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Abstract
Recent experience of Ebola outbreak of 2014 highlighted the importance of immediate re-

sponse to impede Ebola transmission at its very early stage. To this aim, efficient and effective

allocation of limited resources is crucial. Among standard interventions is the practice of fol-

lowing up with physical contacts of individuals diagnosed with Ebola virus disease — known as

contact tracing. In an effort to objectively understand the effect of possible contact tracing pro-

tocols, we explicitly develop a model of Ebola transmission incorporating contact tracing. Our

modeling framework has several features to suit early–stage Ebola transmission: 1) the network

model is patient–centric because when number of infected cases are small only the myopic net-

works of infected individuals matter and the rest of possible social contacts are irrelevant, 2) the

Ebola disease model is individual–based and stochastic because at the early stages of spread, ran-

dom fluctuations are significant and must be captured appropriately, 3) the contact tracing model

is parameterizable to analyze the impact of critical aspects of contact tracing protocols.

Notably, we propose an activity driven network approach to contact tracing, and develop a

Monte-Carlo method to compute the basic reproductive number of the disease spread in different

scenarios. Exhaustive simulation experiments suggest that while contact tracing is important in

stopping the Ebola spread, it does not need to be done too urgently. This result is due to rather

long incubation period of Ebola disease infection. However, immediate hospitalization of infected

cases is crucial and requires the most attention and resource allocation.

Moreover, to investigate the impact of mitigation strategies in the 2014 Ebola outbreak, we

consider reported data in Guinea, one the three West Africa countries that had experienced the

Ebola virus disease outbreak. We formulate a multivariate sequential Monte Carlo filter that

utilizes mechanistic models for Ebola virus propagation to simultaneously estimate the disease

progression states and the model parameters according to reported incidence data streams. This



method has the advantage of performing the inference online as the new data becomes available

and estimating the evolution of the basic reproductive ratio R0(t) throughout the Ebola outbreak.

Our analysis identifies a peak in the basic reproductive ratio close to the time of Ebola cases

reports in Europe and the USA.
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Chapter 1

Introduction

1.1 Mathematical Modeling of Disease Spreading

Spreading of an infectious disease is a complex event with many interacting variables. Mathemati-

cal model of infectious disease offers a mechanistic framework to study the diffusion of infections

within human and animal populations, providing deep insight into epidemics’ dynamics28. Math-

ematical models allow us to deduce from current information about spreading of an infectious

disease, to anticipate the future and quantify the uncertainty in the predictions. One of the primary

tools to analyze severity of infectious disease and predict the disease spreading is the compartmen-

tal model. Compartmental model is a mathematical frameworks that can capture the main features

of disease spreading such as transmission probabilities, transmission rates and prevalence of new

infections8. Compartmental models classify the population into different compartments. All indi-

viduals in a compartment have common attributes. For instance all the healthy individuals usually

are assumed as susceptible. Collaboration of these compartments is often based on transmission

process of a virus in a host population. In the simplest model, susceptible–infected–susceptible,

SIS, population is divided into two states based on the health of people. Healthy individuals are

susceptible to the infection of the pathogen, denoted by S and infected individuals are those who

are infected by the pathogen, denoted by I. Compartmental model could be analyzed through
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deterministic version using deferential equations or in stochastic framework. Deterministic com-

partmental models are assumed that a population is homogenous and the transmission process in

a host population is determined by the rules describe in the compartmental model. However, in

stochastic version, there is a distribution of possible transmission.

The basic reproductive ratio, R0, is one of the most relevant descriptors that helps public

health authorities have a quantitative understanding of the severity of the disease outbreak and

its time projection. Therefore, it is crucial to estimate the basic reproductive number and other

relevant descriptors early to have a quantitative measurement of severity of the disease outbreak.

The most common definition of basic reproductive number is the expected number of secondary

infections produced by a typical single infection in an entirely susceptible population17. Another

definition of basic reproductive number is the expected number of secondary infections over all

possible initial infections during their infectious period18 10. Thus, R0 is a dimensionless value

that represents the average number of additional susceptible people to whom an infected person

passes the disease before he/she recovers26. The basic reproductive ratio is a threshold condition

for epidemics as R0 = 1 separates the increments or decrements of the newly infected26.

The Ebola virus, commonly known as Ebola, causes a serious illness which is fatal if untreated

in most cases2. It is transmitted via direct contact with blood, secretions, organs, or other bodily

fluids of infected individuals and causes Ebola disease24. Ebola cases can transmit the virus to

their contacts after becoming symptomatic11. The incubation period, the time interval from infec-

tion with Ebola virus to the onset of symptoms, is between two to twenty one days2. First symp-

toms of Ebola include the sudden onset of fever, fatigue, muscle pain, headache, and sore throat2.

Since December 2013, West Africa has experienced the most widespread Ebola disease epidemic

in the history with more than 28,000 reported cases27. Secondary infections have been also re-

ported in some European countries and United states2. Ebola hemorrhagic fever is considered

a highly infectious and lethal disease, raising serious concerns about the public health globally.

Although specific pharmaceutical treatment or vaccines are not available for Ebola virus, efforts

to stop the spread of Ebola virus included intervention strategies such as surveillance, quarantin-
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ing suspected cases, and education of hospital workers in contact with Ebola patients6. Contact

tracing has proven to be the most successful mitigation strategy to track and suppress Ebola trans-

mission chain, among all intervention strategies. The objective of contact tracing is to identify and

monitor individuals who have been exposed to an infectious individual4. This procedure allows

for isolation of contacts of an infectious individual promptly after he/she becomes symptomatic.

In particular, during the early stages of infection, contact tracing seems to be an appropriate ap-

proach because Ebola is not a fast growing disease13. Side by side of these efforts, mathematical

and computational epidemic models were developed and implemented with the aim of predict-

ing newly infected cases as well as evaluating mitigation strategies. In this work, we develop a

network–based stochastic modeling framework for Ebola contagious process. The goal of this

modeling is to identify local contact network of an infected individual such as household, hospital

and, workplace. This framework allows synthesizing different scenarios compatible with Ebola

spreading in 2014. To this end, we employ stochastic version of the discrete–time expression

of the susceptible, exposed, infected and removed, SEIR–based, compartmental model which is

compatible with our understanding of Ebola virus epidemiology.

1.2 Motivation and Problem Statement

Ultimate goal of most proposed compartmental models for a disease spreading such as Ebola prop-

agation is to predict the future evolution of Ebola virus disease or to estimate R0. These models are

mostly suitable for a large host population where the number of cases is high and random effects

are diminished at the overall population level. Minimum random effects in a large population

could explain why models for an outbreak are mostly reliable in prediction. However, in pre–

outbreak stage, when new infections are rare and is likely to have a low prevalence, the accuracy

of large–scale mathematical infection model dramatically declines. When numbers of infected

cases are small, the network model is patient–centric and only local networks of infected indi-

viduals matter. Therefore, before epidemic phase, the localized contacts of infected individuals
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influence the future of disease spreading and, this phase is crucial for public health authorities. A

proper modeling approach of a disease spreading before epidemic phase needs to consider highly

structured contact network of host population and also, assess the inherent uncertainties of data.

These challenges make a reliable prediction of local contagious process impossible. However, the

proper models could assess effectiveness of contact tracing. The goal of this work is to evaluate

risk detection probabilities of contact tracing efforts for Ebola before epidemic phase in potential

scenarios and come up with rules and regulations that help public health authorities to suppress

those disease spreading which have similar epidemiological characteristic with Ebola. Moreover,

to study the efficiency of implementation of contact tracing accompanied by other mitigation

strategies in an Ebola virus epidemic, we investigate the effectiveness of implemented mitigation

protocols in one of the West Africa countries that had experienced Ebola virus epidemic. In this

work, following questions is addressed:

I. Defining quantitative measurements to assess effectiveness of contact tracing.

We define contact tracing cost as number of detected individuals who have contact with

infections but were not infected. Missed–detection probability denotes the probability that

a secondary infected individual is not detected before transmitting the virus to others.

II. What is the impact of a delay in implementation of contact tracing on total number of in-

fected individuals at the end of disease evolution?

We consider two kind of delay:1) Global delay: when there is a delay in starting contact

tracing 2) Local delay: when there is a delay in identification of local contact network of an

infected individual.

III. What is the impact of a delay in implementation of contact tracing on R0, contact tracing

cost and, missed–detection probability?

IV. When is contact tracing not fully effective? Which mitigation strategies might be more

effective?
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To answer these questions, we develop a model for early–stage Ebola introduction explicitly

incorporating contact tracing. To explore suitable recommendation for different scenarios,

we We also, develop a Monte–Carlo method to compute defined quantitative measurements.

V. How effective were mitigation protocols to suppress Ebola propagation in 2014?

To assess effectiveness of mitigation strategies such as contact tracing strategy in a real

scenario of Ebola introduction, we consider Guinea, one of West Africa countries that had

experienced Ebola outbreak.

1.3 Thesis Overview

In this thesis, we implement an SEIR–based model for Ebola propagation to estimate the disease

states and make inference about the basic reproductive ratio and other quantitative measures. We

study the effect of likely contact tracing protocols objectively to find quantitative measures for ef-

fectiveness of contact tracing in early–stage of Ebola virus disease spreading. We develop a model

for early–stage Ebola transmission explicitly incorporating contact tracing. Then, to investigate

the impact of implementation of contact tracing in a real scenario, we use reported data in Guinea,

one of the three West Africa countries that had experienced the Ebola outbreak. To this end,

we employ a sequential Monte Carlo (SMC) filter, an online inference method that allows simul-

taneous state and parameter estimation with improved accuracy as new streaming data becomes

available. The proposed SMC setting allows simultaneous estimation of the number of individuals

at different infection stages as well as the parameters of our mechanistic epidemic model, provid-

ing posterior distributions of interest. Then, we use the estimated values of the Ebola epidemic

model parameters to determine the value of R0(t). In chapter 2, we introduce a compartmental

model for early–stage Ebola transmission incorporating contact tracing to answer problems I–IV .

In this chapter, we review activity driven network, a heterogeneous network, and then, we imple-

ment activity driven network to consider the inherent time–varying nature of transmission process

in a host population. In particular, we synthesize Ebola contagion process using the proposed
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compartmental model for a temporal network that is obtained with activity driven network gener-

ative process. We also, develop a Monte–Carlo method to compute the basic reproductive number

of the disease spreading in different scenarios. In chapter 3, we discuss some background on se-

quential Monte Carlo filter and provide a compartmental model which is compatible with Ebola

phenomenological in Guinea to explore answer of question V . In particular, we provide a specific

setting for SMC filter based on proposed compartmental model that allows to estimate number

of new infections and the parameters of the model simultaneously as a distribution. Notably, we

estimate the disease states and make inference about the basic reproductive ratio through time.

Finally, chapter 4 summarizes and concludes this dissertation and sets the subjects for future

research.

1.4 Contribution

Below is the summary of main contribution of this work:

• Developed a stochastic and patient–centric model for early–stage of Ebola propagation in-

corporating contact tracing (chapter 2) in a heterogeneous network that could capture the

inherent time–varying nature of contagion process in a host population.

• Developed a Monte–Carlo method to compute the basic reproductive number (chapter 2) of

the disease spread in a heterogeneous network.

• Studied the impact of critical aspect of contact tracing strategy on Ebola disease spreading

in a heterogeneous network (chapter 2).

• Developed a sequential Monte–Carlo filtering setting capable of performing the online in-

ference as the new data becomes available (chapter 3).

• Studied the impact of implemented mitigation protocols on the evolution of R0 for Ebola

outbreak in Guinea though time(chapter 3).
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Chapter 2

Quantifying the Impact of Early–Stage

Contact Tracing on Controlling Ebola

Diffusion

2.1 Introduction

Researchers have attempted to study the impact of contact tracing on disease spreading and find

a relationship between effectiveness of contact tracing and basic reproductive number of disease.

Eames and Keeling propose a formula to correlate the effectiveness of contact tracing and basic

reproductive ratio by using detailed pairwise equations for susceptible–infected- removed (SIR)

based model13. Other researchers have studied the impact of contact pattern on efficacy of contact

tracing. Previous works study the impact of network structure such as clustering on the effec-

tiveness of contact tracing28. For instance, Kiss et al. conclude that when in a random network

which has a short incubation period, average number of links per nodes increases, effectiveness

of contact tracing decreases dramatically22. In23, Klinkenberg et al. deduce that knowledge of

the initial time of contact tracing and iterative tracing improves this strategy. Researchers also

have attempted to analyze the impact of intervention strategies on recent Ebola spreading using
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mean–field compartment model, which can be either stochastic or deterministic in nature. Browne

et al. use deterministic version of compartment model and separate infected individuals into dif-

ferent compartments based on whether they are hospitalized or unreported. They evaluate the

impact of relevant epidemiological properties on contact tracing efficiency and present a formula

to determine the number of contacts for bringing the effective reproduction below one4. Rizzo et

al. in31, adopt susceptible–expose–infected–removed (SEIR) compartmental model adding addi-

tional compartments related to hospitalized and dead people who had traditional funerals. Then

based on this model, they propose a mathematical model based on an activity driven network

whose contact network and intervention policies could vary in time. Finally, they implement the

model as a predictive tool to imitate the dynamic of of Ebola virus spread in Liberia. Rivers et

al. use deterministic version of compartmental model to fit time series of reported Ebola cases.

They validate the model using least ? square optimization technique and model five scenarios

of interventions strategies that could be implemented. Then, the likely impact on the epidemic

evolution is examined30. Here, we study the effect of likely contact tracing protocols objectively

to find quantitative measures for effectiveness of contact tracing. We develop a model for early–

stage Ebola transmission explicitly incorporating contact tracing. Our modeling framework has

several features to suit early–stage Ebola transmission: 1) the network model is patient–centric

because when number of infected cases are small only the myopic networks of infected indi-

viduals matter and the rest of possible social contacts are irrelevant, 2) the Ebola disease model

is individual–based and stochastic because at the early stages of spread random fluctuations are

significant and must be captured appropriately, and 3) the contact tracing model is parameteri-

zable to analyze the impact of critical aspects of contact tracing protocols. The model is built

on susceptible–exposed–infected–hospitalized–removed (SEIHR) model where susceptible, ex-

posed and infected individuals respectively become monitored–susceptible, monitored–exposed

and monitored–infected upon contact tracing. Notably, we propose an activity driven network

approach to contact tracing. We implement Activity driven network to consider the inherent time–

varying nature of contagion process in a host population, such as variations in connectivity pattern
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of contacts. Activity driven network is a heterogeneous network which has a random and memory

less process that employs a time invariant function to characterize interactions between nodes, and

describes a contact network that evolves over time29. At each time step, an activity firing rate is

assigned to each node so that a proportion of nodes create new links with other nodes and the

contagious process develops over new links. We also, develop a Monte–Carlo method to compute

the basic reproductive number of the disease spread in different scenarios. Exhaustive simulation

experiments suggest that while contact tracing is important in stopping the Ebola spread, it does

not need to be done too urgently. This result is due to the rather long incubation period of Ebola

disease infection. However, immediate hospitalization of infected cases is crucial and requires

the most attention and resource allocation. The remainder of this chapter is organized as follows.

In section 2.2, we propose a compartmental model for Ebola transmission incorporating contact

tracing, discuss an overview of activity driven network (ADN) and explain activity driven net-

work model based on the proposed compartmental model. Section 2.3 presents the Monte–Carlo

method to compute basic reproductive number in a heterogeneous network. In section 2.4, we de-

fine true positive and false positive ratios based on the proposed model to plot receiver operating

characteristic curve. Section 2.5 summarizes the main results of this article. Section 2.6 concludes

the chapter and sets the subjects for future research.

2.2 Mathematical Modeling of ebola disease spreading incor-

porating contact tracing

Spreading of an infectious disease is a complex event with many interacting variables. One of

the primary tools to analyze and predict the disease diffusion as well as severity of infectious

disease is the compartmental model. Compartmental model is a mathematical frameworks that can

capture the main features of disease spreading such as transmission probabilities and transmission

rates8. In this work, we employthe discrete–time expression of the susceptible, exposed, infected,

hospitalized and removed (SEIHR) compartmental model. Such model is compatible with the
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epidemiology of Ebola disease virus.

2.2.1 Compartmental Model

SEIHR model is similar to susceptible, exposed, infected and removed (SEIR) model with an

additional compartment H, where H stands for hospitalized. Each compartment variables de-

notes a fraction of individuals which belongs to one of the following compartments: susceptible

(S), exposed (E), infected (I), hospitalized (H) and, removed (R). In this model, when a suscep-

tible individual has contact with an infected individual, the susceptible individual goes to E with

probability β . An exposed person before proceeding to compartment I, undergoes an incubation

period with average length of
1
λ̄

32. Then, the infectious individual moves to H compartment with

probability γ and finally, a hospitalized person enters R state with probability δ . To evaluate the

impact of public health control strategies such as contact tracing, for detection of new Ebola pa-

tients, we develop a network–based model, adding additional compartments to SEIHR model. We

construct our model based on contact tracing implementation guideline published by CDC. In the

guideline, it is mentioned that when an infectious individual enters hospital and his/her laboratory

results become positive, any persons who has contact with him/her in the last 21 days should be

traced1. Therefore, in our proposed compartmental model, we assume that when an infectious

individual enters H compartment with probability γ , any person who has been exposed to the

infected individual should be identified and followed up for 21 days. We classify transmissions

between different epidemiological compartments of the proposed model into two groups: Node–

based transmissions and edge–based transmissions. In node–based transmissions, a node moves

from one epidemiological compartment to another individually, and, its transmission does not de-

pend on its neighbors’ state. Contrary to the nodal transmission, edge–based transmission is only

dependent on a node’s neighbors’ state. Based on these definitions, we introduce the transmission

process of the proposed model as follows:

10



Figure 2.1: Schematic of transmission process

Edge–based Transmission When susceptible individuals have contacts with an infectious or

hospitalized one, they move to exposed compartments with probability β .

Node–based Transmission Similar to SEIHR model, an exposed individual goes through an

average incubation period of (1/λ̄ ) before moving to infectious compartment (I). Infectious indi-

viduals progress to hospitalized compartment, H, with average delay of γ−1 and their susceptible,

exposed and, infectious contacts moves to ST , ET and IT compartments, respectively with an

average identification delay period of 1/ᾱT . Since a portion of the the contacts of the infected

individual might be inaccessible or a portion of them might be unwilling to report all their con-

tacts immediately, we assume that there is a delay to identify contacts of an infected individual.

An exposed individual who is traced, (hereafter referred to as ET compartment) undergoes an av-

erage incubation period 1/λ̄ days before progressing to infectious compartment where infections

are traced (IT ). Infectious individual who is traced enters to hospitalized compartment with prob-

ability γT where γT > γ . Finally, hospitalized individuals move to R compartments or removed

compartment with probability δ .

A schematic of epidemiological stochastic transmission process of the proposed model is de-

picted in figure 2.1.

Based on the proposed model, we develop a quantitative approach is developed to measure

effectiveness of contact tracing implementation. To asses the impact of contact tracing proto-

cols in Ebola disease spreading before epidemic phase, we propose two measurements: Missed–

11



detection probability and contact tracing cost. Definition 1: To asses risk detection capabilities

of contact tracing efforts for Ebola virus, we introduce missed–detection probability. Missed–

detection probability denotes the probability that a secondary infected individual is not detected

before transmitting the virus to others. Based on our model, we propose the missed–detection

probability as follows:
NE→I

NE→ET +NE→I
, where N∗ represents total number of individuals who

move from one compartments to another one. Definition 2: The aim of contact tracing is to detect

secondary infections among all of the contacts of an infected person. However, a large proportion

of an infectious individual’s contacts are susceptible. We define contact tracing cost to estimate

the associated cost in different scenarios. Contact tracing cost denotes the number of detected

individuals who had contact with infections but were not infected. Based on proposed model, we

define contact tracing cost as: Cost = NS→ST , where NS→ST represents total number of susceptible

individuals who moves to ST compartment.

2.2.2 Activity Driven Network

Disease contagious process and network structure are two important elements that can have a

significant impact on disease spreading13. Many intervention strategies such as contact tracing,

target strategy and, egocentric strategy aim at controlling contagious process based on interactions

between individuals in a social network25 4. In particular, contact tracing strategy or identification

of individuals who have contact with infections, is fundamentally linked to potential transmission

paths in the network22 13. The goal of contact tracing is to identify all the potential routes in

the network and isolate all new infected individuals, before they become infectious22. Here, we

implement activity driven network (ADN) to capture interactions between nodes in a network over

a specific period of time and also, assess effectiveness of contact tracing strategy for a temporal

network based on Ebola contagious process. Activity driven network is a random and memoryless

process which can capture structural features of a network such as evolution of contact patterns

over time29. Activity driven network considers an activity firing rate ai for each node which is

the probability of establishing links with other nodes per unit of time25 . Activity firing rate are
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assigned according to a probability distribution F(a) which can describe dynamic of the network

and its corresponding structure25. Typically F(a) is a heavy tail density function; F(a) ∝ a−c,

where 2 ≤ c ≤ 3 and a ∈ [ε,1]29. At each time step ∆t, an active node generates m links with m

other nodes that are selected randomly. The generative network process in an increment time ∆t

is determined as follows25:

• At time t, network Gp(N,m) has a N disconnected vertices.

• Each node i, with probability pi = aiηi∆t becomes active and generate m links with others

nodes. Where η. is a constant scaling factor.

• At time t +∆t all the edges in network Gt are removed.

2.2.3 ADN For Ebola Contagion Process

We implement activity driven network (ADN) to generate a random network at a time step ∆t. At

each time step t, we simulate Ebola contagion process using the proposed model for a temporal

network that is obtained with generative network process of ADN. In generative network process,

we assume that ∆t = 1 and only those nodes which are in susceptible, infected, exposed or hospi-

talized compartments can generate m links with other nodes with probability p. This algorithm is

constructed based on ”CDC emergency guidelines of implementation and management of contact

tracing” for Ebola virus disease1. Based on the guideline, any person who has a potential expo-

sure to a susceptible, probable and confirmed Ebola disease virus (EVD) case, should go under

observation for 21 days1. To implement contact tracing strategy in a temporal network such as

ADN at time t, from tk < t, we capture all the nodes that become neighbors of an infectious node

j, only if Tin f o ≤ tk. Then, we implement contact tracing at time tz = TCT , where, Tin f o ≤ tk ≤ TCT .

Algorithm 1 sets the rules to produce and simulate Ebola virus spreading in a host population for

time 1 ≤ t ≤ T , where T is the disease evolution time. In this algorithm, we use the concept

of stochastic process to simulate Ebola contagious process. Furthermore, using ADN’s generative
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Algorithm 1 : ADN for Ebola Contagion Process
1: if t ≤ T then
2: if xn ∈ {S,E, I,H} then
3: Sn← n
4: end ifWhere x. represents state of node n.
5: Generate a network: Gp(N,m), w.r.t (p,Sn)
6: if t ≥ TCT and ∃ k|xk ∈ {H} then
7: Update state of neighbors of infected node k at time t and those nodes which had contact

with node k from the time it becomes infectious (INeigh), to their respective states with
probability α (S→ ST , E→ ET , I→ IT ).

8: end if
9: Contagion process: 1. Edge–based transmission: Find susceptible nodes which have

contact with infectious nodes and update their state based on edge–based transmission rule.

10: if t ≥ Tin f o then
11: INeigh← n j1{x j=I}
12: end if, where n j represents node n which has contact with node j and, node j is an infectious

node. 2. Node–based transmission: Update state of other nodes; i|xi 6= S based on node–
based transmission rules.

13: Remove nodes which belongs to INeigh and are traced for 21 days but are not detected.
Return these nodes from ST or ET compartments to S and E compartments respectively.

14: end if

network process, we could generate temporary links between nodes and we could capture all such

links during the disease evolution.

2.3 Reproductive Number in Heterogeneous Network

The basic reproductive ratio, R0, is a descriptor in mathematical modeling of infectious disease.

It helps public health authorities to assess the risk of an outbreak in emergence of infectious

disease32. Furthermore, early estimation of the basic reproductive number helps healthcare au-

thorities to control disease outbreak. A general definition of basic reproductive number is the

expected number of secondary infections over all possible initial infections during their infectious

period18 10. Using general definition of reproductive number and characteristic of heterogeneous

network, we propose a new definition for R0 in a heterogeneous network. In heterogeneous net-
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work, contact patterns tend to have a high variability in prevalence and so, besides high degree

nodes, there are some low degree nodes which they may have no contacts with others34. Based on

this characteristic, to compute R0 in a heterogeneous network, we only consider those initial in-

fected as possible initial infections if and only if they establish links with other nodes. Therefore,

we define R0 as follows: Definition 3: Basic reproductive number (R0) is the expected number of

secondary infectious cases over all initial infections that establish interaction with others during

the infectious period. In particular, in activity driven network which is a heterogeneous network,

R0 is :

R0 =

n
∑

i=1
1{(xt

i ,x
0
i )=(I,S)}

n
∑
j=1

1{((x0
j ,...,x

t
j)=I),(it↔ jt)}

(2.1)

where, n is the number of node in heterogeneous network, xt
i is the state of node i at time step

t ∈ {0, ...,T} and (it ↔ jt shows that node i and node j have interaction with each other at time

step t. If χ is true, indicator function, 1χ , returns 1 and zero otherwise .

2.4 Receiver Operating Characteristic

A receiver operating characteristic or ROC curve is a fundamental method to illustrate the per-

formance of a system such as separating true positive results from incorrect positive results in a

test or comparing two alternative tasks16. In ROC curve, we plot sensitivity or true positive ratio

(T PR) as a function of false negative ratio (FPR) or 1− Speci f icity. Sensitivity defines as the

fraction of samples that are detected correctly and false positive ratio is the proportion of samples

that are identified as positive, incorrectly.

Major aim of contact tracing is to identify secondary infectious individuals before they become

infectious in order to halt chain of infection. We assume that positive samples are those secondary

infectious individuals who have contact with infections during the disease evolution. Then, true

positive in context of contact tracing strategy defines as those secondary infectious individuals who

are traced. Similarly, false positive defines as those individuals who are not infected but traced as a
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possible secondary infection. Therefore, based on different epidemiological compartments in our

proposed model, we define Sensitivity and 1−Speci f icity as follow: Definition 4: Sensitivity is

the total number of exposed individuals who are traced over total number of exposed individuals

during the disease evolution. Then,

T PR = Sensitivity =

n
∑

i=1
x1:T

i = ET

n
∑

i=1
x1:T

i = E
(2.2)

Definition 5: False positive ratio or 1−Speci f icity defines as total number of susceptible individ-

uals who are traced over total number of susceptible individuals who have contact with infections

during the disease evolution. Then,

FPR = 1−Speci f icity =

n
∑

i=1
x1:T

i = ST

n
∑

i=1
x1:T

i,(i→k) = S
(2.3)

where, x1:T
i is the state of node i from t = 1 to T which is the end of the disease evolution, and

(i→ k) shows that the susceptible node i has contact with an infectious node k . A point (pi, p j) in

the ROC shows that with probability pi infected individuals who have contacts with an infection

could be identified as infectious persons and with probability 1− p j susceptible individuals who

have contact with an infection could be identified as healthy persons.

2.5 Results

To generate a realization for Ebola disease spreading without any immunization strategy, parame-

ters of our proposed model for contagious process are given in table 3.1. We assume that number

of initial infected individuals is I0 = 2 and each active node could generate only m = 7 links with

other nodes, where total number of node is N = 1000. Usually when a person is sick, his/her

social interactions reduce. Therefore, we assume that constant scaling factor of firing rate for a
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hospitalized, infected and susceptible individual is as follows: ηH << ηI < ηS. Activity driven

network’s parameters are shown in table 2.2. To assess effectiveness of contact tracing in early

Table 2.1: Time–invariant parameters of Ebola contagion process

Parameter Value
transmission probability(β ) 0.11
latency (λ ) 0.095
recovery/remove probability (δ ) 0.1
hospitalization probability in existence of contact tracing (γT ) 0.9
hospitalization probability (γ ) 0.33

stage of epidemic for the generated scenario, we assume three different scenarios for contact trac-

ing implementation. The first one is when we implement contact tracing from beginning (TTC = 1),

second scenario is when contact tracing is started at day TTC = 9 and, third one is when contact

tracing is implemented at day (TTC = 22). In all of these scenarios, we assume that Tin f o = 1. To

evaluate the effectiveness of contact tracing in a more realistic scenario, we consider five identifi-

cation delay time, α−1 ∈ {1,2,3,5,10,20} in three scenarios of contact tracing implementation.

Table 2.2: Parameters of activity driven network generator

Parameter Value
c 2.2
m 7
ηS 2.2
ηI 1.1
ηH 0.005

2.5.1 Effectiveness of Contact Tracing

In figure 2.2, we plot, as a function of identification delay α−1, the ratio of cases;
(I +H)α

∞

(I +H)0
∞

,

for three scenarios. Where (I +H)0
∞ is the mean of infected and hospitalized individuals at the
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Figure 2.2: Comparison of ratio of cases as a function of α−1 .

end of the disease evolution, when contact tracing strategy is not implemented. (I +H)α
∞ shows

average number of infected and hospitalized individuals at the end of the disease evolution for an

identification delay of α and, NOCT shows when contact tracing or other immunization protocols

are not implemented. Figure 2.2 clearly shows that, contact tracing is more effective in first and

second scenario when identification delay, α−1, is less than 10 days. In third scenario, we could

still observe a reduction in the ratio
(I +H)α

∞

(I +H)0
∞

, only if contacts of infections could be identified

immediately. In figure 2.3, we study the impact of hospitalization period (γ−1), which is the time

it takes to hospitalize an infectious individual, without contact tracing strategy on ratio of cases. It

shows the importance of immediate access to hospitals for an infectious individuals. Comparing

figure 2.3 and figure 2.2 clearly shows that immediate hospitalization is even more efficient than

immediate and accurate contact tracing protocols.
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Figure 2.3: Comparison of ratio of cases as a function of γ−1.

2.5.2 Contact Tracing Performance

To evaluate performance of contact tracing on Ebola contagious process, we employ ROC curve.

To plot ROC curve, we compute sensitivity and 1− speci f icity in each iteration from equations

2.2 and 2.3. Then, we compute average of these two ratios in 10,000 iterations. Figure 2.4 shows

sensitivity as a function of 1−speci f icity for 5 identification delays (α−1) in three contact tracing

implementation scenarios. In each scenario, we plot sensitivity as a function of 1− speci f icity .

We project 3–D ROC curve to get 2–D ROC curve, as shown in figure 2.5. In the first scenario

when α−1 increases, the probability to identify secondary infected individuals produced by an

infectious individual decreases. In second and third scenarios this reduction is more significant.

Missed–detection probability is the number of exposed individuals who are not traced as defined

previously. Therefore, missed–detection is equal to 1−Sensitivity. Figure 2.5 clearly shows incre-

ment of identification delay period can increases the missed–detection probability. Furthermore,

immediate implementation of contact tracing protocols can help to reduce the probability of miss-
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Figure 2.4: 3–D ROC curve of contact tracing with 5 identification delay implemented in three
different scenarios.

ing secondary infections. Another significant observation is that in all scenarios, we could observe

that the probability to identify healthy contacts of infectious individuals (speci f icity) increases,

when α−1 decreases. So, these healthy individuals are assumed as a possible Ebola disease case,

which results in high cost of contact tracing.

2.5.3 Basic Reproductive Number

Using equation 2.1, we compute basic reproductive number in an independent simulation. In figure

2.6, we calculate average of R0s from 10,000 independent simulations. It shows that for the same

value of α , contact tracing protocol allows a feasible reduction in value of R0 in first scenarios.

However, contact tracing strategy does not lead to R0 < 1. In figure 2.7, basic reproductive number

is shown as a function of hospitalization delay period γ−1. It represents that reduction of γ−1

results in reduction of R0 and for γ−1 ≤ 2, basic reproductive number becomes less than one.
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2.6 Conclusion

Our analysis identifies that immediate implementation of contact tracing results in a large reduc-

tion in number of infectious individuals at the end of the disease evolution. Moreover, immediate

identification of infections helps to reduce total number of infected individuals. However, imple-

mentation of only contact tracing protocols does not lead to a significant reduction in basic repro-

ductive number. Immediate identification of secondary infections needs a collaboration between

public health authorities and patients. Public health authorities could notify the host population

as soon as possible and educate people about the disease. Therefore, an exposed individual who

observes the symptoms of disease in himself/herself, can immediately go to hospital. It was shown

that immediate hospitalization at early–stages of the disease spread results in significant reduction

of R0 and impede the transmission chain of the Ebola disease.

Although immediate and accurate contact tracing strategy could identify infected individuals

and their infectious contact properly, it cannot distinguish healthy contacts from exposed contacts.

Therefore, it may increase the financial burden on the public health authorities when many people
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may need to be traced in such scenario, as happened in west African countries in 2014.
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Chapter 3

Sequential Monte Carlo Filtering

Estimation of Ebola Progression in West

Africa

3.1 Introduction

Researchers have attempted to analyze the recent Ebola outbreak data, forecast the future of the

outbreak, and estimate the basic reproductive ratio. Rivers et al.30 used a deterministic compart-

mental model to fit time series of reported Ebola cases using least–square optimization, and pro-

vided forecasts according to implement Gillespies stochastic simulations. Browne et al.4 proposed

a compartment model separating the infectious population into reported/hospitalized or unreported

compartments. Afterwards, they investigated the impact of contact tracing on reproductive ratio.

Fishman et al.14 utilized incidence decay with exponential adjustment (IDEA) method to com-

pute reproductive ratio. Althaus3 used an offline optimization algorithm to find parameters of the

susceptible-exposed-infected-susceptible (SEIR) epidemic model that fits best to collected Ebola

data during a fixed time period. The major shortcoming of such approaches is that they provide an

offline inference of an outbreak that is inherently dynamic and parameters of model change dur-
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ing disease evolution, so we need to keep tracking parameters when new data become available.

Furthermore, since lots of factors such as intervention strategies could affect on parameters, we

expect that the basic reproductive ratio changes during the disease evolution. Therefore we need

techniques that are able to trace new data as they become available.

A few researchers have studied the evolution of R0(t) for Ebola progression. Towers et al.37

estimated the basic reproduction ratio, R0(t), by fitting exponential regression models to small

successive time intervals of the Ebola outbreak. Therefore, they obtained an estimate of tem-

poral variations of the growth rate. Their application of regression models ignores the systemic

epidemiological information of Ebola progression—as reflected in an SEIR model—and thus are

more suitable for exploratory analysis of the incidence data. Furthermore, the scarcity of inci-

dence data during short time intervals impacts the stability of regression model fitting. A more

robust analysis should take advantage of the epidemiological knowledge of the dynamical system

under study.

In this chapter, we use an SEIR-based model for Ebola propagation to estimate the disease

states and make inference about the basic reproductive ratio through time. To this end, we imple-

ment a sequential Monte Carlo (SMC) filter, an online inference method that allows simultaneous

state and parameter estimation with improved accuracy as new streaming data becomes available.

Sequential Monte Carlo filter is particularly powerful for inference about epidemic models which

are inherently nonlinear and involve numerous uncertainties. Specifically, our SMC setting al-

lows simultaneous estimation of the number of individuals at different infection stages as well as

the parameters of our mechanistic epidemic model, providing posterior distributions of interest.

In SMC, the distribution of interest is estimated by a large number of random samples, termed

particles, conditioned on the observations. A sampling mechanism propagates these particles20.

Afterward, we use the estimated values of the Ebola epidemic model parameters to determine the

value of R0(t).

Compared with existing studies on the recent Ebola epidemics in West Africa, our approach

has the advantage of performing the inference online as the new data becomes available and es-
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timates the evolution of basic reproductive rate R0(t) of the Ebola outbreak through time. Inter-

estingly, our analysis identifies a peak in the basic reproductive ratio close to the time when cases

were reported in Europe and the USA.

The remainder of this chapter is organized as follows. Section 3.2 presents basic tools used

in sequential Monte Carlo filter and discusses some background on epidemic modeling. Section

3.3 outlines our modified SEIR model for Ebola and explains the particle setup and our data

set. Section 3.4 presents main results of this study. Section 3.5 concludes the chapter by a few

suggestions for future research.

3.2 Background

3.2.1 Epidemic Modeling

Mathematical models of infectious disease offer a mechanistic framework to describe and study

the spread of infections within human and animal populations, providing deep insight into their

dynamics and suggesting practical strategies to reduce the severity of epidemics28. Here, we in-

troduce a brief background discussing the susceptible-exposed-infected-recovered (SEIR) model

which is compatible with our understanding of Ebola virus epidemiology.

In the SEIR model, each individual belongs to one of the susceptible, exposed, infected, or

removed/recovered compartments. In this model, when a susceptible individual has contacts with

an infected one, they enter the exposed compartment (E) at rate β I. Homogeneity of the population

and how people have contact with each others in the host population is represented by a percentage

factor c. After the incubation period of disease, with average length of 1/λ , they enter the infected

compartment (I). Infectious individuals move to the recovered/removed compartment (R) at rate

γ 21. The basic compartmental SEIR model is21
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dS
dt

=−βcSI,

dE
dt

= βcSI−λE,

dI
dt

= λE− γI,

dR
dt

= γI.

(3.1)

In this compartmental SEIR, the size of host population is assumed to remain constant through-

out the evolution time, i.e., P = S+E + I +R, and demographic effects are ignored.

An important mathematical descriptor of epidemics is the basic reproductive ratio. The basic

reproductive number is defined as the expected number of secondary individuals produced by a

typical single infected individual during its infectious period18. Thus, R0 is a dimensionless value

that represents the average number of additional susceptible people to whom an infected person

passes the disease before he/she recovers26. For instance, if an infectious person passes the dis-

ease on three others on average during their infectious lifetime, then R0 = 3, indicating that the

number of new infectious individuals would increase with each generation, so we can expect to

experience an epidemic outbreak. Conversely, if R0 < 1 the disease will die out26. Thus, the basic

reproductive ratio is a threshold condition for epidemics as R0 = 1 separates the increments or

decrements of the newly infected26. A more general definition of R0 in mathematical epidemiol-

ogy is the average number of expected new infections over all possible infected types during the

infectious period of a typical infected individual10. Based on this definition, Diekmann et al.10

proposed the next generation matrix method—a powerful technique for finding R0 in complex

epidemic models. Applying the next generation matrix technique to the SEIR model (3.1) finds

R0 =
βc
γ

18.
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3.2.2 Sequential Monte Carlo Filter

Sequential Monte Carlo (SMC) — or particle filter — refers to a class of statistical techniques that

estimate unknown parameters, namely states in this context, as new streaming noisy observations

becomes available33. In SMC, we iteratively sample from the posterior distribution of parameters

until the parameters converge to stationary values38. This iterative sampling is updated using a

stream of data, and as such, it enables us to modify our best guesses for the states according to

actual observations. In the following, we explain the dynamic state–space model and estimation

of posterior PDF briefly for the particle filters algorithm.

Dynamic state–space model The state–space model assumes the Markov property, i.e.,

Pr(xk|x0:k−1) = Pr(xk|xk−1). (3.2)

and describes the distribution of the system state in the next step, as well as the observation, given

the current state of the system. More rigorously, a state–space model is defined as12,33:

xk ∼ p(xk|xk−1,θ),

yk ∼ p(yk|xk,θ),

(3.3)

where p(·) denotes the probability density function (PDF), yk represents the kth observation, xk

represents system states corresponding to the kth observation, and θ represents parameters of the

model. In a state–space model, yk depends only on xk and θ , and xk depends solely on xk−1 and θ .

Estimation of posterior PDF Given the observation data y1:k up to time k, the ultimate goal is to

define the posterior distribution, p(xk,θ |y1:k), which describes the hidden state xk and parameters

θ of the dynamical system. A sequential filtering uses a recursive formula relating the posterior

distribution p(xk,θ |y1:k) to p(xk−1,θ |y1:k−1). In this way, given a prior distribution p0(x0,θ), one

could iteratively find p(xk,θ |y1:k). According to Bayes’ theorem, the posterior probability density
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function follows:

p(xk,θk|y1:k) ∝ p(yk|xk,θ)p(xk,θ |y1:k−1). (3.4)

Furthermore, p(xk,θ |y1:k−1) can be expressed as

p(xk,θ |y1:k−1) =
∫

p(xk|xk−1,θ)p(xk−1,θ |y1:k−1)dxk. (3.5)

Instead of performing the integration in (3.5) explicitly, SMC utilizes the Monte Carlo method

to approximates the posterior PDF using J� 1 samples, referred to as particles, through33:

p(xk,θk|y1:k)≈
J

∑
i=1

w(i)
k 1{(xk,θk)=(x(i)k ,θ

(i)
k )}, (3.6)

where 1{χ} is the indicator function returning 1 if χ is true and zero otherwise, x(i)k is the state of

particle i at step k, and w(i)
k is its weight, which are iteratively updated to maximize the likelihood

function. The approximation is more accurate if the number of particles is large. Particles’ weights

are normalized so that ∑
J
i=1 w(i)

k = 1.

Among particle filter techniques are the bootstrap filter, auxiliary particle filter, and kernel

density particle filter. In this chapter, we use the latter, namely kernel density particle filter, due to

its flexibility in modeling of nonlinear processes as explained in Section 3.3.2.

3.3 SMC for Ebola Epidemics

In this chapter, we employ the SEIR model as it is compatible with the epidemiology of the Ebola

virus. In particular, we use a a discrete-time version since the data reports are per day.

3.3.1 Modeling of Ebola

The state variables St , Et , It , and Rt denote the fraction of people who are susceptible, exposed,

infected and recovered or removed, at time step t, respectively, where each step is one day. For
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our analysis, we use the discrete–time form of equation (3.1) with stochastic fluctuation and the

following assumptions to modify the original SEIR model (3.1).

Assumption 1: Since the population is much greater than the number of infected cases of

Ebola, we assume S' 1. Therefore, the equation for the evolution of E(t) in (1) simplifies to:

Et+1 = Et +βctIt−λEt . (3.7)

Assumption 2: We assume that ct , representing how well the population is mixed, changes due

to intervention efforts to prevent the spread of Ebola such as social distancing and quarantining.

Specifically, we assume ct is decreasing at rate α , i.e.,

ct+1 = ct−αct . (3.8)

This is a simplified assumption to account for different intervention strategies. We assumed that

when the control measured are introduced and information regarding Ebola disease is dissemi-

nated, the transmission rate decays exponentially.

According to above assumptions and modifications to the SEIR model (3.1), we propose the

following set of stochastic difference equations as our base epidemic model for the Ebola spread:

ct+1 = ct−αct +ξα ,

Et+1 = Et +βctIt−λEt +ξλ −ξβ ,

It+1 = It +λEt− γIt−ξλ +ξγ ,

Rt+1 = Rt + γIt−ξγ

Dt+1 = ϕRt+1 = ϕRt +ϕγIt−ϕξγ +ξϕ .

(3.9)

In the above equations, ξχ where χ ∈ {α,β ,λ ,γ,ϕ} is a random component, with zero mean

and variance
√

χ/P, where P is the population size. The variance of noises are due to stochasticity
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of the underlying process33. Each of these random components are assumed uncorrelated.

3.3.2 Filtering Setup

The kernel density particle filter method utilizes both bootstrap filter and auxiliary particle filter.

In bootstrap filter, the probability density is estimated by a set of particles and at each round their

weights are computed and those particles with small weights, are eliminated. After each round, the

surviving particles produce new particles. The main problem with bootstrap filter is that weights

might become too small for many particles and thus adversely affect the estimation accuracy.

Auxiliary particle filter uses importance sampling to minimize number of particles with small

weights, hence avoiding the degeneracy issue of bootstrap method12. The kernel particle filter not

only avoids degeneracy, but also estimates the unknown parameters of the model simultaneously5.

In this chapter, we formulate a filtering method based on the kernel density technique for

intermittent observations. This is crucial for our estimation purpose because reports on Ebola cases

become available at irregular times. We denote the observation times as t1, t2, . . . , tk up to time t.

Therefore, we compute the posterior distribution p(xtk ,θ
(i)
k |y1:k) only when a new observation

becomes available. We use the actual Ebola cases data in Guinea, one of the three major West

Africa countries that experienced the Ebola outbreak, reported by the World Health Organization

(WHO)2.

Evolution Setup

According to our Ebola model in (3.9), the xt = [ct ,Et , It ,Rt ,Dt ]
T follows a normal distribution.

Hence, the state–space model is

xt+1|xt ,θ ∼ NΩ(g(xt ,θ),Q(θ)), (3.10)
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where

g(xt ,θ) =



ct−αct

Et +βctIt−λEt

It +λEt− γIt

Rt + γIt

ϕIt +ϕγIt


, (3.11)

is the mean and Q(θ) is the covariance matrix computed according to the description of random

components of model (3.9):

Q(θ) =
1

P2



α 0 0 0 0

0 λ +β −λ 0 0

0 −λ λ + γ −γ −γϕ

0 0 −γ γ γϕ

0 0 −γϕ γϕ γϕ2


. (3.12)

Here, NΩ(µ,Σ) represents the truncated normal distribution where Ω= {(ct ,Et , It ,Rt ,Dt) : ct ,Et , It ,Rt ,Dt ≥

0,Et + It +Rt ≤ 1}.

Observation Setup

Our WHO reports for Ebola in Guinea consists of cumulative cases and death numbers. Therefore,

we do not have direct access to the number of ‘active’ infected population. In other words, the

available observations are the number of dead people Dt and the sum of active infected population

It and the total number of recovered/dead Rt , which we assume to have a log–normal distribu-

tion33. More precisely, we model the observations Y as:

Y ∼N (µY ,ΣY ), (3.13)
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where

Y =

 log(yI,k)

log(yD,k)

,µY =

b1(It +Rt)
ζ1

b2(Dt)
ζ2

,ΣY ∼

σ1 0

0 σ2

. (3.14)

In matrix µY , ζ , σ and b for both observations are typically unknown, but we can predict these

values by linear regression35. In particular, b1 and b2 are multiplicative constants, and ζ1 and ζ2

are power-law exponents which can be calculated based on the significant of dispersed of data

points. Furthermore, variances σ1 and σ2 ∝
1√
P

35.

Kernel density particle filter

Model (3.13) and (3.14) define the likelihood of observations yk, given xtk and θ — p(yk|xtk ,θ).

We apply kernel particle filter, to update and estimate p(xtk+1,θ |y1:k+1). At the initial time step

k = 1, weights for all particles are equal to J−1, and θ0 and x0 are generated by random sampling

from prior probability density functions p(θ0) and p(x0). Algorithm 2 represents steps to estimate

p(xtk+1,θ |y1:k+1) when the k+1th observation becomes available. Our algorithm is an adaptation

of the kernel density particle filter of33 to irregular observations. We have also included the

flowchart of our algorithm in Fig. 3.1 for the sake of the reader’s convenience.

In our kernel density SMC Algorithm 2, θ̄ is a weighted sample mean and Vk+1 is a weighted

sample covariance. To control the smoothness of kernel density estimation, it is assumed that

a = 1−h2 and h = 1− (3φ−1
2φ

)2. φ ∈ (0,1) is a discount factor which reduces the chance of failure

in the filter. Readers are encouraged to refer to33 for more details. Typically, φ is assumed to be a

number between 0.95 and 0.99.

3.3.3 Data Explanation

Since approximately December 2013, West Africa has been affected by this virus. However, The

World Health Organization (WHO) declared the epidemic to be a public health emergency of in-
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Algorithm 2 Kernel Density Sequential Monte Carlo Filter for Intermittent Observations

1: Compute m(i)
k+1:

m(i)
k+1 = aθ

(i)
k +(1−a)θ̄k;

2: Compute first moment of x(i)tk+1
:

µ
(i)
k+1 = E(xtk+1 |θ

(i)
k ,x(i)tk ), for all i ∈ {1,2, ..,J};

3: Compute auxiliary weights and normalize them:

g(i)k+1 = w(i)
k p(yk+1|µ

(i)
k+1,m

(i)
k+1) , g(i)k+1 =

g(i)k+1
J
∑

l=1
g(l)k+1

;

4: Sampling: Select an index j randomly with its corresponding weight {g(1)k+1, ...,g
(J)
k+1};

5: Reproduce the parameters: θ
(i)
k+1∼Nω(m

( j)
k+1,V

θ
k+1), where Nω(µ,σ) is a truncated normal

distribution;
6: Sample the x(i)tk+1

: x(i)tk+1
∼ p(x(i)tk+1

|θ (i)
k+1,x

( j)
tk ), for all i ∈ {1,2, ..,J}.

7: Recompute first moment of x(i)tk+1
:

µ
(i)
k+1 = E(x(i)tk+1

|θ (i)
k ,x( j)

tk ), for all i ∈ {1,2, ..,J}.
8: Compute weights and normalize them again:

w(i)
k+1 =

p(yk+1|x
(i)
tk+1

,θ
(i)
k+1)

p(yk+1|µ
( j)
k+1,m

( j)
k+1)

, w(i)
k+1 =

w(i)
k+1

J
∑

l=1
w(l)

k+1

.

Figure 3.1: Flowchart of kernel density SMC filter for intermitten obsevations as described in
Algorithm 2.
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Figure 3.2: Cumulative cases and death data in Guinea reported by WHO2, and their estimation
by the SMC filter in Algorithm 2.

ternational concern on August 8, 20142. We analyze the cumulative case and death counts in

Guinea, one of the three West Africa Countries that experienced the Ebola outbreak. Cumula-

tive cases are classified into three categories: confirmed, probable, suspected cases. Similarly,

we have three cases for death counts. Confirmed cases are those individuals who are diagnosed

by polymerase chain reaction (PCR) method. On the other hand, suspected and probable cases

denote those individuals that have symptoms of Ebola but it is not confirmed if they are actually

infected27. We should mention that the cases were reported at irregular intervals. This data has

been collected from reports of WHO available at http://www.healthmap.org/ebola/.

3.4 Results

We estimate the states of Ebola propagation from March 23, 2014 to April 30, 2015 having data

reported only in T = 170 days. Guinea population in 2015 was estimated to be around 12,500,000,

however, the population in danger to be infected by the Ebola virus was estimated to be roughly
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about P = 1,000,000.

We estimate parameters by sampling from a log-normal distribution using J = 5,000, number

of particles. The sensitivity to changes, discount factor, is chosen as φ = 0.95 and initial weights

are all set equal to w0 = J−1. To run the particle filter, the initial state, x0, and initial parameters,

θ0, are generated randomly. Specification of initial priors distributions are reported in Table 3.1

and 3.2.

Table 3.1: Priors specification for parameters

Parameters Priors
mitigation rate (α) U (0.0059,0.00593)
transmission rate (β ) U (0.259,0.379)
latency rate (λ ) Beta(78,577)
recovery/remove rate (γ) Beta(21,246)
fatality rate (ϕ) Beta(37,15)

Based on collected data and expert opinion, some measurements for γ , λ , and ϕ are avail-

able. Therefore, we specify beta distributions for each of parameters, using Beta buster and Be-

taSlicer9,19. Based on collected information, the average incubation period, λ−1 is less than 21

days with 95% confidence interval and mean around 8 days2. Fatality rate, ϕ , is less than 80%

with 95% confidence interval and mode 71%2,7,36. The average duration of illness onset to death

or recovery, γ−1, is around 12 days7,36. Since we do not have enough information about transmis-

sion and mitigation rates, β and c, we assume uniform distributions.

For observation constant in SMC filter, we assume that b1 = 0.88 and b2 = 0.54 and standard

deviation, ΣY is a two by two diagonal matrix whose diagonal elements are σ1 = 0.00125 and

Table 3.2: Priors specification for states

States Priors
c U (0.36,0.40)
E U (0.000128,0.000141)
I U (0.000050,0.000061)
R U (0.000042,0.000058)
D U (0.000029,0.000030)
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Figure 3.3: Changes in basic reproductive ratio over disease evolution

σ2 = 0.00085. Power–law constant ζ , for infected individuals, is 0.88 and for dead individuals, is

0.68.

Fig. 3.2 shows cumulative cases and deaths data and their estimation by the particle filter in

Guinea. In our model, the basic reproductive ratio is equal to R0(t) = cβγ−1. The result indicates

that transmission rate, latency rate and, recovery rate are not constant during the disease evolution.

Therefore, as demonstrated in Fig. 3.3, R0(t) is not constant neither.

The maximum value of the basic reproductive number is 1.51 on March 2014 and it decreases

until September 2014 which R0 ∼ 1. Afterward, a pick is occurred on October 2014 and after that

it decreases. We can see in Fig. 3.4 that transmission rates change during the disease evolution.

In15, R0(t) is estimated as a single value with confidence interval, while in37 the reproduction

ratio, R0(t), is computed by fitting exponential growth curves to small successive time intervals of

the Ebola outbreak. Instead, our method finds the basic reproductive ratio, R0(t), as a continuous

function of time during the Ebola evolution. Using this method, we can also see that not only

R0(t) changes over time, but also parameters such as β , λ and γ change.
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3.5 Conclusion

Our analysis identifies a correlation between R0(t) temporal variations and important events in the

2014 Ebola outbreak. For instance, a reduction of R0(t) can be seen around the time WHO first

announced the Ebola outbreak in Guinea. This reduction can be explained by taking into account

the introduction of some initial medical support and public awareness. Conversely, a peak of R0(t)

corresponds to the first Ebola cases in Europe and the USA.
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Chapter 4

Conclusion

Immediate implementation of contact tracing strategy and hospitalization as two major mitigation

strategies in early–stage of Ebola virus disease introduction have been studied in chapter 2. Our

analysis identifies that immediate and accurate implementation of contact tracing protocols and

hospitalization could result in reduction of total number of infections at the end of the disease

evolution. Immediate hospitalization at early–stages of the disease spreading can decrease basic

reproductive number significantly and impede the transmission chain of the Ebola disease spread-

ing. Only implementation of contact tracing strategy may not result in a significant reduction in

value of R0. Moreover, It is observed that in early–stage of a disease introduction, using contact

tracing strategy, detection of those contacts that are not infected is very difficult from exposed

contacts, that may increase the financial burden on public health authorities. In particular, contact

tracing strategy focuses on detection of contact of an infected individual more than detection of

infectious contact of an infection.

Although immediate and accurate contact tracing strategy could identify infected individuals

and their infectious contact properly, it cannot distinguish healthy contacts from exposed contacts.

Therefore, to tackle the trade-off between financial burden and halting a virus transmission chain,

combination of at least another mitigation protocol, such as hospitalization with contact tracing

may result in a cost–effective strategy.
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To study the effectiveness of implemented mitigation strategies in a real scenario that number

of cases is high, in chapter 3, we investigate the reported data in Guinea. My analysis identifies

a reduction in value of R0(t), when WHO announced Ebola outbreak in Guinea for the first time.

This reduction can be explained by considering the introduction of initial medical supports and

public awareness. Also, a peak in value of R0(t) when initial Ebola cases in Europe and the

USA are recognized, is observed. Contact tracing as a major implemented mitigation strategy in

Guinea does not result in an immediate reduction in value of R0(t). Value of R0(t) becomes less

than one almost after nine month. This can be explained by the fact that contact tracing cannot

distinguish healthy contacts from exposed contacts. So, in such cases that number of cases is

high and financial sources are limited, only implementation of contact tracing strategy may not

accelerate reduction of number of secondary infections.

Future works can have two main directions, 1) studying impact of temporal network topology

on disease spreading and 2) further improvement of SMC method would involve incorporating

spatial correlations in prediction and estimation schemes of the SMC method to consider sev-

eral countries in West Africa at once. Furthermore, a more objective quantification of involved

uncertainties and sensitivity analysis can be a great addition to the current work.
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