
routines were written and tested to form a Z80 algorithm implementation.
The second microprocessor considered was Intel's 8048 (8748) and the
third was the RCA ATMAC. Since development systems were not available,
the work on these two devices consisted of paper studies to evaluate
the potential use of chese microprocessors for this application. The
studies included the writing of untestad software routines required by
the algorithm.

Chapter II of this report presents a brief review of the operation
of the algorithm. After that, the various implementations are discussed
beginning with the Z80 hardware and software developments in Chapters III
and IV. Chapters V and VI present the implementation considerations
relating to the 8748 and the ATMAC, respectively. Finally, some compari-
sons between the different implementations are made, and some conclusions

are formed in Chapters VII and VIII,.



CHAPTER I1
THE WIDROW ALGORITHM

For purposes of intrusion detection, a typical input data signal is
considered to have two components. They are the followiag:

1) random ambient noise

2) intruder-produced noisg.

The objective in designing a signal processing algorithm is to be
able to reliably detect the intruder-produced signal, if any, in the
presence of random ambient noise.

Figure 2.1 shows a block diagram of this intrusion detectiom tech-
nique. The algorithm consists of two main parts. The first section is
an Adaptive Digital Predictor (ADP) which is implemented using Widrow's
Least-Mean—-Square (LMS) algorithm [2]. The primary purpose of the ADP is
to statistically decﬁrrelate the noise component of the data signal.
This causes the error sequence, EM’ to be less correlated and to have a

smaller variance than the input sequence, FM.

Thus, the ADP reduces the
detection problem to one of determining whether or not an intruder-pro-
duced signal is present in noise which is uncorrelated.

The second section of the algorithm is a conventional Moving Average
Filter (MAF). Since the output of the ADP will tend to be band-limited

white noise, and since the resulting uncorrelated noise samples will tend
g

to average out in a MAF, the output of the MAF will consist primarily of
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intruder-produced noise, if any. Thus an output which reaches a certain
predetermined magnitude threshold indicates the presence of an intruder.
It is important to realize that certain trade-offs exist between the
accuracy of the algorithm with respect to correct detections versus false
alarms, and the complexity of the implementation with respect to processor
speed, system memory size, and fixed-length processor word size. For
example, the random noise cannot be completely decorrelated by the
ADP without using an unlimited number of samples in the estimate of input

FM'

Yet the system constraints on memory size and operation speed prohibit
such computations. However, if the noise component of the data signal is
not sufficiently decorrelated by the ADP, the MAF will be less effective,
and the false alarm rate will increase.

Another problem encountered in producing a working algorithm imple-
mentation was the difficulty in scaling the inputs to a filter with a
varying transfer function. Since any overflow causes the system to break
down and since the system must remain stable over long, continuous periods
of time, the input sample scaling must be adequate to prevent overflow
in the worst case. Due to these problems and others, it is obvious that
reasonable approximaticns and trade-offs must be made to produce a satis=-
factory algorithm implementation.

There are many possible algorithm structures which could be effective
in dealing with this intrusion detection problem. Therefore, as the work

on the project progressed, some additions and changes were made to the

algorithm. The Z80 implementation uses the algorithm as it is presented



in this chapter. The 8748 and the ATMAC implementations, however, used
algorithms which are slightly different than the one described here. These
differences are pointed out during the discussions of the implementations

to which they apply.



CHAPTER III

THE MINIMAL Z80 MICROPROCESSOR

The objective in designing this minimal Z80 microprocessor was to
develop a small, inexpensive system capable of implementing one channel
of the algorithm described in Chapter II at a rate of at least 128 Hz.

The Zilog Z80, which is an 8-bit, NMOS microprocessor, was chosen for
this application for several reasons. Since most of the arithmetic
required by the software program needed to be performed on 16-bit operands,
the powerful instruction set of the Z80, which includes many 16-bit
operations, was a very attractive feature. Another important constraint
involved the program speed. The Z80, at 4 MHz, was comfortably able to
meet the algorithm speed requirements. Although the Z80 used in this
design was constructed with NMOS technology, the total system's power
consumption was typically less tham 250 milliamperes at 3 volts due to

a mixture of CMOS and NMOS support components. This system was designed
for a specific application, but imaginative users will find the system
useful for a variety of tasks such as discrete time control systems and
other digital =signal processing operatioms.

Due to the possibility that the user, given a completed system, will
desire only the knowledge necessary to make the system work without digging
through the design and construction details, the following section will
provide operation information which will hopefully be sufficient to allow

the user to implement his application. Following the operation information,



the system configuration will be discussed in more detail and finally,
the system construction will be presented including the design and con-
struction of a printed circuit board. The assumption is made throughout
this report that the user is familiar with the Z80 microprocessor and

instruction set [3,4].
Minimal Z80 Operation

There are three main blocks of support devices used in this minimal
Z80 system. They are program memory, data memory, and input/output
devices. An understanding of the system's use of these support devices
along with an understanding of the proper power supply and other edge
board connections is all that is needed for proper operation of the system.

The program memory consists of a selected Intel 2716, 2k X 8, EPROM
which is capable of 250 nanosecond access time operation. Thus the
maximym total program length is 2048 bytes of code. The addresses which
select the program memory begin at 0000H and end at 07FFH. Since a
reset occurs when the system is turned on as well as when the reset switch
is closed, the Z80 will begin executing the program starting at location
0000H when either of the two events takes place. It is important to
remember that all program executions must begin at 0000H and that program
execution can only be started by turning the power to the system from
off to on or by pressing the reset switch. Thus when the 2716 EPROM is
programmed, either the desired program or a branch to the desirad program
must begin in location J000H.

The data memory consists of 128 bytes of static RAM. It can be read

from or written to at address locations 4000H to 407FH.



One octal latch is available for use as an output port. Any output
instruction such as OUT (0l1),A will enable the latch. The output data
will be available until it is changed by amother output statement. Since
74Cxx series CMOS is used, the output port is TTL compatible and is
capable of driving one standard TTL load. The output data is available
at the O/P socket on the board where socket pin 1 = least significant
bit and socket pin 8 = most significant bit.

An eight bit A/D converter serves as the only means of input to the
280. An input voltage in the range +10 volts is converted to an eight
bit binary number for use by the Z80. Since the A/D converter is not
free running, a "Start Conversion' pulse must precede a read statement
by at least two milliseconds. A typical sequence of operations for
obtaining an input byte from the A/D is listed below. The user is
responsible to maintain the proper timing with software.

1. Send Start Conversion Pulse:
This is achieved by an LD A, (8000) command
or some other suitable command which puts
8000H on the address bus.

2. Pause:
A pause of at least 2 msec. is necessary.
Other routines may run during this time.

3¢ Input From A/D:
The data word is input to the Z80 with the
command LD A, (C000).

Data from the A/D is received in offset binary form. Two's complement num-

bers are obtainmed by inverting the most significant bit of the data word.
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The power supply connections and other edge connections are listed
in Table 3.1 for the standard 22-pin edge connector. A =5 volt source
is needed only if the A/D converter is used. The system will typically
require less than 250 milliamperes at 5 volts d.c. The conmnections
listed are those for the PC board. The connections for the wire-wrapped

board are given in the section on System Constructiomn.

Table 3.1. PC Board Edge Cononections

Pin # Function
2 -5 volts
14 VIN (input to the

A/D converter
= +10 volts)

20 $ (clock out)
22 +5 volts

D GND.

T WAIT signal in

Some software application examples are given on the following

two pages.
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Sample Program 1

This program will altermately output AAH and 55H to the output port.
The bit patterns should be 1010 1010 and 0101 010l. This program tests
the Z80 CPFU, the 2716 EPROM, and the output port. The pattern should

alternate at a rate of about 1/2 second.

location instruction code comments
0C00H LD A, n 3E A = AA

1 AA

2 OUT (n), A D3 output to port
3 00

4 LD HL, nn 21 set up counter
5 FF

6 FF

7 DEC HL 2B

8 LD A;n 3E

9 Q0 delay

A ADD A, H 84

B JR NZ,e 20

C FA

D LD A,n 3E A =355

E 25

F QUT (m), A D3 output to port
10 00

1 1D HL, on 21

2 FF

3 FF

4 DEC HL 2B

5 LD 4, n 3E

6 g0 delay

7 ADD A, H 84

8 JR NZ, e 20

9 FA

A JP nn Cc3 go again

B 00

'G: 00



Sample Program 2
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This program will input a data sample from the A/D converter, store

it in the data memory, read it from the data memory, send it out to the

output port, and repeat the process.

The data word is changed from off-

set binary form to two's complement form prior to its ocutput. The

output port information can be used as an input to a D/A converter to form

a wrap-around sampled test signal to aid in adjusting the A/D offset.

This program tests all the components of the system.

location

0000H

=
HUOEWPWwWONoUPWLWNMMHOHEBEUOQE PFPWOWO~NOWLEWRPFE

instructioh

LD A, (omn)

IDA, n

XOR B
LD (mnn), A

XOR A
LD A, (nn)

OUT (n), A
LD B, n

NOP
NOP
NOP
NOP
NOP
DJINZ e

JP nn

code

3A
00
co
47
3A
00
80
3E
80
A8
32
00
40
AF
3A
00
40
D3
00
06
FF
60
00
00
00
00
10
F9
Cc3
00
00

comments

input sample
from A/D

B = sample

send ''start
conversion" pulse
A = mask

convert sample

to 2's comp.
store sample in
data memory

clear A

A = sample

output sample

delay for A/D
conversion time

go again
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System Design

The block diagram in Figure 3.1 and the circuit diagram in Figure
3.2 illustrate the structure of this system. The system, which is based
on the 4 MHz version of the powerful eight bit Z80 microprocessor,
involves a minimum number of packages for maximum system simplicity.

The total system is relatively low in power consumption due to a mixture
of CMOS and NMOS components, The discrete components are listed in
Table 3.2.

The oscillator is crystal controlled and runs at 4 MHz. It uses a
74C04 CMOS hex inverter chip to form ¢ for the Z80 as well as a copy of
the clock signal which is available at the edge conmector. It is TTL
compatible and can drive one standard TTL load.

The output port is a 74C374 (MOS octal latch. It is enabled by any
output instruction, regardless of the address. It is also TTL compatible
and can drive omne standard TTL load.

A Teledyne 8703 CMOS, eight bit, A/D converter with 3-state outputs
is used for data input. 1It is a current integrating A/D converter and
in this configuration yields an offset binary output. An input voltage
in the ramge of +10 volts is passed through a resistor to form a current
input. This current is shifted from +5 microamperes to G to 10 micro-
amperes by a simple op amp circuit prior to conversion. K is used to

OFF

trim this offset to its correct position. To set R ground the input

OFF’

until 80H is output from the A/D. The value of R can

and adjust R OFF

OFF
be calculated as follows:

v
R - » where V_ = ocutput voltage of the op amp
OFF 5(10—6) o
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Table 3.2. Minimal Z80 Discrete Components
Clock:

X1

4 MHz crystal

(%]
M
]

C3 = 33 pF

R3 = 10 MQ

S1 = momentary push button N.0. switch

=

10 k@
R2 = 2 k@
Cl =1.5 uF.

D1

914 diode
8703 A/D:

RB = 100 kQ
Rref
R=R'=4 Kk

= 250 kQ

ROFF = 1 MG trimmer potentiometer

RIN =2 MG

Rhavp
Coamp

CIHT = 68 pF,

100 @

270 pF.

Power Supplies:

The system requires +5 volts, -5 volts, and GHND.
Notes:

1. All resistors are 1/2 watt, +5%, except RIN’ R, R', and R which

ref?
are +1Z.

2% 0.1 uF capacitors were used to despike the power lines on all chips.
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The operation of the A/D converter is completely controlled by the soft-
ware program. The user is referred to Sample Program 2 for the correct
operation procedure.

The system memory includes program memory and data memory. Program
memory is realized in the form of an Intel 2716, 2k X 8, EPROM. The user
is referred to an Intel Memory Data Book for the programming and erasing
procedures. The 2716 must be programmed prior to insertion in its
socket., Either the power on reset circuitry or the reset switch can be
used to start the execution of the program stored at 0000H. Although
2716's are not specified to run at 250 nanoseconds, many of them will run
that fast. However, it is possible that some will not work with this
system, and therefore the specifications for this system call for "selected"
27116'8:

Data memory consists of a Motorola 68B10P, 128 X 8, RAM. It can be
used for data storage, buffer storage, and other scratch pad storage.
Recall that this is a wvolatile device, and it can only remember data as
long as power is supplied to it.

All of the device select control logic is performed by an Intel
825123, 32 X 8, PROM. 1Inputs to the 825123 which form its address lines
are Al5, Al4, ﬁifﬁ; §5} and WR. Thus, a certain combination of two
address lines and three control lines is used to select various support
devices. Tha contents of the 825123 are given in Table 3.3. A memory

map of the system is given in Figure 3.3.
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Contents of the 82S123 PROM

Table 3.3.

The following bit pattern was burned into the PROM to achieve the

correct device select logic.

Qutput Data Word
B7 B6 B5 34 B3 Bz Bl BO

Address Inputs

Ay By Ay Ay Ay

Vo d-dd A A A A A A A A AAAA A A A A A A A A A A
COO0000CO0OO0O N HOOO0ODO0OODOODODOOOODOODODOODODOOO
COO0O00DO0O000O0O00CO0DOO000HHO0O0DO0O0ODOODDOOOOOO
YA H A A A A A A A A A A A A A A A A A A A A A O A A A A A

M

M
M
M

OHO-HOHO O HOH O HOHOAOHO1O0O-HOH{OHO~OH
O -HOO 1 HOO - HOOH-HOOAHOOH OO H OO -
OO0 Ot HOOOO A HHHOOOODOHArHMdOOO O =
CO0O0O0OD 0O rmHMreHrdrd A 100000000t A=~

OO0 O00OO00O0OO0OOODOOCCOOOOO0 - rddddd A A A~



Ficure 3.3, MinimaL Z80 Memory Map

0000

07FF

4000

407F

8000

€000

2716 EPROM
PROGRAM MEMORY

6810 RAM
DaTa MeEMORY

"START CoNveErsIoN” PuLse

A/D CONVERTER
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System Construction

The prototype minimal Z80 system was originally put together on a
6-1/2" x 4-1/2" Vector board using wire-wrap construction. For this

board, the edge connections are shown in Table 3.4.

Table 3.4. Wire-Wrap Board Edge Connections

Pin # Function

A GND.

c ¢

E WAIT

v oy = A/D Converter
Input

X -5 volts

z +5 volts

The board layout is shown in Figure 3.4. The output port information
is available at pins 1 to 8 of the outpui socket. Pin 1 holds the
least significant bit and pin 8 holds the most significant bit of the
output byte.

After the prototype board had been tested, a printed-circuit board
was designed for the minimal Z80 system. Although this board has the
same dimensions as the Vector board, it has some important differences.
In addition to a revised package layout, these differences include a

changed edge connector scheme, a mounted reset switch, and a series of



Figure 3.4.

Wire-Wrap Board Component Layout

(Vector 3677-2)

74C04

Z80

CPU

|

825123

L

8703

A/D

6810

74C374

2716

EPROM

0/P Socket

22 pin edge connector

Top View Component Side
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DIP pads for additional package placement on the board by the user.
Room for two 24 pin packages or three 16 pin packages has been defined
on the board and connections to the existing circuit can be made via
wire-wrap techniques. A listing of the edge connections is given in

Table 3.5.

Table 3.5. PC Board Edge Connections

Pin # Function
2 -5 volts
14 Vin = A/D Converter
Input
20 ¢
22 +5 volts
D GND.
T WAIT

Since the capability to form plated-through holes was not available,
wire-wrap sockets, placed about 1/4" above the component side of the
board, were used to form the connections through the board by soldering
the pins to both sides of the board. A step by step summary of the
procedure followed in the production of the printed-circuit board and
the construction of the minimal Z80 system is given below. For correct
component placement and connections, the user is referred to the drawings
and artwork which appear in Figures 3.5, 3.6, and 3.7 as well as the

circuit schematic in Figure 3.2. Figure 3.8 shows a completed system.

22



23
Step 1:
From the circuit design, a trial and error process was used to obtain
a reasonable package layout.

Step 2:

The printed circuit board artwork was then drawn at 2X.

Step 3:

Clear plastic was placed over the 2X artwork, and Bishop Graphics material,
such as tape and DIP patterns, was placed over the plastic to trace all
the connections and form all the component pads.

Step &4:

A negative reduction was made from the plastic sheet photographically

to yield a 1X negative of the desired pattern.

Step 5:

A presensitized, double-sided, copper clad board, obtained from Kepro,
was exposed through the negatives to a sun lamp for about 5 to 6 minutes.
Step 6:

The exposed board was developed in a Trichloroethylene bath for about
1-1/2 minutes.

Step 7:

The board was then baked at 180°F for 5 minutes to set the pattern.

Step 8:

The board was etched in an etching solution spray until the patternm was clear.

Step 9:

For a longer lasting finish, the board was timn plated.
Step 10:
The board was completed by cutting it to the proper size and drilling

the holes.



24

280 Construction, Step 1:

The three connections through the board where no components are placed
were made first using bare wire-wrap wire.

Step 2:

Wire-wrap sockets were placed in their proper position about‘l/4" above
the component side of the board and were sol&ered to both sides of the
board.

Step 3:

The discrete components were placed in position and soldered to both
board sides.

Step 4:

The reset switch was mounted to the board and was connected via short
lengths of wire-wrap wire to the two sides of capacitor Cl.

Step 3:

The chips were placed in the sockets with pin 1 of each chip placed as

is indicated by the markings on the board.



25

Printed Circuit Board Component Layout
(Top View, Top Side)

Figure 3.5.
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Figure 3.7. Printed Circuit Board Artwork (Top View, Bottom
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CHAPTER IV

Z80 WIDROW ALGORITHM SOFIWARE

The algorithm which was implemented using the Z80 is the one described
in Chapter II. At the time of the development of this program, the timing
constraint required that the operation rate of the program needed to be
at least 128 Hz.

The software implementation of the algorithm proved to be a rather
demanding task for an 8-bit microprocessor. In order to maintain suffi-
cient accuracy in the various filtering operations with a fixed-point
implementation, 1l6-bit arguments and arithmetic operations were desired
throughout the program. Included in the program were thirty-three signed
multiplications and many other arithmetic operations. Therefore, the
single biggest problem became that of developing a method of performing
thirty-three 16-bit signed multiplies in less than seven milliseconds.
Since no software method of doing this could be found, and since the use
of an external hardware multiplier implied a significantly greater total
system cost and power consumption, the use of signed 16-bit multiplies
became impractical. Consequently, an 8-bit software signed multiply
routine was used which operated on the most significant bytes of the
two 1l6-bit arguments to form a reasonable approximation to the actual

product.
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As in any fixed-point digital filter implementation, the inputs and
filter coefficients needed to be scaled to avoid the possibility of over-
flows. Thus the binary point was assumed to be to the left of the most
significant bit of the 16-bit word and ome arithmetic shift right was
performed on the input samples to further limit the dynamic range of the
arguments,

Figure 4.1 shows a software program flowchart which summarizes the
necessary algorithm computations; the symbols are identified in Figure 2.1.
Three sixteen member buffers, each containing 16-bit words and pointers to
them must be maintained throughout the program.

The FH buffer contains the sixteen most current input samples. The
buffer is circulating in the sense that a given element, say Fk—l’ becomes
Fk-2 in the succeeding program iteration. As a result, either the entire
buffer must be repositioned in memory every time a new sample is obtained,
or a pointer to a specific sample, such as the single most recent sample,
must be maintained and updated each time a new sample is read.

Sixteen filter coefficients or weights are stored in the BM buffer. The
values of the weights are recalculated during each program iteration. This
buffer is not circulating.

The third buffer contains the most recent sixteen values of the error,
EM’ which are computed by the program. Like the FM buffer, this is a
circulating buffer.

The flowchart indicates one possible sequence of calculatiomns for the
algorithm. All the buffers are cleared during the initialization. This
results in a slightly delayed output corresponding to a certain input, but

this property of most digital filters is generally acceptable.
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A new sample is read from the A/D converter at the start of the pro-
gram. Immediately thereafter, a "start conversion" pulse is sent to the
A/D converter to allow it to compute the next sample while the rest of
the program is being executed.

The calculation of GH’ which is the output of Widrow's LMS routine,
and of the error, EM’ represent the operation of the ADP. It is then
convenient to update the BM buffer by computing the new set of weights,

The final stage of the algorithm is the MAF which operates on the
elements of the EH buffer to form the output QM' This output is squared
to ylield an idea of the magnitude of the output. This magnitude is
compared to a predetermined alarm threshold. If the output magnitude
exceeds the threshold, an alarm occurs. After updating the buffers and
pointers, the routine returns to input a new sample.

The total program length was approximately 300 bytes of code and
the necessary data memory length was about 110 bytes., The program execu=-
tion rate was above 130 Hz, which was faster than the specified requirements.
A complete assembler program listing is given in Appendix 1., The timing

analysis appears in Table 4.1.
Results

Data files made availables by Sandia Laboratories were used to test
the system. These files were stored in digital form in a Data General
HOVA 1200 minicomputer. The files were sutput through a D/A converter
by the NOVA to create the analog input for the Z50 system's A/D converter.
The output of the algorithm computed by the Z8G was sent back to the

NOVA for evaluation. The graphs shown in Figure 4.2 compare the input
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Table 4,1. Z80 Program Timing

Time + Multiply Times _  Total Time
Routine in microseconds in microseconds in microseconds
Initialization 707.25 + 0.0 = 707.25
Input from A/D 21.5 + 0.0 = 21.5
Compute g 1107.25 + 16 x 147.25 = 3463.25
Compute e 29.75 + 0.0 = 29.75
Update the weights 1265.75 + 16 x 147.25 = 3621.75
Compute 9y 50.75 + 1 x 147.25 = 198.0
Block move of buffers 351.0 + 0.0 = 351.0
Total Times 2826.0 + 4859.25 = 7685.25

(excluding Initialization)

Program execution rate = 130 Hz.

Note: These times were calculated for a Z80 CPU clock rate of 4.0 MHz.

data signal, which in this case consisted of an intruder signal in the
presence of noise generated by heavy equipment, with the Z80 algorithm
output. The negative peaks result from the use of an inverting D/A
converter at the output of the 280. It is obwvious that the algorithm
effectively separated the input data signal into two components and

eliminated the random noise generated by the equipment.
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CHAPTER V

THE 8748 MICROPROCESSOR IMPLEMENTATION

The 8748 is a member of Intel's single chip microprocessor family
[5]. Included on the CPU chip are lk x 8 words of EPROM program memory,
64 x 8 words of RAM data memory, 27 lines of input/output functioms, and
an 8-bit timer/counter. A production version, the 8048, has mask pro-
grammable ROM in place of the EPROM program memory of the 8748. Since a
development system was not available for program testing, the evaluation
of the 8748 consisted of a paper study which included the development of
untested software routines used in the implementation of the algorithm.
The assumed system was an NMOS version of the 8748 operating with a 6 MH=z
crystal to yield 2.5 microsecond cycle times.

Like those used in the Z80 implementation, the software routines
maintain all the elements of the buffers as 16-bit words.  All of the
necessary arithmetic operations are performed on 16-bit arguments except
the multiply subroutine, which performs an 8-bit x 8-bit signed multiply
on the most significant bytes of the two arguments and returas a 16-bit
result.

There appears one major difference between the routines presented
here and those written for the Z80. It is due to the modification of

the algorithm discussed in Chapter II to include an Adaptive Threshold



Detection Routine (ATD). Figure 5.1 shows a block diagram of the ATD
technique. The output wvalue of qi is compared with an average of
previous outputs to test for an intruder.

Table 5.1 lists the software routine execution times. Obviously,
the 80 Hz program operation rate is far short of the 128 Hz goal. However,
selected CMOS devices at ten volts are capable of operating at more than
twice their typical speed at five volts. Alsop, there is reason to believe
that CMOS versions of the 8748 will be available in the near future.
Thus a CMOS 8748 at ten volts could probably run one channel of the
algorithm comfortably.

The instruction set of the 8748 lacks some important, often needed,
instructions. Programming ease as well as program speed would be much
improved if some of the following operations were added to the existing
8748 instruction set:

1. Binary or 2's complement multiply

2. Subtraction

3. Arithmetic shifts

4. Data transfers between registers

B Any 16-bit operations.

A further inconvenience resulted from the need for external RAM to
supplement the internal RAM data memory.

Complete software program listings are given in Appeundix 2. Also

included are some comments on a possible system structure.

For this version of the algorithm, the program length was about

500 bytes of code. 500 bytes of RAM were also required for data memory.

36
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Table 5.1, 8748 Program Timing

Time " Multiply Times < Total Time
Routine in microseconds = in microseconds in microseconds
Initialization 6082.5 # 0.0 = 6082.5
Input from A/D 7148 + 0.0 = 77.5
Compute g 1235.0 + 16 x 252.5 = 5275.0
Compute e 87.5 + 0.0 = 87.5
Update the weights 2025.0 + 16 x 232.5 = 6065.0
Compute q and q° 135.0  + 1 x252.5 = 387.5
ATD 317.5 + 1 x252.5 = 570.0
Update F and E buffers 102.5 * 0.0 = 102.5
Total 3980.0 + 8585.0 = 12565.0

Program Execution Rate = 80 Hz

All times are calculated for a 2.5 usec cyecle time. Totals do not
include Initialization time.



CHAPTER VI

THE RCA ATMAC TMPLEMENTATION

Referring to the RCA ATMAC as a microprocessor stretches the meaning
of the word considerably. The ATMAC is a CMOS/S0S, very low power device
which is designed with an 8-bit-slice architecture that is meant to be
used in high speed signal processing and array processing applications
{6]. It has an excellent instruction set and, when combined with a hard-
ware multiply and accumulate special function unit, is capable of wvery
fast algorithm operation. Unfortunately, the capabilities of the ATMAC
are currently more than matched by the system's cost and complexity.

The ATMAC CPU uses two 8-bit modular chip types, each of which is a
64-pin package. One is the Data Execution Unit. It contains eight general
registers, performs the arithmetic and logic functions on the data, and
supplies the operands for any Special Function Unit. The other chip is
the Instruction and Operand Fetch Unit. It contains eight indirect
address registers, the program sequence counter, and a four-word program
counter stack. This study assumed the use of a l6-bit system which would
require two of each of these CPU chips. Since four separate busses are
provided for the program memory address and data lines and the data memory
and input/output address and data lines, the ATMAC can execute one imstruc-
tion while it is fetching the next. The result is a very fast processor
with instruction execution times of 280 nanoseconds for short cycle

instructions and 350 nanoseconds for long cycle instructions.
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For machine configurations with data words of 16 bits or less, the
minimum instruction word length is 24 bits [6]. Two types of instructions
are used by the ATMAC. Type I instructions allow the contents of various
registers to be used as operands, and Type II instructions specify an
immediate operand. Since a total of four register operands as well as a
processor mode control can be specified by one instruction, the ATMAC
instruction set is wvery flexible and powerful. The disadvantage of this
is that assembler program writing and reading is rather difficult and
clearly understanding the operation of a program is not an easy task.

The algorithm used for the ATMAC implementation was somewhat different
than those used in the previously discussed implementations. The ADP as
was originally shown in Figure 2.1 was left unchanged. However, the MAF
was eliminated, and a new version of the ATD was inserted. Figure 6.1
shows a block diagram of the revised algorithm used here. 1In addition to
the algorithm components shown in Figure 6.1, a low pass digital filter
was included at the point of sample input. This filter and the routine to
input a sample from an A/D converter were omitted from this study. Alsc
changed from the original algorithm was the required speed of operation.
It was decided that program operation rates of 32 Hz or less were adequate.

Table 6.1 lists the timing of the software routines. The 11.5 kHz
operation rate indicates that the ATMAC is indeed an extremely fast pro-
cessor. Even faster times could probably be achieved, but their wvalue
would be minimal for this application. The ATMAC would be most valuzble
for applications requiring much faster speeds than this algorithm needs

such as real time speech processing or array processing.
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The complete software routines and supporting documentation appear
in Appendix 3. None of the routines have been tested. They were written
only for the purpose of evaluating the capabilities of the ATMAC with

respect to this application.

Table 6.1. ATMAC Program Timing

Program Routine Execution Time (microseconds)
1., Initialization 42.77
2. Input from A/D (estimate) 1.00
34 Compute g 11.90
4, Compute em Q.56
5., Update the weights 39.69
6. Adaptive Threshold Detection 6.02
7s Update buffers 23.03

8. Digital Filter and other I/0 Routines
not included 5.00

Total Program Time (without Initialization Routine) is,
T = 87.20 microseconds
Program Operation Rate is,

1/T = 11.5 kHz

Note: These times were calculated as follows:
short cycle iastruction time = 280 nsec.
long cycle instruction time 350 msec.

b
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CHAPTER VII

COMPARISON OF THE VARIOUS IMPLEMENTATIONS

Having thoroughly studied three possible algorithm implementatioas,
it is useful to form some ideas about how they compare with each other.
However, since the 8748, Z80, and ATMAC represent a full range of micro=-
processor sophistication levels, comparisons are hard to make. For
instance, all three of the devices have many advantages with respect to
the type of tasks they were designed to perform. Yet the ATMAC and 8748
fall on opposite ends of the spectrum of available microprocessor systems
in terms of cost, complexity, and capability while the Z80 falls somewhere
in the middle of that spectrum. In this chapter, some ideas regarding the
merit of the respective implementations will be formed based on various
attributes of the microprocessors. Some of the criteria used will be
deterministic and fixed while others will be subjective in nature and will
to a large extent reflect the opinions of the author.

The 8748 has several nice features. It was designed to simplify many
microprocessor system designs by including program and data memory on the
chip. A CMOS version would allow operaticn at ten volts and thus all of
the advantages of CMOS, including very low power consumption and good
noise immunity as well as the potential for sufficient program operation

speeds, would add to the attractivemess of the 8748.
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The 8748 suffers from a number of disadvantages. The intended system
simplicity limits the abiiity of the device té perform programs which
require more data or program memory than is available internally. The
instruction set is not as complete or versatile as one would desire. This
results in more lengthy programs which are not always easily understood.
It also restricts the ease of data flow to and from external memory.

An implementation based on the 8748 would use a very simple hardware
configuration. It would include a minimum number of chips and would be
easy and relatively inexpensive to build. The software limitations,
however, would become annoying if many program changes were necessary.

Initially, the major disadvantages of the 280 implementation seemed
to stem from the fact that an NMOS version of this 8-bit microprocessor
at five volts lacked the necessary speed to perform an algorithm which
required the use of l6-bit operands and that it consumed a significant
amount of power. However, since National Semiconductor recently began
to produce CMOS versions of the Z80, the problem of power consumption
has been eliminated, and the speed of the device can probably be improved.

The Z80 is a very capable 8-bit microprocessor. It has the advantage
of an excellent instruction set. The problem of implementing an algorithm
which requires the use of 16-bit operands is greatly reduced by the many
l6~bit operations included in the Z80's instruction set. The only serious
problem remaining is due to the lack of a multiply instruction. The need
to call a multiply subroutine repeatedly throughout the program limits
the possible operation speed of the program, but sufficient speeds can
still be achieved for this algorithm. In gemneral, the software capabilities

of the Z80 are nmuch better than those of the 8748.
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The minimal 280 hardware system described in Chapter I1II illustrates
the simplicity of a possible implementation as well as the relatively low
cost of such a system. Although it is slightly more complex than a
minimal 8748 system might be, the difference is insignificant compared to
the advantage of the Z80's superior instruction set.

The ATMAC is in a class of its own at the top end of the microprocessor
spectrum. Its CMOS/SOS comstruction yields extremely fast program execu-
tion speeds and requires only a small amount of power. In no way does it
nave difficulty meeting the requirements of the algorithm. The instruction
set is excellent and is very well suited to signal processing applicatiocus.

Unfortunately, the few disadvantages that the ATMAC does have are
very major. A fairly high degree of system complexity is expected for a
device of this nature and in this case the system complexity is not out
of line with the capabilities of the ATMAC. A more severe problem comes
from rhe fact that the ATMAC is not a particularly friendly microprocessor.
The long instruction word includes fields to specify several variations
for any instruction and thus makes the interpretation of a program quite
difficult. Again, this problem is not out of line with the capabilities
of the ATMAC and to some extent it is an expected problem. The Liggest
disadvantage of the ATMAC is its cost, which currently is excessive even

for a microprocessor with its ability.
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CHAPTER VIII

CONCLUSIONS

It is the opinion of the author that none of the implementations
described here make use of the available microprocessors which would be
most closely matched to the task of implementing this algorithm. The
excessive overkill capabilities of the ATMAC would be an advantage and
would allow a great deal of flexibility in future algorithm modifications.
The ATMAC's present cost, however, is too high to justify its use for
this particular algorithm.

CMOS versions of the 8748 and of the Z80 would both be capable of
implementing the algorithm. The hardware systems would take on slightly
different appearances due to their architectures and would vary somewhat
in terms of cost. These differences would probably not be significant.
Therefore, the 280, due to its superior instruction set and operation
speed, would seem to be the most practical implementation of the three
described in this report. At lower speeds, the Z8(C could perform 16-bit
X 16~bit multiplies in addition to performing all of the other necessary
16-bit arithmetic and logic operations. Although this would nct be an
ideal solution to the implementation of this algorithm, it would be a

reasonable one.
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APPENDIX 1

Z80 WIDROW ALGORITHM ASSEMBLER PROGRAM

Memory Organization:

Location Contents Location Contents
40909 HEX £ 16 L-O- 4@42 e 16 LesDe
4001 fm_l6 H.O. 4043 e 16 E.O.
4902 fm—l5 L.0O. 4044 e 15 L.0.
4093 fnrli H.O. 4045 em_l5 H.Q.
4P1E fmrl L.0. 4060 e 1 L.O.
4P1F fmrl H.O. 4@61 B H.O.
4929 f L0 4062 e L.0.
m m
4921 fm H.O. 4063 e H.O.
4022 bm 16 L.0. 464 g(l.s.b.)L.0O.
4@23 b H.O. 4065 g(l.s.b.)H.O.
m,16
4@24 bm,lS L0, 4LB66 g(Q.s.b.)L.O.
4925 bmjls H.0. 4067 g(m.s.b.)H.0.
- L] 4668 qm LoOn
: ' 4069 g H.O.
44D bm,l L.0. 4@6A Vem L.O.
4941 bm,l H.O. 4@6B Vem H.O.

Note: The F buffer and the E buffer are circulating buffers. However,
rather than maintaining circulating pointers to these buffers,
they are updated each program iteration by block moves.



Multiply Subroutine

Note:

RET1

RET2

SKIP

ADJL

ADJ2

This subroutine performs an 8-bit x 8-bit signed multiply of
the contents of registers D and H. The result is returned in
register pair HL with DE = @@#@#@. This routine uses the

FUDGE method.

Location Imnstruction Code Comments
@2¢0H LD E,H 5C D=MPX ,E=MPY
1 X0R A AF clear A
2 LD H,A 67 clear H
3 LD L,A 6F clear L
4 LD C,A 4F clear C
5 LD B,@8 @6 B=iteration counter
6 @8
7 BIT 7,D CB test sign of MPX
8 7A
9 JR NZ,ADJ1 2¢ if negative, go to
A 18 ADJ1, else, continue
B BIT 7,E CB test sign of MPY
C 7B
D JR NZ,ADJ2 2@ if negative, go to
E 18 ADJ2, else, continue
F SRL D CB shift right logical
19 3A MPX
1 JR NC, SKIP 3¢ test l.s.b. of MPX
2 @3 if @, go to SKIP
3 LD A,H 7C else, add MPY to
4 ADD E 83 high part of the
5 LD H,A 67 result
6 RR H CB shift right HL
7 1C
8 RR L CB
9 1D
A DJNZ,e 19 decrement iteration
B F3 counter and repeat if > ¢
c LD A,H 7C subtract contents
D SUB C 91 of FUDGE register
E LD H,A 67 from high part of result
F XOR A AF
20 LD D,A 57 clear DE
1 LD E,A 5F
2 RET c9 return to calling program
3 LD A,E 7B
4 1Lb C,E 4B if MPX < @, add
5 JR RET1 18 MPY to FUDGE
6 E4
7 ADD D 82 if MPY < @, add
8 LD C,A 4F MPX to FUDGE
9 JR RET2 18
P22A E4

30
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Initialization

This routine clears the buffer contents in memory. The program
execution begins here at location ($9¢¢@.

Location Instruction Code Comments
PPdoH LD B,n #6 set up iteration counter

1 6C
2 XO0R A AF clear A
3 LD HL,nn 21 load HL with
4 6B memory pointer
5 49
6 LD (HL),A 77 clear memory byte
7 DEC HL 2B decrement HL
8 DJNZ,e 19 decrement iterationm counter
9 FC and repeat if > §

Input from A/D Converter

This routine inputs the new sample from the A/D converter as is
explained in Chapter III. This input is scaled by an arithmetic shift
right and is stored in memory.

Location Instruction Code Comments
PPPAH XOR A AF clear A
B LD L,A 6F clear L
c LD A, (nn) 3A input sample
D 06 from A/D
E co
F LD B,A 47 B = sample
19 LD A, (an) 3A start the next
1 ) conversion
2 3¢
3 LD A,n 3E A = mask
4 8@ convert sample to
5 XOR B A8 2's complement form
6 LD H,A 67 H = sample
7 SRA H CB scale sample
8 2C by arithmetically
9 RR L CB shifting right HL
A 1D
B LD (nn),HL 22 store £ in memory
c 20 n
¢¢1D 49
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Compute g kzl fmrk ik
Location Instruction Code
$@1E LD HL,nn 21
F 99
29 1)
1 LD (on),HL 22
2 64
3 49
4 1D (nn),HL 22
5 66
6 49
7 LD IX,nn DD
8 21
9 22
A 49
B LD IY¥,nn FD
e 21
D ')
E 49
F LD B,n @6
39 19
1 LD L, (IX+D) DD
2 6E
3 )
4 LD H, (IX+D) DD
5 66
6 g1
7 1D E, (I¥+D) FD
8 5E
9 P
A LD D, (IY+D) FD
B 56
C g1
D PUSH BC C5
E CALL CD
F 29
49 @2
1 INC IX DD
2 23
3 INC IX DD
4 23
5 INC IY FD
6 23
7 INC IY FD
#p48 23

Comments

clear HL

clear low order 16 bits
of g

clear high order 16 bits
of g

load index register X
with address of L.O.
byte of bm,16

load index register Y
with address of L.O.
byte of fm_l6

set up iteration counter

HL = bm,k

DE = fm—k

save the counter
call multiply
subroutine

increment buffer

pointer

increment buffer
pointer

52



Location Instruction Code

@949 LD BC, (nn) ED
A 4B
B 64
e 49
D EX DE,HL EB
E ADD HL,BC @9
F LD (nn),HL 22
5@ 64
1 49
2 EX DE,HL EB
3 LD BC, (nn) ED
4 4B
5 66
6 49
7 ADC HL,BC ED
8 4A
9 LD (nn),HL 22
A 66
B 49
B POP BC 65
D DJINZ,e 10

@@5E D2

Comments

load BC with L.O.
16 bits of g

update L.0. 16 bits
of g and store
in memory

load BC with H.O.
16 bits of g

update H.0Q. 16 bits
of g and store
in memory

retrieve counter
decrement counter and
repeat if > @

53



Compute B fm -z

Note: Enter this routine with HL = g (H.0. 16 bits).

Location Instruction Code Comments

@@s5F EX DE,HL EB DE = g (H.0. 16 bits)
1 20 HL = £
2 49 m
3 X0R A AF clear A, clear carry
4 SBC HL,DE ED HL = £ -g=e
5 52
6 SRA H CB
7 2C
8 RR L CB
9 1D
A SRA H CB 4
B 2C divide by 2
C RR L CB to form 4
D 1D HL = emlz
E SRA H CB
F 2C
70 RR L CB
1 1p
2 SRA H CB
3 2C
4 RR L CB
5 1D 4
6 LD (an),HL 22 store e_/2" in memory
7 62 o

P78 4@



Update the Weights b

m+l,k

= ubm,k

+ Ve f
m

m=k

Note:

Location

Enter this routine with Vem = em/24 in HL.

Instruction

Code

pa7

o

0
HEHUOOQOE PO UPLWUNFSEODUOUOQEWPOUOONOOUSFLONDEFESHTDOOWE

#@9

9

LD IX,nn
LD IY,nn

LD (on),HL
LD B,n
PUSH BC

LD HL, (nn)
LD E, (IY+D)
LD D, (IY+D)
CALL

LD E, (IX+D)
1D D, (IX+D)
EX DE,HL
LD B,H
LD C,H
S

RA C
SRA C

DD
21
22
49
FD
50
09
40
22
6A
49
g6
1¢
C5
24
6A
49
FD
5E
1)
FD
56
g1
CD
p9
@2
DD
SE
26
DD
56
gL
EB
A
4C
CB
29
CB
29

Comments

load index register X
with the address of
the L.0. byte of bm,lG

load index register Y
with the address of
the L.O. byte of £

m16

store Vem in memory
set up iteration counter

save counter
HL = Ve
m

DE = fm_k

call multiply subroutine

DE = bm,k

form b /210
m,k
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Location Instruction Code Comments

poAd XOR A AF clear A
1 RL B CB rotate m.s.b. into
2 1@ carry
3 JR NC,e 39 fill B with sign
4 g1 bit
5 CPL A 2F
6 LD B,A 47
7 Z0R A AF clear A
8 SBC HL,BC ED HL = ub
m,k 10
9 42 = bm,k (L -27)
A ADD HL,DE ED HL =b
B SA ortl,k
c LD (IX+D),L oD store updated
D 75 b in memory
E a0 mtl,k
F LD (IX+D),H DD
B¢ 74
1 g1
2 INC IX DD increment pointers
3 23
4 INC IX DD
5 23
6 INC TY FD
7 23
8 INC IY FD
9 23
A POP BC Cl retrieve counter
B DJNZ,e 19 decrement counter and
@#dBC c9 repeat if > ¢
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1 16
Compute .= 16 Z Bk
k=1
Location Instruction Code Comments
#@BD LD HL, (nn) 2A HL = em_16/16
E 42
F 49
co EX DE,HL EB exchange DE and HL
1 1D HL, (nn) 2A
2 62 HL = e /16
3 4 m
4 I0R A AF clear A, clear carry
2 SBC HL,DE ?2 HL = (em - em-lé)/lG
7 EX DE,HL EB exchange DE and HL
8 LD HL, (nn) 2A
9 68 HL = old q
A 49 a
B ADD HL,DE 19 HL = new qm
c LD (nn),HL 22 store new value of
D 68 q_ in memory
E 49 »
F LD D,H 54 DE = HL = q_
D@ LD E,L 5D
1 CALL CD call multiply subroutine
2 o form qi/l&2
3 g2
4 SLA L CB
5 3 25
6 RL H CB
7 14
8 SLA L CB
9 25 multiply by 16
A RL H CB to form
B 14 HL = q2/16
C SLA L CB
D 25
E RL H CB
F 14
ol ) SIA L CB
1 25
2 RL H CB
3 14
4 LD A,B 7C output result to
5 oUT [n],A D3 qutput port
@PE6 po
NOTE: The information at the output port can be used as an input to

a D/A converter to obtain the algorithm output. This is the
quantity which was plotted in the results given in Chapter IV.



Block move of E and F buffers

Location Instruction Code Comments
goE7 LD DE,nn 11 load target address

8 42

9 4@

A 1D HL,nn 21 load source address
B &4

c 4@

D LD BC,nn g1 load number of bytes
E 29 to be mowved

F 1]
F@ LDIR ED block move of

1 B@ E buffer

2 LD DE,nn 11 load target address
3 @@

4 49

5 LD HL,nn 21 load source address
6 @2

7 4§

8 LD BC,nn A1 load number of bytes
9 2¢ to be moved

A @@

B LDIR ED block move of

C B@ F buffer

D JP nn Cc3 jump to Input from
E @A A/D Routine

@QFF 1)
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APPENDIX 2

8748 WIDROW ALGORITHM SYSTEM ORGANIZATION

The lk x 8 internal ROM program memory is more than enough for this
program. Some care must be taken to place the routines in memory so that
the conditional jumps are to a location on the same page.

The intermal 64 bytes of RAM are not enocugh to contain the buffers.
512 bytes of external RAM are organized as two 256 byte pages. A bit of
Port 1 is used to select the page and the 8 bit BUS is used for address
and data transfer.

Only the T buffer uses page 1, so user flags FO and Fl are used to
remember the page that T buffer pointers TLPTR and TLPTR+64 are currently
pointing to. All other buffer pointers refer to page 0.

I/0 Port 2 is used to input from the A/D converter, and I/C Port 1

is used for control.

1/0 Port 1 Bit 0 - external RAM page select
Bit 1 - ALARM
Bit 2 - control to A/D, D/A
Bit 3 - control to A/D, D/A

The internal timer is used to maintain constant program speed.



Internal RAM

Bank 0 registers are selected on reset.

3F
User RAM
20
1F R7'
. Bank 1 registers
18 R1'
17 RO'
Stack
08
07 R7
p Bank O registers
Rl
00 RO
Location Contents
20 H FLPTR points to f(mr16)
21 H ELPTR points to e(m—l&)
22 H f(m) (H.0.) new sample from A/D
H f L.0.
23 @ (€00
0.
24 H e(m) (H ) f(m) - &
25 H e(m) (L.0.)
26 H g (H.0.)
27 H g8 4 (L.0.)
28 H q/2a (H.0.) sum of elements of
29 H q/2 (L.0.) E buffer
24 H a2/2* @.0.)
2B H q?/2* @.0.)
2C H TLPTR points to t(mrl92)
2D H TLPTR+64 points to t(mr128)
2E H SUM (H.O0.) sum of oldest 64 elements
2F H SUM (L.0.) of T buffer



00
01

1E
1F
20
21

3E
3F
40
41

00
01

DE
DF

External RAM
Page 0
f_(m_ls) (H.0.)
f(m—16) (L.0.)
f(mrl) (H.0.)
f(m_l) (L.0.)
b(m,lﬁ) (H.0.)
b(m,l&) (L.0.)
b(m,l) (1.0.)
b(m,l) (L.0.)
e(mrlﬁ) (H.0D.)
e(nrlﬁ) (L.0.)
e(mrl) (H.0.)
e(mrl) {L.0.)
t(mrl92) (H.0.)
t(m-192) (L.0.)
t(mrll3) (H.0.)
t(m_113) (L.0.)
Page 1
Bm-115)  (HeD<)
t(mrllZ) (L.0.)
t(mrl) (H.0.)
t (L.0.)

61

F buffer
circulating

B buffer
non-circulating

E buffer
circulating

T buffer
circulating

T buffer
(cont.)



8748 Widrow Algorithm Program

8-bit x 8-bit signed multiply
This routine is called by the standard subroutine CALL command.
Call this subroutine with R2 = MPX and R3 = MPY.
The result is returned in A (H.O0.) and R2 (L.0O.).

R4 = counter

R5 = FUDGE
#5¢ MLT MoV RS, #00 BD clear FUDGE
1 go
2 MOV A,R2 FA A = MPX
3 JB7 FIX1 F2 test sign, if neg.
4 5A go to FIX1
5 TEST MOV A,R3 FB A = MPY
6 JB7 FIX2 F2 test sign, if neg.
7 5E go to FIX2
8 JMP GO T if pos., go to GO
9 61
A FIX1 MOV A,R3 FB if MPX is neg.,
B MOV RS,A AD add MPY to FUDGE
C JMP TEST B4
D 55
E FIX2 MoV A,R5 ¥D if MPY is neg.,
F ADD A,R2 6A add MPX to FUDGE
60 MOV R5,A AD
1 GO MOV R4, #98 BC initialize counter
2 @8
3 CLR A 27 clear A
4 CLR C 97 clear carry bit
5 MLOOP RRC A 67 rotate right A
6 XCH A,R2 Z2A and R2
7 RRC A 67 carry = bit shifted
8 XCH A,R2 2A out of MPX
9 JNC MCONT Eb if no carry, go to
A 6C MCONT
B ADD A,R3 6B if carry, add MPY
C MCONT DJNZ R4 ,MLOOP EC to A
D 65 decrement and repeat until
counter = 0
E RRC A 67 rotate right
F XCH A,R2 24 A and R2
70 RRC A 67
i 8 XCH A,R2 2A
2 XCH A,R5 2D subtract FUDGE
3 CPL A 37 from high
4 INC A 17 part of
5 ADD AR5 6D result
876 RET 83 return to calling program

Total number of c¢ycles = 101
Time at 2.5 usec/eycle = 252.5 usec.
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Initialization

This routine clears all external RAM buffer locations and initializes
all pointers and flags used by the program.

@D8  INIT MOV RO, #20 B8 R@ = location of
9 20 FLPTR
A CLR A 27
B MOV @r@,A A@ set FLPIR = @
C INC RO 18 R@ = location of
D MOV A, #48 23 ELPTR
E 49
F MOV @R@,A AQ set ELPTR = 4§
E@ MOV R@,#2C B8 R# = location of
1 2C TLPTR
2 MOV A, 60 23
3 6@
4 MOV @R@,A Ad set TLPTR = 6@
5 INC RO 18 R@ = location of
6 MOV A, #9E 23 TLPTR+64
7 9E
8 MOV @Rr@,A AQ set TLPTR+64 = 9E
9 CLR F@ 85 clear F{¢
A CLR Fl A5 clear Fl
B CLR A 27 clear A
g MOV  R@,A A8 clear R
D MoV R7,#00 BF set counter = (@
E @9
F ANL P1,#FE 99 select external
F@ FE RAM page @
1  ICONT MOVX  @R#,A 9@ clear all of
2 INC R@ 18 external RAM
3 DJNZ R7,ICONT EF page @
4 F1
5 ORL P1,#01 89 select extermal
6 21 RAM page 1
7 CLR A 27 clear A
8 MOV RO, A AB clear R@
9 MOV R7,#E@ BF set counter = E@
A E@
B ICONT2 MOVX @R@,A 9@ clear locations
& INC R 18 @@ to DF in
D DJNZ R7,ICCNT2 EF external RAM
E FB page 1
@¢FF OUTL Pl,A 39 output @@ to page 1,

sets ALARM = @, selects
external RAM page @

Total number of cycles = 2433
Time at 2.5 psec/cycle = 6082.5 usec
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Input from A/D

This routine controls the internal timer and inputs the samples from

the A/D converter. It also stores the new sample at a temporary location
in internal RAM. This rcoutine was written for the 8-bit Teledyne 8700
A/D converter.

160 AD STOP T 65 stop timer

1 MOV A, 23 load timer with

2 . the desired

3 MOV T,A 62 constant

4 SIRT T 45 start timer

5 MoV R2,#¢0 BA clear R2

6 1)

7 IN A, P2 gA input sample

8 ORL P1, #@4 89 output control

9 1A pulse to start

A XRL A,#80 D3 next conversion

B 8@ convert offset

g RRC A 67 binary to 2's comp.

D XCH A,R2 2A

E RRC A 67

F XCH A,R2 2A arithmetic shift
19 JB6 SET7 D2 right A

1 16 and R2

2 ANL A,#7F 53

3 7F

4 JMP NCONT 24

3 18

6  SETI7 ORL A,#80 43

7 8¢

8  NCONT MOV RO, #22 B8 store sample

9 22 at internal

A MOV @R@,A Ag locations 22

B INC RO 18 and 23

c XCH  A,R2 24

D MOV  @R@,A Ag

E ANL P1,#FB 99 output control
11F FB pulse to A/D

Total number of cycles = 31
Time at 2.5 usec/cycle = 77.5 usec



16
Calculation of g = I b

L Pk Faek)

This routine calculates g. The b's and f's are in external RAM page 0.
The result is stored in internal RAM.

12¢ CLR A 27 clear A

1 MOV R@,#26 B8 RP = location of

2 26 g (2.0.)

3 MOV RO, A A@ clear g (H.0.)

4 INC R@ 18

5 MOV @R@,A A@ clear g (L.0.)

6 MOV RY,#20 B8 R@ = location of

7 20 FLPTR

8 MOV A,GRP F@ A = FLPTR

9 MOV RP,A A8 R@ = location of f

A MOV R1,#2¢ B9 (8.0.) L)

B 20 Rl = location of b( 16)

c MOV R7,#1¢ BF (H.0.) s

D 10 R7 = loop counter

E GLOOP MOVX A,@R@ 3¢ A= f(myk) (H.0.)

F MOV  R2,A AA R2 = £ 0 (H.0.)

39 MOV  A,@R1 81 A b(m’k) (H.0.)

1 MOV R3,A AB R3 = b(m,k) (H.0.)

2 CALL MLT 14 call multiply

3 50 subroutine

4 MOV R3,A AB R3 = result (H.0.)

3 MOV A,R@ F8 A = location of f( )

6 INC A 99 (H.0.) B

7 INC A 17 update £ ..+ polnter

8 ANL  A,#IF 53 (m=k)

9 1F

A MOV R4, A AC save pointer

B INC R1 19 update b(m K) pointer

G INC R1 19 2

D MOV R@,#27 B8 R@ = location of

E 27 g (L.0.)

F MoV A, @R F@

49 ADD A,R2 6A update g (L.0.)

1 MOV @Rr@,A Ag

2 DEC RO C3 R@ = location of g (H.C.)

3 MOV A,@RQ Fg update g (H.0.)

4 ADDC A,R3 7B

5 MOV @R@,A AP

6 MOV ARG FC restore f< K) pointer

7 MOV  R@,A A8 to kg O

8 DJNZ R7,GLOOP EF decrement R7 and branch to
149 2E GLOOP if R7 # @

494
1235 usec (without multiplies)

Total number of cycles
Time at 2.5 usec/cycle



Calculation of e f

() ~ “(m) "B
This routine calculates e(m). To prevent ozerflows, e(m) is shifted
right arithmetically &4 times to form e(m)IZ . The value e(m)lz is
stored in internal RAM. Note that the elements of the E buffer in
external RAM are of the form e{mrk) 4

/27. This is to prevent overflows
when the sum q is formed. Alsc note that in updating the weights,

v= 2% Thia factor is taken care of by using e(m)/24.
. o 4 4
Exit this routine with A = e(m)lz (L.0.) and R2 = e(m}lz (H.0.).
14A MOV R@,#22 B8 R = location of £
B 22 (H.0.) (m)
c MOV A,@R@ Fo A= f(m) (H.0.)
D MOV  R2,A AA R2 = £ (H.0.)
E INC R@ 18 increment R@
F MOV A,G@R¢ F@ A=£ 5 (L.O.)
58 MoV R@, #27 B8 R@ = location of
1 27 g (L.0.)
2 CPL A 37
3 ADD A, @Rr@ 60 16 bit subtract
4 CEL A 37 to form
5 DEC R@ G8 f (m) ~ 8
6 XCH A,R2 2A
7 CPL A 37
8 ADDC  A,@R@ 79 A= © () (H.0.)
9 CPL A 37 R2 = e(m) (L.0.)
A MOV R1,#@2 B9 Rl = pointer to R2
B @2 exchange L.0. nibbles
c ZCHD A,@R1 31 of A and RZ
D XCH A,R2 24 exchange of A and R2
E SWAP A 47 swap nibbles of A
F XCH A,R2 2A exchange A and R2
6@ SWAP A 47 swap nibbles of A
1 JB3 NEG 72 test sign bit
2 67
3 ANL A, #QF 53
4 gF fill top nibble
5 JMP SKIP 24 with sign bit
3 e aA=e, /2% @00
7 NEG ORL A #FQ 43 (m) 4 te
8 F@ R2 = e(m)/2 (L.0.)
9  SKIP MOV R@, #24 B8 R@ = location of e( )
A 24 @.0) -
B MOV @R@,A Af store e )/2 (H.0.)
c INC R@ 18 =
D XCH A,R2 2A store e, ./2% (L.0.)
16E MOV  GRG,A A9 (m)
Total number of cycles = 35
Time at 2.5 usec/eycle = 87.5 usec
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Update the Weights: b(m,k) = ub(m—l,k) + ve(m) f(m—k)

This routine updates the weights by forming the sum,

-10
(2 + ve (m

Bax) = Pae1,1) " ) Bla1,k) y k)

The constants are u = (1 - 2-10) and v = 2—4. Enter this routine with

A= ve ) (L.0.) and R2 = ve(m) (H.0.).

(
16F MOV R@, #2¢ B8 RP = location of
70 2¢ FLPTR
1 MOV A,@RQ Fd A = FLPTR
2 MOV R@,A A8 R@# = location of f(m—l6)
2 MQV R1,#2¢ ]233 Rl = location of ®(m,16)
3 MOV A,R2 FA A= ve(m) (H.0.)
6 MOV R6,A AE R6 = Ve(m) (H.0.)
7 MOV R7,#1¢ BF R7 = loop counter
8 10
g9 BLOOP MOV A,RH FE A = ve (m) {(H.0.)
A Mov R2,A AA R2 = ve(m) (H.0.)
B MOVX  A,@RQ 8@ A= £ .y (H0.)
C MoV R3,A AB R3 = f(m—k.) (H.0.)
D CALL MLT 14 call multiply
E 5@ subroutine
F MOV R3,A AB R3 = ve(m) f(m—k) (H.0.)
89 INC R1 19 Rl = location of b( k) (L.C.)
1 MOVE A,@R1 81 A=b (L.0.) ‘@
(m,k)
2 ADD A,R2 bA A=
AD Ve Sl
3 MOV  RZ,A AA +b (T )
4 DEC RL c9 (m,k)
5 MOVX A,@R1 81 A= b(m,k) (H.0.)
6 MOV R4,A AC save b( k) (H.0.)
7 ADDC  A,R3 78 in R4 ‘%
8 MOV R3,A AB R3 = ve f +b
9 MOV A,R4 FC (5.0.)® (@-k) ~(m,k)
A RR A 77 A= b(m,k) (E.0.)
18B RR A 77 rotate right twice



Update the Weights: (cont.)
18C JZ BCONT

D

E CPL A

F JB5 BSKIP
9¢

1 ANL A,#3F
2

3 INC A

4 ADD A,R2
5 MOV R2,A
6 JMP BCONT
7

8 BSKIP INC A

9 ADD A,R2
A MOV R2,A
B MOV A,R3
c ADDC A, #FF
D

E MOV  R3,A
F BCONT MOV A,R3
A@ MOVX @R1,A
1 INC RL

2 MOV A,R2
3 MOVX @R1,A
4 INC R1

5 MOV  A,R¢
6 INC A

7 INC A

8 ANL AL #1F
9

A MOV  R@,A
B

=

DJNZ R7,BLOOP

Total number of cycles
Time at 2.5 usec/cycle

91
19
FA
91
19
F8
17
17
53
1F
A8
EF
79

810

if A=@, go to
BCONT

complement A

test sign bit

form 2's comp.

of (2719 b k)
and add to “°?
previous sum

to form the
updated b(m,k)

R3 = new b(m,k) {(E.0.)
R2 = new b(m,k) {L.0.)

store the new b

in the (myle
B buffer
update b(m,k) pointer

update f(mek) pointer

decrement counter and
repeat if # @

2025 usec (without multiplies)



Calculation of q = q(old) + e(m) - e(m—lﬁ)

This routine calculates the new value of g which is the sum of the
elements of the E buffer. To do this, the oldest value of e, e(mr16)’

is subtracted from the old q and the newest wvalue of e, e(m), is added

to form the new value of q. Since the values in the E buffer are stored
as e/24, the sum formed is actually q/24. This value is squared and
scaled by 24 to form q2/24 which is sent to the D/A converter for testing.

1AD MOV R1,#21 B9 R1 = location of

E 21 ELPTR

F MOV A,@R1 F1 Rl = location of e(m-lﬁ)
B¢ MOV R1,A A9 (H.0.)

1 MOVE A,GR1 81 A= e(melé) (B.0.)

2 MOV  R3,A AB R3 = e (4.0.)

3 N R 19 L

4 MOVX  A,@R1 81 A=e 16 L0

3 MOV R4,A AC R4 = e(mrlﬁ) (L.0.)

6 MoV R@, #24 B8 R# = location of € )

7 24 (2.0.) =

8 MOV  A,@R{ F@ A=e , (8.0.)

9 MOV R2,A AA R2 = e(m) (H.0.)

A INC R@ 18

B MOV A,@R¢ Fa A= e(m) (L.0.)

C CPL A 37

D ADD A,R4 6C 16 bit subtract to form

E CPL A 37 e =@

F XCH  A,R2 24 (m)  “(==16)

cg CPL A 37

1 ADDC A,R3 7B RZ = e -e,

2 CPL A 37 (g.0.)®@ (@-16)

3 XCH  A,R2 24 A=ery ~ e la-16) {L:0x3

4 MOV R@,#29 B8 R@ = location of

5 29 q (@.0.)

6 ADD A,@R@ 60 update q (L.0.)

7 MOV @R@,A Ap and store

8 XCHE  A,R2 2A

9 DEC RO c8 update q (H.O.)

A ADDC  A,@RY 79 and store

B MOV @Rr@,A Ag

C MOV R2,A AA RZ2 = q (H.O.)

D MOV  R3,A AB R3 = q (H.0.)

E CALL MLT 14 form q2 2 8

F 5@ (actually q“/27)
1D@ SWAP A 47



(cont.)

A,R2
A
R@, #92

A,QRY
A, #F@

A,R2
P1,#@8

P2,A
P1,#F7

47
B8
@2
3¢
53
Fg

89
@8
3A
99
Ed

70

shift right
4 times
arithmetically

A= q2/24 (H.0.)

R2 = q%/2% (L.0.)
output control
bit to select
D/A
output to DA
output control bit
to select A/D

Exit this routine with A = q2/2A (H.0.)

R2 = ¢2/2% (r.0.)

Since almost all jump commands are to locations within the same
256 byte page of memory, we now go to page 3 for the ATD routine.

Calculation of g
ip1 XCH
2 SWAP
3 MOV
4
5 XCHD
6 ANL
7
8 XCH
9 ORL
A
B OUTL
c ANL
10D
1DE JMP
F

ATD

Total number of cycles
Time at 2.5 psec/cyele = 135 usec

b4
@@

jump to location

209



Adaptive Threshold Detection

This routine maintains the T buffer which contains 192 sixteen bit words.
The routine forms the sum of the oldest 64 elements in the buffer. A

constant 02 is formed as follows:

02 = K(SUM) + @

where SUM = the sum of the 64 oldest buffer elements. 02 is compared
with q2/24 to determine ALARM status.

Enter this routine with A = q2/24 (H.0.)
R2 = ¢%/2% (.0.)

200 MOV R@, #2A B8 R# = location of q2/24

1 2A (B.0.),

2 MOV @RP,A Ap store q°/2° (H.0.)

3 INC RO 18 2 4

4 XCH A,R2 2A A=4qg"/2" (L.0.)

5 MoV @R@,A AD store q2/24 (L.0.)

6 RLC A F7

7 XCH A,R2 24 3 4. -7

8 RCL A F7 form t(m) = (qg"/27) 2

9 XCH A,R2 2A

A CLR A 27

B JNC ACONT E6

é @E

D CPL A 37 R3 = £ (m) (H.0.)

E  ACONT MOV R3,A AB R2 =t (@) (L.0.)

F ING RP 18 R# = location of TLPTR
19 MOV A,@RO F¢ A = TLPTR

I MOV RO,A A8 R# = location of t( 192)

9 JFO  SWICH B6 if F@=1, select ‘T *7°

3 16 external RAM

4 JMP ACONT2 44 page 1

5 18- else, continue

6 SWTCH ORL P1,#01 89

7 @1

8 ACONT2 MOVX A,ERP 8@ A=t 199y (HOW

9 MOV R4,A AC R4 =€, _ (H.0.)

A INC Rd 18 (m-1283

B MOVX A,GRO 80 A= t(mr192) (L.0.)

¢ MOV RS5,A AD RS = € (@=192) (L.0.)

D MOV A,R2 FA A=t (LGl

21E MOVX  @R@,A 9¢ store t(m) (L.0.)

71



ATD {cont.)

2iF DEC R@ c8
28 MOV A,R3 FB A= t(m) (H.O0.)
1 MOVE @R@,A 99 store t (H.0.)
2 INC R@ 18 (m)
3 INC R@ 18
4 MOV A,R0 F8 update T buffer
3 JFO ONE B& by storing t ¢ at old
6 2B location of )
; JZ SWICH2 (3.".2 of t(m—lQZ)
9 JMP ACONT3 44 update TLPTR
A 35
B ONE ADD A #20 @3 update F@
C 2@ to point to
D JZ RESTART Co correct page
E 32 in external
F MOV A,R@ F8 RAM
39 JMP ACONT3 44
1 35
2 RESTART MOV A, #60 23
3 6@
4 SWICH2 CPL Fd 95
5 ACONT3 MOV R@,#2C B8 store updated
6 2C TLPTR
7 MOV @R@,A A
8 MOV R1,#2E B9 Rl = location of
9 2E SUM (H.O0.)
A MOV A,@R1 Fi A=8SM (H.O0.)
B MOV R2,A AA R2 = SUM (H.0.)
C INC Rl 19
D MOV A,GR1 F1 A=SUM (L.0.)
E CPL A 37 16 bit subtract
F ADD A RS 6D to form
49 CPL A 37 SUM - t
1 XCH  A,R2 24 (m-192)
2 CPL A 37
3 ADDC  A,R4 7C R2 = SUM - £ 1goy (L.0.)
4 CPL A 37 R3=85M-~-¢t (H.0.)
5 MOV  R3,A AB (m=192)
6 INC RO 18 R§ = location of
7 MOV A,QRP F@ TLPTR + 64
8 MOV R@,A A8 R = location of
z JF1  SETB Zg £ (@-128)
B ANL PLl,#FE 99 select proper
C FE page of
D JMP ACONT4 44 external RAM
24E 51



ATD (cont.)

24F SETB ORI, P1,#¢1 89
50 é1
1 ACONT4 MOVX A,Q@R{ 8¢ A=t (m=128) (H.0.)
2 MOV R4,A AC R4 = ¢ {(4.0.)
3 INC  R@ 18 (m=126)
4 MOX A, @R ap A= t (m-128) (L.0.)
5 ADD A,R2 6A form SUM ~ t
{(m~192)
6 XCH A R4 2C + t(m—lZS)
7 ADDC A,R3 7B R3 = pew SUM (H.0.)
8 MOV R3,A AB R4 = new SUM (L.O.)
9 INC R@ 18
A MOV A,RQ F8
B JF1 ONE2 76
C 61 update TLPTR+64
D JZ SWTCH3 (83
E 6A update Fl to
F JMP ACONTS 44 point to the
60 6B correct page
1 ONE2 ADD A,#2¢ @3 in externmal
2 20 RAM
3 JZ RST2 Cé
4 68
5 MOV A,RQ F8
6 JMP ACONTS 44
7 6B
8 RST2 MoV A, #0d 23
9 6@
A SWICH3 CPL Fl BS store updated
B ACONTS MOV R@,#2D B8 TLPTR+64
C 2D
D MOV @Rr@,A A¢
E MOV R2,#k BA R2 = K
F
70 CALL MLT 14 form K(SUM)
1 50
2 XCH A,R2 2A 5
3 ADD A,#8(L.0.) @3 form K(SUM) + 6 = ¢
4
5 XCH  A,R2 24
6 ADDC A,#8(H.0.) 13
7 __ A = R(SUM) + & (L.0.)
8 XCH A,R2 2A R2 = K(SUM) + 8 (H.Q.)
9 MOV R1,#2B B9 Rl = location of
A 2B 2,,4
B CPL A 37 q°/27 (L.0.)
C ADD A,@R1 61 16 bit subtract to form
D CPL A 37 2 _ 254
27E XCH  A,R2 24 © -4



ATD (cont.)
27F DEC R1
ap CPL A
1 ADDC A,@R1
2 CPL A
3 JB7 ALARM
4
5 ANL  P1,#FD
6
7 JMP DONE
8
9 ALARM ORL P1,{#@2
A
B DONE ANL  Pl1,#FE
28C

Total number of cycles = 127

Time at 2.5 usec/cycle = 317.5 usec

co
37
71

37
F2
89
99

4ty
8B
89
B2
99

A= 02 - q2/24 {(H.0.)

R2 = o2 - q2/2% (L.0.)

if result is < @,
sound alarm

else, clear
alarm bit

set alarm bit

select external
RAM page @
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Update F and E buffers

This routine replaces f(m—ls) with f(m) and e(m—lﬁ) with e(m).
Pointers FLPTR and ELPTR are updated to point to the new
fm-16) 3% e (p-16)
28D MOV R@,#20 B8 R# = location of
E 20 FLPTR
F MOV A,@RQ F@
99 MOV R@,A A8 R@ = location of f(m—lé)
1 MOV R1,#22 B9 Rl = location of f
2 22 m)
3 MOV A,@R1 Fl A= f(m) (H.0.)
4 MOVX  @R@,A 9@ store in buffer
5 INC RO 18
6 INC R1 19
7 MOV A,@RL F1 A= (L.0))
8 MOVX @R@,A 9@ store in buffer
9 MOV A,R@ F8
A INC A 17 update FLPTR
B ANL A, #1F 53
C 1F
D MoV RO, #20 B8 store new
E 20 FLPTR
F MOV @R@,A AQ
AP INC RO 18 R@# = location of ELPTR
1 MoV A,QGR@ P
2 MOV RO,A A8 R@ = locatiomn of © m-16)
3 INC R1l 19 Rl = location of e(m)
4 MOV A,@R1 Fl A= e(m) (H.0.)
5 MOVX  @R@,A 99 store in buffer
6 INC RO 18
7 INC Rl 19
8 MOV A,@R1 Fl A= e(m) (L.0.)
9 MOVX @R#,A g store in buffer
A MOV A,R0 F8
B INC A 17
o ANL A,#5F 53 update ELPTR
D 5F
E MOV R@, #21 B8 store new
F 21 ELPTR
BY MOV @R@,A AQ
1 HERE JMP HERE L4 wait for timer
2B2 Bl interrupt

Total number of cycles = 41
Time at 2.5 usec/cycle = 102.5 usec



The timer, which was preset in the Input from A/D routine, will

count continuously until it is stopped.

When the count changes

from FF to ##, a timer interrupt will set the PC = ¢§§7. From
here, the program branches back to the Input from A/D routine.

A reset will set the PC = ¢)§). From here, the program branches

to the Initialization routine.

o009 EN T1 25
1 JMP INIT @4
2 D8
@07 JMP AD 24
8 09

enable timer
interrupt
jump to initialize

jump to input
from A/D
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APPENDIX 3

ATMAC WIDROW ALGORITHM PROGRAM

Memory: Assume a data memory structure as is shown below.
Pointers Contents Address
Bl b, 1 Bl = ¢@¢d H
m, 2
bm’ 16 Bl6 = @@¢F H
Fd fm Fp :
Fl fmrl Fl
fm—2
fnrl6 Fl6
2
El em_lllﬁ ETOP
2
em_2/16
El6 Circu- eipléllﬁ ETOP+16
lating >
£
Buffer emrlylﬁa
E8¢ a2 /64 EBOTTOM
w80
Qa QA
Q, QB

Note: El, El6, and E8@ are maintained as pointers to a circulating
buffer., The F buffer is updated by a block move. Thus the
pointers to the F buffer as well as to the B buffer are
stationary.



Registers:

GR@

B

GR3

GRS -

GRS -

GR6

GR7

TAR4

IAR6

TAR7

General Registers

general purpose
general purpose
general purpose
general purpose

g

e
m
general purpose

general purpose

Indirect Address Registers

general purpose

Bl address
F@ address
F1 address
El address
Elé address

E80 address

loop counter and initialization
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ATMAC Widrow Program

Initialization:

This routine clears all buffers in data memory and sets up the

buffer pointers.
Instruction

ILDI #; Bl

ZR B, ; O, ; MNOP

ILDI 7; = 114

.

LOOP1 NOP 1, ; ST @,@; RNBP1

ILDI 1; Bl
ILDI 2; F@
ILDI 3; F1

ILDI 4: ETOP
ILDI 5; ETOP + 16

ILDI 6: EBOTTOM

Input from A/D:

Comments

IAR@ « location of the first
element in data memory to be
cleared.

Clear GRY

Set loop counter = 114 D and
identify the next instruction
as the first instruction
in the loop.

Store the contents of GR@ at the
address contained in IAR@.
IAR@ « IAR@ + 1. Decrement loop
counter and branch to LOQP1l
if > 0, else continue.

IAR]1 « Bl

IAR2 « Fd

IAR3 « F1

IAR4 <« El1

TARS « El16

IAR6 + E89@

This routine obtains the new fm sample and stores it at F@.

It also starts the next conversion.

location START.

The routine begins at program
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Compute 16
g~ kzl bm,k fmhk
Instruction Comments
MDCH1 @#,2; LD 1,1; AUTP1 Clear SFU accumulator 1 and set SFU
to multiply and accumulate mode.
GR1 « b
m,1l
IAR]1 « IAR1 + 1
NOP #, ; LD 3,3; AUTP1 GR3 +'fmr1
TAR3 « IAR3 + 1
ILDI 7; = 15 Set loop counter = 15 D and identify
next instructionm as beginning of
loop.
LOOP2 FMUL1 1,3; 1D 1,1: AUTP1 accumulator = accumulator
T (bm,k)(fm-k)
GR1 « bm,k
TAR1 « IAR1 + 1
NOP , ; LD 3,3; RNBP1 GR3 « £
m—k

RDWD1 @,4; 4, ; MNOP
ILDI 1; Bl

ILDI 3; F1

Compute B ™ fm - g

Instruction

NOP @, ; 1D 5,2; MNOP

SUB 5,4; 5, ; MNOP

IAR3 « IAR3 + 1
decrement loop counter and branch
to LOOP 2 if > @, else continue
GR4 « g (rounded)

restore pointer

restore pointer

Comments

GRS « f
m

GRS < e, ™ fm -g



Update the Weights: b " ub

mtl,

m, k

+ vem fm—k

LOOP3

Instructions

DI 1; V

MDCH1 #,1; @, ; MNOP

FMUL1 1,5; 1, ; MNOP

RDWD1 @,4; 3, ; MNOP

IDPI 1; u

NOP 1, ; LD §,3; AUTP1

ILDI 7; = 15

FMUL1 $,3; LD 2,1; MNOP

RDWD1 @,4; 6, MNOP

FMULL 1,2; 1, ; MNOP
RDWD1 @,4; 7, ; MNOP

ADD 6,7; LD #,3; AUTP1

NOP @, ; ST 6,1; AUTP1

NOP #, ; §, ; RNBPL

ILDI 1; Bl

ILDI 3; F1

Comments

GR1 <« V

Clear SFU accumulator and set to

non—accumulate mode.
acc. + ve
m

GR3 « ve (rounded)

GRL + u

GRY « fm-k
IAR3 < TAR3 + 1

81

Set loop counter = 15 D and identify

next instruction as the first

in loop.

acc. + vem £
GR2Z <+ b
m

m=k
.k

GB6 + vem.fm—k (rounded)

acc. <« ub_ |
myk

GR?7 « ubm,k (rounded)

GR6 + bm+l,k

GR§ < next f
-k
IAR3 <« TAR3 + 1

store bm+1,k at B buffer

IAR1 + TAR1 + 1

decrement loop counter.
If > 0, go to LOOP3,
else continue.

restore pointer

restore pointer



Adaptive Threshold Detection

This routine does the following.
1. Form e2/16
m
2
2. Substract enr16/16 from Q,
3. Add e2/16 to Q_ to form the new Q
m a a

4. Store the result

2
5. Form em_16/64
2
6. Subtract emr80/64 from Q
2

7. Add em_16/64 to Q to form the new Qb
8. Store the result

9. Form Qa - Qb -8

10. Test for alarm, i.e., Qa - Qb -0>0

Instruction Comments

CPGR 1,5; 1, ; MNOP GR1 + GRS = e

FMUL1 1,5; 1, ; MNOP acec., + ai

RDWD1 @,4; 1, ; MNOP GR1 + ei (rounded)

SHRA 1,1; 1, ; MNOP divide by 2

SHRA 1,1; 1, ; MNOP divide by 2

SHRA 1,1; 1, ; MNOP divide by 2

SHRA 1,1; 1, ; MNOP divide by 2 GR1 « ei/lﬁ
ILDI 4; QA IARG « QA

NOP #, ; LD 2,4; AUTP1 GR2 <+ Qa

IAR@ « IARG + 1 = QB

2
NOP @, ; LD 3,5; MNOP GR3 + e~

16716



Instruction Comments
2

SUB 2,3; 2, ; MNOP GR2 « Qa - eur16/16
ADD 2,1; 2, ; MNOP GR2 <« new Qa
2
SHRA 3,3; LD 6,f; AUTML GR3 « e /32
GR6 + Qb
IARG « QA
2
SHRA 3,3; LD @,6; MNOP GR3 « enr16/64
2
GR@ + em_80/64
SUB 6,8; ST 2,§; AUTP1 GR6 + Qb - ei;sofﬁﬁ
store new Q@ at QA
IAR@ + QB
ADD 6,3; 6, ; MNOP GR6 + new Qh
SUB 2,6; ST 6,f; AUTM1 GR2 + Q, - Q
store Qb at QB
IAR( « QA
SUBL 2; =8 GR2 « Qa - Qb -8
BOT 3; NALARM if result < 0, branch to NALARM
BOT @; ALARM if result > 0, branch to ALARM
Note: NALARM is a routine to output a "#" to signal no alarm.

ALARM is a routine to output a "1" to signal an alarm.

Control from both of these routines, which are not included here, would
be to the routine which updates the buffers.

Note: Leave this routine with,
GRL = e2/16
m
GR3 = &2 /64

enrl6
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Update the Buffers:

This routine does the following.

1. Block move of the F buffer.
2. Update pointers El, E16, and E80.
Instruction Comments
ILDI ¢; Fl6-1 IARP + address of fm-lS
ILDI 1; Flé6 IAR1 « Fl6
IIpI 7; = 15 set loop counter = 15 D) and ideatify
the next instruction as the
first in the loop.
LOOP4 NOP 2, ; LD @,4; AUTML GRP <« £
IAR@ « IARG - 1
NOP 2, ; ST $,1; AUTML store fm—k at location of fm_k_1
IAR]l « IARLI - 1
NOP ¢, ; @, ; RNBP1 decrement loop counter.
If > 0, go to LOOP4,
else continue.
ILDI 1; Bl restore pointer
NOP @, ; ST 3,5; MNOP store e2 /64 at El6
m=16
NOP @, ; ST 1,6; MNOP store e2/16 at E8f
CPIG 4, ; 1, ; MNOP GR1 « IAR4
DECR 1,1; 1, ; MNOP GR1 « GR1 - 1
SUBI 1; F16 Test if pointer has gone beyond
the end of the E buffer.
BOT 1; FIX1 If so, go to FIX1l, else continue.
CPGI #,1; @,4; MNOP TAR4 + GR1
BOT @; NEXT1 go to NEXT1
FIX1 ILDI 4; EBOTIOM TAR4 <« EBOTTOM
NEXT1 CPIG 5, ; 1, ; MNOP GR1 <« IARS
DEC 1,1; 1, ; MNOP GR1 « GR1L - 1



FIX2

NEXT2

FIX3

NEXT3

Instruction

SUBL 1; F16

BOT 1; FIX2

CPGI ¢,1; @,5; MNOP
BOT #; NEXT2

ILDI 5; EBOTTOM
CPIG 6, ; 1, ; MNOP
DEC 1,1; 1, ; MNOP

SUBI 1; F16

BOT 1; FIX3

CPGI 9,1; @,6; MNOP
BOT @; NEXT3

ILDI 6; EBOTITOM

BOT @#; START

Comments

Test if pointer has gone beyond
the end of the E buffer.

If so, go to FIX2, else continue.
IARS5 « GR1

go to NEXT2

IAR5 « EBOTTOM

GR1 « IAR6

GRL «+ GR1 - 1

Test if pointer has gone beyond
the end of the E buffer.

If so, go to FIX3, else continue.
IAR6 +« GR1

go to NEXT3

IAR6 <« EBOTTOM

go to START
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ABSTRACT

Recent research by Ahmed in the area of digital signal processing
has led to an interesting new application for microprocessors. The
signal processing algorithm which was developed for Sandia Laboratories
involves the use of an Adaptive Digital Predictor and other conventional
digital filters to detect the presence of noise produced by an intruder
in a random ambient noise environment.

This report describes the implementation of the algorithm using
three different microprocessors. First, a Zilog Z80 implementation is
presented and includes both the software development and a minimal
hardware configuration designed for the algorithm. Secondly, a possible
implementation using Intel's 8048 (8748) microprocessor is discussed,
and, finally, a similar study is presented on a possible implementation
using the RCA ATMAC.

Included in this report is a review of the operation of the algorithm
and a comparison of the various methods of implementation. Some test

results are also presented.



