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1. INTRODUCTION

Consider an organism that displays observable stages (0,1,..., A)

throughout its lifetime. Two examples are: (1) a holometabolous

insect displays egg, larvae, pupa and adult stages (see Ross, 1965)

and (2) an annual herbaceous angiosperm displays seed, seedling,

vegetative, flowering and senescent stages (see Wilson, Loomis and

F
Steeves, 1971). Let (t.). - be an increasing sequence of fixed sample

points in time (- sample times) such that a cohort of organisms (i)

begins in stage at t and (ii) ends in stage A at t . At each t. a

sample of n. (n, — 1, 2, ...) organisms is selected and the stage of

each organism is determined and recorded. Assume that failures

(deaths) do not occur and that the samples are selected from an

infinitely large population.

The above experiment is applicable in two cases. In Case I, each

organism is observed at each t. . Hence, n.- N where N is the total11
number of organisms in the cohort. In Case II, the stage of the

organism can only be determined by sacrifice; i.e.: determined by

destruction of the organism or the habitat that is necessary for the

organism's survival. For example, (1) an adult female insect is

sacrificed to determine its ovarian stage and (2) a host (habitat) is

destroyed to determine the developmental stage of a parasite (see

Ross, 1965). Thus an independent subset n. of the cohort is observed

at each t.

.



Data resulting from such an experiment are tabulated as in Table

1, where n is the number of organisms observed in stage s at t..

Note that n - ) n Conditions (i) and (ii) on (t, )f „ imply
'-s-O ' 1 1-0

"O
" "0,0 ^"0,s

- 0. < s ^ A) and np - n^^^ (nj,^^ - 0, < s < A)

.

Hence, the estimators to be discussed are appropriate only when all

organisms in the cohort begin in stage and end in stage A.

Table 1. Format of stage frequency data.

sample stage total

no.

^0-° "0,0

'l "1,0 "1,1 "l,s

h "2,0 "2,1 • "2,s

° "0

'1,A "1

"2, A "2

n. „ n. 11,0 1,1

Given data from such an experiment, a clear interest is to

provide estimates of the parameters (mean, variance,...) of the

distribution of the time to a particular stage s given the time in any



other stage s' < s (0 < s' < A) . Previous research on stage frequency

data centered on estimation of survival or mortality rates (Bellows,

Ortiz, Owens and Huddleston, 1982; Birley, 1977; Kiritani and

Nakasuji, 1967; Manly, 1974). Estimation of stage recruitment was

researched by Kobayashl (1968). Estimators of mean stage duration

have been proposed by Boyer and Deaton (1984), Manly (1976, 1977) and

Mills (1981). Mills (1981) estimated mean stage duration time based

on the arithmetic means of recruitment and stage frequencies, scaled

by a "shift of mean" factor to account for stage mortality. Manly

(1976, 1977) estimated mean stage duration time by applying a

trapezoid approximation to the observed stage "frequency estimates."

Variance of mean stage duration time was estimated using linear

regression sequentially on three frequency estimates (analogous to a

moving average). Manly (1985) extended his methodology to data with

left or right censoring of sample times. Boyer and Deaton (1984)

estimated mean time to stage s In Case II by first constructing a

survival cumulative distribution function (cdf) based on the

proportion of organisms not yet attaining stage s and then applying

Rlemann sums to estimate the mean time to stage s. This report is an

extension of Boyer and Deaton (1984) , so we review their approach

next.

Let the random variable T e [0, »[ be the time to stage s for an

organism. Let T^ have the cdf F . The survival function for stage s

is P(T > t) - G (t) - 1 - F (t). For each t. , < 1 < F, let ps S S 1 1 , s

P(Tg > <^^) - 2g(t^). G^(tj^) is the probability that an organism
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reaches stage s after time t. and, equlvalently , G (t.) Is the

probability that an organism will not be In stage s by t.. Define an

estimator of p, bv
i,s ^

rs-1
1

\^-"
p. - - > n. .

(le: the proportion of organisms In the sample not yet in stage s by

time t ). The quantity ) n. . has a binomlalfp. , n. ) distribution

and P, Is the "usual" unbiased estimator of p. (see, for example.

Mood, Graybill and Boes , 1974). The p would be uniformly minimum

variance unbiased if p, contained information censored from above

and below t .

.

1

Since E(T^) - J^ G^(t)dt and G (t) Is monotonlc nonincreasing, we

^F-1
can estimate E(T ) by the Riemann sums U - ) G(t.)(t .,

- t ) and

rF-1
L - > G(t )(t - t ), where U (L) Is an upper (lower) bound and

^i_o ^^^ ^"^-^ ^

F
(Cj^)j^_Q Is the partition. Averaging U and L results in an approximate

expression for the mean time to stage s

rF-1/-

'"-^ =U._J'=s(^> +Gs(Vl^)(Vl - \^ (1.2)



Substituting
p^^^^

for 0^(.t^) and
p^^^^^ ^ for G^(tj^_^j^) and noting that

Cq - 0, Pq g- 1 and p^ ^- 0, an estimator of E(T ) is

Thus E(T ) is approximated as though G (t) is a trapezoid in each

some stage s' take the differences of p. and p as
'^l.s l,s'

'^'3-Ts->- i}._^ (Pi,S -Pi,s''(Vl - ^i-l)-
(1-^)

If s' = s - 1 then ECT - T
, ) is the mean duration time for stage s'.

The
pj^ ^ are independent for different t. (assuming that the

population size is infinitely large), so an estimator of the variance

of E(T ) is
s

-F-1
^arCECT^)) - l

)_^^
y;._^(l - ;,^^))(t.^^ - t..^)2 (1.5

because Var(p ) - - [p. (1 - p. )]. Similarly, an estimator of

the variance of E(T - T ,) i
s s'

-F-1
Var(E(T - T )) - - ') - f(p. - p. ,)(! - (p. - p. ,))]s s' 4 /._ n.p'^l.s '^i,s' i,s "^l.s' J

>^<Vl - ^-l^'- <l-6>



Boyer and Deaton also proved that the absolute bias of E(T ) <

LaxCt. ,
- t.) and so MSE(E(T )) < hmaxCt. -- t.))^ + Var(E(T )).

2 1+1 1 s 4 1+1 1 s

Note that VarCE(T )) is decreased by increasing n. (ie: taking more

samples at each t,)i 3,nd bias is decreased by increasing the niamber of

p
t. in [t-., t_] (ie: refining the partition (t.). ., which is
1 U r 1 1—

U

equivalent to sampling more frequently)

.

In this report, we extend the approach of Boyer and Deaton. In

Section 2, we propose two estimators for Var(T ) and prove two

relational properties about the estimators. Section 3 contains an

entomological example to demonstrate the calculations of the

estimates. A computer program to calculate the estimates is in

Section 4. A comparison of the estimators with parameter values from

five survival distributions using simulation is presented in Section

5.
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Figure ]. Geometric representation of the calculation of E(T ).



2. ESTIMATORS OF VAR(T )
s

We propose two estimators of VarfT ), Var_(T ) and Var, (T ), and
s T s L s

prove two relational properties. Var(T ) may be defined as

Var(T^) - 2j^t(l - F^(t))dt - [E(T^)]^ (2.1)

(see Mood, Graybill and Boes, 1974). The crucial estimation is of

ECTp- 2j ' tG (t)dt.

2.1 Var (T ): Trapezoid Method

Let

^^^s^At
" ^ S^^*^<^G^(.t)dt (2.2)

i

(ie: the contribution to the second moment of T on some
s

At - [t, , t, -]). Since G (t) is monotonic nonincreasing on At,

2G^(t.)/^'-''^ tdt > 2/^.^"'^ tG^(t)dt > 2G^(t.^j^) /^^'^ tdt, where
i i 1

G^(t.) - sup{G^(t)
I

t^ < t < t.^^) and G^(t.^j^) - inf(G^(t)
|

t. < t

^ ^1+1 1. So G (t.)(t , - t?) > 21" ^"^
tG (t)dt > G (t. ,)(t , - t ).

s 1 1+1 i' •'t. s s 1+1 1+1 i'

Taking the average of left and right sides we obtain

^T^^s^At' ^(°s(^' "-^S^Vl^'^Vl - 'i^- ^°

r-F-1

S^^s' =
\ I <°s(^i) ^ °s<Vl))(Vl - =l' (2.3)



Varj(T^) - Ej(T^) - [E(T^)]^ (2.4)

where E(T ) is (1.2). Thus an estimator of Var(T ) is

V-F-1 A A

^^'^t(^s) -
\ I (Pi,s ^ Pi+l,s)(^Ll -

'i'
- [^(^s^l' (2.5)

where E(T ) is (1.3). Expanding (2.5) did not result in a simpler

form, so we recommend (2.5) in calculating Var„(T ).

2.2 Var (T ): Straight Line Method

Define Var(T^) as (2.1) and E(Tp as (2.2). Assume G (t) is a

linear function on At. Then

G (t.) - G (t. )

G^(t) - k + ct - G^(tj^) + ^ '-
s 1+1

(^ . J)

^L^^s'At-
2/^^'^G^(^)dt

G (t.) - G (t. ,)

1 ^ t. - t. ,
'

1 i+l

ht.)-!!!!iii!!!!i^t.i(t^-t^
I s' l' — ij' 1+1 l'

^ 2 =s(^i) - '^s^^+l' ,3 3^ ^+
3

(t.^^ - t.), and



10

2 ^F-1 SI s 1+1 ,^3 _ 3

1+1 1

,
r-F-1, G (t ) - G (t ) .

L s 4_q[s 1
1. - t. ,

"-'^^^ '

1 1+1

2 vF-1 °s<^i' - '^s^^+l ,

4-0 h - ^i+1

Var^(T^) - Ej^CT^) - [E(T^)]^ (2.7)

where E(T ) is (1.2). Substituting p. for G (t.) and p. , for
s ^"^l.S SI ^1+1, s

G (t. ..) we define an estimator of Var(T ) by

Varj^(Tp - E^(T^) - [E(T^)]^. (2.8)

2
We expand E (T ) to obtain a simpler calculation form of

Var, (T ). Substituting p. for G (t.) and p. , for G (t. ,),L s ^ "^i.s s 1 *^i+l,s s 1+1

2 2 3 3
factoring (t. . - t.) and (t. .. - t.), and canceling appropriate terras

in (2.6) we obtain

rF-1

. , )(t. , - t.)t.
i+l,s'^ 1+1 i' i

E, (T^) - ) (p. (t? ,
- t^) + (p.L^ s' /. .ri,s 1+1 i' ^'^i

+ i(p. - p. , )(t7 , + t. ,t. + tf)
3^^i,s '^1+1, s'^ 1+1, s 1+1 i I'J

rF-1., . 2 2

,s(4l ^ Vl^ - 2^1>

1 ' 2 2 "1

+ 5 p.,, (2t:^,- t.^,t. - tf)
3 '^1+1, s 1+1 1+1 1 1 J
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F-1

(2.9)

We recommend (2.9) in calculating Var (T ).

2.3 Two Relational Properties

Theorem 1 . Define Var.j,(T ) as (2.4) and Var (T ) as (2,7). Given

("i^Lo' 'i ^ °' ^+1 > h ^"'^ °s(^> ^ '^s'^+l) '^^" ^"-^T^Ts^ >

Var^(T^).

Proof: Note that proving Var (T ) > Var (T ) is equivalent to

2 2proving < Ej(T^) - E^(T^) . From (2.3) and substituting G (t.) for

Pi,s ^""^
^s'^l+l^

^""^ Pl+l,s ^" '^'^^- "^ obtain £.^,(1^) - Ej_(T^)

-
2
5._o

['^s^^i' ^ '^st^i+i'KVi ^ 'i'(Vi - h^

I
),_o h<^i)(Vl + 2t,) ^ G^(Vi)(2t.^^+ ^l'](^i+l

- t^)

- \J I '^s^^X^+l + ^> + k<^+l><'i+l+ ^i'

- k^^i'^Vi ^ 2t,) - K<^i+i)^2t.^^ + ^)](Vr ^)

-
g )._„ h^^X^+l - ^i' ^ '^s^^i+l'^-Vl ^ ^i)]<

rF-1

1(1:. .- t.)
[_._j-. ^. ^ J- J-T-i X » x-rj. j.-rj. J. J i+1 1

rF-l

,) - G (t,^,)](t,.^, - t,.)^ > 0. Thus
s^-l+l^'^^i+l -i'
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rF-1

< ^ ''^s^'^i^
'

''s^'^i+1''' '"^i+l
"

'i^
Strict Inequality holds

because G (t) is nonlncreasing monotonic, G (t ) - 1 and G (t ) - 0.

Thus Var (T ) > Var (T ) completing the proof. D

Theorem 1 holds for the sample estimates Var (T ) and Var (T )

when the p. have the same monotonic property. Note that the p.l.S i-ry
l,s

may not be monotonic because of sampling variation. However, we have

always observed that Var (T ) > Var (T ) in simulations and actual

data applications.

In the following Lemma we show that as the ntimber of t. in

(tg, tp] increases, Var (T ) approaches Var (T ).

F FLemma 1. Let (t.). ., t. > 0, t.., > t. and (n.)! „ be given.
1 1-0 1 1+1 1 1 1=0 °

Define At - t^^^^^ - t.. Then Var (T ) -» Var (T ) as At - 0.

Proof: Fix s. From Theorem 1, and substituting p. for G ft )" 1,S SI

and P, , for G (t. ), we have

A A A r-F-1 A A

Var^CTp - Varj_(Tp - E^d^) - E^df) - 1) (p - p., )(At)2.

Recall that the right side may be less than zero if the p. are
L, S

not monotonic nonlncreasing. Now,
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12'
- ;max(At) since p. - 1 and p„ - 0.

D . 0,s F,s12' '

Thus lira ;max(At) - and Var (T ) - Var, (T ) as At -» 0.
AtiO i ^ = '-

=
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3. AN EXAMPLE

We provide an example of the calculations for E(T ), E(T - T ),
s s s

Var(E(T )), Var(E(T - T . ) ) , Var„(T ) and Var, (T ), The data are from
S S S is L. S

a stage frequency experiment on the insect Lvsiphlebus testaceipes

(Hymenoptera: Aphidiidae) , an endoparasitold of the aphid, Schizaphls

graminum (Homoptera; Aphidae) (Table 2) (unpublished data, J. S.

Pontius) (see Hight, Eikenbary, Miller and Starks (1972) for L,

testacelpes biology). The p. for the example calculations are

included in Table 2. Since t, - 4, let t„ - and p„ - 1.
1 0,s

Table 2. Stage frequency data for L^ testaceipes .

sample stage total P- i P- o

time 1 2 no.
(days) egg- pupa adult

larva

^0-° - - - - 1 1

4 8 3 1 1

7 15 15 1 1

9 3 15 18 .16 1

11 14 14 1

13 2 12 14 .1429
15 2 2

The estimated mean time to stage 1 (pupa) is E(T ) - .5(4) +

[(1)(7 - 0) + (1)(9 - 4) + .16(11 - 7) + + 0] - 8.3 from (1.3).

The estimated standard error of the mean time to stage 1 is Var(E(T-))
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- .25[ + + .055(.16(1 - .16))(11 - 7)^ + + + 0] - .031 from

(1.5). The estimated mean duration time In stage 1 is E(T - T ) -

.5[0 + + + .83(11 - 7) + (1)(13 - 9) + .1429(15 - 11)] - 3.95 from

(1.4). From (1.6), Var(E(T^ - T^j)) - .25[0 + + + .05(.83(1 -

.83))(11 - 7)^ + .071(. 1429(1 -.1429))(15 - 11)^] - .067. Estimates

'^2
2of moments for variances of time to stage 1 are E (T. ) - .5[(1 + 1)(4

- 0) + (1 + 1)(7^ - 4^) + (1 + .16)(9^- 7^) + (.16 + 0)(11^ - 9^) +

+ 0] - 71 and Ej^d^) - .3([(1)(4 + 0) + (1)(8 + ) ] (4 - 0) + [(1)((7 +

8) + (1)(14 + 4)](7 - 4) + [(1)(9 + 14) + .16(18 + 7)](9 - 7) +

[.16(11 + 18) + 0](11 - 9) + + 0]) - 70,3 from (2.3) and (2.9),

respectively. Hence, from (2.5) and (2.8), the estimated variances of

time to stage 1 are Var (T.) - 1.5 and Var (T. ) - .8.
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4. A COMPUTER PROGRAM FOR CALCULATING ESTIMATES

We developed a computer program (Appendix A) to calculate ECT ),

Var(E(T^)), E(T^ - T^,), VarCECT^ - T^J) {s' - s - 1), Var^(T^) and

Var (T ) from a set of stage frequency data (see Table 1) . The

program was coded in the Macro Language of the Statistical Analysis

System (SAS) (Allen, 1982), version 82.3. SAS Macro Language requires

a minimum of 500 K memory and the JCL execution card

//)zfEXEC)z(SAS,OPTIONS=MACRO. The source code contains documentation for

SAS data set structure, computational algorithms and user required

initial values.

The SAS data set structure is documented in the program. The

stage frequency table (see Table 1) is structured as a column

formatted input data set, excluding the totals column. The program

checks that the data set contains (1) nonnegative count data

(n. >0, 0<i<F, 0<s<A) and (2) an increasing sequence of

F
nonnegative sample times (t.).^^- Error messages are printed on the

SAS log if errors in (1) and/or (2) are detected. If the data do not

contain t _ -
, an algorithm inserts t^ - 0, n. _ = 1 and n„ - 0,

u u u , U u , s

< s < A, as the first row of the data set.

User-required initial values are in the main program section

located at the end of the source code. The initial values are (1)

number of stages in the data set (NS)
, (2) variables corresponding to

each stage (COUNTk)
, (3) a list of character identifiers for the

stages, and (4) the unit of measurement for sample times.
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The estimates are calculated using matrices in PROC MATRIX. Three

sections of output are generated by the program (Table 3) . The first

section contains the input data set. The variables COUNTk are as

initialized in (2) above, k- 1 , 2 A+1 (corresponding to s - 0,

1 A), and the values listed under DAY are sample times. The

second section lists the stage identifiers and the estimates E(T ),
s

y[Var(E(T^))], E(T^ -

'^s'^
^"'^ y[Var(E(T^ - T^ , ) ) ] for s '

- s - 1

.

The third section contains the stage identifiers, y[Var (T )] and

y[Varj^(T^)
] . Estimates for the pupal stage in Table 3 correspond to

the example calculations in Section 3.
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Table 3 . Example of computer program output

.

the example in Section 3.

Estimates correspond to

ESTIMATION OF TIME TO AND DURATION OF STAGE
FREQUENCY DATA, METHOD OF BOYER AND DEATON.

PROGRAM REVISED: SEPTEMBER, 1986 BY JS PONTIUS.
STUDY: L. TESTACEIPES

UNIT OF TIME MEASUREMENT: DAYS

)BS DAY COUNTl C0UNT2 COUN'

1 4 8

2 7 15

3 9 3 15
4 11 14
5 13 2 12
6 15 2

ESTIMATION OF TIME TO AND DURATION OF STAGE
FREQUENCY DATA, METHOD OF BOYER AND DEATON.

PROGRAM REVISED: SEPTEMBER, 1986 BY JS PONTIUS.
STUDY: L. TESTACEIPES

UNIT OF TIME MEASUREMENT: DAYS

STAGE TIME TO STD ERROR OF DURATION TIME STD ERROR OF
REACH STAGE E(T(S)) E(T(S)) - T(S')) E(T(S) - T(S'))
( E(T(S)) )

EGGLARVA . 8.33333
PUPA 8.3333 0.175682 3.95238
ADULT 12.2857 0.187044

0.175682
0.256612

ESTIMATION OF TIME TO AND DURATION OF STAGE
FREQUENCY DATA, METHOD OF BOYER AND DEATON.

PROGRAM REVISED: SEPTEMBER, 1986 BY JS PONTIUS.
STUDY: L. TESTACEIPES

UNIT OF TIME MEASUREMENT: DAYS

STAGE STD DEVIATION OF T(S)

-TRAPEZOID ANALOG-
STD DEVIATION OF T(S)
-STRAIGHT LINE-

PUPA
ADULT

1.24722
1.22057

0.942809
0.907265
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5. SIMULATION UNDER FIVE SURVIVAL DISTRIBUTIONS

We compare the performance of E(T ) , Var„CT ) , Var^ (T ) and
s T s L s

Var(E(T )) to their respective expected values E(T ) and Var(T ) (for

the first 3 estimators) of 5 survival (G (t)) distributions under
s

specified sampling conditions for a cohort of organisms with 2 stages,

s - {0, 1). We selected the uniform, exponential, beta, normal and

standard gamma survival distributions to provide a variety of

distributional shapes (Table 4)

.

Table 4. Survival G (t)
,
parameter value(s) , E(T ) and Var(T ) for

s s s

each survival distribution used in simulations.

survival parameter E(T ) Var(T )

distribution value(s)

uniform: G^(t) - (1 - c)l^^ ^^(t) - 0.5 1/712

exponential: G (t) - e'^'l,. .(t) X - I 1.0 1.0
S [0,00)

beta: G (t)- 1 - J^
^

x°'-'-(l-x)^'^I .„ , ,
(x) a - 2.0 0.8 0.046

"^ " B(a,/3) l°'^i
fi

- 0.5

normal

:

G,(t)- 1 -

;S ^exp[-^[ll^]2]l (X) .-3.5 3.5 1.0

gamma: G^Ct)= 1 - J^ J_ x'^'^e'^'l^^ ^^ (x) a = 2.0 2.0 2.0

We selected the uniform because we expected E(T ) to closely

estimate E(T ) since the trapezoidal approximation should do well on
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the uniform's straight line survival distribution (Fig. 2 and see Fig.

1). We expected E(T ) to overestimate E(T ) from an exponential G (t)

because the trapezoidal approximation should overestimate the area

under the convex exponential survival distribution (Fig. 3).

Conversely, we expected E(T ) to underestimate E(T ) from a concave

beta survival distribution (Fig. 4). Because a normal distribution is

symmetric about E(T ) , we expected underestimation of the trapezoids

at the upper tail and overestlmatlon of trapezoids at the lower tail

(Fig. 5). Hence, possibly some cancelling effect would occur. We

selected a gamma because it is a widely used survival distribution and

exhibits shape asymmetry (Fig. 6).

The variables we used In sampling from each survival distribution

were (1) the time interval (At) between sample times (t.)! and (2)

the number of organisms (n.) in stages and 1 'observed' at each t.

.

To construct a similar sampling regimen over distributions. At was

scaled with respect to Var(T ) of each distribution as

At - cyVar(T^), (5.1)

where c - 1, 1/2, 1/4 or 1/8. Thus At was constant for each

simulation (ie: sample times were equidistant). Note that At is just

a proportion of the standard deviation of each G (t) . Also, the number
s

of samples (ie: the 'number of organisms observed') per t. were n. -

5, 10, 20 or 40 for all t. , i - 0, . . .
,F. For brevity, let n - n.

,

1 ' '

i'

i - F. Thus the performance of the estimators was evaluated
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based on 16 combinations of c and n, for each survival distribution.

Fifty 'cohorts' were sampled for each combination of c and n.

The statistics we used to evaluate the performance of the

estimators were mean and root mean square of E(T ), Var„(T ) and
s T s

Varj^(T^) each and the mean of Var(E(T )). Clearly, the sample size

for the mean and root mean square of each estimator is 50.

5.1 Simulation Algorithm

We describe the algorithm used in our simulations. We used PROC

MATRIX of SAS, version 5, (processed on a NAS 6630) because our

computer algorithms to calculate estimates were already coded in SAS

(see Section 4) . Version 5 was used because the RANBIN binomial

random number generator in version 82.3 was defective. We were

convinced that RANBIN in version 5 was correct after several tests on

RANBIN were performed.

The simulation algorithm is as follows. Algorithm instructions

apply to each survival distribution. First intialize E(T ), Var(T ),

p
c and n. Next generate the sample times (t.). „. Set t. - 0.'^ 11-0

F-1
Generate sample times (t.). , by t. , - t. + At, i- F-2, where11-1 ' 1+1 1 . . ,

At is determined from (5.1). To ensure that p„ - 0, calculate t„
F, s F

for uniform and beta survival distributions as t^ = t^ , + At where
F F-I

t__. - max{t, € [0,1]}. Then calculate t for exponential, normal and

gamma survival distributions as t - t .. + At where



»37^p

22

t„ , - max{t.
I
P(T < t.) < 0,9999).

F-1 1 ' s 1

For each t., determine a corresponding p. Set p- - 1. The

^i 0' ^ ~ ^'•••'^"1' f°'^ uniform and exponential are determined from

survi-val distributions (see Table 4). The p , i - 1 F-1, for

beta, normal and gamma are calculated as p - 1 - P(T < t.) where

P(T < t ) are determined from the SAS probability generators

PROBBETA, PROBNORM and PROBGAM, respectively. Parameter values for

the probability generators are listed in Table 4. Set all p„ . - 0.
F ,

Now determine the number of organisms 'observed' in stage 0. For

each of the 50 cohort simulations do the following. Initialize all

"j^ g - for each survival distribution. Set n. - n (ie: all

organisms are in stage at t - 0) . For each t. , 1-1 F,

randomly select the number of organisms in stage using the binomial

random number generator RANBIN with parameters p. and n. Stop

sampling when the first n. „ - 0, i > 0. Calculate n. , - n - n. „,1.0 1,1 1,0

i - 0,...,F, to determine the number of organisms that have reached

stage 1 by t^^. Calculate E(T^) , Var(E(T )), Var (T ) and Var (T ) and

store the estimates.

After 50 cohorts have been simulated, calculate the evaluation

statistics specified above. Print the evaluation statistics. This

ends the algorithm.
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5.2 Results and Discussion of Simulations

We present the simulations' results and corresponding discussion

in the order E(T^) , Var(E(T^)), Var.j,(T^) and Var (T ). For each

estimator we present its overall performance and then present results

pertinent to selected survival distributions. Each sampling regimen

will be referenced by c, each sample size per t. will be referenced by

n, and specific combinations of c and n will be referenced by (c ; n)

.

Section 5.4 contains an overall discussion of the simulations.

5.2.1 E(T )

Our overall evaluation of the performance of E(T ) is based on

trends in the means and estimated root mean squares (RMS) of E(T )
s

(Table 5) and 95% confidence intervals for E(T ) (Table 6). We

constructed 95% confidence intervals for E(T ) by mean(E(T )) ±

1.96y[mean(Var(E(T )))/50] where values of mean(Var(E(T ))) are listed

in Table 7 and 50 is the number of simulations for each survival

distribution, c and n combination. If E(T ) is contained in the
s

confidence interval then we consider E(T ) to be a good estimator of
s

E(T ) under the particular survival distribution, c and n combination.

Note that the confidence intervals can also be used to test H : E(T )
o s

is an unbiased estimate of E(T ) vs . H : E(T ) is a biased estimate of
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ECT ). If H is rejected, the bias can be estimated by bias -SO"' '

mean(E(T )) - E(T ) from the values in Table 5.

Overall, E(T ) is contained all confidence intervals for the beta
s

survival distribution (Table 6) , E(T ) is contained in most confidence
s

intervals for the uniform and normal survival distributions, and ECT )

is contained in less than half of the confidence intervals for the

exponential and gamma survival distributions. Thus we conclude that

E(T ) is a good estimator of the expected values £(1 ) for the

beta and uniform survival distributions, and for (1 ; 5, 10, 20, 40),

(1/2 ; 20, 40), (1/4 ; 10, 20, 40) and (1/8 ; 20, 40) for the normal

survival distribution. E(T ) appears to be a biased estimator of

E(T ) of the exponential and gamma survival distributions when c - 1/4

or c - 1/8. Even though the bias of E(T ) should decrease as At

decreases (see Section 1), this assumes that all t. have been sampled.

Possibly the presence of bias when c - 1/4 and c - 1/8 for the

exponential and gamma survival distributions is because of some t,

(in the right part of the survival distribution) consistently not

being sampled in simulations.

For the exponential, normal and gamma survival distributions, the

means of E(T ) tended to decrease as c decreased and n increased,
s

However, the means of E(T ) tended to be similar across all (c ; n)
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for the uniform and beta survival distributions. Means of E(T ) were

closer overall to E(T ) of beta and uniform survival distributions.

Conversely, means of E(T ) were farther overall from E(T ) of the^
s ^ s

gamma survival distribution. Possibly E(T ) better estimates E(T ) of
s s

survival distributions with shapes similar to the concave beta and

uniform survival distributions. But the [0, 1] domains of the uniform

and beta survival distributions compared with the [0, »[ domains of

the exponential, normal and gamma survival distributions may have

influenced these results. Estimated root mean squares of E(T ) tended

to decrease as c decreased and n increased (Table 5)

.

For the exponential survival distribution, EfT ) overestimated
s

E(T ) for (1 ; 5, IQ, 20, 40) as we expected but E(T ) tended to

underestimate E(T ) for (1/2, 1/4, 1/8 ; 5, 10, 20). For the

survival distribution, E(T ) tended to underestimate E(T ), especially

for smaller n and c.
1. >c^ • . - , » s

5.2.2 Var(E(T ))
s

Boyer and Deaton (1984) concluded that Var(E(T )) would be

decreased by taking more samples (ie: increasing n.) at each t,

.

Means of Var(E(T )) from the simulations (Table 7) support their
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A A

conclusion. For each survival distribution and c, means of Var(E(T ))
9

decreased as n increased; and for each survival distribution and n,

A A

means of Var(E(T )) decreased as c decreased. Overall, we conclude

that increasing n. at each t. and increasing the number of t. in

» A

' [t^, t„] results in a smaller estimate of Var(E(T )).u f s

5.2.3 Var„(T )
1 s

A

The Var_(T ) tended to overestimate Var(T ) of each survival
T s s

distribution when c - 1, and for smaller n (usually n - 5 or n - 10)

A

for all other values of c (Table 8). Overall, Var_(T ) better
T s

estimated Var(T ) for smaller c and larger n under the uniform, beta

and normal survival distributions; and for smaller c under the

A

exponential and gamma survival distributions. Means of Var (T ) were

closer overall to Var(T ) of the beta survival distribution and
s

farther from Var(T ) of the exponential and gamma survival

A

distributions. So Var_(T ) better estimated Var(T ) of beta andis s

A A

uniform survival distributions. Trends in RMS of Var„(T ) were
1 s

variable and appear to depend on the particular survival distribution.

A

For the uniform, survival distribution, Var_(T ) overestimated
T s

Var(T ) when c - 1, (1/4 ; 5) and (1/8 ; 5). For all n when c = 1/2
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and for (1/4, 1/8 ; 10, 20, 40) Var,|,(T^) reasonably estimated Var(T ).

The RMS's of Var (T ) tended to decrease as c decreased and n
r s

increased.

For the exponential survival distribution, Var„(T ) varied
T s

considerably with changes in n within and across values of c. Means

of Var,j,(T^) were closer to Var(T ) for (1 ; 20, 40). For all other

(c ; n) , Var,j,(T^) underestimated Var(T ). In (1/2 ; 5) and (1/4, 1/8

; 5, 10) Var (T ) underestimated Var(T ) considerably. The RMS of

Var (T ) decreased as n increased for each c.
1 s

For the beta survival distribution, Var (T ) reasonably estimated

Var(T ) ,
particularly as c decreased and n increased. The RMS of

Var„(T ) decreased as c decreased and n increased.
1 s

For the normal survival distribution, Var_(T ) overestimated
T s

Var(T ) when c - 1. For all other (c ; n) , except for (1/4, 1/8 ; 5),

Var_(T ) reasonably estimated Var(T ). The RMS of Var.„(T ) decreasedis s T s

as n increased for each c.

For the gamma survival distribution, Var (T ) varied considerably

with changes in n within and across values of c. Means of Var (T )

were closer to Var(T ) for (1 ; 5, 10) and (1/2 ; 40). In (1/4 ; 5)
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and (1/8 ; 5, 10), Var (T ) underestimated Var(T ) considerably. The

RMS of Var (T ) decreased as n increased for each c.

5.2.4 Var^(T^)

Means of Var (T ) (Table 9) were less than the means of Var„(T )
Li S T S

for all survival distributions and (c ; n) (equality is the result of

rounding of estimates) as proved in Theorem 1 (see Section 2.3). In

general, statements about Var_(T ) in Section 5.2.3 pertain to
T s

Var^ (T ). As c decreased and n increased, Var, (T ) approachedL s L s

Var (T ) as proved in Lemma 1 (see Section 2.3). The ElMS's of both

estimators were similar for smaller c (especially c - 1/8). Hence,

Var (T ) and Var (T ) give similar estimates of Var(T ) as the number

of t, in [t-., t ] and n, are increased.
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Figure 2. Graph of uniform G (t) used In simulations.

UNIFORM G(T)

SAMPLE IIHES (I)



"'*?i"'
'

30

Figure 3. Graph of exponential G (t) used in simulations.

EXPONENTIAL G(T)
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Figure 4. Graph of beta G (t) used In simulations.
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Figure 5, Graph of normal G (t) used in simulations.

NORMAL G(T)

1.0- —--.

*•*-; \
0.*.^ \

« 0.7-

L 0.<-

\
\

F 0.3- \

E 0.4-
\

T 0.3-
\

H

O.J- \

0.1- \

0.0-
v__

1 2 3 4 S 6

SMPLC TIMES (T)



33

Figure 6. Graph of gamma G (t) used in simulations.
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Table 5. E(T ) results from survival distribution simulations. Mean
s

of E(T ) and (root mean square) are listed for each c and n

combination under each survival distribution.

DISTRIBUTION: uniform exponential beta normal gamma

E(T^): .5 1 .0 .8 3.5 2.0

c n

.50 1 .06 .80 3.451 5 1.88

10
(.10)

.53 1

.35)

.02
(.07)
.79

( .34)

3.53
( .46)

1.96

20
(.09)
.51 1

.21)

.06
(.05)
.80

( .28)

3.53
( .29)

2.05

40
(.05)
.51 1

.16)

.08

(.04)
.80

( .17)

3.53
( .24)

1.98
(.04) .14) (.02) ( .11) ( .18)

1 5 .48 .83 .80 3.41 1.81
2

10
(.08)
.50

.31)

.95
(.05)
.81

( .28)

3.43
( .39)

1.90

20
(.06)

.50

.18)

.99
(.04)
.80

( .21)

3.51
( .25)

1.98

40
(.03)

.50 1

.09)

.00
(.03)

.80
( .12)

3.50
( .19)

1.99
(.02) .06) (.02) ( .10) ( .11)

1 5 .50 .81 .79 3.45 1.78
4

10
(.06)
.50

.28)

.90

(.03)
.80

( .22)

3.47
( .33)

1.90

20
(.04)

.50

.16)

.92

(.02)
.80

' .10)

3.50
( .19)

1.94

40
(.02)
.50

.12)

.99
(.02)
.80

.07)

3.49
( .13)

1.97
(.02) .07) (.01) .07) ( .10)

1 5 .44 .76 .79 3.34 1.65
8

10
(.09)
.49

.29)

.84
(.03)
.80

.22)

3.43
( .42)

1.78

20
(.04)

.50
.20)

93

(.02)
.80

.12)

3.49
( .25)

1.94

40
(.02)
.50

10)

96

(.01) (

.80

.05)

3.49
( .12)

1.96
(.01) 05) (.01) ( .04) ( .09)
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Table 6. 95% confidence intervals for E(T ) based on simulations.
s

Confidence intervals are listed for each c and n combination under
each survival distribution. * labels confidence intervals that do not
contain E(T ) .

DISTRIBUTION: uniform exponential beta normal gamma

E(Tp: .5 1.0 .8 3.5 2.0

1 5 (.48, .53) .99,1.13) (.78 .82)
10 (.51, .54)* .97,1.07) (.78 .80)
20 (.50, .52) 1.02,1.10)* (.79 .81)
40 (.50, .52) 1.05,1.11)* (.79 .81)

1 5 (.46, .50) .79, .87)* (.79 .81)
2 10 (.48, .51) .91, .99)* (.80 .82)

20 (.49, .51) .96,1.02) (.79 .81)
40 (.49, .51) .98,1.02) (.80 .81)

1 5 (.49, .51) .78, .84)* (.79 .81)
4 10 (.49, .51) .87, .93)* (.80 .81)

20 (.49, .51) .90, .94)* (.80 .81)
40 (.50, .51) .98,1.01) (.80 .80)

1 5 (.43, .45)* .73, .78)* (.78 .80)
8 10 (.48, .50) .82, .86)* (.80 .81)

20 (.50, .51) .92, .94)* (.80 .80)
40 (.50, .50) .95, .97)* (.80 .80)

(3.36,3.54) (1.77,1.99)*
(3.47,3.59) (1.88,2.04)
(3.48,3.58) (1.99,2.11)
(3.50,3.56) (1.94,2.02)

(3.35,3.47)* (1.74,1.88)*
(3.39,3.47)* (1.84,1.96)*
(3.48,3.54) (1.94,2.02)
(3.48,3.52) (1.96,2.02)

(3.41,3.49)* (1.73,1.83)*
(3.44.3.50) (1.86,1.94)*
(3.48,3.52) (1.91,1.97)*
(3.47.3.51) (1.95,1.99)*

(3.31,3.37)* (1.62,1.68)*
(3.41,3.45)* (1.75,1.81)*
(3.47,3.51) (1.92,1.96)*
(3.48,3.50) (1.95,1.98)*
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Table 7. Var(E(T^)) results from survival distribution simulations.

Mean of Var(E(T^)) Is listed for each c and n under each survival

distribution.

DISTRIBUTION: uniform exponential beta normal ganuna

c

1

n

5 .0080 .0576 .0037 .1024 .1517
10 .0044 .0327 .0023 .0531 .0879
20 .0023 .0193 .0011 .0274 .0489
40 .0011 .0103 .0006 .0138 .0254

1 5 .0038 .0250 .0020 .0474 .0710
2 10 .0022 .0190 .0011 .0239 .0442

20 .0011 .0108 .0006 .0135 .0244
40 .0006 .0055 .0003 .0069 .0130

1 5 .0017 .0134 .0010 .0195 .0311
4 10 .0011 .0087 .0005 .0120 .0210

20 .0006 .0051 .0003 .0066 .0117
40 .0003 .0029 .0001 .0034 .0062

1 5 .0008 .0059 .0005 .0087 .0127
8 10 .0005 .0040 .0003 .0057 .0093

20 .0003 .0025 .0001 .0032 .0057
40 .0001 .0014 .0001 .0017 .0030
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Table 8. Var (T ) results from survival distribution simulations.
1 s

Mean of Var.j,(T^) and (root mean square) are listed for each c and n

combination under each survival distribution.

DISTRIBUTION: uniform exponential beta normal gamma

Var(T^): .083 1 .0 .046 1.0 2.0

c n

1 5 .108 .74 .053 1.39 1.90
(.056) .48) (.027) ( .83) (1.02)

10 .108 .84 .062 1.35 2.17
(.040) .47) (.024) ( .63) ( .80)

20 .111 1 .01 .060 1.34 2.43
(.034) .35) (.022) ( .46) ( .81)

40 .105 1 .12 .062 1.33 2.54
(.025) .32) (.018) ( .40) ( .77)

1 5 .078 .41 .047 .99 1.31
2 (.029) .66) (.023) ( .48) (1.02)

10 .089 .68 .049 .92 1.69
(.023) .44) (.015) ( .23) ( .74)

20 .086 .83 .051 1.06 1.85
(.015) .28) (.012) ( .22) ( .53)

40 .088 .88 .053 1.07 2.09
(.010) .21) (.010) ( .15) ( .38)

1 5 .069 .35 .048 .72 .91
4 (.032) .68) (.017) ( .41) (1.18)

10 .080 .50 .045 .90 1.34
(.014) .54) (.010) ( .28) ( .77)

20 .083 .64 .047 .97 1.64
(.013) .40) (.005) ( .16) ( .54)

40 .086 .85 .047 .98 1.72
(.008) .23) (.005) ( .11) ( .38)

1 5 .057 .27 .043 .62 .64
8 (.036) .75) (.012) ( .46) (1.39)

10 .076 .42 .047 .80 1.08
(.019) .61) (.008) ( .26) (1.01)

20 .085 .62 .046 .91 1.43
(.009) .40) (.004) ( .15) ( .63)

40 .083 .75 .047 .96 1.69
(.006) .28) (.004) ( .09) ( .40)
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Table 9. Var (T ) results from survival distribution simulations.
L s

Mean of Var. (T ) and (root mean square) are listed for each c and n

combination under each survival distribution.

DISTRIBUTION: uniform exponential beta normal gamma

Var(T^): .083 1.0 .046 1.0 2.0

c n

1 5 .095 .58 .045 1.22 1.57
(.051) .59) (.026) .76) (1.11)

10 .094 .67 .054 1.18 1.83
(.034) .55) (.020) .56) ( .80)

20 .097 .84 .053 1.17 2.10
(.024) .39) (.018) .35) ( .69)

40 .091 .96 .054 1.16 2.21
(.015) .30) (.012) .28) ( .59)

1 5 .075 .37 .045 .95 1.23
2 (.030) .70) (.023) .48) (1.08)

10 .086 .64 .047 .88 1.60
(.022) .47) (.014) .31) ( .78)

20 .083 .79 .049 1.02 1.76
(.015) .31) (.010) .22) ( .56)

40 .084 .84 .051 1.02 2.00
(.009) .24) (.009) .13) ( .36)

1 5 .068 .34 .048 .71 .89

4 (.032) .69) (.017) .41) (1.20)
10 .079 .49 .044 .89 1.32

(.014) .55) (.010) .29) ( .79)

20 .083 .63 .046 .96 1.62
(.013) .41) (.005) .16) ( .57)

40 .085 .84 .046 .97 1.70
(.008) .24) (.005) .11) ( .39)

1 5 .057 .27 .042 .62 .64

8 (.036) .75) (.012) .46) (1.40)
10 .075 .41 .047 .80 1.07

(.019) .61) (.008) .27) (1.01)
20 .085 .62 .046 .91 1.44

(.010) .41) (.004) .15) ( .63)

40 .083 .75 .047 .96 1.69

(.006) .28) (.004) .09) ( .41)
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5.3 Regressions on Estimated Root Mean Squares

We describe the estimated root mean squares (RMS) of E(T ),
s

Var_,(T ) and Var, (T ) as a linear function of c and n. Our obiective
1 s L s -"

is to determine the response of RMS in relation to the changes in At

and n. . For each estimator, the regression models were selected based

on (1) the form of surface plots of RMS, c and n, (2) the contribution

of significant (q - .05) linear, quadratic and crossproduct terms to

2
the full model r using SAS PROC RSREG (Allen, 1982), (3) (a) PROG REG

for only linear terms, or (b) backward elimination regressions using

PROC STEPWISE (inclusion of term in model at a - .05) for models in

(2) having quadratic and/or crossproduct terms, and (4) the same

(possibly transformed) covariates n and c for each model for each

estimator. Models with the following covariates were considered:

{1/n, c}, {1/n, Jc), {1/n, c^}, {1/yn. c}, [l/Jn, Jc) , {1/Jn, c^), and

{1/yn, 1/c).

We determined that the models with covariates 1/n and c

satisfactorily met the criteria in (1) to (4) above (Table 10).

Surface plots of RMS's vs. c and n for Var^(T ) and Var^ (T ) IndicatedIs L S

three groups of survival distributions based on differences in surface

shapes . The groups of survival distributions were (1) beta, (2)

exponential and gamma, and (3) normal and uniform. Groups were the

same for both variance estimators. The differences in surface shapes

(groups) are represented by the different regression models (Table

10). From the models, we conclude that, overall, the estimators will
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better estimate their respective parameter values as the the number of

t, in [t-., t ] is increased and as the sample size, n, , for each t. is

increased.

2Table 10. Regression models for RMS. Model and r for each
combination of estimator and survival distribution, G (t) , are listed.

s

All parameter values are different from zero at a - .05.

Estimator Survival Model r

Distribution

.89

.97

.95

.94

.92

.97

n) - .34c - 11.89(l/n )

+ .36c^- 1.89(l/n)c .97

gamma .42 + 5.83(l/n) - .73c + 1.03c^
+ 4.49(l/n)c .97

normal .08 + 2.02(l/n) - .32c + .62c^ .98

uniform .14(l/n) + .02c^ .96

Var^(T^) beta .07(l/n) + .01c .95

exponential .18 + 5.96(l/n) - .32c - 13.59(l/n^)

+ .32c^ - l.ll(l/n)c .98

gamma .34 + 8.17(l/n) - .66c - 11.66(l/n^)

+ .77c^ - 2.72(l/n)c .98

normal .03 + 2.14(l/n) + .25c^ .96

uniform .15(l/n) + .Olc^ .94

E(T^ ) beta .16(l/n) + .03c

exponential .02 + 1.29(l/n) + .07c
gamma .04 + 1.58(l/n) + .10c
normal 1.07(l/n) + .14c
uniform .35(l/n) + .03c

Var, (T,) beta .06(l/n) + .02c

exponential .19 + 5.74(l/n) - .34c - i:
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5.4 Conclusions Based on Simulations

E(T^), Var^(T^) and Var (T ) performed similarly in relation to

the shapes of the survival distributions used in the simulations.

Based on means and RMS of the estimators, these estimators best

estimated their respective expected values for the concave beta and

uniform survival distributions. These estimators performed worst

under the gamma survival distribution. Because in applications the

shape of the survival curve is rarely known, possibly graphing the

relevant p and observing the shape of the graph would aid the

researcher in evaluating how 'good' the estimators may be in his/her

particular experiment.

E(T ) was a good estimator of E(T ) for each combination of At and

n.
, i - F, for beta, uniform and normal survival distributions.

1 s

Overall, the larger the number of t in [t., t ] and the larger n.

,

1 U r i

the closer, on average, E(T ) will estimate E(T ). Even though E(T )

is a biased estimator of E(T ) for the exponential and gamma survival

distributions, the preceeding recommendation holds because of the

decrease in RMS's. Also the decrease in Var(E(T ))'s indicates less

variablity of E(T ) as the number of t. in [ t„ , t„] and n. are
s 1 ' F' 1

increased. However, in applications, 'large' n. and 'large' number of
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t, in [t-, t ] are difficult to determine unless the researcher has

similar information from a previous experiment.

Var (T ) and Var (T ) are reasonable estimators for Var(T ) for

beta, uniform and normal survival distributions, especially for large

n, and t. in [t,., t ], but rapidly underestimate VarCT ) as the number

of t, in [t., t ] increase, especially for smaller n, . Var (T ) would

probably be preferred for a small number of t in [t,., t_] for concave
i u F

or straight-line survival distributions (see graphing of p. above),

and Var (T ) would probably be preferred for survival distributions

with similar shapes to the normal, exponential or gamma used in the

simulations. For large n, and a large number of t. in [t,., t ] either

variance estimator could be used to estimate Var(T ) since the two are
s

nearly equal for these conditions as indicated by the simulations and

Lemma 1. However, note again that both estimators tend to

underestimate Var(T ) under exponential and gamma survival

distributions

.

Regression models of RMS on covariates 1/n and c for each

estimator reinforce our previous conclusion that the estimators

perform better overall as At is decreased and as n. for each t. is11
increased.
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6. CONCLUSIONS

We recommend the nonparametric estimators outlined in this report

to estimate the respective parameter values under the experiment

specified in Section 1. Increasing the number of sample times t. in

[t_, tp] and increasing the number of samples, n. for each t. will

result in better estimates of E(T ) and VarfT ). Better estimates of
s s

p. will be obtained by taking more t. when frequent stage

transitions are occurring. For example, in Section 3, more t. between

t- - 9 and t, - 15 would have resulted in better estimates of p. , and
3 6 1,1

p. ^ and, hence, better estimates of E(T ) and Var(T ).
1,2 ^ s s

Because the estimators appear to best estimate concave or

straight-line survival distribution parameter values, graphing p.

may aid the researcher in determining how well the estimators may be

performing in his/her experiment. However, based on graphs of p

from simulations, the graphs of p. may show considerable variability

across t, and yield no discernable shape of the survival distribution.

Because Var_(T ) > Var. (T ), a conservative overall choice of aIs L s

variance estimate would be Var„(T ). However, if a graph of p. has

a similar shape to one of the survival distributions in Section 5,

then the selection of a variance estimate could be based on the

simulation results outlined in Section 5,4. If At are small and n. >
1

20 then either variance estimate is appropriate. Note again that the
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experiment requires that the cohort of organisms all begin in stage

and complete development in stage A. However, slight deviations from

these conditions probably do not significantly effect the estimates,

especially for small At and large number of n.

.

Some suggested extensions for further research are: (1) using the

fact that the p, contain doubly censored information to possibly

obtain better estimates of parameter values, (2) estimating E(T ) and

Var(T ) under right and/or left censoring of sample times, and (3)

deriving estimators when failures (deaths) can be observed at each t.

.
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APPENDIX A
COMPUTER PROGRAM SOURCE CODE

/*SERVICE UNATTEND
/*REGION 500K
// EXEC SAS , OPTIONS-MACRO
//SYS IN DD *

OPTIONS LS-85;

*(§ PROGRAM DURPROG: g
*@ ____> LAST REVISED NOVEMBER 06, 1986 BY J.S. PONTIUS. @
*(§ CALCULATION OF EXPECTED VALUE, VARIANCE (EXPECTED VALUE) AND @
*(a VARIANCE OF TIME TO REACH STAGE S AND DURATION FOR STAGE S FOR ONE g
*§ SAS DATA SET THAT CONTAINS VALUES OF SAMPLE TIMES AND COUNTS (0, 1,@
*(a 2, ... ) OF ITEMS IN A STAGE FOR EACH SAMPLE TIME. @
*(§ PROGRAM CODED IN SAS MACRO LANGUAGE @
*@ ( JCL REQUIRED FOR SAS MACRO LANGUAGE: (3

*@ // EXEC SAS, OPTIONS-MACRO ). @
*@ @
*@ NOTE: DURPROG CAN HANDLE A MAXIMUM OF 20 STAGES. (§

*@ (NS - NUMBER OF STAGES). (3

*@ NOTE: INPUT DATA SET MUST CONTAIN AT LEAST 3 SAMPLE TIMES. @
*@ e
*@ DURPROG: @
*@ (1) READS IN A HARRIS $ADD DATA FILE (CAN SUBSTITUTE DATA CARDS@
*@ IN PLACE OF $ADD STATEMENT)

,

@
*(a (2) CHECKS (A) THAT ALL COUNT DATA ARE NONEGATIVE INTEGERS (?

*@ (B) THAT SAMPLE TIMES ARE >- AND ARE A POSITIVE SEQUENCE.

@

*(a (3) %MACRO _INSECT_: %
*(a CALCULATES EXPECTED VALUE, VARIANCE (EXPECTED VALUE) AND @
*@ VARIANCE OF TIME TO REACH STAGE S AND DURATION FOR STAGE S.g
*(§ (4) %MACRO _LOOPER_: FORMATS OUTPUT FOR PRINTING. §
*@ INPUT DATA SET: @
*@ THE FORMAT FOR THE INPUT SAS DATA SET IS AS FOLLOWS @
*(? (USER SPECIFIED INFORMATION IN

[ ] ) : @
*@ @
*(a DATA [VALID SAS DATASET NAME]

; *@
*@ LENGTH DATAID $21; *@
*§ DATAID- '[STUDY IDENTIFIER OF 1 TO 21 CHARACTERS]'; *(§

*§ INPUT (DAY COUNTl - COUNT[NS]) (3. [NS]*2.); *@
*@ CARDS

;

*@
*@ [DATA ENTERED IN COLUMN FORMAT] @
*(? @
*(§ REQUIREMENTS: (A) DAY IS THE TIME WHEN SAMPLES WERE TAKEN, @
*(i (B) COUNTl TO COUNT [NS] ARE NONEGATIVE @
*@ INTEGER COUNTS OF ITEMS SAMPLED AT EACH g
*@ SAMPLE TIME. @
*§ EXAMPLE: DATA ONE; *@
*@ LENGTH DATAID $21; *@
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*(? DATAID- ' STUDY ONE ' ; *@
*@ INPUT (DAY COUNTl - C0UNT3) (3. 3*2.); *@
*@ CARDS ; *@
*@ 315 @
*@ 10 9 8 @
*(? . @
*@ @
*@ . @
*@ REFERENCE

:

@
*@ @
*(? (a

*****DEFINE GLOBAL MACRO VARIABLES: NS- NUMBER OF STAGES;
* DDS- CURRENT DATA SET;
* STUDYID- DATA SET IDENTIFIER;
* CNT- ARRAY OF COUNTS;
%GLOBAL NS DDS STUDYID CNT

;

*;

***********************************************************************
* SUBROUTINE _FRMT_: *
* CALLED BY MAIN PROGRAM. *
* FORMATS STAGES ACCORDING TO VALUE FORMATING FOR PRINTING RESULTS. *
* INPUTS: Fl - F20 (STAGE IDENTIFIERS), *
* OUTPUTS: Fl - F20 (FORMATTED STAGE IDENTIFIERS). *
************************************************************************

%MACRO _FRMT_ (Fl , F2 , F3 , F4 , F5 , F6 , F7 , F8 , F9 , FIO , Fll , F12 , F13 , F14 , F15 , F16

,

F17,F18,F19,F20);
PROC FORMAT

;

VALUE STAGEFMT 1-&F1
2-&F2
3-&F3
4-&F4
5-&F5
6-&F6
7-&F7
8-&F8
9-&F9

10-&F10
H-&F11
12-&F12
13-&F13
14-&F14
15-&F15
16-&F16
17-&F17
18-&F18
19-&F19
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20-&F20;
%MEND FRMT

*

* SUBROUTINE _INSECT_ : *

* CALLED BY _LOOPER_. *
* CALCULATION OF EXPECTED DURATION TIMES, VARIANCE OF EXPECTED *
* DURATION TIMES, VARIANCE OF DURATION TIMES AND OUTPUT MATRICES FOR*
* PRINTING RESULTS, *
* INPUTS ; DAY (UNIT OF TIME MEASUREMENT)

,

*
* &CNT (ARRAY OF STAGE COUNTS), *
* INDATA (INPUT DATA SET). *
* OUTPUTS: OUTDATA (OUTPUT DATA SET OF EXPECTED VALUES & STND DEV OF*
* EXPECTED VALUES)

.

*
* OUTDEV (OUTPUT DATA SET OF STND DEV OF DURATION TIMES. *
*********************************************************************
*;

%MACRO _INSECT_ (DAYVAR,X1 ,X2 ,X3 ,X4,X5 ,X6 ,X7 ,X8 ,X9 ,X10 ,X11 ,X12 ,X13
,

X14,X15,X16,X17,X18,X19,X20,INDATA-INDTA,OUTDATA-OUTDTA,
OUTSTD-OUTDEV)

;

%*;

PROC MATRIX;
%****************** DAY- VECTOR OF TIMES, COUNT- MATRIX OF STAGE COUNTS;

FETCH DAY DATA-&INDATA (KEEP-&DAYVAR)
;

FETCH COUNT DATA-6eINDATA (KEEP-&X1-6.&X&NS)
;

%*;

N_STAGE-NCOL(COUNT)
; %*NUMBER OF STAGES;

SAMSIZE-COUNT(,+); %*TOTAL SAMPLE SIZE PER
%* SAMPLE TIME

PROB-COUNT#/(SAMSIZE (? J(l ,N_STAGE) ) ; %*MATRIX OF PROPORTIONS
%*;

%********************1F INITIAL TIME > THEN ADD TIME- TO FOLLOWING;
%* MATRICES

;

IF DAY(1,) > THEN DO;

DAY-J(1,1,0)//DAY;
WK-J(1,NCOL(PROB),0);
WK(1,1)-1;
PROB-WK//PROB

;

SAMSIZE-J(1,1)//SAMSIZE;
COUNT-J ( 1 , NCOL ( COUNT ) , ) //COUNT

;

C0UNT(1,1)-1;
END;

N_DAY-NROW(DAY)
; %*NUMBER OF SAMPLE TIMES;

%*;
%******************** CALCULATE DIFFERENCE OR SUM BETWEEN I & I+l TIMES;

%* T(I+1) - T(I);
TIMEINC - DAY(2:N_DAY,)-DAY(1:N_DAY-1,);
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%* T(I+1)##2 - T(I)##2;
TIMEINC2- (DAY(2:N_DAY,)##2) - (DAY(1:N_DAY - 1,)##2);

%* T(I+1) + 2#T(I)

;

SM2TERM1- DAY(2:N_DAY,) + (2#DAY(1:N_DAY-1
, ) )

;

%* 2#T(I+1) + T(I)

;

SM2TERM2- (2#DAY(2 :N_DAY, ) ) + DAY(1:N_DAY-1, )

;

%********************* CALCULATE DIFFERENCES BETWEEN I-l & I+l TIMES;
T2- TIMEINC(2:N_DAY-1,) + TIMEINC(1 :N_DAY-2

, )

;

%********************* SQUARE TIME DIFFERENCES FROM PREVIOUS LINE;
T2- T2#T2;

%*;

%*;
%******************** LOOP THROUGH SUCCESSIVE STAGES;

DO STAGE-2 TO N_STAGE;
WK-PR0B(,I:STAGE-1);
P-WK(,+); %*SUM PROPORTIONS IN STAGES 1 S - 1

%******************** CALCULATE EXPECTED TIME, E(T(S) ) ,T0 STAGE 2,...,

A

MU_K_HAT-0.5*(P(1:N_DAY-1,)#TIMEINC + P(2 :N_DAY, )#TIMEINC)
MU_K_HAT-MU_K_HAT(+, )

;

%******************** CALCULATE STANDARD ERROR, SQRT(VAR(E(T) ), OF
%* EXPECTED TIME TO STAGE 2 A

STDERR-P#(J(N_DAY,1)-P)#/SAMSIZE; %*BINOMIAL VARIANCE FOR

S-0 . 25*STDERR(2 : N_DAY- 1 ,
) #T2

;

S-S(+,);
STDERR-SQRT(S(1,));

%* EACH TIME I , .

.

%*VAR FOR TIMES 1 TO

%*;
%********************* GET VECTOR OF PROPORTIONS OF STAGES TO
%* CALCULATE EXPECTED DURATION IN STAGE S* - S

,

%* E(T(S*) - T(S)).
DURAT-PROB( , STAGE- 1)

;

%*;
%********************* CALCULATE STANDARD ERROR (EXPECTED DURATION)
%* VAR[E(T(S*) - T(S))] FOR STAGE S* - S

.

%* NOTE: FOR STAGE- 2, STDERR- SDIFF.
SDIFF-DURAT#(J(N_DAY,1)-DURAT)#/SAMSIZE; %*BINOMIAL VAR

%* FOR EACH TIME.

S-0.25*SDIFF(2:N_DAY-1,)#T2;
S-S(+,);
SDIFF-SQRT(S(1,));

%********************* CALCULATE SECOND MOMENTS FOR VARIANCES OF TIMES
%* TO REACH STAGE S, VAR(T(S)).

SECMOMl- (P(1:N_DAY-1,) + P(2 :N_DAY, ) )#TIMEINC2 ;

SECMOMl- SECM0Ml(+,)#/2;
SECM0M2- P(I:N_DAY-l,)#SM2TERjyil + P(2 :N_DAY, )#SM2TERM2

;

SECM0M2- SECM0M2#TIMEINC;
SECM0M2- SECMOM2(+,)#/3;

%*;
%********************* FORMAT RESULTS OF CALCULATIONS FOR PRINTING;

%* IF FIRST PASS THROUGH LOOP
;



51

IF STAGE-2 THEN DO; %* (IE; STAGE-2) ;

DURAT-MU_K_HAT

;

STDIFF-1;
RDIFF-STDIFF [[ DURAT [[ SDIFF;
RESULTS-STAGE [[ MU_K_HAT [[ STDERR;

END;
%* IF STAGE -> 2

;

ELSE DO;
%********************* CALCULATE EXPECTED DURATION FOR STAGE S* -S;

%* E(T(S*) - T(S)), AND FORMAT RESULTS. ;

DURAT-MU_K_HAT - RESULTS ( STAGE -2,2);
RDIFF-RDIFF // ((STAGE-I) [[ DURAT [[ SDIFF);
RESULTS-RESULTS // (STAGE

[
[ MU_K_HAT

[
[ STDERR)

;

END;

%********************CALCULATE STANDARD DEVIATIONS OF TIME TO REACH ;

%* STAGES, SQRT(VAR(T(S))]

.

;

VARl- SECMOMl - (MU_K_HAT##2)

;

STDEVl- SQRT(VARl);
VAR2- SECM0M2 - (MU_K_HAT##2)

;

STDEV2- SQRT(VAR2);
** FORMAT STANDARD DEVIATION MATRICES FOR OUTPUT;

IF STAGE- 2 THEN STORES- STAGE
[ [ STDEVl

( [ STDEV2

;

ELSE DO;

TEMP- STAGE
[ [ STDEVl

[
[ STDEV2

;

STORES- STORES // TEMP;
END;

END;
%************************* FORMAT MATRICES FOR OUTPUT;

S-1 ; M-0 ; V-0

;

RESULTS- (S [[ M [[ V) // RESULTS;
S-N_STAGE

;

RDIFF-RDIFF // (S
[

[ M ( [ V)

;

RESULTS-RESULTS
( [ RDIFF( , 2 ; 3)

;

OUTPUT RESULTS OUT-&OUTDATA (RENAME- (COLl-STAGE C0L2-ESTIMATE
C0L3-STDERR C0L4-DIFF
COLS- STD_DIFF) )

;

OUTPUT STORES OUT-&OUTSTO ( RENAME- (COLl- STAGE C0L2- SDl

C0L3- S02));
%MENO INSECT

;

***********************************************************************
* SUBROUTINE _LOOPER_: *

* CALLED BY MAIN PROGRAM. *

* PRINTS INPUT DATA SET, CALLS _INSECT_ FOR DATA PROCESSING, CALLS *

* PROC MEANS FOR CALCULATION OF USUAL MEANS ANO STANDARD DEVIATIONS *

* OF DURATION TIMES, ANO FORMATS RESULTS FOR OUTPUT PRINTING. *

* INPUTS: DOS (INPUT DATA SET), *

* UNIT (UNIT OF SAMPLE TIME MEASUREMENT)

.

*
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* OUTPUTS: NONE. *;

*;

%MACRO _LOOPER_(INDSET,UNIT)

;

DATA DATAl;
SET 6.INDSET;

CALL SYMPUT( ' STUDYID' .DATAID)

;

%****************** PRINT OUTPUT HEADER AND DATA SET;
PROC PRINT;

TITLEl 'ESTIMATION OF TIME TO AND DURATION OF STAGE';
TITLE2 'FREQUENCY DATA, METHOD OF BOYER AND DEATON.';
TITLES 'PROGRAM REVISED; SEPTEMBER, 1986 BY JS PONTIUS.';
TITLE4 STUDY: &STUDYID;
TITLES UNIT OF TIME MEASUREMENT: &UNIT;
VAR DAY COUNTl-COUNT&NS;
%_INSECT_(DAY, &CNT

,

INDATA-%SCAN(&SYSDSN,2) ,0UTDATA-DTA1,0UTSTD-DTA2)
;

%***************** SET EXPECTED, VARIANCE OF AND VARIANCE OF EXPECTED
;

%* DURATION TIMES TO MISSING FOR FIRST AND LAST STAGES;
DATA DTAl;

SET DTAl;

IF STAGE-1 THEN DO;

ESTIMATE-
.

;

STDERR-.

;

END;

IF STAGE-&NS THEN DO;

DIFF-.

;

STD_DIFF-.;
END;

%********************* PRINT RESULTS OF EXPECTED VALUES & VAR(EXPECTED;
%* VALUES).

;

PROC PRINT SPLIT-' #' DATA- DTAl;
ID STAGE;
VAR ESTIMATE STDERR DIFF STD_DIFF;
FORMAT STAGE STAGEFMT.;
LABEL ESTIMATE-' TIME TO#REACH STAGE#( E(T(S)) )'

DIFF-' DURATION TIME* ( E(T(S)) - T(S")) )'

STDERR- 'STD ERROR 0F# E(T(S))'
STD_DIFF-' STD ERROR OF#E(T(S) - T(S"))';

%********************* PRINT RESULTS OF VAR(T(S));
PROC PRINT SPLIT-'#' DATA- DTA2

;

ID STAGE;
VAR SDl SD2;

FORMAT STAGE STAGEFMT
.

;

LABEL SDl- 'STD DEVIATION OF T(S)#-TRAPEZOID ANALOG-'
SD2- 'STD DEVIATION OF T(S)# -STRAIGHT LINE-';

%MEND LOOPER
;
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* SUBROUTINE _DATACK_: *
* CALLED BY MAIN PROGRAM. *

* CHECKS INPUT DATA SET FOR NEGATIVE AND IMPROPERLY SEQUENCED *
* SAMPLE TIMES. *

* CHECKS INPUT DATA SET FOR ILLEGAL NEGATIVE AND REAL COUNT DATA. *

* INPUTS: &DDS (INPUT DATA SET). *
* OUTPUTS: NONE. *

*********************************************************************

%MACRO _DATACK_;
DATA CHECK;

SET &DDS;
%************ CHECK FOR SAMPLE TIME(J) <- SAMPLE TIME (J - 1);

PROC MATRIX;
FETCH OBSDATA DATA- CHECK;
STIME- 0BSDATA(,1);
NDAY- NROW( STIME)

;

IF NDAY -> 2 THEN DO;

OUTMAT- J (NDAY, 2 , 0)

;

DO K- 2 TO NDAY;

IF ABS(STIME(K,)) <- ABS(STIME( (K-1)
, ) ) THEN DO;

0UTMAT(K,1)- K;

0UTMAT(K,2)- STIME(K,);
END;

END;

END;

OUTPUT OUTMAT OUT- DAYERR (RENAME- (COLl- OBSNUMB C0L2- DAY));
DATA DAYERR;

SET DAYERR;
IF OBSNUMB > THEN DO;

PUT '——>ERROR: SAMPLE TIME IS LESS THAN PREVIOUS SAMPLE TIME
PUT '

' OBSNUMB-;
PUT '

' DAY-;

END;

DATA CHECK;
SET CHECK;

%*************** CHECK FOR SAMPLE TIME < 0.0;

IF DAY < 0.0 THEN DO;

PUT '- >ERROR: SAMPLE TIME < ZERO.';
PUT ' ' _N_-

;

PUT '
' DAY-;

END;
%*;

%D0 I- 1 %T0 &NS;
%*************** CHECK FOR NEGATIVE COUNT DATA;

IF COUNT&I < 0.0 THEN DO;

PUT '——>ERROR: COUNT DATA VALUE IS NEGATIVE.';
PUT '

' _N_-;
PUT '

' COUNT&I-

;

END;
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%************** CHECK FOR REAL COUNT DATA;
IF (COUNT&I - INT(COUNT&I)) > 0.0 THEN DO;

PUT '——>ERROR: COUNT DATA VALUE IS NOT AN INTEGER.
PUT '

' _N_-;
PUT '

' COUNT&I-

;

END;

%END;

PROC DELETE DATA- CHECK DAYERR;
%MEND _DATACK_;
*•

***********************************************************************
* MAIN PROGRAM: *
* STATEMENTS REQUIRED FOR PROGRAM EXECUTION: *
* (1) HARRIS $ADD DATA FILE (OR SUBSTITUTE DATA SET AS DESCRIBED *

* IN PROGRAM HEADER)

,

*

* (2) SPECIFY THE NUMBER OF STAGES TO BE ANALYZED (IE; NS) *
* (3) ASSIGN THE ARRAY, CNT, ELEMENTS OF VARIABLES COUNTl TO *
* COUNT [NS], *

* (4) ENTER LABELS FOR STAGES IN _FRMT_ SUBROUTINE PARAMETER LIST,*
* (5) ENTER SAMPLE TIME UNIT (MEASUREMENT) IN 2ND SLOT OF *

* PARAMETER LIST IN SUBROUTINE _LOOPER_. *

***********************************************************************
*;

*****ADD DATA CARDS HERE: *****************************************;
*(i);

$ADD LTESTA
*****MAIN PROGRAM STATEMENTS BEGIN HERE: **************************;

%LET DDS-%SCAN(&SYSDSN,2);
*(2); %LET NS- 3;

%PUT NOTE: DATA SETS CHECK & DAYERR ARE FOR ERROR
ROUTINES

.

;

%_DATACK_;
* ( 3 ) ; %LET CNT-COUNTl , C0UNT2 , C0UNT3 ;

%PUT NOTE: DATA SET CHECK IS FOR ERROR ROUTINES.;
%FUT NOTE: DATA SETS CHECK & DAYERR ARE BEING DELETED.;

* ( 4 ) ; %_FRMT_ ( EGGLARVA , PUPA , ADULT ) ;

*(5); %_LOOPER_(&DDS,DAYS);
/*
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ABSTRACT: We derive and evaluate, by simulation, estimators for the

following experiment. Consider an organism that displays observable

stages. Choose a sequence of fixed sample points in time. At each

sample point, observe a subset of a cohort of organisms and record the

number of organisms in each stage. Our objective is to estimate

parameters of the time in stage s, T , for an organism. Ue review

estimators of the time to stage s, E(T ), mean duration time,

E(T - T ,), and the variance of E(T ), Var(E(T )), proposed by Boyer

and Deaton (1984). We derive two variance estimators and prove two

relational properties. Simulation results under five survival

distributions indicate that the estimators provide reasonable

estimates of parameter values. The estimators better estimate the

parameter values as the number of sample times is increased in a

finite interval and as the number of samples per sample time is

increased. The estimators are useful in studies on survival data,

quality control, and other studies in life sciences and engineering.

We also describe a computer program to calculate the estimates.


