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ORGANIZATION OF THE THESIS

The format of this thesis is presented in a series of chapters. Chapter I is a

general introduction to the thesis. Chapter II includes a general review of

literature pertaining to all topics discussed herein. Chapter IN is a summary of

results in manuscript form. Chapter IV is an appendix which includes detailed

analytical procedures and supplementary information. Chapter V is a general

abstract of the thesis. All chapters conform to the style guide for research papers

for the Journal of Food Science.
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Chapter I

GENERAL INTRODUCTION

The primary goal of the red meat industry is to efficiently market a high

quality product. The realization of maximum yield from carcasses and minimizing

processing cost is important in maintaining industry profitability and minimizing

cost to the consumer (Huffman et al., 1984). Traditional methods of processing

beef carcasses generally involve the chilling of carcasses in a drip cooler at -1°C

for 18 to 24 hr. Carcasses are then transported to a holding cooler (approximately

0°C) for up to 48 hr. (Kastner, 1982). After chilling, the carcasses are shipped as

quarters or are fabricated into wholesale, subprimai, or retail cuts before

shipping.

An economical alternative to conventional processing is the use of hot

boning. Savings in refrigeration input and space, due to the removal of excess fat

and bone before conventional chilling, are attributed to hot boning. Hot boning

improved muscle functional properties for restructuring when compared with

conventionally boned raw materials (Kastner and Gray, 1984; Breidenstein, 1982a).

Hot-boned meat used for restructuring improved myosin extractability, texture,

color, cooking yields, and water and fat binding when compared to conventionally

boned meat (Breidenstein, 1982a).

Economic pressure to minimize processing cost and maximize product yield

and utilization provides incentives to develop new products using less valuable



2

carcasses and carcass portions to produce products of acceptable quality and

higher value (Huffman and Cordray, 1982). Restructured meat items provide

uniform and controlled products for the HRI trade. With the cost of intact muscle

cuts increasing, restructured products may compete favorably in the retail market.

The combination of restructuring and hot boning produces beef steaks of good

quality (Huffman et al., 1984).

Connective tissue is an important meat component that exerts a negative

influence on the value and use of a large portion of meat raw materials.

Possibilities of dealing with the negative influence of connective tissue are by

mechanical tenderization or manual removal of the large connective tissue

deposits from the products (Breidenstein, 1982a). However, manual removal is

difficult, labor intensive, and costly. Therefore, the use of mechanical

tenderization to reduce the influence of connective tissue might reduce the cost

of processing and the negative impact of connective tissue in restructured

products. Savell et al. (1977) and Seideman et al. (1977) reported that the use of

blade tenderization on less tender muscle is an attempt to make older animals

comparable in tenderness to younger animals. This is particularly important for

cow beef which is characteristically less tender because of the influence of

connective tissue. Miller (1975) attributed the increase in tenderness associated

with blade tenderization to the partial destruction of connective tissue and

severance of muscle fibers which lead to reduced resistance to shear force,

mastication, and swallowing.

This study was designed to evaluate restructured pre-cooked roasts from

hot-boned cows. The effects of trimming connective tissue and blade tenderization

were also studied. The reasoning behind this study appears consistent with

industry goals of reducing processing costs and improving product functionality

and utility while increasing the value of cow beef.



Chapter II

GENERAL REVIEW of LITERATURE

Hot boning

The realization of maximum yield from carcasses and minimum processing

costs is important in maintaining industry profitability and minimizing costs to the

consumer (Huffman et al., 1984). With the increased cost of energy and labor, the

meat industry is continually looking for methods of reducing processing costs and

increasing product value. An economical alternative to processing restructured

products from conventionally processed carcasses is to use hot boning. Hot boning

before conventional chilling is more economically efficient than conventional

processing (Huffman et al., 1984; Seideman et al., 1982; Ray et al., 1980).

Additionally, Huffman et al. (1984) suggested that the combination of hot boning

and restructuring, to produce beef steaks of good quality, would be an excellent

way to upgrade low quality cuts of beef while reducing energy needs.

Breidenstein (1982a) stated that using pre-rigor beef to produce

restructured products has several advantages including superior myosin

extractability, textural appearance, color, and higher cooking yield when

compared with post-rigor beef. Kastner and Gray (1984) suggested that the

improved binding of hot-boned muscle is due to more extractable salt-soluble

protein than in conventionally processed muscle. Similar results were mentioned
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earlier by Solomon and Schmidt (1980) where they found greater crude myosin

extractability and less mechanical damage in pre-rigor than in post rigor meat.

Kastner (1977) and Cuthbertson (1979) reported that hot-boned beef exhibited

excellent cure penetration which is an essential factor in processed meats.

Kastner and Gray (1984) also mentioned that the pH of pre-rigor beef is relatively

high, consequently increasing the potential for binding of water and fat. These

characteristics of hot-boned meat have been observed to decrease shrinkage

during processing. Kastner and Gray (1984) found a 5 to 8% less shrinkage for

hot-boned restructured beef roasts compared to those made from conventionally

processed restructured beef. Pepper and Schmidt (1975) determined that hot-boned

restructured beef rolls were very acceptable from a firmness and textural

standpoint, and those qualities along with higher yields made hot-boned rolls more

desirable. However, Ray et al. (1980) indicated that decreased tenderness due to

cooking pre-rigor, hot-boned beef roasts made hot boning of questionable value, at

least for conventional methods of marketing roast beef.

Savings in refrigeration input and space, due to the removal of excess fat

and bone before chilling, have been attributed to hot boning. Specifically, it has

been estimated that hot processing beef carcasses could result in 40 to 50% less

refrigeration input, up to a 25% reduction in labor, a 2% reduction in shrinkage, a

reduction of in-plant residence time of 20 %, and a 50 to 55% reduction in cooler

space required (Kastner, 1982). Ray et al. (1980) also indicated significant energy

savings and higher cooking yields in pre-cooked, hot-boned beef roasts. Other

potential advantages of hot processing include: 1) facilitation of centralized

processing; 2) reduction in chilling time; 3) no reduction in cutting yield; and 4)

improvement of emulsifying properties (Kastner, 1982).



5

Further reductions in labor, material, and equipment costs were reported by

Kastner (1977) and Cuthbertson (1979) since neck pinning, scribing, and shrouding

would no longer be required. One potential advantage of hot boning is improved

yield. If initial chilling is accomplished in a vacuum package, evaporation losses

during cooling could be significantly reduced (Cuthbertson, 1979; Dransfield et al.

1976; and Taylor et al., 1980).

Contrary to the advantageous factors mentioned above, hot boning presents

some potential disadvantages. One problem is the difficulty of quality and yield

grading of hot carcasses, since the hot-boned carcasses would not be chilled

before processing. New methods of grading would need to be developed to solve

this problem (Kastner, 1977). Possible quality control problems due to hot boning

may include a high incidence of boning defects and increased microbial counts

which may result in reduction of shelf life. However, Kastner (1977) and

Cuthbertson (1979) agreed that with good hygiene practices during slaughter

followed by a clean fabrication operation, product shelf life could be improved.

Blade tenderization effects on meat texture

Connective tissue is an important meat component that exerts a negative

influence on the value and the use of many meat raw materials. Two possibilities

of dealing with connective tissue are by mechanical tenderization or manual

removal of the large deposits from the products (Breidenstein, 1982a). However,

manual removal is difficult and costly. The use of mechanical tenderization to

reduce the influences of connective tissue may reduce the cost of processing in

restructured products.
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Savell et al. (1977) and Seideman et al. (1977) reported the use of blade

tenderization on less tender muscle to reduce the effect of connective tissue

between weight-grade groups is an attempt to make muscle from older animals

comparable in tenderness to that from younger animals. This is particularly true

for beef from older cows which is characteristically less tender because of the

influence of connective tissue. Booren et al. (1981a) also reported the necessity

of blade tenderization to produce acceptable restructured steaks from less tender

muscle. Mechanical tenderization of beef substantially improves the tenderness of

muscle from youthful maturity group carcasses. (Schwartz and Mandigo, 1974).

Generally, blade tenderization significantly reduced Warner-Bratzler values

in a variety of cooked meat cuts (Schwartz and Mandigo, 1974; Davis et al., 1975;

Glover et al., 1977; Tatum et al., 1978). Miller (1975) attributed the increased

tenderness associated with blade tenderization to partial destruction of

connective tissue and/or severance of muscle fibers which leads to reduced

resistance to shear force, mastication, and swallowing. Seideman et al. (1977)

suggested that blade tenderization disrupts connective tissue, but not enough to

allow blade tenderized muscle, high in connective tissue, to be used

interchangeably with untreated intact muscle of low connective tissue content.

Miller (1975) justified blade tenderization because it: 1) insured acceptable

tenderness of normal table-grade cuts; 2) equalized tenderness in portioned items

containing two or more muscles that differed in tenderness; 3) was more effective

against connective tissue and more uniform and controlled than enzyme

treatments. Hayward et al., (1979) noted that blade tenderization reduced

connective tissue amount detected by taste panel members. Seideman et al. (1977)
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also found that blade tenderization of psoas major and semitendinousus muscles

improved tenderness, juiciness, and overall palatability. However, Tatum et al.

(1978), Glover et al. (1977), and Savell et al. (1977) indicated that blade

tenderization significantly improved tenderness, but there was little or no

evidence to support such claims for juiciness and flavor. Glover et al. (1977)

reported that blade tenderization caused significant increases in drip loss of beef

roasts, however, Tatum et al. (1978), Schwartz and Vlandigo (1974), Savell et al.

(1977), and Seideman et al. (1977) reported that neither drip loss nor cooking

losses were significantly affected by needle or blade tenderization.

The number of repetitions or passes through the blade tenderizer required

to produce acceptable tenderness has been studied. Savell et al. (1977) found that

one pass through the mechanical blade tenderizer reduced Warner-Bratzler values

for different muscles. Two passes through the tenderizer reduced Warner-Bratzler

values when compared with one pass. A third pass further reduced

Warner-Bratzler values, but increased cooking losses. Bowling et al. (1976)

determined that more tender cuts can be tenderized with one pass through the

mechanical tenderizer, whereas less tender cuts may require more than one pass

through the mechanical tenderizer. Schwartz and Mandigo (1974) studied three

conveyor speeds of 2.54, 3.81, and 7.62cm per movement, where they found that

conveyor speed did not affect Warner-Bratzler values.

Restructuring

Economic pressure to minimize cost and maximize product utilization

provides incentives to develop new products using less valuable carcasses and

carcass portions to increase product quality and value (Huffman and Cordray,
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1982). The concept of restructuring is used to produce from less expensive beef

cuts a more uniform and completely edible product with satisfactory eating

qualities that resembles an intact muscle in textural properties at a lower unit

cost (Seideman et al., 1981).

Today's trend for more meals to be eaten away from home makes an

extremely fertile market for restructured products. A recent economic survey

indicated that never before have consumers spent so much time in choosing their

food products (Huffman and Cordray, 1982), and consumers will not accept

products that do not meet their needs and expectations at a reasonable price

(Schmidt, et al., 1985). Breidenstein (1982b) reported that restructuring technology

allows the processor to have control over product characteristics. Characteristics

influenced by the restructuring technology include appearance characteristics like

shape, color, and texture, and compositional traits like protein, moisture, and fat

content. Huffman et al. (1984) agreed that the combination of restructuring and

hot boning produced beef steaks of good quality.

Raw materials

The selection and utilization of raw materials will determine the ultimate

composition and texture of the finished restructured product. In selecting the raw

material, one must consider the type of product desired, availability, and cost of

the raw material. The ideal raw material for restructured meat products consists

of uniformly colored muscle with low connective tissue and contains less than

10% fat (Schmidt et al., 1985). A wide range of beef raw material has been

successfully used to produce restructured meat products. Cuts frequently used are

portions of the chuck and the round (Seideman, 1982).
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Sensory panel ratings of cooked restructured products have been rated

superior to the mid-point of the acceptabiiity scale in terms of flavor, tenderness,

and juiciness (Huffman, et al., 1981). Booren et al. (1981a) compared restructured

steaks made from USDA Standard grade rounds and USDA Choice grade plate with

those made from USDA Choice grade chucks and plates, and he found USDA

Choice grade steaks made from the Choice grade chucks to have more desirable

color. The TBA, cooking yield, flavor, and juiciness values were not related to

anatomical origin of raw material. Tenderness and connective tissue residue scores

were rated lower for the chuck product. However, Instron deformation curves and

Kramer shear values were not significantly different.

Cuts from cows are normally less expensive than the same cuts from block

beef. Only selected parts of the beef carcass are normally used for intact steaks

and roast purposes, with the less tender portions (primarily due to influences of

connective tissue) normally being used for ground beef or sausage raw materials.

This is particularly true for cow carcasses. However, restructured roast products

can be processed from less tender portions of cow and block beef carcasses, and

the potential exists for increasing the value of those portions. With the cost of

intact muscle cuts increasing, restructured products may compete favorably in the

retail market (Huffman and Cordray, 1982).

Salt effects in restructuring

Salt (sodium chloride) has long been used as a facilitator of intracellular

protein extraction to form the protein matrix responsible for the successful

binding in meat processing. Since the binding or particle adhesion of lean and fat
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is dependent on salt, it has been and remains an important processing ingredient

(Breidenstein, 1982a). However, as salt increases in concentration it is expected

to have adverse effects on meat color, but there is some evidence that salt and

sodium tripolyphosphate (5TP) added to meat may have a beneficial effect on

color (Breidenstein, 1982b).

Neer and Mandigo (1977) demonstrated that increasing the amount of salt

increased cooking yields, tenderness, and water-binding capacity in flaked, cured

pork products. Breidenstein (1982a) and Huffman et al. (1981) reported that when

salt and sodium tripolyphosphate (STP) were used in combination, the products

were rated more favorably for texture and general acceptability.

Moore et al. (1976) found binding strength and cooking yield increased as

salt concentration increased from 1% to 3% when 0.25% STP was included in beef

rolls. Huffman (1979), Pepper and Schmidt (1975), and Breidenstein (1982a) found

similar results for beef rolls treated with salt and STP. However, Breidenstein

(1982b) and Booren et al. (1981a) agreed that as salt concentration increased in

formed beef steaks rancidity also increased after 90 days of freezer storage.

Similar results for increased rancidity in restructured products were found by

Campbell and Mandigo (1978), and Schwartz and Mandigo (1976).

Schwartz and Mandigo (1976) found increased rancidity but decreased color

desirability when salt was added to restructured pork. Similar results where found

by Mandigo and Booren (1981) in restructured steaks. Huffman et al. (1981)

concluded that while the addition of salt to flaked beef patties altered the

sensory, color, and physical properties, tripolyphosphate had little effect on these

properties.
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Mandigo and Booren (1981) recommended 0J5% salt, because it kept

rancidity within an acceptable range while capitalizing on the positive influences

of salt. Kastner and Gray (1984) suggested the use of low salt levels in

conjunction with hot boning. Because of the improved functional properties of

hot-boned beef, the protein is more readily available for extraction compared to

conventionally processed post-rigor meat, thus less salt is required for successful

restructuring.

Fat levels in restructuring

Fat has normally been shown to increase juiciness, flavor, and tenderness of

processed meat products (Seideman, 1982). From the economic point of view,

considering traits such as juiciness, flavor, and visual appearance, fat content of

restructured products must be closely monitored and controlled (Mandigo, 1981).

Cross and Stanfield (1976) conducted a consumer evaluation of flaked and formed

steaks containing and 0.75% salt along with 20 to 30% fat. Consumers tended to

prefer steaks with added salt and 30% fat.

Mandigo and Booren (1981) found that high levels of fat decrease hardness

and chewiness scores and recommended a 20% fat level for restructured and

formed products. Sectioned and formed steaks have been very acceptable in

palatability when 10 to 15% fat was added (Mandigo, 1981).

Keeping the fat level as low as possible may also be important because

consumers are more concerned about caloric and cholesterol intakes, for reasons

of health and physical appearance. Booren et al. (1981a) determined that with low

fat levels, extracted myofibrillar protein would be maximized in restructured beef

steaks. However, Saffle and Galbreath (1964) found that amount of fat in beef had

no effect on the percent extractable protein in sausage emulsions.
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Vacuum mixing and mixing time

for restructuring

Mixing is very important in the production of a restructured product. The

two most important functions of mixing are: 1) introduction and homogenization of

components to achieve uniformity of the lean/fat distribution and additives and 2)

soiubility of protein through the mechanical action of impact and friction energies

(Mandigo, 1982). Breidenstein (1982a) and Solomon and Schmidt (1980) reported

that myosin extraction has been found to increase linearly with increased mixing

time.

Booren et al. (1981b) studied the sensory response to vacuum mixing vs

non-vacuum mixing for formed beef steaks, and no differences were observed for

flavor, tenderness, or connective tissue residue. Breidenstein (1982a) also found

similar results where cooking yields, flavor, and juiciness were not affected by

vacuum mixing. However, Mandigo (1982) and Booren et ai. (1981a) found that

cooking yields, juiciness, and flavor increased with vacuum mixing time of 16 to

18 min compared to 24 min. Booren et al. (1981b) reported that subjective color

scores indicated a significant superiority for vacuum mixed restructured steaks

when compared to non-vacuum mixed counterparts. However, spectrophotometric

measures indicated a less desirable surface color in vacuum mixed steaks.

Breidenstein (1982a) reported that a vacuum mixing time of 18 min showed no

adverse effects on color.

Durland et al. (1982) found that mixing time after 15 min had no further

significant effect on bind, cooking yield, or any of the sensory attributes. Visual

fat was not affected by mixing time, but the textural appearance of restructured

products was scored significantly finer after 15 min as compared to 24 min of
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mixing. Booren et al. (1981a) reported that a mixing time of 16 min resulted in a

60% increase in adhesion compared with mixing for restructured products. Booren

et al. (1981a) agreed that vacuum mixing reduced oxygen availability and

penetration in the emulsion resulting in the reduction of oxidative color changes

and lower TBA values. Pepper and Schmidt (1975) found in both salt and

salt-phosphate treated beef rolls, either cold- or hot-boned, that the binding

strength generally increased with increased mixing time.

Sensory evaluation

Some 40 years ago, when the Institute of Food Technologists was organized,

the emphasis was on the organoleptic evaluation of food. But the development of

new kinds of food items soon exceeded the research capabilities available. With

the ever increasing cost of product development and marketing, the food industry

could not longer afford costly hit or miss product decisions. The answer was to

utilize valid sensory testing throughout the process of product development to

save time, money, and improve products (Fossum, 1983).

A sensory evaluation, according to Larmond (1982), is made by "the senses

of taste, smell, touch, and hearing when food is eaten, where the complex

sensation that results from the interaction of the senses is used to measure food

quality in programs for quality control and product development".

Difference testing is a common and useful sensory technique that can be

applied in a variety of test situations. The triangle test is a difference test in

which three samples are presented; two are identical and one is different. The

objective is to detect the odd sample. This is the method preferred over other
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tests because it reduces the panelist's chance of getting the right answer by

guessing, reducing the chance from 50/50 down to 33 1/3%, and it is a relatively

simple method. Anyone can become familiar with it, in that it does not require

much training. It is informal, and is very brief. The more people used, the more

confidence that is placed in conclusions. It is an effective way to determine if

there is a difference between two products. The triangle test can be used to

evaluate a standard product and a newly developed prototype or one that is

different due to replacing raw materials or ingrediants (Larmond, 1982).

Sensory evaluation panels can be grouped into three types; highly trained

experts, laboratory panels, and large consumer panels. Evaluation by experts and

trained laboratory panels can be useful for control purposes, while consumer

panels are used to determine consumer reaction to a product. For the evaluation,

a special testing area is used so that distractions can be minimized and conditions

can be controlled. The testing area should be a quiet, comfortable environment. If

possible, the use of positive pressure air conditioning is favorable where foreign

odors and odors from food preparation should be kept from the testing area. The

usual method is to construct a booth along the wall that divides the room from

the preparation area. Several conditions should be carefully monitored during the

evaluation. These conditions include 1) lighting, 2) sample preparation (all factors,

such as time, temperature, and degree of doneness should be predetermined and

kept constant throughout testing); 3) serving temperature (for acceptance/

preference testing, the sample should be served at the temperatures at which they

are normally eaten); 4) utensils (serving utensils should not impart any taste or

odor to the product); and 5) quantity of sample (the amount of sample given to

each panelist should be constant throughout the test) (Larmond, 1982).
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Meat texture

Texture, appearance, and flavor are the three major components of food

acceptability. The texture of meat is undoubtedly the most important property

appreciated by the consumer in western civilizations (Harries et al., 1972). How

people perceive and quantify textural characteristics are very important issues

that have significantly improved the fundamental understanding of texture and of

correlations between instrumental and sensory measurements (Szczesniak, 1977).

Sherman (1970) described texture as the composite of those properties which

arise from the structural elements, and the manner in which it registers with the

physiological sense. However, among the different textural properties, mechanical

properties are probably the most important and have received the greatest

attention (Szczesniak, 1977).

Measurement of food texture plays important roles in the industry such as

in new product development, control of manufacturing processes, product

improvement, and in the quality evaluation of the finished product (Finney, 1969).

An ever-growing need for an objective method for characterizing food textural

properties lead to the investigation of the mechanical parameters of texture

(Friedman et al., 1963). The kinesthetic characteristics of food are generally

considered in relation to those attributes of quality associated with the sense of

feel, as experienced either by fingers, hand, or in the mouth (Finney, 1969). Also

it includes such sensations as hardness, tenderness, mealiness, and crispness which

adults frequently consider as signs of excellence in the cooked product

(Szczesniak, 1977).
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Objective and subjective measurements of tenderness

Meat tenderness is extremely important for consumer acceptability of meat.

Therefore, the ability to predict and measure meat tenderness is imperative to

meat scientists (Hayward et al., 1979). Instrumental methods for texture

measurement have been divided into three classes of tests. Fundamental tests

measure properties that are familiar to the engineers. These properties include

ultimate strength, Poisson's ratio, and various moduli such as Young's modulus,

shear modulus, and bulk modulus. These type of tests usually correlate poorly with

sensory evaluation of textural properties of food. Empirical tests, which cover

miscellaneous tests such as puncture and shear, also correlate poorly to texture

quality. Imitative tests attempt to imitate the condition to which the food is

subjected in the mouth. It is in this area that texture profile analysis (the sensory

analysis of the texture complex of a food in terms of its mechanical, geometrical,

fat, and moisture characteristics; the degree of each present and the order in

which they appear from first bite through complete mastication, Szczesniak, 1963)

falls.

Tenderness measurement is a relative evaluation of one of the most

important quality factors in meat. Dodge and Stadelman (1959) mentioned the two

most commonly used methods to evaluate tenderness. The first is the organoleptic

panel where members are given a sample to evaluate. This is considered to be the

most accurate evaluation. Tenderness is also evaluated by machine. However, none

of the machines appear to be able to simulate the true action of chewing. Since

meat composition is of primary importance, subjective measurements, or taste

panel testing, will remain as the ultimate testing method (Harris, 1976; Larmond,

1976).
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Sensory assessment of food quality is frequently time consuming and very

expensive. The results are very dependant on the observer's preferences unless

highly trained people are used, and even then this technique may suffer from bias

(Rhodes et al., 1972). Harris (1976) mentioned that problems existed with the taste

panel because of its subjectivity and reliability on human interpretations which

are often vague. This makes it difficult to compare results between laboratories

and different organoleptic panel methodology (Larmond, 1976).

Objective measurement requirements

Various devices which simulate the action of the chewing process have been

used. However, none of these devices are ideal predictors of meat tenderness

(Harris, 1976). A major inhibitor factor for developing an ideal objective test lies

in the conflicting correlation between objective measurements and sensory panels.

Apparently, mechanical devices seem to measure different structural

characteristics of meat when compared with taste panel evaluations (Harris, 1976).

Szczesniak (1968) concluded that conditions under which both methods are

performed and how their results are expressed have a tremendous bearing on their

correlations.

Harris (1976) concluded that a single device will not be sensitive enough to

measure all the factors influencing taste panel assessment; therefore, a

combination of results from several objective measurements, each of which relates

to different structural properties of meat, may solve the problem.
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Mechanical measurements of meat texture

Measurements of meat texture have been divided in three objective methods

based on chemical, histological, and mechanical techniques (Hayward, et al., 1979).

Chemical analyses often measure connective and/or myofibrillar tissues.

Histological analyses utilize structural appearance of muscle for texture

classification, while mechanical methods are simpler to use and have been widely

accepted (Pearson, 1963).

Warner-Bratzler apparatus

The Warner-Bratzler shear is the most widely used apparatus for shear

measurement, but its single measurement of maximum shear force during the

complete severance of the sample may be its most serious limitation (Rhodes et

al., 1972). The majority of studies report that the Warner-Bratzler shear value

accounts for only 30 to 60% of the variation in tenderness as evaluated by a

sensory panel (Hurwiez and Tischer, 1954; Bailey et al., 1962; and Szczesniak,

1968). Results obtained with the Warner-Bratzler device indicate that the peak

force value relates more closely to the myofibrillar component of toughness than

to the connective tissue component (Bouton and Harris, 1972; Paul et al., 1973;

Cross et al., 1973). Shear force values correlated poorly with subjective

assessments of tenderness when there was a large difference in connective tissue

strength between samples (Bouton et al., 1973; Paul et al., 1973; and Penfield and

Meyer, 1975). However, studies on the force deformation curves obtained from the
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Warner-Bratzler apparatus have shown that treatments such as aging, cooking, and

myofibrillar contraction which predominantly influence the muscle fiber mainly

affect the initial yield force value. Differences between the initial yield and peak

force values reflect changes due to animal age and muscle connective tissue

differences (Bouton et al., 1975). Results from the Warner-Bratzler shear device

has been correlated more highly with sensory estimates of tenderness than those

from the Kramer shear press device (Pangborn et al., 1965; Sharrah et al., 1965;

Hurwiez and Tischer, 1954; and Cover and Hostetler, 1960). However, Moller,

(1980), Szczesniak (1968), Dodge and Stadelman (1959), and Deatherage and

Garnatz (1952) found poor correlations between the Warner-Bratzler shear results

and competent sensory panels when working with beef.

Pangborn et al. (1965) mentioned that due to the small sample size required

for the Warner-Bratzler device it could be used advantageously in cases where

only a small amount of sample is available. However, by direct observation, Voisey

et al. (1976) and Pool and Klose (1969) found that the recorded force from the

Warner-Bratzler shear apparatus did not indicate the shear rupturing

characteristics of meat. Voisey et al. (1976) also explained that rupture occurs

under complex stress (tension, shear, compression, and flow) in a situation that is

difficult to analyze.

Voisey and Larmond (1974) and Pool and Klose (1969) observed that the

Warner-Bratzler shear force readings are related to tensile properties of the

sample, since the sample bends over the edges of the blade while the sample is

being severed.
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Kramer shear press

The standard shear compression cell of the texture test system (Allo-Kramer

also known as the L.E.E. Kramer shear press) has become one of the most popular

texture testing accessories since it was introduced by Kramer et al. (1951)

(Cat.No.CS-1, Food Technology Corp., Rockville, Maryland). It is used in a variety

of testing machines for research and quality control applications on a great range

of food since a wide variety of product can be placed in the cell for testing

(Voisey and Kloek, 1981; Kramer, 1961; Anonymous, 1968; Voisey, 1970; and

Szczesniak et al., 1970).

The main advantage of the Kramer shear press over the Warner-Bratzler

device is that the Kramer shear press takes a larger sample so that the sampling

errors are reduced without using a greater number of samples (Sale, 1960). Wells

et al. (1962), working with chicken, found it difficult to obtain a core, therefore

the Kramer shear press was more satisfactory than the Warner-Bratzler apparatus.

However, Szczesniak (1969); Voisey (1977); and Shama and Sherman (1973) found

that sample size (weight) affected results from the Kramer compression cell and

this effect varied with different products.

Studies by Deatherage and Garnetz (1952), Shannon et al. (1957), Wise

(1957), Bailey et al. (1962), and Penfield et al. (1976) reported that Kramer shear

values versus sensory panels results showed significant correlations. However,

Palmer et al. (1965) and Burrill et al. (1962) reported that shear resistance of

fried meat with the Warner-Bratzler and the Kramer shear apparatus correlated

well, and both also correlated with untrained panel evaluations where differences
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between both Warner-Bratzler and Kramer shear press were not significant.

Burrill et ai. (1962) also mentioned that good agreement can be expected between

tenderness measurement by panel score and by maximum force determined by

either the Warner-Bratzler or the Kramer shear instrument.

Kramer shear press and restructured beef

Some research has been conducted utilizing the Kramer shear press on

restructured beef roasts. Rogers and Althen (1985) reported the use of the

Kramer shear press to determine tenderness differences between continuous and

intermittent tumbling conditions. They found the Kramer shear press effective for

the determination of tenderness differences. However, Moody et al. (1985)

reported low and negative correlation coefficients between Kramer shear force

values and taste panel scores for juiciness, tenderness, flavor, and amount of

connective tissue, even though the Kramer shear force showed tenderness

differences between treatments.

Factors affecting use of the Kramer shear press

Voisey and Kloek (1981) and Voisey (1970) mentioned several factors which

influence the use of the Kramer compression cell. These factors are: effect of

friction, difficulty of assembly during testing because the multiblade must be

aligned and fed into the slots, and cleaning of the cell is difficult because of the

many confined spaces. Sample size, crosshead speed, and interpretation of

deformation curve are also important considerations. Assembly and cleaning of the
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Kramer shear press is time consuming and tedious particulariy when testing a

large number of samples.

Force deformation measurements

Interpretation of the Instron force-deformation curves in terms of food

properties is very important. Incorrect interpretation may affect the relationship

between instrumental and sensory tests (Voisey, 1977). Deformation curves of the

Instron and the Kramer shear press show sharp peaks at the end of each

compression. This is because the compression force of the Instron is constant, and

there is an abrupt reversal motion at the end of each compression which gives

both a force time curve and a force-distance curve, allowing the true work

function to be calculated (Bourne, 1978).

Bourne (1976) reviewed a quick method which showed that by direct

observation of the sample undergoing deformation one is able to interpret most

accurately the deformation curve. Szczesniak et al. (1970 and 1977) and Voisey

(1977) determined that "few foods appear to undergo pure shearing and most foods

are subjected to two or more types of force which may be combinations of

compression, extrusion, and shear"; but it is generally agreed that the predominant

factor depends on the food. Voisey et al. (1976) also agreed that few foods can be

subjected to "pure shear" because they are highly deformable, and this introduces

compression and tensile stress that may be the predominant cause of rupturing of

the sample.

Observations of food behavior after the initial compaction in the Kramer

cell were characterized by two modes of failure that depend on the resistance of
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the material to compression and the resistance of the material to cutting (Voisey,

1977). It was apparent that the interaction between these two resistances

governed the shape of the resulting force-deformation curve. After the rupture

was initiated and propagated, the force changes were attributed to cohesion of

the material and adhesion between the sample and the cell surfaces (Voisey,

1977). In this case the Kramer blades entering the grid slot may produce an

increase in force as pieces of fiber, meat, or skin jam into the clearances. In this

case the peak force had little relationship to the shear properties of the sample.

In the Kramer cell the sample is confined to two dimensions (horizontal

plane) and the deformation is applied along the vertical axis. It is generally

assumed that the linearity of the ascending force curve following compaction

represents the elastic or firmness characteristics of the food (Voisey, 1977).

Voisey (1977) concluded by direct observation of shear compression curves of the

foods that it is incorrect to assume that the peak force always reflects the shear

force of the food, because the shearing behavior only occurs with certain

products and at a specific point in the deformation which does not necessarily

coincide with the maximum force. It is probably more realistic to use general

terms such as cutting, compression, and extrusion to describe the cell mode of

action. However, the majority of users assume and report that the maximum force

is the "shear strength" of the food (Szczesniak et al., 1970).
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Some terminology for Instron parameters

Hardness - is measured from the profile as the height of the peak force during

the first compression (Friedman et al., 1962)

hardness=height of the peak/kg input

A-ea of compression - the area under the first compression force -distance

2
curve as determined by an integrator or planimeter (cm ) (Hayward et al.,

1979)

Fracturability - is characterized by the multipeak shape of the first compression,

and is measured as the height at the first significant break in the peak

(Bourne, 1978)

Work - area under each peak which is an integral of the force over a

distance. This value is a direct function of the work needed to overcome

the internal bonds of the material (Hayward et al., 1979).

Adhesiveness - the negative force curve area of the first compression,

representing the work necessary to pull-the cell blades away from the

sample (Bourne, 1978).
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CHAPTER III

EFFECTS OF BLADE TENDERIZATION AND TRIMMING ON

HOT-BONED, RESTRUCTURED, PRE-COOKED ROASTS FROM COWS

ABSTRACT

Four USDA Utility grade cow carcasses were used to study the effects of

blade tenderization and trimming of connective tissue when producing hot-boned,

restructured, pre-cooked roasts from cows. Muscles from one side of each carcass

were hot-boned within Ihr postmortem, blade tenderized, cut into large pieces,

mixed, and divided into two batches. One batch was trimmed of large deposits of

connective tissue (BTT) while the other was not trimmed (BTNT) before

restructuring and pre-cooking. The muscles from the other side were not blade

tenderized but were hot boned, cut into pieces, mixed, and divided into two

batches. One batch was trimmed (T), while the companion batch was not trimmed

(NT) before restructuring and pre-cooking. Overall, treatments involving trimming

(T and BTT) proved to be the most effective. However, the blade tenderization

treatment BTNT was frequently equal or superior to treatments involving trimming

when considering product palatability, tenderness indicating Instron measures, and

treatment variances. Some Instron parameters were correlated with taste panel

parameters and total collagen determinations.

32
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INTRODUCTION

Improvements in the energy, labor, and yield efficiencies of beef processing

are major goals of hot boning. Some potential advantages of hot boning include: 1)

facilitation of centralized processing; 2) reduction in cooler space and energy

input; 3) improvement in yields; 4) reduction in labor; and 5) improvement of

emulsifying properties (Kastner, 1982).

Palatability preferences of a consumer taste panel for beef steaks from

young and old animals indicated that eating preferences were consistently in favor

of the more tender youthful animals (Dunsing, 1959). As a consequence of

age-associated problems with tenderness, the majority of beef from older animals is

currently utilized as ground beef or sausage raw material. If methods for increasing

the palatability of meat from older animals could be developed to achieve a level

comparable to the beef from younger carcasses, this would allow beef from older

animals to be processed into products that could be marketed through retail

channels, allowing for flexibility in marketing (Tatum et al., 1978).

Blade tenderization is one of the most effective mechanical methods of

meat tenderization (Hayward et al., 1979). The use of blade tenderization on less

tender muscle, to reduce the effects of connective tissue between weight-grade

groups, may be used to make cuts from older animals comparable in tenderness to

those from younger animals (Savell et al., 1977; Seideman et al., 1977)

Economic pressure to minimize processing cost and maximize product

palatability and utilization provides incentives to develop new products of high

quality and value using less valuable carcasses and carcass portions. The overall

concept of restructured meat is to utilize less expensive beef cuts to manufacture
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a product that provides satisfactory eating qualities at a low unit cost (Seideman

et al., 1981).

This investigation was designed to evaluate the effects of blade

tenderization and trimming of large deposits of connective tissue on hot-boned,

restructured, pre-cooked roasts from cow carcasses.

MATERIALS and METHODS

Sample preparation

Four USDA Utility grade cows were slaughtered at the Kansas State

University meats laboratory. The supraspinatus, and semitendinosus muscles, and the

clod and inside round muscle systems were removed from both sides of each carcass

within 1 hr postmortem. All muscles were trimmed of exterior fat, blade tenderized

(BT) three times, cut into large pieces (approximately 8.0 x 10.0cm), mixed, and

divided into two batches. One batch was trimmed of large deposits of connective

tissue (blade tenderized and trimmed, BTT); while the companion batch was not

trimmed (blade tenderized and non-trimmed, BTNT). The muscles from the other

side were not blade tenderized but were also cut into large pieces, mixed, and

divided into two batches. Pieces from one batch were trimmed of excess

connective tissue (T) whereas those from the other batch were not trimmed (NT).

The pieces from each treatment batch were coarsely ground through a three hole

kidney plate yielding large irregular chunks (approximately 4.0 x 1.9cm). Ten

percent of the weight of the lean chunks of each batch was ground through a

0.64cm plate.
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Representative samples of the ground lean from each treatment were tested

for pH and for fat content using the Hobart Fat Analyser. Subcutaneous fat

previously removed was chilled in a freezer to firm the fat and ground through a

0.64cm plate. A preliminary study indicated that grinding and blending hot fat

decreased product bind. This was possibly due to fat smearing over the lean

surface which reduced myosin extraction.

The individual batches were placed immediately into a Hobart mixer with

1.5% salt and 0.25% sodium tripolyphosphate for 6 min pre-blending at 1°C. Salt

and phosphate percentages were based on the weight of the lean plus fat needed to

achieve 10% fat in the formulation. After pre-blending, the individual treatment

batches were placed in a Keebler vacuum paddle mixer and mixed under vacuum

(686 mm Hg) for 7 min. After the first 7 min of vacuum mixing, the ground fat

component was added to each treatment batch to achieve a final fat content of

10%. The batches were vacuum mixed for an additional 7 min. The order of

pre-blending and vacuum mixing of product from each treatment were randomized

to eliminate variation in the time postmortem before blending and mixing. Product

was stuffed through a 5.1cm horn into 20A X 81.6cm fibrous pre-stuck casings.

Casings were compressed and clipped using a Polyclip device and roasts were

individually weighed.

pH measurements

All pH values of the ground lean component were taken within 2 hr

postmortem. A sample (l-2gm) from each treatment batch was blended with 10ml of

5mM NalAc in 150 mM KCL solution (Bendail, 1973).
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Cooking procedures

Roasts were steam cooked in a smokehouse to an internal temperature of

62.8°C during a three-stage heating cycle. Roasts were cooked initially at 54.4°C

for 45 min, followed by 65.8°C for 45 min, and finally at 82.2°C until an internal

temperature of 62.8°C was reached. Roasts were weighed, chilled for 24 hr and

reweighed prior to being frozen. Maximum frozen storage time was 1 mo before

organoleptic evaluation. Subsequent analyses were performed after an overnight

thawing period at 1°C.

Organoleptic evaluations

Following overnight thawing at 1°C, .64cm slices were cut into four uniform

wedges and stored at room temperature prior to evaluation. A consumer panel of

200 students was selected at Kansas State University from Animal Science and

Industry classes. Panel members were given ballot instructions and sampling

procedures before evaluation. Four wedges (one from each treatment) and an

unsalted cracker were presented on odor-free, taste-free, white styrofoam plates.

Each sample was assigned a three digit random number (Appendix C). Panelists

were instructed to take a small bite of cracker between samples. Samples were

evaluated based on flavor, juiciness, tenderness, and overall acceptability. A six

descriptor hedonic scale (Fig. 1) was used to rate each characteristic. The

descriptors were assigned values of 1 through 6, where 1= like extremely or

extremely acceptable and 6= dislike extremely or extremely unacceptable.



Figure 1 - Taste panel evaluation sheet for flavor, juiciness, tenderness,

and overall acceptability
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Samples code

FIRST SECOND THIRD FOURTH

F _like extremely.

L _like very much.
A _like slightly.

V _dislike slightly.

O _dislike very much.
R. dislike extremely.

_like extremely.

_like very much,
"like slightly,

"dislike slightly,

"dislike very much,
dislike extremely.

like extremely.

_like very much,
"like slightly,

"dislike slightly.

_dislike very much,
"dislike extremely.

_like extremely.

_like very much.
_like slightly,

^dislike slightly.

_dislike very much,
"dislike extremely.

3

U
I

c
I

N
E
S

s

_like extremely.
_like very much.
_like slightly,

'dislike slightly.

_dislike very much.
_d is like extremely.

_like extremely.
_like very much.
_like slightly,

"dislike slightly,

"dislike very much,
"dislike extremely.

_like extremely.

_like very much.
_like slightly,

'dislike slightly.

_dislike very much,
'dislike extremely.

_like extremely.

_like very much.
_like slightly,

"dislike slightly,

"dislike very much,
"dislike extremely.

T
E
N

D
E
R
N

E
S

S

like extremely.
_like very much,
"like slightly,

"dislike slightly.

_dislike very much,
"dislike extremely.

like extremely.

_like very much.
_like slightly.

_dislike slightly.

_disiike very much.
_dislike extremely.

like extremely.

_like very much,
"like slightly.

_dislike slightly.

_dislike very much.
dislike extremely.

_like extremely.

_like very much.
_like slightly,

"dislike slightly.

_dislike very much,
dislike extremely.

A
C
C

O E

R A
A B

_extremely

acceptable,

very acceptable.

_slightly acceptable.
_slightly

unacceptable.
_very unacceptable
_extremely

unacceptable.

_extremely

acceptable,

very acceptable.
_slightly acceptable,
jslightly

unacceptable.
_very unacceptable
_extremely

unacceptable.

_extremely
acceptable.

_very acceptable.

_slightly acceptable,
"slightly

unacceptable.
_very unacceptable
_extremely

unacceptable.

_extremely
acceptable,

very acceptable.

_slightly acceptable.

_slightly

unacceptable.
_very unacceptable
_extremely

unacceptable.

Comments:
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Objective textural measurements

Following overnight thawing at room temperature, samples were sliced from

each roast. One thick sliced (1.27cm) and one thin sliced (series of approximately

fifteen 0.15cm slices) sample were removed from the center of each roast. Thick

and thin sliced samples were also taken within 7.5cm of the ends of each resulting

half roast. Those samples were identified as center, end 1, and end 2. Both thick

and thin slices were cut (6.5 X 6.5cm) to fit the L.E.E. Kramer cell. The 1.27cm

thick samples, cut to fit the cell, weighed from 45 to 57gm and the thin slices

varied in weight from 33 to 54gm after cutting. All samples were immediately

wrapped in polyvinyl chloride film and stored (1°C) to minimize moisture loss

before testing. Since sample weight might influence results, another series of thin

slices (0.15cm) was taken from the remaining roast samples. After trimming to fit

L.E.E. Kramer cell, 50+2gm of the thin slices were placed in the cell. These

samples were not identified by end and center locations.

Shear values were obtained by using the Instron Universal Testing Machine

equipped with a L.E.E. Kramer ceil. A crosshead and chart speed of lOOmm/min

was used, and the force ring was 500kg. Samples were placed into the L.E.E.

Kramer cell and one shear measurement was obtained per sample. Using the force

deformation curves (Fig. 2), peak yield was measured as maximum force (kg),

distance was measured along the baseline from the point of initial contact with the

sample to the point of peak yield; area 1 was measured as the area under the

deformation curve by using a planimeter; and area 2 was calculated by measuring

the distance along the baseline from the point of initial contact to the point of

peak yield (cm) and multiplying by the peak height (cm/gm). All results were

expressed per gm of sample.



Figure 2 - Sample Instron force deformation curve
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Peak Yield (kg)

Peak Height (cm)

Distance (cm)
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Hydroxyproline and total collagen determination

Samples were sliced from each roast and cut into wedges. Wedges then were

frozen in liquid nitrogen and were pulverized in a Waring Blendor. Frozen

pulverized samples were stored at -18°C in clear plastic bags before hydroxyproline

and total collagen determination. Samples (4gm) from each treatment were

homogenized with a Polytron and hydrolyzed in 6N HCL for 6 to 12 hr in an

autoclave at 125°C. Hydroxyproline was determined by a modified procedure of

Bergman and Loxley (1963). The modification consisted on the addition of 2 ml of

Ehrlich's reagent, rather than 13 ml recommended by Bergman and Loxley (1963).

Absorbance was measured at 558nm on a Bausch and Lomb Spectronic 21 within 30

min of color development. Detailed procedures of hydroxyproline analyses, standard

curve preparation, and total collagen determination are shown in appendix A and B.

Total collagen content (mg/gm of sample) was computed by multiplying

hydroxyproline content by 7.25 (Goll et al., 1964).

Statistical analyses

The experimental design was a completely randomized block design with

respect to assigning treatments to carcasses sides. Data were analyzed by analysis

of variance, and main effect means were compared by using the least significance

difference method (Snedecor and Cochran, 1978). Correlation coefficients and

within treatment variances were also calculated and analyzed. Variances were used

to obtain an evaluation of product uniformity as influenced by treatment. The

analysis was performed by using the Statistical Analysis System Package (SAS,



*1

1982). Because the study was primarily designed to evaluate the effects of

trimming and blade tenderization, results pertaining to these main effects are

emphasised. The trends among treatment means may be evaluated considering that

in no case was the trimming x tenderization interaction found to be significant

(P>.05).
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RESULTS and DISCUSSION

Taste panel analyses

Juiciness and tenderness main effect means (Table 1) for trimmed vs

non-trimmed were different (P<.05). No other statistical differences were noted.

Trimming of large deposits of connective tissue improved (P<.05) the evaluation of

juiciness and tenderness scores for T and BTT compared with NT and BTNT

treatments, respectively. Even so, all treatment means were in the "like very

much" to "like slightly" categories for juiciness and tenderness (Table 1, Fig. 1).

Blade tenderization slightly improved tenderness when comparing BTT vs T and

BTNT vs NT. These blade tenderization data agree with those of Savell et al.

(1977), Seideman et al. (1977), Schwartz and Mandigo (1974), and Miller (1975).

Those authors attributed the increase in tenderness associated with blade

tenderization to the partial destruction and severance of connective tissue and

muscle fibers thereby reducing the resistance to shear force, mastication, and

swallowing. Results also agreed with those reported by Tatum et al. (1978), Glover

et al. (1977) and Savell et al. (1977), where blade tenderization was found to have

little or no effect on juiciness and flavor. Blade tenderization without trimming of

connective tissue (BTNT) may produce a restructured product with a level of

overall acceptability and flavor equivalent to the T and BTT treatments (Table 1).

It should be noted that for all treatments, the influence of connective

tissue on tenderness may also have been minimized by chunking before

restructuring and by the method of pre-cooking.



(0

a
E
o
O
*>
u
V
MH
4-1

UJ

c
.—I
(13

a

a
4>

N
u
4>

o
c
1)
*»

I

c
o
z
>
o
4>

"C
4>

o
c
4>

H

a

E
E

i

c
o

nj ig al
es 00 (^
00 >r\ oo

es.

idA

u
4-C
•—I

V
c
'(3

T3
c
113

C

E
(0

s

l.

o

10

c
(13

1)

E

'3

4J

C
IT)

a.

i

s

E

t-

* 1« E ^.SEP
fc H ^o 7 '"?

<U o

(0
IA
00

CM

rt «3

t^. (N
v* r-»

(N

O
as

CN

X)

•

CN

CN

SO
CN

00
as

CN

43

o

a.

c

00

cn

(0 ID (0

o H IA
>A vO so

CN CM CN

. 00

c
41

E
<-•

nj
4>

h ft r*
•S E H
= E s
H *5

w

1
i -

E

IS
o

Q.
U

4) in
«-•

fl

H ^

* —

<

as oo

CN

00

©
00

SO
oo

(N

CN

"A

CN

1^
•3-

CN

O
rs.

CN

CS.

as

CN

00

CM

<N
SO

O
so

o

C
k.
4>

X!
C
41

CN
00

•

CN

XI_ ra

ro a.

4>
>
o

o
c
1)
u
(13

«-»

a.

u
u
irt

k.

0)a
3
t/>

4>

E

1 «

1) 1
*->

4-> a.

4->

V
u

• -* u
£ CO

"0 ><
4> *rf

N £
SO

V IS
-o (rt

c
<-• o

1

c ^.
o J
c x:

op
1/)

>
"in

TJ V
s J£

•-^
k. H
4> <»s
-o
c
1)

•0

• 2
a CO

c
113

o.
41

1
E

U
O
(0

E
k.

"C 4>

i

>
c k.

o O
c

-C
(rt u> 3
o E
4>

E
>>
k.

E <u
>

u
<-> V

o 13
MH II

Irt

CN

15 ii

E g

o _^
4> 4>

••-c r:

4>
CO

a.

C
a;

(0

2 a

a



44

Chemical analyses and cooking loss

Total collagen and cooking loss main effect means (Table 2) were less

(P<.05) for trimmed than non-trimmed. Tenderized vs non-tenderized main effect

mean comparisons for total collagen and cooking loss were not significantly

different. These results agree with those of Tatum et al. (1978), Schwartz and

Mandigo (1974), Savell et al. (1977), and Seideman et al. (1977), where neither drip

loss nor cooking loss were significantly affected by needle or blade tenderization.

As expected, trimming reduced the total collagen (Table 2) and improved the taste

panel perception of tenderness (Table 1). The improved perception of juiciness due

to trimming (Table 1) agrees with reduced cooking losses resulting from trimming

(Table 2). Tenderization within 2 hr postmortem reduced (P<.05) pH values (Table 2)

apparently due to disruption of pre-rigor muscle which accelerated postmortem

glycolysis.

Instron evaluations

Fixed weight thinly sliced samples

Instron parameter means for fixed weight (50+2gm) thinly sliced (0.15cm)

samples by treatments and main effects are shown in Table 3. Trimmed vs

non-trimmed main effect means showed trimmed to have a smaller (P<.05) peak

yield than non-trimmed. The reduction in peak yield due to trimming agrees with

the same main effect mean comparison for taste panel tenderness and total

collagen. No other significant differences were noted in Table 3. However, the
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treatment mean comparisons tended to show a reduction in peak yieid due to biade

tenderization (BTT vs T and BTNT vs NT).

Variable weight thinly sliced sampies

Table k shows Instron measurement means for treatments and main effects

for variable weight thinly sliced samples. An analysis of covariance indicated that

within the sample weight ranges used; peak yield, distance, or areas per gm were

not significantly different as sample weight varied within a treatment. The area 2

main effect mean was higher (P<.05) for non-trimmed than trimmed. Treatment

means for area 2 showed T and BTT treatments to have smaller means than NT and

BTNT treatments, respectively. The peak yield main effect mean was higher (P<.05)

for non -tenderized than for tenderized. Treatment means for peak yield for BTNT

and BTT were smaller than for NT and T respectively. No other significant main

effect mean differences were noted in Table 4.

Variable weight thick sliced samples

For variable weight thick sliced samples the difference between trimmed

and non-trimmed main effect means for area 2 was significant (P<.05) Table 5.

Trimming treatments (T and BTT) resulted in smaller area 2 means than

non-trimmed (NT and BTNT) treatments. Blade tenderization decreased peak yield

means for BTT and BTNT relative to T and NT, respectively, and the main effect

mean difference for tenderized vs non-tenderized was significant. These results

correspond to those for thinly sliced variable weight samples (Table 4). Other
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differences between main effect means in Table 5 were non-significant.

Considering treatment means, treatments invoiving trimming and blade

tenderization (T, BTT, and BTNT) generally tended to reduce Instron measurements

relative to NT.

Sample location comparisons

Tables 6 and 7 show Instron measurement means for sampling location for

thinly sliced and thick sliced variable weight samples. Sampling locations were not

different (P>.05) for any of the Instron parameter for the thinly sliced samples.

In data not shown, total collagen content was also not different (P>.05) among

sampling locations for each treatment. Thick sliced sample means were significantly

affected (P<.05) by sampling location. However, no consistent locational trends

were noted. This indicates that sampling location did not consistently influence

results, and that roasts within treatment were resonably uniform throughout their

length.

Correlations

Peak yield (r=.73), area 1 (r=.60), and area 2 (r=.65) were correlated (P<.05)

with taste panel scores for tenderness as were correlations between areas 1 (r=.53)

and 2 (r=.60) and total collagen values. As those Instron measurement means

decreased corresponding tenderness evaluations became more desirable and total

collagen amounts decreased. Therefore, for restructured products that vary in taste

panel tenderness due to the influence of connective tissue, the L.E.E. Kramer cell
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Table 6-Instron measurement means for thinly sliced variable weight

samples for sampling locations

Sampling Locations

Instron Measurements Endl Center End2

Peak yield

(kg/gm)

Area 1 (cm /gm)

5.13'

0.300'

5.48'

0.333
c

5.01'

0.290'

Distance (cm/gm) 0.032
s

0.32' 0.073'

e 2
Area 2 (cm/gm) 0.383' 0.370' 0.382'

.Means in the same row with the same superscript are not different (P>.05).

Peak yield: maximum force.

.Distance: distance from initial contact with the sample to peak yield.

Area 1: measured as the area under the deformation curve by the use of a planimeter.
Area 2: distance from initial contact to peak yield (cm) x peak height (cm/gm).

Table 7-Instron measurement means for thick sliced variable weight
samples for sampling locations

Instron Measurements

Sampling Locations

Endl Center End2

Peak yield

(kg/gm)

Area 1 (cm /gm)

5.70
c

0.358
1

7.35
v

0.476'

6.32'

0.415
ab

Distance (cm/gm) 0.029' 0.032' 0.032'

e 2
Area 2 (cm/gm) 0.415' 0.645' 0.532

ab

b
Means in the same row with the same superscript are not different (P>.05).

Peak yield: maximum force.

d
Distance: distance from initial contact with the sample to peak yield.
Area 1: measured as the area under the deformation curve by the use of a planimeter.e
Area 2: distance from initial contact to peak yield (cm) x peak height (cm/gm).
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may be used to predict relative tenderness differences. Additionally, the Kramer

device may be used to predict relative differences in connective tissue amount in

restructured products. Percent cooking loss was correlated (P<.05) with taste panel

scores for tenderness (r=.56) and overall acceptability (r=.48). Total collagen also

was correlated with taste panel scores for juiciness (r=.57) and tenderness (r=.71).

Therefore, as percent cooking loss and total collagen values increased; juiciness,

tenderness, and overall acceptability values tended to become less desirable.

Variance Analyses

The variance analysis was conducted in an effort to measure product

uniformity as influenced by treatment. It is proposed that as variance decreases

product uniformity increases, and this is a desirable trait for meat products.

Treatment variances for taste panel traits, pH, and cooking loss were not different

(P>.05) among treatments, as were treatment variances for the thinly sliced fixed

weight samples for Instron measures of distance and areas 1 and 2 (Tables 8, 9 and

10). Similar results were found for the thick sliced variable weight samples (Table

11), where treatment variances for Instron measures were generally not different

(P>.05). However, for the thinly sliced variable weight samples T, BTT, and BTNT

treatments generally tended to decrease treatment variances for Instron

measurements of peak yield, distance, and area 2 relative to NT (Table 12).

Treatments involving trimming significantly reduced treatment variances for

total collagen (Table 9) and peak yield (Table 10) when compared to NT and BTNT

treatments. Though, not always significant, the general trend was to the NT

treatment to have the largest treatment variances for taste panel traits (Table 8),
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cooking loss and total collagen (Table 9), and peak yield (Tables 11 and 12). Blade

tenderized without trimming of connective tissue (BTNT), may produce a

restructured product that has reasonable uniformity as indicated by the variance

analyses and a level of overall acceptability and flavor equivalent to the

treatments involving trimming (T and BTT) Table 1.

Summary

Treatments involving trimming of large deposits of connective tissue overall

had superior palatability, greater tenderness as indicated by Instron measures,

smaller cooking losses, less connective tissue, and smaller variances compared with

NT and BTNT treatments. However, the BTNT was frequently equal and in some

cases superior to T and BTT for palatability, tenderness as indicated by peak yield

measures, and uniformity as indicated by treatment variances. Some Instron

measurements were correlated with taste panel traits and with total collagen. As

Instron measures increased taste panel tenderness evaluations became less desirable

and total collagen content tended to increase. Total collagen and percent cooking

loss also were correlated to taste panel traits, where greater cooking losses and

total collagen values were associated with less desirable perceptions of tenderness,

juiciness, and overall acceptability.

Even though blade tenderization was not as totally effective as trimming of

connective tissue, it may be a viable alternative or aid to trimming considering

that it is much less labor intensive and it does not reduce yield due to trimming.

The use of blade tenderization to insure a quality restructured product from

hot-boned cows appears reasonable and warrants further consideration.
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APPENDIX A

DETERMINATION OF TOTAL COLLAGEN

1. Weigh duplicate 4gm samples of muscle into a 50 ml screw top test tube. Add 20

ml of 6 N HC1 and homogenize with the Polytron. Wash the Polytron with an

additional 10 ml of 6 N HC1. Seal the tubes with a teflon cap.

2. Autoclave for at least 6 hr or overnight at 800 mm Hg and 125°C.

3. Cool autoclaved sample to room temperature.

4. Add 500-700 mg carbon decolorizing alkaline Norit A to clarify and filter

through Whatman //l filter paper. Wash down filter paper with distilled water.

5. Add five drops of methyl red indicator and titrate to a yellow endpoint with 5 N

NaOH.

6. Dilute to 500 ml for samples low in collagen and to 1000 ml for samples high in

collagen.

7. Analyze for hydroxyproline.

Reagents:

1. 6 N HC1 - Dilute 495 ml concentrated HC1 to 1 with distilled water.

2. 5 N NaOH - Dissolve 200gm NaOH and dilute to 1 liter with distilled water.

3. Methyl red indicator (.02%) - Dissolve 0.02gm methyl red in 95% ethanol and
dilute to 100 ml.
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APPENDIX B

DETERMINATION OF HYDROXYPROLINE BY A
MODIFIED BERGMAN AND LOXLEY PROCEDURE

Rapid Procedure

1. Pipette 1 ml aliquots of sample into clean 15 ml glass screw top test tubes.

2. Add 2 ml isoproponal and mix.

3. Add 1 ml oxidant solution, mix well and allow to stand k (+.5) min at room
temperature. Add the oxidant solution to the tubes in a specific order and at 4

min after starting with first tube proceed to the next step.

4. Add 2 ml Ehrlich's reagent and mix well. Since timing is critical, be sure to add
the Ehrlich's reagent to the tubes in the same order that the oxidant solution

was added.

5. Cap the tubes and heat in a 60°C (+0.2C) water bath for 25 min.

6. Cool the tubes for 5 min in running tap water.

7. Shake the tubes after cooling just before reading.

8. Use the Bausch and Lomb Spectronic 21 and measure the absorbance at 558 nm
against a ug/ml standard. Use a 1 cm cuvette and measure within one half

hr.

Modification of the Bergman and Loxley procedure is that 2 ml Ehrlich's reagent is

used in the rapid procedure rather than 13 ml as recommended in that paper.

Reagents:

1. Oxidant Solution

A. 0.35gm chloramine T dissolved in 5 ml deionized water.

B. Acetate/citrate buffer pH 6.0

57gm Sodium acetate - 3H_0 or 34.4gm sodium acetate anhydrous.
37.5gm Trisodium citrate - 2H-0
5.5gm Citric acid - 1H

2
385 ml Isoproponal

Dissolve sodium acetate, trisodium citrate and citric acid in 500 ml
deionized water. Check pH and adjust with acetic acid if necessary. Add
isoproponal and dilute to 1:1 with deionized water.

Oxidant Solution: Mix 1 volume A to k volumes B. Make fresh within 3 hr of
use.



64

Note:

1. If chloramine T is insoluble in water or if the samples after color
development are turbid the chloramine T may be partially inactive or no
good.

2. Adjustment of the pH with acetic acid can give turbidity when the
chloramine T is added and so if the pH is close it is best to leave it

unadjusted.

3. Make fresh buffers every 2-3 weeks to insure activity. Store at room
temperature.

2. Ehrlich's Reagent:

A. 2gm p-Dimethylaminobenzaldehyde (DABA) dissolved in 2.5 ml of 70%
perchloric acid. Be sure to use a perchloric acid hood.

B. Isoproponal

Ehrlich's reagent: mix 3 volumes of A with 13 volumes of B.

Note:

1. Solution A can be stored in a brown bottle for about 4 weeks.

2. Final color development of green instead of pink or red indicates inactive
Ehrlich's reagent.

3. Stock hydroxyproline.

Dissolve O.lOOgm hydroxyproline and dilute to 1 liter with .001 N HC1. Be
sure the hydroxyproline is dry. Store solution at 4°C.

Preparation of Standards

ml stock solution to dilute to 100 ml standard ug/ml

2 2

k 4

6 6
8 8
10 10
12 12
1* 14
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APPENDIX C

RANDOMIZATION OF SAMPLE PRESENTATION

FOR TASTE PANEL EVALUATION

678 790 05k 423

BTT NT BTNT T 1

NT T BTT BTNT 2

NT BTNT BTT T 3

NT BTT BTNT T 4

BTNT T BTT NT 5

NT BTT T BTNT 6

T BTNT BTT NT 7

T NT BTT BTNT 8

BTT BTNT NT T 9

BTT NT T BTNT 10

BTNT BTT NT T 11

T NT BTNT BTT 12

T BTT NT BTNT 13

BTT T BTNT NT 14

T BTNT NT BTT 15

BTNT NT T BTT 16

BTT BTNT T NT 17

T BTT BTNT NT 18

NT T BTNT BTT 19

BTNT T NT BTT 20

BTNT BTT T NT 21

BTNT NT BTT T 22

BTT T NT BTNT 23

NT BTNT T BTT 24

All possible treatment combinations of the four treatments were assigned to

random numbers as shown. Fifty samples were taken from roasts from each of the

four animals. Treatment combinations were assigned in order (as indicated, 1-24)

and repeated until 200 treatment combinations were assigned. The plate for each

panelist was prepared accordingly.
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Four USDA Utility cows carcasses were used to study the effects of blade

tenderization and trimming of large deposits of connective tissue on hot-boned,

restructured, pre-cooked roasts. Muscles from one side were removed within 1 hr

postmortem, blade tenderized, cut into large pieces, mixed, and divided into two

batches. One batch was trimmed of large deposits of connective tissue (BTT),

while the companion batch was not trimmed (BTNT) before restructuring and

pre-cooking. The muscles from the other side were not blade tenderized but were

also hot boned within 1 hr postmortem, cut into large pieces, mixed, and divided

into two batches. One batch was trimmed of connective tissue (T), while the

companion batch was not trimmed (NT) before restructuring and pre-cooking.

Taste panel analysis showed that trimming significantly improved (P<.05) the

evaluation for juiciness and tenderness when compared to the non-trimmed main

effect means. However, all treatments were scored in the "like very much" or

"very acceptable" and "like slightly" or "slightly acceptable" categories. Trimmed

vs non-trimmed main effect means were different (P<.05) for total collagen and

cooking loss, and trimming significantly reduced those mean values. Main effect

mean comparisons for tenderized vs non-tenderized were not different (P>.05) for

total collagen and cooking loss. However, pH was significantly decreased by

tenderization (P<.05). Instron measurements for fixed weight (50+2gm) thinly sliced

samples showed that the trimmed and non-trimmed main effect mean comparison

for peak yield was significant (P<.05) with trimming giving the smallest main

effect mean. Variable weight thinly sliced samples also showed that the difference

between trimmed and non-trimmed main effect means for area 2 was significant. T

and BTT treatments had smaller area 2 means than the NT and BTNT treatments,

respectively. The difference between tenderized and non-tenderized



main effect means was significant for peak yieid, showing BTNT and BTT

treatments to have smailer peak yield values when compared to NT and T,

respectively. A similar pattern for treatment difference was found for the

variable weight thick sliced samples. Treatments involving trimming and blade

tenderization tended to have smaller within treatment variances than the NT

treatment for taste panel parameters, cooking losses, and Instron measures.

Peak yield (r=.73), area 1 (r=.60), and area 2 (r=.65) were correlated (P<.05)

with taste panel scores for tenderness as were correlations between areas 1

(r=.53) and 2 (r=.60) and total collagen values. Therefore, for restructured

products that vary in taste panel tenderness due to the influence of connective

tissue, the L.E.E. Kramer cell may be used to predict relative tenderness

differences. Additionally, the Kramer device may be used to predict relative

differences in connective tissue amount in restructured products. Percent cooking

loss was correlated (P<.05) with taste panel scores for tenderness (r=.53) and

overall acceptability (r=.48). Total collagen also was correlated with taste panel

scores for juiciness (r=.57) and tenderness (r=.71). Therefore, as percent cooking

loss and total collagen values increased; juiciness, tenderness, and overall

acceptability values tended to become less desirable.

Treatments involving trimming of large deposits of connective tissue

generally had superior palatability, greater tenderness as indicated by Instron

measures, smaller cooking losses, less connective tissue, and smaller variances

compared to NT and BTNT treatments. However, the BTNT treatment was

frequently equal and in some cases superior to T and BTT for palatability,



tenderness as indicated by peak yieid measures, and uniformity as indicated by

treatment variances. Even though blade tenderization was not as totally desirable

as trimming of connective tissue, it may be a viable alternative or aid to trimming

considering that it is much less labor intensive and it does not reduce yield due to

trimming. The use of blade tenderization to insure a quality restructured product

from hot-boned cows appears reasonable and warrants further consideration.


