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Abstract 

Pitch detection and instrument identification can be achieved with relatively high 

accuracy when considering monophonic signals in music; however, accurately classifying 

polyphonic signals in music remains an unsolved research problem.  Pitch and instrument 

classification is a subset of Music Information Retrieval (MIR) and automatic music 

transcription, both having numerous research and real-world applications.  Several areas of 

research are covered in this thesis, including the fast Fourier transform, onset detection, 

convolution, and filtering.  Basic music theory and terms are also presented in order to explain 

the context and structure of data used.  The focus of this thesis is on the representation of musical 

signals in the frequency domain.  Polyphonic signals with many different voices and frequencies 

can be exceptionally complex.  This thesis presents a new model for representing the spectral 

structure of polyphonic signals: Uniform MAx Gaussian Envelope (UMAGE).  The new spectral 

envelope precisely approximates the distribution of frequency parts in the spectrum while still 

being resilient to oscillating rapidly (noise) and is able to generalize well without losing the 

representation of the original spectrum.  When subjectively compared to other spectral envelope 

methods, such as the linear predictive coding envelope method and the cepstrum envelope 

method, UMAGE is able to model high order polyphonic signals without dropping partials 

(frequencies present in the signal). In other words, UMAGE is able to model a signal 

independent of the signal’s periodicity.  The performance of UMAGE is evaluated both 

objectively and subjectively.  It is shown that UMAGE is robust at modeling the distribution of 

frequencies in simple and complex polyphonic signals. Combined classification (combiners), a 

methodology for learning large concepts, is used to simplify the learning process and boost 

classification results.  The output of each learner is then averaged to get the final result. UMAGE 

is less accurate when identifying pitches; however, it is able to achieve accuracy in identifying 

instrument groups on order-10 polyphonic signals (ten voices), which is competitive with the 

current state of the field. 
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Chapter 1  

Introduction 

Since the rapid development of technology, music has been changed from “in-person” to 

digital thanks to radio, Internet, CDs, MP3 players, and alike.  Due to improvements in 

technology, the science that is music is readily available for the general population.  While 

technology has provided us with large amounts of music, ready at the click of a button, it also 

limits our ability on how we access it.  As Marc Leman (2008) describes in “Embodied Music: 

Cognition and Mediation Technology,” music is accessed merely by the title of the song, artist, 

and composer, but not by how it sounds or feels.  Projects, such as the Music Genome Project by 

Pandora.com, aim to help expand how we listen to music by analyzing musical features. The 

Music Genome project (About The Music Genome Project, 2013) uses up to 450 distinct musical 

characteristics set by music analysts to provide a better experience for individuals so they may 

listen not only to specific genres of music, but music that they like; their own unique taste.  

However, Pandora, an online, customizable radio, does not use automated information retrieval 

(About The Music Genome Project, 2013). 

Constructing identifiable features for music automatically remains a challenging problem.  

While some properties apply to particular instruments, styles, or genres, those properties may not 

apply to music globally.   Firstly, we must understand the basis of Music Information Retrieval 

(MIR).  A music signal in raw form (time domain) depicts a rather complex domain.  Extended 

information can be extracted by transforming the signal from the time domain to the frequency 

or time/frequency domain by using the Fast Fourier Transform (FFT) or Short Time Fourier 

Transform (STFT).  These are some of the most common algorithms to transform signals from 

one domain to the other and back.  This thesis focuses on the FFT and frequency domain.  

Signals are generally transformed for a different level of analysis on data (i.e. going from 

studying the signal in the time domain to the frequency domain).  Further data transformation is 

achieved by using convolution and filtering.  Convolution in Digital Signal Processing (DSP) 

involves a machine which applies some function or impulse response to an input signal to 

produce an output signal.  Also note that convolution in the time domain maps to multiplication 

in the frequency domain.  Convolution directly relates to filtering which attempts to reduce or 
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eliminate specific frequencies or ranges of frequencies from the original signal.  This reduces 

noise and complexity of the signal and simplifies the analysis of properties like timbre (harmonic 

structure or frequencies present). 

Timbre can also be referred to as how music sounds or color.  The definition can be 

subjective, as there is not a definite way on how timbre should be represented.  One way to 

model timbre is by using the spectral envelope or the best fit line for all harmonic/inharmonic 

structure of a signal (spectral structure).  A common approach is generating the power spectrum 

(squared magnitude), i.e. the strengths of frequencies present in a signal.  Different ways of 

creating the spectral envelope can be seen in the following figure: 

 

 

Figure 1.1 Common methods of creating spectral envelopes. Reused with written 

permission (Schwarz & Rodet, 1999). 

 

Cepstrum (squared magnitude of the Fourier transform of the logarithm of the spectrum), 

discrete cepstrum, and LPC (Linear Predictive Coding) envelopes are graphed versus the original 

spectrum of an arbitrary signal in Figure 1.1.  The major downfall of the discrete cepstrum 

envelope is that it is not resilient to noise.  It correctly links all of the peaks of the partials 

together; however, it gives no notion of the residual noise between partials (Schwarz & Rodet, 

1999).  The cepstrum and LPC envelope apply well to signals with noise, although both do not 



3 

 

accurately link peaks of each partial together.  The LPC envelope can also be too smooth if too 

low of an order is used (Schwarz & Rodet, 1999). 

 This thesis presents a new method for modeling the spectral structure of a musical signal.  

Uniform MAx Gaussian Envelope (UMAGE) uses a mixture of uniform (same width and 

variance) Gaussian distributions to tightly model the structure of signals in the frequency 

domain.  This links all peaks of the spectrum together, but also includes frequencies between 

partials.  This is beneficial if the signal contains inharmonic voices/instruments since the 

envelopes shown in Figure 1.1 rely heavily on periodicity (i.e. all partials are harmonic).  

Gaussian blurring can also be used as a post-processing step on UMAGE in order to reduce noise 

and rapidly oscillating frequencies.  Simply, Gaussian blurring has a smoothing effect on the 

envelope.  UMAGE also allows for high order (number of voices present) polyphonic signals, 

making it a robust model for representing timbre. UMAGE is shown to compete with the state of 

the field in instrument identification and, in some cases, pitch detection.  
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Chapter 2  

Background 

2.1 Sound of Music 

The ability to construct and gather data from music is still an open problem.  As for many 

machine problems, Music Information Retrieval (MIR) is achievable by humans but is a much 

more difficult task to automate and run with machines.  MIR deals with feature selection and 

construction in the ever-increasing number of new songs in order to label and categorize music 

or in other words, to make music more ‘browseable’ by non-traditional means (Echeverri, 2011).  

The research field is studying the mediation of music to the end user in such a way that the 

technology seems transparent yet able to give the user higher capabilities in searching, playing, 

and experiencing music (Leman, 2008). 
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Instrument Family Examples Excitation Type Method of Changing 

Pitch 

String Violin, viola, cello, 

double bass, guitar, 

banjo, mandolin 

“String vibrations by 

plucking, hitting, or 

bowing strings” 

“Different lengths, 

thickness, or tension 

of strings” 

Woodwind (not 

always wooden) 

Saxophone, clarinet, 

oboe, flute, piccolo, 

bassoon, English 

horn, bagpipes 

“Blowing air across: 

an edge (flute); 

between a reed 

(saxophone); between 

two reeds (oboe)” 

“Opening and closing 

holes along the 

instrument’s length 

with fingers” 

Brass Trombone, trumpet, 

tuba, French horn, 

bugle, coronet 

“The sound comes 

from a vibrating 

column of air inside a 

tube caused by 

vibrating lips of the 

player, who presses 

lips to the 

mouthpiece and 

forces air out” 

Varying speed of air, 

vibration of lips, 

length of tubes, or 

valves 

Percussion Drums, vibraphone, 

marimba, 

tambourine, cymbals, 

gong, woodblock, 

triangle 

“Sound source is a 

vibrating membrane 

or vibrating piece of 

solid material caused 

by hitting, shaking, or 

rubbing.” 

Some percussion is 

not pitched, but 

depends on the 

material, thickness, or 

tension 

Keyboards Piano, harpsichord, 

pipe organ, accordion 

Strings or pipes. Varying length, 

tension, diameter, and 

density 

  

As difficult as data retrieval is from music, we may gain insight by studying properties of 

sound.  So, what is sound? Vibrations caused by vocal chords, strings, reeds, and other means 

form sound waves of varying amplitude and frequency.  A variety of musical instruments are 

described in Table 2.1.1; granted it does not cover all types of instruments, but it does represent 

the main instruments used in most small groups, bands, orchestras, and symphonies (Vaseghi, 

2013).  For further description and inner workings of the types of instruments presented in Figure 

2.1.1, the interested reader is referred to (Vaseghi, 2013). 

Table 2.1.1 There are many instrument types/families.  Each family contains 

a variety of instruments, such that the method of producing sound and 

changing pitch differs not only by family, but by instrument as well. 

Adapted from (Vaseghi, 2013). 
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Amplitude of sound waves is measured by calculating the sound power or pressure level: 

 

𝑃𝐿 =  𝑠 ∗  log10(√∑ (
𝑥𝑛
𝜃

)
2

𝑁
𝑛=𝑖

𝑁
𝑑𝐵. 

2.1.1 

 

  

In Equation 2.1.1, 𝑠 represents the segmentation size (commonly 20 ms), 𝑁 represents the 

number of samples in the segment, and 
𝑥𝑛

𝜃
 represents the 𝑛𝑡ℎ sample normalized by 𝜃. The power 

level effectively measures the loudness of the sound wave.  In music, loudness is represented by 

various levels.  Loudness is commonly described as a dynamic level as seen in Table 2.1.2. 

 

Dynamic Relative Loudness 

pp – pianissimo Very soft 

p – piano Soft 

mp – mezzo-piano Moderately soft 

mf – mezzo-forte Moderately loud 

f – forte Loud 

ff – fortissimo Very loud 

Table 2.1.2 A mapping from musical dynamics to relative loudness. 

 

Amplitude leads to other properties of sound, particularly frequency of sound produced by 

musical instruments described in Table 2.1.1.  The frequency of a sound can be defined as the 

number of oscillations from high to low pressure per second in units of Hertz (Hz) (Vaseghi, 

2013).  The human ear, illustrated in Figure 2.1.1, is capable of hearing frequencies ranging from 

roughly 20 Hz to 20 kHz (Vaseghi, 2013).  Sound waves caught by the outer ear are funneled 

through the external auditory canal and eventually into a concentric spiral tube known as the 

cochlea (Thomas, 2012).  The fluid in the cochlea channels vibrations to microscopic hair cells 

lined on the organ of Corti which resonate to particular frequencies (Thomas, 2012).  This gives 

humans the ability to detect pitch.  For further information on how the human ear processes 

sound, the interested reader is referred to (Fastl & Zwicker, 2007; Stuttle, 2003; Vaseghi, 2013; 

Chittka & Brockmann, 2005).  
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Figure 2.1.1 Inner workings of the human ear (Chittka & Brockmann, 2005) (Creative 

Commons Attribution). 

 

A pitch is a series of partials (any single frequency present) perceived from a processed 

sound wave.  Pitches are designated by their fundamental frequency (𝐹0) in combination with a 

number of harmonic or inharmonic overtones.  The fundamental frequency is generally noted to 

be the lowest frequency present.  The structures of most pitches are periodic.  This means, for 

most pitched sounds, harmonics of 𝐹0 are integer multiples of each other i.e. a pitch with a 𝐹0 of 

440 Hz will have a first harmonic (𝐹1) of 880 Hz, a second harmonic (𝐹2) of 1320 Hz, and so 

on. This is false, however, for some pitched percussive and non-percussive instruments that 

contain inharmonics (partials that are not integer multiples of the fundamental), like the piano.  

An instrument that normally exhibits harmonic partials may also exhibit inharmonic partials if 

the instrument is out of tune. Tuning is a process where an instrument is adjusted to be in 

harmony with a target pitch (generally A4 or 440 Hz).  Deviation from the target pitch is 

measured in cents by: 

𝑐 = 1200 (log2 (
𝑓1

𝑓2
)), 2.1.2 
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where 𝑓1 is the played pitch and 𝑓2 is the target pitch.  This may deviate approximately plus or 

minus 50 cents; beyond that threshold, a pitch may not be considered out of tune, but to be the 

next corresponding pitch.  A pitch produced by musical instruments (and even voice), as 

described in Table 2.1.1, is generally referred to not by fundamental frequency, but by note, 

accidental, and octave.  Notes consist of labels from A through G with accidentals of either 

natural (♮), sharp (♯), or flat (♭) where the natural accidental represents a tone or whole step (A-

G) and the sharp and flat accidentals represent a semi-tone or a half step above or below each 

whole step.  An octave contains a total of twelve notes.  Octaves begin on the note C♮ and 

contains the other following notes: C♯, D♮, D♯, E♮, F♮, F♯, G♮, G♯, A♮, A♯, and B♮.  An 

alternative representation of a scale may include the flat accidental: C♮, D♭, D♮, E♭, E♮, F♮, G♭, 

G♮, A♭, A♮, B♭, B♮.  Each pitch or 𝐹0 can be calculated by the following: 

 

𝑓 =  𝑓𝑖  ∗  2(
𝑖

12
)
, 

2.1.3 

  

where 𝑓𝑖 is the frequency of reference (concert pitch) and 12 is the number of notes per octave.  𝑖 

is found by 𝑝 −  𝑝𝑖 where 𝑝 is the MIDI number of the pitch being calculated and 𝑝𝑖 is the MIDI 

number of the concert pitch.  The concert pitch is generally A4, with a frequency of 440Hz, and 

a MIDI number of 69.  If the frequency of a pitch is known, the corresponding MIDI number can 

be calculated by the following: 

 

𝑝 = 𝑝𝑖 + 12 log2
1

𝑓𝑖
 . 2.1.4 

 

  

The MIDI numbers for a piano with the corresponding note, octave, and frequency can be seen in 

Figure 2.1.2.  For further information on the MIDI standard, the interested reader is referred to 

(Resources, 2013). 
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Figure 2.1.2 Musical notes on a piano with corresponding note name, note octave, MIDI 

number and frequency (separated by a : ). 

 

 The representation and classification of sound can be very subjective, even when 

referring to a specific pitch, instrument, or genre.  Psychoacoustics is the science of sound 

perception (Rossing, 1990). Given a set of instruments playing the same pitch, a trombone and a 

trumpet for example, we would be able to uniquely identify each instrument (Thomas, 2012).  

The representation of such characteristics is known as timbre, also known as color.  Timbre is 

modeled using the spectra (partials) of the pitch as well as the spectral envelope which is a 

function that represents the collective partials.    Timbre analysis is generally the key focus in 

most pitch detection and instrument identification.  

2.2 Signal-Based Transforms 

MIR systems rely heavily on the ability to transform music from the time domain to the 

frequency domain.  Doing so allows timbre analysis and the calculation of spectral envelopes.  

The classical way of transforming signals is by utilizing the Discrete Fourier Transform: 

 

𝑋𝑘 =  ∑ 𝑎𝑛 ∗  𝑒−2𝜋𝑖𝑛𝑘/𝑁

𝑁−1

𝑛=0

, 
2.2.1 

 

 

where 𝑎𝑛 are the time-domain samples of the audio waveform (Weisstein, 2013).  One main 

problem with Equation 2.2.1 is that it runs in 𝑂(𝑁2).  A substantial speedup can be achieved by 

using the Fast Fourier Transform (FFT): 

0 1 2 3 4 5 6 7 8

C - 24 : 32.7 Hz 36 : 65.4 Hz 48 : 130.8 Hz 60 : 261.6 Hz 72 : 523.3 Hz 84 : 1046.5 Hz 96 : 2093.0 Hz 108 : 4186.0 Hz

C# - 25 : 34.6 Hz 37 : 69.3 Hz 49 : 138.6 Hz 61 : 277.2 Hz 73 : 554.4 Hz 85 : 1108.7 Hz 97 : 2217.5 Hz -

D - 26 : 36.7 Hz 38 : 73.4 Hz 50 : 146.8 Hz 62 : 293.7 Hz 74 : 5587.3 Hz 86 : 1174.7 Hz 98 : 2349.3 Hz -

D# - 27 : 38.9 Hz 39 : 77.8 Hz 51 : 155.6 Hz 63 : 311.1 Hz 75 : 622.3 Hz 87 : 1244.5 Hz 99 : 2489.0 Hz -

E - 28 : 41.2 Hz 40 : 82.4 Hz 52 : 164.8 Hz 64 : 329.6 Hz 76 : 659.3 Hz 88 : 1318.5 Hz 100 : 2637.0 Hz -

F - 29 : 43.7 Hz 41 : 87.3 Hz 53 : 174.6 Hz 65 : 349.2 Hz 77 : 698.5 Hz 89 : 1396.9 Hz 101 : 2793.0 Hz -

F# - 30 : 46.2 Hz 42 : 92.5 Hz 54 : 185.0 Hz 66 : 370.0 Hz 78 : 740.0 Hz 90 : 1480.0 Hz 102 : 2960.0 Hz -

G - 31 : 49.0 Hz 43 : 98.0 Hz 55 : 196.0 Hz 67 : 392.0 Hz 79 : 784.0 Hz 91 : 1568.0 Hz 103 : 3136.0 Hz -

G# - 32 : 51.9 Hz 44 : 103.8 Hz 56 : 207.7 Hz 68 : 415.3 Hz 80 : 830.6 Hz 92 : 1661.2 Hz 104 : 3322.4 Hz -

A 21 : 27.5 Hz 33 : 55.0 Hz 45 : 110.0 Hz 57 : 220.0 Hz 69 : 440.0 Hz 81 : 880.0 Hz 93 : 1760.0 Hz 105 : 3520.0 Hz -

A# 22  : 29.1 Hz 34 : 58.3 Hz 46 : 116.5 Hz 58 : 233.1 Hz 70 : 466.2 Hz 82 : 932.3 Hz 94 : 1864.7 Hz 106 : 3729.3 Hz -

B 23 : 30.9 Hz 35 : 61.7 Hz 47 : 123.5 Hz 59 : 246.9 Hz 71 : 493.9 Hz 83 : 987.8 Hz 95 : 1975.5 Hz 107 : 3951.1 Hz -

Note

Octave
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𝑋𝑘0𝑗0
=  ∑ 𝑎𝑘0

∗  𝑒−2𝜋𝑖𝑛𝑘/(𝑁/2)

𝑁 2⁄ −1

𝑛=0

+  ∑ 𝑎𝑗0
∗  𝑒

−
2𝜋𝑖𝑛𝑘

(
𝑁
2

)

𝑁 2⁄ −1

𝑛=0

, 

2.2.2 

 

 

where 𝑘0 and 𝑗0 represent the even and odd time-domain samples of the audio waveform 

respectively (Weisstein, 2013). A common notational shortcut for the complex principle root of 

unity may be represented as 𝑊 =  𝑒−2𝜋𝑖𝑘 𝑁⁄ .    

The FFT breaks a Fourier series into two 
𝑁

2
 parts, where 𝑁 is the number of the discrete Fourier 

coefficients.  These two parts are separated into the even and odd points by a process   

called decimation in frequency (DIF) radix-2 (meaning two groups).  By splitting the DFT into 

parts, runtime can be decreased from 𝑂(𝑁2) to 𝑂 (𝑁 log 𝑁).  For further derivation of the DFT 

and FFT algorithms, the interested reader is referred to (Cooley & Tukey, 1965; Oppenheim & 

Schafer, "Computation of the Discrete Fourier Transform", 2010; Oppenheim & Schafer, "The 

Discrete Fourier Transform", 2010; Smith S. W., "The Fast Fourier Transform", 1997). 

 So why are signal based transforms so important?  As stated above, algorithms like the 

FFT allow the transformation from the time domain to the frequency domain, and given that the 

frequency domain is not construed by filters and other methods, the inverse can be applied to 

accurately reconstruct the signal back into the time domain.  The transformation using an FFT 

can be seen in Figure 2.2.1.   
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Figure 2.2.1 The process of transforming a continuous signal into a discrete signal; then 

into the frequency domain.  Adapted from (Wang, 2009). 

In order for a continuous signal to be processed digitally, an analog to digital converter (ADC) 

must be applied to sample the signal into 𝑁 discrete points.  This is shown in steps 1 and 2 in 

Figure 2.2.1.  A common sample rate is 44.1 kHz or CD quality.  The consequence of a set 

sample rate is that the highest detectable frequency is equal to 
𝑓𝑠

2
− 1 where 𝑓𝑠 represents the 

sample rate in Hz; 
𝑓𝑠

2
 is commonly referred to as the Nyquist frequency.  Conversely, the Nyquist 

rate is   2𝑓𝑚𝑎𝑥, where 𝑓𝑚𝑎𝑥 is the highest frequency present (Oppenheim & Schafer, "Sampling 

of Continuous-Time Signals", 2010).  Collectively, the Nyquist rate and Nyquist frequency are 

part of the Nyquist-Shannon Sampling Theorem, which states that if 𝑓𝑠 is greater than twice that 

of the highest frequency present in the original signal (𝑓𝑚𝑎𝑥), the analog signal can be perfectly 

reconstructed (Oppenheim & Schafer, "Sampling of Continuous-Time Signals", 2010; Wang, 

2009).  A Nyquist frequency less than the highest frequency present in a signal causes an error 

known as aliasing.  Aliasing causes frequencies above half the sampling frequency to “fold 

over” and overlap with the lower frequencies (Wang, 2009). This problem does not have many 

solutions.  It can be avoided by assuring that the sample rate is at least twice that of the highest 

frequency or the high frequencies above the Nyquist frequency can be filtered out by using anti-

aliasing filters or low-pass filters which attenuate high frequency parts of the signal.  Aliasing 

can mask a signal to appear as a different frequency.   A frequency 𝑓 that is above the Nyquist 

t 𝑡𝑁−1 
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frequency will be folded into existing lower frequencies and becomes 𝑓° =  𝑓𝑠 − 𝑓 (Wang, 

2009).   

2.3 Other Signal Processing Techniques 

2.3.1 Onset Detection 

A plethora of signal processing techniques exist.  Some, like the Fourier transform, work 

to move signals across domains, others work as a pre and post processing step. Onset detection is 

the process of detecting the start of notes. This is particularly useful in pitch tracking.  Pitch 

tracking can be exceptionally difficult when regarding polyphonic signals; it is not out of the 

norm to see accuracy average under 60% as seen in Music Information Retrieval Evaluation 

eXchange (MIREX) (Multiple Fundamental Frequency Estimation Tracking Results, 2010).   

 

Figure 2.3.1 A simplified illustration of note structure, adapted from (Noxon, 2012). 

 

Notes can be structurally be described by onset, attack, transient, sustain, decay, and release 

(Bello, et al., 2005): 

 The onset of a note is the identified moment that a note begins. 

 The attack of a note is the initial time interval during which amplitude increases. 

 The transients of a note are periods where the signal changes in some “nontrivial or 

unpredictable way.” 

 The sustain of a note is defined as a time interval containing relatively constant 

amplitude. 

 The release of a note can also be defined as a transient.  The release marks the moment 

the excitation (playing) of the note is stopped.  For example, this would mark the moment 
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a brass player would stop blowing air through the horn or a stringed player lifts their bow 

off the strings. 

 The decay of a note refers to a relatively steady decrease of amplitude.  The decay can 

also be considered a transient and usually is correlated with the reverberations after the 

release. 

Figure 2.3.1 illustrates the relative amplitude envelope.  The amplitude envelope is created by 

graphing decibel levels using a similar formula like Equation 2.1.1.  Figure 2.3.1 labels the note 

structure elements of a single note.  This simplistic representation gives an excellent 

visualization of note structure; however, in order to label note structures in real signals 

(especially polyphonic signals and complex musical pieces), many steps are required.  

 

 

Figure 2.3.2 A small piano excerpt to show complexity of note tracking. (a): the score 

showing the notes present (1), (2), and (3). (b): the wave form of the score being played with 

labels denoting note structure.  

 

As shown in Figure 2.3.2, the ability to label all elements of note structure becomes exceedingly 

difficult without additional processing.  The approach above also encompasses pitch envelope 

tracking to assist in differentiating the overlap of a sustained note and the onset of a different 

note.  By a visual inspection, it is impossible to deduce the structure of notes (1), (2), and (3) 
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from just the waveform (b).  This is why most onset detection, note tracking, and pitch tracking 

algorithms utilize many pre and post processing steps before labeling note structure.  

While the wave form (original signal) is relatively simple, it’s both visually and 

especially algorithmically complicated to label note structure, even when the scope is limited to 

onset detection.  The majority of onset detection algorithms deploy a similar framework 

including an optional pre-processing step, a reduction step, and a peak picking step (Bello, et al., 

2005).  The original signal may be preprocessed using various filter banks in order to reduce 

noise and to smooth each note.  The pre-processed signal is then reduced by resampling at a 

lower rate (Bello, et al., 2005).  This step usually generates an amplitude or relative loudness 

envelope to model the signal.  Reduction minimizes signal complexity to increase algorithmic 

accuracy. The notes’ structural elements become visible after the original signal is pre-processed 

and reduced.  This allows for peak-picking algorithms to locally find each note onset.  Note 

tracking is not only limited to onset detection, but also includes other note structure elements like 

attack, transients, release, and decay for music transcription.  There are numerous onset detection 

methods, some of which perform best with certain types of sounds (i.e. pitched percussive, 

pitched non-percussive, and non-pitched percussive). Others are rather robust and work well for 

all types of instrumentation, such as surprise onset detection.  Surprise onset detection is based 

on how an observer could build a model or become familiar with certain kinds of signals, such 

that the observer would be able to make predictions about the signal as it unfolds in time (Bello, 

et al., 2005).   “The observer will be relatively surprised at the onset of a note because of its 

uncertainty about when and what type of event will occur next” (Bello, et al., 2005).  On the 

other hand, if the observer has seen these onsets frequently, the surprise will be localized to the 

transients of the note (Bello, et al., 2005).    The surprise onset can be described as the negative 

log likelihood of an event to happen given all previously observed data as shown in the 

following: 

 

𝑆(𝑁) ≡ 𝑆(𝑥(𝑛)): =  − log 𝑝(𝑥(𝑛)| {𝑥(𝑗) ∶ 𝑗 < 𝑛}), 2.3.1 

  

where 𝑥 is a discrete signal with 𝑁 samples, 𝑥(𝑛) is a single sample, and 𝑥(𝑗) ∶ 𝑗 < 𝑛 is all 

previously seen samples (Bello, et al., 2005).  This model is also the basis for use in independent 

component analysis (ICA); for further information, the interested reader is referred to the original 
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paper that introduced the surprise model (Abdallah & Plumbley, 2003).  For further overview of 

onset detection, including reduction, detection, and peak picking methods, the interested reader is 

referred to (Bello, et al., 2005). 

2.3.2 Convolution and Filtering 

Many major operations in digital signal processing (DSP) involve the mathematical term 

convolution.  For simplicity, the scope of this section is limited to discrete convolution, although 

convolution may also be applied to continuous signals  Convolution, in terms of DSP, is an 

operation in which an impulse response ℎ[𝑛] is applied to input signal 𝑥[𝑛] to produce output 

signal 𝑦[𝑛].  Convolution also makes use of linear systems, which are any processes that receive 

an input signal and produce an output signal (Smith S. W., "Linear Systems", 1997).  Linear 

systems may add additional operations in addition to applying the impulse response. Any 

impulse response may be found from the originating delta function 𝛿[𝑛], where the value of 𝑛 =

0 is 1 and all other 𝑛 are 0. Many impulse responses can be described as a shifted and scaled 

delta function (Smith S. W., "Convolution", 1997). Once the impulse response is known, the 

output can be found by the sum of the scaled and shifted impulse responses from the input signal 

(Smith S. W., "Convolution", 1997). The input signal 𝑥[𝑛] is convolved with the linear system’s 

impulse response ℎ[𝑛] to produce output signal 𝑦[𝑛].  Convolution can be viewed as the sum of 

weighted outputs.  Please note that the convolution process is denoted by ∗; this should not be 

confused with the usage of ∗ in most programming languages, where it is used as the 

multiplication symbol. Likewise, the impulse response is also known by different names, 

depending on the application (Smith S. W., "Convolution", 1997).  In regard to a filter system, 

the impulse response may be referred to as the filter kernel, convolution kernel, or kernel (Smith 

S. W., "Convolution", 1997). Filters are used in signal processing in order to mitigate noise 

caused by anomalies in recording, synthesizing, or just to reduce the presence of specific ranges 

of frequencies.  Filters can also help reduce aliasing, as discussed in Section 2.2, or reduce the 

signal into a more simplified representation.  A number of filters exists, each affecting signals 

differently.  A few of the most commonly used filters are low-pass filters, high-pass filters, and 

band-pass filters.  Low-pass filters attenuate (reduce amplitude to zero) high frequencies above a 

certain threshold, and “pass” frequencies below the threshold.  This particular filter is useful 

when sampling frequency is low (prior to A/D conversion or digitization), as it can eliminate 
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frequencies above the Nyquist frequency.  High-pass filters are just the opposite.  This filter 

passes frequencies above a specific threshold and attenuates those frequencies below. Band-pass 

filters are actually a combination low and high-pass filters.  Band-pass filters pass frequencies 

within a range and attenuate those outside of said range.  Now, there are many variations of these 

filters, all with different filter kernels and different uses in DSP.  One method that is used in this 

thesis is called discrete Gaussian blurring. 

 

Figure 2.3.3 Effects of a Gaussian blur filter on a digital image (Patin, 2011). 

 

Gaussian blurring is usually applied as an image filter; the effects of which can be seen in Figure 

2.3.3. In image processing, a matrix of a specified size with weight coefficients blends the colors 

of each pixel by applying the matrix to the neighborhood of pixels and dividing by the sum of the 

coefficients. Coefficients may be assigned at the user’s discretion to achieve desired effects. 

 

 

Table 2.3.1 A table of Gaussian filter coefficients (Patin, 2011). 
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However, it is better practice to use the binomial coefficients shown in Table 2.3.1, which is 

Pascal’s triangle enumerated to a depth of 11.  In image processing, each vector shown in Table 

2.3.1, is copied into two matrices (one of which is a single column and as many rows as 

coefficients and one of which is a single row with as many columns as coefficients) and 

multiplied to create the Gaussian filter kernel.  The kernel matrix’s final size is (𝑁 + 1)  × (𝑁 +

1) and the sum of coefficients would be equal to 2^𝑁.  The final effect of this filter (the 

blurriness) will be affected by the size of the kernel used as seen in Figure 2.3.4. 

 

 

Figure 2.3.4 How different sized kernels affect the Gaussian blur filter, adapted from 

(Song, 2013) (Creative Commons Attribution). 

 

Notice that in the original image, the colors of the hot air balloon are distinct and clear by each 

panel.  After a Gaussian blur filter with a radius of 3 pixels is applied, the picture seems to be 

just out of focus.  When the larger kernel is used, the third image resembles a tie-dye t-shirt.  The 

panels of the balloon are no longer distinguishable, and the neighboring colors are beginning to 

blend together.  Figure 2.3.4 perfectly demonstrates how filter kernel size can affect a filter’s 

final output.  Filter banks may also be used in order to increase the intensity of the blur.  In other 

words, the filter may be applied several times to achieve the desired effect; however, there is a 

point of diminishing returns where each neighborhood of pixels becomes well blended and the 

blur effect is miniscule. Gaussian blur filters are also applicable to DSP with the same effect, 

though in a different medium.  As noted in Chapter 1, if a signal is transformed from the time 

domain to the frequency domain via an FFT (or other transform), weights can be applied, and the 

inverse FFT can be used to transform the signal back to the time domain; however, some 

distortion may occur.  In this case, the kernel is not a matrix, it is a single vector (the same sums 

in image filters are used here).  The intermediate representation before the signal is transformed 
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back into the time domain is more useful.  Blurring the frequency domain reduces and potentially 

eliminates artifacts, noise, and complexity (generalizes the frequency domain). 

 

Figure 2.3.5 Gaussian blurring as seen in DSP, where each x-axis represents frequency bins 

of the FFT, and each y-axis represents normalized magnitude. 

 

Figure 2.3.5 shows four graphs of a polyphonic signal containing two brass instruments, a 

trombone and tuba, and one string instrument, a cello, playing notes whose MIDI numbers are 

45, 44, and 63 respectively.  The top left graph shows the power spectrum of an FFT of length 

4096 windowed to include 100 frequency bins (approximately 1076.66 Hz); the top right graph 

shows the normal distribution (calculation of which will be discussed in 0) of this histogram.  A 

Gaussian blur filter, with the kernel { 1, 6, 15, 20, 15, 6, 1 } and sum of 64, is applied to the 

normal distribution a single time (bottom left graph) and ten times (bottom right graph).  As seen 

in the normal distribution, the graph follows the original FFT very closely; however, when 

teaching a computer to learn a specific concept, like how to recognize musical instruments, a 

model that is too closely fit is not very robust and can perform poorly given a high number of 

examples. Even after a single pass, the distribution begins to smooth out, and after ten passes, a 

fairly uniform representation of the frequency components is left.  
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2.4 Related Work 

Despite a few decades of research, polyphonic instrument identification and pitch 

detection are still in their infancy.  Namely, a widely accepted model or solution does not exist.  

Even when datasets are small and contain five or less instruments, current research only achieves 

60% accuracy or less on average in instrument identification and pitch detection (Donnelly, 

2012). Common approaches include Gaussian Mixture Models (GMM).  “A GMM estimates a 

probability density as the weighted sum of M simpler Gaussian densities, called components or 

states of the mixture 

 

𝑝(𝐹𝑡) =  ∑ 𝜋𝑚𝑁(𝐹𝑡, 𝜇𝑚, Γ𝑚)

𝑀

𝑚=1

 
2.4.1 

where 𝐹𝑡 is the feature vector observed at time 𝑡, 𝑁 is a Gaussian PDF with mean  𝜇𝑚, 

covariance matrix  Γ𝑚, and 𝜋𝑚 is a mixture coefficient” (Aucouturier, Pachet, & Sandler, 2005).  

Other models utilize:   

 Principle Component Analysis (PCA): a method that does not use output information 

(unsupervised) and maximizes variance.  “The sample, after projection on to principle 

component 𝑤1, is most spread out so that the difference between the sample points 

becomes most apparent” (Alpaydin E. , 2010).  For further information on PCA, the 

interested reader is referred to (Alpaydin E. , 2010; Smith L. I., 2002). 

 Non-Negative Matrix Factorization (NMF): may be defined as the following problem: 

“given a non-negative matrix 𝑉, find non-negative matrix factors 𝑊 and 𝐻 such that 𝑉 ≈

𝑊𝐻” (Lee & Seung, 2001).  Many different algorithms exist for solving this problem. 

One used in DSP can be found in (Cont, Dubnov, & Wessel, 2007). 

 Spectral Clustering:  a technique that makes use of the spectrum of the similarity matrix 

of data to cluster in fewer dimensions (Donnelly, 2012; Von Luxburg, 2007). 

 Hidden Markov Models (HMM): a pattern recognition theory which models the 

probability density of a sequence of observations or states (Aucouturier & Sandler, 2001; 

Rabiner, 1989). 

The scope of this thesis, however, is limited to the spectral envelope or the representation of 

timbre.  Many of the above methods are complex feature extraction/construction and 
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classification techniques.  Timbre is the basis of most DSP research.  In Chapter 1, Figure 1.1 

shows common spectral envelope approaches, and the strengths and weaknesses of the cepstrum 

envelope, discrete cepstrum envelope, and LPC envelope are discussed.  An in-depth description 

of the LPC envelope may be found in (Aucouturier & Sandler, 2001). Briefly summarized, LPC 

uses autocorrelation to estimate 𝑝 + 1 values then generates 𝑝 filter coefficients from a set of 

linear equations (Aucouturier & Sandler, 2001).  These filter coefficients make up an all-pole 

filter of order 𝑝, where the filter is one over a polynomial of order 𝑝. Applying the filter to the 

spectrum produces the LPC envelope. The cepstrum approach applies a low-pass filter based on 

to the power spectrum, where high order cepstrum envelopes follow the spectrum more 

accurately versus low order envelopes (i.e. the smoothing effect is reduced in higher order 

envelopes) (Schwarz & Rodet, 1999).  The discrete cepstrum envelope uses a select number of 

points from the log scaled power spectrum (Schwarz & Rodet, 1999).  The points are generally 

chosen using peak picking or additive synthesis which produce point representing the magnitude 

of each partial. 

2.5 Machine Learning 

Machine learning is applicable to many domains and problems typical algorithms cannot 

solve or solve well.  For example, machine learning can be used to teach a computer system how 

to predict the weather outlook (rainy, sunny, hot, cold, etc.) or how to tell what emails are spam 

and which emails are relevant.  One type of learning is supervised learning.  Supervised learning 

problems aim to learn the mapping from the given input and output.  Classifiers include Radial 

Basis Function (RBF) networks, logistic classifiers, support vector machines, and k-nearest 

neighbor (k-nn, Instance Based Learning (IBL, IBk)). k-nn classifier labels input based on the 

class having the most examples among the k neighbors of the input (Alpaydin E. , 2010).  K-nn 

is a lazy learner such that the model is not generated when given training data.  Instead, lazy 

learning algorithms postpone computations until they are given a test instance. RBF networks are 

similar to k-nn because it uses local representation to model the data i.e. normal Gaussian units 

are used to group data into local groups.  Logistic classifiers are a form of regression and can be 

defined as a sigmoid function 𝑃(𝐶1|𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑇𝑥 + 𝑤0) =  
1

1+exp [−(𝑤𝑇𝑥+𝑤0)0
 , where 𝐶1 

is the class label.  SVMs are also a form of regression analysis; however, it makes use of kernels 

to map a non-linearly separable space to a linearly separable space.  The use of the soft margin 
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method and slack variables help reduce misclassification by maximizing the distance between 

separated examples. 

Many measurements of performance for classifiers and other systems exist in machine 

learning.  This thesis focuses on precision, accuracy, recall, and F-measure.   Given true positives 

TP (number of correctly classified positive examples), true negatives TN (number of correctly 

classified negative examples), false negatives FP (number of positive examples classified as 

negative), and false positives FP (number of negative examples classified as positive), accuracy 

is defined as 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 or the total number of correctly classified examples over the total 

number of classified examples.  However, accuracy can be misleading if the number of true 

positives and true negatives are imbalanced.  In order to better measure a classifier’s 

performance, precision and recall are used to calculate F-measure.  Precision is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

or the proportion of positively classified examples that are actually true positives. Recall, also 

known as sensitivity, is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 or the rate of truly positive examples.  The F-measure 

can be defined as 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 or the harmonic mean of precision and recall.  F-measure 

gives a better measure of performance since there is often a tradeoff between recall and precision 

when data suffer from the class imbalance problem (high number of one class over another). 
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Chapter 3  

Proposed Model 

3.1 Data 

 

Figure 3.1.1 The overall algorithm presented in Chapter 1, from data collection and 

creation to transforming signals to the frequency domain and generating pitch and 

instrument templates. 

The overall data flow of the proposed model can be seen in Figure 3.1.1.  Instrument 

samples used in this thesis are from the Philharmonia Orchestra’s “The Sound Exchange” 

(Philharmonia Orchestra, n.d.).  This database includes samples from 19 instruments plus 

percussion with a large number of different dynamics, articulations, and length.  Each sample 

may be downloaded in MP3 format.  While this thesis uses audio in the WAV format, a simple 

conversion is done using the NAudio package, an open source digital signal processing library 

written in C# (Heath, 2013). Each sample contains a single pitch with minimal dead space (i.e. 

little to no silence). This made it a perfect dataset to use for mixing into polyphonic signals.  All 
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samples were performed by human players; in other words, samples were not synthesized with 

equipment such as a Mellotron.  Real samples are not the most ideal experimental setting since 

there may be variance between players and their styles; however, this provides a real world 

setting in which to test the model presented in this thesis.  Another free to use, real music sample 

database was also considered from the University of Iowa Electronic Music Studios (UIEMS) 

(Fritts, 2011). The UIEMS database contains chromatic scales of over 20 instruments with 

different dynamic levels.  A considerable amount of preprocessing was done in order to separate 

the chromatic scales into individual note samples using onset detection as described in 2.3.1.  

However, in the final stages of processing the database, inconsistencies were found in scale 

labels and scale performance.  These errors were reported to the director of the Electronic Music 

Studios. Due to time constraints, the Philharmonia database was used in its place of UIEMS. 

3.2 Signal Mixing and Domain Transformation 

 

Figure 3.2.1 The process of creating polyphonic signals and their corresponding 

normalized power spectrum. 

 

 In this phase, which can be seen in Figure 3.2.1, polyphonic signals are created and 

transformed into the frequency domain.  The collection of single notes include many of the 

normal instruments seen in symphonies from the Philharmonia database, excluding percussion.   

A query or settings file restricts the search space by limiting the pitches, dynamics, lengths, 

styles, voices (instruments), number of voices, and number of polyphonic signals to be created.  

The instance space must be reduced in interest of computational complexity.  Without this 
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representation bias, the number of polyphonic signals possible is approximately 

8.7𝑒+10 (permutations of 14) when only considering just the instruments.  This is increased even 

further by using all notes possible for each instrument.  For this thesis, the dataset is limited to 

approximately 200 thousand polyphonic signals (80 batches of 2500 polyphonic signals), which 

is a mere fraction of the exhaustive dataset.  Further information on how these are organized will 

be discussed in Chapter 4.  For each set of single notes collected (via search query), a handful of 

notes are randomly selected to be mixed together, such that each note is the same length, and the 

number of notes is equal to the predefined number of voices in the polyphonic signal.  Notes are 

mixed by superimposing each note on the other, in other words, adding the signals together, 

using the NAudio package.  The polyphonic signal is then converted to an array of complex 

numbers, where the imaginary value is initialized to 0.  The complex FFT is then calculated by 

using the DSP package from Exocortex (Houton, 2003).  The power spectrum is generated from 

the FFT coefficients by taking the squared magnitude of each bin.  In order to reduce large 

computations and data size, the range of the power spectrum is scaled to 100.  This normalized 

power spectrum represents the strength of frequencies present in the signal. 

3.3 Spectral Envelope 

A spectral envelope is a function that best models all harmonic or inharmonic partials in a 

signal’s frequency domain.  As noted in Section 2.4, there are a variety of ways to generate the 

spectral envelope, not all of which are able to model the harmonic or inharmonic structure 

accurately yet still be resilient against noise and rapid changing amplitude in the frequency 

domain.  Some measurements of goodness or properties of a spectral envelope are 1.) The 

envelope wraps tightly around harmonic/inharmonic structure, 2.) The envelope is relatively 

smooth, such that it does not oscillate erratically and still gives a good distribution of the 

harmonic/inharmonic structure, and 3.) The envelope adapts well to fast spectrum changes 

(Schwarz & Rodet, 1999).  

 

Figure 3.3.1 A flow chart showing the process of creating the smooth Uniform MAx 

Gaussian Envelope. 
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This thesis presents a new algorithm called Uniform MAx Gaussian Envelope (UMAGE).  This 

phase in my methodology can be seen in Figure 3.3.1.  The basis of this algorithm utilizes a 

mixture of normal Gaussian distributions of each frequency bin of the power spectrum created by 

taking the magnitude of a complex FFT.  A single Gaussian distribution from the mixture is 

calculated using the following equation: 

 

𝑑 (𝑥𝑖=𝛽−𝑊
𝛽+𝑊

;  𝛼, 𝛽, 𝜎) =  𝛼 × (𝑒
−(𝑥𝑖−𝛽)2

2𝜎2 ), 
3.3.1 

  

where 𝛽 is the frequency bin for the Gaussian to center over, 𝛼 is the amplitude of the frequency 

bin 𝛽, 𝜎 is the given variance (affects the width of the distribution, values less than one result in 

a thin curve and values greater than one flatten the curve), 𝑊 is the window size, and x is a 

vector where  values of 𝑥 are bounded by the window size 𝑊, such that the initial value of 𝑥 

equals 𝛽 − 𝑊, and the upper bound of 𝑥 equals 𝛽 + 𝑊: 

〈𝑥𝑖=𝛽−𝑊, 𝑥𝑖+𝑠𝑡𝑒𝑝,, 𝑥𝑖+𝑠𝑡𝑒𝑝×2,  ⋯ , 𝑥𝑖=𝛽+𝑊〉. This formula is adapted to apply to every bin in the 

spectrum by: 

 

𝑑𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑥𝑖
|𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚|

;  𝛼, 𝜎)

=  ⋃ 𝑑 (𝑥𝑖=𝛽𝑏−𝑊
𝛽𝑏+𝑊

;  𝛼, 𝛽𝑏, 𝜎) =  𝛼 ×  (𝑒
−(𝑥𝑖−𝛽𝑏)2

2𝜎2 )
|𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚|

𝛽𝑏=0

, 

3.3.2 

  

where 𝑑𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑥𝑏=0
|𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚|

;  𝛼, 𝜎) is the union of the Gaussian distribution of each bin from 

the spectrum.  Also note that 𝑥 now has an upper bound that is the size of the spectrum, and a 

lower bound of 0. 
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Figure 3.3.2 Power spectrum with normalized amplitude, restricted to 40 frequency bins 

(top) and the corresponding mixture of Gaussians as calculated in Equation 3.3.2 (bottom). 

 

Figure 3.3.2 shows the power spectrum (restricted to 40 bins) of a trombone playing MIDI note 

number 41 and the corresponding result of applying Equation 3.3.2 to this spectrum up to 33 

frequency bins.  The mixture of Gaussians shows the intermediate representation of UMAGE, 

where 𝜎 = 1.25, 𝑊 = 10, and a step of  . 25 used for values of  𝑥.  Each Gaussian centered over 

individual bins allows uniform representation of all values in the spectrum.  In its present 

condition, the mixture overlaps significantly; however, an envelope can be made out by 

following the tops of each curve.  As such, the following equation is used to simplify the 

mixture: 
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𝑈𝑀𝐴𝐺𝐸 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 =  argmax
𝑥

𝑑𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑥𝑏=0
|𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚|

;  𝛼, 𝜎) , 3.3.3 

  

This additional formulation develops the mixture of Gaussians into an envelope to represent the 

harmonic structure of the signal shown in Figure 3.3.3. 

 

 

Figure 3.3.3 An example of a spectral envelope created my UMAGE. 

 

The spectral envelope shown in Figure 3.3.3 exhibits the properties of goodness discussed 

earlier.  The envelope is able to wrap tightly around the harmonic structure to capture the 

strengths of frequencies present and still be relatively smooth.  This smoothness is furthered by 

applying Gaussian blur filters as shown in Figure 2.3.5.  This form of a low-pass filter smooth’s 

the rapid response to amplitude change in respect to neighboring frequencies so as to not lose the 

structure of partials entirely.  The signal used in the above examples is relatively simple and does 

not exhibit this property entirely; however, sporadic frequency change may be seen in the 

following figure: 
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Figure 3.3.4 This is the UMAGE (top) and the UMAGE blurred 50 times with a Gaussian 

filter (top) of a polyphonic signal composed of seven voices. 

 

Figure 3.3.4 shows the UMAGE of a seven voice polyphonic signal.  Without blurring, the 

envelope fails one measure of goodness, namely it oscillates rapidly where amplitude of 

frequency bins change frequently.  This is mitigated by utilizing the Gaussian blur filter.  A 

filter, with the kernel { 1, 6, 15, 20, 15, 6, 1 } and sum of 64, was applied to the UMAGE of the 

complex signal to reduce the oscillation and improve the smoothness of the envelope while 

retaining the harmonic structure of the signal.  As shown in the bottom graph of Figure 3.3.4, 

clarity of the UMAGE is increased greatly.  Amplitude is reduced by almost 88%; however, the 

very little representational power is lost (i.e. the second tallest peak in the original UMAGE is 

just barely now the tallest peak) since it is reduced proportionally across the entire spectrum. 

UMAGE shows robustness in the ability to model simple and complex signals well when 
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measured using properties presented by (Schwarz & Rodet, 1999).  Further performance 

measures are evaluated in later chapters.  

 

3.4 Pitch and Instrument Template 

 

Figure 3.4.1 A flow chart depicting the creation of instrument and pitch templates used for 

classification. 

 

 Pitch and instrument templates are regularly used in DSP for modeling timbre as seen in 

(Bay & Beauchamp, 2006; Benetos & Dixon, 2010). In my algorithm, this phase, as seen in 

Figure 3.4.1, calculates the instrument and pitch templates separately from the same smooth 

UMAGE.  This is done to reduce the complexity of the concepts to learn using Waikato 

Environment for Knowledge Analysis (WEKA).  The size of the smooth UMAGE is equal to 

half of the FFT size minus one, multiplied by the step size used in the original calculation of the 

UMAGE.  Using each value produces too many features and hinders classification performance.  

The curse of dimensionality is reduced by separating the UMAGE into windows of a 

predetermined size (8 in case of this thesis) and integrating to find the area under the curve for 

each window, which is also proposed in (Donnelly, 2012).  These are then used as the features in 

the template.  This processes is identical to both the pitch and the instrument template.  The 

difference is how each instance is identified.  For the instrument template, a set of 22 identifying 

features are added; one for each group of instruments present (strings, brass, and woodwinds), 

and one for each instrument present (19 total). For the pitch template, 88 identifying features are 
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added; one for each pitch present.  Boolean values are used to indicate whether a particular pitch, 

instrument, or group of instruments is present.  After each template is created, WEKA, an open 

source machine learning tool for Java, is used for classification, which is described in Chapter 4. 
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Chapter 4  

Experiment 

One of the greatest challenges is not only representing timbre of signals, but also the 

collection of signals themselves.  The space of possible polyphonic signals grows exponentially 

as more voices (instruments or apparatuses used to create sound) are available, as well as 

possible pitches those instruments are able to create.  The dataset is restricted the data to 80 

batches, each with different limitations on the instruments possible, number of voices 

(instruments) in a signal, and the possible notes.  Table 8.1 and Table 8.2 serve as a reference to 

the abbreviations, tags, and codes used in Table 8.3 which represents the contents of each batch.  

Originally, three sets of 5000 polyphonic signals were used for each batch; however, due to high 

runtime, the size of each set was reduced by half to 2500 polyphonic signals without any 

degradation in performance.  Three sets of 2500 were randomly generated apriori as described in 

Section 3.2. 

 

Figure 4.1 The distribution of MIDI note numbers.  The x-axis denotes the MIDI numbers 

ranging from 21 up to 108, where each column represents the number of signals that 

contain that MIDI number. 

Instruments contained in each batch were distributed evenly; however due to the nature and 

uniqueness of the instruments, some notes were represented more than others as shown by the 

graph in Figure 4.1.  Notice that the shape of the distribution resembles a bell curve.  It is tapered 
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towards the ends of the MIDI numbers represented (21-108) due to the fact that very few 

instruments can produce extremely high and/or extremely low pitches.  The median is 

approximately center in the graph and represents the overlap of pitches that many instruments 

can produce.  Figure 4.1 is representative of the note distributions for all batches (with respect to 

the notes contained in the batch). 

 Parameters used for UMAGE and feature extraction were set as constant throughout the 

experimentation process.  Parameters were evaluated based on recall as to get a better true 

positive rate in final classification as shown in the following figures: 

 

 

Figure 4.2 The average recall (y-axis) and the value of 𝝈 (x-axis) in preliminary 

experiments on batch 222 instrument template. 
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Figure 4.3 The average recall (y-axis) and the window size 𝑾(x-axis) in preliminary 

experiments on batch 222 instrument template. 
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Figure 4.4 The average recall (y-axis) and the size of the filter bank (x-axis), i.e. the number 

of times the Gaussian blur filter is applied, in preliminary experiments on batch 222 

instrument template. 

 

In most cases, improvements were minuscule across all tests; however, small enhancements were 

considered as improvements based on runtime and average recall.  The values of parameters for 

final experiments were the following: 𝜎 = 2,   𝑊 = 10, 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 =  .25, 𝑏𝑙𝑢𝑟𝐶𝑜𝑒𝑓 ≤

 1,6,15,20,15,6,1 >, 𝑏𝑙𝑢𝑟𝐶𝑜𝑒𝑓𝑆𝑢𝑚 = 64, 𝑏𝑙𝑢𝑟𝐶𝑜𝑢𝑛𝑡 = 10, 𝑎𝑛𝑑 𝑓𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ = 4096.  

Increasing the size of the blur coefficients, blur coefficients sum, and FFT length produced a 

minor changes in recall as shown for other parameters, but the tradeoff with runtime 

performance significantly outweighed the gain in recall. Sigma (𝜎), window size (𝑊), and blur 

count values were chosen based on Figure 4.2, Figure 4.3, and Figure 4.4 respectively.  While 

the chosen blur count did not have the highest recall out of the other values, it was chosen in 

order to effectively smooth the envelope for more complex signals with more than two voices.  

On the other hand, 𝑊 was chosen based on the highest recall; however, recall is shown to 

recover in Figure 4.3 as 𝑊 increases to 25.  As the window size increases, efficiency decreases 
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proportionately. Hence parameters were chosen based on both recall and runtime efficiency. 

Future experiments will involve a more exhaustive search for the best performing parameters. 

 Three different experiments were used in order to objectively gauge the performance of 

UMAGE.  The original power spectrum is used as the control experiment.  The UMAGE (no 

blurring) and smoothed UMAGE are used for experiments two and three respectively. WEKA 

was used for the classification task.  Pitch detection and instrument identification are difficult to 

learn due to a large concept space and potentially large feature space.  With using a single 

learner, classification accuracy was less than 5% (worse than random).  The performance was 

boosted by using combined classification, where one learner was trained for each possible 

output. Then results were collected and averaged across output from all learners that produced 

any true positives or false negatives.  For example, if an instrument or pitch was not present in 

the testing data, the results from the learner trained to for that instrument or pitch were 

considered to be void and were not used in the final collection of results.  If these learners were 

used, final results would not be representative on the leaners ability to distinguish between 

positive (the pitch or instrument were present) and negative (the pitch or instrument were not 

present) examples. 

  



36 

 

Chapter 5  

Results 

The results collected include the average f-measure across all folds and sets (three sets of 

signals for each batch).  This is mainly due to the fact that some instruments and pitches that 

have high precision but low recall (and vice versa), which produces misleading high accuracy.  

In other words, the learner may be exceptionally well at identifying true positives or true 

negatives, but not both.  Results were taken from the many10, many6, brassQuartet, 

woodwindQuartet, stringQuartet, and 222 batches, including the corresponding limited note 

batches as listed in Table 8.3.  Batches were selected to include those ranging all complexities 

(number of voices and notes possible).  Reducing the number of batches to run in the final 

experiments gives a good representation of methodology used while also reducing runtime with 

classification.  Representative results can be found in the following figures: 

 

Figure 5.1 The average results for identifying groups of instruments (template Instr) and 

pitches (template Pitch) in the 222 batches.  The y-axis represents the average f-value. The 

x-axis (from bottom up) represents the batch, template type, and experiment (power 

spectrum experiment 1, UMAGE experiment 2, and smooth UMAGE experiment 3).  Each 

colored bar represents a different WEKA inducer. 
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Figure 5.2 The average results for identifying groups of instruments (template Instr) and 

pitches (template Pitch) in the many10 batches.  The y-axis represents the average f-value. 

The x-axis (from bottom up) represents the batch, template type, and experiment (power 

spectrum experiment 1, UMAGE experiment 2, and smooth UMAGE experiment 3).  Each 

colored bar represents a different WEKA inducer. 
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Figure 5.3 The average results for identifying groups of instruments (template Instr) and 

pitches (template Pitch) in the woodwindQuartet batches.  The y-axis represents the 

average f-value. The x-axis (from bottom up) represents the batch, template type, and 

experiment (power spectrum experiment 1, UMAGE experiment 2, and smooth UMAGE 

experiment 3).  Each colored bar represents a different WEKA inducer. 
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Figure 5.4 The average results for identifying individual instruments in batch 

limitedNote5-many10.  The y-axis represents the average f-value. The x-axis (from bottom 

up) represents the batch, template type, instrument tag, and experiment (power spectrum 

experiment 1, UMAGE experiment 2, and smooth UMAGE experiment 3).  Each colored 

bar represents a different WEKA inducer. 
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Figure 5.5 The average results for detecting individual pitches in batch limitedNote5-

many10.  The y-axis represents the average f-value. The x-axis (from bottom up) represents 

the batch, template type, instrument tag, and experiment (power spectrum experiment 1, 

UMAGE experiment 2, and smooth UMAGE experiment 3).  Each colored bar represents a 

different WEKA inducer. 
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Trombone Trumpet tuba 
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Table 5.1 A lookup table for the meaning of each instrument tag used in the result graphs. 

 

Table 5.1 serves as a look up table for the instrument codes used in Figure 5.4.  The three 

different experiments are labeled as 1, 2, and 3 on Figure 5.2 through Figure 5.5.  Group 

instrument identification on order 10 polyphonic signals, Figure 5.2, was surprisingly high, 
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reaching 71.82% using IB2 in experiment two, limitedNote5-many10 batch.  If the task of 

identifying a specific group of instruments is broken down into individual instruments, as seen in 

Figure 5.4, the performance can be better represented.  Some instruments, like the tuba, are 

identified more accurately than others in the limitedNote5-many10 batch, like the trumpet.  

Audiences are able to pick out individual instruments easier than others because of the niche that 

those instruments occupy.  The tuba has a very low range and will generally stand out, just like a 

piccolo would in the higher range of pitches (frequencies); however, humans’ ability to detect 

very high pitches (especially when they are only one or two pitches apart) is worse than that of 

low pitches. Instruments like the bassoon are also able to be detected easily due to their unique 

sound and partial structure.  A suspicion is that the trumpet received low marks because it was 

covered up by the violin, which has a similar harmonic structure.  Less complex signals, like the 

222 batch in Figure 5.1, also performed well.  The 222 batch responded positively to limiting 

notes contained in the signals where the many10 batch stayed relatively constant.  Since the 222 

batch only contained a maximum of two voices, limiting the notes gave a clearer model (spectral 

envelope) to distinguish instruments.  Limiting polyphonic signals to a single family of 

instruments, like woodwinds in Figure 5.3, increased the instrument identification to upwards of 

83%. 

While pitch detection performed poorly when compared to instrument identification, 

UMAGE performance, statistically, outperformed the original power spectrum.  This reveals that 

using the smooth UMAGE to model the spectrum produces better results as compared to 

instrument identification on average.  Pitch detection achieves upwards of 30-35% F-measure 

from about MIDI note 50-83 overall in order 10 signals.  This can be explained by Figure 4.1, 

the distribution of MIDI notes in the batch.  The center range of notes are better represented 

since more instruments are able to play that range of notes.  It is more difficult to detect an 

outlier instrument, like the tuba, because few are able to play at those pitches at those 

frequencies. This is opposite of instrument identification, where sticking out of the crowd 

actually increases the chances of being identified.  When the signals are simplified, pitch 

detection achieves upwards of 70-83% F-measure for MIDI notes 51-76 in intervals of 5 for the 

limitedNote5-many10 batch shown in Figure 5.5.  Overall pitch detection is best in the 

woodwindsQuartet, with an F-measure of 62.75% when using the limitedNote5-

woodwindQuartet batch. 
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Chapter 6  

 Conclusions 

Subjectively, UMAGE is shown to exhibit properties of goodness discussed in Section 

3.3 and is also shown to model the true spectrum more accurately without dependence on 

periodicity or peak picking  compared to envelope methods discussed in Chapter 1 and Section 

2.4. Objectively, UMAGE competes with the state of the field by exhibiting up to 83% F-

measure in identifying instrument groups in polyphonic signals.  Even more so, UMAGE beats 

previous methods outlined in (Donnelly, 2012).  Where most systems achieve less than 50% and 

even less than 40% accuracy on high order polyphonic signals, UMAGE successfully identifies 

order 10 polyphonic signals with an average F-Measure of 69.1%.  UMAGE is able to detect 

pitches in high order polyphonic signals; however, the number of notes possible in 

training/testing data must be limited in order to achieve results better than random.  When 

comparing UMAGE and smooth UMAGE to the baseline power spectrum for the 222 batch, a 

right tailed t-test give a p value of 10 × 10−5 for a .007% increase in F-measure in both 

instrument and pitch templates.  Even though the improvement is extremely small, UMAGE and 

smooth UMAGE statistically win over the base line.  This trend is more prominent when 

comparing some individual instruments and pitches, although, some exhibit the opposite relation 

(UMAGE and smooth UMAGE lose versus the power spectrum).   

UMAGE shows promise for future research.  Overall, UMAGE and smooth UMAGE are 

observed to perform better than the original power spectrum; however, this varies when results 

are broken down to individual pitches and instruments.  Some spectrum, especially in pitch 

detection, are too complicated to learn with current features.  Preliminary experiments revealed 

that creating a higher dimensionality feature space improves accuracy for pitch detection but 

decreases accuracy for instrument identification causing the model to over fit. Future works will 

include further exploration in parameter estimation for UMAGE, as well as different filters and 

sophisticated classification models like NMF and HMMs. As shown in Chapter 5, results can 

vary quite differently between each instrument and pitch.  Look-ahead control policies are a 

viable candidate to select the best set of features, filters, and classifiers for each instrument and 

pitch.  A similar approach has been implemented for tree classification from aerial images in 

(Bulitko, Levner, & Greiner, 2002). 
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Chapter 8  

Appendix 

Instrument Name Instrument  Tag 

banjo  1 

bassclarinet  2 

bassoon  3 

cello  4 

clarinet  5 

contrabasson  6 

doublebass  7 

englishhorn  8 

flute 9 

frenchhorn  10 

guitar  11 

mandolin  12 

oboe  13 

saxophone  15 

trombone  16 

trumpet  17 

tuba 18 

viola 19 

violin 20 

Table 8.1 The instrument tags/codes used in each experimental batch. 

 

Notes 

Tag Notes (MIDI #) 

ALL 21-109 

SPAC

ED x2 

21;23;25;27;29;31;33;35;37;39;41;43;45;47;49;51;53;55;57;59;61;63;65;67;69;71;7

3;75;77;79;81;83;85;87;89;91;93;95;97;99;101;103;105;107 

SPAC

ED x3 

21;24;27;30;33;36;39;42;45;48;51;54;57;60;63;66;69;72;75;78;81;84;87;90;93;96;9

9;102;105;108 

SPAC

ED x4 21;25;29;33;37;41;45;49;53;57;61;65;69;73;77;81;85;89;93;97;101;105 

SPAC

ED x5 21;26;31;36;41;46;51;56;61;66;71;76;81;86;91;96;101;106 

Table 8.2 The note tags/codes used in each experimental batch. 
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Batch Name # VOICES Instruments Notes 

222 2 17;16;5;15;4;20 ALL 

333 3 16;17;18;5;15;9;4;19;20 ALL 

444 4 10;16;17;18;5;15;9;4;19;20;3;7 ALL 

455 5 8;10;16;17;18;5;3;15;9;13;4;19;20;7;12 ALL 

brassQuartet 4 10;16;17;18 ALL 

brassTrio 3 10;16;17 ALL 

limitedNote2_222 2 17;16;5;15;4;20 SPACED x2 

limitedNote2_333 3 16;17;18;5;15;9;4;19;20 SPACED x2 

limitedNote2_444 4 10;16;17;18;5;15;9;4;19;20;3;7 SPACED x2 

limitedNote2_455 5 8;10;16;17;18;5;3;15;9;13;4;19;20;7;12 SPACED x2 

limitedNote2_brassQuartet 4 10;16;17;18 SPACED x2 

limitedNote2_brassTrio 3 10;16;17 SPACED x2 

limitedNote2_many10 10 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x2 

limitedNote2_many6 6 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x2 

limitedNote2_many7 7 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x2 

limitedNote2_many8 8 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x2 

limitedNote2_many9 9 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x2 

limitedNote2_stringQuartet 4 4;19;20;7 SPACED x2 

limitedNote2_stringTrio 3 4;19;20 SPACED x2 

limitedNote2_woodwindQuartet 4 5;3;15;2 SPACED x2 

limitedNote2_woodwindQuintet 5 5;3;15;2;9 SPACED x2 

limitedNote2_woodwindTrio 3 5;15;2 SPACED x2 

limitedNote3_222 2 17;16;5;15;4;20 SPACED x3 

limitedNote3_333 3 16;17;18;5;15;9;4;19;20 SPACED x3 

limitedNote3_444 4 10;16;17;18;5;15;9;4;19;20;3;7 SPACED x3 

limitedNote3_455 5 8;10;16;17;18;5;3;15;9;13;4;19;20;7;12 SPACED x3 

limitedNote3_brassQuartet 4 10;16;17;18 SPACED x3 

limitedNote3_brassTrio 3 10;16;17 SPACED x3 

limitedNote3_many10 10 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x3 

limitedNote3_many6 6 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x3 

limitedNote3_many7 7 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x3 

limitedNote3_many8 8 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x3 

limitedNote3_many9 9 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x3 

limitedNote3_stringQuartet 4 4;19;20;7 SPACED x3 

limitedNote3_stringTrio 3 4;19;20 SPACED x3 

limitedNote3_woodwindQuartet 4 5;3;15;2 SPACED x3 

limitedNote3_woodwindQuintet 5 5;3;15;2;9 SPACED x3 

limitedNote3_woodwindTrio 3 5;15;2 SPACED x3 

limitedNote4_222 2 17;16;5;15;4;20 SPACED x4 

limitedNote4_333 3 16;17;18;5;15;9;4;19;20 SPACED x4 
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limitedNote4_444 4 10;16;17;18;5;15;9;4;19;20;3;7 SPACED x4 

limitedNote4_455 5 8;10;16;17;18;5;3;15;9;13;4;19;20;7;12 SPACED x4 

limitedNote4_brassQuartet 4 10;16;17;18 SPACED x4 

limitedNote4_brassTrio 3 10;16;17 SPACED x4 

limitedNote4_many10 10 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x4 

limitedNote4_many6 6 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x4 

limitedNote4_many7 7 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x4 

limitedNote4_many8 8 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x4 

limitedNote4_many9 9 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x4 

limitedNote4_stringQuartet 4 4;19;20;7 SPACED x4 

limitedNote4_stringTrio 3 4;19;20 SPACED x4 

limitedNote4_woodwindQuartet 4 5;3;15;2 SPACED x4 

limitedNote4_woodwindQuintet 5 5;3;15;2;9 SPACED x4 

limitedNote4_woodwindTrio 3 5;15;2 SPACED x4 

limitedNote5_222 2 17;16;5;15;4;20 SPACED x5 

limitedNote5_333 3 16;17;18;5;15;9;4;19;20 SPACED x5 

limitedNote5_444 4 10;16;17;18;5;15;9;4;19;20;3;7 SPACED x5 

limitedNote5_455 5 8;10;16;17;18;5;3;15;9;13;4;19;20;7;12 SPACED x5 

limitedNote5_brassQuartet 4 10;16;17;18 SPACED x5 

limitedNote5_brassTrio 3 10;16;17 SPACED x5 

limitedNote5_many10 10 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x5 

limitedNote5_many6 6 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x5 

limitedNote5_many7 7 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x5 

limitedNote5_many8 8 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x5 

limitedNote5_many9 9 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 SPACED x5 

limitedNote5_stringQuartet 4 4;19;20;7 SPACED x5 

limitedNote5_stringTrio 3 4;19;20 SPACED x5 

limitedNote5_woodwindQuartet 4 5;3;15;2 SPACED x5 

limitedNote5_woodwindQuintet 5 5;3;15;2;9 SPACED x5 

limitedNote5_woodwindTrio 3 5;15;2 SPACED x5 

many10 10 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 ALL 

many6 6 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 ALL 

many7 7 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 ALL 

many8 8 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 ALL 

many9 9 2;3;4;5;7;8;9;10;11;12;13;15;16;17;18;19;20 ALL 

stringQuartet 4 4;19;20;7 ALL 

stringTrio 3 4;19;20 ALL 

woodwindQuartet 4 5;3;15;2 ALL 

woodwindQuintet 5 5;3;15;2;9 ALL 

woodwindTrio 3 5;15;2 ALL 
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Table 8.3 The complete table of the different batches of notes and instruments used in 

experiments. 

 


