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Abstract 
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based on the smeared crack approach. Furthermore, the determined shear stress distribution 

coupled with the normal axial stress distribution are used to predict the principal stress variation 

across the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress 

cracking criterion, the likely diagonal tension cracks along their orientation profile are predicted. 

 

Furthermore, this study is conducted to provide a mechanics-based understanding of the shear 

stress distribution in cracked reinforced concrete. This approach utilizes the transversal shear 

differential equation to evaluate the shear stress at any given depth by the variation of the axial 

stress distribution within an infinitesimal beam segment at that depth. In addition, this study 

presents a more accurate representation of the change in the strain profile parameters with 

respect to the sectional applied moment. Furthermore, the dowel action effect is derived to 

illustrate its significance on the shear stress distribution at various stages of loading. 
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Notations 

𝑨𝒔 = Tensile steel area mm2 (in2) 

𝑨𝒔 = Compressive steel area mm2 (in2) 

𝑨𝒄𝒄 = The integral of the shear stress profile due to the compressive concrete contribution N/mm 

(k/in) 

𝑨𝒄𝒔 = The integral of the shear stress profile due to the compressive steel contribution N/mm 

(k/in) 

𝑨𝒕𝒄𝟏 = The integral of the shear stress profile due to the tensile concrete contribution (part 1) 

N/mm (k/in) 

𝑨𝒕𝒄𝟐 = The integral of the shear stress profile due to the tensile concrete contribution (part 2) 

N/mm (k/in) 

𝑨𝒕𝒔 = The integral of the shear stress profile due to the tensile concrete contribution N/mm (k/in) 

𝒄 = Compression depth mm (in) 

𝑪𝒄 = Concrete compressive force KN (kips) 

𝑪𝒔 = Steel compressive force KN (kips) 

𝒅 = Tension steel depth from the top surface mm2 (in2) 

𝒅′ = Compression steel depth from the top surface mm2 (in2) 

𝒅𝒕𝒔 = Depth (measured from the top surface) at which the concrete tensile model ends mm2 (in2) 

𝑬𝒄 = Concrete modulus of elasticity MPa (ksi) 

𝑬𝒔 = Steel modulus of elasticity MPa (ksi) 

𝑬𝒔 = Steel hardening slope after yielding MPa (ksi) 

𝒇𝒄 = Concrete compressive stress MPa (ksi) 

𝒇𝒄 = Concrete maximum compressive stress MPa (ksi) 

𝒇𝒕 = Concrete tensile stress MPa (ksi) 

𝒇𝒓 = Concrete cracking stress MPa (ksi) 

𝒇𝒚 = Steel yielding stress MPa (ksi) 

𝑴𝒄𝒄 = Moment due to the compressive concrete KN.m (K.in) 

𝑴𝒄𝒔 = Moment due to the compressive steel KN.m (K.in) 

𝑴𝒕𝒄𝟏 = Moment due to the tensile concrete (part one) KN.m (K.in) 

𝑴𝒕𝒄𝟐 = Moment due to the tensile concrete (part two) KN.m (K.in) 
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𝑴𝒕𝒔 = Moment due to the tensile steel 

𝑻𝒄𝟏 = Concrete tensile force induced due to the first part of the concrete tensile profile KN 

(kips) 

𝑻𝒄𝟐 = Concrete tensile force induced due to the second part of the concrete tensile profile KN 

(kips) 

𝑻𝒔= Steel tensile force KN (kips) 

𝜸 = The centroid of the compressive concrete stress profile to the compression depth ratio 

KN.m (K.in)  

𝜺𝒕 = Concrete tensile strain 

𝜺𝒕𝒖 = Concrete  tensile strain corresponding to the end of the concrete tensile constitutive model 

𝜺𝒄𝒓 = Concrete cracking strain 

𝜺𝒚 = Steel yielding strain 

𝜺𝒄 = Concrete compressive strain 

𝜺𝒄 = Concrete compressive strain corresponding to concrete maximum compressive stress 

𝜺𝒄𝒇 = Concrete compressive strain at the maximum compressive fiber 

𝝈𝟏 = Major principal tensile stress MPa (ksi) 

𝝈𝟐 = Minor principal compressive stress MPa (ksi) 

𝝈𝟏𝒕 = Major principal tensile stress limit MPa (ksi) 

𝝈𝟐𝒄 = Minor principal compressive stress limit MPa (ksi) 

𝝉𝒙𝒚 = Transversal shear MPa (ksi) 

𝝉𝒚𝒙 = Longitudinal shear MPa (ksi) 

𝝉𝒄𝒄 = Shear stress due to the compressive concrete contribution MPa (ksi) 

𝝉𝒄𝒔 = Shear stress due to the compressive steel contribution MPa (ksi) 

𝝉𝒕𝒄𝟏 = Shear stress due to the tensile concrete contribution (part 1) MPa (ksi) 

𝝉𝒕𝒄𝟐 = Shear stress due to the tensile concrete contribution (part 2) MPa (ksi) 

𝝉𝒕𝒔 = Shear stress due to the tensile steel contribution MPa (ksi) 

𝝋 = Cross section curvature 1/mm (1/in) 
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Chapter 1 - Introduction 

1.1 Background 

Although many studies have been conducted to fully understand the shear behavior of reinforced 

concrete beams, the consensus regarding one explanation is missing. There is some sort of 

agreement regarding the parameters that affect the shear behavior, yet there is no agreement 

regarding the mechanics of shear behavior. Arch action and beam action are two main 

explanations which were introduced to represent the shear behavior in cracked reinforced 

concrete members. However, many researchers suggested a combination of these two 

approaches. These actions suggest three main mechanisms to transmit shear across the cracked 

beams without shear reinforcement: the compression zone, aggregate interlock between cracks 

and dowel action of the longitudinal steel reinforcement. The main parameters that influence the 

beam behavior includes concrete behavior in tension and compression, beam size effect, 

aggregate size and shear span to depth ratio. 

Among the first researchers to study the behavior of reinforced concrete beams under shear loads 

is Morsch (1903). He was the first to point out that the shear failure is nothing but a principal 

tensile failure. Also, he suggested the similarity between web reinforcement behavior and the 

diagonal members in a truss. However, Talbot (1908-1909), after conducting a series of tests, 

noted that the stress calculated based on truss analogy is higher than the experimentally 

measured stresses, yet, he suggested a design modification to limit shear load carried by web 

reinforcement to two-thirds of the beam capacity. In addition, Talbot’s tests showed that beam 

shear capacity is affected by the concrete characteristics as well as number of longitudinal bars 

and shear span to effective depth ratio. These findings were confirmed by Richart and Larson 

(1928). They also stated that stirrup stresses were small until shear cracks are developed and the 
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point of intersection between the crack and web reinforcement produced the highest stress in the 

reinforcement. Hognestad (1951) described the concept of stress redistribution upon the 

commencement of the diagonal tensile cracks in restrained beams, where the original stress 

distribution is no longer valid around the cracked zone. After two years, Zwoyer (1954) observed 

the similarity between the diagonal tensile cracks and the flexural compression failure (concrete 

crushing). Using this observation, Moody et al. (1954) described the failure of reinforced 

concrete beams to compose of two stages; the first stage includes diagonal tension cracking 

followed by crushing as a second stage. However, the described failure mode was found to be 

controlled by (M/Vd) ratio. With smaller ratios, the described mode of failure occurs. Larger 

(M/Vd) ratio resulted in almost pure flexural failure. 

 

1.2 Objectives 

In this study, the authors attempt to present a mechanics based approach to illustrate the behavior 

of shallow reinforced concrete beams under concentrated load, taking into account the different 

stages of loading; pre-cracking, post cracking and post yielding. Shear stresses are evaluated 

based on the shear differential equation and the smeared crack approach. These shear stresses 

coupled with the normal stress distribution are used to predict the principal stress variation across 

the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress 

cracking criterion like that of Kupfer and Gerstle (1973), the likely diagonal tension cracks are 

predicted. 

1.3 Scope of Dissertation 

The research work in this dissertation includes an introduction to the shear behavior in reinforced 

concrete beams in chapter one, and then followed by six main chapters. The second chapter 
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discusses the development of a concrete constitutive tensile model to represent the tensile 

behavior of concrete. The later step is a critical part in predicting shear cracks in shallow 

reinforced concrete bean, which is presented in chapter three. An innovative nonlinear numerical 

approach is derived and applied in this chapter. Chapter four treats the analytical formulation of 

the shear stress distribution in cracked reinforced concrete flexural members. While chapter five 

points out the similarity in behavior and nature of the shear-flexural cracking to the concrete 

crushing failure mode. Chapter six presents the experimental data of a tested beam as well as 

series of comparisons between the experimental results and the proposed analysis. The study 

conclusions and recommendation are summarized in chapter seven, 
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Chapter 2 - Calibrating a New Constitutive Tension Model to 

Extract a Simplified Nonlinear Sectional Analysis of Reinforced 

Concrete Beams 

A nonlinear analysis for the structural members is vital to understand the behavior and the 

response of reinforced concrete members. Although most design procedures concentrate on the 

ultimate stage of response towards the end of the post-yielding zone as the decisive design 

criterion, the structural members usually function at the service load levels within the post-

cracking zone. Therefore, cracking is a critical aspect of concrete behavior that affects the 

overall response of reinforced concrete beams. The initiation and the propagation of the cracks 

are affected directly by the tension and shear stresses in the beam. In flexural beams, the tensile 

stresses dominate the crack onset and its growth. Cracks in reinforced concrete flexural beams 

create non-cracked regions in between cracked sections. In order to apply a consistent analysis 

strategy, the smeared crack approach averages the behavior of these different cracked sections 

and uncracked regions to generate an accurate global response of the entire beam. This study 

presents a numerical constitutive tensile model that captures the complete tensile response of 

the reinforced concrete flexural member, in terms of averaged/smeared crack response. As a 

second step, this model was examined against a large pool of experimental data to validate its 

accuracy. Overall, the main objective of this study is to develop a representative constitutive 

tensile model for reinforced concrete flexural members and validate its accuracy against 

experimental results. The full nonlinear sectional analysis is analytically-realized, based on the 

assumed trilinear moment-curvature response and the assumed trilinear moment-extreme fiber 

compressive strain response. This is considered as the secondary outcome of the present study. 
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2.1 Introduction 

The full tensile response of reinforced concrete includes but not limited to plain concrete 

softening, reinforced concrete stiffening and shrinkage effects. Other parameters might be 

aggregate size, concrete-steel bond slip mechanism, creep effect and cyclic loading. However, 

most of the researchers consider the tension stiffening to be the main parameter when describing 

the reinforced concrete tensile behavior beyond the cracking strain.  

Plain concrete tension softening was first presented by Hillerborg et al. (1976) who introduced 

the softening phenomenon through discrete crack model based on fracture mechanics. A series 

of analytical approaches were introduced after that based on the smeared crack approach, which 

is more applicable than the discrete crack approach. In addition, a number of experimental 

studies were performed for concrete in tensile uniaxial tests.  

On the other hand, many researchers proposed empirical functions to estimate the tension 

stiffening effects. Leonhardt (1977) presented a model for computing the mean strains. Between 

two cracked sections, the average steel strain over the entire length (ɛsm), is less than the bare 

bar strain (ɛs) which is the strain developed by the steel alone after cracking. The difference 

between (ɛs) and (ɛsm) is referred to as “tension stiffening”. Several structural codes followed 

Leonhardt approach with different parameters like British standards BS 8110-1997 and 

Eurocode2 (2004).  

The second approach is to estimate the tension stiffening effects by assuming a stress-strain 

profile beyond the cracking point. This profile includes numerical parameters calibrated against 

the global experimental response of beams or tensile specimens. Scanlon and Murray (1974) 

were the first to model the tension stiffening in terms of the degraded concrete modulus. Vebo 

and Ghali (1977) proposed a linear and a bilinear descending curve in their analysis of concrete 
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slabs. Nayal and Rasheed (2006) adopted a bilinear descending function with a sudden drop of 

20% of the cracking strength right at the cracking strain, see Figure 2-1. It is important to note 

here that all of the earlier tension stiffening models completely degrade the concrete 

contribution at a multiple of the cracking strain while this parameter seems to be related to the 

yielding strain of steel. 

 

Figure 2-1 Nayal and Rasheed (2006) proposed tension stiffening model 

In this study, the second approach to the modeling of the tension stiffening effects is adopted to 

develop a newly calibrated model composed of a single mathematical expression. The 

controlling parameters of a natural logarithmic function selected are calibrated based on close 

agreements between the nonlinear load-deflection response, especially in the post cracking 

loading range, and the experimental load-deflection response of a set of tested beams. The 

resulting analysis procedure lends itself to analytical formulation of the entire nonlinear 

sectional response as presented in this study. 
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2.2 Flexural Formulation 

2.2.1 Constitutive Models Used 

The stress-strain relationships for the concrete and the reinforcement steel are assumed to be 

independent of each other. The axial stress in steel would be only a result of the axial strain in 

the steel. Also, shear stresses in the steel bars on a plane perpendicular to their longitudinal axis 

are assumed to be negligible. The steel axial stress-axial strain relationship is idealized by a 

bilinear function, which is the same intension and compression, see Figure 2-2.  

𝒇𝒔 = 𝑬𝒔𝜺𝒔 ≤ 𝒇𝒚                                                                                                                         (2.1) 

𝑓 = 𝑓 + 𝐸 ɛ − ɛ , 𝑓𝑜𝑟 𝑓 > 𝑓                                                                                         (2.2) 

Where (fs) is the steel stress corresponding to the axial stress (ɛs), (Es) is the modulus of 

elasticity of steel, (fy) is the yielding strength in steel. The steel is assumed to start hardening 

once exceeding the yielding strain (fy) according to equation (2.2). 

 (E’s) is the slope of steel hardening line after yielding. It is determined based on an equal area 

under the strain hardening region in the actual experimental curve and the analytical model. 

Table 2-1 shows the relationship between the estimated (E’s) and the corresponding (fy) as 

measured by Rasheed (1990). 

Table 2-1 The Relationship between the estimated (E’s) and the corresponding  (fy) 

 

 

 

 

fy (ksi) E’s /Es 

40-45 0.3-0.7% 

45-50 0.7-1.2% 

50-63 1.2-2.5% 
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Figure 2-2 Steel stress-strain curve 

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, equation 

(2.3), for compressive stresses (fc), see Figure 2-3.  

𝑓 = 𝑓 ’ (2
ɛ

ɛ
−

ɛ

ɛ
)                                                                                             (2.3) 

 A linear relationship with a slope equal to the concrete modulus of elasticity (Ec) up to cracking 

strain (ɛcr) in tension is assumed. This linear relationship is then followed by a descending curve 

as a function of (ɛcr) and the steel yielding strain (ɛy), which will be further developed in the 

study, see Figure 2-4. 

The concrete tensile rupture strength (fr) is taken as a lower bound value as given in ACI 318-

14.  

𝑓 = (5 − 7.5) 𝑓 ′                                                                                                    (2.4) 

The rupture strength (fr) for light weight concrete is simply reduced by 25%. The Factor 5 is 

taken to account for sections with low compressive steel area to the tensile steel area ratio, 

which allows for more shrinkage and more residual tensile stresses. 
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Figure 2-3 Concrete compressive stress-strain curve (Hognestad's Parabola) 

 

 

Figure 2-4 Concrete tensile stress-strain curve 

 

 

2.2.2 Analysis Assumptions 

In this study, the following assumptions were made 
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1. Plane sections before bending remain plane after bending (i.e. linear strain profile across 

the section depth is assumed before and after cracking).  

2. Perfect bond exists between steel bars and the surrounding concrete. 

3. Plane sections after bending are assumed to be perpendicular to the mid surface (i.e. shear 

deformations are negligible). 

4. Smeared crack approach (i.e. averaged tensile strains are continuous in concrete in tension). 

5. Dowel action effect is neglected. 

2.2.3 Flexural Analysis 

2.2.3.1 Forces 

 Compressive Forces 

 Compressive concrete contribution 

By integrating the Hognestad’s profile over the area from the neutral axis up to the maximum 

compressive concrete fiber strain, the concrete compressive force (Cc) is determined for the 

section based on the following equations 

𝐶 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                                                                  (2.5) 

𝐶 =  𝑓 𝑏.
ɸ

ɛ
(𝑐 −

ɸ

ɛ
)                                                                                                       (2.6) 

 Compressive Steel Contribution 

The compressive steel force (Cs) is a direct linear relationship with the corresponding steel 

strain (ɛs’) in addition to subtracting the contribution of the concrete in compression occupied 

by the compression steel bars. This relationship was determined based on the assumption of 

the bilinear response of steel bars. 
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 behavior for the steel analysis.  

𝐶 = 𝐴 𝑓 − 𝐴 𝑓 ((2
ɛ ’

ɛ
−

ɛ ’

ɛ
)                                                                                  (2.7) 

Where 𝑓  is computed from equations (2.1)-(2.2) by substituting ɛ ’ for ɛ . 

 Tensile Forces 

 Tensile Concrete contribution 

The concrete tensile contribution is divided into two main profiles, Figure 2-4. The first profile 

is a linear relationship up to the cracking strain (ɛcr) with a slope equal to the concrete modulus 

of elasticity (Ec). This profile leads to a tensile force (Tc1) equals to 

𝑇 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                                                          (2.8) 

𝑇 =
 
                                                                                                                      (2.9) 

The second profile is a descending curve, which mainly contributes to the total concrete tensile 

force. This profile is a result of the concrete softening, concrete stiffening due to the steel bond 

as well as the residual stresses due to shrinkage effect. The tensile force due to this profile (Tc2) 

is calibrated against global experimental response to be a function of the concrete cracking 

strength and the steel yielding strain. The tensile constitutive model and its calibration against 

experimental results are presented in section 3 of this study. The equation for (Tc2) is presented 

there. 

 Tensile steel Contribution 

The tensile steel force (Ts) follows the same bilinear behavior based on equations (2.1)-(2.2) 

𝑇 = 𝐴 𝐸 ɛ − 𝐴 𝑓 (ɛ ) , 𝑤ℎ𝑒𝑛 𝑓 ≤ 𝑓                                                                      (2.10) 

𝑇 = 𝐴 (𝑓 + 𝐸 (ɛ − ɛ )) − 𝐴 𝑓 (ɛ ), 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                               (2.11) 
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Where 𝑓 (ɛ ) is taken from the uncracked or post-cracked parts of the concrete tensile 

constitutive functions. Note that𝑓 (ɛ ) = 0, 𝑤ℎ𝑒𝑛 ɛ ≥ ɛ . 

2.2.3.2 Moments 

 Compressive concrete contribution 

The point of application of concrete compressive force is measured from the extreme 

compressive fiber (ɣ.c) based on the centroid location of the area under the Hognestad’s 

parabola.  

ɣ = 1 −
∫ ɛ . . ɛ

ɛ

ɛ ∫ . ɛ
ɛ =

ɛ

ɛ                                                                                               (2.12) 

𝑀 = (𝑐 − ɣ. 𝑐) ∗ 𝐶                                                                                                            (2.13) 

Where (c) is the depth of the compression zone to the position of neutral axis and (ɣ) is the ratio 

of the centroid depth to the neutral axis depth, both measured from the top compression fiber. 

 Compressive Steel Contribution 

The compression steel moment is calculated according to the following equation 

𝑀 = 𝐶 (𝑐 − 𝑑 )                                                                                                       (2.14) 

 Tensile Concrete contribution 

(Mtc1) is the moment induced due to the concrete contribution up to the cracking point. While 

(Mtc2) is the moment induced due to the descending constitutive tensile model. 

𝑀 = 𝑇 .
.

                                                                                                          (2.15) 

The equation for (Mtc2) is presented in section 3 of this study. 

 Tensile steel Contribution 

The contribution of the moment induced due to the steel reinforcement at any stage of loading is 

determined as follows 



14 

𝑀 = 𝑇 (𝑑 − 𝑐)                                                                                                    (2.16) 

Where, the tension force of steel is defined according to equations (2.10)-(2.11). 

2.2.4 Numerical Moment-Curvature Calculations 

A numerical procedure was followed to generate the moment-curvature curve. In this procedure, 

the maximum compressive fiber strain value (ɛcf) was gradually increased until reaching the 

concrete crushing strain of (0.003). In order to accurately calculate the strain profile under each 

step value of ɛcf, the correct depth of the compression zone (c) was necessary to define the strain 

profile and the corresponding stress profile and forces/moments. The sectional force equilibrium 

equation was then applied to validate the depth of the compression zone (c) by iterating for the 

correct depth of compression zone that makes the summation of forces equal to zero, 

equilibrium is maintained, see Figure 2-5. 

 

𝜑 =
ɛ

                                                                                                                     (2.17) 

ɛ = 𝜑(𝑑 − 𝑐)                                                                                                         (2.18) 

ɛ ’ = 𝜑(𝑐 − 𝑑 )                                                                                                       (2.19) 

ɛ = 𝜑(ℎ − 𝑐)                                                                                                        (2.20) 

The summation of moments due to concrete and steel contributions then yielded the total 

applied moment of the section corresponding to the curvature in equation (2.17), and the 

numerical moment-curvature curve was then generated for the entire range of extreme 

compressive fiber strains. 

2.2.5 Numerical Load-Deflection Calculations 

The numerical nonlinear load–deflection solution of the beams is formulated using the moment-

area integration. Half the span of the beam was divided into a number of segments and the 
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flexural rigidity was calculated at the middle of each segment. The mid-span deflection for 

symmetric four-point bending loading protocol was then calculated by performing numerical 

integration of the moment of curvature along the half span of the beam. The numerical 

integration was expressed as a summation of the analytical contribution of each segment as 

follow 

∆ 𝑎𝑡 𝑚𝑖𝑑𝑠𝑝𝑎𝑛 = ∫ 𝑥. ɸ(𝑥). 𝑑𝑥 = ∑ [ . . ] +
( )/

          (2.21) 

Where, (Ns) is the number of segments along the shear span (La), (P) is the total load applied on 

the beam, (xi+0.5) and (xi-0.5) are the distances from the support to the end and the beginning of 

each segment, respectively, and EIsi is the secant or effective flexural rigidity of the segment 

mid-section defined as 

 𝐸𝐼 =
∅

                                                                                                                       (2.22) 

Figure 2-5 presents the flow chart of the progressive moment-curvature calculation procedure 

along with the integrated load-deflection point corresponsing to each maximum moment-

curvature value. Figure 2-5 is limited to the post-cracking region up to steel yielding. However, 

the same procedure may be followed to generate the response of the post-yielding region. 
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Figure 2-5 Flexural analysis flow chart up to yielding point 
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2.3 Constitutive tension model 

The proposed model in this study is based on cycles of numerical analysis and material model 

adjustments until convergence to the experimental response. A descending model was critical to 

represent the gradual loss of stiffness with the propagation of the beam cracks. This model 

represents the contribution of concrete in tension between two successive cracked sections. This 

approach is known as the smeared crack approach, which simulates the global response of the 

element.  Hence, this response could be understood as an averaged behavior for all the beam 

sections. Therefore, the tension model may be a function of the structural element and the 

loading patterns considered. A uniaxial plain concrete element would show a different behavior 

than a reinforced concrete flexural beam due to the steel-concrete bond in the latter. Similarly, a 

reinforced concrete shear beam with a smaller shear span to beam depth ratio would act 

differently than a flexural beam due to the effect of the concrete shear deformation. 

The presented constitutive tension model for reinforced concrete flexural beams is a summation 

of various reinforced concrete features. Plain concrete softening and steel tension stiffening are 

considered the main phenomena to develop the constitutive model. Hillerborg et al. (1976) were 

the first to describe tension softening, which occurs due to the development of concrete flexural 

cracks. The fracture energy, transformed from the strain energy, advances existing major cracks 

and initiates minor micro cracks, which weaken the concrete at relatively high rates. Steel-

Reinforced concrete tension stiffening is the second important characteristic that represents the 

local bond-slip between the concrete and the steel bars. This feature causes the tensile stresses 

in the concrete to gradually reduce in between two successive primary cracks. Tension softening 

and Tension stiffening are usually referred to as the main parameters responsible of post-

cracked concrete tensile behavior. However, shrinkage and aggregate size also participates in 
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altering the concrete tensile behavior. Shrinkage builds up residual stresses in the concrete while 

hardening. This results in lowering the tensile strength and tension stiffening effects. On the 

other hand, the aggregate size/shape effects are mainly observed when shear and tensile stresses 

are combined. Therefore, a numerical constitutive tension model based on calibrating the global 

experimental response is important to capture all these characteristics in one model.  

The proposed constitutive concrete tensile model relates the tensile strain (ɛ ) with the tensile 

concrete stresses (𝑓 ) as a function of the material parameters calibrated based on experiments 

for flexural reinforced concrete beams. The model is presented as a function of concrete 

cracking and steel yielding parameters, Equation 2.23.  Stress and strain constants in the 

equation were extracted by actively matching the analysis to a large pool of four points bending 

tests on flexural beams. 

.
= 1 −

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
                                                                                           (2.23) 

This proposed descending function on the domain (ɛ ≤  ɛ ≤ 1.4ɛ ) shows a sudden drop to 

(0.5 fr) at the cracking strain (ɛcr) upon strain to fracture energy conversion and continues to 

descend till zero when the tensile strain reaches (1.4 ɛy), see Figure 2-6.  The sudden drop in 

stress at cracking is a function of the tension softening effect while the exhaustion of the tension 

stiffening effect is expected to be related steel yielding. 

The axial force due to the proposed constitutive tensile model (Tc2) is the integral of the given 

stress profile over the distance from the cracking depth 𝑑 =  to the end of the model at 

. ɛ
 or the full tensile depth of the section, Equation (2.24). 

𝑇 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                                                         (2.24) 
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Where d̂ is the end of the proposed model at 
. ɛ

 or the full tensile depth of the section (ℎ − 𝑐). 

𝑇 =  ∫ (0.5𝑓 −
.

. ɛ

ɛ

𝑙𝑛
ɛ

ɛ
)𝑏 𝑑𝑦                                                          (2.25) 

 

Let, 𝑘 =
.

. ɛ

ɛ

                                                                                                                 (2.26) 

𝑇 = 𝑏((0.5𝑓 + 𝑘𝑙𝑛(ɛ ) + 1)𝑦 − 𝑘𝑦𝑙𝑛(𝜑) − 𝑘𝑦𝑙𝑛(𝑦))
𝑑

𝑑 =
                         (2.27) 

The moment induced due to the proposed constitutive tensile model (Mtc2) is calculated as follow 

𝑀 =  ∫ 𝑓 . 𝑏. 𝑦. 𝑑𝑦                                  (2.28) 

𝑀 = 𝑏( 0.5𝑓 + 𝑘𝑙𝑛(ɛ ) + − 𝑘 𝑙𝑛(𝜑) − 𝑘 𝑙𝑛(𝑦))
𝑑

𝑑 =
               (2.29) 

 

 

Figure 2-6 Suggested concrete constitutive tensile model 
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2.4 Results 

The reinforced concrete beam tests collected in this study cover a big range of geometrical and 

material parameters. Normal weight concrete and lightweight concrete were covered in the 

database, the maximum compressive concrete strength range is 27.5-83 MPa (4-12 ksi). The 

steel yielding strength range is 344.75-551.6 MPa (50-80 ksi). Singly and doubly reinforced 

sections with different ratios are included for representative comparisons. A wide range of steel 

ratios is examined to confirm the applicability of the model, see tables 2-2 and 2-3.  

 

 

 

 

 

Table 2-2 The geometrical parameters for the tested beams 

Number Reference h(mm) b(mm) d(mm) cc(mm)  d'(mm) L/2(mm) La(mm) 

1 Tavares et al. 2008 299.72 149.86 269.24 29.97 27.94 1447.80 939.80 

2 Arduini et al. 1997 398.78 299.72 349.76 25.40 49.78 1249.98 1100.07 

3 Spadea et al. 1998 299.97 139.95 262.99 37.08 36.83 2400.00 1800.10 

4 Ahmad and Baker 1991 LR8-22 304.80 152.40 258.83 45.97 0.00 1727.20 1498.60 

5 Ahmad and Baker 1991 LR8-51 304.80 152.40 258.83 45.97 0.00 1727.20 1498.60 

6 Ahmad and Baker 1991 LR11-24 304.80 152.40 257.30 47.50 0.00 1727.20 1498.60 

7 Ahmad and Baker 1991 LR11-54 304.80 152.40 228.60 76.20 0.00 1727.20 1498.60 

8 Ahmad and Batts 1991 LJ 8-44 304.80 152.40 225.55 79.25 53.34 1727.20 1498.60 

9 Ahmad and Batts 1991 LJ 11-22 304.80 152.40 250.95 53.85 50.80 1727.20 1498.60 

10 Ahmad and Batts 1991 LJ 11-47 304.80 152.40 222.25 82.55 53.34 1727.20 1498.60 
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Table 2-3 The material parameters for the tested beams 

Number f'c (MPa) fy(MPa) Es(MPa) Ec(MPa) fr(MPa) ɛcr ρs ρs' 

1 44.0 539.9 200,000 21723.1 3.3 0.00015 0.0061 0.0016 

2 30.0 339.9 200,000 25994.2 1.9 0.00007 0.0037 0.0025 

3 30.0 434.4 200,000 25921.1 2.3 0.00009 0.0109 0.0109 

4 59.0 413.7 200,000 25925.2 2.4 0.00008 0.0101 0 

5 60.5 413.7 200,000 25925.2 2.4 0.00008 0.0226 0 

6 79.7 413.7 200,000 30407.0 2.8 0.00009 0.0145 0 

7 79.9 413.7 200,000 32889.2 2.8 0.00008 0.0326 0 

8 57.6 413.7 200,000 29705.0 2.3 0.00008 0.0233 0.0116 

9 80.9 413.7 200,000 35201.5 2.8 0.00008 0.0148 0.0067 

10 76.3 413.7 200,000 34166.8 2.7 0.00008 0.0335 0.0168 

 

The common factors between these beams are 1) they are all flexural beams,  2) they were 

tested in four points bending to match the goal of this study and 3) they have comparable 

section height and width while varying the tensile steel area. Each beam was analyzed using the 

proposed model, then the load-deflection graph was generated and compared against the actual 

experimental response of the beam, (e.g. see Figure 2-7).  In addition, the moment-curvature 

graph and the moment-maximum compressive strain graph were developed to confirm the 

accuracy of the trilinear moment-curvature approximated behavior, (e.g. see Figures 2-8 and2- 

9).   

 



22 

 

Figure 2-7 Arduini et al. (1997), Tavares et al.  (2008) and Spadea et. Al. (1998) load vs. 

midspan deflection comparisons 
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Figure 2-8 Arduini et al. (1997), Tavares et al.  (2008) and Spadea et. Al. (1998) moment 

vs. curvature analytical graphs 

 

Figure 2-9 Arduini et al. (1997), Tavares et al.  (2008) and Spadea et. Al. (1998) moment 

vs. maximum compressive strain analytical graphs 
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The proposed analysis was performed for Tavares et al.  (2008), Arduini et al. (1997) and 

Spadea et al. (1998). The geometric and material parameters of these beams are listed in Table 

2-2 and 2-3. Excellent agreements were observed against Tavares et al.  (2008), Arduini et al. 

(1997) and Spadea et. Al. (1998) experimental results, see Figure 2-7. The trilinear analysis for 

Moment-curvature behavior and Moment-Maximum compressive strain behavior was 

confirmed for the three experimental beams.  

 

 

Figure 2-10 Ahmad and Baker (1991) load vs. midspan deflection comparisons 
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Figure 2-11 Ahmad and Baker (1991) load vs. midspan deflection comparisons 

 

Figure 2-12 Ahmad and Baker (1991) moment vs. curvature analytical graphs 
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Figure 2-13 Ahmad and Baker (1991) moment vs. maximum compressive strain analytical 

graphs 

The four beams tested by Ahmed and Baker (1991) were analyzed here. All four beams have the 

same cross section 304.8 mm*152.4mm (12 inx6 in) and the same clear span of 3.45 m (136 in). 

The beams were singly reinforced with (ρs=.0101, .0226, .0145, .0326) and high strength light 

weight concrete of 59.3, 59.3, 80, 80 MPa (f’c=8.6, 8.6, 11.6, 11.6) ksi respectively for LR8-22, 

LR8-51, LR11-24 and LR11-54. Excellent matches were observed against the experimental 

analysis for all four beams, Figures 2-10 and 2-11. For all four beams the Trilinear behavior for 

the precracking, post cracking and post yielding zones was fully confirmed for the moment-

curvature and moment-maximum compressive strain, see Figures 2-12 and 2-13. 
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Figure 2-14 Ahmad and Batts (1991) load vs. midspan deflection comparisons 

 

Figure 2-15 Ahmad and Batts (1991) moment vs. curvature analytical graphs 
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Figure 2-16 Ahmad and Batts (1991) moment vs. maximum compressive strain analytical 

graphs 

The last three analyzed beams were tested by Ahmad and Batts (1991). All three beams have the 

same cross section 304.8 mm*152.4mm (12in*6in) and the same clear span of 136 in. The 

tested beams were doubly reinforced, see table 2-3 .Light weight high strength concrete was 

used for all three beams. Excellent matches were obtained against the experimental results for 

all three beams at the pre-cracking, post-cracking and post-yielding zones. LJ11-22 showed a 

sudden change of stiffness in the post cracking zone which generally indicates the development 

of shear cracks. For all three beams the trilinear behavior for the pre-cracking, post-cracking 

and post-yielding zones was fully confirmed for the moment-curvature and moment-maximum 

compressive strain. 
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is presented against Decker (2007) and Almusallam (1997) experimental work. Decker reported 

the global and sectional responses in his work. The sectional response was obtained by locating 

strain gauges at the tensile steel level and the top surface of the beam, which allowed for a full 

strain profile development. Unfortunately, Decker (2007) reported the failure of the strain 

gauges in the post-yielding zone. The beams were simply supported and were tested in four-

points bending.  The supports were placed 3 inches from the edge of the beam, providing a clear 

span of 4.72 m (15.5 ft). Tables 2-4 and 2-5 show the geometrical and material properties of the 

beam. Similarily,  Almusallam (1997) reported the experimental load-deflection and the 

experimental moment-curvature curves. Tables 2-6 and 2-7 show the geometrical and material 

properties of the analyzed beams. 

Table 2-4 The geometrical parameters for Decker (2007) beam 

h (mm) b(mm) d(mm) cc(mm) d'(mm) L/2(mm) La(mm) 

304.8 152.4 261.87 25.4 39.62 2362.2 1752.6 

 

Table 2-5 The material parameters for Decker (2007) beam 

f'c (MPa) fy(MPa) Es(MPa) Ec(MPa) n fr(MPa) ɛ'c ρs ρs' 

34.5 475.8 200,000 27794.4 7.20 3.65 0.00212 0.0100 0.0036 

 

Table 2-6 The geometrical parameters for Almusallam (1997) beam 

h (mm) b(mm) d(mm) cc(mm) d'(mm) L/2(mm) La(mm) 

209.80 199.90 159.99 25.40 43.18 1350.01 1249.68 

  

Table 2-7 The material parameters for Almusallam (1997) beam 

f'c (ksi) fy(ksi) Es(ksi) Ec(ksi) n fr(ksi) ɛ'c ρs ρs' 

4.54 80.19 29000.00 3840.63 7.55 0.337 0.002 0.0138 0.0009 
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The analysis, of these two extra beams, was performed as described to obtain the load-mid span 

deflection graphs and the load-tensile steel strain curve as well as the moment-curvature and the 

moment-maximum compressive strain curves. This comparison was necessary to illustrate that 

the presented constitutive model matches not only the global response of the beam but also it 

matches the sectional local response. 

 

Figure 2-17 Decker (2007) load vs. midspan deflection comparisons 
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Figure 2-18 Decker (2007) load vs. maximum compressive strain comparison 

 

 

Figure 2-19 Decker (2007) load vs. tensile steel strain comparison 
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Figure 2-20 Decker (2007) moment vs. curvature analytical graphs  

 

Figure 2-21 Decker (2007) moment vs. maximum compressive strain analytical graphs 
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of the proposed model against the global behavior of the beam. However, it is important to 

validate the constitutive tensile model against the local sectional response. Figure 2-18 and 2-19 

show Load vs. Maximum compressive strain and load vs. tensile steel strain. Excellent 

agreements between the analytical and the experimental results were observed for the two 

comparisons. Furthermore, Figures 2-20 and 2-21 confirm the trilinear behavior of the Moment-

Curvature and Moment-Maximum compressive strain graphs. 

 

 

Figure 2-22 Almusallam (1997) load vs. midspan deflection comparisons 
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Figure 2-23 Almusallam (1997) moment vs. curvature analytical graphs 

 

 

Figure 2-24 Almusallam (1997) moment vs. maximum compressive strain analytical graphs 
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Almusallam (1997) tested the second beam in four point bending.  This beam was also analyzed 

by the present procedure. The beam section was 210.8 mm* 200.7 mm (8.3 in*7.9 in) with a 

clear span of 2.7 m (106.4 in). It was doubly reinforced with (ρs=.0144, ρs’=.0009). Figure 2-22 

shows the full analytical and experimental response. An excellent match was obtained using the 

proposed constitutive tension model for the experimental vs. analytical load-deflection data and 

moment-curvature data. Also the Trilinear behavior of the pre-cracking, post-cracking and post-

yielding zones was fully confirmed for the moment-curvature and moment-maximum 

compressive strain response against the experimental points, see Figures 2-23 and 2-24. 

 

2.5 Conclusions 

This study was conducted to develop a tensile constitutive model for nonlinear analysis of 

flexural concrete beams reinforced with steel bars. An incremental-iterative numerical analysis 

was followed to study the nonlinear flexural beam behavior and generate the analytical graphs. 

The proposed tensile constitutive model has a sudden drop at cracking strain, followed by a 

descending curve up to zero at ( 1.4ɛ ). Series of comparisons were performed to validate the 

accuracy of the adopted model against the global experimental behavior for a large pool of 

beams. Two extra comparisons were conducted to check the applicability of the model against 

the sectional response of different beams.  As a result of these comparisons, the model showed 

an excellent agreement with the validating experiments for the sectional and the global 

responses. The second main goal of this study was to confirm the trilinear behavior for moment 

versus curvature and moment versus maximum compressive strain graphs. Through all the 

comparisons in this study, and by using the proposed model, the trilinear behavior was observed 
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in all the sectional and the global responses. Even though the literature has several tension 

stiffening models, the authors believe that this new model is more objective since 

1. The final degradation of cracked concrete is related to the yielding strain in steel rather than 

multiples of the cracking strain of the concrete. 

2. The loss of energy due to cracking fracture is captured in a more pronounced way than 

earlier model. 

3. The current model furnishes a single mathematical expression making it easier to implement 

in analytical formulations. 
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Chapter 3 - Shear Crack Prediction in Shallow RC Beams Using a 

Nonlinear Approach 

This study is conducted because of the lack of an existing theory to accurately predict the 

diagonal tension cracking in shallow reinforced concrete beams. A rational approach is followed 

to numerically derive the shear stress profile across the depth of the beam in cracked beams 

based on the smeared crack approach. Furthermore, the determined shear stress distribution 

coupled with the normal axial stress distribution are used to predict the principal stress variation 

across the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress 

cracking criterion, the likely diagonal tension cracks along their orientation profile are predicted. 

3.1 Introduction 

Although many studies have been conducted to fully understand the shear behavior of reinforced 

concrete beams, the consensus regarding one explanation is missing. There is some sort of 

agreement regarding the parameters that affect the shear behavior, yet there is no agreement 

regarding the mechanics of shear behavior. Arch action and beam action are two main 

explanations which were introduced to represent the shear behavior in cracked reinforced 

concrete members. However, many researchers suggested a combination of these two 

approaches. These actions suggest three main mechanisms to transmit shear across the cracked 

beams without shear reinforcement the compression zone, aggregate interlock between cracks 

and dowel action of the longitudinal steel reinforcement. The main parameters that influence the 

beam behavior includes concrete behavior in tension and compression, beam size effect, 

aggregate size and shear span to depth ratio. 

Among the first researchers to study the behavior of reinforced concrete beams under shear loads 

is Morsch (1903). He was the first to point out that the shear failure is nothing but a principal 



39 

tensile failure. Also, he suggested the similarity between web reinforcement behavior and the 

diagonal members in a truss. However, Talbot (1908-1909), after conducting a series of tests, 

noted that the stress calculated based on truss analogy is higher than the experimentally 

measured stresses, yet, he suggested a design modification to limit shear load carried by web 

reinforcement to two-thirds of the beam capacity. In addition, Talbot’s tests showed that beam 

shear capacity is affected by the concrete characteristics as well as number of longitudinal bars 

and shear span to effective depth ratio. These findings were confirmed by Richart and Larson 

(1928). They also stated that stirrup stresses were small until shear cracks are developed and the 

point of intersection between the crack and web reinforcement produced the highest stress in the 

reinforcement. Hognestad (1951) described the concept of stress redistribution upon the 

commencement of the diagonal tensile cracks in restrained beams, where the original stress 

distribution is no longer valid around the cracked zone. After two years, Zwoyer (1954) observed 

the similarity between the diagonal tensile cracks and the flexural compression failure (concrete 

crushing). Using this observation, Moody et al. (1954) described the failure of reinforced 

concrete beams to compose of two stages; the first stage includes diagonal tension cracking 

followed by crushing as a second stage. However, the described failure mode was found to be 

controlled by (M/Vd) ratio. With smaller ratios, the described mode of failure occurs. Larger 

(M/Vd) ratio resulted in almost pure flexural failure. 

In this study, the authors attempt to present a mechanics based approach to illustrate the behavior 

of shallow reinforced concrete beams under concentrated load, taking into account the different 

stages of loading; pre-cracking, post cracking and post yielding. Shear stresses are evaluated 

based on the shear differential equation and the smeared crack approach. These shear stresses 

coupled with the normal stress distribution are used to predict the principal stress variation across 
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the depth and along the shear span using standard Mohr’s circle. Following a biaxial stress 

cracking criterion like that of Kupfer and Gerstle (1973), the likely diagonal tension cracks are 

predicted. 

3.2 Nonlinear sectional Analysis 

The stress-strain relationships for the concrete and the reinforcement steel are assumed to be 

independent of each other. The axial stress in steel would be only a result of the axial strain in 

the steel.  

 

3.2.1 Concrete Behavior  

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, Equation 3.1, 

for compressive stresses (fc) and a linear relationship with a slope equal to the concrete modulus 

of elasticity (Ec) up to cracking strain (ɛcr) in tension, see Figure 3-1. This linear relationship is 

then followed by a descending curve as a numerical function in (ɛcr) and the steel yielding strain 

(ɛy), Figure 3-4. 

𝑓 = 𝑓 ’ (2
ɛ

ɛ
−

ɛ

ɛ
)                                                                                          (3.1) 

The concrete tensile rupture stress (fr) is taken as a lower bound equivalent to 5 − 7.5 𝑓 ′, for 

light weight concrete this value is reduced by 25%. A linear relationship with a slope equal to 

the concrete modulus of elasticity (Ec) up to cracking strain (ɛcr) in tension is assumed. 

The concrete behavior in tension after the cracking strain is described using Equation (3.2). The 

constants in the equation were calibrated against a large pool of four points bending tests on 

flexural beams. 

.
= 1 −

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
                                                                                        (3.2) 
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This proposed descending function on the domain (ɛ ≤  ɛ ≤ 1.4ɛ ) reaches its peak (0.5 fr) 

at the cracking strain (ɛcr) and continues to descend till zero when the tensile strain reaches (1.4 

ɛy), see Figure 3-2.  This function is an average function between the tension softening which 

exist near the cracking strains and the tension stiffening that activates around the steel location. 

 

 

Figure 3-1 Concrete compressive stress-strain curve (Hognestad's Parabola) 
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Figure 3-2 Concrete tensile stress-strain curve 

 

3.2.2 Steel Behavior 

Regarding the steel axial stress-axial strain relationship, a bilinear relationship is assumed in the 

compressive and the tensile analysis, see Figure 3-3.  

𝑓 = 𝐸 𝜀 ≤ 𝑓                                                                           (3.3) 

𝑓 = 𝐸 𝜀                                                                                          (3.4) 

Where (fs) is the steel stress corresponding to the axial stress (ɛs), (Es) is the modulus of 

elasticity of steel, (fy) is the yielding stress in steel. The steel is assumed to start hardening after 

exceeding the yielding strain (fy) according to the following equation 

𝑓 = 𝑓 + 𝐸 ɛ − ɛ , 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                                                                  (3.5) 

(E’s) is the slope of steel hardening after yielding and it is determined based on the yielding 

strength (fy), Table 3-1 shows the relationship between the estimated (E’s) and the 

corresponding (fy) (Rasheed (1990)). 
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Table 3-1 The Relationship between the (E’s) and the corresponding yielding stress (fy) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Steel stress-strain curve 

 

 

 

3.3 Sectional Analysis approach 

3.3.1 Forces 

3.3.1.1 Compressive Forces 

 Compressive concrete contribution 

By integrating the Hognestad’s profile over the area from the neutral axis up to the maximum 

compressive concrete fiber, the concrete compressive force (Cc) is derived for the section based 

on the following equations 

𝐶 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                                        (3.6) 

fy (ksi) E’s /Es 

40-45 0.3-0.7% 

45-50 0.7-1.2% 

50-63 1.2-2.5% 

1 

1 

Figure 3-3 Steel billinear behavior in tension and compression 
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𝐶 =  𝑓 𝑏.
ɸ

ɛ
(𝑐 −

ɸ

ɛ
)                                                                                        (3.7) 

 Compressive Steel Contribution 

The compressive steel force (Cs) is a direct linear relationship with the corresponding steel 

strain (ɛs’). This relationship was driven based on the assumption of the bilinear  

 behavior for the steel analysis.  

𝐶 = 𝐴 𝑓 − 𝐴 𝑓 ((2
ɛ ’

ɛ ′
− _

ɛ ’

ɛ ′
)                                                                                            (3. 8) 

3.3.1.2 Tensile Forces 

 Tensile steel Contribution 

The tensile steel force (Ts) follows the same bilinear behavior based on the following equation 

𝑇 = 𝐴 𝐸 ɛ , 𝑤ℎ𝑒𝑛 𝑓 ≤ 𝑓                                                                                                   (3.9) 

𝑇 = 𝐴 (𝑓 + 𝐸 (ɛ − ɛ )), 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                                                            (3.10) 

 Tensile Concrete contribution 

The concrete tensile capacity is divided into two main profiles, Figure 3-2. The first profile is a 

linear relationship up to the cracking strain (ɛcr) with a slope equal to the concrete modulus of 

elasticity (Ec). This profile leads to a tensile force (Tc1) equals to 

𝑇 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                                                                 (3.11) 

𝑇 =
𝑓

2𝐸 ɸ 
                                                                                                                                         (3. 12) 

The second profile is a descending curve which majorly contributes in the total concrete tensile 

capacity. This profile is a result of the concrete softening, concrete stiffening due to the steel 

bond as well as the residual stresses due to shrinkage effect. The tensile force due to this profile 

(Tc2) is calculated as follow 
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𝑇 = ∫ 𝑏𝑓 𝑑𝑦=b∫ 0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
 

𝑑𝑦                                                             (3.13) 

Where y is measured from the neutral axis 

𝑇 = [−
.

. ɛ

ɛ

yln(𝜑) + 𝑦𝑙𝑛(𝑦) − 𝑦 − 𝑦𝑙𝑛(𝜀 ) + 0.5f y]
1.4𝜀 /𝜑

𝜀 /𝜑
                              (3.14) 

Where, 

 𝑑 = 1.4𝜀 /𝜑                                                                                                          (3.15) 

3.3.1.3 Moments 

 Compressive concrete contribution 

The point of application of concrete compressive force is measured from the extreme 

compressive fiber (ɣ.c) based on volume centroid calculations. Where (C) is the depth of the 

compression zone and (ɣ) is a ratio between zero and one. 

ɣ = 1 −
∫ ɛ . . ɛ

ɛ

ɛ ∫ . ɛ
ɛ =

ɛ

ɛ                                                                                (3.16)                  

𝑀 = (𝐶 − ɣ. 𝐶) ∗ 𝐶                                                                                                (3.17) 

 Compressive Steel Contribution 

  The compression steel moment is calculated according to the following equation. 

𝑀 = 𝐶 (𝐶 − 𝑑 )                                                                                               (3.18) 

 Tensile Concrete contribution 

(Mtc1) is the moment induced due to the concrete resistance up to the cracking point. While, 

(Mtc2) is the moment due to the constitutive tensile model. 

𝑀 = 𝑇 .
.ɸ

                                                                                               (3.19) 

𝑀 = ∫ 𝑏𝑓 𝑦𝑑𝑦=b∫ [0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
]𝑦

 

𝑑𝑦                                 (3.20) 
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Where, y is measured from the neutral axis. 

𝑀 = [−
.

. ɛ

ɛ

ln(𝜑) + 𝑙𝑛(𝑦) − − 𝑙𝑛(𝜀 ) + 0.5f ]
1.4𝜀 /𝜑

𝜀 /𝜑
                    (3.21) 

 Tensile steel Contribution 

The contribution of the moment induced due to the steel reinforcement at any stage of loading is 

determined as follows 

𝑀 = 𝑇 (𝑑 − 𝐶)                                                                                                 (3.22) 

 

3.3.2 Moment-Curvature Calculations 

A numerical procedure was followed to generate the moment-curvature curve. In this procedure, 

the maximum compressive fiber strain value (ɛcf) was gradually increased until reaching the 

concrete crushing strain of (0.003). In order to accurately calculate the strain profile under each 

step value of ɛcf, the correct depth of the compression zone (c) was necessary to define the strain 

profile and the corresponding stress profile and forces/moments. The sectional force equilibrium 

equation was then applied to validate the depth of the compression zone (c) by iterating for the 

correct depth of compression zone that makes the summation of forces equal to zero, 

equilibrium is maintained. 

𝜑 =
ɛ

                                                                                                            (3.23) 

ɛ = 𝜑(𝑑 − 𝑐)                                                                                                (3.24) 

ɛ ’ = 𝜑(𝑐 − 𝑑 )                                                                                               (3.25) 

ɛ = 𝜑(ℎ − 𝑐)                                                                                               (3.26) 

The summation of moments due to concrete and steel contributions then yielded to the total 

moment capacity of the section, and the moment-curvature curves were fullgenerated, see 
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Figure 3-4. The progressive moment-curvature calculation procedure is described in a flow 

chart up to steel yielding. However, the same procedure may be followed to generate the 

response of the post-yielding region, see Figure 3-5. 

 

Figure 3-5 Typical beam moment vs. curvature sectional response 
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Figure 3-6 Flexural analysis flow chart up to the yielding point 
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3.4 Differential Sectional Analysis 

3.4.1 Shear Stresses Differential Equation 

Shear stresses distribution over a shallow beam depth is formulated through the axial forces 

acting on the beam cross section. Considering an infinitesimal element with length dx of the 

beam, the differential bending moment acting over dx is dM, Figure 3-6. At any given depth, the 

equilibrium of forces in the longitudinal direction is satisfied through the longitudinal shear τyx, 

Figure 3-7. Also from equilibrium, the longitudinal shear is equal to the transversal shear τxy. 

∑ 𝐹 = 0                                                                                               (3.27) 

∫ 𝜎′. 𝑑𝐴 − ∫ 𝜎′′. 𝑑𝐴 − 𝜏(𝑏. 𝑑𝑥) = 0                                                    (3.28) 

𝐹′ − 𝐹′′ − 𝜏(𝑏. 𝑑𝑥) = 0                                                                      (3.29) 

𝑑𝐹 − 𝜏(𝑏. 𝑑𝑥) = 0                                                                               (3.30) 

               𝜏 = =
( , )

                                                                (3.31) 

 

 

Figure 3-7 Axial stress distribution over an infinitesimal element dx 
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Figure 3-8 Axial stress distribution over an infinitesimal element dx and depth d’ 

 

3.4.2 Numerical Evaluation of Shear Stresses Distribution 

For each load level, one hundred vertical sections were taken over the beam shear span length. 

For each vertical section, 25 equally spaced nodes were taken along the height of the section. At 

any given depth, the axial forces are calculated by integrating the axial stresses over the covered 

distance. By summing the axial forces above a given depth for two constitutive vertical sections, 

the shear stress at the given depth is evaluated, Equation (3.31). 

3.4.2.1 Compressive concrete contribution 

By integrating the Hognestad’s profile over the area from the top of the section to the specific 

depth dc, the concrete compressive force (Cc) is derived for the section based on the following 

equations 

𝐶 =  ∫ 𝑓 . 𝑏 𝑑𝑦=∫ 𝑏𝑓
Ɛ

Ɛ
−

Ɛ

Ɛ
𝑑𝑦                                                     (3.32) 

𝑤ℎ𝑒𝑟𝑒 𝑦 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 

𝐶 =  𝑏𝑓
ɸ

ɛ
(𝑦 −

ɸ

ɛ
)

𝑐
𝑐 − 𝑑                                                                                   (3.33) 

 Where, dc is measured from the top of the section 

d’ 

τyx 
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3.4.2.2 Compressive Steel Contribution 

The compressive steel force (Cs) is a direct linear relationship with the corresponding steel strain 

(ɛs’). This relationship was driven based on the assumption of the bilinear behavior for the steel 

analysis.  

𝐶 = 𝐴 𝑓 ′ − 𝐴 𝑓 ((2
ɛ ’

ɛ
− _

ɛ ’

ɛ
)                                                                (3.34) 

 

3.4.2.3 Tensile Concrete contribution 

The concrete tensile capacity is divided into two main profiles 

𝑇 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                                               (3.35) 

Where y is measured from the neutral axis and dt is measured from the neutral axis 

𝑇 =                                                                       (3.36) 

𝑇 = ∫ 𝑏𝑓 𝑑𝑦=b∫ 0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
 

𝑑𝑦                       (3.37) 

Where y is measured from the neutral axis 

𝑇 = [−
.

. ɛ

ɛ

yln(𝜑) + 𝑦𝑙𝑛(𝑦) − 𝑦 − 𝑦𝑙𝑛(𝜀 ) + 0.5f y]
𝑑

𝜀 /𝜑
                (3.38) 

 

3.4.2.4 Tensile steel Contribution 

The tensile steel force (Ts) follows the same bilinear behavior based on the following equations 

𝑇 = 𝐴 𝐸 ɛ ,  𝑤ℎ𝑒𝑛 𝑓 ≤ 𝑓                                               (3.39) 

𝑇 = 𝐴 (𝑓 + 𝐸 (ɛ − ɛ )),  𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                       (3.40) 

 

3.4.2.5 Constructing shear stress distribution 

Typical shear stress profiles are numerically generated using Equations (3.32)-(3.40) substituted 

into Equation (3.31). Figure 3-8 presents the shear stress distribution for un-cracked section. The 

stress profile is very similar to the classical parabolic shear stress distribution in linear beams 
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except for the effect of dowel action shown at the level of tensile reinforcement. Figure 3-9 

shows the shear stress distribution for a post-cracked concrete section. It is interesting to observe 

the shear stress shifts from positive to small negative value which is offset to zero by the tension 

stiffening contribution, Figure 3-9. Figure 3-10 illustrates the shear stress distribution for post 

yielded section. It is evident that the shear stresses within the compression block start negative in 

value due to the descending part of Hognestad’s parabola. Then these stresses shift to positive 

values. In addition, dowel action shift shear stresses to zero shear stress since tension stiffening 

is vanished at this stage of loading. 

 

Figure 3-9 Typical pre-cracking shear stress distribution 

 

 

Figure 3-10 Typical post cracking shear stress distribution 
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Figure 3-11 Typical post yielding shear stress distribution 

 

Principal stress analysis 

3.5 Principal stress by Mohr’s circle 

By applying Mohr’s Circle for each numerical node, the principle stresses 𝜎 , 𝜎  and their 

orientations are calculated. 

𝜎 =       Where, σy=0 (beam theory)                                               (3.41) 

𝑅 = + 𝜏                                             (3.42) 

max 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝜎 =  𝜎 + R                                                            (3.43) 

min 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝜎 =    𝜎 - R                                         (3.44) 

𝑇𝑎𝑛(2𝜃) =                                                                       (3.45) 

- - -
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Figure 3-12 Mohr's circle 

 

 

3.6 Kupfer and Gerstle biaxial cracking criterion 

Kupfer and Gerstle (1973) have suggested an analytical maximum strength envelope for biaxial 

loading. Complying with this envelope, Kupfer and Gerstle also proposed simplified expressions 

of biaxial strength for different stress combinations. For tension-compression, Kupfer and 

Gerstle adopted a linear reduction of tensile strength in accordance with the increased 

compression 

 𝜎 = 1 −
.

𝑓                                                   (3.46) 

Where (σ1t) is the principal tensile stress and (σ2c) is the principal compressive stresses. 

𝑖𝑓 (𝜎 (𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠) > 𝜎 ) {"Cracked Concrete"} 
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3.7 Results 

In this section, the formulation developed above is applied to retrieve the shear stress distribution 

of cracked concrete at various levels of load and at different sections along the shear span under 

the same load. Furthermore, Mohr’s circle is used to extract the principal stresses across the 

beam depth while using Kupfer and Gerstle (1973) criterion to predict the shear-flexural cracks. 

Finally, crack maps are developed for one example along the shear span under eight different 

load levels and the cracked zone is shaded to indicate likely existence of cracks. 

3.7.1 Example one 

The purpose of this example is to confirm the accuracy of the non-linear numerical sectional 

analysis used in this study to predict the shear stress distributions in shallow beams. This beam 

was cast and tested by Decker (2007). The rectangular beam is a 305mm*153mm (6 in x 12) in 

cross section. It has a length of 4.88 m(16 ft) with a clear span of 4.72 m(15.5 ft) .  The main 

flexural reinforcement consists of 2φ16 (2 No. 5) bars with 2φ10 (2 No. 3) bars used for the 

compression steel just to provide a caging framework for the shear reinforcement, Figure 3-12.  

The concrete that was used in casting the beam is ready mix with a mix design nominal 

compressive strength of 34.5 MPa (5000 psi). The material properties of the reinforcing steel 

were provided by the manufacturer to have a modulus of 200,000 MPa(29000 ksi) and yield 

strength of 482.3 MPa(70 ksi). 
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Figure 3-13 Decker (2007) control beam R1 cross section 

 

 

Figure 3-14 Decker (2007) control beam R1 moment vs. curvature 
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Figure 3-15 Decker (2007) control beam R1 Load vs. Max. compressive fiber strain 

 

 

Figure 3-16 Decker (2007) control beam R1 Load vs. rebar strain 
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Figure 3-17 Decker (2007) control beam R1 Load vs. neutral axis depth 

 

A very good agreement of the reported experimental results is observed against the proposed 

numerical approach. Decker (2007) tested this control beam under four points bending with shear 

span of 175.3 mm (5.75 ft). Two strain gauges were installed on the top surface of the beam to 

report the maximum compressive strain. Another two strain gauges were installed on the 

reinforcing flexural rebar to report the rebar strain. Figure 3-14 and Figure 3-15 present a 

comparison between the numerical and the experimental results of the maximum compressive 

strain and the rebar strain. These two graphs show a good agreement in the post cracking zone 

and the post yielding zone up to the failure of the strain gauges. The numerical variation of the 

neutral axis and the experimentally evaluated neutral axis comparison is given in Figure 3-16. A 

generally good comparison is observed as well.  

These comparisons are presented to illustrate the accuracy of the proposed method in predicting 

the sectional response of the beam. The bending moment vs. beam curvature comparison shows 

an excellent agreement of the sectional response of the beam.  
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3.7.2 Example two 

The second beam was tested by Almusallam (1997). The tested rectangular beam has a 200 

mm*210 mm (7.87 in x 8.26) in cross section. It has a length of 2.7 m (106.3 in). The main 

flexural reinforcement consists of 3 φ 14 mm bars with 1 φ 6.25 mm bars used for the 

compression steel just to provide a caging framework for the shear reinforcement. The beam has 

shear reinforcement consisting of φ 8 mm stirrups at 120 inches spacing. 

The concrete nominal strength is 31.3 MPa (4540 psi). The reinforcing steel has a yielding 

strength of 552.6 MPa (80.2 ksi) and a modulus of elasticity of 200000 MPa(29000 ksi).  

In this second example, the axial stress distribution and the shear stress distribution as well as the 

principal stress distribution are calculated across the height of the beam at three different location 

over the shear span. The first location (section one) is after the cracked section and the second 

location (section two) is positioned just before the yielding section, these two sections were 

analyzed under 75% of the failure load. The third location (section three) is positioned just under 

the load at the failure of the beam. 

 

 

Figure 3-18 Almusallam 1997 control beam cross section 
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Figure 3-19 Almusallam 1997 control beam Load vs. mid-span deflection 

 

Figure 3-20 Almusallam 1997 axial stresses of the three sections 

 

The axial stresses over the height of the beam is calculated in accordance to the concrete material 

properties defined earlier. Where Hognestad’s parabola describes the concrete behavior in 

compression up to the neutral axis, followed by a linear tensile model till the cracking strain and 

a descending curve for the tension stiffening till 1.4 steel yielding strain. In section one and 

section two, in the post cracking zone, maximum compressive stresses at the top of the beam 

0 0.005 0.01 0.015 0.02 0.025

0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

Midspan deflection (m)

P 
(K

N
)

P 
(k

ip
s)

Midspan deflection (in)

Analytical

Experimental

-34.5 -24.5 -14.5 -4.5 5.5

0

0.05

0.1

0.15

0.2

0
1
2
3
4
5
6
7
8
9

-5 -4 -3 -2 -1 0 1

Axial stress  (Mpa)

de
pt

h 
(m

)

de
pt

h 
in

Axial stress ksi        

Section one

Section two

Section three



61 

didn’t exceed 50% of f’c, while section three, under the failure load at the load location, did 

generate the full Hognestad’s parabola.  

To continue with the analysis, shear stresses were then evaluated for the same sections using the 

numerical differential sectional analysis. For each given section, a preceding section at a 

differential distance was taken to be analyzed. In order to compute the shear stress at any given 

depth d, the axial forces within the depth d for the two successive sections are calculated. Then, 

the shear stress is found by numerically applying Equation (3.31). The shear stress distribution 

varies depending on the section location. A section within the pre-cracking zone follows the 

well-known symmetrical second degree parabola, where it peaks around the mid-height of the 

section. However, for the sections located in the post cracking and the post yielding zone, it was 

found that the shear distribution is no longer symmetric due to the different concrete behavior in 

tension and compression as well as the existence of the steel, known as dowel action. There are 

few locations over the height of the section, at which the shear distribution changes. The shear 

stress distribution over the compressive depth tends to be parabolic with a slight constant change 

at the compressive steel (Zone A), see Figure 3-20. This change is clearer with more 

compressive steel area. Just after the cracking, the shear stress distribution changes the slope 

drastically. This change of slope indicates the beginning of the tension stiffening model. The 

rapid increase of the shear stress at the beginning of the tension stiffening zone tends to be more 

pronounced at the beginning of the post cracking zone (Zone B), see Figure 3-20, and it becomes 

less pronounced towards the yielding section, Figure 3-21. Within the tension stiffening model, 

the shear stress distribution had a linear slope (Zone C). A clear dowel action effect is observed 

at the flexural steel depth. This effect is a constant drop in shear stresses which could reach a 

small negative shear stress value that indicates a change in the shear stress direction. This 
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negative change in shear stress direction is understandable due to the decrease in the tension 

stiffening forces as you move toward the location of applied load (i.e. later stages of the post 

cracking zone). Finally, as expected, the shear stress converges to zero at the soffit of the beam 

(Zone D).  

 

 

 

Figure 3-21 Almusallam 1997 shear stress distribution of section one 

 

Figure 3-22 Almusallam 1997 shear stress distribution of section two 
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Figure 3-23 Almusallam 1997 shear stress distribution of section three 
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Figure 3-24 Almusallam 1997 tensile principal stresses of the three sections 

 

 

Figure 3-25 Almusallam 1997 compressive principal stresses of the three sections 
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3.7.2.1 Formation of shear cracks 

For each load level, the shear span was divided into a number of sections. Each section was 

divided into a number of nodes at equal spaces. The proposed analysis was applied on each node 

to determine if it was cracked.  In Figure 3-25, the cracked concrete map was generated using the 

proposed approach at different load stages. The general directions of the diagonal tension cracks 

were also compared against the simplified modified compression field theory. The SMCFT 

predicts the shear crack angle θ as a function of the longitudinal axial strain at the centroid of 

tensile steel (εs). 

𝜃 = 29(𝑑𝑒𝑔𝑟𝑒𝑒) + 3500𝜀  ≤ 75˚                                          (3.47) 

Longitudinal axial strain (𝜀 ) is calculated based on the superimposed effect of the forces in the 

tension side of the section, as follow 

𝜀 =  

| |
.

………… (AASHTO 5.8.3.4.2-4)                                   (3.48) 

Where 

M = moment in k.in  

V = shear force in kip  

N = axial force, taken as positive if tensile and negative if compressive in kip  

As = area of non-prestressed steel on the flexural tension side of the section in in.2 (mm2). This is 

considered to be the area of flexural reinforcement under the original geometric centroid of 

the section. 

dv = effective shear depth taken as the distance, measured perpendicular to the neutral axis, 

between the tensile resultant and compressive resultant force due to flexure. It needs not 

be taken to be less than the greater of 0.9de or 0.72h in in. (mm). 
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The SMCFT assumes an average distribution of shear stresses over an area of depth dv and width 

bv. That means the direction of principal stresses doesn’t change over the depth. Furthermore, 

from Figure 3-25, the SMCFT overestimate the angle of the inclination of the cracks at the early 

stages of the load and underestimates the angle of the diagonal cracks while approaching the 

ultimate load capacity. 

 

 

Figure 3-26 Cracks map of different load levels. (SMCFT is presented as dotted line for each 
load)  

 

3.8 Conclusion 

In this study, a novel non-linear formulation was developed using the smeared crack approach. It 

is used to predict the shear stress profile along the shear span of shallow beams in flexural 

cracked concrete at all stages of loading up to flexural failure. These shear stress profiles are 

coupled with the nonlinear axial stress profiles to obtain the principal stress distribution along the 

shear span. Kupfer and Gerstle failure criterion is used to predict the likely occurrence of new 

shear-flexural cracks by setting the major principal stress equal to the limit provided by the 

Kupfer criterion.  
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It is interesting to observe the prediction of diagonal tension cracks along a curved path, which is 

expected to be much more accurate than other shear theories that assume a constant shear crack 

orientation. 
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Chapter 4 - Analytical Formulation of Shear Stress Distribution in 

Cracked Reinforced Concrete Flexural Members  

This study is conducted to provide a mechanics-based understanding of the shear stress 

distribution in cracked reinforced concrete. A rational approach is followed to analytically derive 

the shear stress profile in shallow reinforced concrete beams based on the smeared crack 

approach. This approach utilizes the transversal shear differential equation to evaluate the shear 

stress at any given depth by the variation of the axial stress distribution within an infinitesimal 

beam segment at that depth. In addition, this study presents a more accurate representation of the 

change in the strain profile parameters with respect to the sectional applied moment. 

Furthermore, the dowel action effect is derived to illustrate its significance on the shear stress 

distribution at various stages of loading. 

4.1 Introduction 

During the last 50 years, there have been many attempts to predict the shear strength mainly 

based on experimental results to produce simplified empirical formulas. However, by comparing 

these different results, significant inconsistencies are realized due to the differences in testing 

protocols and examined parameters. Therefore, it is vital to present a well-defined mechanics-

based approach to accurately predict the shear behavior of flexural members. 

The shear failure in reinforced concrete beams stems from a principal tensile stress failure 

(Morsch 1903). This fact was ignored for many years due to the difficulty in determining the 

diagonal tension stress in cracked concrete. Mphonde and Frantz (1984) concluded, based on 

their tests in beams without stirrups, that the ratio of the shear at inclined cracking to the 

measured shear strength ranges between 0.74-0.97. Therefore, it is difficult to determine the 

value of the diagonal tensile stress. Also, Bazant and Kazemi (1991) showed that the crack 
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initiation load is not proportional to the failure load due to the size effect. Moody et al. (1954) 

described the failure of reinforced concrete beams, subjected to shear, to be composed of two 

stages. The first stage includes diagonal tension cracking and the second stage terminates at 

concrete crushing. This shear dominant failure mode was found to be controlled by a smaller 

(M/Vd) ratio. On the other hand, larger (M/Vd) ratios results in almost pure flexural failure. 

The lack of agreement between the researchers on defining a shear failure criterion of reinforced 

concrete beams rises from the complexity of the mechanics and the number of parameters 

involved. The diagonal tension or the principal tension stress state is a combination of direct 

axial stresses and shear stresses in cracked reinforced concrete. The axial stresses in flexural 

beams are well-defined through the application of basic beam theory and well-known 

constitutive models. However, the shear stress distribution in cracked concrete is not clearly 

developed in the literature. There have been some attempts to estimate this shear distribution as 

an average shear stress over a redefined cross sectional area, which may be known as the 

modified compression field theory.  

A very important deficiency in the literature is the common assumption that the derivative of 

curvature with respect to x or the derivative of the compression depth with respect to x is taken 

as a constant. Even though this is done in applications other than shear like moment-curvature 

analysis and bond slip mechanisms, it is found here that these parameters (dφ/dx or dφ/dM) are 

nonlinear in nature. Using constant derivatives of curvature from the assumption of trilinear 

sectional response, for example, yields poor representation of shear stresses in cracked concrete. 

In this study, the shear stress profile calculation is introduced, for the first time, in reinforced 

concrete beams throughout all its stages; pre-cracking, post-cracking and post yielding. The 

transversal shear differential equation is used to analytically calculate the shear stress at any 
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given depth based on the smeared crack approach, taking into account the effect of the 

longitudinal steel and an accurate estimation of the derivatives of the strain profile parameters 

with respect to the applied moment. 

4.2 Sectional Analysis 

4.2.1 Materials Constitutive Models 

The stress-strain relationships for the concrete and the reinforcement steel are assumed to be 

independent of each other. The axial stress in steel would be only a result of the axial strain in 

the steel.  

4.2.1.1 Concrete Behavior  

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, Equation 

(4.1), for compressive stresses (fc) and a linear relationship with a slope equal to the concrete 

modulus of elasticity (Ec) up to cracking strain (ɛcr) in tension, see Figure 4-1. This linear 

relationship is then followed by a descending curve as a numerical function in (ɛcr) and the steel 

yielding strain (ɛy), Figure 4-1. 

𝑓 = 𝑓 ’ (
ɛ

ɛ
−

ɛ

ɛ
)                                    (4-1) 

The concrete tensile rupture stress (fr) is taken as a lower bound equivalent to 5 − 7.5 f ′, for 

light weight concrete this value is reduced by 25%. A linear relationship with a slope equal to the 

concrete modulus of elasticity (Ec) up to cracking strain (ɛcr) in tension is assumed. 

The concrete behavior in tension after the cracking strain is described using Equation (4.2). The 

constants in the equation were calibrated against a large pool of four points bending tests on 

flexural beams. 

.
= 1 −

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
                                 (4-2) 
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This proposed descending function on the domain (ɛ ≤  ɛ ≤ 1.4ɛ ) reaches its peak (0.5 fr) at 

the cracking strain (ɛcr) and continues to descend till zero when the tensile strain reaches (1.4 ɛy), 

see Figure 4-2.  This function is an average function between the tension softening which exist 

near the cracking strains and the tension stiffening that activates around the steel location. 

 

 

Figure 4-1 Concrete compressive stress-strain curve (Hognestad's Parabola) 
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Figure 4-2 Concrete tensile stress-strain curve 

 

4.2.1.2 Steel Behavior 

Regarding the steel axial stress-axial strain relationship, a bilinear relationship is assumed in the 

compressive and the tensile analysis, see Figure 4-3.  

𝑓 = 𝐸 𝜀 ≤ 𝑓                                    (4-3) 

Where (fs) is the steel stress corresponding to the axial stress (ɛs), (Es) is the modulus of elasticity 

of steel, (fy) is the yielding stress in steel. The steel is assumed to start hardening after exceeding 

the yielding strain (fy) according to the following equation 

𝑓 = 𝑓 + 𝐸 ɛ − ɛ , 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                  (4-4) 

(E’s) is the slope of steel hardening after yielding and it is determined based on the yielding 

strength (fy),  

 

Table 4-1 shows the relationship between the estimated (E’s) and the corresponding (fy) (Rasheed 

(1990)). 
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Table 4-1 The Relationship between the estimated (E’s) and the corresponding (fy) 

 

 

 

 

 

 

Figure 4-3 Steel stress-strain curve 

 

4.3 Trilinear Approach 

The moment-curvature (M vs. φ) response and the moment-extreme compression fiber strain (M 

vs. ε ) response could be estimated as a trilinear relationship when analyzing the overall 

sectional behavior (Rasheed et al. 2013), see Figure 4-4 . The first linear part is the pre-cracking 

zone, where the maximum tensile strain doesn’t exceed the cracking strain of the concrete (εcr). 
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The second linear region starts with the appearance of the first crack and extends till the yielding 

of the tensile steel. Finally, the third linear region continues until the crushing of concrete at a 

maximum compressive strain equals 0.003. Three well-defined boundary points are used to fully 

generate the sectional response of the beam; the cracking limit (M, φ, εcf)cr, the yielding limit (M, 

φ, εcf)y and the failure point (M, φ, εcf)n. The cracking limit is straight forward using the linear 

distribution of stresses, Equation (4.5). 

𝑀 =
̅

                                    (4-5) 

Where, ( Igt) is the gross transformed moment of inertia of the section and (y̅) is the uncracked 

neutral axis location measured from the maximum tensile fiber. The curvature of the section at 

first cracking (φcr) is then calculated as follow 

 

𝜑 =                                     (4-6) 

The yielding limit considers the nonlinear behavior of the Hognestad’s parabola. The Concrete 

compressive force is expressed in terms of (α), which is used to transform the nonlinear 

relationship into an equivalent rectangular block. 

𝛼 =
∫

=
∫ ’ (

ɛ

ɛ

ɛ

ɛ
)

= −                                     (4-7) 

From the equilibrium of forces on the cross section, the compression depth at the yielding point 

(cy) is computed. 

∑ 𝐹 = 0 → 𝛼𝑓 𝑏𝑐 + 𝐴 𝑓 = 𝐴 𝑓                             (4-8) 

𝜑 =                                          (4-9) 

𝜀 = 𝜑 𝑐                                               (4-10) 

The point of action of the concrete compressive force, measured from the maximum compressive 

fiber, could be calculated as a fraction of the compression depth (γ cy). 



75 

γ = 1 −
∫ ɛ . . ɛ

ɛ

ɛ ∫ . ɛ
ɛ =

ɛ

ɛ                                          (4-11) 

The yielding moment (My) is then computed by summing the moments about the point of 

concrete compression resultant force. 

𝑀 = 𝐴 𝑓 𝑑 − 𝛾𝑐 + 𝐴 𝑓 ′(𝛾𝑐 − 𝑑 )                                (4-12) 

Similarly, the failure point limit (M, φ, εcf)n is calculated.  

The strain profile parameters, at any section namely the curvature (φ) and the maximum 

compressive strain (εcf), are retrieved from the trilinear approach through linear interpolation 

based on the applied moment 

𝑖𝑓 𝑀 < 𝑀 < 𝑀  

𝜑 = 𝜑 − 𝜑 + 𝜑                                                 (4-13) 

𝑖𝑓 𝑀 < 𝑀 < 𝑀  

𝜑 = 𝜑 − 𝜑 + 𝜑                                    (4-14) 

Similarly, the maximum compressive strain (εcf) is computed 

 𝑖𝑓 𝑀 < 𝑀 < 𝑀    

ε = ε − ε + ε
 
                                      (4-15) 

𝑖𝑓 𝑀 < 𝑀 < 𝑀    

ε = ε − ε + ε
 
                                         (4-16) 
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Figure 4-4 Typical moment vs. curvature trilinear approach 

 

 

4.4 Sectional Forces 

In this Section, the axial forces generated at any given depth are calculated using the material 

constitutive models for both concrete and steel under compressive or tensile stresses. The axial 

forces are found by integrating the material stress profile over the given area. This step is 

necessary to develop the stresses distribution at any point along the height of the beam. 

4.4.1 Compressive Concrete Force 

The force induced in concrete within the compression depth of the beam (Cc) is computed by 

integrating Hognestad’s parabola over the depth from the top of the beam’s section to the 

specific depth (dc). 

𝐶 =  ∫ 𝑓 . 𝑏 𝑑𝑦=∫ 𝑏𝑓
Ɛ

Ɛ
−

Ɛ

Ɛ
𝑑𝑦                                (4-17) 

Where, (y) is measured from the top of the section and (εc) is the compressive concrete strain. 

𝐶 =  𝑏𝑓
ɛ

𝑦 −
ɛ

  
𝑐

𝑐 − 𝑑                                      (4-18) 
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4.4.2 Compressive Steel Force 

The compressive steel force (Cs) is a direct linear relationship with the corresponding 

compressive steel strain (ɛs’). This relationship was driven based on the assumption of the 

bilinear behavior of the steel analysis taking into account the concrete compressive stress 

deducted due to the existence of the steel rebar . 

𝐶 = 𝐴 𝑓 ′ − 𝐴 𝑓 ((2
ɛ ’

ɛ
−

ɛ ’

ɛ
)                                    (4-19) 

 

4.4.3 Tensile Concrete Forces 

The concrete tensile stresses are divided into two main profiles. The first profile is a linear 

function up to the concrete cracking strain (ɛcr) with a slope equal to the concrete modulus of 

elasticity (Ec). The tensile force within this range (Tc1) at a given depth (dt) measured from the 

neutral axis is calculated as follow 

 
𝑇

=  ∫ 𝑓 . 𝑏 𝑑𝑦                                   (4-20) 

Where, (y) and (dt) are measured from the neutral axis. 

𝑇 =                                        (4-21) 

The second concrete tensile stress profile starts at the concrete cracking strain (εcr) and extends 

up to 1.4 times the steel yielding strain (1.4εy). At any depth (dt) measured from the neutral axis, 

The second concrete tensile force (Tc2) is measured as follow 

𝑇 = ∫ 𝑏𝑓 𝑑𝑦                                      (4-22) 

𝑇 = 𝑏 ∫ 0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
 

𝑑𝑦                                   (4-23) 

Where, (y) is measured from the neutral axis. 

𝑇 = 𝑏[
.
. ɛ

ɛ

yln(𝜑) + 𝑦𝑙𝑛(𝑦) − 𝑦 − 𝑦𝑙𝑛(𝜀 ) + 0.5f y]
𝑑

𝜀 /𝜑
                               (4-24) 
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4.4.4 Tensile Steel Force 

The tensile steel force (Ts), calculated at the tensile reinforcement level, is evaluated according to 

the following equations 

𝑇 = 𝐴 𝐸 ɛ − 𝐴 𝑓  , 𝑤ℎ𝑒𝑛 𝑓 ≤ 𝑓                                                      (4-25) 

𝑇 = 𝐴 (𝑓 + 𝐸 (ɛ − ɛ )) − 𝐴 𝑓 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                          (4-26)          

Where, f  is a function of the tensile steel strain (ɛ ) and is taken from the un-cracked or post-

cracked parts of the concrete tensile constitutive functions. Note that f (ɛ ) = 0, when ɛ ≥ ɛ . 

4.5 Differential Sectional Analysis 

4.5.1 Shear Stress Differential Equation 

Shear stress distribution over a shallow beam depth is formulated through the change of axial 

forces acting on the beam cross section. Considering an infinitesimal element with length dx of 

the beam, the differential bending moment acting over dx is dM, Figure 4-5. At any given depth, 

the equilibrium of forces in the longitudinal direction is satisfied through the longitudinal shear 

τyx at that depth, Figure 4-6. Also from equilibrium, the longitudinal shear is equal to the 

transversal shear τxy. 

∑ 𝐹 = 0                                              (4-27)                              

∫ 𝜎′. 𝑑𝐴 − ∫ 𝜎′′. 𝑑𝐴 − 𝜏(𝑏. 𝑑𝑥) = 0                                               (4-28)    

𝐹′ − 𝐹′′ − 𝜏(𝑏. 𝑑𝑥) = 0                                        (4-29) 

𝑑𝐹 − 𝜏(𝑏. 𝑑𝑥) = 0                                                  (4-30) 

𝜏 =
( , )

                                            (4-31) 
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Figure 4-5 Axial stress distribution over an infinitesimal element dx 

 

Figure 4-6 Axial stress distribution over an infinitesimal element dx and depth d’ 

 

 

4.5.2 Shear Stress evaluation at any depth 

For each load level and a specific section along the shear span, the shear stress at any given 

depth is the summation of the shear stress contribution of the concrete and steel above the 

desired depth. For example, the shear stress at the neutral axis would be the sum of the shear 

stress due to the compressive concrete contribution within the compression zone plus the the 

shear stress due to the compressive steel contribution if any. In this section, shear stresses 

d’ 

τyx 
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induced by compressive or tensile concrete as well as compressive or tensile steel is analytically 

derived for each individual one. Using Equation (4.31), the shear stress is the derivative of the 

axial forces above its depth with respect of x (beam length direction) divided by the width of the 

cross section. 

4.5.2.1 Compressive concrete contribution 

The shear stresses induced by the compressive concrete (τ ) is the derivative of Equation (4.18). 

τ =
( )

= [bf
ɛ

y −
ɛ

  
c

c − d ]                                   (4-32) 

Where, (y) is measured from the neutral axis, and dc is measured from the top of the section.  

τ = f (
Ɛ

−
Ɛ

−
Ɛ

+
Ɛ

( )
−

Ɛ

( )
)                             (4-33) 

This equation above indicates that the shear stress due to compressive concrete forces is a 

function of the material properties, strain profile parameters at a specific section and the 

derivative of these strain profile parameters with respect to x. 

4.5.2.2 Compressive Steel Contribution 

In a similar manner, the shear stress contribution for the compressive steel (τ ) is the derivative 

of the compressive force in the compression reinforcement. Using Equation (4.19), the shear 

stress is calculated as follow 

τ =
( )

 
= [A f ′ − A f ( 2

ɛ ’

ɛ
−

ɛ ’

ɛ
]                                    (4-34) 

τ = A ′ E
Ɛ

− E d′ −
Ɛ

2
Ɛ

− 2 d −
Ɛ 

Ɛ

Ɛ
+

Ɛ

( Ɛ )
−

Ɛ
     (4-35) 

4.5.2.3 Tensile concrete contribution 

The shear stress due to the tensile concrete is divided into two main profiles as described in the 

material constitutive models. The shear stress in the first profile (τ ) which covers a range up to 
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concrete cracking strain is calculated using this equation  

τ =
( )

= [ ]                                     (4-36) 

Where, dt is measured from the neutral axis downwards. 

τ = E (d φ)(−
Ɛ

+
ɛ

) +                                      (4-37) 

The shear stress due to the second tensile concrete profile (τ ) is the derivative of Equation 

(4.24) 

τ =
( )

= [b[
.
. ɛ

ɛ

yln(φ) + yln(y) − y − yln(ε ) + 0.5f y]
d

ε /φ
 ] (4-38) 

Let, k =
.

. ɛ

ɛ

                                  (4-39) 

τ = [ R + R − k (ln(d φ) + 1) −
( )

− k ln(ε ) + − + (ln(d φ) +

1)
Ɛ

]                                    (4-40) 

Where, R = 0.5f + k + kln(ε )                                 (4-41) 

4.5.2.4 Tension Steel Contribution 

Similarly, The shear stress (τ ) generated due to the change in the steel tensile forces is 

calculated as follow 

τ =
( )

 
= [A E ɛ − A f ]                              (4-42) 

Where, f  is the tensile axial stress that must be subtracted from the concrete contribution due to 

the bar hole. It is defined below as a function of the tensile steel strain (ɛ ) and is taken from the 

un-cracked (linear variation) or post-cracked (tension stiffening) parts of the concrete tensile 
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constitutive functions due to the perfect bond assumption. Note that f (ɛ ) = 0, when ɛ ≥

1.4ɛ . 

For pre-yielding condition f ≤ f  

τ = A −E
Ɛ

+ E d                                   (4-43) 

For post-yielding condition f > f  

τ = A −(E + E )
Ɛ

+ (E + E ) d                                (4-44) 

The subtracted concrete stress f  due to the existence of steel rebar has three main cases. The 

first case occurs when the steel bars are located within the first zone of tensile concrete ε < ε  

.The Second case happens when the steel bars are located within the second tensile concrete zone 

ε < ε ≤ 1.4ε . After that, f = 0. 

The shear stress in equation (4.42), when the bars are within the uncracked zone, has the 

following term 

( )
= [A E ε ] = AsE (−E

Ɛ
+ E d)                               (4-45) 

While the shear stress in equation (4.42), when the bars are within the tension stiffening zone, 

has the following term 

( )
= 0.5f −

.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
 

= A ( − d )                            (4-46) 

In order to evaluate the shear stress at any given depth measured from the top of the section, all 

shear stress contributions from concrete and steel have to be considered. In general, the shear 

stress at a location just above the tensile steel level is equal to the superposition of the 

compressive concrete contribution, compressive steel contribution and tensile concrete 
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contribution, taking into account a positive sign for the compressive contribution and a negative 

sign for tensile contribution. 

τ (d) = τ + τ − τ − τ                                  (4-47) 

4.5.3 The derivative of strain profile parameters with respect to distance along the 

shear span 

Equations (4.32)-(4.47) share the same four main categories of parameters. The first category 

involves the material properties (e.g. f’c, ε’c, fy, …etc.), the second category includes the 

geometrical properties (e.g. h, d and d’). The third category contains the parameters that define 

the strain profile at a given section (e.g. the curvature φ, the maximum compressive strain εcf , 

and the compression depth c), which could be evaluated using a nonlinear sectional analysis or a 

trilinear sectional approach as shown in this study. The fourth category encompasses the 

derivative of the strain profile parameters with respect to x (e.g.  and ). It is important to 

note that these derivatives can be made independent of x using the chain rule (e.g. = =

V and = = V). These two parameters appear as a result of using the shear 

differential equation, Equation (4.31). Furthermore and unlike many previous, assuming a 

constant derivative of the strain profile parameters for this application proves not accurate, See 

Figure 7 and 8. These two figures show the derivatives of the curvature (φ) and the maximum 

compressive strain (εcf ) with respect to x computed numerically.  
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Figure 4-7 The numerical derivative of the cross section curvature with respect to x using 
example one below (post cracking zone) 

 

Figure 4-8 The numerical derivative of maximum compressive strain with respect to x 
using example one below (post cracking zone) 
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the zero shear boundary condition at the soffit of the beam, τ (at d = h) = 0. The second 

condition comes from the fact that the integral of the shear stresses over the cross sectional area 

has to equal the internally applied shear force ∫ τ
 

. dA = V.  

4.5.3.1 Condition One The zero shear boundary condition at the soffit of the beam 

Using Equations (4.32)-(4.47), the shear stress, at the soffit of the beam, may be calculated by 

considering the full contributions for concrete and steel in tension and compression. 

 

 Compressive concrete contribution 

The shear stress induced by the compressive concrete (τ ) at depth equal to the height of the 

beam would consider the full capacity of the compression zone and is calculated as follow 

τ =
( )

= [bf
ɛ

y −
ɛ

  
c
0

]                               (4-48) 

Where, (y) is measured from the neutral axis. 

τ = f (
Ɛ

−
Ɛ

−
Ɛ

+
Ɛ

( )
−

Ɛ

( )
)                             (4-49) 

 

 Compressive Steel Contribution 

The shear stress from the compressive steel contribution (τ ) is taken directly from Equations 

(4.34) and (4.35).  

 Tensile concrete contribution 

The shear stress due to the tensile concrete is divided into two main zone contributions as 

described earlier. The shear stress in the first zone (τ ) which covers a range up to concrete 

cracking strain is calculated using these equations  

τ =
( )

= [
𝑑
0

]                                    (4-50) 
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Where, dt is measured from the neutral axis and equal to d = d =
Ɛ

. 

τ = E (d φ)(−
Ɛ

+
ɛ

) +                                (4-51) 

The shear stress due to the tension stiffening concrete zone (τ ) is found as follow 

τ =
( )

= [b[
.
. ɛ

ɛ

yln(φ) + yln(y) − y − yln(ε ) + 0.5f y]
d

ε /φ
 ]     (4-52) 

Let, k =
.

. ɛ

ɛ

 

τ = [ R + R − k (ln(d φ) + 1) −
( )

− k ln(ε ) + − + (ln(d φ) +

1)
Ɛ

]                            (4-53) 

Where ,R = 0.5f + k + kln(ε ) , and dt is measured from the neutral axis and equals to 

d = h − c if the concrete tensile constitutive model extends beyond the full depth of the section 

(i.e. h − c ≤
.

), otherwise d =
.

. 

 Tension Steel Contribution 

The shear stress (τ ) generated due to the steel tensile forces is taken directly from Equations 

(43) and (46). 

Summing all concrete and steel contributions yields to the shear stress at the soffit of the beam 

and it is equated to zero at the free surface. 

τ (d = h) = τ + τ − τ − τ − τ = 0                               (4-54) 

The previous equation could be simplified into the following form 

τ (d = h) = q + q = 0                                         (4-55) 

Where q11 and q12 are constants multiplying the derivatives in equation (4.54). 
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4.5.3.2 Condition Two Equating the integral of shear stresses across the section to shear 

force 

By integrating the shear stress distribution over the depth of the section, a second 

equation/condition is found in terms of  and . The integral was computed using the 

superposition technique. The shear stress profile for each contribution (concrete /steel-

tension/compression) is determined using the set of Equations (4.32)-(4.47) and then the integral 

of these contributions is calculated for the whole height of the beam. The summation of these 

integrals equals to the shear force divided by the beam width (b). 

 Compressive Concrete Contribution 

Figure 4-9 shows a typical shear stress distribution induced by the forces in the compressive 

concrete. The first part of this distribution is variable over the compression zone, which 

represents Equation (4.32). The second part is constant and equals to the shear stress at a depth 

equals to the compression depth. This part extends from the end of the compression zone till the 

soffit of the beam. The integral of this full profile, Figure 4-9, (Acc) is calculated as follow 

A = ∫ part 1. dy + ∫ part 2. dy                                (4-56) 

A = ∫ [f
Ɛ

 −
Ɛ

−
Ɛ

2Ɛ  +
Ɛ

 Ɛ . + φ. −

Ɛ
2φ ]. dy + ∫ [f

Ɛ
 −

Ɛ
−

Ɛ
2Ɛ  +

Ɛ
 Ɛ . +

φ. −
Ɛ

2φ ]. dy                                      (4-57) 

A = f [
Ɛ

−
Ɛ

Ɛ  +
Ɛ

φ + (−
Ɛ

+
Ɛ

Ɛ −
Ɛ

φ) ] + f
Ɛ

 −
Ɛ

−

Ɛ
2Ɛ  +

Ɛ
 Ɛ . + φ. −

Ɛ
2φ (h − c)                            (4-58) 
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A = constant a + constant b                                   (4-59) 

 

 

 

Figure 4-9 Shear stress profile due the compressive concrete 

 

 Compressive steel Contribution 

The shear stress distribution generated due to the compression steel is constant through the 

region from the location of the compression steel (d’) to the full height of the beam (h), Figure 

4-10. 

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

0
1
2
3
4
5
6
7
8
9

0 0.05 0.1 0.15

shear stress (MPa)

Be
am

 d
ep

th
 (m

m
)

Be
am

 d
ep

th
 (i

n)

Shear stress (ksi)



89 

 

Figure 4-10 Shear stress profile due the compressive steel 

The integral due to the compressive steel contribution (Acs) is found by integrating Equation 

(4.34) as follow 

A = ∫ A ′ E
Ɛ

− E d′ −
Ɛ

2
Ɛ

− 2 d −
Ɛ 

Ɛ

Ɛ
+

Ɛ

( Ɛ )
−

Ɛ
. dy                                         (4-60) 

A = A ′ E
Ɛ

− E d  −
Ɛ

2
Ɛ

− 2 d −
Ɛ 

Ɛ

Ɛ
+

Ɛ

( Ɛ )
−

Ɛ
(h − d )                                              (4-61) 

Similarly, the equation could be simplified into 

A = constant a + constant b                                 (4-62) 
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 Tensile concrete Contribution 

As described above, the tensile concrete contribution is divided into two main zones. The first 

zone generates a shear stress profile as show in Figure 4-11. The integral of this profile (Atc1) is 

shown in the following equations 

A = ∫ E (d φ)(−
Ɛ

+
ɛ

) + . dy+∫ E (d φ)(−
Ɛ

+

ɛ
) + dy                                     (4-63) 

Where, dt is measured from the neutral axis and d = . 

A = E − + ( + )
0

+ E (d φ) −
Ɛ

+
ɛ

 + (h −

d )                                       (4-64) 

A = E − + ( + ) + E (d φ) −
Ɛ

+
ɛ

 + (h −

d )                                    (4-65) 
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Figure 4-11 Shear stress profile due the tensile concrete (zone 1) 

A typical shear stress induced by the second profile of the constitutive concrete tensile model is 

shown in Figure 4-12. 

 

Figure 4-12 Shear stress profile due the tensile concrete (zone 2) 

The integral of this profile (Atc2) is calculated by integrating Equation (4.40). The procedure is 

described in the next set of equations. 

A = ∫ τ dy                                  (4-66) 
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Where, (dt) is measured downwards from the neutral axis. 

A = ∫ [ R + R − k (ln(d φ) + 1) −
( )

− k ln(ε ) + − +

(ln(d φ) + 1)
Ɛ

] dy                                 (4-67) 

Where, k =
.

. ɛ

ɛ

 and R = 0.5f + k + k ln(ε )  

A = R (d ) − k(d ) − k((d )ln(φd )) − (Rd − k ln(ɛ )d )  +

R d + k(d ln(φd )) − R − k − k( ln(ε )) − (R −

kln(ɛ ) ) − R + k( ln(ε ))                              (4-68) 

This could be simplified into 

A = constant a + constant b                                    (4-69) 

 

 Tensile Steel Contribution 

Similar to the compressive steel contribution, the shear stress profile due to the variation in the 

steel tensile force is shown in Figure 4-13. The integral due to this profile (Ats) is derived from 

Equations (4.43)-(4.44). 

For pre-yielding condition f ≤ f  

A′ = ∫ A −E
Ɛ

+ E d  dy                                    (4-70) 

A′ = A −E
Ɛ

+ E d  (h − d)                               (4-71) 

For post-yielding condition f > f  
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A′ = ∫ A −(E + E )
Ɛ

+ (E + E ) d  dy                                 (4-72) 

A′ = A −(E + E )
Ɛ

+ (E + E ) d (h − d)                                       (4-73) 

 

Figure 4-13 Shear stress profile due the tensile steel 

The contribution of the steel bar holes must be subtracted from the tensile steel equations (4.71) 

or (4.73), as shown in equations (4.45) or (4.46), which still needs to be integrated with respect 

to y measured from the tensile steel level (d) to (h). The latter contribution must be subtracted 

from A′  to yield A . 

From Equations (4.56)-(4.73), the second condition equation is formulated 

= A + A − A − A − A                                 (4-74) 

= q + q                                          (4-75) 

Where, q12 and q22 are functions of the geometrical and material properties as well as the strain 

profile parameters. 
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4.5.4 Evaluating the derivative of the strain profile parameters 

The only unknowns in Equations (4.55) and (4.75) are  and . This set of equations could be 

presented in a matrix form, see Equation (4.76). By considering the inverse of a 2x2 matrix,  

and  could be calculated. 

q q
q q

  

 
=

0
V/b

                               (4-76) 

 
=

q q
q q

0
V/b

                                 (4-77) 

Figure 4-14 and Figure 4-15 show a numerical evaluation of the two derivatives at hand versus 

the analytical values from equation (4.77) along the shear span. These comparisons show the 

accuracy of the proposed method and support the claim that the change of the curvature along the 

shear span is not constant. Although, a trilinear model is a good approach to represent the 

sectional behavior, a differential application requires an accurate estimation of the derivatives of 

the strain profile parameters along the shear span. 
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Figure 4-14 The derivative of section curvature along the shear span dφ/dx vs. the shear 
span using example one below (post cracking zone) 

 

 

Figure 4-15 The derivative of the maximum compressive strain along the shear span dεcf 
/dx vs. the shear span using example one below (post cracking zone) 
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4.6 Results 

In this section, the proposed analytical formulation is applied to generate the shear stresses at 

different sections and load levels. A detailed example is presented to illustrate the proposed 

procedure. First, the trilinear analytical approach is compared to the experimental results of 

Almusallam (1997), see Figure 4-16.  

The tested rectangular beam has a 200 mm*210 mm (7.87 in x 8.26 in) in cross section. It has a 

length of 2.700 m (106.3 in) with a shear span of 1.252 m (49.3 in). The main flexural 

reinforcement consists of 3 φ 14 mm bars with 1 φ 6.25 mm bars used for the compression steel 

just to provide a caging framework for the shear reinforcement. The beam has shear 

reinforcement consisting of φ 8 mm stirrups at 120 mm (4.7 in) spacing. 

The concrete nominal strength is 31.3 MPa (4540 psi). The reinforcing steel has a yielding 

strength of 552.6 MPa (80.2 ksi) and a modulus of elasticity of 200,000 MPa (29000 ksi). 

The shear stresses are then retrieved at three different cross sections. The first location (section 

one) is at an early stage of the post-cracking zone and the second location (section two) is 

positioned just prior to the section where yielding of tensile steel first occurs. These two sections 

were analyzed under 75% of the failure load. The third location (section three) is positioned just 

under the concentrated force at the failure load of the beam in the post-yielding zone. 

 

Figure 4-16 Almusallam (1997) cross section (SI units) 
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For a given applied load and a cross section location, the shear force (V) and the moment (M) are 

calculated at a distance x from the support as follow, see Figure 4-17. 

V =                                          (4-78) 

M = x                                    (4-79) 

To continue with the analysis, the strain profile parameters, namely the curvature (φ) and the 

maximum compressive strain (εcf) are retrieved from the trilinear approach 

φ = φ − φ + φ                                        (4-80) 

 if M < M < M   , as in sections one or two. 

φ = φ − φ + φ                                            (4-81) 

 if M < M < M   , as in section three. 

Similarly, the maximum compressive strain (εcf) is computed 

ε = ε − ε + ε
 
                                 (4-82) 

 if M < M < M   , as in sections one or two. 

ε = ε − ε + ε
 
                                      (4-83) 

 if M < M < M   , as in section three. 

The next step of the analysis is to estimate the derivative magnitudes  and . Condition one, 

Equations (4.48)-(4.55) and condition two, Equations (4.56)-(4.75) were applied to determine   

and . 

q q
q q

  

 
=

0
V/b

                                 (4-84) 



98 

 
=

q q
q q

0
V/b

                                 (4-85) 

Upon finding the derivatives  and , for example section one results are shown in Figure 

4-14 and Figure 4-15, Equations (4.32) to (4.47) are applied to accurately calculate the shear 

stress distribution at any given depth.  

 

Figure 4-17 Profile of imply supported beam under four-point bending tested by 
Almusallam (1997)  

Table 4-2  shows the location of each examined section as well as the corresponding shear force 

(V) and bending moment (M). In addition, it shows the computed curvature (φ) and maximum 

compressive strain (εcf) based on the trilinear approach, Figure 4-18. 
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Figure 4-18 Trilinear response vs. experimental moment-curvature graph for beam tested 
by Almusallam (1997) 

Table 4-2 Parameters for the three sections analyzed to compute their shear stress 
distribution. 

  V (KN) x (mm) M (KN.m) φ εcf 
Section one 22.55 508.00 11.46 0.00662 0.00047 
Section two 22.55 1102.36 24.86 0.02246 0.00146 

Section three 30.16 1252.22 37.76 0.05076 0.003 
 

As shown in Figure 4-19, Figure 4-20 and Figure 4-21, the shear stress distribution varies 

depending on the loading and section location. Also unlike the symmetrical second-degree 

parabola (i.e. shear stress distribution of un-cracked cross section) sections in the post-cracking 

and post yielding zones are no longer symmetrical due to the change in concrete behavior in 

tension and compression in addition to the existence of the steel. However, there are key 

locations where the shear stress distribution changes its behavior. By following the shear stress 

profile from the top of the section to its soffit, these key locations are defined. The first region 

(zone A), see Figure 4-19, shows the effect of the compressive concrete contribution. This region 

starts with a shear stress equal to zero at the top of the cross section as it is a free surface, and it 
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terminates at the neutral axis depth. Zone B is the region that has the effect of the first part of the 

tensile concrete constitutive model. The third region is zone C and it is nearly linear due to the 

effect of the second tensile zone (tension stiffening) until reaching the level of the tensile steel 

(Dowel action). Dowel action causes a drop in the shear stress profile to a small negative value. 

However due to the effect of the remainder of tension stiffening contribution in the concrete 

cover, the shear stress comes back to zero as expected (free surface at the beam soffit) (Zone D). 

 

  

Figure 4-19 Shear stress distribution of section one for the beam tested by Almusallam 
1997. 
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Figure 4-20 Shear stress distribution of section two for the beam tested by Almusallam 
1997 

. 

In section three at the failure load just under the concentrated force point, Figure 4-21, it is 

interesting to observe the opposite change in direction of the shear stresses within the 

compressive depth. This change is a result of the descending branch of the Hognestad’s parabola. 

Furthermore, the shear stress shows a constant zero region across the concrete cover depth as the 

tension-stiffening model vanishes at 1.4 times the yielding strain of the steel. 
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Figure 4-21 Shear stress distribution of section three for the beam tested by Almusallam 
1997. 

 

4.7  Conclusions 

In this study, the authors intend to provide a mechanics-based understanding of the shear 

behavior in reinforced concrete flexural beams. An analytical formulation of shear stress 

distribution in cracked reinforced concrete, throughout its stages of post-cracking and post 

yielding, is presented using the smeared crack approach. This formulation uses the transverse 

shear differential equation to compute the shear stress at any given depth across the height of the 

beam through the derivative of axial forces acting above that desired depth. While the axial 

forces are found in accordance with the corresponding strain profile, which is computed by 

idealizing the sectional response of the beam to trilinear sectional relationships.  Furthermore, 

the effect of the longitudinal steel on shear stress distribution, known as dowel action, is 

computed for the first time and found to be significant enough not to be ignored as typically done 

in design codes. In addition, the study provided a detailed evaluation of the variation of the strain 

profile parameters (φ, εcf) with respect to shear span or the corresponding moment, which is 
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found to be non-linear compared to other studies that assume it as a constant. This analytical 

formulation was then applied to an experimental study to retrieve the shear stresses at three 

different cross sections under different applied loads. It is interesting to observe for the first time 

from the generated shear profiles certain key features of the behavior that may prove to be very 

useful in interpreting shear failures, which are beyond the scope of this study. 
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Chapter 5 - Mathematical Characterization of Crushing Failure 

Mode in Flexural Reinforced Concrete Beams 

Concrete crushing failure mode in reinforced concrete flexural beams, for the most part, is 

thought-out to be independent of concrete cracking. Accordingly, it was specified to occur at a 

constant compressive strain selected by ACI 318 to be 0.003 and by Euro code at 0.0035. In this 

study, a new approach is developed to predict this failure mode numerically by considering 

concrete cracking produced at crushing failure mechanism. The combination of axial 

compressive stresses and shear stresses within the compression zone were used to explain the 

occurrence of concrete cracking at the crushing point slightly below the top surface through a 

dish –like crack that develops at the location of maximum moment. The calculation of shear 

stress profile after yielding is performed using an innovative smeared crack approach. This shear 

stress distribution combined with axial compressive stresses yields tensile-compressive principal 

stress state that captures tensile cracking when a biaxial concrete failure criterion is invoked. 

Applications of shallow beams tested in flexure up to concrete crushing failure mode are 

examined. The presented numerical results are, thus, experimentally qualified. 

 

5.1 Introduction 

Concrete crushing is one of the most desirable failure criteria of reinforced concrete if it takes 

place after steel yielding. Yet, it lacks a complete agreement among the researchers. According 

to many reinforced concrete design codes, concrete crushing is a phenomenon that is only related 

to the compressive stresses in concrete. Although ACI 318-14 adopted the value of 0.003 to 

represent the maximum useful concrete strain (crushing strain), ACI 318 commentary states that 

the maximum compressive strain in concrete at crushing has been observed in tests to range 
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between 0.003-0.008. Furthermore, PCA Notes (2013) presents a collection of compressive 

failure strains from beam and column tests in a graph showing a scatter in the range of 0.0028-

0.0058. In 1955, Hognestad et al. developed a concrete stress distribution in compression. This 

model follows an ascending parabolic curve up to the maximum compressive strength and then 

starts to descend until reaching a maximum compressive strain. Also Hognestad et al. built a C-

shaped specimen to study the concrete compressive behavior.  

This approach, of limiting the concrete compressive strain, did not manage to answer 

Gonnerman (1925) question of; why does the ratio of the compressive failure stress to the 

compressive strength decreases according to the size effect? While this question motivated 

Bazant (1984) to derive the size effect law, which uses the principle of energy balance of cracks 

to explain the behavior of geometrically similar structures with different sizes. From a different 

perspective, Zwoyer (1954) observed the similarity between the diagonal tensile cracks and the 

flexural compression failure (concrete crushing). Using this observation, Moody et al. (1954) 

described the failure of reinforced concrete beams to be composed of two stages; the first stage 

includes diagonal tension cracking followed by crushing as a second stage. However, the 

described failure mode was said to be controlled by (M/Vd) ratio. With smaller ratios, the 

described diagonal tension mode of failure occurs. Larger (M/Vd) ratio results in almost pure 

flexural crushing failure. 

In this study, the authors utilized to the actual stress state in cracked reinforced concrete beams 

to present a numerical demonstration of concrete crushing as a cracking failure mode. The 

combination of axial compressive stresses and shear stresses within the compression zone were 

used to explain the occurrence of concrete cracking at the crushing point through a dish –like 

crack that develops at the section of maximum moment. The calculation of shear stress profile 
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after yielding is performed using the transversal shear differential equation under the smeared 

crack assumption. The biaxial stress state within the compression zone was compared to a biaxial 

failure criterion to determine the concrete state. This study emphasizes that the concrete crushing 

is nothing but an oriented concrete principal tensile stress failure in the compression zone. 

5.2 Nonlinear sectional Analysis 

A fully independent stress-strain relationship is assumed between the concrete and the 

reinforcing steel. The axial stress in steel would be a result of the axial strain in the steel only.  

5.2.1 Concrete Behavior  

The concrete stress-strain relationship is assumed to follow the Hognestad’s curve, Equation 

(5.1), for compressive stresses (fc) and a linear relationship with a slope equal to the concrete 

modulus of elasticity (Ec) up to cracking strain (ɛcr) in tension, Figure 5-1. This linear 

relationship is then followed by a descending curve as a numerical function in (ɛcr) and the steel 

yielding strain (ɛy), see Figure 5-4. 

𝑓 = 𝑓 ’ (2
ɛ

ɛ
−

ɛ

ɛ
)                                               (5-1) 

The concrete tensile rupture stress (fr) is taken as a lower bound equivalent to 5 − 7.5 f ′, for 

light weight concrete this value is reduced by 25%. A linear relationship with a slope equal to 

the concrete modulus of elasticity (Ec) up to cracking strain (ɛcr) in tension is assumed. 

The concrete behavior in tension after the cracking strain is described using Equation (5.2). The 

constants in the developed equation were calibrated against a large pool of four points bending 

tests on shallow beams. 

.
= 1 −

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
                                                 (5-2) 
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This proposed descending function on the domain (ɛ ≤  ɛ ≤ 1.4ɛ ) starts by a sudden drop 

from its peak (fr) to (0.5 fr) at the cracking strain (ɛcr) and continues to descend till zero when the 

tensile strain reaches (1.4 ɛy), see Figure 5-2.  This function is an average function between the 

tension softening which exist near the cracking strains and the tension stiffening that activates 

around the steel bar locations. 

 

 

Figure 5-1 Concrete compressive stress-strain curve (Hognestad's Equation) 
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Figure 5-2 Concrete tensile stress-strain relationship 

 

 

5.2.2 Steel Behavior 

Regarding the steel axial stress-axial strain relationship, a bilinear relationship is assumed in both 

the compressive and the tensile analysis, Figure 5-3.  

𝑓 = 𝐸 𝜀 ≤ 𝑓                  (5-3) 

Where (fs) is the steel stress corresponding to the axial strain (ɛs), (Es) is the modulus of elasticity 

of steel, (fy) is the steel yielding stress. The steel is assumed to start hardening after exceeding 

the yielding stress (fy) according to the following equation 

𝑓 = 𝑓 + 𝐸 ɛ − ɛ , 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                       (5-4) 

(E’s) is the slope of steel hardening after yielding and it is determined based on the yielding 

strength (fy), Table 5-1 shows the relationship between the estimated (E’s) and the corresponding 

(fy) (Rasheed (1990)). 
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Table 5-1 The estimated modulus of elasticity (E’s) and the corresponding (fy) relationship 

 

 

 

 

 

 

Figure 5-3 Steel stress-strain relationship 

5.3 Sectional Analysis approach 

5.3.1 Forces 

5.3.1.1 Compressive Forces 

 Compressive concrete contribution 

By integrating the Hognestad’s profile over the region from the neutral axis up to the maximum 

compressive concrete fiber, the concrete compressive force (Cc) is derived for the section based 

on the following equations 

𝐶 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                        (5-5) 

fy (ksi) E’s /Es 

40-45 0.3-0.7% 

45-50 0.7-1.2% 

50-63 1.2-2.5% 
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𝐶 =  𝑓 𝑏.
ɸ

ɛ
(𝑐 −

ɸ

ɛ
)                                     (5-6)  

 

 Compressive Steel Contribution 

The compressive steel force (Cs) is a linear relationship with the corresponding steel strain (ɛs’). 

This relationship was driven based on the assumption of the bilinear behavior for the steel 

analysis.  

𝐶 = 𝐴 𝑓 − 𝐴 𝑓 ((2
ɛ ’

ɛ
− _

ɛ ’

ɛ
)                            (5-7)  

5.3.1.2 Tensile Forces 

 Tensile steel Contribution 

The tensile steel force (Ts) follows the same bilinear behavior based on the following equation 

𝑇 = 𝐴 𝐸 ɛ , 𝑤ℎ𝑒𝑛 𝑓 ≤ 𝑓                                      (5-8)  

𝑇 = 𝐴 (𝑓 + 𝐸 (ɛ − ɛ )), 𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                    (5-9)  

 

 Tensile Concrete contribution 

The concrete tensile capacity is divided into two main profiles, Figure 5-2. The first profile is a 

linear relationship up to the cracking strain (ɛcr) with a slope equal to the concrete modulus of 

elasticity (Ec). This profile leads to a tensile force (Tc1) equals to 

𝑇 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                      (5-10)  

𝑇 =
ɸ 

                     (5-11)  

The second profile is a descending curve which majorly contributes in the total concrete tensile 

capacity. This profile is a result of the concrete softening, concrete stiffening due to the steel 
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bond as well as the residual stresses due to shrinkage effect. The tensile force due to this profile 

(Tc2) is calculated as follow 

𝑇 = ∫ 𝑏𝑓 𝑑𝑦=b∫ 0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
 

𝑑𝑦                        (5-12)  

Where y is measured from the neutral axis 

𝑇 = [−
.

. ɛ

ɛ

yln(𝜑) + 𝑦𝑙𝑛(𝑦) − 𝑦 − 𝑦𝑙𝑛(𝜀 ) + 0.5f y]
1.4𝜀 /𝜑

𝜀 /𝜑
                              (5-13)  

Where, 

 𝑑 = 1.4𝜀 /𝜑                                      (5-14)  

 

5.3.2 Moments 

5.3.2.1 Compressive concrete contribution 

The point of application of concrete compressive force is measured from the extreme 

compressive fiber (γ cy) based on volume centroid calculations. Where (c) is the depth of the 

compression zone and (γ) is a ratio between zero and one. 

γ = 1 −
∫ ɛ . . ɛ

ɛ

ɛ ∫ . ɛ
ɛ =

ɛ

ɛ                                      (5-15)  

𝑀 = (𝐶 − γ. 𝐶) ∗ 𝐶                                       (5-16)  

5.3.2.2 Compressive Steel Contribution 

  The compression steel moment is calculated according to the following equation. 

M = C (C − d )                                      (5-17)  

5.3.2.3 Tensile Concrete contribution 

(Mtc1) is the moment induced due to the concrete resistance up to the cracking point. While, 

(Mtc2) is the moment due to the constitutive tensile model. 
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𝑀 = 𝑇 .
.ɸ

                                         (5-18)  

𝑀 = ∫ 𝑏𝑓 𝑦𝑑𝑦=b∫ [0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
]𝑦

 

𝑑𝑦                        (5-19)  

Where, y is measured from the neutral axis. 

𝑀 = [−
.

. ɛ

ɛ

ln(𝜑) + 𝑙𝑛(𝑦) − − 𝑙𝑛(𝜀 ) + 0.5f ]
1.4𝜀 /𝜑

𝜀 /𝜑
               (5-20)  

5.3.2.4 Tensile steel Contribution 

The contribution of the moment induced due to the steel reinforcement at any stage of loading is 

determined as follows 

𝑀 = 𝑇 (𝑑 − 𝐶)                                                                      (5-21)  

5.3.3  Moment-Curvature Calculations 

A numerical procedure was followed to generate the moment-curvature curve. In this procedure, 

the maximum compressive fiber strain value (ɛcf) was gradually increased until reaching the 

concrete crushing strain of (0.003). In order to accurately calculate the strain profile under each 

step value of ɛcf, the correct depth of the compression zone (c) was necessary to define the strain 

profile and the corresponding stress profile and forces/moments. The sectional force equilibrium 

equation was then applied to validate the depth of the compression zone (c) by iterating for the 

correct depth of compression zone that makes the summation of forces equal to zero, equilibrium 

is maintained. 

𝜑 =
ɛ

                                                     (5-22)  

ɛ = 𝜑(𝑑 − 𝑐)                                         (5-23)  

ɛ ’ = 𝜑(𝑐 − 𝑑 )                                           (5-24)  

ɛ = 𝜑(ℎ − 𝑐)                                       (5-25)  
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The summation of moments due to concrete and steel contributions then yielded the applied 

internal moment of the section, and the moment-curvature curves were fully generated, see 

Figure 5-4. The progressive moment-curvature calculation procedure is described in a flow chart, 

see Figure 5-5. 

 

Figure 5-4 Typical beam moment vs. curvature sectional response 
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Figure 5-5 Sectional analysis flow chart  
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5.4 Differential Sectional Analysis 

5.4.1 Shear Stresses Differential Equation 

Shear stresses distribution over a shallow beam depth is formulated through the axial forces 

acting on the beam cross section. Considering an infinitesimal element with length dx of the 

beam, the differential bending moment acting over dx is dM, Figure 5-6. At any given depth, the 

equilibrium of forces in the longitudinal direction is satisfied through the longitudinal shear τyx, 

Figure 5-7. Also from equilibrium, the longitudinal shear is equal to the transversal shear τxy. 

∑ 𝐹 = 0                                                                              (5-26) 

∫ 𝜎′. 𝑑𝐴 − ∫ 𝜎′′. 𝑑𝐴 − 𝜏(𝑏. 𝑑𝑥) = 0                             (5-27) 

𝐹′ − 𝐹′′ − 𝜏(𝑏. 𝑑𝑥) = 0                                            (5-28) 

𝑑𝐹 − 𝜏(𝑏. 𝑑𝑥) = 0                                                    (5-29) 

𝜏 = =
( , )

                                       (5-30) 

 

 

Figure 5-6 Axial stress distribution over an infinitesimal element dx 
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Figure 5-7 Axial stress distribution over an infinitesimal element dx and depth d’ 

 

5.4.2 Numerical Evaluation of Shear Stress Distribution 

For each load level, one hundred vertical sections were taken over the beam shear span length. 

For each vertical section, 50 equally spaced nodes were taken along the height of the section. At 

any given depth, the axial forces are calculated by integrating the axial stresses over the covered 

distance. By summing the axial forces above a given depth for two constitutive vertical sections, 

the shear stress at the given depth is evaluated, Equation (5.31). 

5.4.2.1 Compressive concrete contribution 

By integrating the Hognestad’s profile over the area from the top of the section to the specific 

depth dc, the concrete compressive force (Cc) is derived for the section based on the following 

equations 

𝐶 =  ∫ 𝑓 . 𝑏 𝑑𝑦=∫ 𝑏𝑓
Ɛ

Ɛ
−

Ɛ

Ɛ
𝑑𝑦                    (5-31) 

where,  y is measured from the neutral axis 

𝐶 =  𝑏𝑓
ɸ

ɛ
(𝑦 −

ɸ

ɛ
)

𝑐
𝑐 − 𝑑                           (5-32) 

 Where, dc is measured from the top of the section 

d’ 

τyx 
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5.4.2.2 Compressive Steel Contribution 

The compressive steel force (Cs) is a direct linear relationship with the corresponding steel strain 

(ɛs’). This relationship was driven based on the assumption of the bilinear behavior for the steel 

analysis.  

𝐶 = 𝐴 𝑓 ′ − 𝐴 𝑓 ((2
ɛ ’

ɛ
− _

ɛ ’

ɛ
)                                                        (5-33) 

 

5.4.2.3 Tensile Concrete contribution 

The concrete tensile capacity is divided into two main profiles 

𝑇 =  ∫ 𝑓 . 𝑏 𝑑𝑦                                                                 (5-34) 

Where y is measured from the neutral axis and dt is measured from the neutral axis 

𝑇 =                                                                     (5-35) 

𝑇 = ∫ 𝑏𝑓 𝑑𝑦=b∫ 0.5𝑓 −
.

 (
. ɛ

ɛ
)

ln
ɛ

ɛ
 

𝑑𝑦                                   (5-36) 

Where y is measured from the neutral axis 

𝑇 = [−
.

. ɛ

ɛ

yln(𝜑) + 𝑦𝑙𝑛(𝑦) − 𝑦 − 𝑦𝑙𝑛(𝜀 ) + 0.5f y]
𝑑

𝜀 /𝜑
                               (5-37) 

 

5.4.2.4 Tensile steel Contribution 

The tensile steel force (Ts) follows the same bilinear behavior based on the following equations 

𝑇 = 𝐴 𝐸 ɛ ,  𝑤ℎ𝑒𝑛 𝑓 ≤ 𝑓                                                               (5-38) 

𝑇 = 𝐴 (𝑓 + 𝐸 (ɛ − ɛ )),  𝑤ℎ𝑒𝑛 𝑓 > 𝑓                                              (5-39) 

 

5.5 Constructing shear stress distribution 

Typical shear stress profiles are numerically generated using Equations (5.32)-(5.40) substituted 

into Equation (5.31). Figure 5-8 presents the shear stress distribution for un-cracked section. The 



118 

stress profile is very similar to the classical parabolic shear stress distribution in linear beams 

except for the effect of dowel action shown at the level of tensile reinforcement. Figure 5-9 

shows the shear stress distribution for a post-cracked concrete section. Figure 5-10 illustrates the 

shear stress distribution for post yielded section. It is evident that the shear stresses within the 

compression block start negative in value due to the descending part of Hognestad’s parabola. 

Then these stresses shift to positive values. In addition, dowel action shift shear stresses to zero 

shear stress since tension stiffening is vanished at this stage of loading. 

 

 

Figure 5-8 Typical pre-cracking shear stress distribution 
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Figure 5-9 Typical post cracking shear stress distribution 

 

Figure 5-10 Typical post yielding shear stress distribution 

 

5.6 Principal stresses analysis 

5.6.1 Principal stress by Mohr’s circle 

By applying Mohr’s Circle for each numerical node, the principle stresses σ , σ  and their 
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𝜎 =       Where, σy=0 (beam theory)                  (5-40) 

𝑅 = + 𝜏                                                (5-41) 

max 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝜎 =  𝜎 + R                                          (5-42) 

min 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝜎 =    𝜎 - R                                           (5-43) 

𝑇𝑎𝑛(2𝜃) =                                                      (5-44) 

 

Figure 5-11 Mohr's circle 

 

 

5.6.2 Modified Kupfer and Gerstle biaxial cracking criterion 

Kupfer and Gerstle (1973) have suggested an analytical maximum strength envelope for biaxial 

loading in concrete. Complying with this envelope, Kupfer and Gerstle also proposed simplified 

expressions of biaxial strength for different stress combinations. For tension-compression stress 
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 𝜎 = 1 −
.

𝑓                                             (5-45) 

Where (σ1t) is the major principal tensile stress and (σ2c) is the minor principal compressive 

stress. 

However, this equation does not represent well the case of high ratios of  > 0.85 (For 

example, at = 0, = 1.25 > 1) . Hence, a modified equation was developed here to 

represent that particular stress state. This equation describes the region 0.85 < ≤ 1, see 

Figure 5-12. The linear equation for this segment is as follow 

= 0.192 + 0.192                                          (5-46) 

if (σ (principal tensile stress) ≥ σ ) {"Cracked Concrete"} 

 

 

Figure 5-12 Concrete biaxial cracking criterion 

5.7 Results 

The formulation developed in this study is applied to retrieve the shear stress distribution of 
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used to extract the principal stresses across the beam depth while using the concrete biaxial 

cracking criterion (modified Kupfer-Gerstle criterion) to predict the cracks within the 

compression zone.  

5.7.1 Example one 

The goal of this example is to confirm the accuracy of the non-linear numerical sectional 

analysis used in this study to predict the sectional response of the beam. This beam was tested by 

Rasheed et al. (2015). The rectangular beam is a 305mm*153mm (6 in x 12) in cross section. It 

has a length of 4.88 m (16 ft) and a clear span of 4.72 m (15.5 ft). The main flexural 

reinforcement consists of 2φ16 (2 No. 5) bars with 2φ10 (2 No. 3) bars used for the compression 

steel, Figure 5-12.  

The concrete nominal compressive strength was 34.5 MPa (5000 psi). While, the material 

properties of the reinforcing steel were 200,000 MPa (29000 ksi) for the modulus of elasticity 

and yield strength of 482.3 MPa (70 ksi). 

 

Figure 5-13 Beam R1 section tested by Rasheed et al. (2015) 

 

2φ10 

φ10 at 127 mm 

2φ16 



123 

 

Figure 5-14 Moment-curvature of Beam R1 tested by Rasheed et al. (2015) 

 

 

Figure 5-15 Load vs. Max. compressive fiber strain of beam R1 tested by Rasheed et al. 
(2015). 
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Figure 5-16 Load vs. rebar strain of beam R1 tested by Rasheed et al. (2015). 

 

 

Figure 5-17 Load vs. neutral axis depth of beam R1 tested by Rasheed et al. (2015). 
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evaluated neutral axis comparison is shown in Figure 5-16. A generally good correspondence is 

observed as well.  

These comparisons are presented to illustrate the accuracy of the proposed method in predicting 

the sectional response of the beam. The bending moment-beam curvature comparison shows an 

excellent agreement of the sectional response of the beam.  

 

5.7.2 Example two 

The second example examined Almusallam (1997) beam. He tested a rectangular beam 200 mm 

x210 mm (7.87 in x 8.26) in four point bending. The beam has a length of 2.700 m (106.3 in) 

with a shear span of 1.25 m (49.2 in).The beam main flexural reinforcement consists of 3 φ 14 

mm bars with 1 φ 6.25 mm bars used for the compression steel. 

The concrete nominal strength is 31.3 MPa (4540 psi). The reinforcing steel has a yielding 

strength of 552.6 MPa (80.2 ksi) and a modulus of elasticity of 200000 MPa (29000 ksi). 

In this second example, the axial stress distribution and the shear stress distribution as well as the 

principal stress distribution are calculated across the height of the beam at a section positioned 

just under the load at the failure of the beam. This section was chosen to study the concrete 

behavior at crushing. 

 

 

Figure 5-18 Almusallam 1997 beam cross section 
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Figure 5-19 Load vs. mid-span deflection for beam tested by Almusallam 1997. 

 

 

Figure 5-20 axial stress distribution at failure for beam tested by Almusallam 1997 
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To continue with the analysis, shear stresses were then evaluated for the same section using the 

numerical shear differential equation. For each given section, a preceding section at an 

infinitesimal distance was taken to be analyzed. In order to compute the shear stress at any given 

depth (d), the axial forces within the depth (d) for the two successive sections are calculated. 

Then, the shear stress is found by numerically applying Equation (5.31). The shear stress 

distribution varies depending on the section location. The examined section is located in the post 

yielding zone, where the tensile steel has yielded. Figure 5-23 shows the calculated shear stress 

distribution under ultimate moment at failure. Over the height of the beam, the shear stress 

profile shows different behaviors which depend on its location. Zone A, see Figure 5-21,  

describes shear stress profile within the compression zone, it shows a parabolic behavior with a 

change in shear direction (sign). The next zone, Zone B, starts at the neutral axis and goes 

through the concrete tensile contribution up to the tensile steel level. At which, dowel action is 

observed. Dowel action marks the beginning of the third zone (Zone C) where the shear stresses 

sums up to zero through the entire cover of the beam.  

 

Figure 5-21 shear stress distribution of section three for beam tested by Almusallam 1997 
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In section three at the failure load just under the concentrated load point, Figure 5-21, it is 

interesting to observe the opposite change in direction of the shear stresses within the 

compressive depth. This change is a result of the descending branch of the Hognestad’s parabola. 

Figure 5-22 shows the stress profiles of three different sections in the post yielding zone. The 

first section represents the early stages of the post yielding zone. At this section, the shear stress 

sign (direction) does not change. The same observation is made for the second profile that is 

located slightly prior to the critical section. Section three, at failure, shows the change of the 

shear stress direction (from negative to positive). This similar change of shear stress direction 

also appears over a short distance including few sections just before the maximum moment 

section (i.e. at sections with moments around 97%-100% of the failure moment). 

 

Figure 5-22 Shear stress distributions of three different sections within the post yielding 
zone for beam tested by Almusallam 1997 
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Using Mohr’s circle and the calculated axial and shear stresses, the principal stresses were 

generated. Figure 5-23 shows the variation in the major/tensile principal stress for the given 

section. On the other hand, Figure 5-24 presents the variation of the minor/compressive principal 

stresses. The two principal stresses were then applied to the biaxial concrete failure criterion to 

predict the location and orientation of the cracked concrete. 

 

 

Figure 5-23 Tensile principal stresses of the maximum moment section for beam tested by 
Almusallam 1997 
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Figure 5-24 Compressive principal stresses of the maximum moment section for beam 
tested by Almusallam 1997 
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Figure 5-25 Cracks map just below the top of the section at the post yielding zone for beam 
tested by Almusallam 1997 

 

Figure 5-26 The principal stress state of an element in the upper region of the compression 
zone under the maximum load 
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used to explain the occurrence of concrete cracking at the crushing point below the top surface 

through a dish–like crack that develops at the location of maximum moment. The shear stress 

distribution was numerically retrieved through the transversal shear differential equation and was 

found to be reversed in this compression region leading to the dish–like crack. This shear stress 

distribution combined with axial compressive stresses yields tensile-compressive principal stress 

state that predicts cracking when a biaxial concrete failure criterion is invoked. This study 

concludes that the concrete crushing is nothing but an oriented principal tensile cracking, which 

is very similar in behavior and nature to shear or diagonal tension cracks.  

5.9 References  

Almusallam, T.H., (1997).  "Analytical Prediction of Flexural Behavior of Concrete Beams 
Reinforced by FRP Bars," Journal of Composite Materials, Vol. 31, No. 7, pp 640-657. 

Bazant, Z. P., (1984) “Size Effect in Blunt Fracture Concrete, Rock, Metal,” Journal of 
Engineering Mechanics, ASCE, V. 110, No. 4, pp. 518- 535. 

Gonnerman, H. F., (1925)“Effect of Size and Shape of Test Specimen on Compressive Strength 
of Concrete,” ASTM, V. 25, pp. 237-250. 

Hognestad, E.; Hanson, N. W.; and McHenry, D., (1955) “Concrete Stress Distribution in 
Ultimate Strength Design,” ACI JOURNAL, Proceedings V. 52, No. 4, pp. 455-479  

Moody,K.G., Viest, I.M., Elstner, R.c., and Hognestad,E. (1954) ”Shear Strength of Reinforced 
Concrete Beams, Part-1 Tests of Simple Beams ". ACI Journal, proceedings Vol. 51, pp. 
317-332. 

Portland Cement Association. (2013). Notes on ACI 318-11. “Building Code Requirements for 
Structural Concrete with Design Applications”. 12th edition, Edited by M. E. Kamara and 
L. C. Novak. Skokie, IL. Portland Cement Association.  

Rasheed, H. A., (1990) “Inelastic Behavior of Reinforced Concrete Frame Structures”. M.Sc. 
Thesis, University of Baghdad, Iraq. 

Rasheed, H. A., Decker, B. R., Esmaeily, A., Peterman, R. J., & Melhem, H. G. (2015). The 
influence of CFRP anchorage on achieving sectional flexural capacity of strengthened 
concrete beams. Fibers, 3(4), 539-559. 



133 

Zwoyer, E.N., and Siess, C.P., (1954) “Ultimate Strength in Shear of Simply-Supported 
Prestressed Concrete Beams Without Web Reinforcement”. ACI Journal, Proceedings 
Vol. 51, pp. 181-200.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 

Chapter 6 - Experimental program 

Due to the scarcity of flexural reinforced concrete beam tests that reflect the cracking 

parameters, a small sized experimental program is conducted .The experimental program 

consists of designing and testing one full scale concrete beams.  The beam is designed to fail in 

concrete crushing after the yielding of the tensile steel. Four-points bending test setup is chosen 

to reflect the goal of this study. Series of comparisons between the experimental and the 

numerical results are held to validate the accuracy of the presented approach. 

 

6.1 Beam Geometry 

The rectangular beam is a 305 mm*153 mm (6 in x 12) in cross section. It has a length of 4.88 

m(16 ft) with a clear span of 4.72 m(15.5 ft) .  The main flexural reinforcement consists of 2φ16 

(2 No. 5) bars with 2φ10 (2 No. 3) bars used for the compression steel just to provide a caging 

framework for the shear reinforcement.  

The concrete that was used in casting the beam is ready mix with a mix design nominal 

compressive strength of 34.5 MPa (5000 psi). The material properties of the reinforcing steel 

were provided by the manufacturer to have a modulus of 200,000 MPa(29000 ksi) and yield 

strength of 482.3 MPa(70 ksi). 

 

Figure 6-1 Tested beam cross section 

2φ10 

φ10 at 127 mm 

2φ16 
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6.2 Material Properties 

The concrete that was used in casting the six beams is ready mix with a mix design nominal 

strength of 5000 psi (34.5 MPa). While casting the beams, 6 cylinders were also prepared for the 

actual material testing. The cylinders were 4in. x 8in. and were tested in compression after 28 

days. The results of these cylinders tests showed an average of 5.3 ksi comparing to 5 ksi 

nominal design strength. 

 

Figure 6-2 Concrete cylinder compression test (before test) 

 

Figure 6-3 Concrete cylinder compression test (after test) 
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Figure 6-4 Steel tensile test 

Regarding the steel reinforcement, three 6-inch steel specimens of each of the tension and 

compression were tested in tension at by KDOT research lab. The modulus and yield strength of 

the No. 3 bars (compression steel) were 28500 ksi and 80.1 ksi, respectively. These values 

represent the average test results of 3 samples. The modulus and yield strength of the No. 5 bars 

(tension steel) were 28000 ksi and 64.5 ksi, respectively. 

 

6.3 Construction of Formwork and Caging 

The fabrication of all wooden formwork and steel rebar caging was at Kansas State University 

facilities.  Since the plywood that is used for the bed of the formwork is available only in 4’ x 8’ 

sheets, the forms had to be fabricated in two halves then combined to create a 16 ft long form.   
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Figure 6-5 Form work (front view) 

 

 

Figure 6-6 Form work 
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Figure 6-7 Form work (side view) 

 

 

Figure 6-8 Steel cage work 
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Eight strain gages at three different locations were used to capture the tensile strain along the 

beam depth. The first location is within the shear span at 49 inches from the mid-span. The 

second location is within the shear span at 47 inches from the mid-span of the other side of the 

beam. The third location is at the mid-span. The first and the second location had two strain 

gages; one at the tensile steel level and one on the top surface of the beam. The third location, at 

mid-span, included four strain gages, where two were located on the steel and two were located 

on the top surface to capture the maximum compressive strain. 

 

Figure 6-9 Tensile steel strain gages 
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Figure 6-10 Form work and cage work 

 

 

Figure 6-11Form work and cage work with strain gages 
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Figure 6-12 Casted reinforced concrete beam (front view) 

 

 

Figure 6-13 Casted reinforced concrete beam (side view) 
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Figure 6-14 Casted reinforced concrete beam  

 

6.4 Test Setup  

The beam was tested in four-point bending using a 4-ft long steel spreader beam and.  The beam 

was simply supported with plates and rollers at the supports.  The supports are placed 3 inches 

(75 mm) from the edge of the beam, providing a clear span of 15.5 ft (4724.4 mm).   

 

 

Figure 6-15 Profile of simply supported beam under four-point bending 
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Figure 6-16 Test setting 

 

 

Figure 6-17 Spreader beam 
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6.5 Test Results 

The beam failed in ductile behavior, where the tensile steel yielded at 5.78 kips before the 

concrete fails at 5.8 kips with a maximum compressive strain of 0.0038. The experimental 

moment-curvature, moment-maximum compressive strain, load-maximum compressive strain, 

load-rebar stain were generated and compared to the presented nonlinear sectional analysis. 

A very good agreement was observed for the moment versus curvature as well as moment versus 

maximum compressive strain. These comparisons confirm and validate the accuracy of the 

proposed sectional analysis response. Furthermore, the experimental numerical derivative of the 

variation of the strain profile parameters were compared to the numerical derivative found 

through the proposed approach.  

 

Figure 6-18 Tested beam concrete failure 
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Figure 6-19 Tested beam principal tensile cracking (side one) 

 

 

Figure 6-20 Tested beam principal tensile cracking (side two) 
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Figure 6-21 Load-max. compressive strain graph of the tested beam 

 

 

Figure 6-22 Load-rebar strain graph of the tested beam 
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Figure 6-23 Moment-curvature graph of the tested beam 

 

 

Figure 6-24 Moment-maximum compressive strain graph of the tested beam 
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Figure 6-25 Moment- dεcf/dM graph of the tested beam 

 

 

Figure 6-26 Moment- dφ/dM graph of the tested beam 
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Figure 6-27 Shear cracks comparison (Numerical vs. Experimenta) 
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Chapter 7 - Conclusions and Recommendations 

7.1 Conclusions 

The first part of this study was conducted to develop a tensile constitutive model for nonlinear 

analysis of flexural concrete beams reinforced with steel bars. An incremental-iterative 

numerical analysis was followed to study the nonlinear flexural beam behavior and generate the 

analytical graphs. The proposed tensile constitutive model has a sudden drop at cracking strain, 

followed by a descending curve up to zero at( 1.4ɛ ). Series of comparisons were performed to 

validate the accuracy of the adopted model against the global experimental behavior for a large 

pool of beams. Two extra comparisons were conducted to check the applicability of the model 

against the sectional response of different beams.  As a result of these comparisons, the model 

showed an excellent agreement with the validating experiments for the sectional and the global 

responses. 

 A secondary goal of this step was to confirm the trilinear behavior for moment versus curvature 

and moment versus maximum compressive strain graphs. Through all the comparisons in this 

study, and by using the proposed model, the trilinear behavior was observed in all the sectional 

and the global responses. Even though the literature has several tension stiffening models, the 

authors believe that this new model is more objective since: 

1. The final degradation of cracked concrete is related to the yielding strain in steel rather than 

multiples of the cracking strain of the concrete. 

2. The loss of energy due to cracking fracture is captured in a more pronounced way than 

earlier model. 

3. The current model furnishes a single mathematical expression making it easier to implement 

in analytical formulations. 
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In this study, a novel non-linear formulation was developed using the smeared crack approach. 

It is used to predict the shear stress profile along the shear span of shallow beams in flexural 

cracked concrete at all stages of loading up to flexural failure. These shear stress profiles are 

coupled with the nonlinear axial stress profiles to obtain the principal stress distribution along 

the shear span. Kupfer and Gerstle failure criterion is used to predict the likely occurrence of 

new shear-flexural cracks by setting the major principal stress equal to the limit provided by the 

Kupfer criterion.  

It is interesting to observe the prediction of diagonal tension cracks along a curved path, which is 

expected to be much more accurate than other shear theories that assume a constant shear crack 

orientation. 

An analytical formulation of shear stress distribution in cracked reinforced concrete, throughout 

its stages of post-cracking and post yielding, is presented using the smeared crack approach. This 

formulation uses the transverse shear differential equation to compute the shear stress at any 

given depth across the height of the beam through the derivative of axial forces acting above that 

desired depth. While the axial forces are found in accordance with the corresponding strains 

profile, which is computed by idealizing the sectional response of the beam to trilinear sectional 

relationships.  Furthermore, the effect of the longitudinal steel on shear stress distribution, known 

as dowel action, is computed for the first time and found to be significant enough not to be 

ignored as typically done in design codes. In addition, the study provided a detailed evaluation of 

the variation of the strain profile parameters (φ, εcf) with respect to shear span or the 

corresponding moment, which is found to be non-linear compared to other studies that assume it 

as a constant. This analytical formulation was then applied to an experimental study to retrieve 

the shear stresses at three different cross sections under different applied loads. It is interesting to 
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observe for the first time from the generated shear profiles certain key features of the behavior 

that may prove to be very useful in interpreting shear failures. 

Regarding concrete crushing, a mechanics-based approach is developed to mathematically 

demonstrate the concrete crushing failure mode of reinforced concrete beams. The actual stress 

state of a beam element within the compression zone is considered under the assumption of the 

smeared crack approach. The combination of axial stresses and shear stresses within the 

compression zone was used to explain the occurrence of concrete cracking at the crushing point 

below the top surface through a dish–like crack that develops at the location of maximum 

moment. This study concludes that the concrete crushing is nothing but an oriented principal 

tensile cracking, which is very similar in behavior and nature to shear or diagonal tension cracks.  

 

7.2 Recommendations 

From the major conclusions presented in the preceding section, additional works could be 

made in the future, as follows 

1. Combine the discrete crack approach which would result into a more accurate prediction 

of crack locations 

2. Develop a simplified approach for easier application. 

3. Generate a complete a comprehensive software to predict the tensile cracking as well as 

the concrete failure in the compression zone. 

 


