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Abstract 

Chlorinated solvents are the second most ubiquitous contaminants, next to petroleum 

hydrocarbons, and many are carcinogens. Tetrachloroethylene or perchloroethene (PCE) has 

been employed extensively in the dry cleaning industry and carbon tetrachloride (CT) has been 

used as a fumigant in grain storage facilities. In this work, remediation feasibility studies were 

conducted by mesocosm experiments; a chamber was divided into six channels and filled with 

soil, and plants were grown on top. Each channel was fed with contaminated water near the 

bottom and collected at the outlet, simulating groundwater flow conditions. The contaminants 

were introduced starting from March 12, 2004. PCE was introduced at a concentration of about 2 

mg/L (~12 μmoles/L) in three channels, two of them with alfalfa plants and the other with grass. 

CT was introduced at a concentration of about 2 mg/L (~13 μmoles/L) in the other three 

channels, two of them with alfalfa plants and the other with grass. After the system had attained 

steady state, the concentrations of PCE and CT at inlet and outlet were monitored and the 

amount of PCE and CT disappearing in the saturated zone was studied. Since no degradation 

products were found at the outlet after about 100 days, one channel-each for PCE and CT (with 

alfalfa) was made anaerobic by adding one liter of 0.2 % glucose solution. The glucose solution 

was fed once every month starting from July 1, 2004 and continued until February 2005. From 

October 1, 2004, one liter of 0.1 % emulsified soy oil methyl esters (SOME) was fed to two 

other channels (with alfalfa), one exposed to PCE and another exposed to CT. The SOME 

addition dates were the same as that for glucose. The outlet liquid of the channel fed with PCE 

and SOME started to contain some of the degradation compounds of PCE; however, the extent of 

degradation was not as great as that of the glucose fed channel. No degradation compounds were 

observed in the outlet solution of the channel (grass grown on top) in which no carbon and 

energy supplements were added. Similar trend was observed in the CT fed channels also. KB-1, 

a commercially available microbial culture (a consortium of dehalococcoides) that degrades 

dichloroethene (DCE), was added through the inlet of the PCE fed channels, but this did not lead 

to sufficient conversion of DCE. Addition of KB-1 at well 3, located approximately in the 

middle of the channel, had a greater impact in the degradation of DCE, in both glucose and 

SOME amended channels, compared to addition at the inlet. KB-1 culture added to the channel 



was active even 155 days later, suggesting that there is sustainable growth of KB-1 when 

provided with suitable conditions and substrates. 

A pilot field study was conducted for remediation of a tetrachloroethylene (PCE) 

contaminated site at Manhattan, KS. The aquifer in the pilot study area has two distinct zones, 

termed shallow zone and deep zone, with groundwater velocities of about 0.3 m/day and 0.1 

m/day. Prior to the pilot study, PCE concentration in groundwater at the pilot study area was 

about 15 mg/L (ppm) in the deep zone and 1 mg/L in the shallow zone. Nutrient solution 

comprising soy oil methyl esters (SOME), lactate, yeast extract and glucose was added in the 

pilot study area for biostimulation, on August 18, 2005. Potassium bromide (KBr) was added to 

the nutrient solution as a tracer. PCE was converted to DCE under these conditions. To carry out 

complete degradation of PCE, KB-1, a consortium of Dehalococcoides, and a second dose of 

nutrient solution were added on October 13, 2005. After addition of KB-1, both PCE and DCE 

concentrations decreased. Nutrients were again injected on March 3, 2006 (with KBr) and on 

August 1, 2006. The total chlorinated ethenes (CEs) have decreased by about 80 % in the pilot 

study area due to bioremediation. Biodegradation of CEs continued for a long time (several 

months) after the addition of nutrients. The insoluble SOME may be retained at the feeding area 

and provide a long time source of electron donors. Biostimulation and bioaugmentation of PCE 

contaminated soil and groundwater was evaluated in the laboratory and this technique was 

implemented successfully in the pilot field study. 

Modeling of the tracer study was performed using an advection-dispersion equation 

(ADE) and traditional residence time distribution (RTD) methods. The dispersion coefficient, 

groundwater velocity and hydraulic conductivity were estimated from the experimental data. The 

groundwater velocities vary from 1.5 cm/d to 10 cm/d in the deep zone and 15 cm/d to 40 cm/d 

in the shallow zone. The velocities estimated from the 2004 tracer study and 2005 tracer study 

were higher compared to the velocity estimated from the 2006 tracer study, most likely because 

of microbial growth and product formation that reduced the hydraulic conductivity. Based on 

data collected from several wells the hydrologic parameter values obtained from tracer studies 

appear to vary spatially.  
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Abstract 

Chlorinated solvents are the second most ubiquitous contaminants, next to petroleum 

hydrocarbons, and many are carcinogens. Tetrachloroethylene or perchloroethene (PCE) has 

been employed extensively in the dry cleaning industry and carbon tetrachloride (CT) has been 

used as a fumigant in grain storage facilities. In this work, remediation feasibility studies were 

conducted by mesocosm experiments; a chamber was divided into six channels and filled with 

soil, and plants were grown on top. Each channel was fed with contaminated water near the 

bottom and collected at the outlet, simulating groundwater flow conditions. The contaminants 

were introduced starting from March 12, 2004. PCE was introduced at a concentration of about 2 

mg/L (~12 μmoles/L) in three channels, two of them with alfalfa plants and the other with grass. 

CT was introduced at a concentration of about 2 mg/L (~13 μmoles/L) in the other three 

channels, two of them with alfalfa plants and the other with grass. After the system had attained 

steady state, the concentrations of PCE and CT at inlet and outlet were monitored and the 

amount of PCE disappearing in the saturated zone was studied. Since no degradation products 

were found at the outlet after about 100 days, one channel-each for PCE and CT (with alfalfa) 

was made anaerobic by adding one liter of 0.2 % glucose solution. The glucose solution was fed 

once every month starting from July 1, 2004 and continued until February 2005. From October 1, 

2004, one liter of 0.1 % emulsified soy oil methyl esters (SOME) was fed to two other channels 

(with alfalfa), one exposed to PCE and another exposed to CT. The SOME addition dates were 

the same as that for glucose. The outlet liquid of the channel fed with PCE and SOME started to 

contain some of the degradation compounds of PCE; however, the extent of degradation was not 

as great as that of the glucose fed channel. No degradation compounds were observed in the 

outlet solution of the channel (grass grown on top) in which no carbon and energy supplements 

were added. Similar trend was observed in the CT fed channels also. KB-1, a commercially 

available microbial culture (a consortium of dehalococcoides) that degrades dichloroethene 

(DCE), was added through the inlet of the PCE fed channels, but this did not lead to sufficient 

conversion of DCE. Addition of KB-1 at well 3, located approximately in the middle of the 

channel, had a greater impact in the degradation of DCE, in both glucose and SOME amended 

channels, compared to addition at the inlet. KB-1 culture added to the channel was active even 



155 days later, suggesting that there is sustainable growth of KB-1 when provided with suitable 

conditions and substrates. 

A pilot field study was conducted for remediation of a tetrachloroethylene (PCE) 

contaminated site at Manhattan, KS. The aquifer in the pilot study area has two distinct zones, 

termed shallow zone and deep zone, with groundwater velocities of about 0.3 m/day and 0.1 

m/day. Prior to the pilot study, PCE concentration in groundwater at the pilot study area was 

about 15 mg/L (ppm) in the deep zone and 1 mg/L in the shallow zone. Nutrient solution 

comprising soy oil methyl esters (SOME), lactate, yeast extract and glucose was added in the 

pilot study area for biostimulation, on August 18, 2005. Potassium bromide (KBr) was added to 

the nutrient solution as a tracer. PCE was converted to DCE under these conditions. To carry out 

complete degradation of PCE, KB-1, a consortium of Dehalococcoides, and a second dose of 

nutrient solution were added on October 13, 2005. After addition of KB-1, both PCE and DCE 

concentrations decreased. Nutrients were again injected on March 3, 2006 (with KBr) and on 

August 1, 2006. The total chlorinated ethenes (CEs) have decreased by about 80 % in the pilot 

study area due to bioremediation. Biodegradation of CEs continued for a long time (several 

months) after the addition of nutrients. The insoluble SOME may be retained at the feeding area 

and provide a long time source of electron donors. Biostimulation and bioaugmentation of PCE 

contaminated soil and groundwater was evaluated in the laboratory and this technique was 

implemented successfully in the pilot field study. 

Modeling of the tracer study was performed using an advection-dispersion equation 

(ADE) and traditional residence time distribution (RTD) methods. The dispersion coefficient, 

groundwater velocity and hydraulic conductivity were estimated from the experimental data. The 

groundwater velocities vary from 1.5 cm/d to 10 cm/d in the deep zone and 15 cm/d to 40 cm/d 

in the shallow zone. The velocities estimated from the 2004 tracer study and 2005 tracer study 

were higher compared to the velocity estimated from the 2006 tracer study, most likely because 

of microbial growth and product formation that reduced the hydraulic conductivity. Based on 

data collected from several wells the hydrologic parameter values obtained from tracer studies 

appear to vary spatially.  
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CHAPTER 1 - Chlorinated Solvents Contamination and 

Remediation: A Review 

1.1. Chlorinated Methanes Degradation 

Carbon tetrachloride (CT) is a solvent used in the past in the production of refrigeration 

fluid and propellants for aerosol cans; it was also used as a cleaning fluid, a degreasing agent, 

and a spot remover. CT was used in fire extinguishers and as a pesticide fumigant to kill insects 

in grain. Because of its harmful effects, most of these uses were banned in the 1960s; its use as a 

pesticide was banned in 1986. Today CT is only used in some industrial applications (ATSDR, 

2007). Although many uses have been discontinued, the possibility still exists for CT to be 

released to the environment, primarily through industrial processes or old containers of 

household cleaning agents containing CT. CT is widely dispersed and persistent in the 

environment, but is seldom detected in foods (ATSDR, 2007).  

The degradation of CT has been shown to occur both in biologically active systems, with 

direct biological involvement (Hashsham et al., 1995; Criddle et al., 1990b, Egli et al., 1988), 

and in abiotic systems (Hashsham et al., 1995, Kriegman-King and Reinhard, 1992; Kriegman-

King and Reinhard, 1994). 

1.1.1. Biodegradation 

Degradation of carbon tetrachloride (CT) occurs slowly in the environment, which 

contributes to the accumulation of the chemical in groundwater (ATSDR, 2007). CT is, 

therefore, a common groundwater pollutant and a suspected human carcinogen. Although 

indigenous microorganisms may degrade CT, a common degradation product, chloroform (CF), 

may be more persistent than CT [Criddle et al., 1990a; Semprini and McCarty, 1992]. CF is 

readily formed under anaerobic conditions (Hull and Sondrup, 2003). The degradation products 

of CT, by reductive dechlorination, in addition to CF, are methylene chloride (MC) and 

chloromethane (CM). For reductive dechlorination to occur, the water has to be anaerobic, i.e., 

dissolved oxygen must be less than 0.2 mg/L and redox potential should be less than –50 mV. 

Therefore, to deplete the oxygen present in the groundwater, organic substrates with sufficient or 

excess biochemical oxygen demand (BOD) have to be supplied. The aerobic microorganisms 
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while metabolizing, catabolizing or degrading the organic substrates, utilize oxygen as electron 

acceptor and thus reduce the available oxygen. Further, for reductive dechlorination, electrons 

and hydrogen ions are necessary to replace the chlorine atoms. All these requirements are taken 

care of by organic compounds such as glucose, acetate, lactate, molasses, or vegetable oils. 

Figure 1.1 shows the stepwise reductive dechlorination of carbon tetrachloride to methane, with 

hydrogen and chlorine forming hydrogen chloride. During reductive dechlorination, therefore, it 

is not uncommon for the pH of the groundwater to decrease even though the soil matrix can 

provide some buffering effect. Since the concentration of chlorinated compounds is usually 

small, there will be no significant change in pH of groundwater. 

Subsequent migration of the transformation products to an aerobic environment can lead 

to oxidation of the products with ultimate complete mineralization of the halogenated aliphatic 

compounds to chloride ion and carbon dioxide (Hull and Sondrup, 2003). Table 1.1 presents 

some of the important physical and chemical properties of CT and its degradation products.  

Chloromethane (CM) is a vapor while the other compounds are liquids at 25ºC. Numerous 

studies have illustrated that a potential exists for transformation of halogenated aliphatic 

compounds in groundwater under anaerobic conditions that are conducive to methanogenesis 

(Hull and Sondrup, 2003). Transformation can occur under unsaturated conditions if the system 

can be made anaerobic.  In highly chlorinated aliphatic compounds (tetrachloroethene, 

trichloroethene, carbon tetrachloride), transformation occurs through reductive dechlorination.  

In an anaerobic environment, transformation may stall after partial dechlorination (e.g. 

dichloroethene, vinyl chloride, chloroform, methylene chloride) (Hull and Sondrup, 2003). 

Although CT is easily transformed in many anaerobic environments (Criddle and 

McCarty, 1991; Bouwer and McCarty, 1983a; Bouwer and McCarty, 1983b; Bouwer and 

Wright, 1988), attempts at bioremediating this substance have met with limited success. The 

difficulties seem to result from the toxicity of CT to microorganisms as well as the production of 

hazardous intermediates, such as CF and MC (Hashsham et al., 1995). 

In some studies, nonchlorinated substances such as carbon dioxide (CO2), carbon 

monoxide (CO), and formate were produced. Under sulfate reducing conditions, carbon disulfide 

(CS2), a compound with known toxicity to humans, has also been identified as a product 

(Hashsham et al., 1995; Criddle et al., 1990b; Kriegman-King and Reinhard, 1992; Kriegman-

King and Reinhard, 1994; Freedman et al., 1995). 
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Most of the CT biodegradation studies have found substantial quantities of intermediate 

products resulting from the transformations of CT. Bouwer and McCarty (1983a and 1983b) 

demonstrated CT biodegradation in methanogenic and denitrifying environments with CF 

reported as a chief product. Bouwer and Wright (1988) found, in column experiments, that CT 

biotransformed in a variety of redox environments with generally faster reactions occurring in 

the more reducing settings. Egli et al. (1987 and 1988) showed that CT, CF and MC adversely 

affected the ethanogens and sulfate reducers in their systems. In a controlled field experiment, 

Semprini et al (1992) established denitrifying conditions in a section of an aquifer where CT was 

injected later. Approximately 30-60 % of the CT was converted to CF, but the most rapid 

transformation rates were observed in the absence of nitrate, leading the researchers to suggest 

that the most active CT transforming microorganisms were not denitrifiers. 

Criddle et al (1990a) and others (Tatara et al., 1993; Dybas et al., 1998; Mayotte et al., 

1996) identified a denitrifying organism, Pseudomonas sp. strain KC, that is capable of 

transforming CT without accumulation of significant quantities of CF. However, this organism is 

apparently sensitive to the concentrations of various metals (e.g., Fe, Cu, Co, Mo) (Tatara et al., 

1993) and may not be widely distributed in aquifers (Criddle et al., 1990a). The data from Devlin 

and Muller (1999) indicate that the CF:CS2 ratio of 2:1 is indicative of a reaction with 

amorphous FeS. Another, more practical, implication that follows from the consistency of the 2:1 

CF:CS2 ratio is that it may be useful as an indicator of abiotic CT transformation in sulfate 

reducing environments, when background levels of CF and CS2 are low. Since CT is subject to 

both biodegradation and abiotic transformations, this distinction could be important in the 

interpretation and design of remediation programs. 

Biodegradation of CT with vitamin B12 was investigated in some of the studies. Cysteine 

was used as a reductant in CT transformation mediated by vitamin B12 at room temperature in the 

pH range of 4 -14 (Chiu and Reinhard, 1996). The transformation of CT, CF, and MC was 

examined in batch systems containing vitamin B12, Shewanella alga strain BrY, and an electron 

donor. Transformation of both CT and CF was observed, while no significant change in the MC 

concentration was detected. Carbon monoxide was a major product of CT transformation. No 

significant transformation of CT or CF was detected when vitamin B12 was not present in the 

system. This and another work (Workman et al., 1997) demonstrated that a metal-reducing 

 3



bacterium, with no apparent ability to transform CT or CF directly, mediates the reduction of 

vitamin B12, which in turn catalyzes the transformation of CT (Workman et al., 1997).  

There generally are not many bacteria available to degrade fumigants, including CT, 

upon initial exposure (Witt et al., 1999). Since high concentrations kill bacteria, biodegradation 

depends on several conditions, including the concentration of fumigants, availability of 

necessary energy sources, other nutrients, and presence of suitable bacteria (Davis and Erickson, 

2002).  

Denitrifying strain Pseudomonas stutzeri KC was able to remove 50-80 % of CT in 

field conditions (Dybas et al., 1998). McQuillan et al. (1998) described intrinsic remediation of 

CT driven by spilled gasoline, whereby the CT levels dropped 100-fold within two years. Witt 

et al. (1999) demonstrated in laboratory model columns that supplementation with acetate 

could enhance the removal of CT by the indigenous bacterial population, but better results were 

obtained when specific inoculant was added. Gregory et al (2000) successfully used Fe(0) and 

methanogenic organisms to dehalogenate CT in laboratory experiments.  

Zou et al (2000) investigated microbial degradation kinetics of CT under reducing 

conditions for different cultures, fed with 1,2-propanediol, dextrose, propionaldehyde, or 

acetate and nitrate, in the anaerobic step of an anaerobic/aerobic operation sequence. 

Methanogenesis was inhibited under aerobic conditions. Koons et al (2001) found that the cell 

exudates from the methanogen Methanosarcina thermophila are active in the degradation of 

CT and CF. The rates of degradation under these various stimulated conditions are much more 

rapid than the generally estimated half-life, suggesting that with appropriate conditions, 

degradation can occur relatively fast.  

The Interstate Technology Regulatory Council (ITRC) – In Situ Bioremediation (ISB) 

Team published a guidance document that describes a systematic approach to ISB for CT in 

groundwater (ITRC, 2002). Removal of CT through ISB typically occurs through a reductive 

process whereby an electron donor is introduced into the subsurface. Reductive pathways for CT 

have been documented to occur primarily through direct reductive dechlorination, cometabolic 

reductive dechlorination, and cometabolic denitrification. CT found at silos may be in 

conjunction with nitrate contamination that serves as an electron acceptor during ISB of CT. 

ITRC’s ISB team guidance document describes regulatory concerns, provides a description of 
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treatability tests, and feasibility; and defines the contaminant’s pervasiveness, risks, sources, and 

site parameter criteria important to the evaluation of ISB for CT (Faris and ITRC, 2002).  

Cervantes et al (2004) found that addition of both humic acids and humic analogue 2,6-

anthraquinone disulphonate (AQDS) at sub-stoichiometric levels increased the first-order rate of 

conversion of CT up to 6-fold, leading to an increased production of inorganic chloride, which 

accounted for 40-50 % of the CT initially added.  Considerably less dechlorination occurred in 

sludge incubations lacking humic substances. The accumulation of a chlorinated ethene, 

perchloroethylene (up to 9 % of added CT), is also reported for the first time as an end-product 

of CT degradation.  A humus-respiring enrichment culture (composed primarily of a Geobacter 

sp.) derived from the granular sludge also dechlorinated CT, yielding products similar to the 

AQDS-supplemented granular sludge consortium. The results indicate that the formation of 

reduced humic substances by quinone-respiring microorganisms can contribute to the reductive 

dechlorination of CT (Cervantes et al., 2004). 

Field-Scale Biodegradation 

Devlin and Muller (1999) conducted a field experiment in which carbon tetrachloride 

(CT) was found to transform to chloroform (CF) and carbon disulfide (CS2) in a ratio of about 

2:1. The field experiment was conducted to assess the efficacy of a bioremediation scheme for 

treating CT in groundwater. The authors suggest that the 2:1 ratio may be a useful tool for 

distinguishing abiotic transformations from biodegradation in sulfate reducing environments 

where FeS is actively precipitated (Devlin and Muller, 1999). 

A field demonstration project (Dybas et al., 2002) was undertaken in which strain KC 

was introduced to an aquifer containing CT and nitrate, at Schoolcraft, MI. Intermittently, the 

following materials were added to maintain strain KC: inoculation, acetate, alkali and 

phosphorus. With subsurface pH adjustments, 60-80 % CT removal was achieved and strain KC 

was reportedly assimilated into the aquifer community (Dybas et al., 1998). 

Phanikumar and Hyndman (2003) examined the interplay between sorption and 

bioavailability with pulsed injection of nutrients based on a mechanistic model of microbially 

mediated reactive transport.  They considered two case studies involving the biodegradation of 

CT, as well as a chemically induced degradation system, to evaluate the effects of 

bioavailability.  The contaminant mass degraded per unit pumping was shown to be significantly 

higher for pulsed injection of substrates than with continuous injection.   
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Kirtland et al (2003) combined isotopic measurements in conjunction with traditional 

chemical techniques to assess in-situ biodegradation of trichloroethylene (TCE) and CT at the 

Savannah River Site, SC. Vadose zone chlorinated hydrocarbons, ethene, ethane, methane, O2, 

and CO2 concentrations were analyzed. 

1.1.2. Phytoremediation 

The fate of carbon tetrachloride (CT) during phytoremediation with poplar trees was 

assessed by examining the transpiration of CT from leaves, diffusion from soil, tree trunks, and 

surface roots, and accumulation of chloride ion in soil and plant tissues (Wang et al., 2004). 

Feedwater containing 12-15 mg/L CT was added to the field test beds planted with poplar, and 

over 99 % of the CT was removed. Microbial mineralization of CT was not enhanced in soils 

from the root zones as compared to unvegetated soils. Hence, the authors concluded that uptake 

and dechlorination of CT by plant tissues is likely the primary mechanism for phytoremediation 

by poplar (Wang et al., 2004).  Davis and Erickson (2002) have conducted a comprehensive 

review of the potential for phytovolatilization of fumigants including CT. 

1.1.3. Iron 

Chlorinated solvents in groundwater are known to undergo reductive dechlorination 

reactions with Fe (II)-containing minerals and with corroding metals in permeable-barrier 

treatment systems (Zhang et al., 2004). Balko and Tratnyek (1998) and Zwank et al (2005) have 

also reported abiotic degradation of CT with iron. 

1.2. Health Hazard of CT 
Chronic exposure to carbon tetrachloride (CT) at concentrations above the maximum 

contaminant level (MCL) could result in an estimated low to moderate increased lifetime risk for 

developing cancer (Prosperie et al., 2000). EPA's MCLs are chemical specific maximum 

concentrations allowed in drinking water delivered to the users of a public water system; they are 

considered protective of public health over a lifetime (70 years) of exposure at an ingestion rate 

of two liters per day. The setting of MCLs may also be influenced by available technology and 

economic feasibility. Although MCLs only apply to public water supply systems, they are used 

to help assess the public health implications of contaminants found in water from other sources 

(Prosperie et al., 2000). 
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CT tends to volatilize (move into the air) from tap water used for showering, bathing, 

cooking, and other household uses inside a home (McKone, 1987). Thus, people whose tap water 

is contaminated with CT can be exposed to it through ingestion, inhalation, or dermal contact 

(absorption through the skin) (Prosperie et al., 2000).  

Exposure to high concentrations of CT can cause liver, kidney, and central nervous 

system damage. If exposure is low and then stops, the liver and kidneys can repair the damaged 

cells and function normally again. The liver is especially sensitive to CT (Prosperie et al., 2000). 

Chloroform (CF) is found at approximately 50 % of all Superfund sites identified by the 

EPA. CF can cause cancer, and may damage the liver, kidneys, and endocrine and respiratory 

systems. CF may also cause birth defects and miscarriages (Frohman et al., 2004). 

1.3. Chlorinated Ethenes Contamination 
Chlorinated solvents have been widely used as degreasers in various industries and as 

fumigants in grain storage facilities. Past disposal methods and handling practices for chlorinated 

solvents have contributed to wide spread contamination in soil and groundwater. The largest use 

for tetrachloroethylene or perchloroethene (PCE) is in dry cleaning (Kovacs et al., 2001) and 

textile operations, accounting for an estimated 60 percent of all PCE use in the US in 1991 

(Sutfin, J.A. 1996). Drycleaning/textile processing accounted for 36% of PCE usage in the U.S. 

during 1998 (SCRD, 2007) and 12 % during 2004 (HSIA, 2005). Dry cleaning chlorinated 

solvents are the second most ubiquitous contaminants, next to petroleum hydrocarbons. In the 

United States, soil and groundwater at approximately 400,000 sites are contaminated with 

chlorinated solvents (Sutfin, J.A. 1996). PCE and trichloroethylene (TCE) were the fourth and 

second most frequently detected organic pollutants at U.S. National Priorities List (NPL) or 

Superfund sites, with PCE identified at 771 and TCE identified at 852 of the 1430 NPL sites as 

of September 1997 (US EPA, 1998a). EPA has planned to phase out the use of PCE as a dry 

cleaning solvent and all existing PCE dry cleaning machines in co-residential facilities will be 

prohibited in the U.S. after 2020 (US EPA, 2006). 

Morrison et al (2006) present the chemistry of the most commonly used chlorinated 

solvents, degradation pathways for these compounds, and forensic techniques available for 

source identification and age dating.  
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1.4. Chlorinated Ethenes Degradation 
When chlorinated solvents are released to soil, they will be subject to evaporation into the 

atmosphere, leaching into the groundwater, and sorption to soil. Biodegradation is nature's way 

of recycling wastes, or breaking down organic matter into nutrients that can be used by other 

organisms. This process can occur under aerobic and anaerobic conditions (Cupples et al., 2004). 

Table 1.2 to Table 1.4 present some of the important physical and chemical properties of PCE 

and its degradation compounds. The hydrogeologic environment significantly affects the fate and 

transport of chlorinated solvents in the subsurface. There are several physical, chemical, and 

biological mechanisms that affect the behavior of contaminants in the subsurface and they can be 

either destructive or non-destructive. Non-destructive fate and transport mechanisms are 

advection, sorption, dispersion, dilution by recharge, and volatilization. Destructive mechanisms 

are biological (primary growth substrate utilization, use as electron acceptor, and cometabolism) 

and abiotic (reductive dechlorination with metals).  

1.4.1. Biodegradation 

 Bioremediation, both natural and enhanced has proven to be a powerful approach for 

remediating chlorinated solvents, including PCE. In recent years, it has become apparent that 

biologically mediated degradation mechanisms may be important for chlorinated solvents; for 

example, iron sulfide may reduce PCE to acetylene (Haas and Wiedemeier, 2004). An anaerobic 

bacterium, coccoid Strain 195, reduces the toxic pollutants tetrachloroethene and trichloroethene 

(TCE) to nontoxic ethene gas (Maymo-Gatell et al., 1997). 

PCE is known to be degraded under anaerobic conditions (Cupples et al., 2004; Lee et al., 

1998). Since PCE is the electron acceptor in reductive dechlorination, this process is also called 

halorespiration. The dominant electron acceptors are O2, NO3, Fe3+, SO4
2+ and CO2 in that order. 

For reductive dechlorination to occur the above electron acceptors need to be depleted 

sufficiently to allow PCE to be utilized as an electron acceptor. It has been shown that 

chlorinated solvents are biodegraded via three different mechanisms: 

1. Reduction reactions (Electron Acceptor) where halorespiration is the only known 

mechanism that degrades PCE (Haas and Wiedemeier, 2004).  

2. Oxidation reactions (Electron Donor) by either aerobic respiration (DCE and VC) or Fe 

(III) reduction (DCE and VC) (Haas and Wiedemeier, 2004). 
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3. Cometabolism (TCE) (Haas and Wiedemeier, 2004). 

For many years anaerobic biological processes were reputed to be more sensitive than 

aerobic processes to toxic substances such as chlorinated aliphatic hydrocarbons (CAH) and thus 

a poor choice for treating water containing these compounds (Parkin, 1999). This was especially 

true for water containing PCE or TCE because vinyl chloride, a human carcinogen, is produced 

when these two compounds are degraded anaerobically. Aerobic treatment with organisms 

containing oxygenase enzyme systems, which could fortuitously degrade a wide variety of 

chlorinated aliphatics (but not PCE), was favored. Recently, however, several enrichments and 

organisms (Maymo-Gatell et al., 1997) have been isolated that will convert PCE and TCE into 

ethene and ethane, as shown by field data (Major et al., 2002). Because of this evidence, 

anaerobic processes are now considered a significant alternative treatment for CAH 

contamination. 

Mixtures of CEs 

Parkin (1999) studied the effect of mixtures of CAHs on biotransformation of individual 

organic compounds and the potential for a combined methanogen-iron (Fe(D)) system to 

improve CAH bioremediation. At the concentration ranges tested, the presence of a mixture of 

CAHs seems to decrease the rate of transformation of individual organics. However, there are 

important exceptions; in some cases a mixture of CAHs seems to facilitate transformation of an 

individual organic compound. Combination of an active methanogenic population with Fe(D) 

increases the rate and extent of transformation of carbon tetrachloride and chloroform. Results 

with PCE and 1, 1, 1-trichloroethane are less clear. 

1.4.1.1. Tetrachloroethene 

Chemical formula   Chemical Structure 

 C2Cl4     

 

 Ellis and Anderson (2003) reported that the anaerobic pathways of PCE degradation are 

less well understood (Figure 1.2). Only the first enzyme (tetrachloroethene reductive 
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dehalogenase) in this pathway has been isolated in Dehalospirillum multivorans. It also catalyzes 

the reductive dehalogenation of trichloroethene to cis-1, 2-dichloroethene (Neumann et al., 

1996). Other organisms implicated in anaerobic PCE biodegradation include Sporomusa Ovata 

(Terzenbach and Bluat, 1994), and Dehalobacter restrictus TEA (Wild et al., 1996). Most 

organisms studied convert trichloroethene to cis-1, 2-dichloroethene (DCE); Dehalococcoides 

ethenogenes 195 is reported to also produce the trans isomer of DCE. TCE can be reductively 

dehalogenated (through both cis and trans DCE) by the CO dehydrogenase from 

Methanosarchina thermophila (Jablonski and Ferry, 1992).  

The degradation rates of PCE and its intermediate compounds, vary depending on the 

specific microorganisms and the nutrients present in the site. Usually, the rate limiting step is the 

degradation of cis 1,2-DCE to vinyl chloride (Nakashima et al., 2002). Typical values of the 

first-order degradation constant and half-lives of PCE and its degradation compounds calculated 

for a site in Japan are given in Table 1.5. The HRC (Hydrogen Releasing Compounds such as 

lactates, provided by Regenesis Co) had a positive impact on the degradation rates. 

1.4.1.2. Trichloroethene 

 

Chemical formula   Chemical Structure 

 

 C2HCl3     

Trichloroethylene (TCE) is found in approximately 60 % of all Superfund sites identified 

by the EPA. Zhang et al (2006) found that a microbial culture reduced TCE to ethane through 

1,1-DCE as a dominant intermediate rather than cis-DCE, in the presence of ampicillin. They 

concluded that the culture contained at least two TCE-dechlorinating populations. 
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1.4.1.3. Dichloroethenes 

 

1,1-Dichloroethene: 

Chemical formula   Chemical Structure 

 C2H2Cl2     

 

Trans 1,2-Dichloroethene: 

Chemical formula   Chemical Structure 

 C2H2Cl2     

 

cis 1,2-Dichloroethene: 

Chemical formula   Chemical Structure 

 C2H2Cl2     

 

1.4.1.4. Vinyl Chloride 

Chemical formula  C2H3Cl     

Vinyl Chloride is found in approximately 60% of all Superfund sites identified by the 

EPA. 

 

Dehalococcoides/KB-1 

In-situ bioremediation is used as an alternative to such traditional methods as 

groundwater pump-and-treat for treating groundwater contaminant plumes. This involves 
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stimulating indigenous bacteria by adding electron donors and/or nutrients to the subsurface to 

increase bacterial growth yielding faster degradation rates. A variety of electron donors such as 

acetate, lactate (Cox et al., 2002; Ellis et al., 2000; McMaster et al., 2001; RTDF Update, 1997), 

methanol, ethanol (Cox et al., 2002), molasses and vegetable oils (Newman and Pelle, 2006) 

have been used for biostimulation of microbes that degrade chlorinated solvents (Grindstaff, 

1998, Harkness et al., 1999).  

Bioaugmentation with cultures containing Dehalococcoides is an effective means of 

remediating chlorinated ethenes contaminated sites where halorespiring organisms are not 

naturally present or abundant (Ellis et al., 2000; Major et al., 2002). Many studies have 

characterized reductively dechlorinating communities (Harkness et al., 1999; Flynn et al., 2000; 

Hohnstock-Ashe et al., 2001; Richardson et al., 2002; Dennis et al., 2003; Rossetti et al., 2003; 

Aulenta et al., 2004; Gu et al., 2004; Macbeth et al., 2004; Freeborn et al., 2005; Yang et al., 

2005; Duhamel and Edwards, 2006). Fermenters transform electron-donating substrates to 

hydrogen and acetate, which are then used by Dehalococcoides, often regarded as the primary 

halorespiring population. Sulfate-reducers, acetogens, and methanogens are competitors for 

available hydrogen. Yet perhaps these other populations assist in the dechlorination process, 

either directly or by providing essential micronutrients to halorespiring species. Duhamel and 

Edwards (2007) suggest that understanding the functions of various populations in mixed 

communities may explain why Dehalococcoides spp.are active at some sites and not others, and 

may also assist in optimizing the growth of bioaugmentation cultures, both in the laboratory and 

in the field. 

  Duhamel and Edwards (2007) studied the population dynamics of a mixed microbial 

culture dechlorinating trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), 1,2-dichloroethane 

(1,2-DCA), and vinyl chloride (VC) to ethene. Both Geobacter and Dehalococcoides populations 

grew during TCE dechlorination to cDCE, but only Dehalococcoides populations grew during 

further dechlorination to ethene. The cell yields for Dehalococcoides determined in this study 

were similar on an electron equivalent basis regardless of the chlorinated compound transformed. 

Geobacter population was likely responsible for approximately 80 % of the TCE dechlorinated 

to cDCE in this experiment.  

 Daprato et al (2007) enriched three anaerobic, dechlorinating consortia capable of 

degrading PCE to ethene. The 16S rRNA gene-based analyses demonstrated that enrichment 
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with PCE resulted in dechlorinating communities dominated by Dehalococcoides and 

Dehalobacter, and that up to four different PCE dechlorinating organisms coexisted in one 

consortium. Several halorespiring organisms dechlorinate PCE-to-cis-DCE (Daprato et al., 

2007), but for bioremediation to be successful, complete dechlorination to ethene must be 

achieved. Prior to this work (Daprato et al., 2007), only two Dehalococcoides strains had been 

isolated that are capable of halorespiration of DCEs to ethene, while using hydrogen as their 

electron donor (He et al., 2003; Sung et al., 2006). 

KB-1, a consortium of Dehalococcoides spp, has been proven to be effective both in the 

laboratory (Ibbini et al., 2006) and field (Major et al., 2002). These microbes are strictly 

anaerobic and require conditions such as dissolved oxygen (DO) less than 0.2 mg/L and redox 

potential less than -50 mV. KB-1 was purchased from SiREM, Ontario, Canada, for the work 

reported here and the work by Ibbini et al (2006) and Ibbini et al (2007). 

1.4.2. Phytoremediation 

The Remediation Technologies Development Forum (RTDF) was established in 1992 as 

a forum for government, industry and academia to collaborate on the development of cost-

effective hazardous waste characterization and treatment technologies. The Phytoremediation of 

Organics Action Team was established in 1997, as one of a number of RTDF Action Teams to 

further the RTDF’s goals. This team had published a report on the evaluation of 

phytoremediation for management of chlorinated solvents in soil and groundwater (RTDF, 

2005). Specifically this document is designed to briefly introduce phytotechnologies; identify 

potential applications of phytoremediation to control, transform, or manage chlorinated volatile 

organic compounds (CVOCs) in soil and groundwater; show how to conduct a preliminary 

assessment to determine if a particular site is a good candidate for phytoremediation; and 

describe monitoring options and show how to assess the effectiveness of phytoremediation at 

full-scale field implementation. 

A relationship, called the “transpiration stream concentration factor” (TSCF), which 

represents the translocation of groundwater contaminants to the plants’ transpiration stream, 

ranges from 0.02 to 0.75 for TCE (Burken and Schnoor 1998; Davis et al. 1999; Orchard et al., 

2000; and Ma and Burken, 2002). Hu et al (1998) found that it was necessary to consider a 25-

fold sorption to dry matter in poplar stems to account for the retardation in migration of TCE. 
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Separate experiments showed that TCE does not bind to cellulose, so that the retardation effect 

may be primarily from sorption to lignin, or dissolution in lipids (Davis et al., 1998). When 

alfalfa plants in soil systems were fed with TCE and trichloroethane (TCA), there was both 

transformation, in some cases, and transfer to the atmosphere.   

1.4.2.1. Rhizosphere Biodegradation  

 Rhizosphere degradation is the breakdown of organic contaminants within the 

rhizosphere – a zone of increased microbial activity and biomass at the root-soil interface. Plant 

roots secrete and slough substances such as carbohydrates, enzymes, and amino acids that 

microbes can utilize as a substrate. Contaminant degradation in the rhizosphere may also result 

from the additional oxygen transferred from the root system into the soil causing enhanced 

aerobic mineralization of organics and stimulation of co-metabolic transformation of chemicals 

(Anderson et al., 1993). 

The fate of TCE was investigated in laboratory settings (Walton and Anderson, 1990) by 

comparing degradation of TCE in both rhizosphere soil and non-vegetated soil collected from a 

TCE-contaminated site. The results showed that TCE degrades faster in rhizosphere soils. 

Anderson and Walton (1995) also reported that TCE mineralization was greater in soil rooted 

with the Chinese lespedeza, loblolly pine, and soybeans than in non-vegetated soil. 

Additional research on CVOC fate in the rhizosphere has shown varying results. 

Chlorinated pesticides were shown to have enhanced degradation in the rhizosphere (Shann, 

1995), and a loss of TCE and 1,1,1-trichloroethane (TCA) was observed in the rhizosphere of 

alfalfa (Narayanan et al., 1995). Higher numbers of methanotrophic bacteria, which have been 

shown to degrade TCE, were detected in rhizosphere soils and on roots of Lespedeza cuneata 

and Pinus taeda than in unvegetated soils (Brigmon et al., 1999). Orchard et al. (2000) detected 

TCE metabolites in the roots of hybrid poplar saplings suggesting rhizosphere degradation and 

concluded that the greatest degradation of TCE occurred in the rhizosphere. However, Newman 

et al., (1999) observed no degradation of TCE in the rhizosphere of hybrid poplars. Similarly, 

Schnabel et al. (1997) observed no degradation of TCE in the rhizosphere of edible garden 

plants. Studies have indicated that wetland vegetation and rhizosphere microbial communities 

can effectively treat chlorinated compounds (Dhanker et al., 1999; Bankston et al., 2002; 

Nzengung et al., 1999; and Kassenga, 2003). 
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 Eberts et al (2005) demonstrated in a field scale project, at a site in Fort Worth, Texas, 

that eastern cottonwood trees (Populus deltoides) delivered enough dissolved organic carbon to 

the underlying aquifer to lower dissolved oxygen concentrations and subsequently to initiate in 

situ reductive dechlorination of TCE. The depth to water in the aquifer was less than 3 m. The 

biodegradation rate constants for TCE increased up to 100-fold. Li et al (2005) determined the 

uptake of PCE and TCE by roots and shoots of ryegrass seedlings and found that it increases 

with time of exposure to the aqueous solution. 

1.4.2.2. Hydraulic Control 

A great deal of research has focused on the use of trees─poplar trees, in particular─to 

intercept shallow groundwater plumes (Wang et al., 1999; Jones et al., 1999; Thomas and 

Krueger, 1999; Tossell et al., 1998; Gordon, 1998; Newman et al., 1999; Compton et al., 1998; 

and Quinn et al., 2001). Most of these studies have shown that trees can extract large enough 

quantities of groundwater to depress the water table, locally inducing flow toward the trees. This 

depression can be sufficient to create a hydraulic barrier or hydraulic control. Hydraulic control 

mitigates potential risks by controlling offsite transport of CVOCs and providing more 

opportunity for the four mechanisms of phytoremediation (volatilization, rhizosphere 

degradation, plant degradation and phytoextraction) to remediate the CVOCs. Proper hydraulic 

control involves the selection and planting of vegetation to intercept and transpire large 

quantities of groundwater or surface water. 

1.4.3. Iron 

Chlorinated solvents in groundwater are known to undergo reductive dechlorination 

reactions with Fe (II)-containing minerals and with corroding metals in permeable-barrier 

treatment systems (Zhang et al., 2004). Several laboratory (Butler and Hayes, 1999; Butler and 

Hayes, 2001; Dries et al., 2004; Ebert et al 2006; Lee and Batchelor, 2002) and field studies 

(Wilkin et al., 2002) were conducted for using Zero-Valent Iron as permeable reactive barrier in 

the remediation of chlorinated ethenes. 

1.5. Health Hazard of CEs 
PCE inhalation has acute effects like irritation of the upper respiratory tract and eyes, 

kidney dysfunction, dizziness, headache, sleepiness and unconsciousness. The major effects from 
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chronic inhalation exposure to PCE are neurological effects, including sensory symptoms such as 

headaches, cognitive and motor neurobehavioral functioning and color vision decrements. It also 

causes reproductive effects such as spontaneous abortions and reduced fertility. It has increased 

risk of cancer and liver problems. Some of the health hazards of skin contact with PCE are skin 

irritation and eye irritation (Irwin, 1997). 

Exposure to TCE affects the central nervous system. At very high levels of exposure such 

as might occur in an enclosed space or during a spill, TCE can injure the liver and kidneys. TCE 

vapor in the air can irritate eyes, nose, and throat. TCE can cause cancer and may damage the 

nervous system, liver, and lungs. It may also cause adverse reproductive and developmental 

impacts, and damage to the cardiovascular and immune system. 

Exposure to high concentrations of 1,2-dichloroethylene vapor can cause humans to 

become dizzy and lightheaded and to pass out. Long-term exposure may damage the liver. 

Contact can irritate the skin and eyes. The vapor may irritate the nose, throat and lungs. 1,2-

Dichloroethylene is a flammable and reactive chemical and is a fire and explosion hazard. 

Acute exposure of humans to high levels of vinyl chloride via inhalation has resulted in 

effects on the central nervous system (CNS), such as dizziness, drowsiness, headaches, and 

giddiness. Vinyl chloride is reported to be slightly irritating to the eyes and respiratory tract in 

humans. Liver damage may result in humans from chronic exposure to vinyl chloride, through 

both inhalation and oral exposure. Inhaled vinyl chloride has been shown to increase the risk of a 

rare form of liver cancer (angiosarcoma of the liver) in humans. Vinyl chloride may damage the 

liver and immune and nervous systems (Frohman et al., 2004). 

1.6. Field Scale Remediation of PCE 
Harnessing the metabolic activity of halorespiring bacteria in contaminated aquifers is 

achieved through the introduction of electron donors that stimulate anaerobic organisms, which 

are capable of producing hydrogen. Hydrogen production is necessary because it is the only 

electron donor that Dehalococcoides can utilize. While direct hydrogen addition for the 

stimulation of Dehalococcoides and other halorespiring bacteria has been attempted (Newell et 

al., 2000), the injection of fermentable substrates (lactate, molasses, hydrogen releasing 

compound (HRC), emulsified vegetable oil, chitin, etc.) is a more common approach (Ellis et al., 

2000; Major et al., 2001; Adamson et al., 2003). The anaerobic microbial community enriched 
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by these fermentable substrates may include fermentative organisms that produce hydrogen and 

organic acids, dechlorinators that use the hydrogen (and in some cases organic acids), and other 

bacteria capable of utilizing hydrogen and organic acids (i.e., methanogens (Yang and McCarty, 

1998), sulfate reducers (Mazur and Jones, 2001), and iron reducers (Lu et al., 2001)). 

 In-situ bioremediation is used as an alternative to such traditional methods as 

groundwater pump-and-treat for treating groundwater contaminant plumes. This involves 

stimulating indigenous bacteria by adding electron donors and/or nutrients to the subsurface to 

increase bacterial growth and degradation rates. A variety of electron donors such as acetate, 

lactate (Cox et al., 2002; Ellis et al., 2000; McMaster et al., 2001; RTDF Update, 1997), 

methanol, ethanol (Cox et al., 2002), molasses and vegetable oils have been used for 

biostimulation of microbes that degrade chlorinated solvents (Grindstaff, 1998, Harkness et al., 

1999). A number of organic substrates such as benzoate and butyrate also support this process. 

Ethanol, lactate, and butyrate, which are fermented directly to hydrogen without the production 

of methane, may also promote dechlorination (Lee et al., 1997). 

 The use of inexpensive substrates reduces anaerobic bioremediation costs. Inexpensive, 

complex substrates such as molasses, a wastewater containing formate, acetate, propionate, 

cheese whey permeate (a waste product from the manufacture of cheese), corn steep liquor (an 

inexpensive product used for fermentation and that is produced by steeping corn in water), and 

the dissolved organic fraction of chicken manure were shown to support reductive dechlorination 

of PCE to VC in microcosm studies (Lee et al., 1997). Several bioremediation pilot scale studies 

(Abriola et al., 2005; Ellis et al., 2000; Major et al., 2002) and a physical-chemical remediation 

pilot study (Cox et al., 2002) have been conducted in the past in the United States. 

It appears that if a dechlorinating population is present at a site, almost any fermentable 

substrate can be effective in stimulating its activity. However, because of the variable responses 

to substrates by organisms from different sites, laboratory or small-scale field studies are 

necessary to confirm that a particular substrate will support dechlorination at the site. No 

substrate that reliably supports complete dechlorination at all sites has been identified to date. 

Monitored natural attenuation (MNA) has recently emerged as a viable groundwater 

remediation technology in the United States (Witt et al., 2002).  Witt et al (2002) examined the 

potential for MNA of PCE and TCE in groundwater and aquifer sediments at Dover Air Force 

Base (Dover, DE) test site.  Reductive dechlorination likely dominated in the anaerobic portion 
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of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous 

increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved 

chloride.  Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to 

below detection limits, presumably due to aerobic biotransformation processes.  Therefore, the 

contaminant and daughter product plumes present at the site appear to have been naturally 

attenuated by a combination of active anaerobic and aerobic biotransformation processes (Witt et 

al., 2002). Rectanus et al (2007) conducted experiments to determine if the indigenous organic 

carbon in aquifer sediments could support reductive dechlorination of chlorinated ethenes.   

 In this work, a biostimulation/bioaugmentation pilot scale design was developed and 

implemented for a PCE contaminated site in Manhattan, KS.  

1.7. Biostimulation/Bioaugmentation Design 

1.7.1. Biostimulation 

Biostimulation involves addition of nutrients such as oxygen (aerobic remediation) or 

hydrogen (anaerobic remediation) to the subsurface to degrade the contaminants (Regenesis, 

2003b). From its introduction in 1994, Oxygen Releasing Compounds (ORC™) have been used 

at 9,000 sites in the United States and in 20 countries. Similarly, Hydrogen Releasing 

Compounds (HRC™) have been used, since 1999, at 475 sites worldwide (Regenesis, 2003b). A 

fewer number of sites have used HRC, not only because of its shorter time on the market, but 

because there are less sites requiring “anaerobic management” relative to “aerobic management.” 

Nevertheless, when one looks at all the sites where electron donors have been applied, the 475 

sites treated with HRC™ represents a majority of the total number treated anaerobically 

(Regenesis, 2003b). 

Anaerobic bioremediation has been recognized in recent years as one of the primary 

attenuation mechanisms by which a number of contaminants can be contained and/or remediated. 

Contaminants amenable to anaerobic bioremediation include chlorinated solvents such as PCE 

and TCE, metals such as hexavalent chromium, and pesticides such as chlordane. Hydrogen-

releasing compound (HRC™) consists of soy-oil methyl esters and lactic acid (North et al., 

2001; Murray et al., 2001). The use of a variety of electron donors to accelerate natural 

attenuation is becoming a standard procedure. As the frequency of use of these protocols 

increases, certain issues are surfacing and becoming the subject of more intense examination. 
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One of the major issues is the phenomenon of incomplete dechlorination, such as the case of cis-

DCE appearing in concentrations higher than the parent materials and that it can persist. One or 

more of the following may happen: 1) unknown sources are providing a constant feed of parent 

material, 2) rates of degradation of parent compounds are faster than those of daughter 

compounds (“kinetic disparity”) leading to accumulation, and 3) differences in solubility from 

parent to daughter products make the latter more prevalent in the dissolved phase. Once these 

issues are examined, only then it is appropriate to search for valid inhibition phenomena; to that 

end we can cite both the biological explanation (absence of necessary microorganisms) and the 

lesser recognized geochemical explanation (elevated reduction of iron, which blocks electron 

flow to DCE) (Regenesis, 2003b). 

 In terms of solutions, with biological limitations one can bioaugment or, for both 

biological and/or geochemical limitations, if the pool of DCE is present without significant 

parent material, then a switch to aerobic conditions can be made. All of these solutions are 

“second tier,” because the very important conclusion is that the vast majority of sites displaying a 

sluggish pattern of DCE attenuation may simply need “more time and more electrons” 

(Regenesis, 2003b). 

North et al (2001) report that injection of a polylactate ester (HRC) into a plume of PCE-

contaminated ground water beneath a dry cleaning facility effectively changed the chemistry of 

the aquifer to an anaerobic and nutrient-rich environment, thus accelerating reductive 

dechlorination of chlorinated solvent compounds. In the core of the plume, PCE concentrations 

decreased by up to 99 % in the first year after injection of the HRC. Continued ground water 

monitoring indicated that more than one year after injection, the majority of the treated area 

remains anaerobic and PCE concentrations continue to decrease (North et al., 2001). HRC has 

been used as a slow release electron donor to enhance natural biological destruction of 

chlorinated solvents. Completed pilot tests show that HRC can effectively enhance the natural 

attenuation of chlorinated solvents with very efficient degradation rates, an obvious requirement 

for economic site cleanup (Murray et al., 2001). Enhanced bioremediation, using hydrogen 

release compound (HRCTM), was applied to a site in Japan contaminated with chlorinated solvents 

(Nakashima, 2002). Thirty-six days after HRC injection, the concentrations of PCE and TCE in 

groundwater at the downstream well decreased to some extent; however the concentrations of 

cis-1,2-DCE, trans-1,2-dichloroethylene (trans-1,2-DCE) and vinyl chloride (VC) increased. 
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After 78 to 107 days, concentrations of DCE and VC showed a decreasing trend, as well as PCE 

and TCE concentrations. After that, concentrations of all VOCs kept decreasing until the HRC in 

the subsurface was exhausted. The attenuation ratio of the PCE concentration at the downstream 

well reached 97 % to 99 % and that of TCE reached 80 to 93 % (Nakashima, 2002). 

Where practicable, complete coverage of the source and nearby areas with HRC will 

likely be more effective at mitigating impacts, than a barrier wall only design. In addition, the 

potential for the influx of untreated aerobic water near the plume margins should be evaluated to 

ensure adequate amounts of the treatment agent are injected in areas where fresh water influx 

may be significant. Given the apparent impact of a fresh water flux on the effectiveness of the 

HRC at creating favorable conditions, the economics of treating an area larger than the plume 

itself compared to the cost of potential multiple injections should be considered in designing an 

injection approach (Regenesis, 2003b). 

There are a number of advantages to using time-release strategies. Implementation of the 

appropriate time-release system can eliminate major capital and operational costs associated with 

mechanical systems, because it is delivered into the aquifer only once or twice a year. The use of 

simple, ubiquitous push-point injection technology makes application fast, directed, and 

minimally disruptive to site operations. Project design is simplified since there is no need for the 

design of aboveground treatment process and equipment. Since chlorinated hydrocarbon sources 

are difficult to locate, a continuous, highly diffusible series of organic substrates can increase the 

effectiveness of contact and biodegradation. The primary design issues are (1) amount of 

substrate required to support biodegradation of a given amount of contaminant and (2) number of 

delivery locations needed to effectively distribute electron donor within the contaminant plume 

(Regenesis, 2003b). 

Laboratory and field studies conducted by Borden (2003) have shown that injection of 

Edible Oil Substrate (EOS®) into the subsurface can provide an effective, low-cost alternative 

for the enhanced anaerobic bioremediation of chlorinated solvents, nitrate, perchlorate, acid mine 

drainage, and heavy metals. Many edible oils are insoluble in water and are only slowly 

biodegradable under anaerobic conditions. As a consequence, these oils can provide an 

inexpensive, slow-release source of organic carbon for aquifer bioremediation.                  

 Borden (2003) reported that at Altus Air Force Base (AFB), Oklahoma, a pilot-study was 

conducted to evaluate the suitability of EOS® injection for stimulating reductive dechlorination 
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of TCE. Historical releases of degreasing agents resulted in a 5000-ft long chlorinated solvent 

plume with TCE concentrations reaching 78 mg/L in the source area. Over the 13-month interval 

since EOS® injection, TCE declined from 1300 µg/L to below the detection limit (BDL) in the 

center injection well. In a well 20 ft down-gradient of the barrier, TCE had declined from 1,600 

µg/L to BDL, cDCE from 900 to 73 µg/L, with increases in VC from 440 to 1,770 µg/L and 

ethene from 6.9 to 510 µg/L. An analysis of total costs over a 30 year life cycle suggested that 

edible oil barriers may be a very cost effective alternative for controlling plume migration 

(Borden, 2003). 

1.7.2. Bioaugmentation 

Lookman et al (2007) successfully conducted a field test where ground water transfer 

from one site (showing complete natural reductive dechlorination of chlorinated ethenes to 

ethene) induced full reductive dechlorination at another site polluted with tetrachloroethene and 

its partial dechlorination products trichloroethene and cis-dichloroethene (cDCE). 

Weiss and Cozzarelli (2008) reviewed the experimental approaches and 

microbial/molecular methods for investigating the controls on microbially mediated degradation 

processes in contaminated aquifers. This paper discusses emerging technologies and recent state-

of-the-art studies that serve as models for integrating microbiological approaches with more 

traditional geochemical and hydrogeologic approaches to better understand the controls on 

contaminant fate. Weiss and Cozzarelli (2008) emphasize the need for characterizing the 

structure and function of the microbial populations at contaminated sites. Understanding the 

mechanisms responsible for biodegradation allows for the enhancement of these processes 

through an engineering approach. 

KB-1 (Consortium of Dehalococcoides) 

KB-1™ is a commercially-available dehalorespiring microbial culture that has been used 

at more than 20 sites in 10 states to improve the performance of PCE and TCE bioremediation 

for both source area and plume remediation in porous media and fractured rock environments.  

Major et al. (2002) and Cox et al. (2002) have reported that Dehalococcoides strains in KB-1™ 

can migrate in aquifers. The rate of migration is relatively slower than groundwater flow 

velocities. The extent of migration and activity of migrating cells is likely dependent on the 

distribution of the solubilized electron donor in comparison with chloroethenes. KB-1™ has 
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been demonstrated to work at high concentrations of PCE/TCE/cDCE and VC. KB-1™ is being 

used to enhance the disappearance of PCE and TCE in source areas. High sulfate concentrations 

may impact the activity of KB-1™ due to competition of sulfate reducing bacteria (SRB) for 

available electron donor and hydrogen. However, research has shown that bacteria in the KB-1™ 

consortia are able to out-compete SRB when PCE/TCE predominates. No inhibition was 

observed in moderately brackish water. Moderate concentrations of chloroform and 1,1,1-

trichloroethane can inhibit KB-1™ activity (Sirem, 2004b). 

Phylogenetic analysis of KB-1™ suggests that it consists predominantly of 

microorganisms that commonly inhabit subsurface environments, including many drinking water 

aquifers. The KB-1™ culture has not been genetically modified in any manner; it is simply an 

enrichment derived from naturally occurring bacteria found in soil and groundwater. Microbial 

screening has confirmed that the KB-1™ culture does not contain a number of known human 

pathogens. Introduction of KB-1™ to subsurface environments would not be expected to 

significantly alter subsurface microbial conditions, but would supplement the natural microbiota 

with bacteria, particularly Dehalococcoides that can promote the rapid and complete 

dechlorination of PCE and TCE to ethene. Following degradation of the chlorinated solvents, 

these bacteria (which respire chlorinated solvents) would become inactive. Furthermore, the 

sensitivity of this microbial culture to oxygen would prevent its spread into aerobic environments 

within aquifer systems. For field demonstrations/applications, the fate of the KB-1™ culture can 

be tracked using 16S RNA molecular profiling and using denaturing gradient gel electrophoresis 

(DGGE) analysis to confirm and monitor its distribution, transport, survival and attenuation at 

the subject site (Sirem, 2004a, b). 
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Figure 1.1. Stepwise reductive dechlorination of carbon tetrachloride to methane. 
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  Tetrachloroethene (PCE) 
         Dehalococcoides ethenogenes 195 
           Dehalospirillum multivorans 
                Sporomusa ovata 
            Dehalobacter restrictus TEA 
           Desulfitobacterium sp. PCE-S 
                        |  
                        | tetrachloroethene  
                        | reductive dehalogenase 
                        |  
                        v   
    +----------------- TCE --------------------------+  
    |         only D.ethanogenes 195                 | 
    |                   |                            | 
    | trichloroethene   | trichloroethene            | 
    | reductive         | reductive                  | 
    | dehalogenase      | dehalogenase               | 
    |                   |                            |  
    |                   |                            |  
    v                   v                            |  
cis-1,2-Di-       [trans-1,2-Di-                     | 
chloroethene      chloroethene]                      | 
    |                   |                            |  
    |                   |                            |  
    | dichloroethene    | dichloroethene             | trichloroethene  
    | reductive         | reductive                  | reductive  
    | dehalogenase      | dehalogenase               | dehalogenase  
    |                   |                            |  
    |                   |                            |  
    |                   v                            |  
    +----> Vinyl chloride                            | 
                 |                                   |  
                 | vinyl chloride                    |  
                 | reductive dehalogenase            | 
                 |                                   |    
                 v                                   |  
              Ethylene <-----------------------------+ 
                 | 
                 | 
                 V 
              To the 
         Acetylene Pathway 
 

Figure 1.2. PCE degradation products by various microorganisms and enzymes#.  

#(Ellis and Anderson, 2003). 
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Table 1.1. Physical and chemical properties# of CT and its degradation products.  

 

Property CCl4 CHCl3 CH2Cl2 CH3Cl 

Molecular weight 153.8 119.4 84.9 50.5 

Boiling point (°C) 76.5 62 40 -23.8 

Vapor pressure (mm Hg) at 25°C 115 195 447 4373 

Dimensionless Henry’s constant at 25°C 

(gas/liquid) 
1.24 0.15 0.09 0.36 

Density (gm/cc) at 25°C 1.6 1.48 1.32 0.92 

Solubility in water (g/L) at 25°C 0.8 8.1 
20.0 

(20°C) 

6.3 

Log Koc 2.62 1.64 1.3 1.4 

Log Kow  2.78 1.9 1.3 0.91 

Maximum Contaminant Level (MCL) in 

water (μg/L) 

(μM) 

 

5 

0.03 

 

100 

0.84 

 

5 

0.06 

 

NA 

 

  

# Faris and ITRC, 2002; Knox et al., 1993; Schwarzenbach et al., 1993; Spectrum Laboratories, 

2006; Verschueren, 1996. 
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Table 1.2. Physical and chemical properties# of PCE and its degradation products, TCE 

and VC.  

 

Property PCE TCE VC 

Molecular weight 165.83 131.40 62.5 

Physical state (at room temperature) Liquid Liquid Gas 

Color Colorless Colorless Colorless 

Melting point (°C) -22.4 -87.1 -153.80C 

Boiling point (°C) 121 86.7 -13.370C 

Vapor pressure at 25°C (mm Hg) 18.47 74 2580 

Density (gm/cc) 1.6227 1.465 0.916 

Henry’s law constant at 25°C 

(atm-m3/mol) 
0.018 0.01172 1.2 

Solubility in water at 25°C (mg/L) 150 136.6 1110 

logKow (L/kg)  25°C 

logKoc (L/kg)  25°C 

3.4 

[2.2-2.7] 

2.42 

[2.03-2.66] 

1.36 

[0.9-1.99]

Maximum Contaminant Level 

(MCLin water (μg/L) 

(μM) 

 

5 

0.03 

 

5 

0.04 

 

2 

0.03 

  

# ATSDR, 1997; ATSDR, 2004; Canada health online, 1992; ITRC, 2005; Knox et al., 1993; 

U.S. EPA, 1994. 
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Table 1.3. Values of the physical-chemical properties# of the dichloroethenes. 

 

Parameter 1,1-DCE trans 1,2-DCE cis 1,2 -DCE 

Molecular weight 96.95 96.95 96.95 

Physical state (at room temperature) Liquid Liquid Liquid 

Color colorless colorless colorless 

Melting point (°C) -122.6 -49.4 -81.5 

Boiling point (°C) 31.6 47.7 60.3 

Vapor pressure (mm Hg) at 20°C 500 265 180 

Density (gm/cc) 1.214 1.257 1.2837 

Henry’s law constant at 25°C  

(atm-m3/mol) 
0.026 0.0094 0.0041 

Solubility in water (mg/L) 2250 6300 3500 

logKow (L/kg)  25°C 

Koc (L/kg)  25°C 

1.84 

65 

2.09 

59 

1.86 

35 

Maximum Contaminant Level 

(MCL) in water (μg/L) 

(μM) 

 

7 

0.07 

 

100 

1.03 

 

70 

0.72 

 

# Gossett, 1987; ITRC, 2005; Knox et al., 1993; USACE, 2002. 
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Table 1.4. Values of the physical-chemical properties# of Methane, Ethene and Ethane  

 

Parameter Methane Ethene Ethane 

Molecular weight 16 28 30 

Physical state (at room temperature) Gas Gas Gas 

Color colorless colorless colorless 

Melting point (°C) -182.5 -169.4 -182.8 

Boiling point (°C) -164 -103.8 -88.2 

Vapor pressure (atm)  275 (at 15°C) 80 (at 15°C) 38 (at 21°C) 

Specific Gravity (Air = 1) 0.97 0.97 1.047 

Henry’s law constant at 25°C (atm-m3/mol) 0.72 0.21 0.54 

Water Solubility (mg/L) 22 (at 25°C) 131 (at 25°C) 26 (at 20 °C) 

Log Kow 1.09 1.13 1.32 

 

# Chemfinder, 2004; ChemIDPlus, 2004; Chemfinder, 2004; OSHA, 2003; SRC, 2005; 

Chemistry Daily, 2008; Concoa, 2008; Hudson, 2004; U.S. EPA, 2007. 
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Table 1.5. Calculated first-order degradation coefficient and half-life of PCE and its degradation 

compounds at a chlorinated solvents contaminated site in Japan#.  

 

Compound 
Natural Condition After HRC Injection 

Day 0 Day 107 Day 379 

First Order Degradation Constant 

PCE 0.15 1/year 55 1/year 55 1/year 

TCE 0.8 1/year 95 1/year 

 

75 1/year 

 

DCE 0.2 1/year 0.9 1/year 20 1/year 

VC - 0.12 1/year 200 1/year 

Half-life    

PCE 4.6 years 

 

4.6 days 

 

4.6 days 

 

TCE 0.87 years 2.7 day 3.4 day 

DCE 3.5 years 0.77 years 12.6 days 

VC - 5.8 years 1.3 days 

 
#Nakashima et al., 2002. 
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CHAPTER 2 - An Experimental Laboratory Study on 

Biostimulation of Carbon Tetrachloride Contaminated 

Groundwater 

2.1. Introduction 

In this work, the degradation of carbon tetrachloride (CT) was studied in a six-channel 

soil column system. The degradation of CT is mainly limited by the availability of electron 

donors. Hence, two different substrates were used in this study, to create the necessary reducing 

conditions favorable for CT transformation. Soil samples were collected at several depths in the 

channels to determine the vertical distribution of CT and degradation products. Headspace 

samples were analysed to check if any compounds diffused through the vadose zone into the gas 

phase above the soil surface. A tracer study was also conducted in the channels, at the beginning 

of the biodegradation study, to understand the flow pattern and the residence time distribution of 

the tracer. This information was used in the analysis of the fate of the CT that enters through the 

inlet. 

2.2. Materials and Methods 

2.2.1. Experimental System or Mesocosm 

A chamber was divided into six channels; each channel was 110 cm long, 65 cm high and 

10 cm wide. Channels 4, 5 and 6 were used for the CT study. The channels were filled with 

alluvial silty sand soil (< 10% silt) up to ~ 60 cm. The soil was collected from a site near a 

landfill in Riley County, Kansas in 1993 (Zhang, 1999). Alfalfa was grown in channels 5 and 6, 

while fescue grass was grown in channel 4. A pair of fluorescent tube lights (40 W) for each 

channel, placed at a height of 50 cm above the soil surface, provides the light source for the 

plants. The photosynthetically active radiation (PAR) at 40 cm from the soil surface (the average 

plant height) was about 160 μE/m2/s (measured by using a L1-188B Integrating Quantum 

Radiometer/Photometer) (Zhang, 1999). For further details on soil type and organic carbon 

content, see Secion 3.2.1. 
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The inlet solution was fed at 5 cm above the bottom of the channels (see Figure 2.1). 

Watering of plants started on November 5, 2003. During the initial period the plants were 

observed, without contaminants in the soil. Until March 11, 2004, only distilled water was fed 

into the channels and the plants were growing well. 

The contaminants were introduced starting from March 12, 2004. CT was introduced at a 

concentration of about 2 mg/L (~13 μmoles/L) in three channels, two of them with alfalfa plants 

and the other with fescue grass. The height of saturated zone in each channel was controlled by 

position of the end of each outlet tube (25 cm in this system). The volume of water in each 

channel corresponding to 25 cm of saturated zone is estimated to be 8.25 L, assuming a porosity 

of 0.3. Plants were harvested at the beginning of each month by cutting the top portion; after 

harvest, the plant height was approximately 10 cm. At the end of the month, the fescue grass and 

alfalfa grew to a height of approximately 50 cm and 70 cm, respectively. Initially, nicotine 

hemisulfate solution was sprayed, weekly, on channel 4 to destroy the pest aphids on the grass. 

Later, this pesticide solution was sprayed on all the channels. The pesticide solution was 

prepared by adding 10 mL of nicotine hemisulfate salt (40 % aqueous solution (w/v), Sigma, St. 

Louis, MO) to 500 mL of distilled water. From February 2007, 1% solution of potassium salt of 

a fatty acid was used as insecticide. After the initial preparation of inlet contaminant solution, 

100 mL of CT stock solution (~40 mg/L of CT) and 900 mL of distilled water were added every 

day.  

The amount of nitrogen, phosphorus and potassium (NPK) consumed by the plants and 

removed by harvesting since the beginning of the experiment, was computed. A fertilizer 

solution was prepared with required NPK and one liter of the solution was applied to the top soil 

of each channel. 

Even though plants were grown in the system, the study primarily focused on the 

saturated zone of the channels and not on rhizosphere effects. The plants served as a natural 

pump, evapotranspiring some of the contaminated water and thus, influencing the residence time 

and movement of the compounds in the channels. 

The flow rate of the contaminant solution inside the channel varied in a 24-hour period. 

Immediately after watering, the flow rate was maximum and at the end of a 24-hour period, the 

flow rate was minimum. Based on the bromide peak arrival time during the month of June 2004, 
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the flow rate was estimated to be approximately 98 cm/d (3.3 ft/d) for channel 4, 77.5 cm/d (2.6 

ft/d) for channel 5, and 88 cm/d (2.9 ft/d) for channel 6. 

There were five monitoring wells containing sintered alumina with polyethylene tubing 

for channel 6 through which groundwater samples could be collected from near the bottom of the 

channel (see Figure 2.1). The wells were placed at a distance of 17, 35, 60, 73 and 100 cm from 

the inlet. The depth of the wells was 60 cm and the bottom of each well was about 0.2 cm from 

the bottom of the channel. Wells were not installed in Channels 4 and 5. 

2.2.2. Inlet/Outlet Analysis 

After introducing the contaminant solution on March 12, 2004, the concentrations of the 

contaminants were analysed at the inlet and the outlet of the channels. A 10 mL sample was 

collected from the inlet tube at the entrance to each channel. A 10 mL sample was collected from 

the outlet of each channel. Samples were collected using a 10 mL syringe and transferred to a 25 

mL vial and closed with a mininert cap immediately. After shaking, the compounds in the 

sample were allowed to partition into the headspace and attain equilibrium. The headspace 

samples were analysed with a gas chromatograph (GC). 

2.2.3. Tracer Study 

A tracer study was conducted, using potassium bromide (KBr), to determine the 

residence time distribution of the contaminants which enter at the inlet. The corresponding 

volume of outlet liquid, was also measured because it varies with the plant size, and therefore, 

time of the month. The outlet liquid volume is a better parameter for estimating the tracer 

response because the time for peak of bromide concentration depends on the growth stage of the 

plants. In the tracer study, 150 mL of KBr solution, at a concentration of 100 mg/L (10.05 mg as 

bromide), was injected at the inlet of each channel through separating funnels, on June 4, 2004. 

Since the plants were harvested on June 1, 2004, the evapotranspiration was relatively small and 

consequently the volume of outlet liquid was relatively large. Samples were collected from the 

outlet at intervals of 3 hrs, 6 hrs, 12 hrs and 24 hrs on the first day and second day. On third and 

fourth day, two samples, at 5 hrs and 24 hrs, were collected. From then on, each day a sample 

was collected, for 14 days, and analysed for bromide concentration. The mean residence time for 

the bromide in a channel was estimated from the expression (Levenspiel, 1999) 
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where, 

τ = mean residence time, days 

Ci = concentration of bromide in the ith sample, mg/L 

ti = time at which the ith sample was collected, day 

Δti = Difference between (i+1)th time and ith time, days 

Some of the bromide will be transported upward through the soil column due to 

evapotranspiration by plants. Hence, some bromide gets trapped in the soil column above the 

primary flow path. The mass of bromide trapped in the soil is estimated based on the daily water 

uptake of plants and the concentration of the bromide in the outlet for that day. The composite 

concentration of the bromide entering the vadose zone in the upflow water is assumed to be the 

same as the composite concentration of bromide in the outlet liquid. When two or more samples 

were collected during the initial period of study, the average concentration of bromide was used 

to calculate the mass of bromide transported upward. 

2.2.4. Biostimulation by Glucose and Soy Oil Methyl Esters 

Since no degradation was observed after 100 days, supplements were added to stimulate 

growth of indigenous microbes, to create anaerobic conditions, and also for supplying hydrogen.  

Introduction of one liter of 0.2 % glucose solution (Dextrose, anhydrous, Fisher Chemicals, 

Fairlawn, NJ) as an electron donor into channel 5 (alfalfa grown on top) resulted in anaerobic 

conditions in the channel. The glucose solution was fed once every month starting from June 30, 

2004 and continued until February 2005 and once on June 27, 2006. From September 1, 2006 

until March 2007, 18 doses of cheese whey (1 mL in 1 L distilled water) were added to channel 5 

through the inlet. From October 1, 2004, one liter of 0.1 % emulsified soy oil methyl esters 

(SOME) was fed to channel 6 (alfalfa grown on top). SOME was sometimes injected in the wells 

instead of the inlet, since it tends to stay near the inlet. The glucose and cheese whey addition 

dates and SOME addition dates are listed in Table 2.1. The supplement solution was fed at the 

inlet, unless mentioned otherwise. Corn starch was fed, inadvertently, instead of glucose in 

December, January, and February as shown in Table 2.1. 
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2.2.5. Soil Sample Analysis 

After 96 days of exposure to CT solution, soil samples were collected, at a distance of 30 

cm from the inlet, at four different depths from the soil surface, viz. 0-8 cm, 12-20 cm, 22-30 cm 

and 34-42 cm, from all three channels fed with CT. The samples were collected with a soil core 

and iron rods of various lengths. Soil collected at each depth was transferred to a 25 mL vial and 

immediately closed with mininert cap and analysed with GC. The sample headspace was 

analysed for CT and degradation compounds and the concentration in the aqueous phase of the 

soil was estimated using a calibration curve and a mass balance (See section 2.2.5.1). The gas 

phase volume, available for partitioning, is obtained by subtracting the sum of the volumes 

occupied by water and soil from the total volume of the vial.  

The soil sample with the vial is dried in a vacuum oven (Thelco vacuum oven, Precision 

Scientific Co., Chicago, IL) at 80ºC for 24 hours and the dry weight of soil is determined (see 

Tables 2.6 and 2.8). The difference between the mass of vial with moist soil and dry soil yields 

the mass of water present in the soil sample. The difference between the mass of vial with dry 

soil and the tare mass of vial gives the mass of dry soil. 

 

Calculation of CT Concentration in Soil Samples 

The total mass of CT present in the soil sample initially is 

TMCT  = mds Cs1 + Vw Cw1 + Vg1 Cg1       … (2.2) 

where 

TMCT  = Total mass of CT 

mds  = mass of dry soil 

Cs1  = concentration of CT adsorbed to soil before partitioning into headspace 

Vw  = volume of aqueous phase 

Cw1  = concentration of CT in the aqueous phase 

Vg1  = volume of gas phase in the soil sample 

      w
b

ws Vmn −⎥
⎦

⎤
⎢
⎣

⎡
=

ρ
        … (2.3) 

n  = porosity of the soil = 0.3 (assumed) 

mws  = mass of wet soil 
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ρb  = bulk density of the soil = 1.6 gm/cc (assumed) 

Cg1  = concentration of CT in the gas phase of the soil sample 

Assuming equilibrium concentrations in all three phases of the soil sample, 

Cs1  = Kd,CT Cw1         … (2.4) 

Cg1  = Cw1 HCT         … (2.5) 

where 

Kd,CT  = partition coefficient of CT between soil organic matter and aqueous phase 

 = Koc * foc 

Koc  = partition coefficient of CT between organic matter and aqueous phase 

 = 417 L/kg 

foc = fraction of soil organic matter (see Table 2.9 for values for each channel) 

HCT  = dimensionless Henry’s constant of CT = 1.24 at 25˚C 

Rewriting Eqn (2.2) in terms of aqueous phase concentrations, using the relationships Eqns. (2.4) 

and (2.5) 

TMCT  = mds Kd,CT Cw1 + Vw Cw1 + Vg1 HCT Cw1 

or 

TMCT = Cw1 (mds Kd,CT + Vw + Vg1 HCT)     … (2.6) 

After transferring the soil sample to the vial, due to the available headspace, partitioning 

of compounds takes place. After partitioning, the total mass of CT is, 

TMCT = mds Cs2 + Vw Cw2 + Vg2 Cg2      … (2.7) 

12 25 g
b

ws
g VmV +⎥

⎦

⎤
⎢
⎣

⎡
−=

ρ
          … (2.8) 

Rewriting Eqn (2.7) in terms of gas phase concentrations, using relationships Eqns (2.4) 

and (2.

CT = mds Kd,CT Cg2/ HCT + Vw Cg2/ HCT  + Vg2 Cg2   … (2.9) 

CT = (Cg2 / HCT ) (mds Kd,CT + Vw + Vg2 HCT)    … (2.10) 

(2.10) y

5), 

TM

or 

TM

Since the total mass of CT is same before and after partitioning, equating Eqn (2.6) and 

ields Cw1 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
=

CTg1wCTd,ds

CTg2wCTd,ds2gC
1 H V  V  K m

H V  V  K m

CT
w H

C      … (2.11) 
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Since Cg2 is the concentration of CT analysed in GC, the aqueous phase concentration of 

CT in the soil samples can be obtained from E

aqueou o

rinated methanes’ 

concen

ber 

re, 

he 

eter.  

 

Series II, Wilmington, DE) equippe etector (FID) and a HP-1 column 

(Dimet

ood 

ay 

 the 

L 

nt 

qn (2.11). Using the same procedure as above, the 

s phase c ncentrations of CF, MC and methane can be obtained. 

A sorption study was also conducted to estimate the fraction of organic carbon content 

(foc) in the soil samples collected on day 151. After analyzing for the chlo

trations, the soil samples were spiked with 1 mL of PCE-CT standard mixture. The 

standard was prepared by injecting 10 μL of PCE liquid and 10 μL of CT liquid in a clean am

glass bottle of volume 4.2 liters. The concentrations of PCE and CT in the standard bottle a

therefore, 3.83 mg/L and 3.76 mg/L. One mL of this gas mixture is then spiked onto the soil 

samples and a control. The control was prepared with 5 gms of glass beads (3 mm diameter, 

Arthur H. Thomas Co., Philadelphia, PA) and 1 mL of distilled water. The organic carbon 

fraction (foc) is then estimated by mass balance. The above equations are used for estimating t

organic carbon fraction in the soil, with organic carbon fraction (foc) as the unknown param

2.2.6. Analytical Method 

Chlorinated compounds and methane were analysed using a gas chromatograph (HP 5890

d with a Flame Ionization D

hyl Polysiloxane matrix, 30 m x 0.53 mm, Agilent Technologies, Wilmington, DE). 

Hydrogen was the carrier gas. The injector temperature was set at 200˚C and detector 

temperature was set at 300˚C. Sample volume of 100 μL was injected in the column at 100˚C 

and run for 5 minutes. The run temperature was chosen based on the arrival time and g

separation of compounds. For higher temperatures, the compounds elute faster but the peaks m

be closer or even overlap. For lower temperatures, the separation of compounds is good but

elution will be slow. For the above conditions and gas flow rate of 1.5 mL/min, the elution times 

of CT, CF, MC and methane are approximately 1.4 min, 1.1 min, 0.85 min and 0.6 min. The 

detection limits for CT, CF, MC and methane, in the gas phase, with above conditions and 

instrument, are 4.3 μg/L (0.028 μM), 2.7 μg/L (0.023 μM), 1.5 μg/L (0.018 μM) and 0.12 μg/

(0.0075 μM), respectively. Trial samples of CT and reaction products were run with differe

temperatures 80˚C, 100˚C, 110˚C, and a temperature program with 35˚C for 5 min and ramp to 

245˚C at the rate of 10˚C/min. 
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For the tracer analysis, the outlet liquid collected was transferred to a 1.5 mL centrifuge 

tube and centrifuged at 10,000 rpm for 2 minutes. The supernatant was then transferred to a 2 

mL cle

S9-HC, 

he 

 

2.3. Results and Discussion 

The time and the outlet liquid volume at which peak concentration of bromide occurred 

and the residence time distributio own  Figure 2.2 and Table 2.2. The 

mean re

 

 bromide transported to vadose zone by upflow due to 

evapotr

 as follows: 

.3 L.  

m

1300/(0

associa .05 mg) 

 days. 

ar vial with white septum and threaded black cap (National Scientific Company, 

Rockwood, TN) for bromide analysis using an ion chromatograph (Dionex DX500 Series, 

Sunnyvale, CA) equipped with a conductivity detector and analytical column (Ionpac, A

4 x 250 mm). The eluent solvent was 9 mM sodium carbonate at a flow rate of 1 mL/min. T

elution times of chloride, bromide, nitrate and sulfate were approximately 6.3 min, 9.5 min, 11 

min and 18 min, respectively. The sample volume injected was 25 μL and each sample was run

for 20 minutes. 

2.3.1. Tracer Studies  

n for each channel, are sh  in

sidence time (MRT) was estimated from the residence time distribution of tracer in the 

channel (Levenspiel, 1999). The peak of bromide concentration in the outlet occurred between 

1.08 to 1.46 days corresponding to an outlet liquid volume of 1.1 L to 1.4 L and mean residence

time of 2.8 to 3.6 days.  

Table 2.3 presents the cumulative outlet liquid volume, mass of bromide eluted in the 

outlet, estimated mass of

anspiration and the total bromide accounted for by these processes and the recovery 

percentage. The amount of water present in the saturated zone can be calculated

Volume of the saturated zone  = 110 x 10 x 25 = 27,500 mL = 27.5 L 

Assuming a porosity of 0.3, the volume of water = 27.5 x 0.3 = 8.25 L 

However, the bromide elutes corresponding to an active liquid volume of ~ 1

The height of flow zone corresponding to the volu e of 1.3 L of water is 

.3*110*10) = 3.93 cm. There is some channeling, therefore, in the saturated zone 

ted with flow from the inlet to the outlet. The entire amount of bromide (10

introduced at the inlet was not recovered at the outlet because a portion of the solution is 

transported upward due to evapotranspiration and another portion is deposited in the saturated 

zone. The recovery ranges from 62 % to 74 %. The experiment was carried out for only 14
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The bromide was still eluting at low concentrations at the end of the experiment. In Table 2.4, 

the solution recovery is compared to the bromide recovery. A lower recovery is expected for the 

tracer when added as a pulse. 

The evapotranspiration in each channel varies over the monthly period due to harvesting 

at the beginning of each month. Because of this, the outlet liquid volume also varies and, 

conseq

of one 

2.3.2. Inlet/Outlet 

Figures 2.3 through 2.5 show the inlet CT, outlet CT and degradation compound 

concentrations for channels 4, 5 and 6. donor was added (channel 4, Figure 

2.3), th he 

une 30, 2004) until day 

236 (November 3, 2004). On days 266, 299 and 328, cornstarch suspension (1 L of 0.2 % w/v) 

 

ored 

12O6) 

e 

uently, the mean residence time of the compounds in the channel. Table 2.5 presents the 

variation for the daily outlet liquid volume, which was recorded every day throughout the 

duration of the experiment, for channels 4, 5 and 6. It varied from 0.9 L – 0.6 L for channel 4, 

0.9 L – 0.6 L for channel 5, and 0.9 L – 0.4 L for channel 6, from the beginning to the end 

month.   

 Where no hydrogen 

e outlet concentrations of the degradation compounds were small, during most of t

sampling events, and the concentrations of CT in the inlet and outlet were almost similar. There 

is no clear evidence that biodegradation was occurring in this channel. 

Figure 2.4 shows the CT degradation in the glucose treated channel. One liter of 0.2 % 

(w/v) glucose solution was added every month starting from day 110 (J

was added. Glucose solution was later added on day 837. Forty days after the first addition of 

glucose, the outlet CT started to decrease gradually and reached a low concentration (less than 2

μM) by day 230. Chloroform (CF) appeared, but never exceeded a concentration of 3 μM. 

Methylene Chloride (MC) was also detected but mostly remained less than 1 μM. Even after 

stopping the feeding of glucose on day 328, CT degradation continued. Glucose could be st

as polysaccharides and cell materials and released slowly to supply electron donor for 

dechlorination, while the starch provided a slow release source of glucose. To completely reduce 

one mole of CT to methane, 8 moles of electrons are needed. One mole of glucose (C6H

can, theoretically, supply 24 moles of electrons (Hutchinson, 2006; Shrout and Parkin, 2006) that 

can reduce 6 moles of CT. Total mass of CT fed in a month is 13 μM * 30 L = 390 μmoles. Th

mass of glucose necessary for degrading 390 μmoles of CT is 390/3 = 130 μmoles = 23.4 mg. In 
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each feeding, 2 gm or 2000 mg of glucose was added. All of the glucose fed may not be 

available for CT reduction since some of it may be washed out in the outlet, some may be used 

by other microorganisms, and some of it may be taken upward by evapotranspiration. Ass

that 10 % of glucose fed was used for reductive dechlorination of CT that would still provide 20

mg glucose or reduction power for 8 months of CT fed. 

As shown in Figure 2.4, the total chlorinated methanes (CMes) in the outlet dropped to 

about 2 μM by day 246 and remained at a lower concentr

uming 

0 

ation through day 500, when the values 

started  

n 

uring, was chosen. 

One lit

 

w 

50 

 of 

 

to increase most likely due to lack of hydrogen donor and carbon source. After about day

600, the outlet CT concentration was between 5 and 10 μM and the concentration of CF was 

mostly about 1 μM. Although the outlet CT concentration started to increase, it did not reach the 

inlet level. Glucose solution added on day 837 resulted in a decrease of outlet CT concentratio

until day 885. However, after the depletion of glucose, the outlet CT concentration increased 

again to the value of inlet CT. Continuous detection of CF and outlet CT concentration less than 

inlet CT concentration indicated on-going biodegradation in the channel. 

After the role of glucose was studied and understood well, it was decided to change the 

supplement in this channel. Cheese whey, a byproduct of cheese manufact

er of cheese whey solution, 0.1 % (v/v), was fed to this channel starting September 1, 

2006, day 903, and continued about every 10 days. Until March 18, 2007, 18 doses of cheese 

whey were injected. The outlet CT concentration started to decrease from day 965, almost 60

days from the beginning of cheese whey addition. From day 994 the outlet CT concentration 

remained between 2 to 5 μM. The outlet CT concentration did not decrease to low levels (belo

1 μM) as is the case with glucose, however, CF concentration was well below 2 μM. Cheese 

whey sugars consists primarily of lactose at a concentration of ~5 % (Ghaly et al., 2003). One 

mole of lactose (C12H22O11) can, theoretically, supply 48 moles of electron that can reduce 6 

moles of CT. Total mass of CT fed in a month is 13 μM * 30 L = 390 μmoles. The mass of 

lactose necessary for degrading 390 μmoles of CT is 390/6 = 65 μmoles = 22.2 mg. In each 

feeding, 1 mL of cheese whey was added that contains 5 % of lactose or 50 mg, i.e., about 1

mg in a month. This is approximately seven times the theoretical requirement for degradation

CT. All of the lactose fed may not be available for CT reduction since some of it may be washed

out in the outlet and some of it may be taken upward by evapotranspiration. Assuming that 10 % 

of lactose fed was used for reductive dechlorination of CT that would provide 15 mg lactose or 
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reduction power for only 68 % of a month supply of CT. Glucose appeared to be a better 

supplement than cheese whey for CT degradation under these conditions. However additional 

tests need to be conducted with different concentrations and time intervals of injection to b

understand the differences between the two supplements.  

Figure 2.5 shows the CT degradation pattern in the SOME fed channel. One liter of 0.1 %

SOME (v/v) was added every month starting from day 203

etter 

 

 (October 1, 2004) until day 445 (May 

31, 200

itt et al 

 

t of a month, 

the plan

se 

 be 

5). Outlet CT decreased to low levels within 40 days after the first dose of SOME 

addition, unlike the slow response in the glucose amended channel. CF and MC were formed but 

CF was not detected above a concentration of 2.7 μM. Similar results were observed by W

(2001) in a laboratory column study to evaluate the potential for intrinsic bioremediation of CT 

and related chlorinated methanes. Transient metabolites (CF and MC) were occasionally 

observed over the course of the study.  However, in other work, complete dechlorination of CT 

was reported in most microcosms at the end of a one-year study (Witt et al., 2001). 

In channel 6, MC increased and decreased regularly (see Figure 2.5). This may be due to

the variation of the mean residence time of the liquid in the channel. During the star

ts were harvested, and therefore, the evapotranspiration rate was less. In these days, most 

of the water flowed out and, therefore, the mean residence time was less. However, at the end of 

the month, when the plants were larger, the evapotranspiration rate was higher and the daily 

effluent volume was lower. This led to higher mean residence times and consequently, higher 

degradation of MC. In this channel, the inlet CT was not completely degraded as in the gluco

fed channel. The outlet concentration was below 1 μM until day 621 even after feeding was 

stopped on day 445. To completely reduce one mole of CT to methane, 2 moles of hydrogen are 

needed. SOME consists of linoleic, oleic, palmitic, linolenic and stearic fatty acids in that order 

of predominance. One mole of SOME with mean molecular weight 292.2 (Marion, 2007) can, 

theoretically, supply 16 moles of hydrogen that can reduce 8 moles of CT. Total mass of CT fed 

in a month is 13 μM * 30 L = 390 μmoles. The mass of SOME necessary for degrading 390 

μmoles of CT is 390/8 = 48.8 μmoles = 14.2 mg. In each feeding, 0.87 gm or 870 mg of SOME 

was added. All of the SOME fed may not be available for CT reduction since some of it may

washed out in the outlet and some of it may be taken upward by evapotranspiration and a part of 

it may be adsorbed to soil matrix and not available for reduction of CT. Assuming that 10 % of 
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SOME fed was used for reductive dechlorination of CT that would still provide 87 mg of SOME

or reduction power for 6 months of CT fed. 

It was assumed that SOME, being hy

 

drophobic and not soluble in water, may experience 

flow re

dded to 

 

), 

2.3.3. Well Samples  

The schematic of the channel  are shown in Figure 2.1. On day 

438 (M

d 

de 

 the channel may be nearly 

deplete

res 2.7 

 

strictions or adsorb to the soil organic matter at the initial portion of the channel and not 

be distributed very well along the length of the channel. Since, according to this assumption, 

electron donors were not as available beyond well 1 (most of the SOME appeared to stay 

between the inlet and the first well), a dose of SOME (100 mL of 1 % SOME (v/v)) was a

well 3 (60 cm from inlet) on day 445. After this addition, the total CMes in the outlet decreased 

and remained lower from day 550 to day 740, except for a couple of sampling dates. After day 

750, the substrates were most likely depleted and the concentration of CT started to increase at 

the outlet. However, it took up to day 825 for the concentration of CT in the outlet to rise above

10 μM, and the modest concentrations of CF and MC provided evidence for some ongoing 

biodegradation. SOME emulsion was again added on days 837, 957 (injected through well 2

990 (well 1) and 1020 (well 3). The concentration of CT decreased due to these supplement 

additions. 

and the monitoring wells

ay 24, 2005), the total chlorinated methanes (Total CMes) in channel 6 are shown as a 

function of position to decrease from ~12 μM to ~ 7 μM (Figure 2.6). Most of the CT decrease

in the initial portion of the channel. Chloroform was produced, but the concentration was less 

than 1.5 μM and remained at that value throughout the length of the channel. Methylene chlori

persisted in the channel and the outlet solution comprised mostly MC. Analysis of well samples 

on day 495 (July 21, 2005) revealed that the addition of SOME, to well 3 on day 445, led to 

considerable decrease of MC in the outlet (Figure 2.7). Figures 2.8 and 2.9 show that the 

concentrations remained low on days 590 and 614, respectively.  

By day 741 (March 22, 2006), the SOME stored/sorbed in

d and, therefore, the outlet CT increased (Figure 2.10). In the well samples, the 

concentration of total CMes in well 1 and well 2 were less, compared to well 3, in Figu

through Figure 2.10. The well samples may not be representative of the solution in the channel

that leads to the outflow. The channel was 10 cm wide but the samples were collected from 0.5 
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cm diameter wells, which are about 0.2 cm from the bottom of the chamber. The channeling may 

result in depletion of hydrogen donor along the flow path to the outlet. 

The wells were analysed on additional days but the results are not shown. For results on 

days 38

2.3.4. Soil Samples  

The mass of aqueous phase an raction, dry weight of soil, and the 

concen

The field capacity of sandy soil is in the range 0.04-0.08 cm3/cm3 (Morgan et al., 2001). 

Assum

ls 

l 

 and 

 channel 5 at the depths that were investigated. In channels 4 and 

6, at 37

collected on day 

r 

 

2, 395, 409, 460, 555, 644, 686, 712, 775, 804, 831, 864, 928 and 984 please see the 

supplement. 

d the moisture content f

tration of CT in soil samples collected on day 96, June 25, 2004, are presented in Tables 

2.6 and 2.7. The mass of aqueous phase increases with depth (Table 2.6) as expected, since the 

water diffuses through the vadose zone and evaporates through the soil surface, thus creating a 

gradient in moisture content. However, the mass of aqueous phase (channel 4 and 6, Table 2.6) 

and dry soil (Table 2.6) at depth 4 (34-42 cm) may be less than depth 3 because the soil sample 

below the saturated zone is usually wet and some of the collected soil drips while transferring to 

vial.  

ing the bulk density of soil in the channel is 1.6 g/cm3, the gravimetric field capacity of 

sandy soil is in the range 0.025-0.05 g/g. The moisture content of the soil samples from channe

4, 5, and 6 were in the range 0.02 to 0.17 on day 96 and 0.01 to 0.18 on day 151. The observed 

moisture content is greater than the minimum field capacity for sandy soil, except for the top soi

in channel 5; the values were 0.02 on day 96 and 0.01 on day 151. The moisture content in 

channel 5 in the soil samples were consistently lower than the values observed in channels 4

6 during all sampling events. 

CT was not detected in

 cm depth, the concentrations of CT are 1.37 and 0.47 μM (Figure 2.11). No reaction 

intermediates were detected since, prior to day 96, nutrients were not added. 

The moisture content and its fraction, and dry weight of soil for samples 

151, August 10, 2004, are presented in Table 2.8. A sorption study was also conducted to 

estimate the fraction of organic matter content (foc) in the soil samples. After analyzing fo

the chlorinated methanes’ concentrations, the soil samples were spiked with 1 mL of the 

PCE-CT standard mixture. The standard was prepared by injecting 10 μL of PCE liquid
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and 10 μL of CT liquid in a clean amber glass bottle of volume 4.2 liters. The 

concentrations of PCE and CT in the standard bottle are, therefore, 3.83 mg/L

mg/L. One mL of this gas mixture is then spiked onto the soil samples and a control. The

control was prepared with 5 gms of glass beads (3 mm diameter, Arthur H. Thomas Co., 

Philadelphia, PA) and 1 mL of distilled water. The foc is then calculated by a mass balance

and is listed in  

 

 and 3.76 

 

 

Table 2.9. Typically, the organic matter content is high at the surface of a vegetated soil 

due to f

ted in the soil samples from channels 4 and 5. In channel 6, the 

concen he 

8, 

2004. C

termediates 

analyze

 soil 

 

2.4. Conclusions 
Channeling occurs in the botto s leading to lower mean residence 

times fo

ill 

be longer, at the end of a month, than the peak time reported for the beginning of June 2004. 

oliage, and decreases with depth. This trend is observed in channels 5 and 6, but not the 

case with channel 4. For modeling the same soil system, Zhang (1999) has used a value of 1 % 

for foc.  

CT was not detec

trations were 0, 0.065, 0.089 and 0.166 μM with increasing depths (Figure 2.12). T

concentration of CT increases with depth and the inlet/flow regime concentration is ~13 μM. 

Figure 2.13 shows the concentration of CT in channels 4 and 6, on day 230, October 2

T was not detected in channel 5. The concentration of CT increases from 0 to 0.35 μM 

and 0.69 μM in channels 4 and 6. On day 354, no CT or intermediate products were detected in 

channels 5 and 6 (Figure 2.14), since CT is degraded (see Figures 2.4 and 2.5). 

Figures 2.15 through 2.19 show the concentrations of CT and reaction in

d on day 812, June 12, 2006 and on day 996, December 3, 2006. In general, the 

concentrations increased with depth; however, the samples collected even in the deepest

(saturated zone) did not have the same concentration as the flow regime at the bottom 5 cm of

the channel (which is ~ 20 cm below the deepest soil sample collected).  

m zone of the channel

r the tracer solution in the channels. Peak bromide concentration in the outlet occurred 

between 1.08 to 1.46 days corresponding to an outlet liquid volume of 1.1 L to 1.4 L, for the 

tracer study conducted immediately after harvesting plants. Since the outlet liquid flow rate w

be less at the end of a month cycle (when plants are fully grown), the expected peak time would 
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The maximum contaminant levels in drinking water are 0.03 μM for CT, 0.84 μM for CF 

and 0.06μM for MC. In channels 5 and 6, CT was below MCL during six and one sampling 

events 

as 

n 

bon tetrachloride (CT). However the 

pattern  the 

s 

 

me, 

ose fed channel, where the concentration of MC was similar irrespective of the 

time of  fed 

respectively, out of 83 sampling events. After the addition of supplements, CF was below 

MCL during 16 out of 60 sampling events from day 146 to day 1106 in channel 5 and MC w

below MCL during 46 out of 60 sampling events. After the addition of SOME, MC was below 

MCL during 5 out of 58 sampling events from day 226 to day 1106 in channel 6. The end point 

of MCL is usually a strict standard and, therefore, based on risk assessment, higher concentratio

of end point termed alternate cleanup level (ACL) may be permitted and used in field 

remediation (Anderson et al., 2004). The desired levels can be achieved by increasing the 

concentration of supplements and frequency of feeding. 

Supplements such as glucose, corn starch, cheese whey and SOME stimulated the 

indigenous microbes and helped in the degradation of car

 and rate of degradation of CT were different for different supplements. As a result,

degradation compound ratios were not the same in the glucose/corn starch/cheese whey and 

SOME amended channels. In both glucose and SOME fed channels, the degradation continued 

several days after stopping the feeding of supplements. The soil matrix and the microorganism

were able to store the supplements/degradation products of supplements and provide a long-term

source of carbon and hydrogen. This fact is very important in the design of remediation systems 

in field sites and it determines the frequency of supplement addition. Glucose was found to be a 

better supplement than cheese whey for CT degradation; however, further study is necessary to 

determine if the concentration and frequency of cheese whey addition can improve CT 

degradation.  

The outlet MC in SOME and CT fed channel depended on the mean residence ti

unlike the gluc

 month. Most of the degradation process took place in the initial portion of the SOME

channel where SOME was present, most likely due to flow restriction or sorption of SOME to 

soil organic matter. The concentration of MC was generally higher in the channel with SOME 

compared to the channel with glucose. In the soil sample analysis, CT was not detected in the 

vadose zone but found in the saturated zone in appreciable concentrations, in channels 4 and 6. 

This study demonstrated that the supplements glucose and SOME are effective substrates that 

can be added to CT contaminated groundwater to promote degradation of CT. 
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Figure 2.1. Schematic and cross section of a channel in the six-channel system. 
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Figure 2.2. Concentration of bromide in the outlet liquid vs cumulative outlet liquid volume for channels 4, 5 and 6. Inlet bromide 

concentration = 100 mg/L. 
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Figure 2.3. Inlet CT and outlet CT, CF, MC and methane concentrations for channel 4 (control). Water samples taken on indicated 

days after beginning (March 12, 2004) exposure. 
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Figure 2.4. Inlet CT and outlet CT, CF, MC and methane concentrations for channel 5. Water samples taken on indicated 

days after beginning (March 12, 2004) exposure. Glucose solution was added on days 110, 151, 173, 203, 236 and 837; corn 

starch on days 266, 299 and 328. Cheese whey was added on days 903, 911, 921, 932, 943, 956, 968, 976, 984, 993, 1004, 1019, 

1047, 1058, 1077, 1094 and 1111.  
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Figure 2.5. Inlet CT and outlet CT, CF, MC and methane concentrations for channel 6. Water samples taken on indicated days after 

beginning (3/12/2004) exposure. Soy Oil Methyl Esters (SOME) added on days 203, 236, 266, 299, 328, 359, 387, 415, 445 (well 3), 

837, 957 (well 2), 990 (well 1) and 1020 (well 3). 
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Figure 2.6. Variation of CT and degradation compounds with distance along channel 6 on day 438, 5/24/05. Soy Oil Methyl Esters 

(SOME) added on days 203, 236, 266, 299, 328, 359, 387 and 415. 
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Figure 2.7. Variation of CT and degradation compounds with distance along channel 6 on day 495, 7/21/05. Soy Oil Methyl Esters 

(SOME) added on days 203, 236, 266, 299, 328, 359, 387, 415 and 445 (well 3). 
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Figure 2.8. Variation of CT and degradation compounds with distance along channel 6 on day 590, 10/23/05. Soy Oil Methyl Esters 

(SOME) added on days 203, 236, 266, 299, 328, 359, 387, 415 and 445 (well 3). 
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Figure 2.9. Variation of CT and degradation compounds with distance along channel 6 on day 614, 11/16/05. Soy Oil Methyl Esters 

(SOME) added on days 203, 236, 266, 299, 328, 359, 387, 415 and 445 (well 3). 
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Figure 2.10. Variation of CT and degradation compounds with distance along channel 6 on day 741, 3/22/06. Soy Oil Methyl Esters 

(SOME) added on days 203, 236, 266, 299, 328, 359, 387, 415, 445 (well 3). 
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Figure 2.11. CT concentration in the soil samples of channels 4, 5 and 6, on  June 16, 2004, day 96.  Inlet concentration is ~ 13 μM. 

Soil samples were collected at a distance of 30 cm from inlet. 
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Figure 2.12. CT in channel 6 soil, as a function of depth from the surface of the soil, on day 151, August 10, 2004. CT was not 

detected in channels 4 and 5. Soil samples were collected at a distance of 57 cm from inlet. 
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Figure 2.13. CT concentration, as a function of depth from the soil surface, in the soil samples of channels 4 and 6, on day 230, 

October 28, 2004. Soil samples were collected at a distance of 65 cm from inlet. Inlet concentration is ~ 13 μM. CT was not detected 

in channel 5. 
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Figure 2.14. CT and methane concentration in channel 4 soil, as a function of depth from the surface of the soil, on day 354, March 1, 

2005. Soil samples were collected at a distance of 90 cm from inlet. CT and reaction intermediates were not detected in channel 5 and 

channel 6. 
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Figure 2.15. Chlorinated methanes (CMes) and methane profile, in channel 4 soil, as a function of depth from the surface of the soil on 

day 812, June 12, 2006; Methane concentrations are on right hand (secondary) y-axis. Soil samples were collected at a distance of 28 

cm (depths 4.5 cm and 16.5 cm) and 37 cm (depths 28.5 cm and 38.5 cm) from inlet. 
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Figure 2.16. Chlorinated methanes (CMes) and methane profile, in channel 5 soil, as a function of depth from the surface of the soil on 

day 812, June 12, 2006; Methane concentrations are on right hand (secondary) y-axis. Soil samples were collected at a distance of 12 

cm from inlet. 
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Figure 2.17. Chlorinated methanes (CMes) and methane profile, in channel 6 soil, as a function of depth from the surface of the soil on 

day 812, June 12, 2006; Methane concentrations are on right hand (secondary) y-axis. Soil samples were collected at a distance of 12 

cm from inlet. 
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Figure 2.18. CMes and methane profile, in channel 5 soil, as a function of depth from the surface of the soil on day 995, December 3, 

2006. Soil samples were collected at a distance of 26 cm from inlet. 
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Figure 2.19. CMes and methane profile, in channel 6 soil, as a function of depth from the surface of the soil on day 995, December 3, 

2006. Soil samples were collected at a distance of 12 cm from inlet. 
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 Table 2.1 Supplements feeding history for channels 5 and 6. 

 

Date Day Channel 5 Channel 6 

2004    

June 30 110 G  

August 10 151 G  

September 1 173 G  

October 1 203 G S 

November 3 236 G S 

December 3 266 CS* S 

2005    

January 5 299 CS* S 

February 3 328 CS* S 

March 6 359  S 

April 3 387  S 

May 1 415  S 

May 31 445  S (well 3)# 

2006    

June 27 837 G S 

September 1 903 CW  

September 9 911 CW  

September 19 921 CW  

September 30 932 CW  

October 11 943 CW  

October 24 956 CW  

October 25 957  S (well 2)# 

November 5 968 CW  

November 13 976 CW  

November 21 984 CW  
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Date Day Channel 5 Channel 6 

November 27 990  S (well 1) 

November 30 993 CW  

December 17 1004 CW  

December 26 1019 CW  

December 27 1020  S (well 3) 

2007    

January 23 1047 CW  

February 3 1058 CW  

February 11 1066 CW  

February 22 1077 CW  

March 11 1094 CW  

March 28 1111 CW  

April 12 1126 CW  

April 22 1136 CW  

 

Key: G - Glucose; CS – Corn Starch; CW – Cheese Whey; S – SOME or Soy Oil Methyl Esters.  

* From December 3, 2004 to February 3, 2005, Corn Starch was added instead of glucose, 

inadvertently.  
# On day 445, May 31, 2005, 100 mL of 1 % SOME was injected into well 3 of channel 6, 

through nylon tubing; the solution was fed near the bottom of the channel. 



 

 

 

 

Table 2.2 Tracer peak concentration in outlet and mean residence time for channels 4, 5 and 6. 

 

Channel Volume of 

outlet liquid 

(L)* 

Peak bromide 

concentration 

time (days)* 

Bromide peak 

concentration in 

outlet liquid (mg/L)

Mean 

residence 

time (days)# 

4 1.095 1.125 3.41 3.6 

5 1.375 1.42 2.86 3.4 

6 1.375 1.25 4.56 2.8 

 

*Values are the liquid volume and residence time associated with the peak concentration. 
# Mean residence time was estimated from the residence time distribution (RTD) model. 
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Table 2.3 Mass balance for tracer study in channels 4, 5 and 6, for the 14 day period. 

 

Channel Cumulative 

volume of outlet 

water (L) 

Cumulative water 

uptake by plants 

(L) 

Bromide in outlet 

liquid (mg) 

Bromide trapped in 

soil by upflow* (mg) 

Total bromide# 

accounted (mg) 

Percent 

recovery (%)

4 10.11 4.744 5.26 2.20 7.46 74 

5 11.97 2.285 5.42 0.82 6.24 62 

6 10.09 3.271 5.50 1.85 7.35 73 

 

*Estimated based on the assumption that the bromide concentration in the upflow due to evapotranspiration is the same as that in the 

outlet liquid for a particular day. 
#The mass of bromide added at the inlet was 10.05 mg. 
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Table 2.4. Bromide recovery vs solution recovery in channels 4, 5 and 6, for the 14 day period, from June 4, 2004 to June 18, 

2004. 

 

Channel Volume of outlet liquid 

over total liquid fed (L/L) 

Solution 

recovered (%) 

Bromide in outlet liquid 

(mg) out of total 10.05 mg 

Bromide 

recovered (%) 

4 10.11/14.84 68 5.26 52 

5 11.97/14.25 84 5.42 54 

6 10.09/13.36 76 5.50 55 
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Table 2.5. Effect of evapotranspiration on the residence time of compounds in channels 4, 5 and 6; Estimated from data in 

June 2004. 

 

Channel Variation in the daily exit 

liquid volume (L/day) for 

1 month period 

Volume of exit liquid 

for peak concentration 

of tracer (L) 

Peak 

time 

(days) 

Estimated variation in the time for the volume of 

liquid (corresponding to peak bromide concentration) 

to exit at the start and the end of a month (days)* 

4 0.8-0.6 1.095 1.125 1.4-1.8 

5 0.9-0.6 1.375 1.42 1.5-2.3 

6 0.8-0.4 1.375 1.25 1.7-3.4 

 

*This value is obtained by dividing the volume of exit liquid corresponding to peak concentration by the volume of liquid collected at 

the outlet each day, at the beginning and the end of June 2004. For example, for channel 4, the time taken for collecting 1.095 L of 

liquid at the outlet in the beginning of June 2004 is 1.095/0.8 = 1.4 days and similarly, the time taken for collecting 1.095 L of liquid 

at the outlet at the end of June 2004 is 1.095/0.6 = 1.8 days. 

 

 



 

 

Table 2.6. Mass of aqueous phase, moisture content fractions, and dry weight of soil in the 

soil samples collected on day 96 from channels 4, 5 and 6. Soil samples were collected at a 

distance of 30 cm from inlet. 

 

 Depth (cm) 4 5 6 

Mass of 

aqueous phase 

(gm) 

0-8 0.646 0.0847 0.556 

12-20 1.301 0.2248 1.1177 

24-32 1.2986 0.2 1.2941 

34-42 1.0876 0.6138 1.1905 

 Depth (cm) 4 5 6 

Moisture 

content fraction 

(w/w) 

0-8 0.11 0.02 0.17 

12-20 0.15 0.05 0.15 

24-32 0.16 0.04 0.16 

34-42 0.17 0.11 0.17 

 Depth (cm) 4 5 6 

Mass of dry soil 

(gm) 

0-8 5.0123 4.8131 2.7889 

12-20 7.2423 4.6755 6.2645 

24-32 6.9205 5.3338 6.6048 

34-42 5.4111 5.1084 6.0009 
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Table 2.7. Concentration of CT in the soil samples of channels 4, 5 and 6, collected on June 

16, 2004, day 96.  Inlet concentration ~ 13 μM. Soil samples were collected at a distance of 

30 cm from inlet. 

 

Sample Depth (cm) 
Concentration of CT (μM) 

Channel 4 Channel 5 Channel 6 

1 0-8 0.00 0.00 0.00 

2 12-20 0.00 0.00 0.00 

3 24-32 0.00 0.00 0.00 

4 34-42 1.4 0.00 0.47 
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Table 2.8. Mass of aqueous phase, moisture content fractions, and dry weight of soil in the 

soil samples (day 151) collected from channels 4, 5 and 6. Soil samples were collected at a 

distance of 52, 57 and 57 cm from inlet for channels 4, 5 and 6 respectively. 

  

 

 Depth (cm) 4 5 6 

Mass of 

aqueous phase 

(gm) 

0-8 0.7775 0.0196 0.7136 

12-20 0.8195 0.197 0.9969 

24-32 0.9443 0.561 1.0036 

34-42 0.7958 0.6056 1.0857 

 Depth (cm) 4 5 6 

Moisture 

content fraction 

(w/w) 

0-8 0.18 0.01 0.14 

12-20 0.13 0.03 0.14 

24-32 0.14 0.08 0.15 

34-42 0.13 0.09 0.15 

 Depth (cm) 4 5 6 

Mass of dry soil 

(gm) 

0-8 3.5984 2.7366 4.406 

12-20 5.3886 5.4419 6.3735 

24-32 5.732 6.2972 5.9163 

34-42 5.1985 6.3515 6.3307 
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Table 2.9. Fraction of organic matter content (as %) in CT channel soil samples (day 151). 

 

Sample Depth (cm) 4 5 6 

1 0-8 0.55 0.44 0.34 

2 12-20 0.25 0.63 0.48 

3 24-32 0.45 0.66 0.37 

4 34-42 0.47 0.75 0.27 



 

 

CHAPTER 3 - An Experimental Laboratory Study on 

Bioremediation of Tetrachloroethene Contaminated Groundwater 

3.1. Introduction 
In this work, the degradation of tetrachloroethene (PCE) was studied in a six-channel soil 

chamber system. The degradation of PCE is mainly limited by the availability of electron donors. 

Two different substrates were used in this study, to create the necessary reducing conditions 

favorable for PCE transformation. Soil samples were collected at several depths in the channels 

to determine the vertical distribution of PCE and degradation products. Headspace samples were 

analysed to check if any compounds diffused through the vadose zone to the soil surface. A 

tracer study was also conducted in the channels, at the beginning of the biodegradation study, to 

understand the flow pattern and the residence time distribution of the tracer. This information 

was used in the analysis of the fate of the PCE that enters at the inlet. 

3.2. Materials and Methods 

3.2.1. Experimental System or Mesocosm 

The experimental system consisted of six independent channels that were constructed 

with steel bottoms, side panels, and end panels. Each channel was 110 cm long, 10 cm wide and 

65 cm high with soil depth of 60 cm. The channels were packed with alluvial silty sand soil (less 

than 10 % silt) collected near the Riley County landfill in Riley County, Kansas. This soil system 

was used for contaminant fate studies previously (Zhang, 1999). Channels 1, 2 and 3 were used 

for the PCE study. Alfalfa was grown in channels 1 and 2, while fescue grass was grown in 

channel 3 (Figure 3.1). The channels were filled with alluvial silty sand soil (< 10% silt) up to ~ 

60 cm. The soil was collected from a site near a landfill in Riley County, Kansas in 1993 (Zhang, 

1999). Soils were collected from three different soil zones and filled in the channels. The organic 

carbon contents of the soil collected from the field are 1.8% in the top depth (0-15 cm), 1.0% in 

the middle depth (15-40 cm), and 0.3% in the bottom depth (below 40 cm). The types of soil 

collected from the field are 90% sand and 10% silt in the top depth, 91.5% sand and 8.5% silt in 
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the middle depth, and 96% sand and 4% silt in the bottom depth (below 40 cm) (Narayanan, 

1994). 

Alfalfa was grown in channels 5 and 6, while fescue grass was grown in channel 4. A 

pair of fluorescent tube lights (40 W) for each channel, placed at a height of 50 cm above the soil 

surface, provides the light source for the plants (Figure 3.1). The photosynthetically active 

radiation (PAR) at 40 cm from the soil surface (the average plant height) was about 160 μE/m2/s 

(measured by using a L1-188B Integrating Quantum Radiometer/Photometer) (Zhang, 1999). 

The inlet water was fed at 5 cm above the bottom of the channels (see Figure 2.1). Watering of 

plants started from November 5, 2003. During the initial period the plants were observed, 

without contaminants in the soil. Until March 12, 2004, only distilled water was fed into the 

channels and the plants were growing well. 

The contaminant (PCE) was introduced starting from March 12, 2004 at a concentration 

of about 2 mg/L (~12 μmoles/L) in three channels, two of them with alfalfa plants and the other 

with fescue grass. The height of saturated zone in each channel was controlled by the vertical 

position of the end of each outlet tube (25 cm in this system). The volume of water per channel 

corresponding to 25 cm of saturated zone is estimated to be 8.25 L, assuming a porosity of 0.3. 

Plants were harvested at the beginning of each month by cutting the top portion; after harvest, 

the plant height was approximately 10 cm. At the end of the month, the fescue grass and alfalfa 

grew to a height of approximately 50 cm and 70 cm, respectively. 

Initially, nicotine hemisulfate solution was sprayed, weekly, on channel 3 to destroy the 

pest euphids on the grass. Later, this pesticide solution was sprayed on all the channels. The 

pesticide solution was prepared by adding 10 mL of nicotine hemisulfate salt (40 % aqueous 

solution (w/v), Sigma, St. Louis, MO) to 500 mL of distilled water. From February 2007, 1 % 

solution of potassium salt of a fatty acid was used as insecticide. 

The amount of nitrogen, phosphorus and potassium (NPK) consumed by the plants and 

removed by harvesting since the beginning of the experiment, was computed. A fertilizer 

solution was prepared with required NPK and one liter of the solution was applied to the top soil 

of each channel. 

After the initial preparation of inlet contaminant solution at 2 mg/L it was maintained by 

adding 100 mL of ~40 mg/L PCE stock solution (prepared from PCE 99 % purity, Sigma-

Aldrich, St. Louis, MO)) and 900 mL of distilled water, everyday. This stock solution was 
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necessary to maintain approximately 2 mg/L in the inlet solution to each channel. As the inlet 

solution flows out of the bottle, the volume of the headspace in the inlet bottle increases, and air 

is drawn into the inlet bottle through a needle provided at the top of the inlet bottle. 

Approximately one L of air enters the inlet bottle in the course of a day and the PCE 

concentration in the headspace is maintained by mass transfer of PCE from the liquid phase. 

Because of the loss of PCE to the gas phase, the inlet concentration of PCE into the channels is 

not constant in a 24-hour period. However, for each day, the variation in the inlet PCE 

concentration is almost the same. The dimensionless Henry’s constant of PCE at room 

temperature (25°C) is 0.72. There is a loss of PCE while adding 1 L of water and contaminant 

solution the next day because one liter of gas phase leaves the inlet bottle. 

Even though plants were grown in each channel, the study primarily focused on the 

saturated zone of the channels and not on rhizosphere effects. The plants served as a natural 

pump, evapotranspiring some of the contaminated water and thus, influencing the residence time 

of the compounds in the channels. 

The flow rate of the contaminant solution inside the channel varied in a 24-hour period. 

Immediately after watering, the flow rate was maximum and at the end of a 24-hour period, the 

flow rate was minimum. Based on the bromide peak arrival time during the month of June 2004, 

the flow rate was estimated to be approximately 37 cm/d (1.2 ft/d) for channel 1, 100 cm/d (3.3 

ft/d) for channel 2, and 79 cm/d (2.6 ft/d) for channel 3. 

There were five monitoring wells containing sintered alumina with polyethylene tubing 

for channel 1 and glass tubes with fritted glass at the bottom along the length of channel 2 

through which groundwater samples could be collected from near the bottom of the channel (see 

Figure 2.1). In channel 1, the wells were placed at a distance of 13, 35, 60, 75 and 100 cm from 

the inlet. In channel 2, the wells were placed at a distance of 12, 32, 59, 77 and 100 cm from the 

inlet.  

3.2.2. Inlet/Outlet Analysis 

After introducing the contaminant solution on March 12, 2004, the concentrations of the 

contaminants were analysed at the inlet and the outlet of the channels. Ten mL samples were 

collected from the inlet tube at the entrance to each channel and from the outlet of each channel. 

Samples were collected using a 10 mL syringe and transferred to a 25 mL glass vial (22 mL 
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nominal volume, Supelco, Bellefonte, PA) and closed with a mininert cap immediately. The vials 

were shaken manually and the compounds in the sample were allowed to partition into the 

headspace and attain equilibrium concentrations. The headspace samples were analysed with a 

gas chromatograph (GC). 

3.2.3. Tracer Study 

A tracer study was conducted, using potassium bromide (KBr), to determine the 

residence time distribution, the time of the bromide peak at the outlet, and the corresponding 

volume of outlet liquid. The outlet liquid volume, on a particular day, depends on the plant size, 

and varies with the time of the month. The outlet liquid volume is a better parameter for 

estimating the tracer response because the time for peak of bromide concentration depends on the 

growth stage of the plants. In the tracer study, 150 mL of KBr solution, at a concentration of 100 

mg/L (67 mg/L as bromide), was injected at the inlet of each channel through separating funnels. 

Samples were collected from the outlet after 3 hrs, 6 hrs, 12 hrs and 24 hrs on the first day and at 

the same times on the second day. Since the inlet solution level was higher after daily watering, 

the flow rate is also higher at the beginning of a day. As the head decreases, the flow rate 

decreases and becomes smaller near the end of the 24-hour period. On the third and fourth days, 

two samples, at 5 hrs and 24 hrs, were collected. From then on, each day a sample was collected, 

for 14 days, and analysed for bromide concentration. The mean residence time for the bromide in 

a channel is estimated from the expression (Levenspiel, 1999) 

∑
∑

Δ

Δ
=

ii

iii

tC
tCt

τ          ….(3.1) 

where, 

τ = mean residence time, days 

Ci = concentration of bromide in the ith sample, mg/L 

ti = time at which the ith sample was collected, day 

Δti = Difference between (i+1)th time and ith time, days 

Some of the bromide will be transported upward through the soil column due to 

evapotranspiration by plants. Hence, some bromide gets trapped in the unsaturated zone. The 

mass of bromide trapped in the soil is estimated based on the daily water uptake of plants and the 

concentration of the bromide in the outlet for that day. The daily composite concentration of the 
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bromide moving up into the vadose zone in the evapotranspired water is assumed to be the same 

as the daily composite concentration of bromide in the outlet liquid. When two or more samples 

were collected, on a day, during the initial period of study, the average concentration of bromide 

was used to estimate the mass of bromide transported upward. 

3.2.4. Biostimulation by Glucose, Corn Starch and Soy Oil Methyl Esters 

Since no degradation was observed after 100 days of introduction of the contaminant, 

supplements were added to stimulate growth of indigenous microbes, to create anaerobic 

conditions, and also for supplying hydrogen by fermentation. Introduction of 100 mL of 2 % 

(w/w) glucose solution (Dextrose, anhydrous, Fisher Chemicals, Fairlawn, NJ) as an electron 

donor into channel 2 (alfalfa grown on top) resulted in anaerobic conditions in the channel. The 

glucose solution was fed once every month starting from June 30, 2004 and continued until 

February 2005 and intermittently on several occasions until January 1, 2007. From October 

2004, the same mass of glucose (2 g in one liter) was fed over a longer period of time to 

distribute it more efficiently.  Totally, 12 doses of glucose solution were added. Corn starch was 

fed, inadvertently, instead of glucose on days 266, 299, 328 and 522. From October 1, 2004, one 

liter of 0.1 % emulsified soy oil methyl esters (SOME) was fed to channel 1 (alfalfa grown on 

top). SOME was sometimes injected in the wells instead of the inlet, since it tends to stay at the 

inlet due to its negligible solubility in water (SoyGold MSDS, 1998). The glucose and corn 

starch addition dates for channel 2 and SOME addition dates for channel 1 are listed in Table 

3.1. The supplement solution was fed at the inlet, unless mentioned otherwise. Information on 

SOME is presented in Tables 3.2a and 3.2b. 

3.2.5. Bioaugmentation with KB-1 

Since the degradation of PCE stopped at the stage of DCE in the six-channel system, it 

was concluded that the native microbes were not able to degrade DCE. Hence, KB-1, a 

consortium of Dehalococcoides spp., was added to channel 1 and 2. Since KB-1 is strictly 

anaerobic, it has to be injected in an oxygen free manner and the channels were operated to 

maintain that condition. For this purpose, it was planned to inject some amount of anaerobic 

water before injecting KB-1 and also to chase the KB-1 with the anaerobic water. The water for 

this purpose was obtained from the inlet of the channels. When the inlet tube of the channel was 
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pulled out, the solution from the channel drips out. Another tube, with same diameter as inlet 

tube, is connected to the inlet of the channel and 300 mL of solution from near the inlet of the 

channel was collected in a 300 mL amber bottle while flushing with nitrogen gas, to maintain it 

oxygen free. One gm of glucose was then added to this solution and used as anaerobic water. 

Before adding KB-1, 100 mL of this solution is injected at the inlet. Fifty mL of this solution was 

taken in a 50 mL syringe and 2 mL of KB-1 culture was then injected into the syringe, thus 

mixing the culture with 50 mL of solution. This solution was then injected into the inlet of the 

channel and then chased with 150 mL of the glucose solution. The inlet tube from the inlet 

contaminant reservoir is then reconnected to the inlet of the channel. 

3.2.6. Soil Sample Analysis 

After 95 days of exposure to PCE solution, soil samples were collected, at a distance of 

32 cm from the inlet, at four different depths from the soil surface, viz. 0-8 cm, 12-20 cm, 22-30 

cm and 34-42 cm, from all three channels fed with PCE. The samples were collected with a soil 

core and iron rods of various lengths to reach the desired depth. Soil collected at each depth was 

transferred to a 25 mL vial and immediately closed with mininert cap, shaken well manually, and 

headspace was analysed with a gas chromatograph (GC). The sample headspace was analysed 

for PCE and degradation compounds and the concentration in the aqueous phase of the soil was 

estimated using a calibration curve and a mass balance as shown below. In the calculation, the 

gas phase volume, available for partitioning, is obtained by subtracting the sum of the volumes 

occupied by water and soil from the total volume of the vial.  

The soil sample with the vial is dried in a vacuum oven (Thelco vacuum oven, Precision 

Scientific Co., Chicago, IL) at 80ºC for 24 hours and the dry weight of soil was determined. The 

difference between the mass of vial with moist soil and dry soil yields the mass of water present 

in the soil sample. The difference between the mass of vial with dry soil and the tare mass of vial 

gives the mass of dry soil.  

In order to estimate the aqueous phase PCE concentration in the soil samples, the 

following equations are used. 

The total mass of PCE present in the soil sample initially is 

TMPCE  = mds Cs1 + Vw Cw1 + Vg1 Cg1      … (3.2) 

where, 
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TMPCE  = Total mass of PCE 

mds  = mass of dry soil 

Cs1  = concentration of PCE adsorbed to soil before partitioning into headspace 

Vw  = volume of aqueous phase 

Cw1  = concentration of PCE in the aqueous phase 

Vg1  = volume of gas phase in the soil sample 

      w
b

ws Vmn −⎥
⎦

⎤
⎢
⎣

⎡
=

ρ
       … (3.3) 

n  = porosity of the soil = 0.3 (assumed) 

mws  = mass of wet soil 

 ρb  = bulk density of the soil = 1.6 gm/cm3 (assumed) 

Cg1  = concentration of PCE in the gas phase of the soil sample 

Assuming equilibrium concentrations in all three phases of the soil sample, 

Cs1  = Kd,PCE Cw1        … (3.4) 

Cg1  = Cw1 HPCE        … (3.5) 

Kd,PCE  = Partition coefficient of PCE between soil and aqueous phase 

 = Koc* foc         … (3.6) 

Koc = Partition coefficient of PCE between organic carbon and aqueous phase  

= 282 L/kg at 25°C 

foc  = Organic carbon fraction in soil 

HPCE  = Dimensionless Henry’s constant of PCE = 0.72 at 25°C 

Rewriting Eqn (3.2) in terms of aqueous phase concentrations, using the relationships Eqns. (3.4) 

and (3.5) 

TMPCE  = mds Kd,PCE Cw1 + Vw Cw1 + Vg1 HPCE Cw1 

or 

TMPCE = Cw1 (mds Kd,PCE + Vw + Vg1 HPCE)     … (3.7) 

After transferring the soil sample to the vial, due to the available headspace, partitioning 

of compounds takes place. After partitioning, the total mass of PCE is, 

TMPCE = Cw2 mds Cs2 + Vw Cw2 + Vg2 Cg2     … (3.8) 
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          … (3.9) 

Rewriting Eqn (3.8) in terms of gas phase concentrations, using relationships Eqns (3.4) 

and (3.

PCE = mds Kd,PCE Cg2/ HPCE + Vw Cg2/ HPCE  + Vg2 Cg2   … (3.10) 

PCE = (Cg2 / HPCE ) (mds Kd,PCE + Vw + Vg2 HPCE)    … (3.11) 

(3.11) y

5), 

TM

or 

TM

Since the total mass of PCE is same before and after partitioning, equating Eqn (3.7) and 

ields Cw1 

[ ]⎥⎥⎦
⎤

⎢
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++

++
=

PCEg1wPCEd,ds

PCEg2wPCEd,ds2
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PCE

gC
w H

C      … (3.12) 

Since Cg2 is the concentration of PCE analysed in GC, the aqueous phase concentration 

of PCE , 

er content 

(foc) in 

e 

rs and 

red. 

3.2.7. Channel Soil Flux Analysis 

Headspace samples from the channels were obtained by placing 400 mL containers on 

the surface of the soil on the channels. After 4 hours, 0.5 mL of the gas phase in the container is 

 in the soil samples can be obtained from Eqn (3.12). Using the same procedure as above

the aqueous phase concentrations of TCE, DCE, VC and methane can be obtained. 

A sorption study was also conducted to estimate the fraction of organic matt

the soil samples collected on day 150. After analyzing for the chlorinated ethene 

concentrations, the soil samples were spiked with 1 mL of PCE-CT standard mixture. Th

standard was prepared by injecting 10 μL of PCE liquid and 10 μL of CT liquid (Certified 

A.C.S., Fisher Scientific Co., Fairlawn, NJ) in a clean amber glass bottle of volume 4.2 lite

allowed to completely vaporize. The concentrations of PCE and CT in the standard bottle are, 

therefore, 3.83 mg/L and 3.76 mg/L. One mL of this gas mixture is then spiked onto the soil 

samples and a control. The control was prepared with 5 gms of glass beads (3 mm diameter, 

Arthur H. Thomas Co., Philadelphia, PA) and 1 mL of distilled water in a 25 mL vial. After 

allowing at least one hour to reach equilibrium, the concentration in the gas phase was measu

The organic carbon fraction (foc) is then estimated by mass balance using the literature value for 

Koc. The above equations are used for estimating the organic carbon fraction in the soil, with 

organic carbon fraction (foc) as the unknown parameter in Eqn (3.6).  
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drawn and analysed in the GC  by Zhang (1999) for 

analyzi

es were not 

able to degrade DCE during the time taken for inlet solution to reach the outlet. The native 

microbes may degrade DCE, but th  too slow to be significant. To 

determ

t 

ace 

f 

e 

004, a third batch of six microcosms was 

prepare

, 

The 

atch 3 microcosms on the same day of preparation.  

New Microcosms were prepared, on March 5, 2005 with channel 1 (PCE and SOME fed) 

outlet liquid (batch 4). On day 23, 10 μL of KB-1, a consortium of Dehalococcoides, (SiREM 

. This technique was successfully used

ng the concentration of methyl tert-butyl ether (MTBE) in the same system. 

3.2.8. Microcosm Study 

In the six-channel system, PCE was converted to DCE but the native microb

e rate of degradation may be

ine whether the native microbes can degrade DCE given sufficient time, we conducted 

microcosm studies using the outlet solution from channels 1 and 2. It was assumed that outle

water would contain the chlorinated ethene-degrading microorganisms which could be used in 

the microcosms, instead of KB-1. Since these microorganisms are presumably anaerobic, the 

collection of the outlet water had to be carried out in an oxygen free manner. For this purpose 

two 80 mL flow through samplers) were connected at the outlet (see Figure 3.2) and 20 mL of 

the solution from these gadgets were transferred to 25 mL vials with argon flushing at the surf

of the water in the vial (microcosm). The microcosms contained 20 mL of solution and 5 mL o

headspace. On October 29, 2004, the first batch of three microcosms was prepared, one being 

control, the second supplemented with glucose 0.005 % and the third with lactate 0.425 %. All 

concentrations are expressed as volume/volume. 

On November 1, 2004, a second batch of six microcosms was prepared: control, glucos

0.01 %, lactate 0.85 %, yeast extract 0.01 %, glucose 0.01 %+ yeast extract 0.01 %, and lactate 

0.85 % + yeast extract 0.01 %. On December 1, 2

d by the same procedure described above: control, soy oil methyl esters (SOME) 0.1 %, 

SOME 0.1 % + yeast extract 0.01 %, yeast extract 0.01 %, glucose 0.01 %+ yeast extract 0.01 %

and lactate 0.085 % + yeast extract 0.01 %. Yeast extract is a source of microbial nutrients. 

microcosms were kept in the laboratory under the room tubelights and maintained at room 

temperature of 25°C.  

The batch 1 microcosms were spiked with 0.5 mL of ~40 mg/L PCE (stock solution used 

for daily watering of plants in the six channel system) on day 14; batch 2 microcosms were 

spiked on day 11 and b
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Lab, O

tor 

.53 mm, Agilent 

Technologies, Wilmington, DE). Hydrogen was the carrier gas. The injector temperature was set 

at 200˚C and detector temperature lume of 100 μL was injected in 

the colu rrival 

mpounds is 

 

 were 

t 

ed that the 

atograph 

ntario, Canada) was added to batch 4 microcosms. This sample of KB-1 was obtained 

from SiREM Lab in May 2004 and was kept under refrigeration.  

3.2.9. Analytical Methods 

Concentrations of chlorinated compounds and methane were measured using a gas 

chromatograph (HP 5890 Series II, Wilmington, DE) equipped with a Flame Ionization Detec

(FID) and a HP-1 column (Dimethyl Polysiloxane matrix, 30 m x 0

was set at 300˚C. Sample vo

mn at 100˚C and run for 5 minutes. The run temperature was chosen based on the a

time and good separation of compounds. For higher temperatures, the compounds elute faster but 

the peaks may be closer or even overlap. For lower temperatures, the separation of co

good but the elution will be slow. Trial samples of PCE and reaction intermediates were run with 

different temperatures 80˚C, 100˚C, 110˚C, and a temperature program with 35˚C for 5 min and

ramp to 245˚C at the rate of 10˚C/min. The elution times of PCE for the above temperature 

programs are approximately 4.1 min, 2.7 min, 2.2 min and 2.6 min. Isothermal temperature of 

100˚C was chosen and with gas flow rate of 1.5 mL/min, the elution times of PCE, TCE (99+ % 

purity, Aldrich Chemical Co. Inc., Milwaukee, WI), DCE (ChemService, West Chester, PA) and 

methane (Matheson Gas Products, East Rutherford, NJ) are approximately 2.7 min, 1.6 min, 1.1 

min and 0.6 min. The detection limits, in the gas phase, with above conditions and instrument 

(assuming the minimum reliable area count is 500), are 6.6 μg/L (0.04 μM) for PCE, 4.9 

μg/L(0.04 μM) for TCE, 3.8 μg/L (0.04 μM) for cis-DCE and 0.6 μg/L (0.04 μM) for methane. 

PCE and its degradation compounds, TCE, 1,1,1-TCA, 1,1,2-TCA, 1,1-DCA, 1,2-DCA, 1,1-

DCE, cis 1,2-DCE, and methane were calibrated in this gas chromatograph; TCA is 

trichloroethane and DCA is dichloroethane. There was some difficulty in developing a 

calibration graph for vinyl chloride due to its availability in methanol. Various techniques

tried such as adding water to dissolve the methanol, adding sodium hydroxide (NaOH) to conver

methanol to methoxylate, and analyzing after keeping the samples in a freezer. However, the 

masking of vinyl chloride peak by methanol peak could not be overcome. We observ

chlorinated ethenes PCE, TCE and DCE resulted in the same response in the gas chrom

for equal molar concentrations, approximately 13,000 area counts for 1 μM. We utilized this 
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lytical column (Ionpac, 

AS9-H

 6.3 min, 

annel, are shown in Figure 3.3 and 

Table 3.3. The MRT was estima ution of tracer in the channel 

(Levenspiel, 1999). The peak of bromide concentration in the outlet occurred between 1 to 3 

days corresponding to an outlet li  L.  

he 

l 

27,500 cm3 = 27.5 L 

 is completely available for flow. 

Suppos tual fl g effective 

porosit

finding to obtain the calibration curve for vinyl chloride. The concentrations of vinyl chloride 

shown in the graphs in this work is based upon the above calibration. 

For the bromide tracer analysis, the outlet liquid collected was transferred to a 1.5 mL 

centrifuge tube and centrifuged at 10,000 rpm for 2 minutes. The supernatant was then 

transferred to a 2 mL clear vial with white septum and threaded black cap (National Scientific

Company, Rockwood, TN) for bromide analysis using an ion chromatograph (Dionex DX500 

Series, Sunnyvale, CA) equipped with a conductivity detector and ana

C, 4 x 250 mm). The eluent solvent was 9 mM sodium carbonate at a flow rate of 1 

mL/min. The elution times of chloride, bromide, nitrate and sulfate were approximately

9.5 min, 11 min and 18 min, respectively. The sample volume injected was 25 μL and each 

sample was run at room temperature for 20 minutes. 

3.3. Results and Discussion 

3.3.1. Tracer Studies  

The time and the outlet liquid volume at which the peak concentration of bromide 

occurred and the mean residence times (MRTs) for each ch

ted from the residence time distrib

quid volume of 1 L to 2.8

Table 3.4 presents the cumulative outlet liquid volume, mass of bromide eluted in t

outlet, estimated mass of bromide transported to vadose zone by evapotranspiration and the tota

bromide accounted for by these two losses and the recovery percentage. The amount of water 

present in the saturated zone can be calculated as follows: 

Volume of the saturated zone  = 110 x 10 x 25 = 

Assuming a porosity of 0.3, the volume of water = 27.5 x 0.3 = 8.25 L 

However, the bromide elutes corresponding to exit volume of ~ 1.3 L. Therefore the 

estimated height of flow zone is only (1.3 x 25/8.25) = 3.9 cm ~ 4 cm. Therefore, the flow may 

take place only within a height of 4 cm, assuming the width

e there is channeling and the ac ow height is, say 10 cm, the correspondin

y can be calculated as 0.12, instead of the actual value of about 0.3. 
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bromide recovered in 

the out

 in the 

. 

e 

 

te 

 was recorded every day throughout the duration of 

the exp  

ation of the sum of 

the chlorinated ethenes (CEs). 

3.3.2.1. Glucose/Corn Starch Fed Channel  

decrease and eventually reached a low concentration (less than 1 μM) in 3 months (Figure 3.4a). 

The entire amount of bromide (10.05 mg) introduced at the inlet was not recovered at

outlet because a portion of the solution, with bromide, is transported upward due to 

evapotranspiration and some of the bromide remained in the saturated zone due to channeling.

As shown in Table 3.4, the bromide recovery ranges from 42 % to 70 %. Table 3.5 shows that 

the fraction of solution that leaves in the outlet is larger than the fraction of 

let. The experiment was carried out for 14 days. However, the bromide was still eluting at 

low concentrations when the experiment was terminated. The bromide that remained

saturated zone after 14 days was not analysed and therefore, not used in estimating the recovery

The effluent bromide concentrations, after the end of 14 days, were 0.28 mg/L for channel 1, 

0.07 mg/L for channel 2, and 0.19 mg/L for channel 3. In all three channels, the concentration of 

bromide was 0 mg/L, before the start of the experiment. There are two contributions for pore 

volume: volume external to soil particles and volume associated with internal void space. Th

bromide that passes through rapidly is associated with the external pore volume and the bromide 

within internal void space or held by clay particles by ionic or Van der Waal forces (Reddi and

Inyang, 2000) may take more time to elute. 

The rate of evapotranspiration in each channel varies over the monthly period due to 

harvesting at the beginning of each month. Because of this, the outlet liquid volumetric flow ra

also varies and, consequently, the mean residence time of the compounds in the channel varies 

with plant size. Table 3.6 presents the variation of mean residence time at the start and end of 

each month. The outlet liquid volume which

eriment, for channels 1, 2 and 3, varied from 0.9 L – 0.6 L, 0.9 L – 0.4 L, 0.8 L – 0.6 L

respectively, from the beginning to the end of one month, during June 2004.   

3.3.2. Inlet/Outlet 

Figures 3.4, 3.5 and 3.6 show the inlet PCE, outlet PCE and degradation product 

concentrations for glucose/corn starch fed channel, SOME fed channel and control channel 

respectively. In Figures 3.4a and 3.5a, a solid line is used to show the concentr

Forty days after first feeding glucose solution, the outlet PCE concentration started to 
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μmoles/L of cis 1,2-DCE and methane concentrations ranging upto 135 μmoles/L. A mass 

at the methane (Figure 3.4b) in the outlet water 

could have been generated from

n of 

 

portion of the channel downgrad

Correspondingly, the concentration of cis 1,2-DCE increased in the outlet liquid. For an inlet 

concentration of about 12 μmoles PCE/L, the outlet water had concentrations of about 10 

balance of the inlet and outlet liquid revealed th

 the glucose added. From the bromide tracer data, the peak 

arrival time in the glucose fed channel varied from about 1.2 days at the beginning of the month 

to an estimate value of 2.7 days at the end of the month.  

Glucose addition led to conversion of PCE mainly to DCE and not other degradation 

products (Figure 3.4a). Breakdown of DCE is usually the rate limiting step in the degradatio

PCE (Daprato et al., 2007). The mean residence time in this channel may not be sufficient for the 

DCE to degrade further. With glucose, almost the entire inlet PCE is converted to DCE; however 

with SOME, more of the entering PCE exits in the outlet (Figure 3.5a). Since SOME is sparingly

soluble in water, the microbial degradation may be limited by availability of SOME in the 

ient to well 1. Different microbial populations are likely 

supported by the supplements, glucose and SOME. The glucose feeding was stopped after day 

328, February 3, 2005. After day 400, concentrations of outlet PCE and TCE started to increase 

and DCE decreased. Outlet PCE in channel 2 increased and by day 437, it had reached 30 % of 

inlet value. However, even by day 475 (~ 150 days after stopping glucose feeding) PCE 

degradation was observed. Mass balance calculations and stoichimetric requirements (see end of 

this section) indicate that one dose of glucose solution is sufficient for about 8 months of PCE 

entering the channel. More than 190 days after the last dose of glucose, PCE degradation was 

taking place even though the extent of conversion was dropping gradually with appearance of 

TCE (Figure 3.4b) also at the outlet between days 437 to 551. The mean residence time for this 

channel from bromide studies was found to be 3.6 days from the experiment conducted during 

the first half of June 2004. If the same ratio of peak arrival time of tracer at the beginning and 

end of a month is assumed for the MRT, then the MRT for the flow pattern at the end of a month 

will be (2.7/1.2)*3.6 = 8.1 days. If the average value of 5.85 days is chosen, then in terms of 

MRT, the glucose added was sufficient for 190/5.85 ~ 32 MRTs, i.e., it takes 32 MRTs for the 

glucose and glucose derived stored material to be washed away or to be depleted. From the tracer 

studies, we know that it takes 4 MRTs for the bromide concentration to decrease to a small 

value. If we assume that it takes 10 MRTs for the most readily available soluble glucose to wash 
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us 

, 

3 

t PCE 

y 

e 

 

out the length of the channel. KB-1 migrates very 

slowly 

f the 

y along the channel, on day 

958. Glucose solution was also added on days 994 and 1025 into well 1 and well 2, respectively, 

altitude. 

out of the channel, then the remaining 22 MRTs are associated with the glucose deposits away 

from the channeling pathway, sorbed glucose, glucose derived stored materials and endogeno

decay. Some of the food added was converted to biomass and when the channel runs out of food

endogenous decay may also come into play and provide the carbon and energy required for the 

biomass. Glucose may be converted into other compounds and stored; this may slowly be 

released and supply electron donor for PCE degradation. PCE concentration in the outlet 

increased but did not reach the inlet value. The inlet PCE is 12 μM which is converted to about 

μM TCE, 8 μM DCE and remaining 1 μM PCE flows out.  

Glucose solution was again added on several days as shown in Figure 3.4a and Table 3.1. 

After the addition of glucose on day 522 and day 564, the outlet PCE and TCE concentrations 

started to decrease. By day 551 DCE concentration increased and reached the value of inle

concentration by day 579. KB-1 was injected at the inlet on day 591 but it did not have an

immediate significant effect. This culture of KB-1 was stored in the refrigerator for more than a 

year and therefore, may not have been active.  

There was an increase in PCE and decrease in DCE around days 650 and 750, due to 

depletion of carbon and energy source. Glucose solution was added whenever the above 

happened to maintain the outlet PCE concentration at low levels. 

KB-1 was again added at the inlet on day 810 resulting in a decrease of DCE by mor

than 50 %. The concentration of DCE was maintained between 3.3 μM and 8.8 μM between days

810 to 948. KB-1 may not be dispersed through

in soils (Major et al., 2002) and spreads in the soil by growth of KB-1 biomass. After 

reduction of DCE to ~50 %, KB-1 and/or energy source may not be available in the rest o

flow path. Hence, KB-1 culture was introduced into well 3, halfwa

instead of at the inlet. After day 994, DCE concentration reached low levels and then was 

maintained below 1.5 μM until the end of the experiment (day 1113). 

Mass balance for a monthly basis: Glucose fed channel 

The assumptions made in the following mass balance are: 

1. Solubility of oxygen in water is 8 mg/L, though it can vary based on temperature and 
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The amount of PCE added in a month is 12 μM * 30 L = 360 μmoles.  

g/L * 30 L = 240 mg or 240/32 

= 7.5 mmoles. 

te consumption of six moles of oxygen  

n for dehalogenation = 11.11 -  1.25 = 9.86 

mmoles 

quired to dehalogenate one mole of PCE. Therefore, one mole of glucose can 

supply hydrogen for 3 moles of PCE. However, Dawson et al (2007) suggest that the theoretical 

supply of hydrogen (electron equiva

acid, CO

pound provides electrons (i.e., the electron donor). The 

oxidation of a sim

lfate. However, the electron acceptors of particular interest are the 

contam

 indicates that two moles of the simple 

carbohydrate electron donor are requ

2. Complete consumption of oxygen is required for the onset of PCE degradation,

though it is not necessary. 

Amount of oxygen entering the channel in a month = 8 m

Glucose in one dose = 2 gm = 11.1 mmol 

One mole of glucose required for comple

Glucose required for complete consumption of oxygen = 7.5/6 = 1.25 mmol 

Glucose available for supplying hydroge

One mole of glucose can theoretically supply 24 moles of electrons. Eight moles of 

electrons are re

lent) by glucose is 4 moles when the conversion is to acetic 

2

In general, redox reactions involve the transfer of electrons between two chemical species 

(ITRC, 2005) and the oxidized com

 and hydrogen. 

ple carbohydrate (CH2O) electron donor is represented by 

CH2O + H2O → CO2 + 4H+ + 4e- 

The electrons are transferred to the species undergoing reduction (i.e., the electron 

acceptor). Multiple electron acceptors are present in most groundwater environments including 

oxygen, ferric iron, and su

inants undergoing reductive dechlorination. For example, the reduction of PCE to ethene 

is given by 

C Cl  + 4H+ + 8e- → C H  + 4Cl-  2 4 2 4

The net stoichiometry of these redox reactions

ired to dechlorinate one mole of PCE to ethene. The 

stoichiometry of these redox processes may be used to calculate the quantity of electron donor 

required to meet the total electron donor demand exerted by all electron acceptors (AFCEE, 

2004). 
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PCE th ol of glucose = 9.86*3 = 29.6 mmol; 

howeve ply. 

2 

mately 8 months of inlet PCE. However, some of the glucose will wash out of the 

system o 

e for starting PCE degradation was longer compared to the glucose fed 

channel. This could be due to availability of SOME to the microbes along the length of the 

hobic and only slightly soluble in water, may stay at the inlet, the 

point o he 

ure 

let 

  

e 

ME 

ons at the outlet as shown in Figures 3.5a and 3.5b. After SOME solution was added 

at can be dehalogenated by 9.86 mm

r, only 0.36 mmol of PCE was added each month.  29.6/0.36 = 82 months of PCE sup

However, the added glucose is also utilized for oxygen consumption. If we assume that 0.1

mmoles of glucose is needed for the PCE degradation and 1.25 mmoles is needed for oxygen 

consumption each month, then the glucose supplied is sufficient for 11.11/1.37 = 8.1 or 

approxi

, some will support growth of other microorganisms, and some will be converted t

methane. 

3.3.2.2. SOME Fed Channel 

From October 1, 2004, channel 1 was fed with one liter of 0.1 % emulsified soy oil 

methyl esters (SOME). The SOME addition dates are listed in Table 3.1. The outlet liquid of the 

channel fed with PCE and SOME started to show some of the degradation compounds of PCE; 

however, the lag tim

channel; SOME, being hydrop

f injection, in contrast to the glucose solution which is distributed better throughout t

channel. The peak time predicted for input to the PCE and SOME fed channel varied from about 

3 days at the beginning of the month to about 6 days at the end of the month (Table 3.6). 

In channel 1, the outlet PCE concentration decreased after the addition of SOME (Fig

3.5a) with conversion of PCE to TCE, DCE, VC and methane. The DCE and TCE in the out

increased with treatment time. Maximum concentrations reached were 2.8 μM TCE, 17 μM 

DCE, 1.2 μM VC and 2 μM methane. SOME solution was added monthly in channel 1, and the

low outlet PCE concentration with high DCE concentration in the outlet was observed to 

continue.  

SOME solution was added in channel 1 inlet on May 1, 2005 (day 415). Since the entire 

inlet PCE was not transformed in channel 1, it is possible that the SOME fed at the inlet could b

trapped in the initial portion of the channel. On May 3, 2005 (day 417), in addition to the SO

fed at the inlet, 100 mL of 1 % SOME solution was directly injected into well 3, at a distance of 

60 cm from inlet. This addition had a significant effect on the PCE and other product 

concentrati
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as added 

 

 

, it 

 

e to 

 

t on the 

 

 7.9 

 3, 2005 (day 417), feeding of SOME was stopped to study the capability of the channel 

to carry on PCE degradation with the electron donor stored over the past eight months. In the 

period from day 411 to day 475, the outlet concentration of PCE decreased from about 5 μM to 

0.2 μM, TCE decreased from about 2.5 μM to 0.1 μM, DCE increased from about 5 μM to 17 

μM and methane increased from about 0.5 μM to 9 μM (Figure 3.5). SOME solution w

on nine occasions prior to day 417 and the tenth dose was on day 594. With this SOME, the 

microorganisms were capable of degrading PCE until day 954, i.e., for 364 days. The mean 

residence time for this channel from bromide studies was found to be 6.2 days based on the 

experiment conducted during the first half of June 2004. If the same ratio of peak arrival time of 

tracer at the beginning and end of a month is assumed for the MRT, then the MRT for the flow

pattern at the end of a month will be (4.6/3.1)*6.2 = 9.3 days. If the average value of 7.75 days is

chosen, then in terms of MRT, the glucose added was sufficient for 364/7.75 ~ 47 MRTs, i.e.

takes 47 MRTs for the SOME and SOME derived stored material to be washed away or to be

depleted. From the tracer studies, we know that it takes about 3 MRTs for most of the bromid

wash out of the channel. Since SOME does not dissolve appreciably in water, it appears to be 

retained in the channel longer than a soluble substrate. A portion of the food added was 

converted to biomass and when the channel runs out of food, endogenous decay may also come 

into play and provide the carbon and energy required for the biomass. SOME solution was added

again on days 991 and day 1025 to maintain low redox condition in the channel, which was 

conducive to KB-1. The outlet solution had nearly equimolar amounts of DCE as inlet PCE, and 

the native microbes were not capable of degrading DCE further. To degrade DCE, KB-1 was 

added at the inlet on day 605 and day 811. But this addition did not have significant effec

outlet DCE. SOME and KB-1 may stay at the inlet and not be available in the rest of the channel

length to degrade DCE. Based on this hypothesis, KB-1 was added into well 3 (60 cm from inlet 

of channel) on day 958. This addition had a significant effect: By day 994 DCE decreased to

μM from about 16 μM on day 975, and it continued to decrease and reached a value of 5.8 μM 

by day 1113. KB-1 was able to degrade DCE with both SOME and glucose supplements, 

however, with glucose DCE concentration reached lower values (less than 1 μM). 

Mass balance for a monthly basis: SOME fed channel 

SOME in one dose = 1 mL  
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t of each fatty 

acid in SOME (See Table 3.2b). The value is approximately 292. 

oles of oxygen  

SOME required for complete consumption of 7.5 mmoles of oxygen = 7.5/25 = 0.3 mmol 

oles 

oles of electrons. Eight moles of 

electrons are required to dehal

ol; 

however, only 0.36 mmoles of PCE was fed each m

Total S

sufficient for 2.98/0.33 = 9.03 m

ents 

onor-limited 

process, which benefits from adding supplements such as glucose and SOME.  

nnel 2. 

om 

nd outlet in 

channels 1 and 2.  

 

Density of SOME at 25°C = 0.87 gm/cc (SoyGold 2000 Solvent, 1998) 

Mass of SOME in one dose = 0.87/292 = 2.98 mmol 

The molecular weight of SOME is obtained from the relative weight percen

One mole of SOME required for complete reduction of 25 m

SOME available for supplying electrons for dehalogenation = 2.98 - 0.3 = 2.68 mm

One mole of SOME can approximately supply 102 m

ogenate one mole of PCE. Therefore, one mole of SOME can 

supply electrons for approximately 12 moles of PCE. 

PCE that can be dehalogenated by 2.68 mmol of SOME = 2.68*12 = 32.16 mm

onth and it requires 0.03 mmoles of SOME. 

OME required each month is then 0.03+0.3 = 0.33 mmoles. Thus, the SOME supplied is 

onths or approximately 9 months of inlet PCE. 

3.3.2.3. Control Channel 

The outlet solution of the channel (grass grown on top) in which no energy supplem

were added, showed no degradation compounds of PCE (Figure 3.6). The outlet PCE 

concentration was almost the same as inlet PCE concentration. Based on the study of these three 

channels, it can be concluded that the PCE degradation is certainly an electron-d

3.3.3. Well Samples 

Wells were already present in channel 1, while new wells were installed in cha

Five wells, approximately 15 cm apart, were located between inlet and outlet. Using a nylon tube 

and a 3 mL syringe, groundwater samples (2 mL) were collected from each well, near the bott

of the channel, i.e., at a depth of 60 cm. Five wells were located between inlet a
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 Figure 3.7, for channel 1, on day 382, relative to the inlet, the concentration 

of PCE was much smaller in wells 1 and 2 and correspondingly, the concentration of DCE 

increased with distance until well 2. However, after well 3, DCE concentration remained almost 

the sam  (Figure 3.7). The outlet concentrations of PCE and DCE differ from the concentrations 

in well 5. This indicates that there is channeling and the samples from the wells differ from those 

is more of a composite sample combining the 

effects of fa

Soy Oil in batch tests and found the values ra

 

3.3.3.1. Channel 1 (SOME) 

As shown in

e

in the main channel of flow. The outlet liquid 

st flowing and slow flowing zones of the channel. 

The SOME injected into well 3 of the channel, on May 3, 2005 (day 417) had a 

significant impact on CEs transformation (Figure 3.8 and Figure 3.9). In Figure 3.8 and Figure 

3.9, the measured concentration of DCE (~ 20 μM) is higher than the molar amount of inlet PCE 

(12 μM). Inlet PCE concentration was higher than 15 μM during the period day 326 to 368. CEs 

may have accumulated by being distributed into the SOME phase that was added earlier and on 

day 417. Pfeiffer et al (2005) measured the oil:water partition coefficients of dissolved CEs into 

nged from 22 to 1200 with increasing chlorination. 

Soutter and McBean (2007) point out that the chlorinated ethenes concentration in groundwater 

may be significantly greater due to partitioning into the organic phase where both contaminants 

are present. In this work, chlorinated compounds that are present in the oil phase of a sample will 

release into the gas phase during the analysis. This will cause the measured value to appear to be

larger than the actual concentration in the aqueous phase. In Figure 3.5a also, the DCE 

concentration (greater than15 μM) was higher than the inlet PCE concentration during the period 

from day 437 to day 537. In Figure 3.8, there is a sharp decrease in concentration of DCE from 

well 3 (20 μM) to well 4 (13.5 μM). PCE concentration decreased drastically (12.9 μM to 2.9 

μM) from inlet to well 1 and remained at that level until well 3. In Figure 3.8, there is also a 

decrease in PCE concentration from well 3 (2.4 μM) to well 4 (1.1 μM), likely due to the SOME 

fed into well 3. The outlet concentrations of PCE, TCE and VC reached very low values. 

Methane concentrations were also higher after feeding SOME at well 3 on day 417, increasing 

from about 3 μM on day 382 to 19 μM on day 456. As shown in Figure 3.9, on day 456, methane 

concentration was highest at well 4 indicating that it is from the fermentation of SOME added at 

well 3. By day 496, the PCE concentration, shown in Figure 3.10, was reduced to a low value by 

well 3, and DCE concentration remained steady from well 3 to well 5 likely due to lack of PCE. 
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injected at the inlet may not have been 

availab

438 (Figure 3.18) contained greater concentrations of TCE and PCE and smaller concentrations 

of DCE since the glucose and corn starch solution was nearly depleted. Corn starch added on day 

 by day 555, the outlet contained predominantly DCE and very 

little PCE and other CEs as shown in Figure 3.19. One more dose of glucose solution on day 564 

Addition of SOME on day 594 and KB-1 on day 605 at the inlet may have impacted the 

degradation of PCE and DCE, as shown for day 614 in Figure 3.11. The low concentrations of 

PCE and TCE at wells 4, 5 and at the outlet are similar to results in Figure 3.10; however, there 

is a decrease in DCE at well 5 and the outlet relative to the results in Figure 3.10. Methane 

concentration at well 4 remained between 13 μM and 18 μM during the period day 456 to day 

614. On days 644 and 712, DCE concentration remained relatively steady along the length of the 

channel as shown in Figures 3.12 and 3.13. In Figure 3.13, PCE concentration at the inlet

5.1 μM, which could be due to analytical problem or a slow leakage from the vial. 

Even though SOME feeding was stopped by day 417 and added once on day 594, 

degradation of PCE continued in channel 1 until day 897. On day 864, most of the inlet PCE

μM to less than 1 μM) was converted to DCE as shown in Figure 3.14. However on day 897, 

only about 50 % of inlet PCE was converted to DCE, based on the outlet, as shown in Figure 

3.15. This may be due to the lack of SOME in channel 1. 

A culture of KB-1 was again introduced at the inlet on day 811 for channel 1

parent change in product distribution except for a decrease in DCE at well 5 and th

outlet on day 864 as shown in Figure 3.14. However, introduction of KB-1 into well 3 on day 

958 had a significant impact. On day 984, the DCE concentration increased to 10.5 μM at wel

but decreased to 2.6 μM at the outlet as shown in Figure 3.16. Total concentration of chlorinat

ethenes (CEs) decreased by 80 %. Prior to day 958, KB-1 

le or only in limited locations from well 2 onwards, to degrade DCE. KB-1 migrates in 

soil slowly and also grows along the flow path (Major et al., 2002). 

 

3.3.3.2. Channel 2 (Glucose) 

In channel 2, the degradation of PCE was gradual: the concentration of PCE decreased 

gradually and that of DCE increased gradually from the inlet to the outlet. The samples collected 

on day 409 (Figure 3.17) comprised mostly PCE and DCE. However, samples collected on day 

522 had a significant effect and
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5 μM, 
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utlet. The total CEs decreased from 

10.6 μM

 in rapid formation of DCE from PCE and most of the inlet PCE was converted to DCE

by well 3. KB-1, added on day 591 at the inlet did not have much impact in converting DCE as 

seen in Figure 3.20 and Figure 3.21. Glucose solution was fed to the inlet of the channel on days

676 and 800. KB-1 was added on day 810, at the inlet. This KB-1 had some effect and the DCE 

in the outlet on day 831 was less than 50 % of the molar amount of inlet PCE as shown in Figure 

3.22. The total CEs also decreased to less than 50 % by day 831 (Figure 3.22). However, by day

897, PCE and DCE were present in the outlet and total CEs had decreased only by 30 % (Figure 

3.23) because glucose was not supplied after day 800. To completely convert DCE to end 

products and decrease total CEs to low levels, glucose solution was added on days 901 and 955 

and KB-1 was added on day 958 into well 3 instead of at the inlet. Since DCE is produced from 

PCE uniformly along the length of the channel, KB-1, if injected at the inlet, may not be 

available to degrade DCE in the later portion of the channel. This addition had a significant 

impact and the total CEs decreased by 85 % on day 984 (Figure 3.24). On day 1123 (4/10/07), 

the well samples were collected in triplicates from the wells and the results are shown in Figure 

3.25. The coefficients of variation of the concentrations for the triplicates in five wells, the

and the outlet ranged from 0.7 % to 49 % for PCE, 0 % to 87 % for TCE, 1 % to 34 % for DCE 

and 8 % to 43 % for methane. For example, PCE concentration at the inlet was 10.5±0.08 μM, 

TCE concentration at well 3 was 0.3±0.04 μM, DCE concentration at well 3 was 2.04±0.2

and methane concentration at well 4 was 7.71±0.81 μM. 

In Figure 3.25, most of the decrease in PCE concentration occurred between the entranc

and well 3 and after that PCE concentration remained almost constant. DCE concentration was 

low and reached a peak of 2 μM at well 3 and then decreased and reached a final value of 1.7 μM

at the outlet. The KB-1 added at the inlet and glucose solution added into wells 2 and 3 on days 

994 and 1025, respectively, helped carry out the degradation of PCE and DCE until well 3 and 

KB-1 that was injected into well 3 on day 958 helped carry out the degradation of remaining 

PCE and DCE to bring the total CEs to low levels at the o

 to 2.8 μM (74 %) along the length of the channel. TCE was formed but at very low 

levels and the maximum concentration reached was 0.3 μM at well 3 and well 5. Concentration 

of methane ranged from 1 to 8 μM. 
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an that in the wells. The samples may not be representative 

of the entire channel water; the channel was 10 cm wide and there is vertical variation also. The 

sample was collected from a 0.5 cm diameter well, with an uncertain region of influence. The 

and spatial variations of concentrations are 

present

t 

please s

3.3.4. Soil Surface Concentrations 

e 

4, August 2, 2004, October 30, 2004, November 3, 

2004, November 29, 2004, Decem  2, 2005 and April 3, 

2005. The concentrations of PCE were the sam  the room where the 

six cha ace.  

3.3.3.3. Spatial Variations 

In the well samples, the concentration of PCE was often less compared to the outlet, an

some of the downgradient wells had higher concentration of PCE than upgradient wells. For 

example, in Figure 3.7, the reported PCE concentration in well 2 is higher than well 1 and the 

outlet PCE concentration is higher th

observed values indicate that channeling occurs 

. Some of the variations may also be due to experimental error.  

Results from channel 1 wells showed that most of the activity happens within the first 15 

cm of the channels suggesting that the SOME fed, at the inlet, remained mostly in the initial par

of the channel causing greater population of microbes in that location. However, in channel 2, 

PCE concentration decreases and DCE concentration increases gradually along the length of the 

channel. 

Channel 1 wells were analysed on additional days but the results are not shown for all 

sampling events. For results on days 395, 409, 555, 590, 686, 741, 775, 804, 831, 897 and 928 

ee the supplement. Channel 2 wells were analysed on additional days but the results are 

not shown for all sampling events. For results on days 395, 456, 496, 590, 644, 686, 712, 775, 

804, 864 and 928 please see the supplement. 

In all three channels the above described outlet concentrations represent the 

concentrations in the ground water. A significant fraction of input water migrates vertically 

through the soil. The headspace was collected in 400 mL containers placed at the surface of the 

soil at several locations along the length of the channel. Duplicate samples were collected on th

following dates: July 30, 2004, August 1, 200

ber 27, 2004, February 2, 2005, March

e as the background levels in

nnels are kept. No other chlorinated compounds were detected at the soil surf
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presented for only two sampling events, day 95 and day 150, for illustration purpose. For other 

days, please see the supplement. 

 a 

dy 

nce in two days, 0.5 liter of 1x Hoaglands solution was added 

to chan as 

). 

e content is greater than the minimum field capacity for sandy soil. 

ior to day 95, 

nutrien

day 

as 

oc . 

ter content is higher at the surface of a vegetated soil due to foliage 

and root mass and exudates, and decreases with depth. However, there is no definite trend 

3.3.5. Soil Samples 

The mass of aqueous phase and the moisture content as a fraction, dry weight of soil, an

the concentration of PCE for soil samples collected on day 95, June 15, 2004, and day 150, 

August 10, 2004, are presented in Tables 3.7 and 3.8, and Figures 3.26 and 3.27. Results a

In channels 1 and 2, the moisture content increases with depth as expected, since the 

water diffuses through the vadose zone and evaporates through the soil surface, thus creating

gradient in moisture content. In channel 3, however, the moisture content remains almost stea

with increase in the depth of the channel due to application of Hoaglands solution on topsoil. 

From 12/3/2003 until 3/1/2004, o

nel 3. From 3/8/2004 until 4/4/2004, once a week, 0.5 liter of 1x Hoaglands solution w

added and from 4/13/2004 to 12/10/2004, 0.5 liter of 2x Hoaglands solution was added once a 

week.  

The field capacity of sandy soil is in the range 0.04-0.08 cm3/cm3 (Morgan et al., 2001

Assuming the bulk density of soil in the channel is 1.6 g/cm3, the gravimetric field capacity of 

sandy soil is in the range 0.025-0.05 g/g. The moisture content of the soil samples from channels 

1, 2, and 3 were in the range 0.03 to 0.22 on day 95 and 0.02 to 0.19 on day 150. The observed 

moistur

Figure 3.26 shows that PCE concentration increases with depth, in all three channels, 

until 28 cm and then increases drastically from depth 28 cm to 38 cm, due to transition from 

vadose zone to saturated zone. The water table starts at 35 cm below the soil surface. In channels 

1, 2 and 3, the concentrations of PCE at depth 38 cm were 2.5 μM, 3.4 μM and 1.8 μM 

respectively (Figure 3.26). No reaction intermediates were detected since pr

ts were not added. 

The moisture content and its fraction, and dry weight of soil for samples collected on 

150, August 9, 2004, are presented in Table 3.8. A sorption study was also conducted to estimate 

the fraction of organic matter content (foc) in the soil samples. The value of foc, which w

estimated by a mass balance, based on the literature value of K , is presented in Table 3.9

Typically, the organic mat
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annel 1, PCE concentration is higher at depth 2 (13-20 cm) relative to depths 3 

and 4. H

e 

se zone 

where i

as in the previous figures. 

 

 

cted at 60 cm from the soil surface. In both 

figures g 

d in channels 1 and 3. For modeling the same soil system, Zhang (1999) has used a value 

of 1 % for foc. 

On day 150 (8/9/04), PCE concentrations in the lower soil samples, at 38 cm depth,

0.18 μM in channel 1, 0.49 μM in channel 2, and 2.03 μM in channel 3 (Figure 3.27). Samples 

were collected at a distance of 55 cm from inlet. The concentration of PCE in channels 1 and 2

remained almost constant with depth; however, for channel 3 it increases with depth.  

Figure 3.28 shows the concentration of PCE in channels 1, 2 and 3, on day 229, October 

27, 2004. In ch

owever, PCE increases uniformly along the depth in channels 2 and 3, and there was the 

usual drastic increase from depth 3 to depth 4, the transition from vadose to saturated zone. Sinc

it was 119 days since the first dose of glucose, biodegradation was taking place and DCE was 

found in the lower depth at a concentration of 0.25 μM. DCE was not found in the vado

t can be easily degraded under aerobic conditions. Moreover, the concentration was not 

high in the lower depth. 

On day 353, the concentrations of PCE in channels 1 and 2 are small in all of the soil 

samples (Figure 3.29). In channel 2, PCE concentration increased from 0 at depth 1 to 0.08 μM 

by depth 2 and then remained almost constant until depth 4. DCE concentrations in channel 2 

were larger than PCE concentrations except near the soil surface. It is interesting to note that 

DCE was present in depths 2 and 3 in the vadose zone. The concentration of PCE in channel 3 

exhibited the same trend 

Figure 3.30 shows the concentrations of CEs in the aqueous phase of channel 2 soil 

samples collected at the same depth and several locations along the length of the channel on day 

385, 4/1/05.  Soil samples were collected at 37 cm depth at all locations except at 101 cm from

inlet which was collected at 42 cm depth. The samples were collected while installing wells in

channel 2. These results can be compared to concentrations in the well samples in Figure 3.17, 

the difference being that the well samples were colle

, PCE concentration decreases and correspondingly DCE concentration increases alon

the length of the channel. TCE concentration was in the range 0.16 to 1.5 μM in the soil samples 

whereas in the well samples it was in the range 0 to 0.9 μM. 

Figures 3.31 through 3.36 show the concentrations of PCE, reaction intermediates and 

methane analyzed on day 812, 6/12/2006 and on day 955, 10/23/2006 (channel 1) and day 987, 
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y 987 (Figure 3.36).  

e 

tions of 

glucose and yeast extract (YE) are the concentrations of lactic acid 

and SOME are expressed as percent v/v. Table 3.10 and Table 3.11 provide a summary of the 

results 

re 

e 

in 

cosms amended with 

glucose a 

11/26/06 (channels 2 and 3). In general, the concentrations increased with depth; however, the 

samples collected even in the deepest soil (saturated zone) did not have the same concentrations

as the samples from the flow regime at the bottom 5 cm of the channel (which is ~ 20 cm below 

the deepest soil sample collected), except for channel 3 on da

3.3.6. Microcosm Studies 

Microcosm studies of the outlet water from both channels were carried out to estimate th

half-life of PCE with different supplements and to determine the feasibility of DCE degradation 

when provided longer time. This is based on the assumption that some representative fraction of 

relevant microorganisms are in the free suspension, not as a biofilm. The concentra

 expressed as percent w/v and 

for batches 1, 2, 3 and 4. The percentage decrease in PCE and DCE in the microcosms is 

listed and variation in the concentration of methane is given. The first order rate constants and 

half-life of PCE in microcosms for Batch 1 and 2 are given in Table 3.12 and for Batch 3 and 4 

in Table 3.13. The regression coefficients for first order reaction model for all microcosms a

listed in Table 3.14. Most of the regression coefficient values were above 0.80 suggesting that 

first order kinetics can be used with a reasonable degree of confidence. 

In batch 1, there was not much difference in PCE degradation rate between the control 

(Figure 3.37) and the glucose (0.005 % w/v) amended microcosm. However, PCE disappearanc

was ~ 1.2 times faster in lactic acid (0.425 % w/v) amended microcosm (Figure 3.38) compared 

to the control and glucose amended microcosm. In batch 2 also, there was not much difference 

the rates of degradation of PCE in control and 0.01 % w/v glucose amended (Figure 3.39) and 

0.01 % w/v yeast extract (YE) amended microcosm. However, the micro

+yeast extract and lactic acid+yeast extract (Figure 3.40) exhibited up to twice as great 

rate of degradation compared to the control. In general, after 180 days there was not appreciable 

decrease in PCE concentration in batches 1 and 2; DCE concentration, however, remained 

steady. Since there is not much activity taking place, analysis of batch 1 and 2 microcosms was 

discontinued after day 234 (batch 1) and day 231 (batch 2). 
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tions 

tch 3 (glucose 0.01 %+ yeast extract 

0.01 %) suggests that the half-life of PCE degradation is higher in the presence of yeast extract. 

It is not clearly understood whether there were su

 

ounts of VC and appreciable amounts of degradation compounds such as TCE 

and DCE (

h 0.01 

In batches 1 and 2 microcosms, those amended with lactate performed well, whereas in 

batch 3, microcosm amended with SOME performed well. Variations in methane concentra

suggest that there may be methanotrophs present in the microcosms.  For the glucose 

microcosms, comparison of batch 2 (glucose 0.01 %) and ba

fficient microbes in batch 3 microcosm or yeast 

extract acted in any inhibitory manner. In the batch 3 microcosm amended with (lactate 0.085 % 

+ yeast extract 0.01 %), all compounds were disappearing in few days which may be due to leak 

in the vial, rather than degradation; moreover, if we compare to batch 2 microcosm (lactate 0.85 

% + yeast extract 0.01 %), where lactic acid is at 10 times higher concentration, we expect a 

longer half-life. 

The control in batch 3 exhibited faster degradation (~ 75 % PCE disappeared in 100 

days) but it could possibly be a gradual leak. In the microcosm amended with 0.1 % SOME more

than 90 % PCE disappeared in 30 days when PCE was respiked on day 86. It is not clear whether 

it is due to a leak in the microcosm. The microcosm amended with 0.1 % SOME and 0.01 % YE 

produced large am

Figure 3.41). TCE and VC reached a peak at about 50 days and then started to 

decrease and reached a low value after 200 days. However, only 25 % of PCE had disappeared 

after 200 days and DCE remained almost steady. In the microcosms amended with SOME, PCE 

usually increases first and then decreases. This is because some of the PCE (being a non-aqueous 

phase liquid (NAPL)) was incorporated into the hydrophobic SOME initially. After SOME starts 

to be consumed, the PCE is released to the aqueous phase. In the microcosm amended wit

% YE, PCE and DCE decreased slowly up to day 85, but afterwards, decreased sharply and 

reached almost zero by day 140 (Figure 3.42). In the microcosm amended with 0.01 % glucose 

and 0.01 % YE, ~ 55 % PCE disappeared in 200 days. Microcosm amended with 0.085 % lactic 

acid+0.01 % YE was a leaky one. No inhibition was observed in microcosms with higher 

concentrations of substrates glucose and lactate. Table 3.10 summarizes the results for batches 1, 

2 and 3. 

The results from the microcosm studies differ from the earlier results based on data from 

channels 1 and 2. The rate of degradation of PCE is larger in the channels because of the soil and 
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ter in the biofilms. 

osm 

xtract was a leaky one and, therefore, the results are not presented. 

The res

f 

me. 

tetrachloroethene (PCE). The pattern and rate of degradation of 

PCE varied with different supplements. The relative concentrations of degradation products were 

different in the glucose/corn starch and S els. Glucose was found to be a 

bette

 

concen ciable 

 

roduced 

the biofilms associated with the soil. The microenvironment needed for degradation may be 

much bet

In batch 4, even after the addition of KB-1, there was not much difference in the rate of 

degradation of PCE. KB-1 may not be alive or its activity could have decreased substantially due 

to long storage. Table 3.11 summarizes the results from microcosm studies (batch 4). Microc

amended with 0.01 % yeast e

ults for microcosm amended with lactic acid and lactic acid+YE are shown in Figures 

3.43 and 3.44 respectively. 

Analysis of batch 3 and batch 4 microcosms was discontinued after 268 days and 174 

days respectively. DCE remains steady in the microcosms and it is concluded that the 

microorganisms from the six-channel system were not capable of reducing DCE further even i

provided sufficiently long ti

 

3.4. Conclusions 
Supplements such as glucose, corn starch, and SOME stimulated the indigenous microbes 

and helped in the degradation of 

OME amended chann

r supplement than SOME with respect to the onset time for PCE degradation. Because 

glucose is soluble in water, it is distributed more rapidly. PCE concentration decreased to below 

the MCL value of 0.03 μM in the glucose fed channel on some dates and the minimum value in 

the SOME fed channel was 0.074 μM on day 825, almost 2.5 times the value of MCL. 

Most of the degradation process took place in the initial portion of the SOME fed 

channel, since SOME likely stayed near the inlet of the channel, due to sorption and retarded 

flow. SOME is a NAPL which does not flow freely like an aqueous solution. It may also sorb to 

soil organic matter in the initial portion of the channel. In the soil sample analysis, PCE

tration was low in the vadose zone, but it was present in the saturated zone in appre

concentrations. This study demonstrated that the supplements glucose and SOME are effective

substrates that can be added to PCE contaminated groundwater to promote degradation. 

The mesocosm studies have shown that there is a significant residual effect of int

carbon supplements. Mass balance and stoichiometric requirements of substrates for degradation 
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 the DCE further even when provided sufficiently long time 

in micr s 

icrocosm results 

and the

 

of PCE suggest that about 10 % of the nutrient supplements glucose and SOME are used in the 

process and the remaining substrate is used to consume oxygen and to support the growth

es. In the soil system, the microbes which are present as a biofilm absorb glucose and 

SOME, store polysaccharides, and have a reservoir of carbohydrates to use to reduce PCE to 

DCE. The process of endogenous decay can also provide a source of food. There are also effects

of distributed flow and channeling. These phenomena influence the length of time the system 

operates effectively and degrades PCE after food is added. Because SOME has very low 

solubility in water, it is retained near the point of injection, and it is able to provide needed 

substrate for a relatively long time compared to a soluble substrate such as glucose, which 

washes out with the effluent. 

Addition of KB-1 at well 3 had significant impact in the degradation of DCE, in b

glucose and SOME amended channels. KB-1 added on day 958 at well 3 was active even on

1113 (155 days later) suggesting that there is sustainable growth of KB-1 when provided w

suitable conditions and substra

The well sample results impart an idea of how SOME should be applied in the field: it

should be injected at several points down-gradient rather than at a single point. 

The native microorganisms, in free suspension in the exit solution, from the six-channel

system were not capable of reducing

ocosms. DCE remained steady in the microcosms and it is concluded that microorganism

capable of reducing DCE to ethene must be added to degrade DCE. Thus, the m

 results from the channel studies show that addition of nutrients which provide hydrogen 

and microorganisms that can degrade DCE are both necessary for dechlorination of PCE to 

ethene. 
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Figure 3.1. Photograph of six-channel system taken from outlet. The outlet solution is 

collected using 2L pop bottles. 
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Figure 3.2. Two flow through samplers connected to the outlet of channel 1. The outlet solution 

is collected, anaerobically, for preparing microcosms. 
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Figure 3.3. Concentration of bromide in the outlet liquid vs cumulative outlet liquid volume 

for channels 1, 2 and 3. Inlet bromide concentration = 67 mg/L. 
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Figure 3.4a. Inlet PCE and outlet PCE and DCE concentrations for channel 2. Glucose solution was added (indicated by + 

symbols) on day 110, 151, 173, 203, 236, 564, 676,799, 901, 955, 994 (well 1) and 1025 (well 2). Corn starch was added on days 

266, 299 328 and 522. KB-1 was added on days 591, 810 and 958 (well 3).  
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Figure 3.4b. Outlet TCE and methane concentrations for channel 2. See Figure 3.4a for glucose and KB-1 additions. 
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Figure 3.5a. Inlet PCE and outlet PCE, DCE, and total CEs concentrations for channel 1. Water samples taken on indicated 

days after beginning (March 12, 2004) exposure. Soy Oil Esters were added (indicated by + symbols) on days 203, 236, 266, 

299, 328, 359, 387, 415, 417 (well 3), 594, 954 (well 3), 991 (well 3) and 1022 (well 1). KB-1 was added on day 605, 811 and 958 

(well 3). 
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Figure 3.5b.  Outlet TCE, VC and methane concentrations (right hand y-axis) for channel 1. Water samples taken on indicated days 

after beginning (March 12, 2004) exposure. See Figure 3.5a for times of SOME and KB-1 additions. 
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Figure 3.6. PCE concentrations in inlet and outlet of channel 3. Water samples taken on indicated days after beginning 

exposure (March 12, 2004). 
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Figure 3.7. Variation of PCE and degradation compounds with distance along channel 1 on day 382, 3/29/05. Data for well 3 is 

not available. Soy Oil Methyl Esters (SOME) were added on days 203, 236, 266, 299, 328, and 359. 
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Figure 3.8. Variation of PCE and degradation compounds with distance along channel 1 on day 438, 5/24/05. Soy Oil Methyl 

Esters (SOME) were added on days 203, 236, 266, 299, 328, 359, 387, 415, and 417 (well 3). 
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Figure 3.9. Variation of PCE and degradation compounds with distance along channel 1 on day 456, 6/11/05. Soy Oil Methyl 

Esters (SOME) were added on days 203, 236, 266, 299, 328, and 359, 387, 415, and 417 (well 3). 

 

 

 114



 

 

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120
Distance (cm)

C
Es

 C
on

ce
nt

ra
tio

n 
( μ

M
)

0

5

10

15

20

25

30

35

M
et

ha
ne

 C
on

ce
nt

ra
tio

n 
( μ

M
)

PCE TCE DCE VC Total CEs Methane

 
 

Figure 3.10. Variation of PCE and degradation compounds with distance along channel 1 on day 496, 7/21/05; Methane 

concentration on right-hand (secondary) y-axis. Soy Oil Methyl Esters (SOME) were added on days 203, 236, 266, 299, 328, 

359, 387, 415, and 417 (well 3). 
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Figure 3.11. Variation of PCE and degradation compounds with distance along channel 1 on day 614, 11/16/05; Methane 

concentration on right-hand (secondary) y-axis. KB-1 was injected on day 605, 11/7/05. Soy Oil Methyl Esters (SOME) were 

added on days 203, 236, 266, 299, 328, 359, 387, 415, 417 (well 3) and 594. 
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Figure 3.12. Variation of PCE and degradation compounds with distance along channel 1 on day 644, 12/15/05; Methane 

concentration on right-hand (secondary) y-axis. KB-1 was injected on day 605, 11/7/05. Soy Oil Methyl Esters (SOME) were 

added on days 203, 236, 266, 299, 328, 359, 387, 415, 417 (well 3) and 594. 
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Figure 3.13. Variation of PCE and degradation compounds with distance along channel 1 on day 712, 2/21/06. KB-1 was 

injected on day 605, 11/7/05. Soy Oil Methyl Esters (SOME) were added on days 203, 236, 266, 299, 328, 359, 387, 415, 417 

(well 3), and 594. 
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Figure 3.14. Variation of PCE and degradation compounds with distance along channel 1 on day 864, 7/24/06; Methane concentration 

on right-hand (secondary) y-axis. KB-1 was injected on day 605, 11/7/05 and day 811, 6/1/06. Soy Oil Methyl Esters (SOME) were 

added on days 203, 236, 266, 299, 328, 359, 387, 415, 417 (well 3) and 594. 
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Figure 3.15. Variation of PCE and degradation compounds with distance along channel 1 on day 897, 8/26/06; Methane concentration 

on right-hand (secondary) y-axis. KB-1 was injected on day 605, 11/7/05 and day 811, 6/1/06. Soy Oil Methyl Esters (SOME) were 

added on days 203, 236, 266, 299, 328, 359, 387, 415, 417 (well 3) and 594. 
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Figure 3.16. Variation of PCE and degradation compounds with distance along channel 1 on day 984, 11/23/06. KB-1 was 

injected in the inlet on day 605, 11/7/05 and day 811, 6/1/06, and into well 3 on day 958, 10/26/06. Soy Oil Methyl Esters 

(SOME) were added on days 203, 236, 266, 299, 328, 359, 387, 415, 417 (well 3), 594 and 954. 
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Figure 3.17. Variation of PCE and degradation compounds with distance along channel 2 on day 409, 4/25/05; methane concentration 

on right-hand (secondary) y-axis. Glucose solution was added on days 110, 151, 173, 203, and 236. Corn starch was added on days 

266, 299 and 328. 
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Figure 3.18. Variation of PCE and degradation compounds with distance along channel 2 on day 438, 5/24/05; Glucose 

solution was added on days 110, 151, 173, 203 and 236. Corn starch was added on days 266, 299 and 328. 
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Figure 3.19. Variation of PCE and degradation compounds with distance along channel 2 on day 555, 9/18/05; Glucose 

solution was added on days 110, 151, 173, 203 and 236. Corn starch was on days 266, 299, 328 and 522. 
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Figure 3.20. Variation of PCE and degradation compounds with distance along channel 2 on day 614, 11/16/05. Methane on 

right-hand (secondary)y-axis. KB-1 was injected on day 591, 10/24/05; Glucose solution was added on days 110, 151, 173, 203, 

236 and 564. Corn starch was added on days 266, 299, 328 and 522. 
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Figure 3.21. Variation of PCE and degradation compounds with distance along channel 2 on day 741, 3/22/06. KB-1 was injected on 

day 591, 10/24/05; Glucose solution was added on days 110, 151, 173, 203, 236, 564 and 676. Corn starch was added on days 266, 

299, 328 and 522. 
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Figure 3.22. Variation of PCE and degradation compounds with distance along channel 2 on day 831, 6/21/06. Methane on right-hand 

(secondary)y-axis. KB-1 was injected on 10/24/05 (day 591) and 5/31/06 (day 810); Glucose solution was added on days 110, 151, 

173, 203, 236, 564, 676 and 800. Corn starch was added on days 266, 299, 328 and 522. 
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Figure 3.23. Variation of PCE and degradation compounds with distance along channel 2 on day 897, 8/26/06. KB-1 was 

injected on 10/24/05 (day 591) and 5/31/06 (day 810). Glucose solution was added on days 110, 151, 173, 203, 236, 564, 676 and 

800. Corn starch was added on days 266, 299, 328 and 522. 
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Figure 3.24. Variation of PCE and degradation compounds with distance along channel 2 on day 984, 11/23/06. Methane on right-

hand (secondary)y-axis. KB-1 injected on 10/24/05 (day 591) and 5/31/06 (day 810) and 10/26/06 (day 958, into well 3). Glucose 

solution was added on days 110, 151, 173, 203, 236, 564, 676, 800, 901 and 955. Corn starch was added on days 266, 299, 328 and 

522. 

 129



 

 

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Distance (cm)

C
on

ce
nt

ra
tio

n 
( μ

M
)

PCE TCE DCE Methane total_CEs

 
Figure 3.25. Variation of PCE and degradation compounds with distance along channel 2 on day 1123, 4/10/07. KB-1 was 

injected on 10/24/05 (day 591) and 5/31/06 (day 810) and 10/26/06 (day 958, into well 3). Glucose solution was added on days 

110, 151, 173, 203, 236 564, 676, 800, 901, 955, 994 (well 1) and 1025 (well 2). Corn starch was added on days 266, 299, 328 and 

522. 

 

 130



 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25 30 35 40

Depth (cm)

C
on

ce
nt

ra
tio

n 
( μ

M
)

ch1 ch2 ch3

 
Figure 3.26. PCE concentration in the the aqueous phase of soil samples of channels 1, 2 and 3; June 15, 2004, day 95. Inlet 

concentration is ~ 12 μM. Samples collected at a distance of 32 cm from inlet. 
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Figure 3.27. PCE concentration in the the aqueous phase of soil samples of channels 1, 2 and 3; August 9, 2004, day 150. Inlet 

concentration is ~ 12 μM. Samples were collected at a distance of 55 cm from inlet. 
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Figure 3.28. PCE and DCE concentrations in the aqueous phase of soil samples on day 229, 10/27/04. Inlet concentration is ~ 

12 μM. Samples were collected at a distance of 65 cm from inlet. 

 

 

 133



 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40

Depth (cm)

C
on

ce
nt

ra
tio

n 
( μ

M
)

ch1 ch2 ch3 ch2 DCE

 
 

Figure 3.29. PCE and DCE concentrations in the aqueous phase of soil samples on day 353, 2/28/05. Inlet concentration is ~ 12 

μM. Samples were collected at a distance of 90 cm (channel 1 and 2) and 100 cm (channel 3) from inlet. 
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Figure 3.30. CEs and Methane profile, in the aqueous phase of channel 2 soil, vs length of the channel on day 385, 4/1/05.  Soil 

samples were collected at 37 cm depth at all locations except 101 cm which was collected at 42 cm depth. The samples were collected 

while installing wells in channel 2. 
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Figure 3.31. CEs and Methane profile, in the aqueous phase of channel 1 soil, vs depth from the surface of the soil on day 812, 

6/12/06; DCE right-hand (secondary) y-axis. Soil samples were collected at a distance of 10 cm from inlet. 
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Figure 3.32. CEs and Methane profile, in the aqueous phase of channel 2 soil, vs depth from the surface of the soil on day 812, 

6/12/06; DCE right-hand (secondary) y-axis. Soil samples were collected at a distance of 14 cm from inlet. 
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Figure 3.33. CEs and Methane profile, in the aqueous phase of channel 3 soil, vs depth from the surface of the soil on day 812, 

6/12/06. Soil samples were collected at a distance of 30 cm from inlet. 
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Figure 3.34a. CEs and methane profile, in the aqueous phase of channel 1 soil, vs depth from the surface of the soil on day 955, 

10/23/06. Soil samples were collected at a distance of 18 cm from inlet. 
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Figure 3.34b. CEs and methane profile, in the aqueous phase of channel 1 soil, vs depth from the surface of the soil on day 955, 

10/23/06. Soil samples were collected at a distance of 20 cm from inlet. 
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Figure 3.34c. CEs and methane profile, in the aqueous phase of channel 1 soil, vs depth from the surface of the soil on day 955, 

10/23/06. Soil samples were collected at a distance of 75 cm from inlet. 
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Figure 3.35. CEs and methane profile, in the aqueous phase of channel 2 soil, vs depth from the surface of the soil on day 987, 

11/26/06. Soil samples were collected at a distance of 32 cm from inlet. 

 

 

 

 142



 

 

 

0

4

8

12

16

0 5 10 15 20 25 30 35 40

depth (cm)

C
on

ce
nt

ra
tio

n 
( μ

M
)

PCE TCE DCE Methane

 
Figure 3.36. CEs and Methane profile, in the aqueous phase of channel 3 soil, vs depth from the surface of the soil on day 987, 

11/26/06. Soil samples were collected at a distance of 27 cm from inlet. 
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Figure 3.37. Variation of PCE, DCE and methane in microcosm control, Batch 1; PCE spiked on day 14. 
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Figure 3.38. Variation of PCE, DCE and methane in microcosm with lactic acid 0.425 %, Batch 1; PCE spiked on day 14. 
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Figure 3.39. Variation of PCE, DCE and methane in microcosm with glucose 0.01 %, Batch 2; PCE spiked on day 11. 
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Figure 3.40. Variation of PCE, DCE and methane in microcosm with lactic acid 0.85 %+yeast extract 0.01 %, Batch 2; PCE 

spiked on day 11 and day 116. 
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Figure 3.41. Variation of PCE, DCE and methane in microcosm with soy oil methyl ester 0.1 % and yeast extract 0.01 %, 

Batch 3; PCE spiked on day 0; VC and Total CEs right-hand (secondary)y-axis. 

 

 

 148



 

 

 

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (Days)

M
as

s (
nm

ol
es

)
PCE

DCE

Methane

Total

 
Figure 3.42. Variation of PCE, DCE and methane in microcosm with yeast extract 0.01 %, Batch 3; PCE spiked on day 0. 
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Figure 3.43. Variation of PCE,TCE, DCE, VC and methane in microcosm with lactic acid 0.085 %, Batch 4 (channel 1 outlet 

liquid); KB-1 was added on day 23. 
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Figure 3.44. Variation of PCE,TCE, DCE, VC and methane in microcosm with lactic acid 0.085 % and yeast extract 0.01 %, 

Batch 4 (channel 1 outlet liquid); KB-1 was added on day 23. 
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Table 3.1. Supplements feeding history for channels 1 and 2. 100 mL containing 2 % 

glucose was fed to channel 2 on days 110, 151 and 173. From October 1, 2004, one liter of 

0.2 % glucose was fed to channel 2 and one liter of 0.1 % SOME was fed to channel 1 as 

indicated in this table. 

 

Date Day Channel 1 Channel 2 

2004    

June 30 110  G 

August 10 151  G 

September 1 173  G 

October 1 203 S G 

November 3 236 S G 

December 3 266 S CS 

2005    

January 5 299 S CS 

February 3 328 S CS 

March 6 359 S  

April 3 387 S  

May 1 415 S  

May 3 417 S (well 3)  

August 16 522  CS 

September 27 564  G 

October 24 591  KB-1 

October 27 594 S  

November 7 605 KB-1  

2006    

January 16 676  G 

May 20 800  G 

May 31 810  KB-1 
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Date Day Channel 1 Channel 2 

June 1 811 KB-1  

August 30 901  G 

October 22 954 S (well 3)  

October 23 955  G 

October 26 958 KB-1 (well 3) KB-1 (well 3) 

November 28 991 S (well 3)  

November 30 993   

December 1 994  G (well 1) 

December 29 1022 S (well 1)  

January 1 1025  G (well 2) 

 

 

 

Key: G - Glucose; CS – Corn Starch; CW – Cheese Whey; S – SOME or Soy Oil Methyl Esters; 

KB-1 – Dehalococcoides spp.  

* From December 3, 2004 to February 3, 2005, Corn Starch was added instead of glucose, 

inadvertently.  

# On day 445, May 31, 2005, 100 mL of 1 % SOME was injected into well 3 of channel 6, 

through a nylon tubing; the solution was fed near the bottom of the channel. 
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Table 3.2a. Physical and chemical properties of soy oil methyl ester (SOME). 

 

Property Value 

Molecular weight (avg) 

C:H:O (molar ratio) 

292.2 

19:34:2 

Odor 
Light Vegetable Oil 

Odor 

Melting point (°C) -1 

Boiling point (°C) 315 

Flash Point (°C) 218 

Density (g/cc) 0.89 

Solubility in water at 25°C (mg/L) Negligible 

Vapor Pressure (mm Hg) at 20°C 1.8 

 

(Purcell et al., 1995; Marion, 2007). 
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Table 3.2b. Distribution of fatty acids and their chemical formula in SOME.  

 

S.No. Fatty Acid Wt % Mol. Wt. Formula 

1 Palmitic 12 270.46 C15H31CO2CH3 

2 Stearic 5 298.52 C17H35CO2CH3 

3 Oleic 25 296.50 C17H33CO2CH3 

4 Linoleic 52 294.48 C17H31CO2CH3 

5 Linolenic 6 292.46 C17H29CO2CH3 

 

(Purcell et al., 2007; Marion, 2007). 

 

 



 

 

 

 

Table 3.3. Tracer peak volume, time, and concentrations in outlet and mean residence time for channels 1, 2 and 3. 

 

Channel Volume of outlet 

liquid (L)* 

Arrival time for peak bromide 

concentration (days)* 

Bromide peak concentration in 

outlet liquid (mg/L) 

Mean residence time 

(days)# 

1 2.8 3.0 0.98 6.2 

2 1.1 1.1 2.24 3.6 

3 1.3 1.4 3.48 3.5 

 

*Values are the liquid volume and residence time associated with the peak bromide concentration. 
# Mean residence time was estimated from the residence time distribution (RTD) model. 
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Table 3.4. Mass balance for tracer study in channels 1, 2 and 3, for the 14 day period, from June 4, 2004 to June 17, 2004. 

 

Channel Cumulative 

volume of outlet 

liquid (L) 

Cumulative 

water uptake by 

plants (L) 

Bromide in outlet 

liquid (mg) 

Bromide trapped in soil 

by evapotranspiration* 

(mg) 

Total bromide 

accounted (mg) 

Percent 

recovery 

(%) 

1 12.00 2.26 3.63 0.65 4.18 42 

2 10.44 3.31 4.10 1.09 5.05 50 

3 10.42 4.43 5.28 1.94 7.06 70 

 

*Estimated based on the assumption that the bromide concentration in the upflow due to evapotranspiration is the same as that in the 

outlet liquid for a particular day. 
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Table 3.5. Bromide recovery vs solution recovery in channels 1, 2 and 3, for the 14 day period, from June 4, 2004 to June 18, 

2004. 

 

Channel Volume of outlet 

liquid over total 

water fed (L/L) 

Solution 

recovered 

(%) 

Bromide in outlet 

liquid (mg) out of 

total 10.05 mg 

Bromide 

recovery 

(%) 

1 12/14.25 84 3.63 36 

2 10.44/13.75 76 4.10 41 

3 10.42/14.85 70 5.28 53 
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Table 3.6. Effect of evapotranspiration on the residence time of compounds in channels 1, 2 and 3; estimated based on data 

from June 2004. 

 

Channel Variation in the daily 

exit liquid volume (L) 

in June 2004 

Volume of exit liquid 

for peak concentration 

of tracer (L) 

Arrival time for peak 

bromide 

concentration (days) 

Estimated variation 

of peak time in June 

2004 (days)* 

1 0.9-0.6 2.8 3.0 3.1-4.6 

2 0.9-0.4 1.1 1.1 1.2-2.7 

3 0.8-0.6 1.3 1.4 1.6-2.2 

 

*This value is obtained by dividing the volume of exit liquid corresponding to peak concentration by the volume of liquid collected at 

the outlet each day, at the beginning and the end of June 2004. For example, for channel 1, the time taken for collecting 2.8 L of liquid 

at the outlet in the beginning of June 2004 is 2.8/0.9 = 3.1 days and similarly, the time taken for collecting 2.8 L of liquid at the outlet 

at the end of June 2004 is 2.8/0.6 = 4.6 days. 

 

 



 

 

 

Table 3.7. Mass of aqueous phase, moisture content fraction, and dry weight of soil in the 

soil samples collected (day 95, 6/15/04) from channels 1, 2 and 3. Soil samples were 

collected at a distance of 32 cm from inlet. 

 

 

 Depth (cm) Channel 1 Channel  2 Channel  3 

Mass of 

aqueous phase 

(gm) 

0-8 0.107 0.2648 0.813

12-20 0.5679 0.6173 1.1723

24-32 1.1074 1.0571 1.0098

34-42 1.4171 1.048 1.14

 Depth (cm) Channel  1 Channel  2 Channel  3 

Moisture 

content fraction 

(w/w) 

0-8 0.03 0.09 0.22

12-20 0.11 0.13 0.16

24-32 0.14 0.15 0.15

34-42 0.17 0.16 0.16

 Depth (cm) Channel  1 Channel  2 Channel  3 

Mass of dry soil 

(gm) 

0-8 3.8336 2.8461 2.911 

12-20 4.5872 3.9656 6.3053

24-32 6.6012 6.1796 5.511 

34-42 7.1149 5.5757 5.9594
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Table 3.8. Mass of aqueous phase, moisture content fraction, and dry weight of soil in the 

soil samples (day 150, 8/9/04) collected from channels 1, 2 and 3. Soil samples were 

collected at a distance of 55 cm from inlet. 

  

 

 Depth (cm) Channel  1 Channel  2 Channel  3 

Mass of 

aqueous phase 

(gm) 

0-8 0.0762 0.3053 0.842

12-20 0.3304 1.0073 0.6614

24-32 0.1544 1.4701 0.1917

34-42 1.2475 0.8139 1.5187

 Depth (cm) Channel  1 Channel  2 Channel  3 

Moisture 

content fraction 

(w/w) 

0-8 0.02 0.11 0.18

12-20 0.06 0.14 0.19

24-32 0.03 0.16 0.16

34-42 0.15 0.14 0.15

 Depth (cm) Channel  1 Channel  2 Channel  3 

Mass of dry soil 

(gm) 

0-8 3.7087 2.5069 3.7402

12-20 5.3799 6.322 2.894

24-32 5.5651 7.68 1.0295

34-42 6.9037 5.0599 8.7644
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Table 3.9. Organic carbon content (as %) in channel 1 and 3 soil samples (day 150, August 

9, 2004). 

 

Sample Depth (cm) Channel 1 Channel 3 

1 0-8 0.37 0.76 

2 12-20 0.36 0.38 

3 24-32 0.53 0.66 

4 34-42 0.15 0.06 
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Table 3.10. Summary of results from microcosms, Batch 1, 2 and 3. 

 

No. Microcosm 
Percentage decrease 

Methane 
PCE DCE 

Batch I (166 days) 

1 control 59 33 Slow decrease 

2 0.005 % glucose 60 40 Decreased 80 % 

3 0.425 % lactate 77 40 decreased to zero in 40 days 

Batch II (166 days) 

1 control 58 22 Decreased to zero in 100 days 

2 glucose 0.01 % 60 30 
Increased first and decreased 

to zero in 90 days 

3 lactate 0.85 % Slow leak in microcosm 

4 
yeast extract 0.01 

% 
63 27 First order decrease 

5 

glucose 0.01 %+ 

yeast extract 0.01 

% 

21 % in first 

80 days 

46 % in 78 

days after 

respiking 

decreased to 

zero in 10 

days 

decreased to zero in 3 days 

6 

lactate 0.85 % + 

yeast extract 0.01 

% 

80 % in first 

100 days 

54 % in 62 

days after 

60 Decreased to zero in 90 days 
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No. Microcosm Percentage decrease Methane 

respiking 

 PCE DCE  

Batch III (158 days) 

1 control 

76 % decrease 

in 77 days, 

then remained 

steady 

35 decreased to zero in 50 days 

2 SOME 0.1 %  Decreased quickly; could be leak 

3 

SOME 0.1 % +  

yeast extract 0.01 

% 

All compounds increased and then decreased 

4 
yeast extract 0.01 

% 

PCE and DCE remained 

steady for about 86 days and 

then decreased to zero after 

137 days 

           - 

5 

glucose 0.01 %+ 

yeast extract 0.01 

% 

47 20 Decreased to zero in 70 days 

6 

lactate 0.085 % + 

yeast extract 0.01 

% 

Leak in microcosm 
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Table 3.11. PCE and DCE attenuation in batch 4 microcosms after day 134. 

 

Microcosm 
Decrease in 

PCE (%) 

Decrease in 

DCE (%) 

control 67 27 

SOME 0.1 %  99 40 

SOME 0.1 % +  yeast 

extract 0.01 % 
71 -8 

yeast extract 0.01 % leak Leak 

glucose 0.01 %+ yeast 

extract 0.01 % 
59 37 

lactate 0.085 % 42 9 

lactate 0.085 % + yeast 

extract 0.01 % 
92 63 
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Table 3.12. First order rate constants and half-life of PCE in microcosms, Batch 1 and 2. 

 

 Rate constant (* 10-3 per day) Half-Life (days) 

 Batch 1 Batch 2 Batch 1 Batch 2 

Control 3.6 4.1 193 169 

Glucose 3.4 4.1 204 169 

Lactic acid 6.6 Leaky vial 105 Leaky vial 

Yeast extract  4  173 

Glu + YE  3.8 and 6.3  182 and 110 

LA + YE  19.4 and 4.8  35 and 144 
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Table 3.13. First order rate constants and half-life of PCE in microcosms, Batch 3 and 4. 

 

 Rate constant (* 10-3 per day) Half-Life (days) 

 Batch 3 Batch 4 Batch 3 Batch 4 

Control 9.7 7.8 71 89 

SOME Leaky vial  Leaky vial 

SOME + YE -  - 

YE 22.4 Leaky vial 31 Leaky vial 

Glu + YE 3.7 6.8 187 102 

LA + YE Leaky vial 4.6 Leaky vial 151 

LA 19.8 35 

 

NA – Not Applicable 
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Table 3.14. Regression coefficients for first order reaction model. 

 

 Batch 1 Batch 2  Batch 3 Batch 4 

Control 0.90 0.78 Control 0.84 0.92 

Glu  0.85 0.89 SOME Leaky vial - 

LA  0.97 Leaky vial SOME + YE - - 

YE  0.86 YE 0.83 Leaky vial 

Glu + YE  0.46, 0.92 Glu + YE 0.84 0.87 

LA + YE  0.90, 0.64 LA + YE Leaky vial 0.70 

  LA  0.98 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 4 - Hydrogeologic Characterization and Groundwater 

Modeling for a Tetrachloroethene Contaminated Site 

4.1. Introduction 

It is important to have a sound knowledge of the hydrogeology of the site before planning 

a remediation strategy. Typically, a tracer study is conducted to determine the groundwater flow 

direction and velocity. The geochemistry (ion concentrations) of groundwater can also play a 

vital role in developing the remediation plan and therefore, the geochemical parameters are also 

analysed. In this work, several tracer studies using potassium bromide, were conducted in a 

tetrachloroethene contaminated site at Manhattan, KS. The hydraulic conductivity was estimated, 

based on the tracer studies and transient well pumping data. The site geology was characterized 

by others (Terracon, 2004), and we studied the anion concentrations in the groundwater. 

4.2. Materials and Methods 

4.2.1. Location 

The subject property is located at 1227 Bluemont Ave., which is situated in the NW 

Quarter of Section 18, Township 10S, Range 8E in Manhattan, Kansas  (Terracon, 2004). This is 

part of the Aggieville district of Manhattan, a predominantly commercial and entertainment area. 

Dry cleaning contaminants from another source area, a dry cleaning establishment on 12th Street, 

may be commingled with the main plume at some locations down-gradient. This facility is 

approximately 400 ft down gradient of the 1227 Bluemont Ave. site. Due to the proximity of the 

facility to the source area, the two sources of contamination have been considered to create a 

common plume. The facility formerly located at 1227 Bluemont Ave. is the targeted location for 

this study and it is up-gradient of the facility on 12th Street. A GIS map of the study area is 

shown in Figure 4.1 and additional details on the wells are shown in Figures 4.2 and 4.3. 

Contamination Release Characteristics/Historical Concentrations 
The saturated zone at the site consists of silty-clay that is underlain by permeable sands in 

the lower portion of the aquifer. Chlorinated solvents, both dissolved and NAPL, may be present 

based on historical presumptive evidence; they are likely adsorbed and present with silty-clay 
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soil particles and provide a continuous source of contamination. PCE has degraded to 

trichloroethylene (TCE) within 400 ft of the source area indicating reductive dechlorination is 

occurring at this site. However, complete reductive dechlorination to ethene/ethane did not 

appear to be occurring under natural conditions. 

An Environmental Site Assessment (ESA) during 2004 indicated that concentrations of 

PCE in groundwater are well above the Maximum Contaminant Level (MCL) of 5 μg/L. The 

source area PCE contamination at the Bluemont Ave. facility was detected at 50,000 μg/L using 

an on-site field gas chromatograph and at 35,000 μg/L from a fixed lab analysis (Terracon, 

2004). Analytical results of collected groundwater samples indicated that most of the PCE is 

primarily within one block of the source. However, concentrations of cis-DCE in the 

groundwater in excess of the MCL of 70 μg/L were detected at a distance approximately one-

mile down gradient of the source areas. Chlorinated solvents have been detected (above the 

MCLs) in two of the City of Manhattan’s public water supply (PWS) wells, located 

approximately 1.2 miles down gradient of the source (Terracon, 2004) . 

In 2004, the highest PCE concentration in water at the source area was about 35,000 

µg/L; however, PCE was not found beyond three blocks from the source. As the plume moves 

eastward the PCE concentration decreases and both TCE and DCE are present. After about 5 

blocks, DCE usually exceeds TCE at several depths. Along the plume, concentrations up to a 

maximum of 4000 ppb of TCE, 1780 ppb of DCE and 10 ppb of VC in groundwater were 

detected (Terracon, 2004). Soil samples collected at the 1227 Bluemont Ave. site at four 

different locations had concentrations in the range 244 to 2837 mg/kg of PCE and about 2 mg/kg 

of TCE and DCE (Terracon, 2004). 

4.2.2. History 

Cinderella Dry Cleaners operated at 1227 Bluemont Ave., Manhattan, KS, from 1967-

1997. PCE was utilized as a dry-cleaning solvent at this facility. The drycleaner is no longer in 

operation. Following a property transfer in 1997, the site was converted to Coco Bolos 

Restaurant. The history of this facility as well as other dry cleaning facilities in the vicinity is 

discussed by Davis (2007). 
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4.2.3. Lithology 

Lithologic studies were conducted by Terracon, Wichita, Kansas (Terracon, 2004) to 

determine the soil characteristics at the site. The subsurface cross sections with soil types along 

the depth, were constructed from four probe logs and boring logs from monitoring wells MW-

7D, MW-8D, MW-11D and MW-12D.  Information developed from the site investigation 

indicates subsurface materials near the site primarily consists of clay (hydraulic conductivity 10-7 

– 10-9 cm/s), with interbedded silty clay and clayey silt from about ground level to about 40 feet 

below ground surface (bgs). This material is underlain by sand to a depth of approximately 55 

feet bgs.  The cone penetrometer (CPT) probes were to be advanced to bedrock, anticipated at 

approximately 55 to 60 feet bgs, or probe refusal, whichever occurred first. However, at CPT-1 

(near MW-5D) the rig was apparently not adequately centered over the probe rods and probe 

refusal was encountered at a depth of 35 feet. The other three CPT probes encountered probe 

refusal at depths that ranged from 44.5 to 46 feet bgs, and bedrock was not encountered in the 

four CPT probes performed (Terracon, 2004). 

The soil used in the laboratory study was primarily sand with less than 10% silt (Zhang, 

1999). Soil samples collected during the boring for MW-9D was analysed at the Soil Testing 

Laboratory at Throckmorton Hall, Kansas State University. Soil over a 5-ft depth was 

homogenized and the results are presented in Table 4.1 with each 5-ft depth of soil identified by 

the middle depth for that section. In Table 4.1, from a depth of 2.5 ft to 47.5 ft, the sand content 

increased from 12% to 36%, silt content varied between 34% to 54% with higher silt content in 

the deep zone, and clay content decreasing from 48% at the top to 12% at the depth of 42.5 ft and 

increasing to 22% at 47.5 ft. The soil in the bottom samples in the pilot study area can be 

compared to the soil used in the laboratory study, eventhough the sand content is less and clay 

content high in the field soil. The average velocity of contaminant solution in the six-channel 

system, based on the arrival of bromide peak, was 1.2 ft/d in channel 1, 3.3 ft/d in channel 2 and 

2.6 ft/d in channel 3. The velocities in the six-channel system was about an order of magnitude 

higher than the values observed in the field. 

The aquifer is found to have two distinct zones, termed shallow zone and deep zone. 

Groundwater flows toward the east-northeast direction. The depth to water for the shallow zone 

is in the range 11 - 15 feet bgs. The groundwater thickness (or height) of the shallow zone is 

about 20 ft and the thickness of the deep zone is about 20 ft. The deep zone is from about 35 feet 
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bgs to about 55 feet bgs. Due to pressure at the top of the deep zone, the water table in the wells 

rises more than 15 ft. The monitoring wells in the shallow zone were 30 ft deep and screened 

from 10 ft to 30 ft bgs. The monitoring wells in the deep zone were 55 ft bgs and screened from 

45 ft to 55 ft bgs. 

4.2.4. Fall 2004 Tracer Study 

The location of the monitoring wells is shown in Figure 4.1 as a GIS map and in Figures 

4.2 and 4.3 as a schematic. A tracer study was initiated in the deep zone, on August 2, 2004. 

Approximately 200 L of water was pumped from MW-8D into a large rectangular plastic tank 

and mixed with 150 g potassium bromide (KBr) to obtain a bromide concentration of 

approximately 500 mg/L. This solution was injected into MW-8D, at three different depths of 40 

ft bgs, 45 ft bgs and 50 ft bgs in approximately equal volumes.  

Frequency of sampling was adjusted, based on monitoring results, with daily sampling of 

the first well (MW-9D) approximately 10 ft down-gradient, until the peak of bromide appeared 

there, and sampling at longer intervals thereafter. The sampling interval was greater (2-3 days) 

for MW-10D, approximately 20 ft down-gradient from the injection well MW-8D. Samples were 

collected at multiple depths, viz., 40 ft bgs (which is in the unscreened part of the well), 45 ft bgs 

and 50 ft bgs through the screened portion of the well, to check for preferential flow.  

Once the peak of bromide had passed the wells MW-9D and MW-10D, another tracer 

study was initiated in the shallow zone. Injection occurred on September 16, 2004, in MW-8S, 

using the same approach as previously described. The injection depths in the shallow zone were 

17 ft bgs, 22 ft bgs and 27 ft bgs. Samples were collected from the monitoring wells at these 

three depths.  

4.2.5. Fall 2005 Tracer Study 

A bioremediation pilot study was carried out beginning Fall 2005 at a location down-

gradient from the source, as shown in Figure 4.3. In the nutrient solution injected for bio-

stimulation of native microbes, a tracer, potassium bromide, was also added. Drilling for 

installation of injection wells at four locations, each 4 ft apart in the north-south direction and 

between MW-8 and MW-9 was started on Monday, August 15, 2005 and completed by 

Wednesday, August 17, 2005; see Figure 4.3. Two wells were installed at each injection 

location, one each for deep and shallow zones of the aquifer. The screening depths in the 
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injection wells were 50-55 ft bgs and 42-47 ft bgs for deep zone and 30-35 ft bgs and 23-28 ft 

bgs for the shallow zone, as depicted in the schematic Figure 4.3. Figure 4.4 is a photograph of 

the injection points taken just after installation of the injection wells. Groundwater from MW-

10S and MW-10D was pumped into four barrels (55 gal or ~ 200 L each) for preparing nutrient 

solution and anaerobic chase water. Two hundred grams of potassium bromide was added to the 

nutrient solution (concentration = 670 mg bromide/L) as a tracer to monitor the groundwater 

flow and also to understand the possible flow of the nutrients.  

Injection of nutrient solution and chase water was carried out on Thursday, August 18, 

2005 (Day 0). The solutions were injected first in the shallow zone and then in the deep zone. In 

the shallow zone, each injection well received 50 L of nutrient solution (containing 670 mg/L of 

bromide) followed by 50 L of chase water. In all the shallow zone injection wells, only siphoning 

(gravity flow) was used to inject the solutions. In the deep zone, a rotor pump was used to inject 

the solution in Loc D, but in Loc C there was overflow when solution was pumped. Hence 

siphoning was used at the deep in injection well at Loc C. Since the injection rate was too slow 

in the deep zone, only 30 L of nutrient solution was injected in Loc C while Loc A and Loc B 

received 60 L each of nutrient solution. 

Groundwater samples were collected from monitoring wells at depths (all values are bgs) 

18 ft (top), 23 ft (middle) and 28 ft (bottom) for shallow zone and 42 ft (top), 47 ft (middle) and 

51 ft (bottom) for deep zone. Samples were collected daily for the first week and from then 

onwards once in two days for the next two weeks and from then onwards twice a week. The 

samples were analyzed for both chlorinated ethenes (CEs) and ions as described below in Section 

4.2.9. Analytical Method. 

The samples at three depths across the screened interval served as replicate samples, at 

locations where there was sufficient dispersion and mixing to result in uniform concentration, 

and helped in determining variation in flow rate in the aquifer across the screened interval. 

Because the nutrients were injected at different and non-overlapping depths, there may be 

different effects at different depths within the aquifer depending on the extent of vertical mixing. 

At locations where there not sufficient dispersion and mixing, the concentrations of CEs and 

anions varied with depth. 

 173



 

 

4.2.6. Spring 2006 Tracer Study 

In light of the results of the Fall 2005 tracer study and the observation that reducing 

power was depleted in the down-gradient wells, it was decided to introduce a new tracer along 

with additional nutrients. We anticipated that the hydraulic conductivity in the vicinity of the 

nutrient injection wells may have been altered due to formation of biofilms and microbial 

products. To understand whether the aquifer had been altered and the ground water flow pattern 

had changed, a second dose of potassium bromide tracer and third dose of nutrients were injected 

on March 3, 2006 (day 197) using the same procedure described above.   

4.2.7. Pumping Tests  

Pumping tests were carried out in MW-8D and MW-10S to determine the hydraulic 

conductivity of the soil at the pilot study area. Groundwater was pumped out of MW-10S and 

while pumping out, the decrease in groundwater level vs time was recorded. The groundwater 

that was pumped out was injected back into MW-10S and the rise in the groundwater level vs 

time was recorded. This experiment was conducted on two different dates, 8/16/2005 and 

12/21/2006. The rated pumping capacity of the pump used is 12 L/min, however, the actual 

pumping rate was less, due to the depth from which water was pumped out, as estimated from 

the time taken to pump out 200 L of water. The depth at which groundwater was pumped out 

was 20 ft bgs for MW-10S and 30 ft bgs for MW-8D. The actual rates at which water were 

pumped out of MW-10S, were 5.6 L/min and 4.3 L/min during Fall 2005 and Fall 2006 

experiments. The flow rate at which water was pumped into MW-10S was 7.4 L/min. 

Pumping test was carried out in MW-8D on 12/21/2006. While pumping out water from 

MW-8D, there was no appreciable change in depth to water. The pump capacity (4.3 L/min at a 

depth of 30 ft bgs) may be too low to impact the groundwater level. 

4.2.8. Models Used in the Study  

4.2.8.1. Dilution Model 

In this model, the tracer, when injected, was assumed to spread in a cylindrical fashion 

concentric to the injection well. The tracer is then diluted or washed away by the flow of 

groundwater. The injection solution volume is considered as the system volume and treated as a 
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continuous stirred tank, where the concentration of the tracer inside the system is assumed the 

same (Levenspiel, 1999). A mass balance for the system yields, 

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
systemthe

exitingTracer
systemthe

enteringTracer
volumesystemthein

tracerofonAccumulati
 

Expressed in terms of the system parameters, 

CQ
dt
dCV *0 −=          (4.1) 

where, 

V = volume of the fluid in the system (cylinder with radius equal to the radius of 

influence of injection) 

C = concentration of the tracer at time t 

Q = flow rate of the fluid through the system, i.e., Volumetric flow rate of groundwater 

through the cross section of the system = v * A 

where, 

v = actual velocity of groundwater = Darcy velocity/Porosity of the soil 

A = cross sectional area available for the fluid to flow 

Since the tracer solution is assumed to spread in a cylindrical fashion, the cross section is 

a rectangle, the height of which is the screening depth and the width is the diameter of the 

cylinder. The area available for flow is only 30 % of this rectangle due to porosity of the soil. 

The analytical solution for Eqn (4.1) is 

)(

0

t
V
Q

eCC
−

=           (4.2) 

with the initial condition, 

C0 = concentration of the tracer at time t = 0, or the injection concentration 

V/Q = time constant of the system 

4.2.8.2. Advection-Dispersion Model 

The one-dimensional advection dispersion equation (ADE) that governs the concentration 

of a conservative tracer is (Reddi and Inyang, 2000), 
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where, 
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C = concentration of the substance at time t and distance x, from the source 

D = dispersivity of the groundwater 

v = actual velocity of the groundwater = Darcy velocity/Porosity of the soil 

The initial and boundary conditions are  

C(x, t) = 0  t<0 

C(∞, t) = 0  t ≥ 0 

The solution for Eqn (4.3), with the above conditions, for a slug of tracer input, is given 

by (Reddi and Inyang, 2000) 

⎥
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⎡ −
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)vtx(exp

Dt4
MC

2

π
        (4.4) 

 

where, 

M = mass of the substance spilled/injected per unit area 

In developing the above model for the injection well 8S, the distance x, at which the 

tracer concentration is observed is assumed to be 1 cm. For the purpose of estimating the area of 

the spill/injection, the tracer when injected, was assumed to spread in a cylindrical fashion 

concentric to the well. 

4.2.8.3. Residence-Time Distribution Model 

Another model, based on the residence time distribution (RTD) of the tracer, was used to 

fit the tracer data for MW-9S and MW-10S (Levenspiel, 1999). In this model, the time spent by 

the individual molecules of tracer or the time taken for a fraction of the tracer injected to reach a 

particular point or travel a particular distance, is taken into account. The distribution of these 

times for the stream of fluid at a monitoring well location is called the residence time distribution 

(RTD) of the fluid. For a detailed treatment of the model development, see Levenspiel (1999). 

The mean residence time for the bromide, at a particular monitoring well, is estimated 

from the expression (Levenspiel, 1999) 

∑
∑

Δ

Δ
=

ii

iii

tC
tCt

τ          ….(4.5) 

where, 

τ = mean residence time, days 
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Ci = concentration of bromide in the ith sample, mg/L 

ti = time at which the ith sample was collected, day 

Δti = difference between (i+1)th sampling time and ith sampling time, days 

The dimensionless form of the advection dispersion equation, is 
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∂
∂

2

2

θ
         (

where, 

4.6) 

centration of the tracer at time t and distance x from the source 

luid; sum of molecular and mechanical dispersivites 

urce, at which the tracer concentration is measured 

is a measure 

of the r

n, the solution for the dimensionless concentration, Cθ, is 

given b

C = con

z = dimensionless distance = x/L 

D = dispersion coefficient of the f

v = velocity of the fluid 

L = distance, from the so

D/vL = vessel dispersion number = 1/Peclet number; the Peclet number (Pe) 

elative importance of advection to dispersion. 

θ = t/τ = dimensionless time 

For small extents of dispersio

y (Levenspiel, 1999) 

⎥
⎦

⎤
⎢
⎣

⎡ −
−=

)/(4
)1(exp

)/(2
1C

2

vLDvLD
θ

π
θ        (4.7) 

where, 

θ ensionless concentration = 
∑ Δ ii

i

tC
Cτ

 
C  = Dim     (4.8) 

The accuracy of the model is better for smaller values of D/vL (usually less than 0.01), 

i.e., wh

4.2.8.4. Theis’ Transient Well  Model 

oundwater for two-dimensional radial flow to a point 

source 

en dispersion effect is smaller compared to the advection effect. 

The Girinski potential, Φw, in gr

in an infinite, homogeneous aquifer is given by (Haitjema, 1995) 

 

01 )(
4

Φ+−= uEQ
w         (4.9) Φ

π
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where, 

Q = Discharge of pumping rate of groundwater from well 

tial Girinski potential, estimated from the groundwater elevation or potential at 

infinity

Φ0 = Ini

 or before the start of the pumping process 

E1(u) = The exponential integral referred to as well function W(u) 

E1(u) = W(u) = ξ
ξ

d
u∫        

ξe∞ −

  (4.10)
 

kt
rS

u ws
2

= = lower f integration      (4.11) 
4

limit o

where, 

rw = Distance from the well where the potential is measured = 0.03 m = 0.104 ft 

raulic conductivity of the aquifer 

/m = 0.0003/ft  

torage was estimated from the equation (Strack, 1999)  

   (4.12) 

itational force = 9.81 m/s2 

 of the soil = 10-7 m2/N  

0-8 m2/N, for sandy soil, mv is in the range 10-7 to 10-9 

m2/N. 

β = coefficient of volume compressibility of water = 10-10 m2/N 

< 1), the exponential integral (well function) simplifies to 

 (4.13) 

5): 

k = Hyd

t = Time of pumping 

Ss = Specific storage of the aquifer = 0.001

The value of specific s

Ss = ρ g (mv + n β)      

where, 

ρ = Density of groundwater = 1000 kg/m3 

g = Grav

mv = Coefficient of volume compressibility

For clay, mv is in the range 10-6 to 1

n = porosity of the soil 

For small values of u (<

E1(u) = W(u) = - ln(u) – 0.5772     

The Girinski potential is estimated from the following relationships (Haitjema, 199

aquiferconfinedfor2k
2
1kH

aquiferunconfinedfor2k
2

ϕ=Φ
    (4.14

1

ϕϕ −=Φ
) 
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where, 

φ = Potential or groundwater elevation 

H = Height or thickness of the confined aquifer 

ial Girinski potential is estimated from the potential (groundwater elevation) at 

infinity  The model was used to fit the field data by 

varying s considered as an unconfined aquifer 

and the

h 

ected at three different depths (all 

values are bgs) – for shallow wells, nd 28 ft (8.5 m) and for deep 

wells, 4

A), 

/8 

 

fter 

 

 of the 

 

nt 

ith white septum and threaded black cap (National 

Scienti

The init

 or before starting the pumping process.

 the hydraulic conductivity. The shallow zone wa

 deep zone was considered as a confined aquifer. 

4.2.9. Analytical Method 

The depth to water in monitoring wells was measured by ??? water meter (co, place) wit

graduation of 0.05 ft. The groundwater samples were coll

18 ft (5.5 m), 23 ft (7 m) a

2 ft (12.8 m), 47 ft (14.3 m) and 51 ft (15.5 m). A three stage rotor pump (WSP-12V-3, 

Length 14.5”, Diameter 1.6”, Maximum Flow Capacity 12.1 L/min, Waterra, Bellingham, W

powered by a car battery, attached to 55 ft (16.8 m) of a general purpose clear PVC tubing [3

inch ID x 1/16 inch wall thickness (9.5 mm x 1.6 mm), Fisherbrand, Pittsburgh, PA] was used to

collect the groundwater samples. Approximately 3 L of groundwater were pumped out of a well 

before collecting the groundwater sample. The groundwater is allowed to fill a plastic cup 

(approximately 0.5 L) and it overflows to a bucket on which the cup is hooked. Samples were 

collected by immersing a 15 mL (nominal volume, actual volume is 16.5 mL) glass vial 

(Supelco, Bellefonte, PA) into the plastic cup while the groundwater was flowing into it. A

the vial was filled with groundwater it was closed immediately with a mininert cap. The cap of

the vial was loosened and 5 mL of the liquid was taken out of the vial through the septum

mininert cap using a 10 mL syringe, while air entered the headspace of the vial. The 5 mL liquid

was transferred to a wide-mouthed glass vial and closed with a screw-cap and stored in a cold 

room which was used for anion analysis.  

For the tracer analysis, 1.5 mL of the 5 mL liquid was transferred to a 1.5 mL centrifuge 

tube and centrifuged at 10,000 rpm for 2 minutes in a ??? centrifuge (co, place). The supernata

was then transferred to a 2 mL clear vial w

fic Company, Rockwood, TN) for analysis of bromide and other anions using an ion 

chromatograph (Dionex DX500 Series, Sunnyvale, CA) equipped with a conductivity detector 
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in 

arrival times or from modeling, the estimated groundwater velocities (Darcy velocity/porosity of 

the soil) are presented in Table e calculated from data for 

MW-9D  

 

o 

 table level is the precipitation. Table 

4.3 lists the amount of rainfall (inches) recorded at Manhattan, KS, during the period May 2003 

to April 2007 (KSU Research a webwx/

and an analytical column (Ionpac, AS9-HC, 4 mm x 250 mm). The eluent solvent was 9 mM 

sodium carbonate at a flow rate of 1 mL/min. The ion elution times were approximately 6.3 m

for chloride, 9.5 min for bromide, 11 min for nitrate and 18 min for sulfate, respectively. The 

sample volume injected was 25 μL and analysis was run at room temperature for 20 minutes. 

4.3. Results and Discussion 
The location of the monitoring wells is shown in Figures 4.1 to 4.3. Based on bromide 

4.2. The mean values of velocity ar

 and MW-10D. For the deep zone of the aquifer, the means from 2004 (0.65 ft/d or 0.2

m/d) and 2005 (0.125 ft/d or 0.038 m/d) study are compared using statistical tests (lsd, Tukey, 

Bonferroni and Scheffe) and found to be significantly different (Ott, 2001). The p-value is 

0.0076 (the value should be greater than 0.05 for the means not to be significantly different). The

software that was used for running the test was Statistical Analysis Software (SAS) 9.1.3, Servi

Pack 4, XP-PRO platform, SAS Institute, Inc., Cary, NC. 

4.3.1. Groundwater Elevation 

One of the major factors affecting the groundwater

nd Extension, http://av.vet.ksu.edu/ , 2008). Tables 4.4 

and 4.5

 

w 

or 

 report the measured groundwater elevation levels in the pilot study area for the deep 

zone and the shallow zone respectively. Figure 4.5 shows the groundwater level (+1000 ft (304.8

m)) for selected shallow and deep wells as a function of time. The site is just a few feet over 

1000 ft (304.8 m) above mean sea level (MSL). In general, the groundwater table in the shallo

zone is approximately 5 ft (1.52 m) above that in the deep zone. The groundwater level increased 

from August 2003 to August 2004 and then had a decreasing trend until March 2006, except f

one event in June 2005. The groundwater levels increased from March 2006 until June 2006 and 

then decreased until August 2006. The variations are mainly impacted by rainfall events. In the 

shallow zone, the groundwater levels were in the range 1011 ft (308.2 m) to 1016 ft (309.7) 

above MSL and in the deep zone the groundwater levels were in the range 1007 ft (306.9 m) to 

1010 ft (307.9 m) above MSL. Groundwater elevation in MW-14S is consistently less than the 
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ter 

 

bout one order of 

magnit

 

At the injection well M  the f wing groundwater and the 

concentration decreased rapidly in an exponential manner. The bromide concentration decreased 

 to 50 mg/L in approximately 8 days, as shown in Figure 4.8. After 28 days, 

the inje

r one 

spect to the peak time as shown in Figure 

4.9. Fo

values for MW-14D, contrary to the observations at monitoring wells 7 to 12. The groundwa

elevations at MW-14S are significantly lower than those at MW-12S. There is not sufficient data

to explain these observations. There is no evidence that groundwater at MW-12S and MW-14S 

are connected or that there is significant flow from MW-12S to MW-14S. 

The groundwater elevation gradients (ft/1000 ft or m/1000 m) between MW-8 and MW-

12 and between MW-12 and MW-14 are shown in Figures 4.6 and 4.7, respectively, during the 

period August 2003 to February 2007. The gradient in the shallow zone is a

ude higher than that in the deep zone. Based on several measurements of groundwater 

levels during this period, the mean values of gradients between MW-8 and MW-12 are 0.0094 in

the shallow zone and 0.0006 in the deep zone. The mean values of gradients between MW-12 

and MW-14 are 0.012 in the shallow zone and 0.0012 in the deep zone. The general flow 

direction is to the east in both zones. 

4.3.2. Fall 2004 Tracer Study  

4.3.2.1. Deep Wells 

W-8D, bromide was diluted by lo

from about 500 mg/L

cted bromide had been almost completely washed out from MW-8D. The time constant 

for the first order decrease of concentration is obtained based on the time taken for 63.2 % 

response or when the concentration is 37.8 % of the initial concentration. Since the injected 

concentration is 500 mg/L, 500 * 0.378 = 184 mg/L and from Figure 4.8, this value occurs at 

approximately 4 days, based on the data at mid-depth. The time constant is the time taken fo

flushing of the system volume, at the given flow rate. 

Breakthrough of bromide occurred at day 9 for MW-9D, approximately 10 ft (3.05 m) 

down-gradient, with a peak at day 15 and return to baseline by day 47; the tracer had a longer tail 

and the concentration curve is not symmetrical with re

r MW-10D, approximately 20 ft (6.1 m) down-gradient from the injection well, only a 

very weak peak was detected at about 28 days, as shown in Figure 4.10. It is not statistically 

significant compared to the observed background concentrations, which are mostly in the range 

of 0.3 - 0.6 mg/L.  
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ution of 200 L is assumed to spread in a cylindrical fashion, with height 3.05 

m (10 f

 

of 

d). Table 4.2 lists the velocities estimated based on the results at each deep well. Similar 

method

fter 63 days in MW-

12D. A  

At the injection well MW-8S, the bromide was diluted by the flowing groundwater and 

the concentration decreased rapidly in an exponential manner from the initial 500 mg/L to 50 

.5 days, as shown in Figure 4.15, which is almost twice as fast as MW-

8D. Af

not 

The dilution model was used to fit the bromide concentration in MW-8D, the injection 

well. The actual velocity that best fits the model is 0.12 m/day (0.4 ft/day) as shown in Figure 

4.11. The tracer sol

t; the height of the screening in the well) and radius 0.26 m. The volume occupied by 

these dimensions is 0.647 m3 or 647 L assuming a soil porosity of 0.3. The area of the rectangle

perpendicular to the flow is then 3.05 m * 0.52 m = 1.586 m2. Due to the porosity of the soil, the 

actual area available for flow is 0.3 * 1.586 = 0.48 m2. The model results for actual velocities 

0.06 m/d (0.2 ft/d), 0.18 m/d (0.6 ft/d) and 0.24 m/d (0.8 ft/d) are shown in the supplement. The 

velocity can also be obtained from the time constant estimated above. Since time constant = V/Q 

= 4 days, Q = V/4 = 200/4 = 50 L/day = 0.05 m3/day. The velocity is, therefore, Q/A = 0.05/0.48 

= 0.1 m/day (0.34 ft/day), which is in good agreement with the value estimated from the dilution 

model. 

Based on the arrival times at MW-9D (15 days) and MW-10D (28 days, though the peak 

may not be decisive), the actual velocities are estimated as 0.186 m/d (0.62 ft /d) and 0.204 m/d 

(0.68 ft/

s were used to obtain the values in Table 4.2 for the shallow wells. 

The bromide concentrations in MW-7D, MW-11D and MW-12D, shown in Figures 4.12 

to 4.14, are similar to the background level, between 0.2 – 0.6 mg/L in MW-7D, 0.1 – 0.5 mg/L 

in MW-11D, and 0.2 – 0.8 mg/L in MW-12D. Sampling was discontinued a

 peak may have been detected at this well if monitoring had been continued, as was found

later in tracer study during Fall 2005, where a peak was detected at this well 240 days after 

bromide injection at the injection wells. As shown in Figure 4.3, the injection wells which were 

used for injection in the Fall 2005 study are located about 5 ft (1.52 m) down-gradient of MW-

8D. 

4.3.2.2. Shallow Wells 

mg/L in approximately 3

ter 14 days, the injected bromide had been almost completely washed out from MW-8S. 

This suggests a more rapid flow in the shallow wells than in the deep wells. Such a result was 
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ft/d (0.31 m/d). Since the shallow zone comprises 

more c  

ared 

 

d we may have detected the bromide that was near the center of the 

tracer p  lateral 

 

 was 

-

expected, given the very low reported permeability of the soil in the shallow zone, in spite of the

apparent groundwater elevation gradient being 10 fold greater than that in the deep zone (~1/100

in the shallow zone compared to ~1/1000 in the deep zone). The time constant for the first order 

decrease of concentration is obtained from the time taken for 63.2 % response or when the 

concentration is 37.8 % of the initial concentration. Since the injected concentration is 500 mg/L, 

500 * 0.378 = 184 mg/L and from Figure 4.15, this value occurs at approximately 1.95 days, 

based on the data at mid-depth (22 ft bgs). 

The peak of bromide concentration occurred at day 9 for MW-9S, approximately 10 ft 

down-gradient, as shown in Figure 4.16. Assuming a tortuosity factor of 1, the groundwater 

velocity is, therefore, 9.25 ft/9 days = 1.03 

lay than deep zone, it was presumed that it would take more time than the deep zone, for

the bromide to appear. Hence, the sampling interval was greater. However, the bromide appe

sooner than in the deep zone and that is the reason there are only a few data points before the 

peak. The groundwater elevation gradient in the pilot study area is approximately 10 times 

higher in the shallow zone compared to that in the deep zone (see Figures 4.5 to 4.7). There may 

be lenses of sand or silt in the shallow zone causing preferential flow paths resulting in higher 

velocity of groundwater.  

The peak bromide concentration for MW-9S was 32.3 mg/L at the bottom depth 

compared to only 2.7 mg/L in MW-9D. The groundwater flow direction could be more towards

east in the shallow zone an

lume traveling eastward. Another reason for higher concentration may be that the

dispersivity is higher in the deep zone compared to shallow zone. However, the bromide 

concentrations were almost the same in all three depths in MW-9D, whereas there is a distinct 

difference in the bromide concentrations in MW-9S, with the values increasing with depth. From

Figures 4.9 and 4.16, the vertical dispersion of groundwater between MW-8D and MW-9D

higher compared to that between MW-8S and MW-9S. For MW-10S, approximately 20 ft down

gradient, the peak of bromide occurred at about 22 days, as shown in Figure 4.17, with return to 

baseline by day 65. Assuming a tortuosity factor of 1, the groundwater velocity is, therefore, 19 

ft/22 days = 0.87 ft/d (0.27 m/d)The peak concentration was 14 mg/L, suggesting a dilution 

factor of only two between MW-9S and MW-10S, assuming the groundwater flow is eastward. 

The dilution factor for bromide for approximately the same distance of travel from MW-8S to 
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terval of 

s 305 cm (27 ft to 17 ft bgs). The circular area over which 

the bro us of 

2/s. 

, 

 

0.27 m

-10S, based on data at mid-depth. For 

MW-9S  

e 

/s for 

 

 high 

or 

MW-9S is 500/32 ~ 16, suggesting that the bromide detected at MW-10S may not have 

necessarily traveled through MW-9S.  

The bromide concentration curve for MW-8S was modeled based on the advection-

dispersion equation (Reddi and Inyang, 2000), as shown in Figure 4.15. The screening in

the well where the tracer was injected i

mide is assumed to spread due to injection, was estimated to be 2123 cm2 or the radi

influence (ROI) is 26 cm. The value of dispersivity used in the model is 2.9 * 10-3 cm2/s. 

Velocity of groundwater is estimated based on the time for peak tracer concentration in MW-10S 

which is located 20 ft from injection well. The ADE model was also fitted for the data for MW-

10S, as shown in Figure 4.18. The value of dispersivity used in the model is 4.6 * 10-3 cm

Perfect et al (2002) have reported that the typical value of dispersivities (in cm2/s) are in the 

range 1 to 0.1 for clay, 0.1 to 0.001 for silt and < 0.001 for sand. The dispersivities estimated 

based on data from MW-8S and MW-10S suggest that the soil in this area may be sandy silt. 

The velocity can also be obtained from the time constant estimated above. Since time 

constant = V/Q = 2 days, Q = V/2 = 200/2 = 100 L/day = 0.1 m3/day. The velocity is, therefore

Q/A = 0.1/0.48 = 0.21 m/day or 0.68 ft/day. This value is in close agreement with the value of

/day (0.87 ft/d) based on the data from MW-10S. 

 The experimental data for three depths and the RTD model curve is shown in Figures 

4.19 and 4.20 for MW-9S and MW-10S, respectively. The mean residence time (MRT) was 

estimated to be 9 days for MW-9S and 27.4 days for MW

, the tracer breakthrough curve is almost symmetrical; therefore, the MRT is very close

to the peak arrival time. The symmetrical nature of the curve suggests that the groundwater 

travels almost in a plug flow manner, from MW-8S to MW-9S. For MW-10S, the MRT is not th

same as the bromide peak time since the tracer breakthrough curve is not symmetrical. The 

velocity and dispersivity were estimated from the model as 31.3 cm/day and 10.1 * 10-3 cm2

MW-9S and 26.6 cm/day and 4 * 10-3 cm2/s for MW-10S suggesting a silty soil with equal 

amounts of sand and clay (Perfect et al., 2002). The Peclet numbers (vL/D) are 10.1 and 45.4

based on data from MW-9S and MW-10S. Peclet numbers near zero occur for very small 

velocities and larger values indicate larger velocities and less axial mixing. The numbers are

suggesting that advection is significant compared to dispersion. Since the value of ‘L’ varies f

each monitoring well, caution must be exercised in comparing Peclet numbers between 
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itoring 

 only useful to 

model 

 other anions chloride, nitrate and sulfate 

were analyzed in the ion chromatograph. The results presented below are based on samples 

004. 

 In 

nd 

 in MW-7S, 18 – 20 mg/L in MW-11S and 5 

– 22 m

 

 

e shallow wells the sulfate 

concen  

 

ly 

. In the shallow wells the chloride concentrations at the 

middle depth were in the range 140 - 150 mg/L for MW-8S, 130 – 150 mg/L for MW-9S, 100 – 

monitoring wells. However, a comparison of Peclet numbers over time at the same monitoring 

well reveals a change in the pattern of groundwater flow. There was no significant peak of 

bromide at MW-12S, though on day 34, the bromide concentrations at three depths were

approximately twice the background concentration, as shown in Figure 4.21. 

Each type of model can be used to fit the data from the other monitoring wells also. 

However, for illustration purposes, for each model, results are presented for selected mon

wells only. Since the models only consider flow in the axial direction, they are

the response in the direction of flow. 

4.3.2.3. Other Inorganic Compounds/Ions 

In addition to bromide, the concentrations of

collected during August 2004 to December 2

The concentrations of nitrates in deep wells were below the detection limit (0.1 mg/L).

the shallow wells the concentrations were approximately 21 mg/L for MW-8S and MW-9S a

ranged from 11 – 19 mg/L in MW-10S, 5 – 20 mg/L

g/L in MW-12S. The nitrate concentrations were higher in the top and decreased with 

depth from ground surface. The graphs showing nitrate concentration vs time are given in the 

supplement (Figures S.4.4 to S.4.9). The units are mg nitrate/L.  

In the deep wells the sulfate concentrations at the middle depth ranged from 220 - 260

mg/L for MW-8D, 250 - 280 mg/L for MW-9D, 230 – 260 mg/L in MW-10D, 200 – 250 mg/L

in MW-7D and MW-11D, and 220 – 230 mg/L in MW-12D. In th

trations at the middle depth were in the range 220 - 230 mg/L for MW-8S, MW-9S, and

MW-10S, 150 – 200 mg/L in MW-7S, and 190 – 210 mg/L in MW-12S. Overall, the sulfate 

concentration in the deep zone were about 40 mg/L higher than that in the shallow zone. The 

graphs  for sulfate concentrations, at the middle depth for selected days, are given in the 

supplement (Figures S.4.10 and S.4.11).  

In the deep wells the chloride concentrations at the middle depth ranged from 70 - 120

mg/L for MW-8D, 90 - 100 mg/L for MW-9D, 70 – 100 mg/L in MW-7D, and consistent

about 90 mg/L in MW-10D and MW-12D
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150 mg e 

 

 injection wells reached MW-8S as a result of the 

radius of influence of in ures 4.22, 4.22a and 

4.22b. After injection, there was a dilution effect due to dispersion and groundwater flow. For 

centration in MW-8S is shown in Figures 4.22a and 4.22b for these 

bromid  

 * 

ction 

or 

the 

 

e second injection on day 197 did not lead to a higher peak in MW-9S as shown in 

Figure 

tions, on 

/L in MW-10S, 90 – 130 mg/L in MW-7S, and 115 – 135 mg/L in MW-12S. Overall, th

chloride concentrations in the shallow wells were about 40 mg/L more than those in the deep

zone. The graphs for chloride concentrations, at the middle depth for selected days, are given in 

the supplement (Figures S.4.12 and S.4.13).  

4.3.3. Fall 2005 and Spring 2006 Tracer Study 

4.3.3.1. Shallow Wells 

The bromide that was injected into the

jection and associated dispersion, as shown in Fig

clarity, the bromide con

e injections. During the first injection on 8/18/05, bromide concentrations measured after

two days indicate that concentration increases with increasing depth bgs and returned to 

background concentration within a week. Based on the data from the bottom depth, the time 

constant is approximately 1.7 days (response time for initial concentration to decrease to 7.8

0.378 = 2.95 mg/L). In Figure 4.22b, the bromide concentration after two days of injection was 

much higher compared to the first injection in Figure 4.22a, considering even that the inje

concentration was almost double in the second injection on 3/3/06, day 197. The time taken f

return to baseline was also larger in the second injection, 22 days vs 7 days. Based on the data 

from the bottom depth, the time constant is approximately 1.8 days (response time for initial 

concentration to decrease to 28 * 0.378 = 10.6 mg/L). The time constants for MW-8S estimated 

from the tracer studies conducted at three different time periods (1.95, 1.7 and 1.8 days) were 

comparable. 

In the shallow zone, the groundwater flow is predominantly eastward. In Figure 4.23, 

data for MW-9S has a small bromide peak, with concentration between 1 and 1.5 mg/L 

(background concentration of 0.3 mg/L) at about 5 days and reached background concentration

in 15 days. Th

4.23. The peak of bromide was about 1 mg/L, however, it took 11 days to reach the peak 

and 28 days to return to baseline. The biofilms formed during the previous nutrient injec

8/18/05 and 10/13/05, appear to have decreased the hydraulic conductivity of the soil between 

the injection points and MW-9S and the bromide may have taken a different route due to that 
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 and 

hown in Table 4.8, corroborating the 

phenom

 

bers 

 

xcept 

for a fe

 well 

ich 

 

m/day)  

ough 

(see Table 4.6). In Table 4.6, in general, the hydraulic conductivity decreased with time for any 

given well. This is due to the addition of nutrients causing biofilms. As shown in Table 4.2, the 

estimated groundwater velocity is lower in Spring 2006.  

The injection wells were sampled on day 46 and ions were analyzed. The bromide 

concentrations in the shallow zone were 0.6 mg/L at Loc A (25 ft bgs), 86 mg/L at Loc B (25 ft 

bgs), and 16 mg/L at Loc D (32 ft bgs). Some of this bromide may have been pushed to the 

surrounding monitoring wells during subsequent injection

In Table 4.7, the estimated values of Peclet number decreased with time for 9S, 10S

12D. Since L is constant for a given well, v/D decreased with time. This is due to decrease in 

velocity caused by biofilms. The approximate flow rates of solution into the injection wells 

decreased from the early studies to the later experiments as s

enon of biofilm formation. The observed arrival times for bromide tracer are shown in 

Table 4.9. Since the value of ‘L’ varies for each monitoring well, caution must be exercised in

comparing Peclet numbers between monitoring wells. However, a comparison of Peclet num

over time at the same monitoring well reveals a change in the pattern of groundwater flow. 

There is not much vertical variation in concentration of bromide in MW-9S compared to

MW-10S (Figure 4.24) corroborating the assumption that the bromide reaching MW-10S may 

not have passed through MW-9S. The bromide concentrations remained almost at the 

background level in MW-9S, especially after the injection of nutrient solution on day 347, e

w small peaks. The bromide peak is much greater during the Fall 2004 tracer study as 

shown in Figure 4.16. These results suggest that the groundwater flow in the shallow zone is 

almost eastward and the low concentration of bromide detected in MW-9S, the nearest

down-gradient of injection wells, may be due to detecting only the edge of the bromide plume. 

MW-10S had a bromide peak at about 18 days, with concentration up to 13 mg/L, as 

shown in Figure 4.24. The peak concentration in MW-10S is much higher than in MW-9S, wh

is closer to the injection points. Some of the bromide in the groundwater, appears to have 

bypassed MW-9S. However, the velocity of groundwater flow based on MW-9S (1 ft/day or 0.3

 and MW-10S (0.83 ft/day or 0.25 m/day) data is approximately the same, considering

that the injection was done at four different points. It is not possible to determine the source of 

the bromide at monitoring wells, since it could be from any of the four injections points  th

it is likely from the closest two injection points. In estimating the velocities, the distance is 
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as 

 some of the bromide from a relatively stagnant region up-gradient to MW-10S. Unlike 

the firs  

 

crease 

ue to 

 

2 

measured from the line joining the four injection points (north-south), which is perpendicular t

the line in which the monitoring wells are located (east-west). In MW-10S, the concentrations o

bromide were higher with increasing depth. For example, at the peak, day 18, the concentration 

at top (18 ft), middle (23 ft) and bottom (28 ft) samples were 2 mg/L, 7 mg/L and 13 mg/L 

respectively. This indicates that there was not much vertical dispersion of bromide injected at 

depths 23-28 ft and 30-35 ft. Although the concentrations at different depths were different, the 

time at which the peak of bromide occurred was consistent, likely due to lack of significant 

variation of hydraulic conductivity in the vertical direction in the depth range of 15 to 30 ft 

to 9 m).  

On day 194, there was a spike of bromide concentration at MW-10S (Figure 4.24). For 

injecting nutrient solution and anaerobic chase water on day 197, 400 liters of groundwater w

pumped out from MW-10S. This event could have drawn groundwater from all directions 

including

t bromide injection results, two peaks were observed during the second injection, first on

day 229 and the second on day 265. The concentrations were also not as high as during the first 

injection, in spite of twice the injected bromide concentration. The bromide concentration 

reached a peak of 2.5 mg/L and 2.9 mg/L during the first and second peaks following the 

injection on day 197. The variation in concentration with depth was not significant. The Spring 

2006 tracer study indicated that the site hydrogeology was significantly modified due to injection

of nutrients and growth of biofilms. It took a long time for the bromide concentration to de

and even before it reached the background level, there was again a small peak (1.7 mg/L) d

injection of nutrient solution on day 348. The residual bromide trapped in or around the injection

wells was likely released due to the hydraulic force of injection. The bromide concentration 

reached the background level by day 450, i.e., the bromide had been above background level at 

MW-10S for more than 230 days after the breakthrough occurred on day 219. This suggests that 

the bromide plume must be wide and also likely from more than one injection well. 

The bromide level in MW-12S remained consistently around the background level, 0.

mg/L to 0.4 mg/L, as shown in Figure 4.25.  
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4.3.3.1

 through the injection wells, on 8/18/2005, reached 

MW-8D due to the injection process and then it was washed away, as shown in Figure 4.26. As 

observed during the Fall 2004 tracer study, the time taken for dilution was greater in MW-8D 

compared to MW-8S. Moreover, the bromide reached background level in MW-8S in 10 days, 

ase in MW-8D. The bromide level in MW-8D has remained fairly steady 

since the second nutrient injection 

 

tes to the creation of new bacteria (biomass). 

Eventually, continued u

bottom depth (51 ft bgs). It is likely that the bromide injected at the injection well screening 

. Deep Wells 

In the deep zone, the bromide injected

but this was not the c

in October 2005. It never returned to baseline, as shown in 

Figure 4.26, after its initial spike, decline and rebound from the first feeding in August 2005, 

suggesting that there is in effect a biobarrier formed causing little or no flow through that well.

The injection wells were sampled on day 46 and ions were analyzed. The bromide concentrations 

in the deep zone were 12 mg/L at Loc A (42 ft bgs), 2.4 mg/L at Loc B (48 ft bgs), 61 mg/L at 

Loc C (50 ft bgs), and 6.6 mg/L at Loc D (51 ft bgs). The sampling depth is given in the 

parenthesis after the location. These results suggest that the bromide was still present at the 

injection wells 46 days after the injection.  

As described in ITRC (2002), bio-fouling is attributed to the increase in microbial 

populations and perhaps more importantly, to the creation of extra cellular polysaccharides by 

cells. These slimy polysaccharides are important for the accumulation of microorganisms on 

surfaces or within porous media and can contribute significantly to bio-fouling of an injection 

well. A portion of a nutrient amendment contribu

nchecked bacterial growth is likely to reduce circulation and injection of 

the amendment, and may lead to a plugged formation or injection well (i.e., bio-fouling). In 

bioremediation, various operating strategies have been devised to minimize this potentially 

undesirable outcome. These methods are not formalized, but rather various engineering 

approaches have been used over the years. No one approach is a clear solution. However, it is an 

issue that must be considered in system design and operation (ITRC, 2002). 

At MW-9D, the bromide peak was delayed (80 days vs 50 days) relative to the first 

injection during Fall 2005, and the peak response was much smaller despite introducing twice as 

much bromide in this tracer study (Figure 4.27). After the fourth dose of nutrients on day 348, 

the bromide concentration increased at MW-9D. Until day 500, the bromide concentration at 

middle depth (47 ft bgs) was higher than top depth (42 ft bgs) which in turn was higher than the 
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 bromide peak was much larger (18 ppm vs 1.3 ppm) than in the 

previou

e 

 

 

in the deeper zone. For the shallow zone similar effects may be present but 

the vari

ince 

 

background level. Since there were four injection wells the bromide source may have been from 

f 42 – 47 ft bgs (Loc A and Loc C) was reaching MW-9D in larger amounts than the 

bromide injected at depth of 50 – 55 ft bgs (Loc B and Loc D). It is interesting to note that the 

bromide concentration in the middle and bottom samples started to increase after day 550. 

Bromide may be trapped in the soil and biofilms at the injection locations and released slowly

which was observed on day 602, 405 days after the last injection of bromide on day 197. As 

mentioned above, 46 days after the first injection of bromide, there was a significant 

concentration of bromide still present at the injection locations. The bromide concentration in

bottom samples are higher than the middle samples, indicating that the bromide may be from th

injection depths 50-55 ft bgs. 

In MW-10D, the breakthrough occurred at about day 60 and the bromide peak occurred

at day 95, at a smaller concentration of 1.3 mg/L, with a broad plateau, indicating a dispersed

continued source, and returned to baseline by day 175, as shown in Figure 4.28. The r

suggest that the groundwater flow in the deep zone is rather slower than in the shallow zone, 

probably due to lack of a sufficient gradient and pockets of higher conductivity in the shallow 

zone. During Spring 2006, the

s tracer study (Figure 4.28). However, the apparent time of peak arrival was comparable 

in both injections.  

The combined results for the wells 9 and 10 suggest that alternative flow paths must b

present at different times, such that MW-10D is being fed a more undispersed plug of tracer in

this study than in the previous study while for well 9D the tracer is more dispersed this time, or

the MW-9D may be at the edge of the tracer plume. Given our limited understanding of this 

aquifer, our best interpretation is that perhaps growth of biofilms has altered the resistance to 

flow of some paths 

ation of water table as a function of rainfall may influence both rates and paths of flow. 

In Figure 4.29, there was a distinct peak at MW-12D, at a concentration of 2.3 mg/L at 

the bottom depth, even higher than that in MW-10D, in spite of being located approximately 60 

ft down-gradient of MW-10D. This is presumed to have come from the first tracer injection s

it arrived within 20 days of the third nutrient injection (second dose of tracer) and moreover, a

flowrate of 120 cm/d is not plausible for this site. The dispersion in the travel path from the 

injection wells to MW-12D was not large enough to dilute the bromide concentration to the 
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differen
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ed 

 

same m

it (0.1 mg/L). In 

the sha  15 

Figures 4.30 to 4.33. The nitrate concentrations

/w), mostly in the organic form. 

The amount of yeast extract added on day 0 is 200 g in nutrient solution and 10 g in chase water, 

i.e., 1 g YE/L in nutrient solution and 0.05 g YE/L in chase water or 88 mg N/L in nutrient 

solution

n 

t injection wells for MW-10D and MW-12D. Also the paths of travel from injection 

wells to MWs are different and in the case of MW-10D, the concentration may not reflect the 

value at the center of the plume. The bromide plumes from each injection well could possibly be 

mixed with each other down-gradient, depending upon the extent of lateral dispersion. The peak

of bromide tracer at MW-12D was between day 220-230 (depending on depth of measureme

the well). The distance is 75 ft from injection point. Thus the flow rate of 1/3 ft/d is estimated

In Table 4.7, the estimated values of Peclet number decreased with time for 12D. Since L 

is constant for a given well, v/D decreased with time. This is due to decrease in velocity caus

by biofilms. The approximate flow rates of solution into the injection wells decreased from the

early studies to the later experiments as shown in Table 4.8, corroborating the phenomenon of 

biofilm formation. The observed arrival times for bromide tracer are shown in Table 4.9. Since 

the value of ‘L’ varies for each monitoring well, caution must be exercised in comparing Peclet 

numbers between monitoring wells. However, a comparison of Peclet numbers over time at the 

onitoring well reveals a change in the pattern of groundwater flow. 

The bromide concentration in MW-5D, MW-7S, MW-7D, MW-11S, and MW-11D 

remained only at the background levels and the results are shown in the supplement. 

The field tracer studies and the laboratory results suggest that channeling and non-

uniform flow occurs in the field as well as in the laboratory. 

4.3.3.1.1. Nitrate Concentrations 

The concentrations of nitrates in deep wells were below the detection lim

llow wells the background concentrations prior to the pilot study were approximately

mg/L for MW-8S, MW-9S and MW-10S, approximately 13 mg/L in MW-12S as shown in 

 in MW-8S are shown in Figure 4.30. In the 

nutrient solution, only yeast extract contains nitrogen at 8.8 % (w

 and 4.4 mg N/L in chase water. However, most of the nitrogen is in the form of amino 

acids in yeast extract. The nutrients injected on day 0 had a significant impact on the 

concentration of nitrate. The value dropped rapidly to almost zero at the middle and bottom 

depths though there was not much decrease in the concentration at the top depth. Nitrate is a
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n on day 355, by a decrease in 

nitrate -

e to 

 

l 

 That would be consistent with the relatively rapid appearance of a high bromide tracer 

concen

irst 

electron acceptor in the fermentation of the nutrients by the native microorganisms. As the added 

nutrients were diluted, the concentration of nitrate increased and reached 80 % of the background 

level by day 16. The trend in nitrate concentration was exactly inverse as that for bromide (a

the nutrients) concentration and understandably so. When the bromide concentration was higher

that implies the nutrient concentration was also higher and therefore, due to microbial

the nitrate concentration becomes less. As the groundwater flows and dilutes the bromide an

nutrient concentration, the nitrate concentration increases. This trend was observed during each

injection on days 56, 197 and 348. However, unlike the first injection, the nitrate concentration at 

the top depth also decreased to low levels on days 197 and 348. 

The peak of bromide in MW-9S, during the first and second injections, occurred after 4 

days and 11 days. There was a corresponding trough in nitrate concentrations around those days 

since the nutrients also travel with the tracer though not as fast. The dip in nitrate concentrations

occurred after 8 days and 14 days, as shown in Figure 4.31. There was also a dip in nitrate 

concentrations from day 95 to 146 and day 249 to 296 probably due to nutrients flowing from a 

farther injection well which had taken longer time to reach MW-9S. Even though no tracer was 

added on day 348, nutrients were added and this effect was show

concentrations. However, between day 50 and day 208, the nitrate concentrations in MW

9S were between 20 – 23 mg/L with lower concentrations from day 90 to day 140(see Figure 

4.31). After day 208, the nitrate concentration started decreasing gradually until day 450, with 

dip in concentration on days 211, 250, 280, 355 and 410. The low concentration may be du

nutrients reaching MW-9S from different injection wells or reduced groundwater reaching MW-

9S. 

The bromide-nitrate concentration correlation is more classically depicted in Figures 4.24

and 4.32 for MW-10S. During the Fall 2005 study, the nitrate concentration was not only 

inversely related to bromide concentration but also followed the same vertical trend. The 

concentration of bromide gets higher with increasing depth, whereas, the nitrate concentration 

was lower with depth, suggesting that the nutrients injected did not disperse much in the vertica

direction. For MW-10S it appears that after the feeding on day 197, nitrate levels became very 

low.

tration if nutrients were able to allow microbes to reduce nitrate in that zone. In Figure 

4.33, for MW-12S a decrease in nitrate occurred at a time consistent with the travel from f

 192



 

 

ns at 

 

 to 

r reaching a 

ing well. 

 

-

fit the field data. On 8/17/2005, due to pumping water out of 

MW-10  on the assumption that the shallow 

zone bo

reased gradually to 18.18 in 50 minutes (see 

Figure 4.34). After 50 minutes, there was an increasing trend. Some of the resistances in the sub-

surface may h y pumping. 

The ini 3.2 

nutrient injection, although no detectable bromide peak was observed. Nitrate concentratio

MW-7S was not steady, starting at 13 mg/L and increasing to 30 mg/L by day 77 and later 

decreased to 13 mg/L by day 180 and remained in the range 6 – 16 mg/L. Nitrate concentrations 

remained steady between 9 – 13 mg/L in MW-11S until day 450. The nitrate concentrations for

MW-7S and MW-11S are given in the supplement. The variation in the background 

concentration of nitrate in the shallow wells may be due to several reasons including 

precipitation, foliage (Fenn et al., 2005), possible mixing with water from mid-campus creek 

which infiltrates into the subsurface. Run off directly from the Kansas State University campus 

and surrounding town from application of fertilizers to lawns and plants may also contribute

variation of nitrate concentrations. The figures showing nitrate concentration vs time for other 

wells are given in the supplement. The units are mg nitrate/L.  

The nitrate concentration profiles also support the finding that the groundwate

down-gradient monitoring well may not have traveled through an up-gradient monitor

Nitrate concentrations at MW-10S was very low (< 0.1 mg/L) from day 220 to day 290, which

should appear in MW-12S from day 280 to day 350. However, the nitrate concentrations at MW

12S were not below 6 mg/L. Similarly, the nitrate concentrations at MW-9S were not below 0.1 

mg/L from day 210 to day 280. 

4.3.3.1.1. Sulfate and Chloride Concentrations 

The figures showing sulfate and chloride concentrations vs time for the monitoring wells 

are given in the supplement. The units are mg/L.  

4.3.4. Hydraulic Conductivity Estimation from Pumping Tests  

Figures 4.34 to 4.36 show the results of the pumping tests and Theis’ transient well 

model (Haitjema, 1995) used to 

S, the groundwater elevation (all values are based

ttom is at 35 ft bgs and considered as reference elevation zero) in that well decreased 

from 21.3 ft to 18.75 ft in 24 minutes and then dec

ave been overcome and preferential flowpaths may have been created b

tial Girinski potential, corresponding to the initial potential of 21.29 ft (6.5 m), is 113
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m/s on 

8/17/05

 

he hydraulic conductivities obtained above. Darcy’s law states that 

ft3/d (32.1 m3/d). The value of groundwater elevation or potential is obtained based on a shallo

zone bottom at 35 ft bgs (10.67 m bgs) and using Eqn. (4.14) for unconfined aquifer. 

For the pumping tests on 12/21/2006, the decrease in groundwater elevation in MW-10S

was rapid until 4.11 minutes. However, the groundwater elevation increased from 4.18 minutes 

to 6.58 minutes, and then the phenomenon of exponential decrease in elevation is repeated. The 

initial Girinski potential, corresponding to the initial potential of 20.14 ft (6.14 m), is 709.83 ft3/d

(20.1 m3/d). The hydraulic conductivities estimated using the Theis’ transient well model and 

based on MW-10S data for the pumping out cases, are 1.8 * 10-3 cm/s and 1.2 * 10-3 c

 and 12/21/06. 

The estimated hydraulic conductivity, for the pumping in case for MW-10S, based on 

data on 12/21/06, was 8.83 * 10-4 cm/s. The initial Girinski potential, corresponding to the initial

potential of 20.14 ft (6.14 m) and a hydraulic conductivity of 2.5 ft/d (8.83 * 10-4 cm /s) is 507 

ft3/d (14.4 m3/d). 

Using Darcy’s law, the velocities can be estimated from the measured groundwater 

elevation gradient and t

n*v)
dx
d(k   vd ==

ϕ          (4.15

where, 

vd = Darcy or supe

) 

rficial velocity 

k = hyd

x = horizontal distance between two points where groundwater elevation is measured 

v = actual velocity 

sity of the soil 

 gradient measured on or close to the date of pumping test was 

roundwater elevation gradient in the shallow zone between 

.0095 on 8/18/05 and 0.0105 on 11/28/06. The velocities based on 

r pumping 

 These velocities are about 15 times smaller than those estimated from the 

is’ solution, assumptions such as homogeneous aquifer were made in the 

model. Also for estimating specific storage, literature values were used which are only an 

raulic conductivity of the soil 

φ = groundwater elevation 

n = poro

The groundwater elevation

used for estimating the velocity. The g

MW-8S and MW-10S are 0

these data are 0.048 and 0.037 ft/d for pumping out cases in MW-10S and 0.026 ft/d fo

in case in MW-10S.

tracer results. In the The
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approx

s 

dient 

n the deep zone than that in the shallow zone. Based on the observed 

static head gradient and the estimated hydraulic conductivities from pumping tests, the velocity 

is estimated to be larger in the shallow  observed. Lenses of higher 

permea

s due 

t 

ood for 

e 

s seasonal variation in the ion concentrations which depend on factors such as rainfall and 

surface

imation. These factors might have led to the difference in the velocities estimated from 

the above two methods. 

4.5. Conclusions 
The tracer study shows that the groundwater flow in the aquifer is predominantly toward

the east in both the shallow zone and the deep zone. The estimated groundwater velocity in the 

shallow zone is approximately 3-fold greater than that in the deep zone. The static head gra

is about one order of magnitude larger in the shallow zone. The hydraulic conductivity is, 

therefore, 3-fold greater i

 zone of the aquifer as

bility regions may be present in the shallow zone as there is evidence of non-uniform 

flow. 

The times taken for the bromide to reach MW-9D, MW-10D and MW-12D are 

consistent. The estimated velocity decreased from the 2004 study to the more recent studie

to biofilms associated with the biodegradation process. The nitrate concentration variations 

associated with nitrate being used as an electron acceptor are consistent with the times of nutrien

addition and the bromide data. The organic substrates flowing with the bromide provide f

the organisms to consume with nitrate as electron acceptor. The nitrate concentrations indicat

there i

 runoff. 

The groundwater reaching down-gradient wells may not have traveled through the up-

gradient wells. 
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Figure 4.1. GIS map of site and monitoring well locations. 

 

11 

 



 

 

 
Figure 4.2. Location of monitoring wells (Terracon, 2004). 
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Injection Points Design
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Injection
Well
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Cross Section of Injection Points with Screening
Intervals (shown for Locations D and C)

Loc B and Loc A similar
to Loc D and Loc C

 
Figure 4.3. Plan and elevation of the injection points at the pilot study area. (Above) 

Schematic description of injection wells A, B, C, and D showing their locations with respect 

to monitoring wells 8, 9 and 10 deep (D) and shallow (S). (Below) The screening interv

for A are similar to C, and those for B are similar to D. 

als 
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Figure 4.4. Photograph of the injection locations; each location has two injection wells, one 

for shallow zone and one for deep zone. 
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Figure 4.5. Groundwater elevation data for the monitoring wells at the pilot study area. The elevation at the site surface is 

approximately 312 m (1025 ft). 
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Figure 4.6. Elevation gradient (MW8-MW12) for shallow and deep zones. Distance between MW-8 and MW-12 is ~ 24.4 m (80 

ft). 
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Figure 4.7. Elevation gradient (MW12-MW14) for shallow and deep zones. Distance between MW12 and MW14 is ~ 183 m 

(600 ft). 
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Figure 4.8. Bromide concentrations in MW-8D (injection well); injection concentration ~ 500 mg/L, 8/2/2004, day 0. 
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Figure 4.9. Bromide concentrations in MW-9D, 10 feet from injection well MW-8D; injection concentration ~ 500 mg/L, 

 

8/2/2004, day 0. 
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Figure 4.10. Bromide concentrations in MW-10D, 6.1 m (20 ft) from injection well MW-8D; injection concentration ~ 500

mg/L, 8/2/2004, 

 

day 0. 
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Figure 4.11. Bromide concentrations in MW-8D (injection well); Injected concentration ~ 500 mg/L, 8/2/2004, day 0; 

groundwater velocity for dilution model is 0.12 m/day (0.4 ft/day); estimated time constant from model = 3.4 days; time 

constant from experimental data ~ 4 days. 
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Figure 4.12. Bromide concentrations in MW-7D, located 6.1 m (20 ft) north of injection well 8D; 8/2/2004, day 0. 

 

 

 207



 

 

 

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

Time (days)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

top mid bot

 

Figure 4.13. Bromide concentrations in MW-11D, which is located 7 m (23 ft) south of well 9D or 3 m (10 ft) east and 7 m (23 

ft) sou  of injection well 8D. th
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Figure 4.14. Bromide concentrations in MW-12D, located 24.4 m (80 ft) east from  injection well 8D; injection concentration ~

500 mg/L, 8/2/2004, day 0. 
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Figure 4.15.  Bromide concentrations at mid-depth in MW-8S (injection well); injected concentration is ~ 500 mg/L, 9/16/2004,

day 0; Model (Advection D

 

ispersion Equation) parameters: D =  250 cm2/d; v = 24.3 cm/d; ROI = 26 cm, A = 2122 cm2. 
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Figure 4.16. Bromide concentrations in MW-9S, ~ 10 feet east from injection well 8S; injection concentration is ~ 500 mg/L, 

9/16/2004, day 0. Background concentration was 0.4 mg/L. 
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Figure 4.17. Bromide concentrations in MW-10S, 6.1 m (20 ft) east from injection well MW-8S; injection concentration is ~ 

500 mg/L, 9/15/2004, day 0. 
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Figure 4.18. Breakthrough curve for well 10S fitted with ADE model, Fall 2004 study; x = 584 cm; D =  394 cm2/d; v = 24.3 

cm/d; Fitted ROI = 82 cm (initial estimated ROI = 26 cm), A = 21226 cm2 (10 * initial estimated area). 
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Figure 4.19. Comparison of residence time distribution (RTD) model and experimental results (mid-depth data), for well 9S

tracer study, Fall 2004. tmean = τ = 9 days; Velocity = 31.3 cm/d; Dispersivity = 875 cm2/d; Distance from

, 

 injection well = 282 

cm; D/uL = 0.1. 
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Figure 4.20. Comparison of residence time distribution (RTD) model and experimental results (mid-depth data with two-point 

moving average curve), for well 10S, tracer study, Fall 2004. tmean = τ  = 27.4 days; Velocity = 26.6 cm/d; Dispersivity = 342 

cm2/d; Distance = 584 cm; D/uL = 0.02. 
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Figure 4.21. Bromide concentration in MW-12S; ~ 24.4 m (80 ft) east from injection well 8S; injection concentration is ~ 500 

mg/L, 9/16/2004, day 0. 

 

 216



 

 

 

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Time (days)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

top middle bottom

 
Figure 4.22. Bromide concentrations in MW-8S. Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005) 

(Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 13, 2005); injection of nutrients 

on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on day 348 (Aug 1, 2006).  
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Figure 4.22a. Bromide concentrations in MW-8S; Injection of nutrients between MW-8 and MW-9 on day 0 (August 18, 2005) 

(Injected bromide concentration = 670 mg/L). 
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Figure 4.22b. Bromide concentrations in MW-8S; Injection of nutrients between MW-8 and MW-9 on day 197 (Mar 3, 2006) 

(Injected bromide concentration = 1340 mg/L). 
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05) 

; injection of nutrients and KB-1 on day 56 (Oct 13, 2005); injection of nutrients 

on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on day 348 (Aug 1, 2006).  

 

Figure 4.23. Bromide concentrations in MW-9S. Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 20

(Injected bromide concentration = 670 mg/L)
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Figure 4.24. Bromide concentrations in MW-10S. Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005)

(Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 13, 2005); injection of nutrients 

on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on day 348 (Aug 1, 2006).  
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nutrients on day 348 (Aug 1, 2006).  

Figure 4.25. Bromide concentrations in MW-12S (75 ft from injection location); Injection of nutrients between MW-8 and 

MW-9 on day 0 (Aug 18, 2005) (Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 

13, 2005); injection of nutrients on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of 
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Figure 4.26. Bromide concentrations in MW-8D. Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005) 

(Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 13, 2005); injection of nutrients 

on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on day 348 (Aug 1, 200

 

6).  
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Figure 4.27. Bromide concentrations in MW-9D. Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005) 

(Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 13, 2005); injection of nutrients 

on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on day 348 (Aug 1, 2006).  
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 Figure 4.28. Bromide concentrations in MW-10D. Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005)

(Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 13, 2005); injection of nutrients 

on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on day 348 (Aug 1, 2006).  
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Figure 4.29. Bromide concentrations in MW-12D (75 ft from inj pt). Injection of nutrients between MW-8 and MW-9 on day

(Aug 18, 2005) (Injected bromide concentration = 670 mg/L); injection of nutrients and KB-1 on day 56 (Oct 13, 2005); 

injection of nutrients on day 197 (Mar 3, 2006) (Injected bromide concentration = 1340 mg/L); and injection of nutrients on 

 0 

ay 348 (Aug 1, 2006).  d
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Figure 4.30. Nitrate concentrations in well MW-8S; Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005), 

day 56 (Oct 13, 2005) , day 197 (Mar 3, 2006) and day 348 (Aug 1, 2006). 
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Figure 4.31. Nitrate concentrations in well MW-9S; Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 2005), 

day 56 (Oct 13, 2005) , day 197 (Mar 3, 2006) and day 348 (Aug 1, 2006). 
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2006). 

Figure 4.32. Nitrate concentrations in well MW-10S;  Injection of nutrients between MW-8 and MW-9 on day 0 (August 18, 

2005), day 56 (Oct 13, 2005) , day 197 (Mar 3, 2006) and day 348 (Aug 1, 
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Figure 4.33. Nitrate concentrations in well MW-12S;  Injection of nutrients between MW-8 and MW-9 on day 0 (Aug 18, 

2005), day 56 (Oct 13, 2005) , day 197 (Mar 3, 2006) and day 348 (Aug 1, 2006). 
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ut 

minutes, likely due to overcoming resistances in 

he soil for groundwater flow caused by the suction force of pump, leading to higher permeability. 

Figure 4.34. Theis' solution for well 10S, water was pumped out (at average flow rate of 5.6 L/min) continuously througho

the experiment (8/17/2005). Groundwater elevation started to increase after 50 

t
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Figure 4.35. Theis' solution for well 10S; water was pumped out (at average flow rate of 4.3 L/min) continuously throughout 

the experiment (12/21/06). Groundwater elevation increased from 4.18 minutes to 6.58 minutes during which time elevation 

data was not collected. The increase may likely be due to overcoming resistances in the soil for groundwater flow caused by the 

uction force of pump, leading to higher permeability. s
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Figure 4.36. Theis' solution for well 10S; water was pumped in (at average flow rate of 7.4 L/min) continuously throughout th

experiment (12/21/06). 
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Table 4.1. *Characteristics of soil samples collected on August 5, 2003 during installation of MW-9D. 

 

 

Sample 

ID 

Texture #Total C 

% 

#Total N 

% 

NO3-N 

ppm 
pH 

Bray-1 P 

ppm 

K 

ppm 

Na 

ppm % Sand % Silt % Clay 

2.5 12 40 48 0.66 0.052 2.9 7.0 21 520 8 

7.5 14 40 46 0.72 0.036 2.2 7.5 28 476 16 

12.5 12 34 54 0.40 0.036 3.0 7.6 41 550 31 

17.5 10 50 40 0.36 0.045 1.3 7.7 51 422 15 

22.5 14 46 40 0.17 0.029 2.0 7.6 62 389 18 

27.5 16 54 30 5.29 0.355 1.2 7.1 20 196 17 

32.5 30 48 22 0.49 0.051 1.1 8.2 39 145 11 

37.5 30 54 16 0.08 0.022 1.1 8.1 45 186 9 

42.5 38 50 12 0.06 0.013 1.2 8.2 41 137 7 

47.5 36 42 22 0.03 0.001 1.1 8.2 24 73 6 

 

g Laboratory, Throckmorton Hall, Kansas State University; Samples collected by Terracon, Wichita. 

#Total N and C are expressed as % (g/100 g dry weight soil)

 

*Analysed by Soil Testin



 

 

Table 4.2. Estimated* actual (Darcy velocity/porosity) groundwater velocities (ft/d) at the 

pilot study area.  

 

Study Period Monitoring 

Well Fall 2004 Fall 2005 Spring 2006 

8S 0.8 1.0 0.56 

9S 1.03 1.25 0.45 

10S 0.87 0.83 0.47 

12S - 0.74# 0.76# 

8D  0.4 0.0033 ~ 0 

9D 0.62 0.09 0.06 

10D 0.68 0.16 0.18 

12D - 0.32 0.23 

 

*Estimated by t  stimated by ADE 

model for MW-8S and MW-8D, 2005-06; estimated by peak arrival time of tracer for other 

monitoring wells. 
#Since bromide was not detected ated fro  

reduction data and assuming nutrients traveled at the same velocity as bromide. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dilu ion model for MW-8S and MW-8D, Fall 2004; e

 at MW-12S, the velocity was estim m nitrate
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rded at the Kansas State University Campus, Manhattan, KS. 

 

Table 4.3. *Monthly rainfall (inches) in Manhattan for the period May 2003 to April 2007.

The data was reco

        Year 
Month 20 2005 203 2004 006 2007 

Jan   8 0.86 0.85 0.5 0.6
Feb 1.54 2.96 0.01 0.95  
Mar 4.86 0.84 2.93 4.01  
Apr 2.43 0.67 3.46 3.08  
May 2.4 2.45 1.45 2.85  
Jun 7.1 6.42 11.81 1.44  
Jul 2.3 6.89 6  6 2.2 4.1 
Aug 4.8 5.54  1  8 5.61 10.2
Sep 2.97 1.02 4.36 1.99  
Oct 1.9 1 .27   6 3 1.95
Nov 0.81 1.37 0.68 0.07  
Dec 0.97 0.42 0.78 0.43  

 

KSU Research and Extension, http://av.vet.ksu.edu/webwx/
 
* , 2008.
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Table 4.4. Groundwater elevation (listed value + 1000 ft above MSL) in the deep zone. 
 

Date MW-5 MW-7D MW-8D MW-9D MW-10D MW-11D MW-12DMW-14D
3-Apr-02 8.44        

13-Aug-03 7.33 6.61 7.42 7.39 7.48 7.36 7.39
3-Sep-03   7.01 5.41   7.09

12-Nov-03 7.63    7.45 6.79  
17-Mar-04     8.68 8.058.7  
27-Apr-04 .72 .8 7.73 7.18 7 7.78  7.82 7.8

25-May-04 9.22 9.21 8.518.35 9.22 9.24 9.16 9.18
24-Jun-04 9.1  9 8.319.08 9.09 9.05 9.03
29-Jul-04  9.76 9.089.85 9.94 9.84 9.86 9.81

15-Sep-04 9.29   9.3 8.57 9.37  
22-Mar-05 .91  8.84 8.218  8.89   
27-Jun-05 .22 1   10.08 9.3310  0.13  

18-Aug-05  8.42     8.42 8.41
1-Sep-05      7.97 7.98 7.96
5-Sep-05 8.1   8.12 8.21 8.11 8.12 8.07

12-Sep-05 8.12   8.19 8.16 8.17   
15-Sep-05  7.85 7.86 7.85 7.82    
17-Sep-05    8.03   6.95  
24-Sep-05  7.97 7.98 7.97 7.96  7.92  
10-Oct-05   7.82 7.81   7.76  

4-Jan-06   7.42 7.45 7.42  7.41  
12-Jan-06   8.07 8.11 8.06  8.07  
26-Jan-06   7.5 7.49 7.47  7.45  
30-Jan-06 7.93  7.89    7.86 7.2
31-Jan-06   7.79 7.8 7.78  7.75  
9-Feb-06   7.5 7.51 7.5  7.57  

14-Feb-06   7.87 7.89 7.85  7.81  
23-Feb-06   7.41 7.43 7.6  7.36  
29-Mar-06 8.06  8.02    7.96 7.31
25-May-06 8.62 8.6 8.59 8.61 8.56  8.53  
10-Jun-06   8.46 8.49 8.43 8.45 8.42  
25-Jun-06 7.67 7.65 7.65    7.56  
31-Jul-06 7.22 7.19 7.2 7.16 7.16 7.17 7.09  

18-Sep-06 7.44  7.4    7.36 6.68
22-Sep-06 7.87 7.86 7.86 7.87 7.81  7.79  
9-Nov-06  7.52 7.5 7.51 7.49  7.49  

28-Nov-06 7.67 7.61 7.62 7.62 7.58  7.56  
26-Jan-07   7.46 7.45 7.42  7.39  
21-Feb-07   7.23 7.25 7.22  7.18 6.61
22-Feb-07 7 5.97      5.41
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e. Table 4.5. Groundwater elevation (listed value + 1000 ft above MSL) in the shallow zon
 

Date MW-7S MW-8S MW-9S MW-10S MW-11S MW-12S MW-14S 
3-Ap    r-02    
13-Aug-03 13.35 .46 5.13.28 13.12 13.04 13.2 12 14
3-Sep-03  13.98  .11 4.  13 89
12-   .48 4.Nov-03    12 63
17-Mar-04 14.59 14.53 14.3 6.  12.56 08
27-Apr-04 13.6 13.48 14.27 1 .72 5.613.44 3.46 12 2
25-May-04 14.93 1 7.14.88 14.8 14.69 4.77 14.1 04
24-Jun-04 14.89 7.14.84 14.7 14.6  14.01 82
29-Jul-04 15.32 715.51 15.53 15.32  14.69 .6
15-  14.72  7.Sep-04   13.93 07
22-  14.01  6.Mar-05   13.24 67
27-J  15.29  6.un-05   14.53 45
18-  13.48   Aug-05 13.38 13.29  
1-Se  13.67   p-05 13.57 13.51  
5-Sep-05 13.77 1   13.56 13.42 13.43 3.46
12-Sep-05  13.21 1    13.09 3.22
15-Sep-05 13.27    13.13 13.03  
17-Sep-05  13.21   12.96  12.45
24-Sep-05 13.87  13.84 13.72 13.58  13.38
10-  13.45  Oct-05 13.34 13.23  12.65
4-Jan  12.63  -06 12.54 12.35  11.98
12-J  12.55  an-06 12.48 12.41  11.88
26-Jan-06  12.34 12.28  12.18  11.68
30-J  12.75  4.9an-06   12.05 1
31-J  12.42 12.22  an-06 12.32  11.72
9-Fe  12.24 12.18  b-06 12.08  11.61
14-  12.24  Feb-06 12.2 12.08  11.6
23-  12.14  Feb-06 12.03 11.93  12.46
29-  12.71  4.Mar-06   11.98 78
25-May-06 13.58 13.59  13.43 12.98  12.8
10-J  13.31 .57  un-06 13.19 13.07 13.2 12
25-J 88   un-06 12. 12.91   12.14
31-Jul-06 12.48 12.32 1 .69  12.46 12.21 2.32 11
18-Sep-06  13.23 26.93  4. 12.46 62
22-Sep-06 13.48  13.46 13.32 13.13  12.61
9-Nov-06 12.93 12.78  12.91 12.68  12.1
28-Nov-06 12.71  12.64 12.53 12.43  11.86
26-J  12.31  an-07 12.17 11.06  11.51
21-  12.28 5.Feb-07 12.18 12.06  11.55 14
22-Feb-07 12.33   4.   89
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rea. The aulic f le die

velocity using Darcy’s law, unless indicated otherwise. 

Table 4.6. Estimated hydraulic conductivities (listed value * 10-5 m/s) at the pilot study

a  hydr  conductivity is estimated rom groundwater e vation gra nt and 

 

Monitoring 

Well 

Study Period 

Fall 2004 Fall 2005 Spring 2006 

8S 7.4 0.7 10.1 1  

9S 73.2 4.8 16.1 

10S 7.0 180 120#, 88# 9.3, # 5.2, 

12S ND 9.3 &8.5 &

8D 28.2 ~0 0.38 

9D 43.8 6.4 10.4 

10D 36 8.2  11.1 

12D ND 27.5 43.3 

 
# Fr olution 
ND as not detected
&B not detected; veloc s e d fr rate data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

om Theis’ s
 – Tracer w  

romide was ity wa stimate om nit  
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Table 4.7. Estimated Peclet Numbers (vL/D, dimensionless) at the pilot study area.  

 

Study Period Monitoring 

Well Fall 2004 Fall 2005 Spring 2006 

9S 10.1 8.7 5.5 

10S  45.4 24.3 7.6 

12S ND ND ND 

9D 37 8.2 24 

10D 19.4 16 163 

12D  - 943 100

 

ND – No Data; tracer was not detected at MW-1
 
 

 

2S 
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able 4.8. Approximate flow rates (L/hr) of injection solution. 

 

T

  Loc A Loc B Loc C Loc D

8/18/05 

Nutrient 
Shallow 200 150 200 200 

Deep 429 100 25 67 

Chase 
Shallow 150 120 176 136 

Deep 100 25 50 429 

10/13/05 

Nutrient 
Shall 100 68 115 88 ow 

Deep 40 60 150  100 

Chase 
Shallow 67 60 67 75 

Deep 100 43 50 120 

3/3/06 

Nutrient Shallow 91 79 200 86 

 Deep 86 33 75 120 

Chase Shallow 97 55 73 52 

 Deep 100 33 30 75 

8/1/06 

Nutrient Shallow 55 75 100 120 

 Deep 26 5 27 25 

Chase Shallow 100 75 67 60 

 Deep 11 5 15 23 
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oring wells. The distance is 

pproximate a  measured al  east-wes ion, star m the lin g the 

 wells in the north-south direction. 

 

Table 4.9. Comparison of bromide arrival times (days) at monit

a nd ong the t direct ting fro e joinin

injection

Well 
Distance 

(ft) 

Arrival Time (days) 

Fall 2005 Spring 

2006 

9S 5 5 11 

9D 5 53 48 

10S 15 18 32 

10D 15 95 83 

12S 75 - - 

12D 75 236 262 

 

 



 

 

tudy of Bioremediation of 

Tetrachloroethene Contaminated Groundwater 

nt  
In this work, the biodegradation of tetrachloroethene (PCE) was demonstrated in the field 

by a pilot study. Biostimulation and bioaugmentation were used to enhance the rate and extent of 

biodegradation. Many dry cleaning facilities have used PCE in the past (SCRD, 2007). Due to 

improper disposal and a ntal spil any former dry cleaner sites are contaminated by PCE. 

Field scale pilot studies of PCE remediation  been carr ut mostly in sites where 

the groundwater velocities are lower than 0.1 ft/day, using a recirculation system (Major et al., 

2002). In this work, a p ale bior diation study was done in a flowing aquifer with 

elocity up to 1 ft/day. Vegetable oils and other organic compounds have been used as electron 

donors in PCE bioremediation by other researchers, however, soy oil methyl esters (SOME) was 

not used extensively. In this work, SOME and lactic acid were used as electron donors. 

5.2. Materials and Methods 

5.2.1. Site Description and Problem Statement 

The site location, history, lithology and contaminant release characteristics are described 

in Chapter 4 and explained in more detail elsewhere (Davis, 2007; Terracon, 2004). 

Dry cleaning operations during the period from 1967 to 1997 at the Cinderella Cleaners 

site in Manhattan, Kansas have contaminated the soil and groundwater with tetrachloroethene 

(PCE). Chlorinated solvents, that may be adsorbed (to the silty-clay soil particles) and present as 

a non-aqueous phase liquid (NAPL) provide a constant source of contamination of groundwater. 

The contaminated groundwater plume extends approximately one mile down gradient of the site 

and impacts public water supply wells near the leading edge of the plume. PCE has degraded to 

trichloroethene (TCE) within 400 ft of the source area indicating reductive dechlorination is 

occurring at this site. However, complete reductive dechlorination to ethene/ethane/methane does 

not appear to be occurring.  

CHAPTER 5 - A Field S

5.1. I roduction

ccide l, m

have ied o

ilot sc eme

v
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5.2.2. Bioremediation Design for the Cinderella Dry Cleaners Site 

grad  presented 

in App

Although the theoretical electron demand is modest, many times more substrate is 

actually required because of competit ors by the organisms carrying out 

the red

of elect

 

d 

 

e PCE is 

completely degraded to its final daughter product ethene. The basis for estimating the appropriate 

amount of nutrients, viz., lactic E), is presented in Appendix 

5.B. 

W-

ic chase water. Injection of nutrient solution and chase water into 

The total amount of PCE present at the source and in the plume, from source to a down-

ient distance of 780 ft is estimated as approximately 1000 kg; the calculations are

endix 5.A. 

ion for the electron don

uctive dechlorination and other organisms in the consortium (McCarty, 1996). Lee et al 

(1997) reported that a minimum of about 60 mg/L of total organic carbon (TOC; mg C/L) of any 

of the inexpensive substrates or yeast extract was necessary to support dechlorination beyond 

DCE in microcosm studies with the Victoria, Texas, soils (Lee et al., 1997). The concentrations 

ron donors necessary for dechlorination depend on the microbial consortia, substrate, 

chlorinated solvent concentrations, other electron acceptor concentrations and relative efficiency

of conversion of the substrate to drive reductive dechlorination. 

In this pilot study, for the purpose of estimating the amount of electron donor to be adde

in the field, the following simplifying assumptions were made: the microbes degrade only

dissolved PCE and not the NAPL phase or sorbed phase contaminants; the aqueous phas

 acid and soy oil methyl esters (SOM

5.2.3. Bioremediation 

5.2.3.1. Fall 2005 

Nutrient injection 

Tables 5.1 and 5.2 list the amount of each supplement added to the nutrient and chase 

water during the injection on August 18, 2005. Soy oil methyl ester (SOME) acts as a slow 

electron donor while glucose and lactate act as fast electron donors to reduce the redox potential 

of groundwater. Yeast extract (YE) was added as a source of vitamins and minerals. The 

screening depths of the deep injection wells were 50-55 ft and 42-47 ft; for shallow injection 

wells, the screening depths were 30-35 ft and 23-28 ft (see Figure 4.3). Groundwater from M

10S and MW-10D was pumped into four 55 gal barrels (approximately 200 L each) for preparing 

nutrient solution and anaerob

 244



 

 

the injection w tion process 

is expla

 

 pressurizing the KB-1 

vessel using a nitrogen cylinder.

.2. Spring 2006 

By mid-February 2006, samp indicated that the reducing power 

ing depleted (DO increased and ORP became positive), 

requirin f nutrients in March 2006. Groundwater from MW-10S and MW-10D 

was pu  

s in 

e 

whey are inhibitory of reductive activity, while low concentrations are very stimulatory. 

ells was carried out on Thursday, August 18, 2005 (Day 0). The injec

ined in detail in Chapter 4, Section 2.5. 

KB-1 injection 

The KB-1 culture was purchased from SiREM, Ontario, Canada. After determining that 

the area around the injection wells had become reduced [based on the measured oxidation 

reduction potential (ORP) and dissolved oxygen (DO) values], and after migration of the tracer 

to down-gradient wells, a culture of KB-1 was injected through the injection wells, on October 

13, 2005. The injection of KB-1 was preceded, and followed by, injection of low concentration

of nutrient water. Each injection well first received 50 L of nutrient solution. The nutrient 

solution was prepared using groundwater from MW-9 that had been incubated, from 10/10/2005, 

with 1 L of SOME, 40 g of glucose, 0.5 L of lactate and 200 g of yeast extract in a 55 gal (208 L) 

barrel. Then each injection well received 5 L of KB-1 culture injected by

 A photograph of the pilot study area taken during the injection 

of KB-1 is shown in Figure 5.1. Injection of KB-1 was followed by injection of 50 L of the 

anaerobic chase water. The anaerobic chase water was prepared similar to the nutrient solution, 

described above, but without the SOME. No tracer was added during this injection (October 13, 

2005) because the study of tracer injection on August 18, 2005, was in progress. 

5.2.3

ling by KDHE personnel 

in MW-9 and MW-10 was becom

g a third injection o

mped into four barrels for preparing nutrient solution and anaerobic chase water. Table

5.3 and Table 5.4 list the amount of each supplement added to the nutrient and chase water. 

5.2.3.3. Fall 2006 

After demonstrating that lactic acid and SOME were successful in reducing PCE level

samples collected from the pilot study area, we planned to use cheese whey as nutrient source in 

the field. Groundwater from MW-10 was used to dilute cheese whey for injection. Laboratory 

microcosm studies conducted by Ibbini et al (2006) suggested that high concentrations of chees
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r dispersion that occurs within the aquifer. In the 

microcosm studies, the optimal concentration of cheese whey for PCE degradation (with and 

without KB-1) was 0.025 %, with inhibition occurring at concentrations greater than 0.1 % 

(Ibbini et al., 2006).  

tely 

2 2

ough reducing power for 130 μM of PCE. The microcosm studies were 

conduc

sted 

y, 

40 g of glucose and 10 g of yeast extract were added to 200 L of groundwater pumped into a 55 

ient solution was prepared in four such barrels. On August 1, 2006 each 

injection well receiv

column 

Inhibition at higher concentrations presents a problem for field work because higher 

concentrations must be introduced to account fo

Taking into account the above fact and also considering the groundwater flow and 

associated dispersion, it is difficult to come up with a recommended injection concentration for 

cheese whey. Based on bromide tracer patterns during 2004 to 2006, injected solutions may 

dilute 4-100 fold for every foot of groundwater flow in deep zone and 2-200 fold for every foot 

of groundwater flow in the shallow zone. If we consider a 10-50 fold dilution, injection of about 

0.5 % cheese whey would disperse to the effective concentration range of 0.05 to 0.01 %.  In 

microcosms, 0.1 % cheese whey gave a long lag before reduction of PCE (Ibbini et al., 2006). 

While 0.05 % whey supplies very little carbon, it is sufficient to fully reduce the levels of PCE 

typically observed in the field. Cheese whey contains about 50 g/L of sugars (mostly lactose). 

Dilution of cheese whey to 0.5 % results in a concentration of about 250 mg/L or approxima

1.4 mM glucose equivalent. Depending on detailed reaction paths, this may be enough to reduce 

more than 1.4 mM of PCE because each glucose molecule provides a dozen active hydrogen 

molecules (H ) as NADH, and each PCE needs four H . Therefore, when diluted to 0.05 % whey 

there is in principle en

ted by Ibbini et al (2006) with about 10 μM PCE and even 0.01 % cheese whey proved to 

be effective. Inhibition and competition by organics and ions present in the aquifer were te

by microcosm studies with water from the site; it was found that there is no significant inhibition 

or competition by sulfate reducing bacteria. 

On July 31, 2006, one day before the fourth nutrient injection, one liter of cheese whe

gal barrel. The nutr

ed 100 L of nutrient solution. 

5.2.4. Analytical Method 

Chlorinated compounds and methane were analysed using a gas chromatograph (HP 5890 

Series II, Wilmington, DE) equipped with a Flame Ionization Detector (FID) and a HP-1 
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the wat

 

percent DO decreasing to very low levels. 

The ORP in MW-8D decreased from -136 mV on 8/23/2005 to -257 mV on 9/14/2005 and in 

MW-9D the ORP decreased from - the same period. 

(Dimethyl Polysiloxane matrix, 30 m x 0.53 mm, Agilent Technologies, Wilmington,

Hydrogen was the carrier gas. The injector temperature was set at 200˚C and detector 

temperature was set at 300˚C. Sample volume of 100 μL was injected into the column at 100˚C 

and run for 5 minutes. The run temperature was chosen based on the arrival time and good 

separation of compou

er or even overlap. For lower temperatures, the separation of compounds is good bu

elution will be slow.  

Resazurin, which is a sodium derivative of a three-ringed nitro aromatic compound, is a 

reducing-oxidizing indicator that turns colorless under reducing conditions (redox potential less 

than -110 mV) and will turn blue in the presence of oxygen (redox potential greater than 0 mV

and varying hues of pink for redox potential in the range -110 mV to 0 mV (Karakashev et al., 

2003). In this work, 25 μL of 1 mg/L resazurin was added to each groundwater sample collected

in a 15 mL vial. The variation of color of the sample is observed immediately, after one hour a

after 24 hours. To create headspace for gas analysis, the cap of the vial is loosened and 5 mL of 

the liquid is taken out of the vial using a 10 mL syringe, while air enters the headspace of the 

vial. The 5 mL liquid is transferred to a wide-mouthed glass vial and closed with a screw-cap 

stored in a cold room. From this 5 mL liquid, 1.5 mL was used for ion analysis (see Chapter 4, 

Section 4.2.9). 

5.3. Results and Discussion 

5.3.1. Fall 2005  

In the resazurin test, MW-8D showed

er is reduced, with oxidation-reduction potential (ORP) less than -50 mV. The DCE 

concentration was higher in these samples. The dissolved oxygen (DO) and ORP data collected 

by KDHE from 8/19/2005 to 9/14/2005 suggested that adding the nutrients had a significant

effect, with ORP decreasing by about 100 mV and 

103 mV to -248 mV during 

As mentioned in chapter 4, section 3, the groundwater level variations were 5 ft in the 

shallow zone and 3 ft in the deep zone, during the period July 2003 to January 2007. These 
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t increase in the DCE levels (18 μM to 64 μM by day 28), 

especially in the top samples (42 ft) which is not in the screened zone of the well MW-8D. After 

day 28,

 

id 

nding increase from about 9 μM to 47 μM during the same period, consistent 

with the decrease in PCE. From day 64 until day 188, the average PCE concentrations remained 

at low levels between 4 μM to 1 s decreased gradually, during 

the same time period, as shown in Fig nu  presence of bromide (see Figure 

4.26), a

s. 

y 

 

n of total 

chlorin

Es. 

variations can be quite important in the leaching of the NAPL phase contaminant from the 

unsaturated zone. Infiltration of rainfall and surface water can also result in dissolution

zone contaminants and transporting the compounds to the groundwater table below. 

5.3.1.1. Chlorinated Ethenes (CEs) Degradation: Deep Wells 

In Figure 5.2, the molar concentrations of PCE and DCE at MW-8D are plotted for all 

three depths. There was a significan

 the DCE concentration started to decrease. The PCE concentrations decreased from day 

10 until day 28 and then started to increase. The nutrients that reached MW-8D, by the hydraulic

force of injection, may be washing out resulting in a rebound of PCE and a drop in DCE levels. 

However, it is clear that the nutrients added had a significant reducing effect. Figure 5.2a 

presents the average concentrations of PCE, TCE, DCE, and total CEs in MW-8D. The reported 

concentrations represent the average of the concentrations at three depths. Figure 5.2b shows the 

results after averaging three consecutive data points to obtain lines with less variation. 

After the injection of KB-1 and nutrients on day 56 (October 13, 2005), there was a rap

decrease in the (depth averaged) PCE concentrations in MW-8D (nominally up-gradient), from 

about 44 μM on day 50 to about 9 μM by day 64 (see Figure 5.2a). The DCE concentrations 

show a correspo

2 μM, whereas DCE concentration

ure 5.2a. The conti ed

s mentioned in the tracer study at this well, indicates that there was a nearly stagnant 

condition at this location, possibly due to build up of biomass, by repeated nutrient injection

The ORP measured by KDHE in January 2006 was consistent with the continued presence of 

highly reducing conditions at the well. Part of the initial decrease in the CE concentrations ma

also be due to partitioning into the SOME phase (Pfeiffer et al., 2005; Lookman et al., 2007). 

The effect of adding KB-1 can be understood by observing the concentration trend in PCE and

DCE together. From day 28 to day 56, before addition of KB-1, the concentratio

ated ethenes (CEs) remained above 50 μM. After the injection of KB-1 on day 56 until 

day 180, the concentrations of both PCE and DCE decreased leading to a decrease in total C
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The total CEs decreased from 75 μM on day 18 to 22 μM (70 % reduction) on day 180. The

time for the onset of PCE degradation after the second injection is also less (18 days for the first 

injection to almost immediate response in the second injection). The microbial popul

weeks for the microbial population to grow significantly to start degradin

nutrients were injected on day 56, the PCE degradation rate was enhanced. TCE concentration 

did not vary significantly; it remained steady in the range 2 μM to 11 μM. In the batch studies 

conducted by Ibbini et al (2006) and Ibbini et al (2007), the lag time for biodegradation of PCE 

were observed to be approximately 10 days for the microcosms with KB-1 and 20 days for the 

microcosms with native microorganisms.The rate of conversion of TCE to DCE is rapid 

compared to the rate of dechlorination of DCE. 

A comparison of the laboratory and field results reveals that the lag time for PCE 

degradation was higher in the laboratory. In the laboratory study, the electron donor was added 

once a month, about 8 times the required stoichiometric quantity. However, in the field, the 

ectron donors added was theoretically sufficient for degrading PCE for about 170 

major portion of electron donors added was utilized for the consumption of oxygen in inlet 

water. Due to lower velocities, the electron donors added in the field are not transported rapidly

and not washed away. In the laboratory, a portion of the glucose may have been washed out of 

the channels. The above factors may be responsible for the longer lag time in the laboratory 

study. 

In Figure 5.3, the molar concentrations of PCE and DCE at MW-9D are plotted for all

three depths. Figure 5.3a presents the average concentrations of PCE, TCE, DCE, and total CE

in MW-9D. The concentrations were obtained by taking the mean of the concentrations at thre

depths. In Figure 5.3b the lines were obtained by averaging three consecutive points in order to 

smooth the data. The mean concentration of PCE started to decrease from day 25 and reached 

lower levels by day 57, as shown in Figure 5.3a. There was some increase in DCE concentration

but not equal to the loss of PCE. The total CEs decreased from 98 μM on day 25 to 47 μM

day 37. The mean DCE concentration reached a peak of about 49 μM by day 57 while the PCE

concentration decreased to about 7 μM. After day 57, the mean DCE concentration decreased 
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at 

 

tration started to decrease and reached a value of about 4 μM by day 100. DCE 

concen

t 

and mean PCE concentration started to increase, likely due to depletion of carbon source. It took 

20 days for the effect of second injection of nutrients to be observed at MW-9D compared to 

immediate response at MW-8D. The nutrients may have reached MW-8D by hydraulic force of 

injection whereas at MW-9D the nutrients reached due to a combination of both the hydraulic 

force of injection and the groundwater flow. TCE concentration increased from the background 

level of 2.7 μM to 8 μM but remained less than 8 μM throughout the duration of this study.

Conversion of TCE to DCE is rapid enough such that TCE concentrations remained below 8 μM

Following injection of KB-1, there were somewhat different responses according to sampling 

depth across the screened interval, but overall there was a slow further decline of both PCE and 

DCE so that the total CEs decreased to less than 20 μM by day 188. PCE concentrations at the 

top depth (42 ft bgs) remained low and DCE levels at that depth were higher. With increa

depth, PCE concentrations were higher and DCE

 were likely more available at lesser depth and also since the screening of the well

from 45 ft to 55 ft bgs, the groundwater in the top samples (42 feet bgs) may experience less 

dispersion compared to the greater depths. After about day 75 to day 200, both PCE and DCE

concentrations decreased, likely due to the injection of KB-1 on day 56. The samples collected 

MW-9D, MW-10D and MW-12D reflect both the transformation near the well and 

transformations that occurred upstream prior to the flow to the well. 

In MW-10D, there were no significant changes in the CE levels until day 60, as shown in

Figures 5.4, 5.4a, and 5.4b. The initial PCE concentration was about 60 μM and a less than 

detectable concentration of DCE. Sixty days after the first injection of nutrients, PCE 

concen

tration also correspondingly increased. The timeframe correlates well with MW-9D, 

where the beginning of decrease in PCE concentration occurred from day 25. There is a lag of 

about 35 days, corresponding to a velocity of approximately 10 ft/35 days = 0.3 ft/day, as 

observed typically in the deep zone (see Table 4.1). The peak of DCE concentration occurred at 

day 95 after the PCE concentration declined to a low value. This peak appeared about 38 days 

after the corresponding peak at MW-9D; this DCE peak may be due to both formation of DCE 

near MW-10D and DCE produced upstream. The estimated velocity based on the DCE peaks a

MW-9D and MW-10D is 10 ft/38 days = 0.26 ft/day. The groundwater at MW-10D may not be 

exactly the same as the groundwater that passed through MW-9D; however, it may be the 
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groundwater that flowed in the vicinity of MW-9D. There was a slight increase in TCE levels, 

from a starting concentration of 3 μM on day 10 to about 10 μM on day 82, as shown in Figur

5.4a (average for three depths); TCE is converted rapidly to DCE and hence not observed at 

higher concentrations. The decrease in PCE concentration and subsequent increase was 

consistent with the tracer arrival times. The concentrations of the CEs at three depths were not 

significantly different at MW-10D compared to MW-8D and MW-9D. The standard deviatio

PCE concentrations, considering the samples collected at three depths as triplicates, for all 

sampling events until day 200 was computed for MW-8D, MW-9D, MW-10D and MW-12D. 

The number of sampling events until day 200 is 38 for MW-8D, 44 for MW-9D, 33 for MW-

10D, and 21 for MW-12D. The mean values of the standard deviations are 11.8±7.4 μM for 

MW-8D, 8.6±5.4 μM for MW-9D, 5.1±3.6 μM for MW-10D  and 10.9±7.2 μM for MW-12D. 

The average standard deviation of PCE concentrations at three depths, for data from day 0 t

200, at MW-8D is more than twice the value at MW-10D and at MW-9D the value is 1.7 times 

the value at MW-10D. These data suggest that the chlorinated ethenes mix well vertically as t

travel with the groundwater from MW-8D to MW-10D. The variation of PCE concentrations a

three depths at MW-12D, from day 20 to day 188, was however higher than those for MW-10D. 

This may likely be due to varying degree of dispersion and mixing of untreated grou

different depths, during the flow for about 60 ft from MW-10D. 

It is interesting to note that the bromide peak and the DCE concentration peak (and the 

nadir in PCE concentration) are synchronous at MW-9D and MW-10D. The peak of bromid

occurs on days 57, 95 and 236 for wells MW-9D, MW-10D and MW-12D, respectivel

Figure 4.27 to 4.30). The peak of average DCE concentration occurs on exactly the sam

those for bromide for each well. This suggests that bromide, soluble nutrients and DCE trave

the same velocity and there is not much retardation (due to sorption to soil carbon) of nutrients 

and DCE. The soil organic carbon fraction is usually very low below the organic topsoil (u

the top few feet of soil) and decreases with increasing depth. Since the chlorinated solvent plume

was flowing for several years through the pilot study area, the adsorption sites in the soil organi

carbon may have been saturated with the contaminants. 

In MW-12D, as shown in Figures 5.5, 5.5a, and 5.5b, an increase of DCE was evident at 

200-220 days with a corresponding decline in PCE. This matches the timing of appearance of 
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hing MW-11D. The sampling for MW-

11D wa

bromide, presumably from the first injection on day 0. There is a decrease in DCE and total CE

after 400 days, and the concentration of CEs falls below 20 μM at 600 days. 

Comparison of the concentrations at MW-12D with those at MW-9D and MW-10D 

suggests that the flow to MW-12D includes inflow from outside the core plume where P

DCE are being degraded. Figure 5.5a exhibits a decline in PCE concentration after 200 days and

a further decline after 300 days. The DCE concentration increases after 200 days and then 

increases further after 300 days. If the decline in DCE concentration after 450 days is due to

1 in the vicinity of MW-12D, it took about 400 days for KB-1 to travel from the point of 

injection to MW-12D. This rate of movement of KB-1 is about half the velocity of the 

groundwater. 

In Figure 5.6, for MW-7D, PCE concentrations were similar to the values before the 

implementation of the pilot study; the PCE concentrations in most of the samples remained in the 

range 20 to 40 μM. The concentration in the bottom depth was lower than the values in the top 

and middle depths. DCE concentration remained steady between 2 μM to 8 μM. There was 

significant variation in the PCE concentration at MW-7D, due to the variation near the source, 

showed in Figure 5.8 for MW-5D. This variation at the source may likely be a major reason for 

the variation at MW-7D since MW-7D is down-gradient of MW-5D. These results indicate that 

there is no flow or dispersion that causes the injected nutrients to

at the decline in PCE concentration in the pilot study area (MW-8D, MW-9D and MW-

10D) is due to biochemical transformation rather than disappearance of the source of PCE. 

PCE concentrations at MW-11D were low, compared to the pilot study area, as shown

Figure 5.7. This location, which is 23 feet south of MW-9D, more or less defines the south end 

of the CE plume from the former Cinderella dry cleaners. The concentrations of PCE and DCE 

fluctuated in the range from 0.3 to 5 μM. The fluctuation may likely be due to both the fresh 

groundwater flowing at that point and the effect of introduction of nutrients at the pilot study 

area. DCE concentrations were low in MW-11D, and in many of the samples the value was less 

than the MCL of DCE, 0.72 μM. The higher values of DCE near 100 days may be due to 

nutrients that were added in the study area, possibly reac

s not as frequent as other wells because it was in the center of a parking space in the City 

parking lot and had to be skipped many times when a vehicle was parked there. 
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An upgradient well to the pilot study are, MW-5D, exhibited variable behavior, as 

depicted in Figure 5.8. The PCE concentration in the deepest samples was con

e value in the top samples; values were between 60 to 120 μM until day 120 in the de

samples. In the middle sampling depth, levels fluctuated from 30 to 380 μM, averaging about 

180 μM. In the top, the concentrations declined from 500 μM in the beginning to about 70 μM 

by day 250 and then increased before they decreased to less than 20 μM. MW-5D displayed

very wide range of concentrations at different sampling depths over time. Levels were up to 400 

μM at the start of the field study; by day 300, the values were close to 150 μM. Monthly r

values and the water table level (+1000 ft above MSL) are shown as well because of the

impact of rainf

here is no obvious relationship between rainfall and PCE concentration, however, PC

concentration appears to increase with increase in rainfall, with a lag period of about 60 days. 

The lag period may be due to the time taken for dissolution of PCE in the vadose zone and trave

downwards to the aquifer. The horizontal travel time from the source to the well may also 

contribute to the lag time. The values are larger at the start of the field study and generally 

decrease with time. The higher concentrations in the top samples shown in Figure 5.8 suggest 

that there is PCE in the unsaturated zone that is made available by rainfall and/or variations in 

the water table. 

The results for DCE in Figure 5.8a suggest that there may be flow from the injection 

wells to MW-5D. The background DCE concentration is very low as shown in Figure 5.8a, 

 150. Corresponding to a decrease in PCE concentration, the concentration of DCE 

increased after day 150 and reached a maximum value of 76 μM (bottom sample) on day 245, 

which is about 50 % of the PCE concentration at this depth; however, most of the values of DCE

concentration lie in the range 0 to 50 μM, which is about 20 % of the PCE concentration at th

location. The trend in PCE and DCE concentration between days 350 and 450 is opposite 

indicating evidence of biodegradation. The average of the hydraulic gradient between MW-5D 

and MW-8D is estimated as 2 * 10-4. The value for the same parameter between MW-5D a

MW-9D is also very small (estimated as -8 * 10-4) indicating the groundwater flow is very slow 

or may even be towards MW-5D on some occasions. The average hydraulic gradient is estimated 

from the groundwater elevation at the above locations measured during the perio
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ared to MW-8D and MW-9D; however, there are dates when the values are 

similar

third 

s, 

06. When groundwater flow is slow, there may be a variety of pathways and pressur

forces that impact fluid movement. Comparison of Figures 5.8 and 5.8a shows that the two 

largest values of DCE concentration are associated with rainfall events. It may be possible for 

rainfall to carry nutrients from the shallow aquifer to MW-5D. The stormwater with organic 

compounds, could be entering into MW-5D and provide the carbon source for microbes to 

degrade PCE and DCE. Before our extensive sampling of MW-5D during pilot study, the well 

was not opened often and hence may be sealed sufficiently to prevent infiltration of stormwater. 

During frequent sampling, that required frequent opening and closing of the well cover, the cover

and the sealing were subject to wear and tear creating pathways for stormwater to enter the well. 

At 248 days, in May 2006, the recorded value for groundwater elevation is1008.62 ft a

MW-5D and 1008.61 at MW-9D as displayed in Table 4.2. Both values are larger than the valu

in earlier months because of the rainfall. Similarly, at 400 days, during September 2006, there 

a rainfall event and groundwater elevations are larger compared to July 2006. In September 

2006, the values are 1007.87 ft at MW-5D and 1007.87 ft at MW-9D. We do not know of a

pumping from wells or other forces that would cause flow from the injection wells to MW-5

The pathways associated with any preferential flow of rainfall to the deep aquifer are not know

The data in Table 4.2 show that the groundwater elevations are generally slightly higher

in MW-5D comp

 as well. There are also measured values where the elevation at MW-5D is lower. 

5.3.1.2. Chlorinated Ethenes (CEs) Degradation: Shallow Wells 

In the shallow wells MW-8S to MW-10S, there were no significant changes in the 

chlorinated ethene levels in the first 30 days as shown in Figures 5.9 to 5.11, 5.9a to 5.11a, and 

5.9b to 5.11b. In MW-8S (See Figures 5.9, 5.9a, and 5.9b), there were small increases in DCE 

concentration after the August 2005 and October 2005 nutrient injections, with total CEs only 

about 9 μM for the average of the three depths across the screened interval. Following the 

nutrient injection (day 197), levels of DCE rose at MW-8S while PCE concentration declined. 

This was a transient response corresponding to the spike of bromide, and therefore the nutrient

in the same well. Later the DCE concentration gradually declined and the PCE concentration 

rebounded because the groundwater flowed through MW-8S and diluted the nutrients. The 

concentration of DCE increased for a short period following the injection at 348 days. 
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In Figures 5.10, 5.10a and 5.10b, for MW-9S, there was only a small change in mean 

PCE concentration from about 9 μM to values mostly in the range 4 μM to 6 μM between da

to day 208 and a moderate increase of DCE with peaks on days 18, 64 and 102. The DCE 

concentration peaks on days 18 and 64 correspond to the nutrient injections on day 0 and 56, 

respectively. The peak on day 102 may be due to nutrients from a farther injection well or th

reduced groundwater from MW-8S reaching MW-9S. The average PCE concentration varied 

from 3 μM to 9 μM but DCE concentration remained almost steady and in the range 0.5 to 2.5 

μM. There was no significant response at MW-9S to the feeding on day 197. However, the 

feeding on day 348 resulted in a significant decrease in PCE concentration. 

In Figures 5.11, 5.11a, and 5.11b, for MW-10S, the concentration of PCE decreased from

an initial average value of more than 12 μM to values of about 8 μM. The average concentration 

of DCE increased from about 1.5 μM to 5 μM, by day 95. The average PCE concentration 

increased from day 102 and eventually reached the value of 13 μM and DCE concentration 

decreased to 2 μM by day 188. The total CEs remained almost steady in MW-10S between 12 

μM to 18 μM, except for a short duration from day 460 to day 570. There was a striking 

E levels reaching zero and DCE levels rising 

to those previously observed for PCE. Later, there was a rebound to the previous state with m

PCE than DCE after 300 days. It took only 14 days for the PCE concentration to decrease in 

concentration to decrease drastically, after the fourth injection of nu

A comparison of the total CEs in MW-8S, MW-9S and MW-10S reveals that the 

groundwater observed at MW-10S may not be the same groundwater that passed through MW-

8S and MW-9S. The approximate total CE concentrations in MW-8S, MW-9S and MW-10S ar

9 μM, 8 μM, and 14 μM, respectively. A decrease of CE concentration in a down-gradient well

can be explained by biodegradation, adsorption and dispersion, however, a higher value leads to 

the conclusion that the groundwater may have traveled through a different path other than the u

gradient well. The concentrations of PCE that enter the pilot study area are smaller in the shallow

zone compared to the deep zone, but well above the MCLs of 0.03 μM (PCE), 0.04 μM (TCE

and 0.72 μM (DCE). 
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e-tenth of the 

values 
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e 

decreas s in the 

 

ocated in the pilot study area (PSA) and MW-12D influenced by nutrient 

addition, however, MW-7D located north of the PSA was not affected by nutrient feeding. The 

For MW-12S, the response was gradual with a decline of average PCE concentration 

from about 7 μM to about 3 μM by day 600 with DCE remaining fairly steady at about 4 μM 

(see Figures 5.12, 5.12a, and 5.12b). The variation in PCE concentration may be due to oth

factors such as variation of PCE concentration at the source, changes in water table levels, and

infiltration of surface water. The DCE concentrations during the initial days indicate that 

conversion of PCE to DCE was taking place before nutrients were added. The degradation ma

have been happening near MW-12S or upgradient.  

In MW-7S, PCE and DCE concentrations fluctuated over time and there was no obvi

trend (see Figure 5.13). The CE concentrations, however, were only about on

in MW-7D. PCE concentrations were about 3 μM and DCE concentrations were about 1 

μM, with higher and lower concentrations observed on some dates. It is unlikely that this 

location is affected by nutrient injection due to the distance to the North from the injection w

of 23 ft and also the direction of groundwater flow being to the East which is perpendicular t

the direction from the injection wells to MW-7S.    

In Figure 5.14, the PCE concentrations at MW-11S were slightly higher than MW

which is opposite to the trend in the immediate pilot study area, about 20 ft to the North of MW-

11S. The concentration varies between 3 μM and 7 μM and remains steadier compared to that in 

MW-11D. DCE concentrations also remained steady and in the range 0.4 μM to 2 μM. PCE 

concentrations were below 4 μM during the periods day 93 to day 306, and day 390 to day 602, 

except for a few samples. Compared to the background concentrations of about 5 μM, th

e in PCE is not significant and it is difficult to conclude whether the small change

concentrations are seasonal or due to the effect of feeding at the pilot study area.  

Interpreting the patterns of contaminant concentration is complicated by the dynamics of 

flow. The plume is migrating with reaction occurring simultaneously, so that an observed 

concentration at any down-gradient well represents all of the dispersion and reaction processes 

between the point of plume origination and the well. An examination of historical data from 

KDHE contractors’ sampling and our study indicates that the ratio of DCE/PCE has changed 

dramatically following nutrient addition. As shown in Figure 5.15, the ratio increased drastically

for monitoring wells l
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ratio of

2 

t loss 

 did not vary significantly in the shallow 

zone of

 the 

 MW-

E 

 DCE/PCE ratio was about 0.1 and increased 

up to 0

lue 

after third injection and 

 DCE to PCE remained low and fairly steady at 0.15, indicating no evidence of 

biodegradation of PCE. The DCE to PCE ratio was highest for MW-10D reaching a value of 2

on day 95, compared to a value of the order of 0.01 before the start of the pilot study. Lower 

values of the ratio in the later part of the study were due to decrease in both DCE and PCE 

concentrations rather than increase of PCE concentration only. There was also a significan

of total chlorinated ethenes at all wells in the pilot study area. 

As shown in Figure 5.16, the DCE/PCE ratio

 the PSA except at MW-10S. The ratio increased drastically for MW-10S after the third 

nutrient injection on day 197. The DCE/PCE ratio reached a peak value of 135 compared to

background value of about 0.2. The ratio was high at MW-10S from day 220 to day 250. The 

values of the ratios at MW-9S and MW-10S confirm the inference that the groundwater at

10S may not have traveled through MW-9S. A comparison of the values of the ratio at several 

monitoring wells indicates the nutrient addition had a significant effect on the shallow zone PC

and DCE concentration. At MW-9S, the background

.3 after the first nutrient addition. There were several peaks after the second nutrient 

addition, and value reached 0.63 on day 102. After day 210 until day 400, the ratio remained 

fairly steady about 0.2. After day 400 there was a significant decline in PCE concentration 

resulting in increase of the DCE/PCE ratio.There were several peaks after day 400 and the va

reached 0.8 on day 573. 

Each nutrient injection had a significant impact in the DCE/PCE ratio at MW-8S. The 

response at MW-8S was drastic compared to the down-gradient well MW-9S. From a 

background ratio of 0.2, the value reached 0.3 after first injection, 0.95 after second injection, 1.3 

1.2 after fourth injection. Besides the peaks, the ratio was in the range 

0.3 to 0.5 throughout the duration of the study which is higher than the background. 

The DCE/PCE ratio remained fairly steady at MW-12S except for a few values. The ratio 

was in the range 0.2 to 1.0 indicating that there is sufficient mixing of untreated or partially 

treated water during the travel from the PSA to MW-12S. The background ratio at MW-7S was 

higher compared to the pilot study area and the values were about 0.4. There was also a 

significant loss of total chlorinated ethenes at all wells in the pilot study area. 
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ples are about 60 μM; however, 
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, 

1/30/2006 and 3/30/2006, respectively. The Contractors typically collect 

sample

 different 

 due to 

proxim

 

. 

hough a 

etailed comparison 

of the concentrations obtained in the KSU laboratory and KDHE’s Contractors’ laboratory for 

several wells and dates was presented by Davis (2007). 

Observed PCE concentrations in all wells varied with time, even in locations wh

nutrients were injected. Variations may be due to several factors including changes in 

groundwater level, rainfall, nutrient addition, and KB-1 injection. 

There must be different mixing processes of contaminated water and untreated water

flowing into each zone of the aquifer because the entering PCE concentrations observed in the 

deep wells at MW-8D and MW-9D as represented by early sam

 concentrations in the shallow wells are much lower, in the range of 6-15 μM. The dat

for PCE concentration at various depths also provides an idea of the PCE distribution at the 

source. PCE may be present as NAPL phase in the vadose zone and in the deep zone, acting as a 

source. The shallow zone source of PCE is only the dissolution occurring when NAPL PCE 

travels downward from vadose zone to deep zone. 

5.3.1.3. Comparison with KDHE Contractor’s Data  

The concentrations reported by KSU personnel were equal to or higher than those 

reported by KDHE’s Contractors in most of the comparable sampling dates. At MW-5D the

concentrations analyzed at KSU laboratory were 386.7 μM and 47.4 μM for samples collected

at 44 ft bgs, on 2/1/2006 and 4/4/2006, respectively. At the same monitoring well, the 

concentrations reported by the contractors were 108.4 μM and 28.9 μM for samples collected 

(likely at 44.5 ft bgs) on 

s at 5 ft from the bottom of a monitoring well. We do not have the information on the 

exact depth at which the contractors collect their samples. Moreover there were several

contractors employed by the KDHE during the period 2003 to 2006. The variation may be due to 

differences in concentrations in the samples, sampling depth, sampling method, and analytical 

methods. KSU laboratory analyses results may be higher than the Contractor’s results

ity of the laboratory to the site, which was conducive to immediate analysis, whereas the 

samples collected by KDHE’s and their Contractors were shipped to a distant laboratory that

may have caused a loss in the volatile organic compounds due to storage and transportation time

An exact comparison is also not possible due to difference in sample collection dates, alt

significant variation is not expected in the groundwater within a few days. A d
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 12 are 

s shown for PCE and DCE in 

Figures .2a 

 

e 

ed 

oss of a significant fraction of the total 

chlorinated ethenes (CEs) (Figures 5.2a to 5.5a) though high concentrations of ethene or methane 

 an increase in DCE corresponding to a 

decline thenes 

e 

 the DCE concentrations at MW-10D 

5.3.2. Spring 2006 

The concentrations of chlorinated ethenes (CEs) in deep wells MW-8, 9, 10 and

shown in Figures 5.2 through 5.5 and 5.2a through 5.5a. The data i

 5.2 through 5.5 at all three depths and the average concentration is shown in Figures 5

through 5.5a. The arrival time of the tracer precisely coincided with the arrival time of DCE and

the front of PCE disappearance, indicating that there is no appreciable retardation within the 

aquifer for the CEs and the nutrients. If either DCE or nutrients were appreciably sorbed to 

aquifer materials, there would be a measurable retardation of their arrival times relative to th

KBr tracer. Comparison of arrival times mentioned above indicates that sorption may not be a 

major factor in the aquifer or the sorption sites may already be saturated since the contaminat

water has been flowing for several years. There is l

were not observed. For MW-8D (Figure 5.2) there was

 of PCE after each feeding, followed by a rebound. However, the total chlorinated e

decreased substantially. For MW-9D (Figure 5.3) there was also little response, but it is 

important to note that the level of PCE observed after the third nutrient feeding (day 197) was 

less than 10 % of what it was a year earlier.  

For MW-10D (Figure 5.4), there was a surprisingly fast response to the third feeding. 

Previously PCE concentration had declined and DCE concentration had risen upon feeding, and 

then rebounded. After the third nutrient injection, PCE concentration declined and DCE 

concentration increased again until day 220 and again from days 230 to 270. PCE concentration 

rebounded from day 280 to day 330 but did not reach the previous levels.  is beginning again as 

PCE levels are rising and DCE levels were declining slowly. After the fourth nutrient injection 

on day 348, until day 602, both PCE and DCE concentrations were below 10 μM in most of th

samples. 

In MW-12D, an increase in DCE concentration was evident at 200-220 days with a 

corresponding decline in PCE. This matches the timing of appearance of bromide (see Figure 

4.29), presumably from the first injection on day 0. If the water in MW-12D is coming from up-

gradient well areas, the levels of PCE ought to reflect the corresponding results in MW-10D six 

months earlier. The decline in PCE concentrations observed at MW-12D at 200-220 days was 

observed at MW-10D at 60-90 days. From day 200-300,
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 that 

here is 

s may have traveled with the tracer to the 
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e PCE present at the site of contamination provides a long term source for the plume. 

The dat ed by 

e 

2D, from day 350-45

e 25-35 μM, indicating that the groundwater reaching MW-12D flowed through or in th

vicinity of MW-10D. The total CEs at MW-12D remained fairly steady until day 350 and then 

there was a gradual decrease from about 60 μM to 20 μM. 

5.4. Conclusions 
Biodegradation of PCE is an electron donor limited process in the study site. Additio

electron donors such as SOME, glucose and lactic acid stimulated the native microbes  to conv

PCE to DCE. Injection of KB-1 enhanced conversion of DCE to end products such as methane

or ethene. The results indicate that the KB-1 cultures may have been distributed by fluid motion 

to MW-9D, MW-10D and MW-12D, for example. Steady concentrations of sulfate indicate

the dehalogenating microorganisms out compete sulfate reducing bacteria (SRBs) for electron 

donor. SRBs may not be present in sufficient numbers. 

Since CEs were found in MW-10D even though there was not much in 9D, a significant 

portion of the groundwater at 10D may not have passed through the area near MW-9D. T

clear evidence that nutrients and KB-1 have impacted groundwater samples collected at MW-

10D and MW-12D. It is possible that nutrient

adient wells and that biodegradation of PCE to DCE took place at or near these wells, 

the groundwater from the upgradient wells and injection wells may be reaching the downgradient

wells. 

The arrival time of the tracer precisely coincided with the arrival time of DCE and the 

front of PCE disappearance, indicating that there is no appreciable retardation within the aquifer.

If either DCE or PCE were appreciably sorbed to aquifer materials, there would be a measurable

retardation of their arrival times relative to the KBr tracer.  

Th

a for MW-5D indicate that the upper portion of the deep zone of the aquifer is affect

the source of contamination more than the lower portion of the deep zone. This suggests that th

source of contamination may be in the unsaturated zone above the deep aquifer. A different 

approach such as chemical oxidation using potassium permanganate or soil vapor extraction 

should be considered to remediate the vadose zone contamination. 
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The general results of the pilot study demonstrate that both nutrient addition and KB-1 

addition were beneficial. The resulting concentrations of PCE, TCE, and DCE were much lower 

because

The measured concentrations of PCE and DCE in the deep zone of the aquifer provide 

supporting evidence that flow in the aquifer near the points of nutrient addition was altered 

because of microbial growth and microbial product formation which reduced the hydraulic 

conductivity. 

 of the added nutrients and cultures. The resulting concentrations were well above the 

desired end point (MCLs) because of the mixing of treated water with other water that is 

untreated or partially treated. 
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Figure 5.1. Photograph taken during the injection of KB-1. Nitrogen cylinder was used to 

pressurize the KB-1 vessel to inject KB-1 into the wells. 
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Figure 5.2. Concentrations of PCE and DCE in MW-8D. Injection of nutrients and bromide between MW-8 and MW-9 on day 

0 (August 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients 

on day 348 (Aug 1,2006). 
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Figure 5.2a. Mean Concentrations (avg for three depths) of CEs in MW-8D. Injection of nutrients and bromide between MW-

8 and MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3

2006); nutrients on day 34

, 

8 (Aug 1, 2006). 
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Figure 5.2b. Data points are mean concentrations (avg for three depths) of CEs in MW-8D. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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, 2006); nutrients 

n day 348 (Aug 1,2006). 

 

Figure 5.3. Concentrations of PCE and DCE in MW-9D. Injection of nutrients and bromide between MW-8 and MW-9 on day 

0 (August 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3

o
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Figure 5.3a. Mean Concentrations (avg for three depths) of CEs in MW-9D. Injection of nutrients and bromide between MW-

8 and MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 

2006); nutrients on day 348 (Aug 1, 2006). 
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Figure 5.3b. Data points are mean concentrations (avg for three depths) of CEs in MW-9D. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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r 3, 2006); 

utrients on day 348, 8/1/06. 

Figure 5.4. Concentrations of PCE and DCE in MW-10D. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (August 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Ma

n
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Figure 5.4a. Mean Concentrations (avg for three depths) of CEs in MW-10D. Injection of nutrients and bromide betwe

MW-8 and MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on d

(Mar 3, 2006); nutrients on d
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Figure 5.4b. Data points are mean concentrations (avg for three depths) of CEs in MW-10D. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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Figure 5.5. Concentrations of PCE and DCE in MW-12D. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (August 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); 

utrients on day 348 (Aug 1, 2006). n
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Figure 5.5a. Mean Concentrations (avg for three depths) of CEs in MW-12D. Injection of nutrients and bromide betwe

MW-8 and MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on d

(Mar 3, 2006); nutrients on day 348 

en 

ay 197 

(Aug 1, 2006). 
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Figure 5.5b. Data points are mean concentrations (avg for three depths) of CEs in MW-12D. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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Figure 5.6.Concentrations of PCE and DCE in MW-7D. Injection of nutrients and bromide between MW-8 and MW-9 on day 

0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients on 

ay 348 (Aug 1, 2006). d
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Figure 5.6a. Mean Concentrations (avg for three depths) of CEs in MW 7D. Injection of nutrients and bromide between MW 8 and 

MW 9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and Bromide on day 197 (Mar 3, 2006); 

nutrients on day 348 (Aug 1, 2006). 
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Figure 5.7. Concentrations of PCE and DCE in MW-11D. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients 

on day 348 (Aug 1,2006). 
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Figure 5.7a. Mean Concentrations (avg for three depths) of CEs in MW-11D. Injection of nutrients and bromide between MW 8 a

MW 9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and Bromide on day 197 (Mar 3, 2006); 

nutrients on day 348 (Aug 1

nd 

,2006). 
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Figure 5.8. Concentrations of PCE in MW 5D. Monthly rainfall values are shown in inches. 
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Figure 5.8a. Concentrations of DCE in MW 5D. Injection of nutrients and bromide between MW-8 and MW-9 on day 0 

August 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients on 

ay 348 (Aug 1, 2006). 
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Figure 5.9. Concentrations of PCE and DCE in MW-8S. Injection of nutrients and bromide between MW-8 and MW-9 on day 

0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients on 

day 348 (Aug 1, 2006). 
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, 

 348 (Aug 1, 2006). 

Figure 5.9a. Mean Concentrations (avg for three depths) of CEs in MW-8S. Injection of nutrients and bromide between MW-8

and MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3

2006); nutrients on day
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Figure 5.9b. Data points are mean concentrations (avg for three depths) of CEs in MW-8S. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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, 2006); nutrients 

n day 348 (Aug 1, 2006). 

Figure 5.10. Concentrations of PCE and DCE in MW-9S. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3

o
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W-

8 (Aug 1, 2006). 

Figure 5.10a. Mean Concentrations (avg for three depths) of CEs in MW-9S. Injection of nutrients and bromide between M

8 and MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 

2006); nutrients on day 34
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Figure 5.10b. Data points are mean concentrations (avg for three depths) of CEs in MW-9S. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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Figure 5.11. Concentrations of PCE and DCE in MW-10S. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients 

n day 348, (Aug 1, 2006). o
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Figure 5.11a. Mean Concentrations (avg for three depths) of CEs in MW-10S. Injection of nutrients and bromide between MW-8 an

MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); 

nutrients on day 348 (Aug 1,

d 

 2006). 
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Figure 5.11b. Data points are mean concentrations (avg for three depths) of CEs in MW-10S. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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Figure 5.12. Concentrations of PCE and DCE in MW-12S. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients 

n day 348 (Aug 1, 2006). o
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Figure 5.12a. Mean Concentrations (avg for three depths) of CEs in MW-12S. Injection of nutrients and bromide between MW-8 an

MW-9 on day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); 

nutrients on day 348 (Aug 1

d 

, 2006). 
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Figure 5.12b. Data points are mean concentrations (avg for three depths) of CEs in MW-12S. Lines were obtained by averaging three 

consecutive points from both X and Y axes data. Injection of nutrients was carried out on days 0, 56, 197, and 348. 
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Figure 5.13. Concentrations of PCE and DCE in MW-7S. Injection of nutrients and bromide between MW-8 and MW-9 on 

day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients 

n day 348 (Aug 1, 2006). 
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Figure 5.14. Concentrations of PCE and DCE in MW-11S. Injection of nutrients and bromide between MW-8 and MW-9 on

day 0 (Aug 18, 2005); nutrients and KB-1 on day 56 (Oct 13, 2005); nutrients and bromide on day 197 (Mar 3, 2006); nutrients 

on day 348 (Aug 1, 2006). 
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Figure 5.15. Ratio of molar concentrations (mean of values at three depths) of DCE over PCE in the deep zone of the pilot 

study area (PSA) (MW-8D, MW-9D, MW-10D), a location down-gradient (MW-12D) of PSA, and a location outside the 

nfluence (MW-7D) of PSA. MW-7D values are on right hand (secondary) y-axis. i
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 Figure 5.16. Ratio of molar concentrations (mean of values at three depths) of DCE over PCE in the shallow zone of the pi

study area (PSA) (MW-8S, MW-9S, MW-10S), a location down-gradient (MW-12S) of PSA, and a location outside the 

influence (MW-7S) of PSA. MW-10S values are on right hand (secondary) y-axis. 
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 Table 5.1. Amount of SOME, lactate, yeast extract and KBr added in the nutrient solution 

for injection on 8/18/2005. 

  Deep Zone Shallow Zone 

Water (L) 188 197 

Nutrient/Tracer Mass (kg) Concentration (%) Mass (kg) Concentration (%)

SOME  8 4 2 1 

Lactate  0.8 0.4 0.8 0.4 

YE  2 1 0.2 0.1 

KBr 0.2 0.1 0.2 0.1 
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Table 5.2. Amount of glucose and yeast extract added in the anaerobic chase water for 

injection on 8/18/2005. 

Deep Zone Shallow Zone 

Water (L) 200 200 

Nutrient Mass (gm) Concentration (%) Mass (gm) Concentration (%)

Glucose 40 0.02 40 0.02 

YE  10 0.005 10 0.005 
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Table 5.3. Amount of SOME, lactate, yeast extract and KBr added in the nutrient soluti

for injection on 3/3/2006

Deep Zone Shallow Zone 

Water (L) 197 197 

Nutrient/Tracer Mass (kg) Concentration (%) Mass (kg) Concentration (%)

SOME (L) 2 1 2 1 

Glucose  0.02 0.01 0.02 0.01 

0.5 0.25 0.5 0.25 YE  

KBr 0.4 0.2 0.4 0.2 
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Table 5.4. Amount of glucose and yeast extract added in the anaerobic chase water for 

injection on 3/3/2006. 

Deep Zone Shallow Zone 

Water (L) 200 200 

Nutrient Mass (gm) Concentration (%) Mass (gm) Concentration (%) 

Glucose 20 0.01 20 0.01 

YE  10 0.005 10 0.005 
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timation of contaminant mass present in the 

aquifer 

In this site, the width of the chlorinated ethenes (CEs) contam  about 95 ft 

(29.0 m h of the plume is defined by MW-11D on the south and MW-2 on the north 

(see Figure 4.2). As shown in Figures 5.8 and 5.A.1, the concentrations of PCE and other CEs 

are very - an

sampling events by KDHE ontractor; th entrations  in the range o 6.6 

μΜ during the period from 2000 to 2006 compared to about 200 μΜ at the source). The distance 

from M o MW-7D is ut 50 ft (15 W-7D to MW-11D is about 45 ft (13.7 m). 

he approximate thickness or height of the shallow zone (15 ft (4.57 m) bgs to 35 ft 

(10.67 m) bgs) = 20 ft (6.1 m). The approximate thickness or height of the deep zone (35 (10.67 

m) to 55 ft (16.76 m) bgs) = 20 ft (6.1 m). 

The subsurface soil is heterogeneous and the concentrations of the contaminants vary at 

each location in the saturated zone.  To estimate the total mass of PCE present in the aqueous 

phase in the plume some simplifying assumptions are made. 

1. Groundwater (GW) PCE concentration remains constant along the plume width. Actually 

the PCE concentration decreases as we go to the fringes of the plume and therefore, this 

assumption is not true; however, it helps to simplify the calculations and overestimates 

the mass of PCE, which can be considered as a safety factor in the remediation design. 

Only the mass of PCE is estimated and not the degradation compounds TCE and DCE 

due to their relatively low concentrations observed in the plume. The omission of TCE 

and DCE in contaminant mass computation is also another justification for 

overestimating the PCE mass. 

2.  GW PCE concentration decreases linearly along axis of the plume. 

For the purpose of estimation of PCE mass in the aquifer, the plume is divided into three 

sections as shown in Figure 5.A.1. The deep aquifer is divided into three sections D1, D2 and 

D3; the shallow aquifer as S1, S2 and S3. The sections are chosen based on the location of the 

monitoring wells 5, 8, 12, and 14. 

Appendix 5.A. Es

inated plume is

). The widt

low at MW 11D (less th  6 μM) and MW-2 (less than 1 μM during 2 out of 10 

’s c e conc were  0.3 t

W-2 t  abo .3 m). M

T
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The widths of all sections are 95 ft (291.0 m), the width of the plume. The lengths are 

approxim

secti n 

in Table 5.A.1. 

From Table 5.A.1, the total PCE present in the aqueous phase is 113 kg. The amount of 

PCE pr

c 

carbon 

fers is expected to be limited compared to topsoil, 

primari  

and Christensen et al. (1996) 

a 

 

ng drilling of MW-9D were analysed at the Kansas State 

 The total carbon 

fraction

 

raction at the soil analysis laboratory at KSU. The organic 

ately 100 ft (30.5 m), 80 ft (24.4 m) and 600 ft (182.9 m) for section 1, section 2 and 

on 3 respectively.  Based on the above assumptions, the mass of PCE is estimated as show

esent in the deep zone is 101 kg (about 90 %) and the amount of PCE present in the 

shallow zone it is 11.7 kg (about 10 % of the total).  The “Slope” column in Table 5.A.1 

indicates the gradient of PCE concentration with distance. For example in section D1, the 

concentration of PCE decreases from 30 mg/L to 15 mg/L at the rate of 0.5 mg/L/ft. 

5.A.1. Estimation of sorbed phase PCE mass 
From the aqueous phase PCE, we can estimate the mass of PCE adsorbed to the organi

in soil, using the partition coefficient for PCE to organic carbon.  

Log[Koc] = 2.5; Koc = 316 (U.S. EPA, 1994) 

The extent to which sorption occurs in aqui

ly due to the lower organic carbon content. However, sorption mechanisms other than the

hydrophobic partitioning process (which is dominating in topsoil) and which are not related to 

the organic carbon content may occur. Pedersen et al. (1991) 

reported that in pristine sandy aquifers the organic carbon content is usually low, with total 

organic carbon concentrations of about 1-4 mg/L in the groundwater and organic carbon 

fractions in the sediment of 0.01-0.48 % (Pedersen et al., 1991; Christensen et al., 1996). 

Sediment samples collected from the Columbia Aquifer in the Atlantic Coastal Plain of Virgini

contained organic carbon in the range 0.02 % to 0.12 %. Using the extracted carbon as the sole

electron donor source, tetrachloroethene was transformed to cis-1,2-dichloroethene and vinyl 

chloride in anaerobic enrichment culture experiments (Rectanus et al., 2007). 

The soil samples collected duri

University soil testing laboratory, for minerals, nitrogen and carbon content.

, for soil samples collected at five feet (1.5 m) intervals, varied from 0.03 % at 47.5 ft 

(14.5 m) bgs to 0.72 % at 7.5 ft (2.3 m) bgs. 

The soil samples collected at different depths during the installation of monitoring wells

were analysed for organic carbon f
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carbon 

 

alue may not be uniform at different locations. The organic carbon fraction 

reporte

as 

he 

For porosity of 0.3, the volume ratio of soil to water is 0.7/0.3. 

If the soil den refore is, 

fraction, in the shallow zone, reported for depths 17.5 ft, 22.5 ft, 27.5 ft and 32.5 ft are 

0.36 %, 0.17 %, 5.3 % and 0.49 %, respectively. The last two values are anomalous; however, a

repeated analysis yielded the same results. The high organic carbon content may just be a local 

effect and this v

d for depths 37.5 ft, 42.5 ft and 47.5 ft are 0.08 %, 0.06 % and 0.03 %, respectively. 

Assuming organic carbon is 0.1 % in the deep zone soil in the site, which can be considered 

an upper limit and thus a safety factor to prevent underestimation of the amount of PCE, t

effective partition coefficient of PCE to soil is  

Kd = Koc* foc = 316 * 0.001 = 0.316 (mg PCE/kg dry soil)/(mg PCE/L water) 

sity is assumed to be about 2.65 g/cc, the mass ratio, the

 
waterg
soilg2.6

g3.0
g7.0*65.2

=  

Therefore, the sorbed phase PCE  = 113*0.316*6.2 = 221 kg 

 

ss of 

lume 

 ft 

5.A.2. PCE in NAPL phase or  adsorbed phase in vadose zone soil 
During April through October 1997, the soil PCE concentration analysis was performed at 

the source, below the former dry cleaner facility, by the contractor BE & K/Terranext. Four

boreholes were drilled to a depth of 5 ft (1.5 m) bgs and the soil was analysed for PCE 

concentration. Mean concentration of the four values is 1041.8 mg/kg. To estimate the ma

PCE present in the soil, this concentration is assumed to be uniformly distributed over a vo

with following dimensions: 

Depth of contamination = 10 ft (3.05 m) 

Approximate area of the contaminated site (former dry cleaner facility) = 90 ft x 50

(27.4 m x 15.2 m) 

Density of bulk soil = 1700 kg/m3 

Amount of PCE present in the vadose zone 

mg
kgmgkg

ft
mft 6

3

3
3 10*8.1041*1700*0283.0*10*50*90 −=  

kgm3

= 2255 kg 
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o 

lly it 

350 

 at a 

uni

The soil analysis was completed in 1997. After that a restaurant was established on 

the site and it is still in operation. It has not been possible to repeat the analysis. Some of the 

PCE has leached to groundwater since 1997, and therefore, that amount has to be deducted t

obtain the mass of PCE in the soil at present. 

Assuming that the groundwater PCE concentration was steady at 30 mg/L (actua

was in the range 25-36 mg/L during 2003 to 2006 analyses by KDHE’s contractors), the 

mass of PCE that had leached over the period from September 1997 to December 2006 (3

days) can be estimated.  

Assuming a plume width of 50 ft (15.2 m) over which the PCE is leaching

form concentration of 30 mg/L, the discharge is 

mg
kg10*d3350*L1000*m55.2*PCEmg30 6

3
−=  

mdL 3

 

Therefore, the mass of PCE that is still present in the vadose zone  

The r 

   

 

 

 

 

= 257 kg 

= 2255 – 257 = 1998 kg. 

 total amount of PCE is the sum of PCE in the aqueous phase and sorbed phase in the aquife

as wells as the unsaturated zone. Therefore the total amount is 

  = 113 + 221 + 1998 = 2332 kg 

In addition, PCE could be in other unidentified locations such as in the bottom of the deep 

aquifer; however, there is no evidence to support any other source location. 
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ite divided into three sections, 

r estim ting the
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 ft 

 

 

            

  

 

Figure 5.A.1. Schematic (not to scale) of the contaminated s

fo a  mass of PCE. 

 

  MW8  
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Table 5.A.1. Estimation of aqueous phase PCE mass at the site; typical value of PCE 

concentration at each well is used based on the data during the period 2003 to 2005. 

Sections 

Upstream 

concentration 

of PCE 

(

Downstream 

concentration 

of PCE 

Distance 

(m) 

Slope 

(Concentration/ 

Distance) 

Groundwater 

Thickness 

(m) 

Mass (kg)

m (mg/L) (mg/L/m) g/L) 

Deep zone 

D1 30 15 30.5 -0.5 6.1 36.3 

D2 15 10 24.4 -0.2 6.1 16.1 

D3 10 0.005 182.9 -0.05 6.1 48.5 

Shallow zone 

S1 5 1.5 -0.11 6.1 5.2 30.5 

S2 1.5 1 24.4 -0.02 6.1 1.6 

S3 1 0.005 182.9 -0.01 6.1 4.9 

Total amount of PCE in aqueous phase 113 

PCE in sorbed phase (assuming 0.1 % organic fraction) 221 
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Appendix 5.B. Es  the appropri nt of substrates 

to be inj

 Th n dono ed in th t scale tion were soy oil methyl 

esters (SOME), lactic acid and glucose. SOME acts as a slow electron donor while glucose and 

lactate act as fast electron donors to reduce the redox potential of groundwater. Yeast extract was 

 source of vitamins and minerals. 

5. B. 1. Soy oil methyl esters (SOME) 
The hydrogen source necessary for dechlorination can be emulsified soy oil methyl esters 

( E). Clap  al. (2004) d the av alue for mber of mo f hydroge

mole of chlorinated ethene (PCE and daughter compounds TCE, DCE and VC) as 

1.27, and the range of values reported in the literature are 1.03 to 1.85. If we consider the 

average value, the number of s of hydro quired fo lete dehalogenation of PCE to 

e e is, 1.27  5.08. Theor cally, only ecules of gen are need or comple

dehalogenation of PCE. The additional hyd ay be utilized by methanogens and other 

competing microorganisms. The aqueous phase concentration of PCE entering the pilot study 

area is assumed to rem  throughout the bioremediati

process. There 04 * 5.08 = 0.46 mm

2/L.  

One mole of SOME can theoretically release 17 moles of hydrogen. Fermentation of a 

drocarbon typically does not release the stoichiometric amount of hydrogen molecules. Since 

moles of H2 as electron pairs are released from a hydrocarbon with 3 moles of H2 during 

fermentation (Wood et al., 2006), the effective number of hydrogen molecules released are 17 * 

(2/3) = 11.4 moles H2/moles SOME. For 0.09 mM of PCE, the required SOME = 0.46/11.4 = 

0.04 mM = 11.8 mg/L or 0.00118%. 

SOME added in the first injection = 8 kg 

The injected SOME can reduce (15/11.8) * 8000 = 10.197 kg PCE. 

timation of

rs employ

ate amou

ected in the deep zon

e electro

e of the aquifer in the pilot study area 

e pilo  bioremedia

added as a

SOM p et  reporte erage v  the nu les o n 

required per 

mole gen re r comp

then *4 = eti  4 mol  hydro ed f te 

rogen m

ain constant at 15 mg/L or 0.09 mmol/L, on 

fore, the stoichiometric H2 concentration required = 0.09 ol 

H

hy

2 
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If we consider a 12 ft (3.66 m) width, the distance between the farthest injection wells, 

and 10 ft (3.05 m

o

t

Mass of PCE flowing in one day in the chosen zone = 0.015 * 302 = 4.53 g. 

T

5. B. 2. Lactic acid/lactate 
The chemical form ight is 90.08. Density of 

lactic a

) depth, the screening zone of a monitoring well in the deep zone, the velocity 

f groundwater as 0.3 ft/d and the porosity of the soil as 0.3, the volume of water passing 

hrough the deep zone is 12 ft x 10 ft x 0.3 ft/day * 0.3 = 10.8 ft3/day = 302 L/day. 

herefore, SOME added should, theoretically, last for 10197/4.53 = 2251 days = 6.2 

years. However, the entire SOME added in the sub-surface may not be available for PCE 

degradation. 

ula of lactic acid is C3H6O3 and its formula we

cid (80 % purity) is 1.2 g/cc at 20°C (http://www.epa.gov/chemrtk/lactacid/c13462rs.pdf, 

2002). Based on the stoichiometry of dechlorination of PCE by hydrogen, we can estimate the 

amount of lactic acid needed for bioremediation by indigenous microflora.One mole of PCE 

requires 4 moles of hydrogen for complete dechlorination to ethene. 

The aqueous phase concentration of PCE entering the pilot study area is assumed to 

remain constant at 15 mg/L or 0.09 mmol/L, throughout the bioremediation process. Clapp et al

(2004) reported the average value for the number of moles of hydrogen required per mole of 

chlorinated ethene (PCE and daughter compounds TCE, DCE and VC) as 1.27, and the range o

values reported in the literature are 1.03 to 1.85. If we consider the average value, the number o

moles of hydrogen required for complete dehalogenation of PCE to ethene is, 1.27*4 = 5.08. 

Theoret

. 

f 

f 

ically, only 4 molecules of hydrogen are needed for complete dehalogenation of PCE. 

The ad . 

rogen 

 

sed per mole of lactic acid during fermentation (Wood et 

al., 200 cid to be injected: 0.46/2 = 0.23 mmol lactic 

acid/L s 20.7 mg/L, i.e., 

0.00207 %. Since lactic acid is available at 85 % purity, the required concentration of the 

ditional hydrogen may be utilized by methanogens and other competing microorganisms

Therefore, the H2 concentration required = 0.0904 * 5.08 = 0.46 mmol H2/L. 

Lactic acid injected in groundwater is metabolized, thereby releasing molecular hyd

(H2) (Koenigsberg and Farone, 2000). The molecular hydrogen serves as an electron donor to 

stimulate reductive dehalogenation of chlorinated contaminants by indigenous bacteria. Since 2

moles of H  as electron pairs are relea2

6), we can calculate the amount of lactic a

= 20.7 mg/L. Concentration of lactic acid to be present in the plume i
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comme

 

ast for 

494/4.5

 

t be 

CE degradation. Moreover, groundwater with PCE flows from depth 35 ft bgs to 

55 ft bgs and also outside the 12 ft width considered. Hence the SOME added may be utilized for 

PCE degradation outside the ass e in water (10 g/L at 25°C), 

some o

 

rcial lactic acid to be applied in the field is 24.3 mg/L (0.00207/0.85 =0.00243 % or 

0.0243 g/L) for 15 mg/L aqueous phase PCE concentration. 

Therefore, the lactic acid added during the first injection (0.8 kg) should be able to

degrade (15 * 800)/ 24.3    = 494 g of PCE. Therefore, the added lactic acid should l

3 = 152 days. 

Hence the nutrients added during the first injection, should theoretically, last for 109 +

2251 = 5450 days = 6.5 years. However, the entire SOME added in the sub-surface may no

available for P

umed PSA. Since lactate is solubl

f the lactate may be washed away from the pilot study area. 

Similar calculations can be performed for the shallow zone of the aquifer. 
 

 



 

 

dations for Future Work  

s 

 channels, the degradation 

continu E on 

adation of PCE to DCE lasted for 246 days after stopping the feeding of SOME. The effect 

of glucose on degradation of PCE to DCE lasted for 68 days after stopping the feeding of 

glucose. Even though PCE concentration did not decrease to very low values (< 2 % of the inlet 

concentration) after 246 days in SOME fed channel and 68 days in glucose fed channel, the 

effect of the substrates were present for a long time by partial conversion of PCE. In the case of 

SOME fed channel, the outlet PCE concentrations were maintained below 1.6 μM (10 % of inlet 

value) from 246 days to 390 days after stopping the feeding of SOME. In the case of glucose fed 

channel, the outlet PCE concentrations were maintained below 5.7 μM (40 % of inlet value) 

from 68 days to 194 days after stopping the feeding of glucose. The effect of the substrates 

would have continued for a long time until the outlet PCE concentration reached the value of 

inlet PCE concentration. However, to maintain the reducing conditions in the channel, the 

substrates were added again. 

Glucose was found to be a better supplement than cheese whey for CT degradation; 

however, further study is necessary to determine if the concentration and frequency of cheese 

whey addition can improve the CT degradation process. The concentration of methylene chloride 

(MC), an intermediate compound in CT degradation, was generally higher in the channel with 

SOME compared to the channel with glucose. In the soil sample analysis, CT was not detected in 

the vadose zone but found in the saturated zone in appreciable concentrations, in the control 

channel and the SOME fed channel.  

CHAPTER 6 - Conclusions and Recommen

6.1. Conclusions 

6.1.1. Laboratory Study 

Supplements such as glucose, corn starch, and SOME stimulated the indigenous microbe

to carry out the degradation of both tetrachloroethene (PCE) and carbon tetrachloride (CT). The 

pattern and rate of degradation of PCE and CT were different for different supplements. As a 

result, the degradation compound ratios were not the same in the glucose/corn starch/cheese 

whey and SOME amended channels. In both glucose and SOME fed

ed many days after stopping the feeding of supplements. The effect of SOM

degr
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The relative concentrations of degradation products of PCE were not the same in the 

than SOME with respect to the onset time for PCE degradation. Because glucose is soluble in 

water, it is distributed more rapidly. 

In both PCE and CT channels, most of the degradation process took place in the initial 

portion of the SOME fed channel, s ar the inlet of the channel, due to 

sorptio

s 

tion 

of 

 

s 

 

ow 

d near the point of injection, and it is able to provide needed 

substra

glucose/corn starch and SOME amended channels. Glucose was found to be a better supplement 

ince SOME likely stayed ne

n and retarded flow. SOME is present as a non-aqueous phase liquid (NAPL) which does 

not flow freely like an aqueous solution. It may also sorb to soil organic matter in the initial 

portion of the channel. In the soil sample analysis, PCE concentration was low in the vadose 

zone, but it was present in the saturated zone in appreciable concentrations.  

This study demonstrated that the supplements glucose and SOME are effective substrate

that can be added to PCE or CT contaminated groundwater to promote degradation at 

contaminated sites. 

The soil matrix and the microorganisms were able to store the supplements/degrada

products of supplements and provide a long-term source of carbon and hydrogen. This finding is 

very important in the design of remediation systems in field sites to determine the frequency 

supplement addition. The mesocosm studies have shown that there is a significant residual effect

of introduced carbon supplements. In the soil system, the microbes which are present as a 

biofilm assimilate glucose and SOME, store polysaccharides, and have a reservoir of 

carbohydrates to use to reduce the chlorinated organic compounds. The process of endogenou

decay may also provide a source of food. There are also the effects of distributed flow and 

channeling. These phenomena influence the length of time the system operates effectively and

degrades the chlorinated organic compounds after food is added. Because SOME has very l

solubility in water, it is retaine

te for a relatively long time compared to a soluble substrate such as glucose. 

Addition of KB-1 at well 3, located approximately in the middle of the channel, had 

significant impact in the degradation of DCE, in both glucose and SOME amended channels, 

compared to addition at the inlet. The KB-1 culture added to the channel was active even 155 

days later, suggesting that there is sustainable growth of KB-1 when provided with suitable 

conditions and substrates.  
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y 

he 

ntly long time in microcosms, prepared from the outlet 

solution e 

edominantly 

toward

e deep 

tatic head gradient is about one order of magnitude larger in the shallow 

zone. B  

n the 

 to the 

ed as 

e 

n of 

ve microbes 

that deg such 

ns 

10D 

h the area near MW-9D.  

The arrival time of the tracer precisely coincided with the appearance time of DCE and 

The results impart an idea of how SOME and KB-1 should be applied in the field: the

should be injected at several points down-gradient rather than at a single point. 

The native microorganisms from the six-channel system were not capable of reducing t

DCE further even if provided sufficie

 of SOME and glucose fed channel contaminated with PCE. DCE remained steady in th

microcosms and it is concluded that microorganisms capable of reducing DCE to ethene must be 

added to degrade DCE. 

6.1.2. Field Study 

The tracer study showed that the groundwater flow in the aquifer is pr

s the east in both the shallow zone and the deep zone. The groundwater velocity in the 

shallow zone is greater than in the deep zone. The hydraulic conductivity is larger in th

zone; however, the s

ased on the observed static head gradient and the estimated hydraulic conductivities from

pumping tests, the velocity is estimated to be larger in the shallow zone as was observed. Lenses 

of higher permeability regions may be present in the shallow zone. 

The time duration for the bromide to reach MW-9D, MW-10D and MW-12D are 

consistent indicating that the hydraulic conductivity of the soil does not vary significantly i

down-gradient area. The velocity in the pilot study area decreased from the 2004 study

later studies in 2005 and 2006. This appears to be due to biofilms associated with the 

biodegradation process. The nitrate concentration variations associated with nitrate being us

an electron acceptor are consistent with the bromide data; the organic substrates flowing with th

bromide provide food for the organisms to consume with nitrate as electron acceptor. 

Biodegradation of PCE is an electron donor limited process in the study site. Additio

electron donors such as SOME, glucose and lactic acid stimulated the growth of nati

raded PCE to DCE. Injection of KB-1 enhanced conversion of DCE to end products 

as methane or ethene. The results indicate that the KB-1 cultures may have been distributed 

downgradient by fluid motion to MW-9D, MW-10D, and MW-12D. Since higher concentratio

of CEs were found in MW-10D compared to 9D, a significant portion of the groundwater at 

may not have passed throug
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the fron

racer to the 

downgr

he 

es conducted by Ibbini et al (2007), the lag time for biodegradation of 

PCE was observed to be approximately 10 days and 20 days, respectively, for the microcosms 

with KB-1 and the microcosms with n . 

 The 

e 

one of the aquifer provide 

support d 

1 addition 

ter with 

other w

t of PCE disappearance, indicating that there is no appreciable retardation of PCE and 

DCE within the aquifer. It is possible that nutrients may have traveled with the t

adient wells and that biodegradation of PCE to DCE took place at or near these wells. It 

is also possible that a portion of the groundwater from the upgradient wells may be reaching t

downgradient wells. If either DCE or PCE were appreciably sorbed to aquifer materials, there 

would be a measurable retardation of their arrival times relative to the bromide tracer.  

In the batch studi

ative microorganisms

PCE present at the site of contamination provides a long term source for the plume.

data for MW-5D indicate that the upper portion of the deep zone of the aquifer is impacted by 

the source of contamination more than the lower portion of the deep zone. This suggests that th

source of contamination may be in the unsaturated zone above the deep aquifer. A different 

approach such as chemical oxidation using potassium permanganate or soil vapor extraction 

should be considered to remediate the source area of contamination. 

The measured concentrations of PCE and DCE in the deep z

ing evidence that flow in the aquifer near the points of nutrient addition was altere

because of microbial growth and microbial product formation which reduced the hydraulic 

conductivity. 

The general results of the pilot study show that both nutrient addition and KB-

were beneficial. The resulting concentrations of PCE, TCE, and DCE were much lower because 

of the added nutrients and cultures. While the resulting concentrations were well above the 

desired end point (MCLs), this may be because of the continuous mixing of treated wa

ater that is untreated or partially treated. In the laboratory channel studies, the PCE 

concentration decreased to below MCL in the glucose fed channel (0.02 μΜ) and the minimum 

value in the SOME fed channel was 0.074 μΜ, almost 2.5 times the value of MCL. This is 

possible in the channels since this is a closed system with only one inlet for PCE, whereas in the 

field only a part of the plume width was injected with nutrients. 
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istance of 12 ft. For the design of 

the full

of 

ount of nutrients to be 

added m

e 

nd 

ater vertical distance, the concentrations of PCE, TCE and DCE can be decreased 

further 

. 

-

al 

n-dispersion-reaction equation 

(ADRE) for contaminant fate and transport modeling and simulation. 

6.2. Future Work 

Devlin and Muller (1999) reported inhibition of degradation of carbon tetrachloride (CT)

in the presence of metals such as Fe, Cu, Co, Mo etc. Even though CT was degraded completely 

in the mesocosm in our study, further research is needed to determine the conditions and 

compounds that inhibit CT degradation. 

The laboratory and field work demonstrated that the concentration of CEs (PCE, TCE, 

DCE, and VC) can be decreased to very low levels by biostimulation and bioaugmentation. 

Being a pilot study, the injection wells were installed over a d

 remediation plan, more injection wells can be installed between MW-8 and MW-7. 

Nutrients and KB-1 can be injected through these injection wells in sufficient amounts. One 

additional injection well may be sufficient between MW-8 and MW-11 since the concentration 

of CEs is very low at MW-11, in both the deep and shallow zone.  

The optimal amount of nutrients to be added and the concentration and the frequency 

injection can be estimated based on the present study.  The optimal am

ay vary based on the goal of the remediation. If the target is to reach MCLs at the 

remediation zone the amount of nutrients and the injection frequency must be increased. If th

nutrients and KB-1 cultures are injected over a wider distance in the North-South direction a

also over a gre

and MCLs can most likely be achieved. 

Based on the vertical distribution of PCE, the screening of the injection wells can be 

varied, such that more nutrients are injected at a location where PCE concentration is higher

Monitoring wells can be installed 5 ft to the North and 5 ft to the South of MW-9 or MW

10 to determine if biofouling resulted in a change of the groundwater flow path. These later

MWs also aid in determining the lateral distribution of tracer and nutrients and to delineate the 

width of the remediation zone. 

The dispersion coefficient, groundwater velocity and hydraulic conductivity estimated 

from the experimental data can be incorporated into the advectio
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