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Abstract

This study is conducted because of the lack of an existing theory to accurately predict the
diagonal tension cracking in shallow reinforced concrete beams. A rational approach is followed
to numerically derive the shear stress profile across the depth of the beam in cracked beams
based on the smeared crack approach. Furthermore, the determined shear stress distribution
coupled with the normal axial stress distribution are used to predict the principal stress variation
across the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress

cracking criterion, the likely diagonal tension cracks along their orientation profile are predicted.

Furthermore, this study is conducted to provide a mechanics-based understanding of the shear
stress distribution in cracked reinforced concrete. This approach utilizes the transversal shear
differential equation to evaluate the shear stress at any given depth by the variation of the axial
stress distribution within an infinitesimal beam segment at that depth. In addition, this study
presents a more accurate representation of the change in the strain profile parameters with
respect to the sectional applied moment. Furthermore, the dowel action effect is derived to

illustrate its significance on the shear stress distribution at various stages of loading.
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Notations

A, = Tensile steel area mm” (in?)

A = Compressive steel area mm” (in%)

A.. = The integral of the shear stress profile due to the compressive concrete contribution N/mm
(k/in)

A.s = The integral of the shear stress profile due to the compressive steel contribution N/mm
(k/in)

A1 = The integral of the shear stress profile due to the tensile concrete contribution (part 1)
N/mm (k/in)

A;c» = The integral of the shear stress profile due to the tensile concrete contribution (part 2)
N/mm (k/in)

A;s = The integral of the shear stress profile due to the tensile concrete contribution N/mm (k/in)
¢ = Compression depth mm (in)

C. = Concrete compressive force KN (kips)

C, = Steel compressive force KN (kips)

d = Tension steel depth from the top surface mm? (in%)

d' = Compression steel depth from the top surface mm? (in)

d,s = Depth (measured from the top surface) at which the concrete tensile model ends mm? (in?)
E . = Concrete modulus of elasticity MPa (ksi)

E ¢ = Steel modulus of elasticity MPa (ksi)

E; = Steel hardening slope after yielding MPa (ksi)

f¢ = Concrete compressive stress MPa (ksi)

f = Concrete maximum compressive stress MPa (ksi)

f+ = Concrete tensile stress MPa (ksi)

fr = Concrete cracking stress MPa (ksi)

[y = Steel yielding stress MPa (ksi)

M .. = Moment due to the compressive concrete KN.m (K.in)

M., = Moment due to the compressive steel KN.m (K.in)

M,.1 = Moment due to the tensile concrete (part one) KN.m (K.in)

M,., = Moment due to the tensile concrete (part two) KN.m (K.in)
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M,, = Moment due to the tensile steel

T .1 = Concrete tensile force induced due to the first part of the concrete tensile profile KN
(kips)

T., = Concrete tensile force induced due to the second part of the concrete tensile profile KN
(kips)

T ;= Steel tensile force KN (kips)

¥ = The centroid of the compressive concrete stress profile to the compression depth ratio
KN.m (K.in)

&; = Concrete tensile strain

&4, = Concrete tensile strain corresponding to the end of the concrete tensile constitutive model
& = Concrete cracking strain

g, = Steel yielding strain

&, = Concrete compressive strain

&, = Concrete compressive strain corresponding to concrete maximum compressive stress
& = Concrete compressive strain at the maximum compressive fiber

01 = Major principal tensile stress MPa (ksi)

0, = Minor principal compressive stress MPa (ksi)

01; = Major principal tensile stress limit MPa (ksi)

0, = Minor principal compressive stress limit MPa (ksi)

Txy = Transversal shear MPa (ksi)

Ty, = Longitudinal shear MPa (ksi)

T.. = Shear stress due to the compressive concrete contribution MPa (ksi)

T.s = Shear stress due to the compressive steel contribution MPa (ksi)

T:c1 = Shear stress due to the tensile concrete contribution (part 1) MPa (ksi)

T:c2 = Shear stress due to the tensile concrete contribution (part 2) MPa (ksi)

T;s = Shear stress due to the tensile steel contribution MPa (ksi)

@ = Cross section curvature 1/mm (1/in)
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Chapter 1 - Introduction

1.1 Background

Although many studies have been conducted to fully understand the shear behavior of reinforced
concrete beams, the consensus regarding one explanation is missing. There is some sort of
agreement regarding the parameters that affect the shear behavior, yet there is no agreement
regarding the mechanics of shear behavior. Arch action and beam action are two main
explanations which were introduced to represent the shear behavior in cracked reinforced
concrete members. However, many researchers suggested a combination of these two
approaches. These actions suggest three main mechanisms to transmit shear across the cracked
beams without shear reinforcement: the compression zone, aggregate interlock between cracks
and dowel action of the longitudinal steel reinforcement. The main parameters that influence the
beam behavior includes concrete behavior in tension and compression, beam size effect,
aggregate size and shear span to depth ratio.

Among the first researchers to study the behavior of reinforced concrete beams under shear loads
is Morsch (1903). He was the first to point out that the shear failure is nothing but a principal
tensile failure. Also, he suggested the similarity between web reinforcement behavior and the
diagonal members in a truss. However, Talbot (1908-1909), after conducting a series of tests,
noted that the stress calculated based on truss analogy is higher than the experimentally
measured stresses, yet, he suggested a design modification to limit shear load carried by web
reinforcement to two-thirds of the beam capacity. In addition, Talbot’s tests showed that beam
shear capacity is affected by the concrete characteristics as well as number of longitudinal bars
and shear span to effective depth ratio. These findings were confirmed by Richart and Larson

(1928). They also stated that stirrup stresses were small until shear cracks are developed and the



point of intersection between the crack and web reinforcement produced the highest stress in the
reinforcement. Hognestad (1951) described the concept of stress redistribution upon the
commencement of the diagonal tensile cracks in restrained beams, where the original stress
distribution is no longer valid around the cracked zone. After two years, Zwoyer (1954) observed
the similarity between the diagonal tensile cracks and the flexural compression failure (concrete
crushing). Using this observation, Moody et al. (1954) described the failure of reinforced
concrete beams to compose of two stages; the first stage includes diagonal tension cracking
followed by crushing as a second stage. However, the described failure mode was found to be
controlled by (M/Vd) ratio. With smaller ratios, the described mode of failure occurs. Larger

(M/Vd) ratio resulted in almost pure flexural failure.

1.2 Objectives

In this study, the authors attempt to present a mechanics based approach to illustrate the behavior
of shallow reinforced concrete beams under concentrated load, taking into account the different
stages of loading; pre-cracking, post cracking and post yielding. Shear stresses are evaluated
based on the shear differential equation and the smeared crack approach. These shear stresses
coupled with the normal stress distribution are used to predict the principal stress variation across
the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress
cracking criterion like that of Kupfer and Gerstle (1973), the likely diagonal tension cracks are

predicted.
1.3 Scope of Dissertation

The research work in this dissertation includes an introduction to the shear behavior in reinforced

concrete beams in chapter one, and then followed by six main chapters. The second chapter



discusses the development of a concrete constitutive tensile model to represent the tensile
behavior of concrete. The later step is a critical part in predicting shear cracks in shallow
reinforced concrete bean, which is presented in chapter three. An innovative nonlinear numerical
approach is derived and applied in this chapter. Chapter four treats the analytical formulation of
the shear stress distribution in cracked reinforced concrete flexural members. While chapter five
points out the similarity in behavior and nature of the shear-flexural cracking to the concrete
crushing failure mode. Chapter six presents the experimental data of a tested beam as well as
series of comparisons between the experimental results and the proposed analysis. The study

conclusions and recommendation are summarized in chapter seven,
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Chapter 2 - Calibrating a New Constitutive Tension Model to
Extract a Simplified Nonlinear Sectional Analysis of Reinforced

Concrete Beams

A nonlinear analysis for the structural members is vital to understand the behavior and the
response of reinforced concrete members. Although most design procedures concentrate on the
ultimate stage of response towards the end of the post-yielding zone as the decisive design
criterion, the structural members usually function at the service load levels within the post-
cracking zone. Therefore, cracking is a critical aspect of concrete behavior that affects the
overall response of reinforced concrete beams. The initiation and the propagation of the cracks
are affected directly by the tension and shear stresses in the beam. In flexural beams, the tensile
stresses dominate the crack onset and its growth. Cracks in reinforced concrete flexural beams
create non-cracked regions in between cracked sections. In order to apply a consistent analysis
strategy, the smeared crack approach averages the behavior of these different cracked sections
and uncracked regions to generate an accurate global response of the entire beam. This study
presents a numerical constitutive tensile model that captures the complete tensile response of
the reinforced concrete flexural member, in terms of averaged/smeared crack response. As a
second step, this model was examined against a large pool of experimental data to validate its
accuracy. Overall, the main objective of this study is to develop a representative constitutive
tensile model for reinforced concrete flexural members and validate its accuracy against
experimental results. The full nonlinear sectional analysis is analytically-realized, based on the
assumed trilinear moment-curvature response and the assumed trilinear moment-extreme fiber

compressive strain response. This is considered as the secondary outcome of the present study.



2.1 Introduction

The full tensile response of reinforced concrete includes but not limited to plain concrete
softening, reinforced concrete stiffening and shrinkage effects. Other parameters might be
aggregate size, concrete-steel bond slip mechanism, creep effect and cyclic loading. However,
most of the researchers consider the tension stiffening to be the main parameter when describing
the reinforced concrete tensile behavior beyond the cracking strain.

Plain concrete tension softening was first presented by Hillerborg et al. (1976) who introduced
the softening phenomenon through discrete crack model based on fracture mechanics. A series
of analytical approaches were introduced after that based on the smeared crack approach, which
is more applicable than the discrete crack approach. In addition, a number of experimental
studies were performed for concrete in tensile uniaxial tests.

On the other hand, many researchers proposed empirical functions to estimate the tension
stiffening effects. Leonhardt (1977) presented a model for computing the mean strains. Between
two cracked sections, the average steel strain over the entire length (egy), is less than the bare
bar strain (&) which is the strain developed by the steel alone after cracking. The difference
between (g5, and (esm) is referred to as “tension stiffening”. Several structural codes followed
Leonhardt approach with different parameters like British standards BS 8110-1997 and
Eurocode2 (2004).

The second approach is to estimate the tension stiffening effects by assuming a stress-strain
profile beyond the cracking point. This profile includes numerical parameters calibrated against
the global experimental response of beams or tensile specimens. Scanlon and Murray (1974)
were the first to model the tension stiffening in terms of the degraded concrete modulus. Vebo

and Ghali (1977) proposed a linear and a bilinear descending curve in their analysis of concrete



slabs. Nayal and Rasheed (2006) adopted a bilinear descending function with a sudden drop of
20% of the cracking strength right at the cracking strain, see Figure 2-1. It is important to note
here that all of the earlier tension stiffening models completely degrade the concrete
contribution at a multiple of the cracking strain while this parameter seems to be related to the

yielding strain of steel.
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Figure 2-1 Nayal and Rasheed (2006) proposed tension stiffening model

In this study, the second approach to the modeling of the tension stiffening effects is adopted to
develop a newly calibrated model composed of a single mathematical expression. The
controlling parameters of a natural logarithmic function selected are calibrated based on close
agreements between the nonlinear load-deflection response, especially in the post cracking
loading range, and the experimental load-deflection response of a set of tested beams. The
resulting analysis procedure lends itself to analytical formulation of the entire nonlinear

sectional response as presented in this study.



2.2 Flexural Formulation

2.2.1 Constitutive Models Used

The stress-strain relationships for the concrete and the reinforcement steel are assumed to be
independent of each other. The axial stress in steel would be only a result of the axial strain in
the steel. Also, shear stresses in the steel bars on a plane perpendicular to their longitudinal axis
are assumed to be negligible. The steel axial stress-axial strain relationship is idealized by a

bilinear function, which is the same intension and compression, see Figure 2-2.

[s = Es& Sfy (2.1)
fi = fy + Ei(es — &), for f; > f, (2.2)

Where (f;) is the steel stress corresponding to the axial stress (es), (Es) is the modulus of
elasticity of steel, (fy) is the yielding strength in steel. The steel is assumed to start hardening
once exceeding the yielding strain (fy) according to equation (2.2).

(E’y) is the slope of steel hardening line after yielding. It is determined based on an equal area
under the strain hardening region in the actual experimental curve and the analytical model.
Table 2-1 shows the relationship between the estimated (E’s) and the corresponding (fy) as
measured by Rasheed (1990).

Table 2-1 The Relationship between the estimated (E’s) and the corresponding (fy)

£, (ksi) E’, /E;

40-45 0.3-0.7%
45-50 0.7-1.2%
50-63 1.2-2.5%
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Figure 2-2 Steel stress-strain curve

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, equation

(2.3), for compressive stresses (f;), see Figure 2-3.

fo=f - (%)) 23)
A linear relationship with a slope equal to the concrete modulus of elasticity (E.) up to cracking
strain (&) in tension is assumed. This linear relationship is then followed by a descending curve
as a function of (&) and the steel yielding strain (ey), which will be further developed in the
study, see Figure 2-4.

The concrete tensile rupture strength (f;) is taken as a lower bound value as given in ACI 318-

14.

fr=0G-75Jf (2.4)
The rupture strength (f;) for light weight concrete is simply reduced by 25%. The Factor 5 is
taken to account for sections with low compressive steel area to the tensile steel area ratio,

which allows for more shrinkage and more residual tensile stresses.
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Figure 2-3 Concrete compressive stress-strain curve (Hognestad's Parabola)

Concrete tensile stresses
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Figure 2-4 Concrete tensile stress-strain curve

2.2.2 Analysis Assumptions

In this study, the following assumptions were made

10



1. Plane sections before bending remain plane after bending (i.e. linear strain profile across
the section depth is assumed before and after cracking).

2. Perfect bond exists between steel bars and the surrounding concrete.

3. Plane sections after bending are assumed to be perpendicular to the mid surface (i.e. shear
deformations are negligible).

4. Smeared crack approach (i.e. averaged tensile strains are continuous in concrete in tension).

5. Dowel action effect is neglected.

2.2.3 Flexural Analysis
2.2.3.1 Forces

Compressive Forces

Compressive concrete contribution

By integrating the Hognestad’s profile over the area from the neutral axis up to the maximum
compressive concrete fiber strain, the concrete compressive force (C.) is determined for the

section based on the following equations
C
C. = fo fe-b dy (2.5)

l c?
C, = fcb.g(c2 & (2.6)

!
3 g

Compressive Steel Contribution

The compressive steel force (C;) is a direct linear relationship with the corresponding steel
strain (&) in addition to subtracting the contribution of the concrete in compression occupied
by the compression steel bars. This relationship was determined based on the assumption of

the bilinear response of steel bars.
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behavior for the steel analysis.

Co = AL - AU - (£)) @7

€c/!

Where f is computed from equations (2.1)-(2.2) by substituting €’ for ;.

Tensile Forces

Tensile Concrete contribution

The concrete tensile contribution is divided into two main profiles, Figure 2-4. The first profile
is a linear relationship up to the cracking strain (g;) with a slope equal to the concrete modulus

of elasticity (E.). This profile leads to a tensile force (T.1) equals to

d
Tey = Jo fe-bdy (2.8)
_ bff
1= 259 (2.9)

The second profile is a descending curve, which mainly contributes to the total concrete tensile
force. This profile is a result of the concrete softening, concrete stiffening due to the steel bond
as well as the residual stresses due to shrinkage effect. The tensile force due to this profile (T.,)
is calibrated against global experimental response to be a function of the concrete cracking
strength and the steel yielding strain. The tensile constitutive model and its calibration against
experimental results are presented in section 3 of this study. The equation for (T¢;) is presented

there.

Tensile steel Contribution
The tensile steel force (Ts) follows the same bilinear behavior based on equations (2.1)-(2.2)
Ty = AsEses — Asfer(€5) ,when f < fy (2.10)

T = As(fy + Eg(g5 — gy)) — Agfer(€5), when f; > fy (2.11)

12



Where f,.;(g5) is taken from the uncracked or post-cracked parts of the concrete tensile

constitutive functions. Note thatf.;(€;) = 0, when g5 = g,.

2.2.3.2 Moments
Compressive concrete contribution
The point of application of concrete compressive force is measured from the extreme

compressive fiber (y.c) based on the centroid location of the area under the Hognestad’s

parabola.
g 1 Ecf
fosc-fc-dsc 3 12 L
= 1 — =0 € = € < 2.12
y Ecf fOCffc-dsc 1_5 ( )
M. = (c—y.c) *C, (2.13)

Where (c) is the depth of the compression zone to the position of neutral axis and (y) is the ratio
of the centroid depth to the neutral axis depth, both measured from the top compression fiber.
Compressive Steel Contribution
The compression steel moment is calculated according to the following equation

M. = Cs(c—d") (2.14)
Tensile Concrete contribution

(M) is the moment induced due to the concrete contribution up to the cracking point. While

(M) is the moment induced due to the descending constitutive tensile model.

2 fr

Moy = TCl'EEC.(p

(2.15)

The equation for (M) is presented in section 3 of this study.
Tensile steel Contribution
The contribution of the moment induced due to the steel reinforcement at any stage of loading is

determined as follows

13



M =Ts(d —©) (2.16)
Where, the tension force of steel is defined according to equations (2.10)-(2.11).
2.2.4 Numerical Moment-Curvature Calculations
A numerical procedure was followed to generate the moment-curvature curve. In this procedure,
the maximum compressive fiber strain value (€.r) was gradually increased until reaching the
concrete crushing strain of (0.003). In order to accurately calculate the strain profile under each
step value of €.y, the correct depth of the compression zone (¢) was necessary to define the strain
profile and the corresponding stress profile and forces/moments. The sectional force equilibrium
equation was then applied to validate the depth of the compression zone (c) by iterating for the
correct depth of compression zone that makes the summation of forces equal to zero,

equilibrium is maintained, see Figure 2-5.

=" (2.17)
es=@(d—oc) (2.18)
&’ =p(c—d') (2.19)
gsr = @(h = ¢) (2.20)

The summation of moments due to concrete and steel contributions then yielded the total
applied moment of the section corresponding to the curvature in equation (2.17), and the
numerical moment-curvature curve was then generated for the entire range of extreme
compressive fiber strains.

2.2.5 Numerical Load-Deflection Calculations

The numerical nonlinear load—deflection solution of the beams is formulated using the moment-

area integration. Half the span of the beam was divided into a number of segments and the
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flexural rigidity was calculated at the middle of each segment. The mid-span deflection for
symmetric four-point bending loading protocol was then calculated by performing numerical
integration of the moment of curvature along the half span of the beam. The numerical
integration was expressed as a summation of the analytical contribution of each segment as

follow

3 3 LY (1)
A at midspan = fOL/Z x.¢(x).dx = gs[zéﬁ (xl+°'53xl‘°'5)] + ;’Zi G 2( ) (2.21)

Where, (N;) is the number of segments along the shear span (L,), (P) is the total load applied on
the beam, (Xj:+05) and (xi.0.5) are the distances from the support to the end and the beginning of
each segment, respectively, and Ely; is the secant or effective flexural rigidity of the segment

mid-section defined as

M;

Elsi = (Di

(2.22)

Figure 2-5 presents the flow chart of the progressive moment-curvature calculation procedure
along with the integrated load-deflection point corresponsing to each maximum moment-
curvature value. Figure 2-5 is limited to the post-cracking region up to steel yielding. However,

the same procedure may be followed to generate the response of the post-yielding region.
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2.3 Constitutive tension model

The proposed model in this study is based on cycles of numerical analysis and material model
adjustments until convergence to the experimental response. A descending model was critical to
represent the gradual loss of stiffness with the propagation of the beam cracks. This model
represents the contribution of concrete in tension between two successive cracked sections. This
approach is known as the smeared crack approach, which simulates the global response of the
element. Hence, this response could be understood as an averaged behavior for all the beam
sections. Therefore, the tension model may be a function of the structural element and the
loading patterns considered. A uniaxial plain concrete element would show a different behavior
than a reinforced concrete flexural beam due to the steel-concrete bond in the latter. Similarly, a
reinforced concrete shear beam with a smaller shear span to beam depth ratio would act
differently than a flexural beam due to the effect of the concrete shear deformation.

The presented constitutive tension model for reinforced concrete flexural beams is a summation
of various reinforced concrete features. Plain concrete softening and steel tension stiffening are
considered the main phenomena to develop the constitutive model. Hillerborg et al. (1976) were
the first to describe tension softening, which occurs due to the development of concrete flexural
cracks. The fracture energy, transformed from the strain energy, advances existing major cracks
and initiates minor micro cracks, which weaken the concrete at relatively high rates. Steel-
Reinforced concrete tension stiffening is the second important characteristic that represents the
local bond-slip between the concrete and the steel bars. This feature causes the tensile stresses
in the concrete to gradually reduce in between two successive primary cracks. Tension softening
and Tension stiffening are usually referred to as the main parameters responsible of post-

cracked concrete tensile behavior. However, shrinkage and aggregate size also participates in
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altering the concrete tensile behavior. Shrinkage builds up residual stresses in the concrete while
hardening. This results in lowering the tensile strength and tension stiffening effects. On the
other hand, the aggregate size/shape effects are mainly observed when shear and tensile stresses
are combined. Therefore, a numerical constitutive tension model based on calibrating the global
experimental response is important to capture all these characteristics in one model.

The proposed constitutive concrete tensile model relates the tensile strain (€;) with the tensile
concrete stresses (f;) as a function of the material parameters calibrated based on experiments
for flexural reinforced concrete beams. The model is presented as a function of concrete
cracking and steel yielding parameters, Equation 2.23. Stress and strain constants in the
equation were extracted by actively matching the analysis to a large pool of four points bending

tests on flexural beams.

J 11 1n (2) (2.23)

= 14
0.5fr In( 8y) Ecr
cr

€
This proposed descending function on the domain (g < €; < 1.4¢,) shows a sudden drop to
(0.5 f;) at the cracking strain (&) upon strain to fracture energy conversion and continues to
descend till zero when the tensile strain reaches (1.4 €,), see Figure 2-6. The sudden drop in
stress at cracking is a function of the tension softening effect while the exhaustion of the tension
stiffening effect is expected to be related steel yielding.

The axial force due to the proposed constitutive tensile model (T.,) is the integral of the given

stress profile over the distance from the cracking depth d., = Ef’;p to the end of the model at
1'4% or the full tensile depth of the section, Equation (2.24).

d
Te,= Jy _sr fe-bdy (2.24)

Eco
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Where d is the end of the proposed model at 1'4% or the full tensile depth of the section (h — ¢).

_ (¢ _ 0.5/ Et
Ter = Lm0 ~ gy in (&) dy (2.25)
_05f;
Let, k = — ) (2.26)
d
T, = b((0.5f, + kin(e) + Dy — kyln(¢) — kyln(y)) d, = fr (2.27)
Eco

The moment induced due to the proposed constitutive tensile model (M) is calculated as follow

d
MtCZ == fd =f_Tft'b'y' dy (2.28)
TEq@
yZ k yZ yZ dA
Mye, = (5 (05f, + kin(e) +5) — k(@) —kZmO) |, _ & (2.29)
cr EC(P
-------- fr
g
o
e
¢ 0.5f,
g
% |
5 [
5 |
(&) [}
[}
[}
Ecr 1.4Ey
Concrete tensile strain

Figure 2-6 Suggested concrete constitutive tensile model
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2.4 Results

The reinforced concrete beam tests collected in this study cover a big range of geometrical and
material parameters. Normal weight concrete and lightweight concrete were covered in the
database, the maximum compressive concrete strength range is 27.5-83 MPa (4-12 ksi). The
steel yielding strength range is 344.75-551.6 MPa (50-80 ksi). Singly and doubly reinforced
sections with different ratios are included for representative comparisons. A wide range of steel

ratios is examined to confirm the applicability of the model, see tables 2-2 and 2-3.

Table 2-2 The geometrical parameters for the tested beams

Number Reference h(mm) b(mm) d(mm) cc(mm) d'(mm) L/2(mm) La(mm)
1 Tavares et al. 2008 299.72 149.86 | 269.24 | 29.97 27.94 1447.80 939.80

2 Arduini et al. 1997 398.78 299.72 349.76 25.40 49.78 1249.98 1100.07
3 Spadea et al. 1998 299.97 | 139.95 | 262.99 | 37.08 36.83 2400.00 1800.10
4 Ahmad and Baker 1991 LR8-22 304.80 152.40 258.83 45.97 0.00 1727.20 1498.60
5 Ahmad and Baker 1991 LR8-51 304.80 152.40 258.83 45.97 0.00 1727.20 1498.60
6 Ahmad and Baker 1991 LR11-24 | 304.80 | 152.40 | 257.30 | 47.50 0.00 1727.20 1498.60
7 Ahmad and Baker 1991 LR11-54 304.80 152.40 228.60 76.20 0.00 1727.20 1498.60
8 Ahmad and Batts 1991 LJ 8-44 304.80 152.40 225.55 79.25 53.34 1727.20 1498.60
9 Ahmad and Batts 1991 LJ 11-22 304.80 | 152.40 | 250.95 | 53.85 50.80 1727.20 1498.60
10 Ahmad and Batts 1991 LJ 11-47 304.80 152.40 222.25 82.55 53.34 1727.20 1498.60

20




Table 2-3 The material parameters for the tested beams

Number f'. (MPa) f,(MPa) Es(MPa) E.(MPa) f.(MPa) € Ps ps'
1 44.0 539.9 200,000 217231 33 0.00015 0.0061 0.0016
2 30.0 339.9 200,000 25994.2 1.9 0.00007 0.0037 0.0025
3 30.0 434.4 200,000 25921.1 2.3 0.00009 0.0109 0.0109
4 59.0 413.7 200,000 25925.2 2.4 0.00008 0.0101 0
5 60.5 413.7 200,000 25925.2 2.4 0.00008 0.0226 0
6 79.7 413.7 200,000 30407.0 2.8 0.00009 0.0145 0
7 79.9 413.7 200,000 32889.2 2.8 0.00008 0.0326 0
8 57.6 413.7 200,000 29705.0 2.3 0.00008 0.0233 0.0116
9 80.9 413.7 200,000 35201.5 2.8 0.00008 0.0148 0.0067
10 76.3 413.7 200,000 34166.8 2.7 0.00008 0.0335 0.0168

The common factors between these beams are 1) they are all flexural beams, 2) they were

tested in four points bending to match the goal of this study and 3) they have comparable

section height and width while varying the tensile steel area. Each beam was analyzed using the

proposed model, then the load-deflection graph was generated and compared against the actual

experimental response of the beam, (e.g. see Figure 2-7). In addition, the moment-curvature

graph and the moment-maximum compressive strain graph were developed to confirm the

accuracy of the trilinear moment-curvature approximated behavior, (e.g. see Figures 2-8 and2-

9).
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Figure 2-7 Arduini et al. (1997), Tavares et al. (2008) and Spadea et. Al. (1998) load vs.

midspan deflection comparisons
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Figure 2-8 Arduini et al. (1997), Tavares et al. (2008) and Spadea et. Al. (1998) moment

vs. curvature analytical graphs
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Figure 2-9 Arduini et al. (1997), Tavares et al. (2008) and Spadea et. Al. (1998) moment

vs. maximum compressive strain analytical graphs
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The proposed analysis was performed for Tavares et al.
Spadea et al. (1998). The geometric and material parameters of these beams are listed in Table
2-2 and 2-3. Excellent agreements were observed against Tavares et al. (2008), Arduini et al.
(1997) and Spadea et. Al. (1998) experimental results, see Figure 2-7. The trilinear analysis for

Moment-curvature behavior and Moment-Maximum compressive strain behavior was

confirmed for the three experimental beams.
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Figure 2-10 Ahmad and Baker (1991) load vs.
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Figure 2-11 Ahmad and Baker (1991) load vs. midspan deflection comparisons
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Figure 2-12 Ahmad and Baker (1991) moment vs. curvature analytical graphs
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Figure 2-13 Ahmad and Baker (1991) moment vs. maximum compressive strain analytical

graphs

The four beams tested by Ahmed and Baker (1991) were analyzed here. All four beams have the
same cross section 304.8 mm*152.4mm (12 inx6 in) and the same clear span of 3.45 m (136 in).
The beams were singly reinforced with (ps=.0101, .0226, .0145, .0326) and high strength light
weight concrete of 59.3, 59.3, 80, 80 MPa (f°.=8.6, 8.6, 11.6, 11.6) ksi respectively for LR8-22,
LR8-51, LR11-24 and LR11-54. Excellent matches were observed against the experimental
analysis for all four beams, Figures 2-10 and 2-11. For all four beams the Trilinear behavior for
the precracking, post cracking and post yielding zones was fully confirmed for the moment-

curvature and moment-maximum compressive strain, see Figures 2-12 and 2-13.

26



Midspan deflection (mm)

0 20 40 60
35 1 1 1
30 B - 140
- 120
25
_ - 100
w20 ——
= —
g — - - 80
a 15 A - 60
5 —, - 20
0 0
0 1 2 3

Midspan deflection (in.)

P (KN)

Analytical LJ11-22

= = = Experimental LJ11-22

Analytical LJ11-47

Analytical L8-44

Experimental LI8-44

Experimental J11-47

Figure 2-14 Ahmad and Batts (1991) load vs. midspan deflection comparisons
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Figure 2-16 Ahmad and Batts (1991) moment vs. maximum compressive strain analytical

graphs

The last three analyzed beams were tested by Ahmad and Batts (1991). All three beams have the
same cross section 304.8 mm*152.4mm (12in*6in) and the same clear span of 136 in. The
tested beams were doubly reinforced, see table 2-3 .Light weight high strength concrete was
used for all three beams. Excellent matches were obtained against the experimental results for
all three beams at the pre-cracking, post-cracking and post-yielding zones. LJ11-22 showed a
sudden change of stiffness in the post cracking zone which generally indicates the development
of shear cracks. For all three beams the trilinear behavior for the pre-cracking, post-cracking
and post-yielding zones was fully confirmed for the moment-curvature and moment-maximum

compressive strain.

2.4.1 Simplified Non-linear Sectional and Beam Analysis
All previous comparisons showed a good agreement with the experimental data in terms of the

global response of the beam load vs mid-span deflection. In this section, a detailed comparison
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is presented against Decker (2007) and Almusallam (1997) experimental work. Decker reported
the global and sectional responses in his work. The sectional response was obtained by locating
strain gauges at the tensile steel level and the top surface of the beam, which allowed for a full
strain profile development. Unfortunately, Decker (2007) reported the failure of the strain
gauges in the post-yielding zone. The beams were simply supported and were tested in four-
points bending. The supports were placed 3 inches from the edge of the beam, providing a clear
span of 4.72 m (15.5 ft). Tables 2-4 and 2-5 show the geometrical and material properties of the
beam. Similarily, Almusallam (1997) reported the experimental load-deflection and the
experimental moment-curvature curves. Tables 2-6 and 2-7 show the geometrical and material
properties of the analyzed beams.

Table 2-4 The geometrical parameters for Decker (2007) beam

h (mm) b(mm) | d(mm) | cc(mm) | d'(mm)| L/2(mm) | L,(mm)

304.8 152.4 | 261.87 25.4 39.62 2362.2 1752.6

Table 2-5 The material parameters for Decker (2007) beam

f. (MPa) | f(MPa) | Ey(MPa) | E.(MPa) n f(MPa) €' Ps ps'

34.5 475.8 200,000 | 27794.4 | 7.20 3.65 0.00212 | 0.0100 | 0.0036

Table 2-6 The geometrical parameters for Almusallam (1997) beam

h (mm) b(mm) | d(mm) cc(mm) | d'(mm) | L/2(mm) | La(mm)

209.80 199.90 | 159.99 25.40 43.18 1350.01 1249.68

Table 2-7 The material parameters for Almusallam (1997) beam

fio (ksi) | fy(ksi) | Es(ksi) E.(ksi) n fi(kst) e'c Ps ps'
4.54 80.19 | 29000.00 | 3840.63 | 7.55| 0337 | 0.002 | 0.0138 | 0.0009
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The analysis, of these two extra beams, was performed as described to obtain the load-mid span
deflection graphs and the load-tensile steel strain curve as well as the moment-curvature and the
moment-maximum compressive strain curves. This comparison was necessary to illustrate that
the presented constitutive model matches not only the global response of the beam but also it

matches the sectional local response.
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Figure 2-17 Decker (2007) load vs. midspan deflection comparisons
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Figure 2-21 Decker (2007) moment vs. maximum compressive strain analytical graphs

Decker (2007) tested a full-scale rectangular beam with a cross section of 304.8 mm*152.4mm
(12in*61n) and a clear span of 4.72 m (186 in). A good agreement between the experimental and

the analytical Load-Deflection is shown in Figure 2-17. This agreement confirms the accuracy
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of the proposed model against the global behavior of the beam. However, it is important to
validate the constitutive tensile model against the local sectional response. Figure 2-18 and 2-19
show Load vs. Maximum compressive strain and load vs. tensile steel strain. Excellent
agreements between the analytical and the experimental results were observed for the two
comparisons. Furthermore, Figures 2-20 and 2-21 confirm the trilinear behavior of the Moment-

Curvature and Moment-Maximum compressive strain graphs.
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Figure 2-22 Almusallam (1997) load vs. midspan deflection comparisons
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Almusallam (1997) tested the second beam in four point bending. This beam was also analyzed
by the present procedure. The beam section was 210.8 mm* 200.7 mm (8.3 in*7.9 in) with a
clear span of 2.7 m (106.4 in). It was doubly reinforced with (ps=.0144, ps’=.0009). Figure 2-22
shows the full analytical and experimental response. An excellent match was obtained using the
proposed constitutive tension model for the experimental vs. analytical load-deflection data and
moment-curvature data. Also the Trilinear behavior of the pre-cracking, post-cracking and post-
yielding zones was fully confirmed for the moment-curvature and moment-maximum

compressive strain response against the experimental points, see Figures 2-23 and 2-24.

2.5 Conclusions

This study was conducted to develop a tensile constitutive model for nonlinear analysis of
flexural concrete beams reinforced with steel bars. An incremental-iterative numerical analysis
was followed to study the nonlinear flexural beam behavior and generate the analytical graphs.
The proposed tensile constitutive model has a sudden drop at cracking strain, followed by a
descending curve up to zero at ( 1.4€y). Series of comparisons were performed to validate the
accuracy of the adopted model against the global experimental behavior for a large pool of
beams. Two extra comparisons were conducted to check the applicability of the model against
the sectional response of different beams. As a result of these comparisons, the model showed
an excellent agreement with the validating experiments for the sectional and the global
responses. The second main goal of this study was to confirm the trilinear behavior for moment
versus curvature and moment versus maximum compressive strain graphs. Through all the

comparisons in this study, and by using the proposed model, the trilinear behavior was observed
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in all the sectional and the global responses. Even though the literature has several tension

stiffening models, the authors believe that this new model is more objective since

1. The final degradation of cracked concrete is related to the yielding strain in steel rather than
multiples of the cracking strain of the concrete.

2. The loss of energy due to cracking fracture is captured in a more pronounced way than
earlier model.

3. The current model furnishes a single mathematical expression making it easier to implement

in analytical formulations.
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Chapter 3 - Shear Crack Prediction in Shallow RC Beams Using a

Nonlinear Approach

This study is conducted because of the lack of an existing theory to accurately predict the
diagonal tension cracking in shallow reinforced concrete beams. A rational approach is followed
to numerically derive the shear stress profile across the depth of the beam in cracked beams
based on the smeared crack approach. Furthermore, the determined shear stress distribution
coupled with the normal axial stress distribution are used to predict the principal stress variation
across the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress

cracking criterion, the likely diagonal tension cracks along their orientation profile are predicted.
3.1 Introduction

Although many studies have been conducted to fully understand the shear behavior of reinforced
concrete beams, the consensus regarding one explanation is missing. There is some sort of
agreement regarding the parameters that affect the shear behavior, yet there is no agreement
regarding the mechanics of shear behavior. Arch action and beam action are two main
explanations which were introduced to represent the shear behavior in cracked reinforced
concrete members. However, many researchers suggested a combination of these two
approaches. These actions suggest three main mechanisms to transmit shear across the cracked
beams without shear reinforcement the compression zone, aggregate interlock between cracks
and dowel action of the longitudinal steel reinforcement. The main parameters that influence the
beam behavior includes concrete behavior in tension and compression, beam size effect,
aggregate size and shear span to depth ratio.

Among the first researchers to study the behavior of reinforced concrete beams under shear loads

is Morsch (1903). He was the first to point out that the shear failure is nothing but a principal
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tensile failure. Also, he suggested the similarity between web reinforcement behavior and the
diagonal members in a truss. However, Talbot (1908-1909), after conducting a series of tests,
noted that the stress calculated based on truss analogy is higher than the experimentally
measured stresses, yet, he suggested a design modification to limit shear load carried by web
reinforcement to two-thirds of the beam capacity. In addition, Talbot’s tests showed that beam
shear capacity is affected by the concrete characteristics as well as number of longitudinal bars
and shear span to effective depth ratio. These findings were confirmed by Richart and Larson
(1928). They also stated that stirrup stresses were small until shear cracks are developed and the
point of intersection between the crack and web reinforcement produced the highest stress in the
reinforcement. Hognestad (1951) described the concept of stress redistribution upon the
commencement of the diagonal tensile cracks in restrained beams, where the original stress
distribution is no longer valid around the cracked zone. After two years, Zwoyer (1954) observed
the similarity between the diagonal tensile cracks and the flexural compression failure (concrete
crushing). Using this observation, Moody et al. (1954) described the failure of reinforced
concrete beams to compose of two stages; the first stage includes diagonal tension cracking
followed by crushing as a second stage. However, the described failure mode was found to be
controlled by (M/Vd) ratio. With smaller ratios, the described mode of failure occurs. Larger
(M/Vd) ratio resulted in almost pure flexural failure.

In this study, the authors attempt to present a mechanics based approach to illustrate the behavior
of shallow reinforced concrete beams under concentrated load, taking into account the different
stages of loading; pre-cracking, post cracking and post yielding. Shear stresses are evaluated
based on the shear differential equation and the smeared crack approach. These shear stresses

coupled with the normal stress distribution are used to predict the principal stress variation across
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the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress
cracking criterion like that of Kupfer and Gerstle (1973), the likely diagonal tension cracks are

predicted.
3.2 Nonlinear sectional Analysis

The stress-strain relationships for the concrete and the reinforcement steel are assumed to be
independent of each other. The axial stress in steel would be only a result of the axial strain in

the steel.

3.2.1 Concrete Behavior

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, Equation 3.1,
for compressive stresses (f;) and a linear relationship with a slope equal to the concrete modulus
of elasticity (E.) up to cracking strain (&) in tension, see Figure 3-1. This linear relationship is

then followed by a descending curve as a numerical function in (&) and the steel yielding strain

(¢y), Figure 3-4.

=t eE- (%) G.1)
The concrete tensile rupture stress (f;) is taken as a lower bound equivalent to 5 — 7.5\/F , for
light weight concrete this value is reduced by 25%. A linear relationship with a slope equal to
the concrete modulus of elasticity (E.) up to cracking strain (&) in tension is assumed.

The concrete behavior in tension after the cracking strain is described using Equation (3.2). The

constants in the equation were calibrated against a large pool of four points bending tests on

flexural beams.

fo 4 1 &t
0.5fT - 1 ll’l(ﬂ) ln (ECT) (3.2)
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This proposed descending function on the domain (g, < €, < 1.4€,) reaches its peak (0.5 f;)
at the cracking strain (e.;) and continues to descend till zero when the tensile strain reaches (1.4
gy), see Figure 3-2. This function is an average function between the tension softening which

exist near the cracking strains and the tension stiffening that activates around the steel location.

fl

o

Concret compressive stress

€

[o}

Concrete compressive strain

Figure 3-1 Concrete compressive stress-strain curve (Hognestad's Parabola)
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Figure 3-2 Concrete tensile stress-strain curve

3.2.2 Steel Behavior

Regarding the steel axial stress-axial strain relationship, a bilinear relationship is assumed in the
compressive and the tensile analysis, see Figure 3-3.

fs = Eses < fy (3.3)

fy = Esey, (3.4)

Where (f;) is the steel stress corresponding to the axial stress (&), (Es) is the modulus of
elasticity of steel, (fy) is the yielding stress in steel. The steel is assumed to start hardening after
exceeding the yielding strain (fy) according to the following equation

fi = fy + Ei(es — &,),when f; > f, (3.5)
(E’s) is the slope of steel hardening after yielding and it is determined based on the yielding
strength (fy), Table 3-1 shows the relationship between the estimated (E’s) and the

corresponding (fy) (Rasheed (1990)).
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Table 3-1 The Relationship between the (E’s) and the corresponding yielding stress (fy)

f, (ksi) E’, /Es

40-45 0.3-0.7%
45-50 0.7-1.2%
50-63 1.2-2.5%

—

-

Steel Stress

Steel Strain

Figure 3-3 Steel billinear behavior in tension and compression

3.3 Sectional Analysis approach

3.3.1 Forces
3.3.1.1 Compressive Forces

Compressive concrete contribution

By integrating the Hognestad’s profile over the area from the neutral axis up to the maximum
compressive concrete fiber, the concrete compressive force (C,) is derived for the section based

on the following equations

C.= [ f-bdy (3.6)
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Ce= fib.3(c? - 2L 3.7)

3¢ec
Compressive Steel Contribution
The compressive steel force (C) is a direct linear relationship with the corresponding steel
strain (&5’). This relationship was driven based on the assumption of the bilinear

behavior for the steel analysis.
) ) 2
’ 1 gl Es Es
G = dife = ALf (22— () (3.9)
8C 8C
3.3.1.2 Tensile Forces
Tensile steel Contribution
The tensile steel force (T;) follows the same bilinear behavior based on the following equation
T, = AgEseg,when f < f, (3.9)
T = Ag(fy + Eg(es — €y)), when fs > f, (3.10)
Tensile Concrete contribution
The concrete tensile capacity is divided into two main profiles, Figure 3-2. The first profile is a

linear relationship up to the cracking strain (e.;) with a slope equal to the concrete modulus of

elasticity (E.). This profile leads to a tensile force (T;) equals to

d
T, = [ fibdy G.11)
frz
T., = 3.12
c1 2EC(1) ( )

The second profile is a descending curve which majorly contributes in the total concrete tensile
capacity. This profile is a result of the concrete softening, concrete stiffening due to the steel
bond as well as the residual stresses due to shrinkage effect. The tensile force due to this profile

(T¢,) is calculated as follow
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dis des Sfr
Tep = [ bfedy=b[;* 05/, - —¢l-In () dy

1.4¢
Y
Co) 5
cr

Where y is measured from the neutral axis

0.5b; Lde, /¢
T., =[————=(yl l — vy —vyl 0.5f
2 [ld%%%yM@)+yn@) y —yln(ey,)) + I T
Where,
dis = 14e, /@

3.3.1.3 Moments

Compressive concrete contribution

(3.13)

(3.14)

(3.15)

The point of application of concrete compressive force is measured from the extreme

compressive fiber (y.c) based on volume centroid calculations. Where (C) is the depth of the

compression zone and () is a ratio between zero and one.
g 1_Ecf
fOCf gc.fe.dec _ 3 12el

€ = €
Ecf fOCffc-dsc 1_5

c

y=1-

M. = (C_Y-C)*Cc

Compressive Steel Contribution

The compression steel moment is calculated according to the following equation.

M = CS(C - d,)

Tensile Concrete contribution

(3.16)

(3.17)

(3.18)

(M) is the moment induced due to the concrete resistance up to the cracking point. While,

(Mc2) is the moment due to the constitutive tensile model.

2 fr
M, = .-
tc cl 3E.d

dis dis 0.5f;
Mica = [ bfeydy=bf,*[0.5f, — =2-In (2 )]y dy

Ecr
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Where, y is measured from the neutral axis.

0.5bf [y? 2 2 g2 2 1.4e,/p
Moy = [— ln(ﬁ) (y? In(ep) + y?ln(y) - y; - y?ln(ecr)> + 0.5fry7 Scr;QD (3.21)

Tensile steel Contribution
The contribution of the moment induced due to the steel reinforcement at any stage of loading is
determined as follows

M, = Ts(d — C) (3.22)

3.3.2 Moment-Curvature Calculations
A numerical procedure was followed to generate the moment-curvature curve. In this procedure,
the maximum compressive fiber strain value (g.) was gradually increased until reaching the
concrete crushing strain of (0.003). In order to accurately calculate the strain profile under each
step value of €.y, the correct depth of the compression zone (¢) was necessary to define the strain
profile and the corresponding stress profile and forces/moments. The sectional force equilibrium
equation was then applied to validate the depth of the compression zone (c) by iterating for the
correct depth of compression zone that makes the summation of forces equal to zero,

equilibrium is maintained.

p="2 (3.23)
g, = o(d — ©) (3.24)
e’ = p(c—d) (3.25)
er = @(h—0) (3.26)

The summation of moments due to concrete and steel contributions then yielded to the total

moment capacity of the section, and the moment-curvature curves were fullgenerated, see
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Figure 3-4. The progressive moment-curvature calculation procedure is described in a flow

chart up to steel yielding. However, the same procedure may be followed to generate the

response of the post-yielding region, see Figure 3-5.

<

/ Post Yielding Zone
/ Post Cracking Zone

Pre cracking zone

Moment

Curvature

Figure 3-5 Typical beam moment vs. curvature sectional response
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Figure 3-6 Flexural analysis flow chart up to the yielding point

48



3.4 Differential Sectional Analysis

3.4.1 Shear Stresses Differential Equation

Shear stresses distribution over a shallow beam depth is formulated through the axial forces

acting on the beam cross section. Considering an infinitesimal element with length dx of the

beam, the differential bending moment acting over dx is dM, Figure 3-6. At any given depth, the

equilibrium of forces in the longitudinal direction is satisfied through the longitudinal shear tyx,

Figure 3-7. Also from equilibrium, the longitudinal shear is equal to the transversal shear txy.

YE =0

[o'.dA— [o".dA—1(b.dx) =0
F'— F" — 2(b.dx) = 0

dF —7(b.dx) = 0

1F'—Frr _ 1dF(¢,€)

"[ =
b dx b dx
N N
M M-+dM
ol ; c2
- 3 b
o3
o4
i /‘ —
N
dx dx

Figure 3-7 Axial stress distribution over an infinitesimal element dx
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Figure 3-8 Axial stress distribution over an infinitesimal element dx and depth d’

3.4.2 Numerical Evaluation of Shear Stresses Distribution

For each load level, one hundred vertical sections were taken over the beam shear span length.

For each vertical section, 25 equally spaced nodes were taken along the height of the section. At

any given depth, the axial forces are calculated by integrating the axial stresses over the covered

distance. By summing the axial forces above a given depth for two constitutive vertical sections,

the shear stress at the given depth is evaluated, Equation (3.31).

3.4.2.1 Compressive concrete contribution

By integrating the Hognestad’s profile over the area from the top of the section to the specific

depth d., the concrete compressive force (C,) is derived for the section based on the following

equations

C [ 2€c 2€¢ 2
Ce= O, febdy=[, bf: (E— -(%9) )dy

where y is measured from the neutral axis
— prr ez 0¥y €
Cc_ bfc Slc y 38£)C_dc

Where, d. is measured from the top of the section
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3.4.2.2 Compressive Steel Contribution
The compressive steel force (C) is a direct linear relationship with the corresponding steel strain
(g5”). This relationship was driven based on the assumption of the bilinear behavior for the steel

analysis.

gg’ gg’ 2
Co = Afy = Af (@2 - _(2)) (334)

€c

3.4.2.3 Tensile Concrete contribution

The concrete tensile capacity is divided into two main profiles

d
T.,= [ fe.bdy (3.35)

Where y is measured from the neutral axis and d; is measured from the neutral axis

__ bEc@ad}
T, = Tt (3.36)
d d -
= [, bfedy=b[,* 0.5, — Ogﬂ)ln(jj) dy (3.37)
Where y is measured from the neutral axis
Shfy
Ter = [y (V) + Y1) =y = yin(eer)) + 0571, /(p (3.38)

3.4.2.4 Tensile steel Contribution

The tensile steel force (T) follows the same bilinear behavior based on the following equations
Ts = AsEseg, when fs < f, (3.39)
Ty = As(fy + Es(es — €))), when fs > f, (3.40)

3.4.2.5 Constructing shear stress distribution
Typical shear stress profiles are numerically generated using Equations (3.32)-(3.40) substituted
into Equation (3.31). Figure 3-8 presents the shear stress distribution for un-cracked section. The

stress profile is very similar to the classical parabolic shear stress distribution in linear beams
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except for the effect of dowel action shown at the level of tensile reinforcement. Figure 3-9
shows the shear stress distribution for a post-cracked concrete section. It is interesting to observe
the shear stress shifts from positive to small negative value which is offset to zero by the tension
stiffening contribution, Figure 3-9. Figure 3-10 illustrates the shear stress distribution for post
yielded section. It is evident that the shear stresses within the compression block start negative in
value due to the descending part of Hognestad’s parabola. Then these stresses shift to positive

values. In addition, dowel action shift shear stresses to zero shear stress since tension stiffening

is vanished at this stage of loading.

Shear Stress (1)

\

— \

g T~

-

ks /C'J)/
__— ¥ Dowel

action

Figure 3-9 Typical pre-cracking shear stress distribution

Shear Stress (1)

Section Depth (d)

Figure 3-10 Typical post cracking shear stress distribution
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Shear stress (t)

Section depth (d)

Figure 3-11 Typical post yielding shear stress distribution

Principal stress analysis

3.5 Principal stress by Mohr’s circle

By applying Mohr’s Circle for each numerical node, the principle stresses g1, g, and their

orientations are calculated.

Oxtoy

Oavg = = Where, oy=0 (beam theory)

max principle stress o; = 0gpg+ R
min principle stress g, = 0g4p9- R

Tan(20) = 2ty

Ox—0y
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Shearstress

(o

X"

Axial stress

Figure 3-12 Mohr's circle

3.6 Kupfer and Gerstle biaxial cracking criterion

Kupfer and Gerstle (1973) have suggested an analytical maximum strength envelope for biaxial
loading. Complying with this envelope, Kupfer and Gerstle also proposed simplified expressions
of biaxial strength for different stress combinations. For tension-compression, Kupfer and
Gerstle adopted a linear reduction of tensile strength in accordance with the increased
compression

on = (1-22) (3.46)

Where (o1;) is the principal tensile stress and (o) is the principal compressive stresses.

if (o,(principal tensile stress) > a;;) {"Cracked Concrete"}
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3.7 Results

In this section, the formulation developed above is applied to retrieve the shear stress distribution
of cracked concrete at various levels of load and at different sections along the shear span under
the same load. Furthermore, Mohr’s circle is used to extract the principal stresses across the
beam depth while using Kupfer and Gerstle (1973) criterion to predict the shear-flexural cracks.
Finally, crack maps are developed for one example along the shear span under eight different
load levels and the cracked zone is shaded to indicate likely existence of cracks.

3.7.1 Example one

The purpose of this example is to confirm the accuracy of the non-linear numerical sectional
analysis used in this study to predict the shear stress distributions in shallow beams. This beam
was cast and tested by Decker (2007). The rectangular beam is a 305mm*153mm (6 in x 12) in
cross section. It has a length of 4.88 m(16 ft) with a clear span of 4.72 m(15.5 ft) . The main
flexural reinforcement consists of 2¢16 (2 No. 5) bars with 2¢10 (2 No. 3) bars used for the
compression steel just to provide a caging framework for the shear reinforcement, Figure 3-12.
The concrete that was used in casting the beam is ready mix with a mix design nominal
compressive strength of 34.5 MPa (5000 psi). The material properties of the reinforcing steel
were provided by the manufacturer to have a modulus of 200,000 MPa(29000 ksi) and yield

strength of 482.3 MPa(70 ksi).
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Figure 3-13 Decker (2007) control beam R1 cross section
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Figure 3-14 Decker (2007) control beam R1 moment vs. curvature
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Figure 3-15 Decker (2007) control beam R1 Load vs. Max. compressive fiber strain
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Figure 3-16 Decker (2007) control beam R1 Load vs. rebar strain
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Figure 3-17 Decker (2007) control beam R1 Load vs. neutral axis depth

A very good agreement of the reported experimental results is observed against the proposed
numerical approach. Decker (2007) tested this control beam under four points bending with shear
span of 175.3 mm (5.75 ft). Two strain gauges were installed on the top surface of the beam to
report the maximum compressive strain. Another two strain gauges were installed on the
reinforcing flexural rebar to report the rebar strain. Figure 3-14 and Figure 3-15 present a
comparison between the numerical and the experimental results of the maximum compressive
strain and the rebar strain. These two graphs show a good agreement in the post cracking zone
and the post yielding zone up to the failure of the strain gauges. The numerical variation of the
neutral axis and the experimentally evaluated neutral axis comparison is given in Figure 3-16. A
generally good comparison is observed as well.

These comparisons are presented to illustrate the accuracy of the proposed method in predicting
the sectional response of the beam. The bending moment vs. beam curvature comparison shows

an excellent agreement of the sectional response of the beam.
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3.7.2 Example two

The second beam was tested by Almusallam (1997). The tested rectangular beam has a 200
mm*210 mm (7.87 in x 8.26) in cross section. It has a length of 2.7 m (106.3 in). The main
flexural reinforcement consists of 3 ¢ 14 mm bars with 1 ¢ 6.25 mm bars used for the
compression steel just to provide a caging framework for the shear reinforcement. The beam has
shear reinforcement consisting of ¢ 8 mm stirrups at 120 inches spacing.

The concrete nominal strength is 31.3 MPa (4540 psi). The reinforcing steel has a yielding
strength of 552.6 MPa (80.2 ksi) and a modulus of elasticity of 200000 MPa(29000 ksi).

In this second example, the axial stress distribution and the shear stress distribution as well as the
principal stress distribution are calculated across the height of the beam at three different location
over the shear span. The first location (section one) is after the cracked section and the second
location (section two) is positioned just before the yielding section, these two sections were
analyzed under 75% of the failure load. The third location (section three) is positioned just under

the load at the failure of the beam.

— 13625

210

—— @8 at 120 mm

)/ — 3014

~ _

L 200 l

Figure 3-18 Almusallam 1997 control beam cross section
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Figure 3-19 Almusallam 1997 control beam Load vs. mid-span deflection
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Figure 3-20 Almusallam 1997 axial stresses of the three sections

The axial stresses over the height of the beam is calculated in accordance to the concrete material
properties defined earlier. Where Hognestad’s parabola describes the concrete behavior in
compression up to the neutral axis, followed by a linear tensile model till the cracking strain and
a descending curve for the tension stiffening till 1.4 steel yielding strain. In section one and

section two, in the post cracking zone, maximum compressive stresses at the top of the beam
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didn’t exceed 50% of f’c, while section three, under the failure load at the load location, did
generate the full Hognestad’s parabola.

To continue with the analysis, shear stresses were then evaluated for the same sections using the
numerical differential sectional analysis. For each given section, a preceding section at a
differential distance was taken to be analyzed. In order to compute the shear stress at any given
depth d, the axial forces within the depth d for the two successive sections are calculated. Then,
the shear stress is found by numerically applying Equation (3.31). The shear stress distribution
varies depending on the section location. A section within the pre-cracking zone follows the
well-known symmetrical second degree parabola, where it peaks around the mid-height of the
section. However, for the sections located in the post cracking and the post yielding zone, it was
found that the shear distribution is no longer symmetric due to the different concrete behavior in
tension and compression as well as the existence of the steel, known as dowel action. There are
few locations over the height of the section, at which the shear distribution changes. The shear
stress distribution over the compressive depth tends to be parabolic with a slight constant change
at the compressive steel (Zone A), see Figure 3-20. This change is clearer with more
compressive steel area. Just after the cracking, the shear stress distribution changes the slope
drastically. This change of slope indicates the beginning of the tension stiffening model. The
rapid increase of the shear stress at the beginning of the tension stiffening zone tends to be more
pronounced at the beginning of the post cracking zone (Zone B), see Figure 3-20, and it becomes
less pronounced towards the yielding section, Figure 3-21. Within the tension stiffening model,
the shear stress distribution had a linear slope (Zone C). A clear dowel action effect is observed
at the flexural steel depth. This effect is a constant drop in shear stresses which could reach a

small negative shear stress value that indicates a change in the shear stress direction. This
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negative change in shear stress direction is understandable due to the decrease in the tension
stiffening forces as you move toward the location of applied load (i.e. later stages of the post
cracking zone). Finally, as expected, the shear stress converges to zero at the soffit of the beam

(Zone D).
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Figure 3-21 Almusallam 1997 shear stress distribution of section one
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Figure 3-22 Almusallam 1997 shear stress distribution of section two
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Figure 3-23 Almusallam 1997 shear stress distribution of section three

In section three at the failure load just under the load point, Figure 3-22, it is interesting to
observe the opposite change in direction of the shear stresses within the compressive depth. This
change is a result of the descending branch of the Hognestad’s parabola. Furthermore, the shear
stress shows a constant zero region over the bottom end of the beam’s height as the tension
stiffening model ends at 1.4 times the yielding strain of the steel.

Using Mohr’s circle and the calculated axial and shear stresses, the principal stresses were found.
Figure 3-23 shows the variation in the maximum/tensile principal stresses for the three given
sections. On the other hand, Figure 3-24 presents the variation of the minimum/compressive
principal stresses. The two principal stresses were then applied to Kupfer and Gerstle biaxial

concrete failure criterion to predict the location of the cracked concrete.
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Figure 3-24 Almusallam 1997 tensile principal stresses of the three sections
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Figure 3-25 Almusallam 1997 compressive principal stresses of the three sections
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3.7.2.1 Formation of shear cracks

For each load level, the shear span was divided into a number of sections. Each section was
divided into a number of nodes at equal spaces. The proposed analysis was applied on each node
to determine if it was cracked. In Figure 3-25, the cracked concrete map was generated using the
proposed approach at different load stages. The general directions of the diagonal tension cracks
were also compared against the simplified modified compression field theory. The SMCFT
predicts the shear crack angle 0 as a function of the longitudinal axial strain at the centroid of
tensile steel (&5).

0 = 29(degree) + 3500¢; < 75° (3.47)

Longitudinal axial strain (&) is calculated based on the superimposed effect of the forces in the

tension side of the section, as follow

Eg = F— .l (AASHTO 5.8.3.4.2-4) (3.48)

Where

M = moment in k.in

V = shear force in kip

N = axial force, taken as positive if tensile and negative if compressive in kip

A, = area of non-prestressed steel on the flexural tension side of the section in in.? (mm?). This is
considered to be the area of flexural reinforcement under the original geometric centroid of
the section.

dy = effective shear depth taken as the distance, measured perpendicular to the neutral axis,

between the tensile resultant and compressive resultant force due to flexure. It needs not

be taken to be less than the greater of 0.9d. or 0.72h in in. (mm).
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The SMCEFT assumes an average distribution of shear stresses over an area of depth d, and width
b,. That means the direction of principal stresses doesn’t change over the depth. Furthermore,
from Figure 3-25, the SMCFT overestimate the angle of the inclination of the cracks at the early
stages of the load and underestimates the angle of the diagonal cracks while approaching the

ultimate load capacity.

Shear Span (m)
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Figure 3-26 Cracks map of different load levels. (SMCFT is presented as dotted line for each
load)

3.8 Conclusion

In this study, a novel non-linear formulation was developed using the smeared crack approach. It
is used to predict the shear stress profile along the shear span of shallow beams in flexural
cracked concrete at all stages of loading up to flexural failure. These shear stress profiles are
coupled with the nonlinear axial stress profiles to obtain the principal stress distribution along the
shear span. Kupfer and Gerstle failure criterion is used to predict the likely occurrence of new
shear-flexural cracks by setting the major principal stress equal to the limit provided by the

Kupfer criterion.
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It is interesting to observe the prediction of diagonal tension cracks along a curved path, which is
expected to be much more accurate than other shear theories that assume a constant shear crack

orientation.
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Chapter 4 - Analytical Formulation of Shear Stress Distribution in

Cracked Reinforced Concrete Flexural Members

This study is conducted to provide a mechanics-based understanding of the shear stress
distribution in cracked reinforced concrete. A rational approach is followed to analytically derive
the shear stress profile in shallow reinforced concrete beams based on the smeared crack
approach. This approach utilizes the transversal shear differential equation to evaluate the shear
stress at any given depth by the variation of the axial stress distribution within an infinitesimal
beam segment at that depth. In addition, this study presents a more accurate representation of the
change in the strain profile parameters with respect to the sectional applied moment.
Furthermore, the dowel action effect is derived to illustrate its significance on the shear stress

distribution at various stages of loading.
4.1 Introduction

During the last 50 years, there have been many attempts to predict the shear strength mainly
based on experimental results to produce simplified empirical formulas. However, by comparing
these different results, significant inconsistencies are realized due to the differences in testing
protocols and examined parameters. Therefore, it is vital to present a well-defined mechanics-
based approach to accurately predict the shear behavior of flexural members.

The shear failure in reinforced concrete beams stems from a principal tensile stress failure
(Morsch 1903). This fact was ignored for many years due to the difficulty in determining the
diagonal tension stress in cracked concrete. Mphonde and Frantz (1984) concluded, based on
their tests in beams without stirrups, that the ratio of the shear at inclined cracking to the
measured shear strength ranges between 0.74-0.97. Therefore, it is difficult to determine the

value of the diagonal tensile stress. Also, Bazant and Kazemi (1991) showed that the crack
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initiation load is not proportional to the failure load due to the size effect. Moody et al. (1954)
described the failure of reinforced concrete beams, subjected to shear, to be composed of two
stages. The first stage includes diagonal tension cracking and the second stage terminates at
concrete crushing. This shear dominant failure mode was found to be controlled by a smaller
(M/Vd) ratio. On the other hand, larger (M/Vd) ratios results in almost pure flexural failure.

The lack of agreement between the researchers on defining a shear failure criterion of reinforced
concrete beams rises from the complexity of the mechanics and the number of parameters
involved. The diagonal tension or the principal tension stress state is a combination of direct
axial stresses and shear stresses in cracked reinforced concrete. The axial stresses in flexural
beams are well-defined through the application of basic beam theory and well-known
constitutive models. However, the shear stress distribution in cracked concrete is not clearly
developed in the literature. There have been some attempts to estimate this shear distribution as
an average shear stress over a redefined cross sectional area, which may be known as the
modified compression field theory.

A very important deficiency in the literature is the common assumption that the derivative of
curvature with respect to x or the derivative of the compression depth with respect to x is taken
as a constant. Even though this is done in applications other than shear like moment-curvature
analysis and bond slip mechanisms, it is found here that these parameters (dep/dx or dp/dM) are
nonlinear in nature. Using constant derivatives of curvature from the assumption of trilinear
sectional response, for example, yields poor representation of shear stresses in cracked concrete.
In this study, the shear stress profile calculation is introduced, for the first time, in reinforced
concrete beams throughout all its stages; pre-cracking, post-cracking and post yielding. The

transversal shear differential equation is used to analytically calculate the shear stress at any
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given depth based on the smeared crack approach, taking into account the effect of the
longitudinal steel and an accurate estimation of the derivatives of the strain profile parameters

with respect to the applied moment.

4.2 Sectional Analysis

4.2.1 Materials Constitutive Models

The stress-strain relationships for the concrete and the reinforcement steel are assumed to be
independent of each other. The axial stress in steel would be only a result of the axial strain in
the steel.

4.2.1.1 Concrete Behavior

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, Equation
(4.1), for compressive stresses (f;) and a linear relationship with a slope equal to the concrete
modulus of elasticity (E.) up to cracking strain (&) in tension, see Figure 4-1. This linear
relationship is then followed by a descending curve as a numerical function in (e.;) and the steel

yielding strain (ey), Figure 4-1.

fo= £ = - (%)) (1)

g/ €
The concrete tensile rupture stress (f;) is taken as a lower bound equivalent to 5 — 7.5,/f.’, for
light weight concrete this value is reduced by 25%. A linear relationship with a slope equal to the
concrete modulus of elasticity (E.) up to cracking strain (&) in tension is assumed.
The concrete behavior in tension after the cracking strain is described using Equation (4.2). The
constants in the equation were calibrated against a large pool of four points bending tests on

flexural beams.

=1 In (&) (4-2)

T4
0.5fr ln(g_gy) Ecr
cr
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This proposed descending function on the domain (€., < & < 1.4¢€y) reaches its peak (0.5 f,) at
the cracking strain (g;) and continues to descend till zero when the tensile strain reaches (1.4 €y),
see Figure 4-2. This function is an average function between the tension softening which exist

near the cracking strains and the tension stiffening that activates around the steel location.

fl

o

Concret compressive stress

€

[o}

Concrete compressive strain

Figure 4-1 Concrete compressive stress-strain curve (Hognestad's Parabola)
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Concrete tensile stresses
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€ 1.4¢

cr y

Concrete tensile strain

Figure 4-2 Concrete tensile stress-strain curve

4.2.1.2 Steel Behavior

Regarding the steel axial stress-axial strain relationship, a bilinear relationship is assumed in the
compressive and the tensile analysis, see Figure 4-3.

fs = Eses < fy (4-3)
Where (f;) is the steel stress corresponding to the axial stress (gs), (Es) is the modulus of elasticity
of steel, (fy) is the yielding stress in steel. The steel is assumed to start hardening after exceeding
the yielding strain (fy) according to the following equation

fs=fH+ E;(ss — sy),whenfs > fy (4-4)

(E’s) is the slope of steel hardening after yielding and it is determined based on the yielding

strength (fy),

Table 4-1 shows the relationship between the estimated (E’;) and the corresponding (fy) (Rasheed

(1990)).
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Table 4-1 The Relationship between the estimated (E’s) and the corresponding (fy)

f, (ksi) E’, /E,
40-45 0.3-0.7%
45-50 0.7-1.2%
50-63 1.2-2.5%
E',
fy """"" |
a |
g [
& |
E |
b [
E |
s |
|
|
|
g, £,
Steel Strain

Figure 4-3 Steel stress-strain curve

4.3 Trilinear Approach

The moment-curvature (M vs. @) response and the moment-extreme compression fiber strain (M
vs. €.f) response could be estimated as a trilinear relationship when analyzing the overall
sectional behavior (Rasheed et al. 2013), see Figure 4-4 . The first linear part is the pre-cracking

zone, where the maximum tensile strain doesn’t exceed the cracking strain of the concrete (&;).

73



The second linear region starts with the appearance of the first crack and extends till the yielding
of the tensile steel. Finally, the third linear region continues until the crushing of concrete at a
maximum compressive strain equals 0.003. Three well-defined boundary points are used to fully
generate the sectional response of the beam; the cracking limit (M, @, &cf)cr, the yielding limit (M,
@, &cr)y and the failure point (M, @, &cr)s. The cracking limit is straight forward using the linear

distribution of stresses, Equation (4.5).

M, == (4-5)

y

Where, ( Iy) is the gross transformed moment of inertia of the section and (y) is the uncracked
neutral axis location measured from the maximum tensile fiber. The curvature of the section at
first cracking (@) is then calculated as follow

— MCT
Elg:

Per (4-6)
The yielding limit considers the nonlinear behavior of the Hognestad’s parabola. The Concrete

compressive force is expressed in terms of (o), which is used to transform the nonlinear

relationship into an equivalent rectangular block.

£ &f ., ~ec (ec 2
_ fo o ocdec _ fo Je (ZS_C’_<¥) Jdec

2
= Sof _ Ef 4-7
fecs fecs e 3el’ (4-7)

From the equilibrium of forces on the cross section, the compression depth at the yielding point

(cy) is computed.

YE =0- afc’bcy + Ayfy = Asfy (4-8)
oy == (4-9)
scfy = (QyCy (4-10)

The point of action of the concrete compressive force, measured from the maximum compressive

fiber, could be calculated as a fraction of the compression depth (y cy).
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1 Ecf
Ecf -
fo gc-fedec _ 3 12

Y=1— g = T
Ecf focffc.dsc 1—;—f

(4-11)

The yielding moment (My) is then computed by summing the moments about the point of

concrete compression resultant force.

My, = Asf,(d —ycy) + Asfs' (e, — d)

Similarly, the failure point limit (M, ¢, ecf), is calculated.

(4-12)

The strain profile parameters, at any section namely the curvature (¢) and the maximum

compressive strain (&), are retrieved from the trilinear approach through linear interpolation

based on the applied moment

if Mo, <M < M,

M—Mcr

Q= My~ My (903, - (pcr) + Qcr

if My <M < M,

0= (0n=0)) + 0y

Similarly, the maximum compressive strain (&) is computed

if Mg <M < M,

_ M—Mcr
Ecf = My —Mer (Scfy Scfcr) + Scfcr

if My <M <M,

M-M
Yy
Ecf = € — & €
cf Mn—My( cfn cfy) + cfy,
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Post yielding
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d

Pre-cracking

Curvature

Figure 4-4 Typical moment vs. curvature trilinear approach

4.4 Sectional Forces

In this Section, the axial forces generated at any given depth are calculated using the material
constitutive models for both concrete and steel under compressive or tensile stresses. The axial
forces are found by integrating the material stress profile over the given area. This step is
necessary to develop the stresses distribution at any point along the height of the beam.

4.4.1 Compressive Concrete Force

The force induced in concrete within the compression depth of the beam (C.) is computed by

integrating Hognestad’s parabola over the depth from the top of the beam’s section to the

specific depth (d.).
(28 [280\2
Ce= [, febdy=[", bf: (S— - (S—) )dy (4-17)
Where, (y) is measured from the top of the section and (&) is the compressive concrete strain.
— prr @ (y2_2Y ¢
CC - bﬁ" gL, (y 3 e'c) |C - dc (4_18)
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4.4.2 Compressive Steel Force

The compressive steel force (Cs) is a direct linear relationship with the corresponding
compressive steel strain (g5”). This relationship was driven based on the assumption of the
bilinear behavior of the steel analysis taking into account the concrete compressive stress

deducted due to the existence of the steel rebar .

G = AL - AR~ (2)) (4-19)

Ec!

4.4.3 Tensile Concrete Forces

The concrete tensile stresses are divided into two main profiles. The first profile is a linear
function up to the concrete cracking strain (&) with a slope equal to the concrete modulus of
elasticity (E.). The tensile force within this range (T;) at a given depth (d;) measured from the

neutral axis is calculated as follow

.= [ fob dy (4-20)

c1
Where, (y) and (d;) are measured from the neutral axis.

__ bEc@ad}

T, ==2 (4-21)

The second concrete tensile stress profile starts at the concrete cracking strain (&) and extends

up to 1.4 times the steel yielding strain (1.4¢y). At any depth (d;) measured from the neutral axis,

The second concrete tensile force (T.;) is measured as follow

d
Te = f,* bfedy (4-22)

d 5fr
T., =b fd; 0.5f — lno(lﬁln (:Ti) dy (4-23)

Where, (y) is measured from the neutral axis.

de
4-24
Ecr [P (4-29)

Tz = bl e (VInGp) + yIn() =y = yln(er)) + 056,3]

Ecr
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4.4.4 Tensile Steel Force
The tensile steel force (T;), calculated at the tensile reinforcement level, is evaluated according to
the following equations

Ty = AgEseg — Agfer s when fo < f,, (4-25)

Ts = As(fy + Es(es — &y)) — Asfeewhen fs > f,, (4-26)
Where, f.; is a function of the tensile steel strain (g5) and is taken from the un-cracked or post-

cracked parts of the concrete tensile constitutive functions. Note that f.;(g5) = 0, when g4 > g&,.

4.5 Differential Sectional Analysis

4.5.1 Shear Stress Differential Equation

Shear stress distribution over a shallow beam depth is formulated through the change of axial
forces acting on the beam cross section. Considering an infinitesimal element with length dx of
the beam, the differential bending moment acting over dx is dM, Figure 4-5. At any given depth,
the equilibrium of forces in the longitudinal direction is satisfied through the longitudinal shear
Ty at that depth, Figure 4-6. Also from equilibrium, the longitudinal shear is equal to the

transversal shear Tyy.

YF =0 (4-27)
[o'.dA— [o".dA—1(b.dx) =0 (4-28)
F'—F" —1(b.dx) = 0 (4-29)
dF —7(b.dx) = 0 (4-30)
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Figure 4-6 Axial stress distribution over an infinitesimal element dx and depth d’

4.5.2 Shear Stress evaluation at any depth

For each load level and a specific section along the shear span, the shear stress at any given
depth is the summation of the shear stress contribution of the concrete and steel above the
desired depth. For example, the shear stress at the neutral axis would be the sum of the shear
stress due to the compressive concrete contribution within the compression zone plus the the

shear stress due to the compressive steel contribution if any. In this section, shear stresses
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induced by compressive or tensile concrete as well as compressive or tensile steel is analytically
derived for each individual one. Using Equation (4.31), the shear stress is the derivative of the
axial forces above its depth with respect of x (beam length direction) divided by the width of the
cross section.

4.5.2.1 Compressive concrete contribution

The shear stresses induced by the compressive concrete (T.) is the derivative of Equation (4.18).

a0 _1dpp0(_ 98 | ©
T = gr = pan DS (v~ 25) | (4-32)

Where, (y) is measured from the neutral axis, and dc is measured from the top of the section.

2dcdeer _ dede _ 3dc degy | 3dE dleee) _ dE d(e)?

T.. =f(===<_ <~ _ —cd
cc C(Sé dx Sé dx 35&2 dx 35&2 dx 3%2 dx

) (4-33)

This equation above indicates that the shear stress due to compressive concrete forces is a
function of the material properties, strain profile parameters at a specific section and the
derivative of these strain profile parameters with respect to x.

4.5.2.2 Compressive Steel Contribution

In a similar manner, the shear stress contribution for the compressive steel (t.) is the derivative
of the compressive force in the compression reinforcement. Using Equation (4.19), the shear

stress is calculated as follow

€c/

1d(Cs) _1d rprer_ prerefots "\
Tes :BF :E& [Asfs _Asfc(< «:_c’_ (E_) )] (4-34)

decr dp o fb( de . de i, 284dEy | 2d d(@Ey)  @d'? de
Tes = Ay [E S —E, S22 — (22 S8 g — Zer Tl | 2C D020 9 0@ 4-
cs s < S dx S dx el dx dx €l dx + €L dx €L dx ( 35)

4.5.2.3 Tensile concrete contribution
The shear stress due to the tensile concrete is divided into two main profiles as described in the

material constitutive models. The shear stress in the first profile (t.1) which covers a range up to
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concrete cracking strain is calculated using this equation

1d(Te) _ 1d bEC(pdt

TtCl b dx b dx [ ] (4-36)

Where, d; is measured from the neutral axis downwards.

dx o <p2 dx

des 4 ke d d?\ d
Tee1 = Ec <(dt )(—== ot L f_(p) + (f) d_(::) (4-37)

The shear stress due to the second tensile concrete profile (ti.;) is the derivative of Equation

(4.24)
1 d(T, 1d —0.5f, d
e = 5952 = L s () + ¥InG) -y = yin(ee) + 0.5 e 51 (438
0.5f,
Lot te= 188 (4-39)

C Ccr C k(d cr d R k
Ticz = [<R% + pr—z - k% (In(diw) + 1) — % - k':'P—Zln(ecr)>d—f{J + <—$ + " (In(d;o) +

dec
1)) o (4-40)
Where, R = (0.5f, + k + kin(e,,)) (4-41)

4.5.2.4 Tension Steel Contribution
Similarly, The shear stress (tis) generated due to the change in the steel tensile forces is

calculated as follow

1d(Ty) _ 1

d
Tis = b dx [A E s€s — Asfct] (4‘42)

Where, f.; is the tensile axial stress that must be subtracted from the concrete contribution due to
the bar hole. It is defined below as a function of the tensile steel strain (€5) and is taken from the

un-cracked (linear variation) or post-cracked (tension stiffening) parts of the concrete tensile
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constitutive functions due to the perfect bond assumption. Note that f..(es) = 0, when g >

1.4s,.
For pre-yielding condition fg < f;,
d€, d
Ts = As (_Es de + Es d_(;()d) (4-43)

For post-yielding condition fg > f;,

dE€qf
dx

T = A (—(Bs + E9) T + (B + ) 2d) (4-44)
The subtracted concrete stress f.; due to the existence of steel rebar has three main cases. The
first case occurs when the steel bars are located within the first zone of tensile concrete &5 < €
.The Second case happens when the steel bars are located within the second tensile concrete zone
Ecr < & < L.4g,. After that, f,; = 0.

The shear stress in equation (4.42), when the bars are within the uncracked zone, has the

following term

d(fer) _

d d€¢
dx  dx [ASECSS] = ASEC(_ES L

dx

+ES2a) (4-45)
While the shear stress in equation (4.42), when the bars are within the tension stiffening zone,

has the following term

d(fer) _ d 0.5 &t _ k decs  de ]
dx  dx 05fr In 1'483’) In (Scr) o AS (Pd—ecf( dx dx d) (4 46)

In order to evaluate the shear stress at any given depth measured from the top of the section, all
shear stress contributions from concrete and steel have to be considered. In general, the shear
stress at a location just above the tensile steel level is equal to the superposition of the

compressive concrete contribution, compressive steel contribution and tensile concrete
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contribution, taking into account a positive sign for the compressive contribution and a negative
sign for tensile contribution.

T(d) = Tee + Tes — Trer — Teez (4-47)
4.5.3 The derivative of strain profile parameters with respect to distance along the
shear span

Equations (4.32)-(4.47) share the same four main categories of parameters. The first category
involves the material properties (e.g. f'c, €’c, fy, ...etc.), the second category includes the
geometrical properties (e.g. h, d and d’). The third category contains the parameters that define
the strain profile at a given section (e.g. the curvature ¢, the maximum compressive strain € ,
and the compression depth c), which could be evaluated using a nonlinear sectional analysis or a

trilinear sectional approach as shown in this study. The fourth category encompasses the

o . . d d .
derivative of the strain profile parameters with respect to x (e.g. d—j: and %). It is important to

o . . . d de dM
note that these derivatives can be made independent of x using the chain rule (e.g. d—‘; = ﬁa =

:—;’;V and % = %i—l\: = %V). These two parameters appear as a result of using the shear
differential equation, Equation (4.31). Furthermore and unlike many previous, assuming a
constant derivative of the strain profile parameters for this application proves not accurate, See
Figure 7 and 8. These two figures show the derivatives of the curvature (¢) and the maximum

compressive strain (g ) with respect to x computed numerically.
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Figure 4-7 The numerical derivative of the

cross section curvature with respect to x using

example one below (post cracking zone)
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Figure 4-8 The numerical derivative of maximum compressive strain with respect to x
using example one below (post cracking zone)

Thus, it was vital to accurately calculate these derivatives. Two mathematical conditions were

considered to accurately predict the derivatives

do

de .- . .
™~ and d—;f. The first condition was derived using
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the zero shear boundary condition at the soffit of the beam, T (atd = h) = 0. The second
condition comes from the fact that the integral of the shear stresses over the cross sectional area

has to equal the internally applied shear force [ AT-dA=V.

4.5.3.1 Condition One The zero shear boundary condition at the soffit of the beam
Using Equations (4.32)-(4.47), the shear stress, at the soffit of the beam, may be calculated by

considering the full contributions for concrete and steel in tension and compression.

Compressive concrete contribution
The shear stress induced by the compressive concrete (t..) at depth equal to the height of the

beam would consider the full capacity of the compression zone and is calculated as follow

_1dCo _1d e 2@y |C
Tee Ty 7ax  bax [bf, (y 38(,:) |O] (4-48)

C 8(,:
Where, (y) is measured from the neutral axis.

_ r2cdegs c2do 3c de%r . 3c? d(@ecp) c3 d()?
T = (G RS - G - 2Ty 2o 2 (4-49)
€c dx €c dx 3€L dx 3€L dx 3€] dx

Compressive Steel Contribution
The shear stress from the compressive steel contribution (t.) is taken directly from Equations
(4.34) and (4.35).

Tensile concrete contribution
The shear stress due to the tensile concrete is divided into two main zone contributions as
described earlier. The shear stress in the first zone (t.;) Which covers a range up to concrete
cracking strain is calculated using these equations

1 d(Te 1 d bEc@y? |d
1dTe) _ 19 [bEcoy |0t] (4-50)

Ttel = 57 o bdx! 2
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: ) €
Where, d; is measured from the neutral axis and equal to d; = d.. = f

dEep1 | gqpd d2\ d
Teer = B ((dcrcpx— a1+ (%) d—‘;) (4-51)

The shear stress due to the tension stiffening concrete zone (T.;) is found as follow

1 d(T, 1d -0.5f, d
T =g =1 [b [ (InG@) +¥In) =y = yin(een)) + 05631 |, G, 1 (452)
0.5fr
Let, k = - (1::,)

C Ccr C k(d cr d R k
Ticz = [<R% + pr—z - k% (In(diw) + 1) — % - k':'P—Zln(ecr)>d—f{J + <—$ + " (In(d;o) +

1)> Sy (4-53)

Where ,R = (O.Sfr +k+ kln(scr)), and d, is measured from the neutral axis and equals to

d; = h — c if the concrete tensile constitutive model extends beyond the full depth of the section

. 1.4¢ . 1.4¢
(ie.h—c< Ty)’ otherwise d; = p Y

Tension Steel Contribution

The shear stress (Ti) generated due to the steel tensile forces is taken directly from Equations
(43) and (46).

Summing all concrete and steel contributions yields to the shear stress at the soffit of the beam
and it is equated to zero at the free surface.

T(d=h) =T+ Tes — Tte1 —Teez — Tes = 0 (4-54)

The previous equation could be simplified into the following form

d de,
td=h) =qu5 +dp7 =0 (4-55)

Where q;; and q;, are constants multiplying the derivatives in equation (4.54).
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4.5.3.2 Condition Two Equating the integral of shear stresses across the section to shear
force

By integrating the shear stress distribution over the depth of the section, a second
equation/condition is found in terms of (: and ;f The integral was computed using the

superposition technique. The shear stress profile for each contribution (concrete /steel-
tension/compression) is determined using the set of Equations (4.32)-(4.47) and then the integral
of these contributions is calculated for the whole height of the beam. The summation of these
integrals equals to the shear force divided by the beam width (b).

Compressive Concrete Contribution

Figure 4-9 shows a typical shear stress distribution induced by the forces in the compressive
concrete. The first part of this distribution is variable over the compression zone, which
represents Equation (4.32). The second part is constant and equals to the shear stress at a depth
equals to the compression depth. This part extends from the end of the compression zone till the

soffit of the beam. The integral of this full profile, Figure 4-9, (A..) is calculated as follow

Ace = J; part 1.dy + [ part 2.dy (4-56)
- 0 (3 5) - ) - a0 ) 38 (a4 059 -

- (chz—a)]-dyw:ﬂfé (B (59 -2 ()~ 25 (e )+ 25 (et +

025 2 (20) oy @s7)

2

2 3 3 4 2
(S e € ) dea g gyt 4 gy (25 (d5) ()
Aee = (5 — S er + 570 ) S+ (- + = @) 521 + 1 5 () - S (5

C

3¢ decr) | 3¢ do o deer) _ & (5 de _
38&2 (ZECf dx ) + 3£é2 (ECf' dx t o dx ) 3gé2 (2(9 dx)) (h—0) (4-58)
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dScf

d
A.. = constant a, d—f + constant by (4-59)
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Figure 4-9 Shear stress profile due the compressive concrete

Compressive steel Contribution
The shear stress distribution generated due to the compression steel is constant through the

region from the location of the compression steel (d”) to the full height of the beam (h), Figure

4-10.
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Figure 4-10 Shear stress profile due the compressive steel

The integral due to the compressive steel contribution (A.s) is found by integrating Equation

(4.34) as follow

h d€qs do 4 fc d€cr de ., 2€deer | 2d’ d(@Ecp)
A= [, A/|Es—=—E,—d —=S(2—=2-2—d - =< +—=>—"<—
cs fd’ S S dx S dx el dx dx €l dx + €l dx

@d'? do
el a))-dy (4-60)

d€cs de ., f d€cs de .,  2€deer | 2d’ d(@Ecp)
A =AS|E,—=—-E,—d —=(2—=2-2—d - =<4+ —5—<—
cs s S dx S dx el dx dx €l dx + €l dx

%%)) (h —d") 4-61)

Similarly, the equation could be simplified into

dScf

d
A.s = constant a, d—f + constant b, (4-62)

X
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Tensile concrete Contribution
As described above, the tensile concrete contribution is divided into two main zones. The first
zone generates a shear stress profile as show in Figure 4-11. The integral of this profile (Atcl) is

shown in the following equations

Ecr

der="- dEs 1 eopd d d€gs 1
Atcr = |, “’Ec<(dtcp)(——f—+§d—‘§) +(9)s ) y+ [y e ((dcrcp)(— ot

dx ¢

gcf d@ dZ-\ do
EE) + (T) a) dy (4-63)

Ecr

Where, d; is measured from the neutral axis and d. = o

Ecr
di) decr | (dEeer 42y de ) "7 _dEer 1, Eerde dér)de) o _
AtCl_E(( 2)dx+(2(p ) ) (S-I_EC((dcr(p)( dx<p+<p2dx) +(2)dx>(h

dcr) (4'64)
_ €cr dscf eérect 3 _ &l Ed_(p d_%r d_(p —

Atcl—Ec<( 2(9) o 4 (4 ) S >+E ((dcrcp)( R +(2)dx>(h

dcr) (4'65)
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Figure 4-11 Shear stress profile due the tensile concrete (zone 1)

A typical shear stress induced by the second profile of the constitutive concrete tensile model is

shown in Figure 4-12.
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Figure 4-12 Shear stress profile due the tensile concrete (zone 2)

The integral of this profile (Ay;) is calculated by integrating Equation (4.40). The procedure is

described in the next set of equations.

d
Atz = [ Tdy (4-60)

Eco
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Where, (d;) is measured downwards from the neutral axis.

d £c €cr sc k(d ) €cr do R
AtCZ = %[(R(p_zf + RE - f (ln(dt(p) + 1) —L kgln(ficr)> E + <— 6 +
d€ ¢
= (ln(dttp) + 1)) — ] dy (4-67)
Where, k = - ‘(’ﬁfgy) and R = (0.5, + k + kIn(e,,))
n

Az = < R (dy) — k(d%)— — k((dt)ln(cpdt)) = _ (Rd; — kIn(gc,)dy) ( )) ‘;‘)‘(’ +

(RZde + k(ddn(@d)) ) 5= - (R%%—k(}f) k(2 In(eq) 4 - (RE -
Kin(eer) ) (-5 ))‘;;‘j (R + k(EIn(eer)) ) (4-68)

This could be simplified into

(4-69)

d
A.s = constant ag d(::

Tensile Steel Contribution

Similar to the compressive steel contribution, the shear stress profile due to the variation in the
steel tensile force is shown in Figure 4-13. The integral due to this profile (Ats) is derived from
Equations (4.43)-(4.44).

For pre-yielding condition fg < f;,

h dSC d
s = Jy A (“Es T2+ B2 d) dy (4-70)

dSCf

N = Ay (-E, T2+ ES2d) (h— d) (4-71)

For post-yielding condition fg > f;,
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h de de
N = [y A (—(Es + ED T+ (B, + ED 2d) dy (4-72)
’ 1~ A€cf N de
s = Ay (—(Bs + B T + (B + D) 2d) (h — d) (4-73)
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Figure 4-13 Shear stress profile due the tensile steel

The contribution of the steel bar holes must be subtracted from the tensile steel equations (4.71)
or (4.73), as shown in equations (4.45) or (4.46), which still needs to be integrated with respect
to y measured from the tensile steel level (d) to (h). The latter contribution must be subtracted
from A’ to yield As.

From Equations (4.56)-(4.73), the second condition equation is formulated

\%

b = Acc + Acs — Ater — Arcz — Ags (4-74)
v d de.

5 = di2 d_(;: + q22 ;Xf (4-75)

Where, q;2 and gy are functions of the geometrical and material properties as well as the strain

profile parameters.
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4.5.4 Evaluating the derivative of the strain profile parameters

The only unknowns in Equations (4.55) and (4.75) are — and “c This set of equations could be
presented in a matrix form, see Equation (4.76). By considering the inverse of a 2x2 matrix, z—j:

and could be calculated.

de
g; 322 C?;(cf [V/b] (4-76)
dx
c<1:1_(P Qi1 Q217 O
dd— =lo a2l |vp) 4-77)
X

Figure 4-14 and Figure 4-15 show a numerical evaluation of the two derivatives at hand versus
the analytical values from equation (4.77) along the shear span. These comparisons show the
accuracy of the proposed method and support the claim that the change of the curvature along the
shear span is not constant. Although, a trilinear model is a good approach to represent the
sectional behavior, a differential application requires an accurate estimation of the derivatives of

the strain profile parameters along the shear span.
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Figure 4-14 The derivative of section curvature along the shear span dg/dx vs. the shear
span using example one below (post cracking zone)
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Figure 4-15 The derivative of the maximum compressive strain along the shear span de.,
/dx vs. the shear span using example one below (post cracking zone)
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4.6 Results

In this section, the proposed analytical formulation is applied to generate the shear stresses at
different sections and load levels. A detailed example is presented to illustrate the proposed
procedure. First, the trilinear analytical approach is compared to the experimental results of
Almusallam (1997), see Figure 4-16.

The tested rectangular beam has a 200 mm*210 mm (7.87 in x 8.26 in) in cross section. It has a
length of 2.700 m (106.3 in) with a shear span of 1.252 m (49.3 in). The main flexural
reinforcement consists of 3 ¢ 14 mm bars with 1 ¢ 6.25 mm bars used for the compression steel
just to provide a caging framework for the shear reinforcement. The beam has shear
reinforcement consisting of ¢ 8 mm stirrups at 120 mm (4.7 in) spacing.

The concrete nominal strength is 31.3 MPa (4540 psi). The reinforcing steel has a yielding
strength of 552.6 MPa (80.2 ksi) and a modulus of elasticity of 200,000 MPa (29000 ksi).

The shear stresses are then retrieved at three different cross sections. The first location (section
one) is at an early stage of the post-cracking zone and the second location (section two) is
positioned just prior to the section where yielding of tensile steel first occurs. These two sections
were analyzed under 75% of the failure load. The third location (section three) is positioned just

under the concentrated force at the failure load of the beam in the post-yielding zone.

-

f——1-10M

210

10M @ 120 mm

f——3-10M

S S

l 200 l

Figure 4-16 Almusallam (1997) cross section (SI units)
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For a given applied load and a cross section location, the shear force (V) and the moment (M) are

calculated at a distance x from the support as follow, see Figure 4-17.

V== (4-78)
P

M=-x (4-79)

To continue with the analysis, the strain profile parameters, namely the curvature (¢) and the

maximum compressive strain (&) are retrieved from the trilinear approach

M—-Mcr
Q= M, —Mcr ((Py - (pcr) + Qcr (4-80)

if M, <M < My , as in sections one or two.

M-M
¢ = @G%—¢ﬂ+@y (4-81)

if My <M < M, , as in section three.

Similarly, the maximum compressive strain (&) is computed

_ M-Mcr
ch - My_MCr (scfy chcr) + chcr (4-82)

if M, <M < My , as in sections one or two.

M-M
ot = s (Ecta — Eety) + £cty (4-83)

if My <M < M, , as in section three.

. . o . d d .
The next step of the analysis is to estimate the derivative magnitudes d—j: and %. Condition one,

Equations (4.48)-(4.55) and condition two, Equations (4.56)-(4.75) were applied to determine do

dx
dECf
al’ldg.
do 0
di1 9127]ax | _
d21 Clzz] decr _[V/b] (4-84)
dx
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do

dx | _ [911 912 _1[ 0]
deer | 1q21 Clzz] V/b (4-85)
dx

. . . d de . . .
Upon finding the derivatives d—()': and d—;f, for example section one results are shown in Figure

4-14 and Figure 4-15, Equations (4.32) to (4.47) are applied to accurately calculate the shear

stress distribution at any given depth.

\L P2 l P/2
xP/2 X P/2 ?

L.

Figure 4-17 Profile of imply supported beam under four-point bending tested by
Almusallam (1997)

Table 4-2 shows the location of each examined section as well as the corresponding shear force
(V) and bending moment (M). In addition, it shows the computed curvature (¢) and maximum

compressive strain (g.f) based on the trilinear approach, Figure 4-18.
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Figure 4-18 Trilinear response vs. experimental moment-curvature graph for beam tested
by Almusallam (1997)

Table 4-2 Parameters for the three sections analyzed to compute their shear stress
distribution.

V (KN) X (mm) M (KN.m) (o) Ecf
Section one 22.55 508.00 11.46 0.00662 0.00047
Section two 22.55 1102.36 24.86 0.02246 0.00146
Section three | 30.16 1252.22 37.76 0.05076 0.003

As shown in Figure 4-19, Figure 4-20 and Figure 4-21, the shear stress distribution varies
depending on the loading and section location. Also unlike the symmetrical second-degree
parabola (i.e. shear stress distribution of un-cracked cross section) sections in the post-cracking
and post yielding zones are no longer symmetrical due to the change in concrete behavior in
tension and compression in addition to the existence of the steel. However, there are key
locations where the shear stress distribution changes its behavior. By following the shear stress
profile from the top of the section to its soffit, these key locations are defined. The first region
(zone A), see Figure 4-19, shows the effect of the compressive concrete contribution. This region

starts with a shear stress equal to zero at the top of the cross section as it is a free surface, and it
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terminates at the neutral axis depth. Zone B is the region that has the effect of the first part of the
tensile concrete constitutive model. The third region is zone C and it is nearly linear due to the
effect of the second tensile zone (tension stiffening) until reaching the level of the tensile steel
(Dowel action). Dowel action causes a drop in the shear stress profile to a small negative value.
However due to the effect of the remainder of tension stiffening contribution in the concrete

cover, the shear stress comes back to zero as expected (free surface at the beam soffit) (Zone D).
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Figure 4-19 Shear stress distribution of section one for the beam tested by Almusallam
1997.
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Figure 4-20 Shear stress distribution of section two for the beam tested by Almusallam
1997

In section three at the failure load just under the concentrated force point, Figure 4-21, it is
interesting to observe the opposite change in direction of the shear stresses within the
compressive depth. This change is a result of the descending branch of the Hognestad’s parabola.
Furthermore, the shear stress shows a constant zero region across the concrete cover depth as the

tension-stiffening model vanishes at 1.4 times the yielding strain of the steel.
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Figure 4-21 Shear stress distribution of section three for the beam tested by Almusallam
1997.

4.7 Conclusions

In this study, the authors intend to provide a mechanics-based understanding of the shear
behavior in reinforced concrete flexural beams. An analytical formulation of shear stress
distribution in cracked reinforced concrete, throughout its stages of post-cracking and post
yielding, is presented using the smeared crack approach. This formulation uses the transverse
shear differential equation to compute the shear stress at any given depth across the height of the
beam through the derivative of axial forces acting above that desired depth. While the axial
forces are found in accordance with the corresponding strain profile, which is computed by
idealizing the sectional response of the beam to trilinear sectional relationships. Furthermore,
the effect of the longitudinal steel on shear stress distribution, known as dowel action, is
computed for the first time and found to be significant enough not to be ignored as typically done
in design codes. In addition, the study provided a detailed evaluation of the variation of the strain

profile parameters (¢, €.f) with respect to shear span or the corresponding moment, which is
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found to be non-linear compared to other studies that assume it as a constant. This analytical
formulation was then applied to an experimental study to retrieve the shear stresses at three
different cross sections under different applied loads. It is interesting to observe for the first time
from the generated shear profiles certain key features of the behavior that may prove to be very

useful in interpreting shear failures, which are beyond the scope of this study.
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Chapter S - Mathematical Characterization of Crushing Failure

Mode in Flexural Reinforced Concrete Beams

Concrete crushing failure mode in reinforced concrete flexural beams, for the most part, is
thought-out to be independent of concrete cracking. Accordingly, it was specified to occur at a
constant compressive strain selected by ACI 318 to be 0.003 and by Euro code at 0.0035. In this
study, a new approach is developed to predict this failure mode numerically by considering
concrete cracking produced at crushing failure mechanism. The combination of axial
compressive stresses and shear stresses within the compression zone were used to explain the
occurrence of concrete cracking at the crushing point slightly below the top surface through a
dish —like crack that develops at the location of maximum moment. The calculation of shear
stress profile after yielding is performed using an innovative smeared crack approach. This shear
stress distribution combined with axial compressive stresses yields tensile-compressive principal
stress state that captures tensile cracking when a biaxial concrete failure criterion is invoked.
Applications of shallow beams tested in flexure up to concrete crushing failure mode are

examined. The presented numerical results are, thus, experimentally qualified.

5.1 Introduction

Concrete crushing is one of the most desirable failure criteria of reinforced concrete if it takes
place after steel yielding. Yet, it lacks a complete agreement among the researchers. According
to many reinforced concrete design codes, concrete crushing is a phenomenon that is only related
to the compressive stresses in concrete. Although ACI 318-14 adopted the value of 0.003 to
represent the maximum useful concrete strain (crushing strain), ACI 318 commentary states that

the maximum compressive strain in concrete at crushing has been observed in tests to range
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between 0.003-0.008. Furthermore, PCA Notes (2013) presents a collection of compressive
failure strains from beam and column tests in a graph showing a scatter in the range of 0.0028-
0.0058. In 1955, Hognestad et al. developed a concrete stress distribution in compression. This
model follows an ascending parabolic curve up to the maximum compressive strength and then
starts to descend until reaching a maximum compressive strain. Also Hognestad et al. built a C-
shaped specimen to study the concrete compressive behavior.

This approach, of limiting the concrete compressive strain, did not manage to answer
Gonnerman (1925) question of; why does the ratio of the compressive failure stress to the
compressive strength decreases according to the size effect? While this question motivated
Bazant (1984) to derive the size effect law, which uses the principle of energy balance of cracks
to explain the behavior of geometrically similar structures with different sizes. From a different
perspective, Zwoyer (1954) observed the similarity between the diagonal tensile cracks and the
flexural compression failure (concrete crushing). Using this observation, Moody et al. (1954)
described the failure of reinforced concrete beams to be composed of two stages; the first stage
includes diagonal tension cracking followed by crushing as a second stage. However, the
described failure mode was said to be controlled by (M/Vd) ratio. With smaller ratios, the
described diagonal tension mode of failure occurs. Larger (M/Vd) ratio results in almost pure
flexural crushing failure.

In this study, the authors utilized to the actual stress state in cracked reinforced concrete beams
to present a numerical demonstration of concrete crushing as a cracking failure mode. The
combination of axial compressive stresses and shear stresses within the compression zone were
used to explain the occurrence of concrete cracking at the crushing point through a dish —like

crack that develops at the section of maximum moment. The calculation of shear stress profile
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after yielding is performed using the transversal shear differential equation under the smeared
crack assumption. The biaxial stress state within the compression zone was compared to a biaxial
failure criterion to determine the concrete state. This study emphasizes that the concrete crushing

is nothing but an oriented concrete principal tensile stress failure in the compression zone.
5.2 Nonlinear sectional Analysis

A fully independent stress-strain relationship is assumed between the concrete and the
reinforcing steel. The axial stress in steel would be a result of the axial strain in the steel only.
5.2.1 Concrete Behavior

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, Equation
(5.1), for compressive stresses (f.) and a linear relationship with a slope equal to the concrete
modulus of elasticity (E.) up to cracking strain (e.) in tension, Figure 5-1. This linear
relationship is then followed by a descending curve as a numerical function in (e.;) and the steel

yielding strain (gy), see Figure 5-4.

fo= @ - () (5-)

gc! &
The concrete tensile rupture stress (f;) is taken as a lower bound equivalent to 5 — 7.5./f.’, for
light weight concrete this value is reduced by 25%. A linear relationship with a slope equal to
the concrete modulus of elasticity (E.) up to cracking strain (&) in tension is assumed.
The concrete behavior in tension after the cracking strain is described using Equation (5.2). The
constants in the developed equation were calibrated against a large pool of four points bending

tests on shallow beams.

L= 1 (&) (5-2)

T4
0.5fr ln(g_gy) Ecr
cr
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This proposed descending function on the domain (g, < &; < 1.4€y) starts by a sudden drop
from its peak (f;) to (0.5 f;) at the cracking strain (&) and continues to descend till zero when the
tensile strain reaches (1.4 €,), see Figure 5-2. This function is an average function between the
tension softening which exist near the cracking strains and the tension stiffening that activates

around the steel bar locations.

fl

o

Concret compressive stress

EC

Concrete compressive strain

Figure 5-1 Concrete compressive stress-strain curve (Hognestad's Equation)
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Figure 5-2 Concrete tensile stress-strain relationship

5.2.2 Steel Behavior
Regarding the steel axial stress-axial strain relationship, a bilinear relationship is assumed in both
the compressive and the tensile analysis, Figure 5-3.

fs = Eses < fy (5-3)
Where (f;) is the steel stress corresponding to the axial strain (&), (Es) is the modulus of elasticity
of steel, (fy) is the steel yielding stress. The steel is assumed to start hardening after exceeding
the yielding stress (fy) according to the following equation

fs=fH+ E;(ss — sy),whenfs > fy (5-4)
(E’s) is the slope of steel hardening after yielding and it is determined based on the yielding
strength (fy), Table 5-1 shows the relationship between the estimated (E’;) and the corresponding

(f,) (Rasheed (1990)).
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Table 5-1 The estimated modulus of elasticity (E’;) and the corresponding (f,) relationship

fy (ksi) E’, /E
40-45 0.3-0.7%
45-50 0.7-1.2%
50-63 1.2-2.5%
fy ! E' :
r 1 ® :
7 : 1
s | i
b : i
© | H
(] I 1
b | -
{Es :
Ey Esu

Steel strain

Figure 5-3 Steel stress-strain relationship

5.3 Sectional Analysis approach

5.3.1 Forces

5.3.1.1 Compressive Forces

Compressive concrete contribution

By integrating the Hognestad’s profile over the region from the neutral axis up to the maximum
compressive concrete fiber, the concrete compressive force (C.) is derived for the section based

on the following equations

C.= [ f-bdy (5-5)
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C, = fc’b.%(cz _ec (5-6)

3¢ec

Compressive Steel Contribution
The compressive steel force (Cs) is a linear relationship with the corresponding steel strain (&5’).
This relationship was driven based on the assumption of the bilinear behavior for the steel

analysis.

Co= AL~ AR (R - (%)) (57
5.3.1.2 Tensile Forces

Tensile steel Contribution

The tensile steel force (Ts) follows the same bilinear behavior based on the following equation

Ty = AsEgeg,when f; < f, (5-8)

Ts = As(fy + Es(es — &y)), when f; > f, (5-9)

Tensile Concrete contribution
The concrete tensile capacity is divided into two main profiles, Figure 5-2. The first profile is a
linear relationship up to the cracking strain (e.;) with a slope equal to the concrete modulus of

elasticity (E.). This profile leads to a tensile force (T;) equals to

d
Toy= Jy' fi-bdy (5-10)
__fF
‘1= 259 (5-11)

The second profile is a descending curve which majorly contributes in the total concrete tensile

capacity. This profile is a result of the concrete softening, concrete stiffening due to the steel
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bond as well as the residual stresses due to shrinkage effect. The tensile force due to this profile

(T,p) is calculated as follow
dis des 0.5fF
Tep = [ bfedy=b[;* 05/, - —2l-In () dy

1.4¢
Y
Co) 5
cr

Where y is measured from the neutral axis

0.5bfr 1.4£y/(p
T., =[——7—(yl l —y =yl 0.5f,
2= () (yIn(e) + yin(y) —y — yln(es)) + 0.5£y] s
Where,
dis = 14e, /@

5.3.2 Moments

5.3.2.1 Compressive concrete contribution

(5-12)

(5-13)

(5-14)

The point of application of concrete compressive force is measured from the extreme

compressive fiber (y cy) based on volume centroid calculations. Where (c) is the depth of the

compression zone and (y) is a ratio between zero and one.

e 1_fef
focfscfc-dsc 3 12 L

y = 1 - Tef = T
Ecf fo fe-dec 1_3_elc

My = (C_Y-C)*Cc

5.3.2.2 Compressive Steel Contribution

The compression steel moment is calculated according to the following equation.

Mcs = Cs(C—d")

5.3.2.3 Tensile Concrete contribution

(5-15)

(5-16)

(5-17)

(M) is the moment induced due to the concrete resistance up to the cracking point. While,

(Mc2) is the moment due to the constitutive tensile model.
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2_fr
My =Ta5755 (5-18)

dis dts 0.5fF
Mic = [3 bfoydy=b[,“[0.5f, - =25 In (*)ly dy (5-19)

1.4€
Yy
=
Where, y is measured from the neutral axis.

2 1.4e, /@

0.5bf, [ y? 2 zy?
(y? In(p) + y?ln(y) - y; - y?ln(ecr)> + 0.5f, y?] £/

In (1;—?)

5.3.2.4 Tensile steel Contribution

M = [~ (5-20)

The contribution of the moment induced due to the steel reinforcement at any stage of loading is
determined as follows
M =Ts(d — C) (5-21)

5.3.3 Moment-Curvature Calculations

A numerical procedure was followed to generate the moment-curvature curve. In this procedure,
the maximum compressive fiber strain value (€.) was gradually increased until reaching the
concrete crushing strain of (0.003). In order to accurately calculate the strain profile under each
step value of ecf, the correct depth of the compression zone (¢) was necessary to define the strain
profile and the corresponding stress profile and forces/moments. The sectional force equilibrium
equation was then applied to validate the depth of the compression zone (c¢) by iterating for the
correct depth of compression zone that makes the summation of forces equal to zero, equilibrium

1s maintained.

p="2 (5-22)
g5 = @(d —¢) (5-23)
&' =@(c—d") (5-24)
gsf = @(h—o¢) (5-25)
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The summation of moments due to concrete and steel contributions then yielded the applied
internal moment of the section, and the moment-curvature curves were fully generated, see

Figure 5-4. The progressive moment-curvature calculation procedure is described in a flow chart,

see Figure 5-5.

L

/ Post Yielding Zone
/ Post Cracking Zone

Pre cracking zone

Moment

Curvature

Figure 5-4 Typical beam moment vs. curvature sectional response

113



Define the
geometrical and
material properties

YES Compute the

v

Choose the maximum
compressive strain level

I

Assume the depth of
the compression zone

l

Define the strain
profile (g, &/, )

:

Compute the
corresponding forces

Forces in

corresponding

moments

l

Calculate the beam
mid-span deflection
corresponding to P

l

equilibrium?

Figure 5-5 Sectional analysis flow chart
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5.4 Differential Sectional Analysis

5.4.1 Shear Stresses Differential Equation

Shear stresses distribution over a shallow beam depth is formulated through the axial forces

acting on the beam cross section. Considering an infinitesimal element with length dx of the

beam, the differential bending moment acting over dx is dM, Figure 5-6. At any given depth, the

equilibrium of forces in the longitudinal direction is satisfied through the longitudinal shear Ty,

Figure 5-7. Also from equilibrium, the longitudinal shear is equal to the transversal shear 1.

SE =0

[o'.dA— [o".dA—1(b.dx) =0
F'— F" — 2(b.dx) = 0

dF —1(b.dx) = 0

= 1F'-Frr _ 1dF(¢,f)
b dx b dx

M M-+dM

cl

.

c3

c4

7 o2
h
—
—

——

T g |

\i
=

>

Figure 5-6 Axial stress distribution over an infinitesimal element dx
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> &<—

“«— . o4
a3 —
<
&«—— >V
dx

d’

Figure 5-7 Axial stress distribution over an infinitesimal element dx and depth d’

5.4.2 Numerical Evaluation of Shear Stress Distribution

For each load level, one hundred vertical sections were taken over the beam shear span length.

For each vertical section, 50 equally spaced nodes were taken along the height of the section. At

any given depth, the axial forces are calculated by integrating the axial stresses over the covered

distance. By summing the axial forces above a given depth for two constitutive vertical sections,

the shear stress at the given depth is evaluated, Equation (5.31).

5.4.2.1 Compressive concrete contribution

By integrating the Hognestad’s profile over the area from the top of the section to the specific

depth dc, the concrete compressive force (Cc) is derived for the section based on the following

equations

28, (2.

Cc ’ 2
C, = fc—dcfc'b dy=fcc_dc bf. (S_g - (S_g) )dy

where, y is measured from the neutral axis

3 c
Co= b SOA =3 _ g,

7
€

Where, d. is measured from the top of the section
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5.4.2.2 Compressive Steel Contribution
The compressive steel force (Cs) is a direct linear relationship with the corresponding steel strain
(g5”). This relationship was driven based on the assumption of the bilinear behavior for the steel

analysis.

gg’ gg’ 2
Co = Afy = Af (@2 - _(2)) (5-33)

€c

5.4.2.3 Tensile Concrete contribution

The concrete tensile capacity is divided into two main profiles

d
T, = fo ‘fi.bdy (5-34)

Where y is measured from the neutral axis and d; is measured from the neutral axis

__ bEc@d}

Te, =4 (5-35)
— dg _ de 0.5fr €t
Tey = [, bfedy=b[* 0.5f, — it n (%) av (5-36)
Where y is measured from the neutral axis
_ 0.5bf; d;
Tez = [—@ (yIn(p) + yin(y) —y — yln(ec)) + O'Ser]Scr/QD (5-37)

5.4.2.4 Tensile steel Contribution

The tensile steel force (Ts) follows the same bilinear behavior based on the following equations

Ts = AsEses, when f; < f, (5-38)
Ts = As(fy + Es(es — €y)), when fs > f, (5-39)

5.5 Constructing shear stress distribution

Typical shear stress profiles are numerically generated using Equations (5.32)-(5.40) substituted

into Equation (5.31). Figure 5-8 presents the shear stress distribution for un-cracked section. The
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stress profile is very similar to the classical parabolic shear stress distribution in linear beams
except for the effect of dowel action shown at the level of tensile reinforcement. Figure 5-9
shows the shear stress distribution for a post-cracked concrete section. Figure 5-10 illustrates the
shear stress distribution for post yielded section. It is evident that the shear stresses within the
compression block start negative in value due to the descending part of Hognestad’s parabola.
Then these stresses shift to positive values. In addition, dowel action shift shear stresses to zero

shear stress since tension stiffening is vanished at this stage of loading.

Shear Stress (t)

\
\

Section height (d)

>
N
P
/ ¥ Dowel action

f——

Figure 5-8 Typical pre-cracking shear stress distribution
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Shear Stress (t)
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5
£
c
kel
Dowel Action
Figure 5-9 Typical post cracking shear stress distribution
Shear stress (t)
\\\\
z
5
()
€
8
5 - ™
\v/
A
\
Dowel Action

Figure 5-10 Typical post yielding shear stress distribution

5.6 Principal stresses analysis
5.6.1 Principal stress by Mohr’s circle

By applying Mohr’s Circle for each numerical node, the principle stresses 64,0, and their

orientations are calculated.
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Oavg = U"Zay Where, 6,=0 (beam theory) (5-40)
_ 2

R=(552) + 2, (5-41)

max principle stress 0, = 0gpgt+ R (5-42)

min principle stress 0, = 049~ R (5-43)
_ 2Txy _

Tan(260) = P (5-44)

(0,,T4)

v

Shear stress

(0,,-Ty)

Axial stress

Figure 5-11 Mohr's circle

5.6.2 Modified Kupfer and Gerstle biaxial cracking criterion

Kupfer and Gerstle (1973) have suggested an analytical maximum strength envelope for biaxial
loading in concrete. Complying with this envelope, Kupfer and Gerstle also proposed simplified
expressions of biaxial strength for different stress combinations. For tension-compression stress

state, Kupfer and Gerstle adopted a linear reduction of tensile strength in accordance with the

increased compression

120



o = (1-222) £, (5-45)

Where (oy¢) is the major principal tensile stress and (o,c) is the minor principal compressive

stress.

However, this equation does not represent well the case of high ratios of % > 0.85 (For

22¢ — 125> 1) . Hence, a modified equation was developed here to

(o)
example, at f,—lct =0, =

represent that particular stress state. This equation describes the region 0.85 < % <1, see

Figure 5-12. The linear equation for this segment is as follow
o1t __ O2¢ -
e = 0.192 e + 0.192 (5-46)

if (o, (principal tensile stress) > o) {"Cracked Concrete"}

0.1
0.09
0.08
0.07

no 0.06
A0 7’
0O 0.05

olt/ f'c

SO 0.04
(\e’é( 0.03
0.02

0.01
Modified criterion, Equation 5.47

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
0-Zc/f'c

Figure 5-12 Concrete biaxial cracking criterion

5.7 Results

The formulation developed in this study is applied to retrieve the shear stress distribution of

cracked concrete at the failure section under the maximum load. Furthermore, Mohr’s circle is
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used to extract the principal stresses across the beam depth while using the concrete biaxial
cracking criterion (modified Kupfer-Gerstle criterion) to predict the cracks within the
compression zone.

5.7.1 Example one

The goal of this example is to confirm the accuracy of the non-linear numerical sectional
analysis used in this study to predict the sectional response of the beam. This beam was tested by
Rasheed et al. (2015). The rectangular beam is a 305mm*153mm (6 in x 12) in cross section. It
has a length of 4.88 m (16 ft) and a clear span of 4.72 m (15.5 ft). The main flexural
reinforcement consists of 2¢16 (2 No. 5) bars with 2¢10 (2 No. 3) bars used for the compression
steel, Figure 5-12.

The concrete nominal compressive strength was 34.5 MPa (5000 psi). While, the material
properties of the reinforcing steel were 200,000 MPa (29000 ksi) for the modulus of elasticity

and yield strength of 482.3 MPa (70 ksi).

— 2010

I ¢l0at127 mm

305

2916

153

Figure 5-13 Beam R1 section tested by Rasheed et al. (2015)
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Figure 5-14 Moment-curvature of Beam R1 tested by Rasheed et al. (2015)
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Figure 5-15 Load vs. Max. compressive fiber strain of beam R1 tested by Rasheed et al.
(2015).

123



-3
12 e
/ - 25
10
— / B 2
g8 a2
5 / - 1.5 5 Analytical
a 6 a
/ e Experimental
a -1
2 / - 0.5
0 -0
0 0.005 0.01 0.015

Rebar strain

Figure 5-16 Load vs. rebar strain of beam R1 tested by Rasheed et al. (2015).
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Figure 5-17 Load vs. neutral axis depth of beam R1 tested by Rasheed et al. (2015).

An excellent agreement of the experimental results is observed against the proposed numerical
approach. Rasheed et al. (2015) tested this beam under four points bending with shear span of
175.3 mm (5.75 ft). Figure 5-14 and Figure 5-15 present a comparison between the numerical
and the experimental data of the maximum compressive strain and the rebar strain. These two
graphs show a very good agreement in the post cracking zone and the post yielding region up to

the failure of the strain gages. The numerical variation of the neutral axis and the experimentally
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evaluated neutral axis comparison is shown in Figure 5-16. A generally good correspondence is
observed as well.

These comparisons are presented to illustrate the accuracy of the proposed method in predicting
the sectional response of the beam. The bending moment-beam curvature comparison shows an

excellent agreement of the sectional response of the beam.

5.7.2 Example two

The second example examined Almusallam (1997) beam. He tested a rectangular beam 200 mm
x210 mm (7.87 in x 8.26) in four point bending. The beam has a length of 2.700 m (106.3 in)
with a shear span of 1.25 m (49.2 in).The beam main flexural reinforcement consists of 3 ¢ 14
mm bars with 1 ¢ 6.25 mm bars used for the compression steel.

The concrete nominal strength is 31.3 MPa (4540 psi). The reinforcing steel has a yielding
strength of 552.6 MPa (80.2 ksi) and a modulus of elasticity of 200000 MPa (29000 ksi).

In this second example, the axial stress distribution and the shear stress distribution as well as the
principal stress distribution are calculated across the height of the beam at a section positioned
just under the load at the failure of the beam. This section was chosen to study the concrete

behavior at crushing.

— 13625

—— @8 at 120 mm

210

— 3014

Jru—
N
o
o

R

Figure 5-18 Almusallam 1997 beam cross section
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Figure 5-19 Load vs. mid-span deflection for beam tested by Almusallam 1997.
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Figure 5-20 axial stress distribution at failure for beam tested by Almusallam 1997

The axial stresses over the height of the beam are calculated in accordance to the concrete
material models defined earlier. Where, Hognestad’s parabola describes the concrete behavior in
compression up to the neutral axis. Under the failure load at the load location, the examined

section shows the full Hognestad’s parabola development, see Figure 5-20.

126



To continue with the analysis, shear stresses were then evaluated for the same section using the
numerical shear differential equation. For each given section, a preceding section at an
infinitesimal distance was taken to be analyzed. In order to compute the shear stress at any given
depth (d), the axial forces within the depth (d) for the two successive sections are calculated.
Then, the shear stress is found by numerically applying Equation (5.31). The shear stress
distribution varies depending on the section location. The examined section is located in the post
yielding zone, where the tensile steel has yielded. Figure 5-23 shows the calculated shear stress
distribution under ultimate moment at failure. Over the height of the beam, the shear stress
profile shows different behaviors which depend on its location. Zone A, see Figure 5-21,
describes shear stress profile within the compression zone, it shows a parabolic behavior with a
change in shear direction (sign). The next zone, Zone B, starts at the neutral axis and goes
through the concrete tensile contribution up to the tensile steel level. At which, dowel action is
observed. Dowel action marks the beginning of the third zone (Zone C) where the shear stresses

sums up to zero through the entire cover of the beam.

Shear stress (ksi)
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0 0
Zone A 1 !
2 0.05
_ 3 —_
£ £
= 4 Zone B ol =
a 5 -3
[} ()
© 6 - 0.15 o
7
g Zone C L 0.2
) T 9 T T T
-2.067 -1.067 -0.067 0.933 1.933
Shear stress (MPa)

Figure 5-21 shear stress distribution of section three for beam tested by Almusallam 1997
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In section three at the failure load just under the concentrated load point, Figure 5-21, it is
interesting to observe the opposite change in direction of the shear stresses within the
compressive depth. This change is a result of the descending branch of the Hognestad’s parabola.
Figure 5-22 shows the stress profiles of three different sections in the post yielding zone. The
first section represents the early stages of the post yielding zone. At this section, the shear stress
sign (direction) does not change. The same observation is made for the second profile that is
located slightly prior to the critical section. Section three, at failure, shows the change of the
shear stress direction (from negative to positive). This similar change of shear stress direction
also appears over a short distance including few sections just before the maximum moment

section (i.e. at sections with moments around 97%-100% of the failure moment).

Shear stress (ksi)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0 -0
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2 - 50
£ 3 E
= 4 =
> Max. failure section - 100 "é
[a] 5 (a]
g Just before failure £
o ©
@ Post yielding start section 6 g
- 150
7
8
I T T T 9 T T T T [ 200
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Shear stress (MPa)

Figure 5-22 Shear stress distributions of three different sections within the post yielding
zone for beam tested by Almusallam 1997
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Using Mohr’s circle and the calculated axial and shear stresses, the principal stresses were
generated. Figure 5-23 shows the variation in the major/tensile principal stress for the given
section. On the other hand, Figure 5-24 presents the variation of the minor/compressive principal
stresses. The two principal stresses were then applied to the biaxial concrete failure criterion to

predict the location and orientation of the cracked concrete.

Max. principal stress (ksi)
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Figure 5-23 Tensile principal stresses of the maximum moment section for beam tested by
Almusallam 1997
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Figure 5-24 Compressive principal stresses of the maximum moment section for beam
tested by Almusallam 1997

5.7.2.1 Formation of concrete tensile cracks

At the later load stages near failure, the shear span was divided into a number of sections. Each
section was divided into a number of nodes at equal spaces across the height of the section. The
proposed analysis was applied on each node to determine if it was cracked. In Figure 5-25, the
cracked concrete map is generated using the proposed approach in the post yielding zone for a
range of 97% to 100% of the maximum load. The generated cracks within the upper region of the
compression zone appear to take a dish-like shape as observed in the experimental results from
literature of concrete crushing failure. This finding comes as a result of the axial-shear combined
stress state in that zone. Figure 5-26 shows the principal stress state of an element at the upper
region of the compression zone under the maximum load. Note that the section depth in Figure

5-25 is measured from the beam bottom surface.
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Figure 5-25 Cracks map just below the top of the section at the post yielding zone for beam
tested by Almusallam 1997
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Figure 5-26 The principal stress state of an element in the upper region of the compression
zone under the maximum load

5.8 Conclusions

In this study, a new mechanics-based approach is developed to mathematically demonstrate the
concrete crushing failure mode of reinforced concrete beams. The actual stress state of a beam
element within the compression zone is considered under the assumption of the smeared crack

approach. The combination of axial stresses and shear stresses within the compression zone was
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used to explain the occurrence of concrete cracking at the crushing point below the top surface
through a dish—like crack that develops at the location of maximum moment. The shear stress
distribution was numerically retrieved through the transversal shear differential equation and was
found to be reversed in this compression region leading to the dish—like crack. This shear stress
distribution combined with axial compressive stresses yields tensile-compressive principal stress
state that predicts cracking when a biaxial concrete failure criterion is invoked. This study
concludes that the concrete crushing is nothing but an oriented principal tensile cracking, which

is very similar in behavior and nature to shear or diagonal tension cracks.
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Chapter 6 - Experimental program

Due to the scarcity of flexural reinforced concrete beam tests that reflect the cracking
parameters, a small sized experimental program is conducted .The experimental program
consists of designing and testing one full scale concrete beams. The beam is designed to fail in
concrete crushing after the yielding of the tensile steel. Four-points bending test setup is chosen
to reflect the goal of this study. Series of comparisons between the experimental and the

numerical results are held to validate the accuracy of the presented approach.

6.1 Beam Geometry

The rectangular beam is a 305 mm™*153 mm (6 in x 12) in cross section. It has a length of 4.88
m(16 ft) with a clear span of 4.72 m(15.5 ft) . The main flexural reinforcement consists of 216
(2 No. 5) bars with 2¢10 (2 No. 3) bars used for the compression steel just to provide a caging
framework for the shear reinforcement.

The concrete that was used in casting the beam is ready mix with a mix design nominal
compressive strength of 34.5 MPa (5000 psi). The material properties of the reinforcing steel
were provided by the manufacturer to have a modulus of 200,000 MPa(29000 ksi) and yield

strength of 482.3 MPa(70 ksi).
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Figure 6-1 Tested beam cross section
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6.2 Material Properties

The concrete that was used in casting the six beams is ready mix with a mix design nominal
strength of 5000 psi (34.5 MPa). While casting the beams, 6 cylinders were also prepared for the
actual material testing. The cylinders were 4in. x 8in. and were tested in compression after 28
days. The results of these cylinders tests showed an average of 5.3 ksi comparing to 5 ksi

nominal design strength.

Figure 6-3 Concrete cylinder compression test (after test)
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Figure 6-4 Steel tensile test

Regarding the steel reinforcement, three 6-inch steel specimens of each of the tension and
compression were tested in tension at by KDOT research lab. The modulus and yield strength of
the No. 3 bars (compression steel) were 28500 ksi and 80.1 ksi, respectively. These values
represent the average test results of 3 samples. The modulus and yield strength of the No. 5 bars

(tension steel) were 28000 ksi and 64.5 ksi, respectively.

6.3 Construction of Formwork and Caging

The fabrication of all wooden formwork and steel rebar caging was at Kansas State University
facilities. Since the plywood that is used for the bed of the formwork is available only in 4* x 8’

sheets, the forms had to be fabricated in two halves then combined to create a 16 ft long form.
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Figure 6-6 Form work
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Figure 6-8 Steel cage work
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Eight strain gages at three different locations were used to capture the tensile strain along the
beam depth. The first location is within the shear span at 49 inches from the mid-span. The
second location is within the shear span at 47 inches from the mid-span of the other side of the
beam. The third location is at the mid-span. The first and the second location had two strain
gages; one at the tensile steel level and one on the top surface of the beam. The third location, at
mid-span, included four strain gages, where two were located on the steel and two were located

on the top surface to capture the maximum compressive strain.

A e e
: ,,.‘1‘3?!!& C

Figure 6-9 Tensile steel strain gages
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Figure 6-11Form work and cage work with strain gages
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Figure 6-13 Casted reinforced concrete beam (side view)
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Figure 6-14 Casted reinforced concrete beam

6.4 Test Setup

The beam was tested in four-point bending using a 4-ft long steel spreader beam and. The beam
was simply supported with plates and rollers at the supports. The supports are placed 3 inches

(75 mm) from the edge of the beam, providing a clear span of 15.5 ft (4724.4 mm).

P/2 P/2

P/2 P/2

La

Figure 6-15 Profile of simply supported beam under four-point bending
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Figure 6-17 Spreader beam
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6.5 Test Results

The beam failed in ductile behavior, where the tensile steel yielded at 5.78 kips before the
concrete fails at 5.8 kips with a maximum compressive strain of 0.0038. The experimental
moment-curvature, moment-maximum compressive strain, load-maximum compressive strain,
load-rebar stain were generated and compared to the presented nonlinear sectional analysis.

A very good agreement was observed for the moment versus curvature as well as moment versus
maximum compressive strain. These comparisons confirm and validate the accuracy of the
proposed sectional analysis response. Furthermore, the experimental numerical derivative of the

variation of the strain profile parameters were compared to the numerical derivative found

through the proposed approach.

Figure 6-18 Tested beam concrete failure
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Figure 6-20 Tested beam principal tensile cracking (side two)
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Figure 6-22 Load-rebar strain graph of the tested beam
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Figure 6-23 Moment-curvature graph of the tested beam
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Figure 6-24 Moment-maximum compressive strain graph of the tested beam
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Figure 6-25 Moment- de./dM graph of the tested beam
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Figure 6-26 Moment- dg/dM graph of the tested beam
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Figure 6-27 Shear cracks comparison (Numerical vs. Experimenta)

149




Chapter 7 - Conclusions and Recommendations

7.1 Conclusions

The first part of this study was conducted to develop a tensile constitutive model for nonlinear
analysis of flexural concrete beams reinforced with steel bars. An incremental-iterative
numerical analysis was followed to study the nonlinear flexural beam behavior and generate the
analytical graphs. The proposed tensile constitutive model has a sudden drop at cracking strain,
followed by a descending curve up to zero at( 1.4€,). Series of comparisons were performed to
validate the accuracy of the adopted model against the global experimental behavior for a large
pool of beams. Two extra comparisons were conducted to check the applicability of the model
against the sectional response of different beams. As a result of these comparisons, the model
showed an excellent agreement with the validating experiments for the sectional and the global
responses.

A secondary goal of this step was to confirm the trilinear behavior for moment versus curvature
and moment versus maximum compressive strain graphs. Through all the comparisons in this
study, and by using the proposed model, the trilinear behavior was observed in all the sectional
and the global responses. Even though the literature has several tension stiffening models, the
authors believe that this new model is more objective since:

1. The final degradation of cracked concrete is related to the yielding strain in steel rather than

multiples of the cracking strain of the concrete.
2. The loss of energy due to cracking fracture is captured in a more pronounced way than
earlier model.
3. The current model furnishes a single mathematical expression making it easier to implement

in analytical formulations.
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In this study, a novel non-linear formulation was developed using the smeared crack approach.
It is used to predict the shear stress profile along the shear span of shallow beams in flexural
cracked concrete at all stages of loading up to flexural failure. These shear stress profiles are
coupled with the nonlinear axial stress profiles to obtain the principal stress distribution along
the shear span. Kupfer and Gerstle failure criterion is used to predict the likely occurrence of
new shear-flexural cracks by setting the major principal stress equal to the limit provided by the
Kupfer criterion.
It is interesting to observe the prediction of diagonal tension cracks along a curved path, which is
expected to be much more accurate than other shear theories that assume a constant shear crack
orientation.
An analytical formulation of shear stress distribution in cracked reinforced concrete, throughout
its stages of post-cracking and post yielding, is presented using the smeared crack approach. This
formulation uses the transverse shear differential equation to compute the shear stress at any
given depth across the height of the beam through the derivative of axial forces acting above that
desired depth. While the axial forces are found in accordance with the corresponding strains
profile, which is computed by idealizing the sectional response of the beam to trilinear sectional
relationships. Furthermore, the effect of the longitudinal steel on shear stress distribution, known
as dowel action, is computed for the first time and found to be significant enough not to be
ignored as typically done in design codes. In addition, the study provided a detailed evaluation of
the variation of the strain profile parameters (¢, &) with respect to shear span or the
corresponding moment, which is found to be non-linear compared to other studies that assume it
as a constant. This analytical formulation was then applied to an experimental study to retrieve

the shear stresses at three different cross sections under different applied loads. It is interesting to
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observe for the first time from the generated shear profiles certain key features of the behavior
that may prove to be very useful in interpreting shear failures.

Regarding concrete crushing, a mechanics-based approach is developed to mathematically
demonstrate the concrete crushing failure mode of reinforced concrete beams. The actual stress
state of a beam element within the compression zone is considered under the assumption of the
smeared crack approach. The combination of axial stresses and shear stresses within the
compression zone was used to explain the occurrence of concrete cracking at the crushing point
below the top surface through a dish-like crack that develops at the location of maximum
moment. This study concludes that the concrete crushing is nothing but an oriented principal

tensile cracking, which is very similar in behavior and nature to shear or diagonal tension cracks.

7.2 Recommendations

From the major conclusions presented in the preceding section, additional works could be
made in the future, as follows
1. Combine the discrete crack approach which would result into a more accurate prediction
of crack locations
2. Develop a simplified approach for easier application.
3. Generate a complete a comprehensive software to predict the tensile cracking as well as

the concrete failure in the compression zone.
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