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Abstract 
 

Charcoal rot, caused by Macrophomina phaseolina, is the most important soybean 

disease in Kansas. Several strategies have been recommended to control this disease including 

crop rotation, lower plant densities, biological control, plant resistance and tolerance, and 

fungicide application. However, those techniques have not been completely effective and the 

information concerning soil texture, irrigation and micronutrient fertility (particularly 

manganese) upon charcoal rot disease severity and the pathogen population is limited. The 

objective of this study was to determine key factors that affect the biology of M. phaseolina and 

charcoal rot processes under laboratory, greenhouse and field conditions. M. phaseolina 

microsclerotia were produced from PDA pure isolate and infested Japanese millet in the 

laboratory and characterized by different techniques such as serial dilutions in semi selective 

media with the aim to produce quality inoculum to reliably infect soybean seedling roots under 

greenhouse conditions; production of inoculum by infesting Japanese millet was the most 

efficient method.  

Root colonization and root infection of soybean seedlings was assessed through the use 

of M. phaseolina inoculum under controlled conditions in the greenhouse. Root infection by M. 

phaseolina and microsclerotia longevity in soil is determined by environmental factors such as 

soil moisture content, soil texture and source of inoculum. The objective of the greenhouse study 

was to determine the impact of these variables on seedling root infection at the V1 and V2 

development stages. Artificial soils with different textures were infested; M. phaseolina 

microsclerotia and soybean seedlings were exposed to different soil moisture contents including 

pot saturation, pot (field) capacity, and permanent wilting point. Soil populations and levels of 

root colonization for the stages were assessed by estimating CFUs and root length. Results 

indicate that soil texture has a significant impact upon root morphology and root length. Root 

populations of M. phaseolina were significantly higher in sandy soil textures and lower in the 

fine-textured soils, suggesting an impact of soil water holding capacity in the root infection 

process. The effect of water stress on seedling root colonization by M. phaseolina indicates that 

early infection may be more important than previously thought. 



 

 

A field study was also conducted to determine the effect of the aforementioned variables 

in a 2-year field experiment conducted at two Kansas locations. Pathogen colonization was 

assessed by measuring colony-forming units (CFUs) from ground root tissue at R2-R4 (post-

flowering/early pod development) and R8 (maturity) stages. Soil populations (pre-planting and 

post-harvest) of M. phaseolina, yield parameters, and plant characteristics were obtained. Results 

indicated that there are complex relationships between soil physiochemical properties (pH, NPK 

content, exchangeable cations, and organic matter) and soil texture (sand, soil, and clay 

composition), which may mitigate disease severity and pathogen levels in host tissue. Results 

also indicated that in natural M. phaseolina-infested soils, cropping history and soil texture play 

an important role in charcoal rot processes and influence the levels of pathogen soil populations, 

root colonization at maturity and, more importantly, soybean yield. 
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CHAPTER 1 - Literature Review 

Soilborne pathogens are especially challenging because their infection propagules often 

survive for several years in the soil and they reduce yield and quality in numerous crops. 

Soilborne diseases are difficult to manage, detect and predict; additionally the soil matrix is 

complex, making it difficult to understand the variables that govern infection processes and 

epidemics.  

Macrophomina phaseolina (Tassi) Goid. is the causal agent of seedling blight root rot, 

and charcoal rot of more than 500 crop and non-crop species, including economically important 

crops such as soybean, corn, sorghum and cotton. Charcoal rot of soybean is gaining importance 

throughout the world. In the United States, charcoal rot occurs in the north central and southern 

regions and ranks fourth in economic impact after soybean cyst nematode, phytophthora root rot 

and seedling diseases (Smith and Carvil, 1997). Average yield losses due to charcoal in the 

United States were estimated at about of 27,000,000 bushels per year from 1996 to 2009 

(Wrather and Koenning, 2010). 

Charcoal rot of soybeans is more pronounced when unfavorable environmental 

conditions stress the plant, such as prolonged periods of drought and high temperatures (28 to 

35°C). Although infection occurs at soybean seedling stages and the pathogen attacks the plant 

throughout the season, symptoms appear after midseason or when the plant reaches maturity 

(growth stages R5, R6, and R7) (Hartman et al., 1999).  

 

Nomenclature and synonymy 

 

Macrophomina (subdivision Deuteromycota, form-class Coelomycetes) is a genus 

composed only of a single species, M. phaseolina (Tassi) Goid. (Mihail, 1992). The fungus 

produces two anamorph structures: microsclerotia and pycnidiospores in both host tissues and 

culture media. 
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According to Mihail (1992), there is an unconfirmed report of a M. phaseolina 

teleomorph state named Orbilia obscura by Ghosh et al. (1964), but since then no reports have 

been done about a teleomorph state.   

Historically many different synonyms have been assigned to M. phaseolina due to the 

biological characteristics of this pathogen and the difficulty of its taxonomical classification 

(Holliday et al., 1970). 

One of the first descriptions of M. phaseolina was made by Halsted in 1890 causing 

disease on Ipomoea batatas observing ―black nodules‖ (sclerotial stage) on the roots of this 

plant, at this time M. phaseolina was named as Rhizoctonia bataticola. Later the pycnidial state 

was described by Tassi (1901) and named the fungus as Macrophoma phaseolina. Shaw (1912) 

described a fungus with black sclerotia causing seedling disease on jute (Corchorus capsularis 

L.), cowpea (Vigna unguiculata (L.) Walp.), groundnut (Acharis hypogaea L.) and cotton 

(Gossypium herbaceum L.) in India (Dhingra and Sinclair, 1978). Ashby (1927) discovered the 

connection between the sclerotial and the pycnidial stage and proposed the binomial name of the 

fungus, Rhizoctonia bataticola (Taub.) Butler for blight and stems roots, and Macrophomina 

phaseoli (Maubl.) Ashby for the pycnidial stage. He considered  Macrophoma phaseoli Maubl. 

(1905), Sclerotium bataticola Taub. (1913), Macrophoma chochori Saw. (1916), Macrophoma 

cajani Syd. & Butl. (1916). Macrophomina philippinensis Petr. (1923), Rhizoctonia lamellifera 

Small. (1924), Rhizoctonia bataticola (Taub.) Butl. (1925), Dothiorella cajani Syd. & Butl. 

(1925), and Macrophoma sesame Saw (1922) as synonyms (Kulkarni and Patil, 1966). 

The binomial Macrophomina phaseoli (Maulb.) Ashby (Ashby, 1927) was changed to 

Macrophomina phaseolina (Tassi) G. Goidanich, by Goidanich in 1947. In the past the common 

genera referring to the sclerotial state of M. phaseolina were Rhizoctonia and Sclerotium while 

the genera that have been used to refer to the pycnidial stage have been Macrophomina, 

Macrophoma, and Dothiorella. However, the current binomial Macrophomina phaseolina, is 

applied to the pycnidia and sclerotial anamorph stages (Mihail, 1992).  

By using morphological characteristics and 28 rDNA sequences, Corus et al. (2006) 

included the pathogen in the ascomycete family Botryosphaeriace, pointing out differences 

between Tiarosporella and Macrophomina phaseolina in which the latter may be distinguished 

by having persistent proliferating conidiogenous cells.     
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Macrophomina phaseolina diversity and pathogen populations  

 

M. phaseolina is a soilborne pathogen with a wide range of hosts, about 5000 species of 

plants, and must have a good genetic variability to be able to not discriminate in its host selection 

(Wyllie and Scott, 1988). However, problematic to the plant pathologist and mycologist is 

differentiation of isolates in this species, since morphological characteristics are highly variable 

(Babu et al., 2010). Isolates from different hosts, soils or geographical regions can differ in their 

morphological characteristics, production of microsclerotia, pycnidial size, pycnidiospores and 

pathogenicity (Dhingra and Sinclair, 1978). Due to this variability between isolates, 

morphological or phenotypic criteria are often not reliable (Babu et al., 2007; Saleh et al., 2009).  

According to Babu (2010) three methods have been used to classify M. phaseolina 

isolates. First, morphological and cultural characterization, by using chlorate (a nitrate analog) 

containing minimal medium is possible to differentiate three phenotypic groups: dense, feathery 

and restricted. M. phaseolina isolates taken from corn tissue are chlorate-resistant having a dense 

growth, in contrast isolates taken form soybean tissue and soil are chlorate-sensitive and vary 

from feathery to restricted growth. Different nitrogen composition in the host and usage of this 

nutrient by the pathogen could have an impact on the selection and/or specialization leading to 

differentiation of M. phaseolina strains (Pearson et al., 1986).  However, recent studies show that 

in the case of sorghum it is possible to obtain all three of the M. phaseolina phenotypes 

mentioned before and there is no correlation between chlorate sensitivity isolates and host 

specificity (Das et al., 2008). In addition, supplementary evidence of M. phaseolina isolates with 

non-host specialization where found by Zazzerini and Tosi (1989) conducting pathogenicity 

tests. 

Second, biochemical and serological methods also have been used. Even though 

immunological methods are highly sensitive, there are no extensive reports on the detection and 

quantification of M. phaseolina. Srivasta and Arora (1997) describe a technique using a double 

antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and demonstrate that 

antibodies raised from ribosomal proteins are specific at the genus level and the methodology 

can be useful for detection of M. phaseolina, but is restricted to certain in vitro and greenhouse 

environments and cannot differentiate between M. phaseolina isolates. 
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Third are polymerase chain reaction based (PCR) molecular techniques. Internal 

transcribed spacers (ITS) and intergenic spacer have been one of the most explored and exploited 

genes to elucidate fungal taxonomy (Babu et al., 2010). The first report of using and developing 

specific ITS primers for identification of M. phaseolina was given by Babu et al. (2007). 

Although there has not been enough evidence to suggest a separation of formae specialis or races 

within the Macrophomina genus, advances in molecular techniques and refined PCR-based 

techniques such as random amplified polymorphic DNA (RAPD), restriction fragment length 

polymorphism (RFLP), and amplified fragment length polymorphism (AFLP) have helped 

researchers understand more about M. phaseolina genetic and pathogenic variability. According 

to Jana et al. (2003), design and use of a RAPD primer (OPA-13) was able to distinguish M. 

phaseolina isolates from soybean, sesame, ground nut, chickpea, cotton, common bean, and 

other hosts, however the study was confined to a particular area of the United States including 

states like Arkansas, Texas and Alabama. Through AFLP analysis, Vandemark et al. (2000) 

concluded that it was impossible to obtain a correlation at the DNA polymorphism level with 

geographic location or host.  Even with these molecular approaches, there is not sufficient 

evidence to suggest a formae specialis or subspecies within the M. phaseolina. 

Genetic variation has always been evident among M. phaseolina isolates. Even isolates 

taken from a single host have different levels of pathogenicity. Using 114 isolates representing 

four host families and two continents, Mihail and Taylor (1995) were able to obtain hyphal 

fusions between M. phaseolina isolates from Somalia and Arizona, a geographical scale in which 

geographical isolation would appear reasonable. Their study suggested that M. phaseolina does 

not have genetic barriers for non-sexual genetic interchange. A plausible explanation of the 

variability in M. phaseolina is presented in studies conducted by Punithalingam (1983). This 

author reported that conidiogenous cells and hyphal cells are initially uninucleate, but a single 

nucleus can undergo various mitotic divisions and some conidia (pycnidiospores) possess up to 

36 nuclei each. As the conidia produce germ tubes the nuclei move into the developing hyphae 

dividing mitotically during migration. The chromosome number most frequently observed is six, 

however, aneuploid, haploid and diploid nuclei have been observed in different M. phaseolina 

isolates (Punithalingam, 1983). 
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Even though mycelia are predominantly homokaryotic it is probable that heterokaryosis 

as well as heteroploidy occur after hypal fusion and this process may account for the generation 

of new cultural types or physiologic races (Dhingra and Sinclair, 1978; Wyllie and Scott, 1988). 

 

Morphology and biology of Macrophomina phaseolina 

 

Among M. phaseolina isolates, cultural morphological characteristics such as hypha 

pigmentation, microsclerotia size and shape, and presence or absence of pycnidia can vary. In 

general, colonies are gray or white with short mycelium inclined towards the growth direction, 

although aerial mycelium is not often produced (Reichert and Hellinger, 1947). Under the 

microscope, hyphae branch at right angles from the main hyphae, but later hypha bend and grow 

nearly parallel to the main hyphae (Hartman et al., 1999).  Sometimes hyphae present dark colors 

from pale brown to grey. Septa width varies from approximately 2 to 11 µm and cells measure at 

least 46 µm in length. However, the most important characteristic regarding taxonomy and 

classification are the production size and composition of microsclerotia (Reichert and Hellinger, 

1947). 

M. phaseolina microsclerotia are black bodies composed of 50-200 hyphal cells 

aggregated by a melanin-like cementing agent that give its color (Gangopadhyay and Wyllie, 

1974; Short and Wyllie, 1978).  Microsclerotia vary in size (60-200 µm) and number depending 

upon the nutrient availability in the culture media or a specific host. In addition, the number of 

cells and germ tubes are directly related with the microsclerotia size (Dhingra and Sinclair, 

1977). M. phaseolina microsclerotia are produced in five different ways during mycelia growth. 

The most frequent formation is by the spontaneous production of swollen barrel-shaped dark 

cells from a single hyphae measured from 4 to 23 µm, that later are self-divided or segmented 

forming a microsclerotium. It was also observed that barrel-shaped cells growing from different 

hyphae fuse to generate a microsclerotium. Normal cells from a single or various hyphae can 

also fuse and intertwine or normal hyphal cells fuse with swollen-barrel cells to form 

microsclerotia. These types of microsclerotia formation were observed among isolates from 

various hosts, fusion of barrel-shaped cell being the most common type of formation. Fusion of 

mature-formed microsclerotia also was observed (Reichert and Hellinger, 1947). 
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Using transmission and scanning electron microscopy, Wyllie and Brown (1970) describe 

in more detail the formation of microsclerotia for two other ways. Intertwining of hyphal strands 

and propagation or proliferation of hypal strands in a specific point on a major hyphal strand. 

When the hypha grows and interwaves, its mass increases and acquire a spherical form. The 

hyphae keep growing, the microsclerotium inner cells swell, and microsclerotia reach a size 

about 50-100 µm. In contrast, when the microsclerotia formation occurs by fusion on a major 

hyphal strand, a series of bud-like structures rise above the surface and microsclerotia start 

developing. During formation, microsclerotia are covered by a mucilaginous matrix and inner 

cells become dark.  

Wyllie and Brown (1970) describe a microsclerotium cross section. They pointed out that 

all the inner cells have the cellular organelles necessary for germination, such as, mitochondria, 

endoplasmic reticulum, lomasomes, lipids, and one to three nuclei per cell. They also reported 

the observation of septal pores that connect the sclerotial cells and hypothesized that they allow 

the continuity of the cytoplasm and that some microsclerotia cells serve as a nutrient suppliers to 

others during the microsclerotia germination process.   

A morphological description of germ tubes and hyphae from M. phaseolina 

microsclerotia germinated on diluted cornmeal agar (CMA) is given by Pratt, (2006). On this 

media an average of four germ tubes are produced per microsclerotium, with a length of a few 

micrometers to several hundred after 18 to 24 hours of exposure to this media. Pratt (2006) also 

reported that germ tubes were sometimes unbranched and with curly growth patterns. 

 M. phaseolina pycnidia are obtained by alternating the light regime by 12 hours dark and 

light intervals and growing the fungus in fresh plant tissue. The pycnidial stage has been reported 

on different bean tissues such as garden and jute bean and there are reports of the pycnidial stage 

on soybean (Mihail, 1992). However, Ma et al. (2010) described a culture media, peanut butter 

extract-saturated filter paper over soynut butter extact agar (PESEA) in which conidia and 

pycnidia are produced in an optimum manner. 

Pycnidia are globose to fusiform, black or grayish colored. In early stages of formation 

they are immerse in the host tissue but erumpent at maturity. The small truncate ostiole may be 

inconspicuous or have a clear or hyaline opening (Hartman et al., 1999; Mihail, 1992). 

Pycnidiospores are hyaline, single-celled, and ellipsoid to ovoid with a length-width ratio of 3:1 

(Dhingra and Sinclair, 1978).    
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Macrophomina phaseolina in other hosts 

 

Reichert and Hellinger (1947), listed a wide number of plant species around the world 

affected by M. phaseolina. The most economically important are: pepper (Capsicum annum L.), 

papaya (Carica papaya L.), sweet orange (Citrus  sinensis L. Osbeck), coffee (Coffea arabica 

L.), soybean (Glycine max (L.) Merr.), sunflower (Helianthus annus L.), sweet potato (Ipomoea 

batatas (L.) Lam.), apple (Malus domestica Borkh.), alfalfa (Medicago sativa L.), plantain 

(Musa paradisiaca L.), tobacco (Nicotiana tabacum L.), common bean (Phaseolus vulgaris L.), 

garden pea (Pisum sativum L.), tomato (Lycopersicon sculentum Mill.), potato (Solanum 

tuberosum L.), grain sorghum (Sorghum bicolor (L.) Moench), cacao (Theobroma cacao L.), 

clover (Trifolium sp.), grape (Vitis vinifera L.), and corn (Zea mays L.). Host range is wide 

spread in the tropics and subtropics, and includes cereals, legumes, fruits, vegetables, 

herbaceous, and woody plants (Dhingra and Sinclair, 1978; Holliday et al., 1970).    

The pathogen is being reported in new hosts and areas causing charcoal rot in previously 

reported hosts.  For example, in Spring 2006, tan-brown wilted canola plants (Brassica napus L.) 

were observed in an experimental plot at Merredin, Western Australia. Longitudinal streaks 

along the main stem, wilting of branches, and shriveled pods were the characteristic symptoms 

caused by M. phaseolina (Khangura and Aberra, 2009). Charcoal rot of canola was also reported 

Argentina in 2006 (Gaetan et al., 2006). Tropical soda apple (Solanum viarum Dunal), 

considered one of the most invasive weeds in Florida, was reported showing symptoms of 

progressive necrosis from leaves to petiole caused by M. phaseolina in 2006. Production of 

pycnidia and pycnidiospores was also observed on infected tissues. Iriarte (2007) suggested that 

M. phaseolina could be a limiting factor for the spread of this weed. However, the fungus is a 

pathogen for desirable crops produced in the area and tropical soda apple may be a reservoir for 

the pathogen. 

 In 2006 in southern Spain, Aviles et al. (2008) confirmed M. phaseolina causing crown 

and root rot in several strawberry cultivars. Affected plants presented necrotic roots, dark brown 

necrotic areas around the crown and along the woody vascular ring. The same disease and 

symptoms were also reported in strawberries in Florida (United States) and Israel in 2005. 
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M. phaseolina is able to cause different symptoms: hollow stem rot, wilt, and pre-

emergent and post-emergent damping off, depending on the plant tissue colonized. In the case of 

melon, M. phaseolina infects plant roots and later colonizes the fruit via the peduncle through the 

abscission zone. Once the fruit is colonized, M. phaseolina infects the seed coat and cotyledons, 

and these infected seeds give rise to diseased seedlings that can increase the inoculum potential 

in the soil. Melon is one of the hosts in which M. phaseolina serves as a soilborne and seedborne 

pathogen (Reuveni et al., 1983).   

Charcoal rot of sunflower (H. annuus) was first reported in 1927 in Sri Lanka and in 

subsequent years in various continents around the world (Wyllie and Scott, 1988); the most 

recent report described by Mahmoud and Budak (2011) in Turkey. Predominant symptoms of 

charcoal rot on sunflower are gray to black discoloration with lesions on the stem above the soil 

line, black microsclerotia usually observed in the fibro-vascular system of roots and lower 

internodes covering an average of one-third of the plant height (Khan, 2007; Raut, 1985; Yang 

and Owen, 1982). Like soybean, disease severity is high dependent upon environmental 

conditions, specially drought and high air temperatures. Dawar and Ghaffar (1998) pointed out 

that there is a significant correlation between the level of inoculum in the soil and infection or 

colonization of sunflower roots by M. phaseolina.  

M. phaseolina is reported to be soil, seed and stubble born in the specific case of 

sunflower. The pathogen has been reported to cause seedling blight, damping off, basal stem rot 

and early maturity of sunflower (Khan, 2007). One infected plant can have up to 44 percent 

infected seeds (Raut, 1985). Yang et al. (1983) reported that M. phaseolina also can be spread by 

insects in this crop. A small percentage of Cylindrocopturus adsperus (sunflower stem weevil) 

carry M. phaseolina as they emerge after overwintering in roots and stalks. Later, the insects 

spread the pathogen while feeding and ovipositioning on other plants. Presumably, M. 

phaseolina infests the egg cavity, and grows and spreads through the stalks via larval tunnels. 
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Distribution and biology of Macrophomina phaseolina in soil 

 

Many authors have investigated the physical and chemical soil variables and their impact 

upon the survival and activity of M. phaseolina soil populations, and its relation with severity 

and infection in different hosts. No more than two decades ago, researchers were still working on 

laboratory and field techniques that allow a more precise idea of the behavior of M. phaseolina 

and other soilborne fungi (Collins et al., 1991). 

Soilborne pathogens survive in the soil through such environmentally resistant structures 

as microsclerotia in the case of M. phaseolina (Raaijmakers et al., 2009). Fungal propagules have 

been recovered from soil in cultivated and non-cultivated soils in locations throughout the world. 

The highest concentration of inoculum is generally found in the top 30 cm of the soil profile 

(Bruton and Reuveni, 1985). On the other hand, studies of propagules and their horizontal 

distribution in soil not only for M. phaseolina, but for several other pathogens, have shown 

nonrandom distribution patterns in soil. The propagules of soilborne pathogens tend to be in 

clusters, compared to foliar pathogens. An aggregated distribution in soil has been reported with 

pathogens such as Phytophthora, Verticillium, and Gaeumannomyces (Raaijmakers et al., 2009).  

In cultivated soils, aggregated patterns of M. phaseolina have been documented as measured by 

the mean-to-variance ratio and Morisita’s index of dispersion. (Mihail and Alcorn, 1987). In this 

study authors suggest that the soil sampling strategy is dependent of the expected outcome from 

the samples; if only the population mean is required, a collection of samples spaced evenly 

through a systematic path is enough. However, probabilistic site selection or random site 

selection is unsatisfactory, since the microsclerotia population in soil is not randomly distributed 

in the horizontal level.  

Mihail (1989) also studied the dynamics of M. phaseolina populations in soil in the 

United States on a susceptible host, gopher plant (Euphorbia lathyris), in which only 1 

microsclerotia per gram of soil was enough to cause 90% mortality. Microsclerotia population 

increased over two years of the study (from 8.9 to 98.6 microsclerotia per gram of soil), as 

colonized host debris was incorporated into the soil. Horizontal patterns of aggregation of 

inoculum were reported, as suggested above. Population size did not remain constant over the 

time due to constant cultivation of the study plots. The temporal dynamics of M. phaseolina in 



 

10 

 

soil when soybean is rotated with other crops show lower fluctuations than E. lathyris (Meyer et 

al., 1973; Short et al., 1980).  

Tillage has an impact not only on the physical but biochemical and biological properties 

of the soil and also on the distribution and dynamics of microbial communities (Raaijmakers et 

al., 2009). Tillage and disking impact M. phaseolina propagule aggregation patterns and 

redistribution in the soil. The degree of aggregation can diminish after one or two consecutive 

tillage treatments with discs, and this phenomenon of propagule redistribution is more evident 

when microsclerotia populations are high (Olanya and Campbell, 1988). The development of 

new M. phaseolina foci near older foci across time can be generated by tilling practices. The 

generation and aggregation of M. phaseolina microsclerotia has been reported to have no 

correlation with soil chemical characteristics such as pH, Ca and Mg, cation exchange capacity 

(CEC), and soil macro- or micronutrients as well as other soil physical properties (Campbell and 

Vandergaag, 1993). 

 In soybean crops under no tillage management, M. phaseolina populations tend to be 

higher than in systems under tillage. M. phaseolina soil populations declined as the soil 

compaction increased (Wrather et al., 1998). As the soil bulk density increases M. phaseolina 

soil propagules declined in many of the soils studied (Gangopadhyay et al., 1982). In contrast, 

soybean root populations can be reduced in a non-tillage system as reported by Mengistu et al. 

(2007). This author also suggested that reduction in the number of colony forming units (CFU) in 

tissue is due to the accumulation of crop residue in the soil, which promotes higher soil water 

content and lower temperatures reducing disease incidence. 

 

Impact of soil water content on Macrophomina phaseolina soil populations  

 

Environmental conditions like temperature, atmospheric humidity, and soil water 

potential play an important role in the viability and inoculum potential of M. phaseolina  (Khan, 

2007). M. phaseolina is able to produce microsclerotia under relatively low water conditions; 

thus, survival of this inoculum is influenced by the soil matric water potentials. Viability of 

microsclerotia were drastically reduced at high water potentials (-30 J/Kg, field capacity), and 
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was virtually not affected at low water potentials (-1.500 Kg/J, permanent wilting point) in a 

sandy loam soil (Olaya et al., 1996).  

Soil water content affects the gaseous conditions in the soil and may cause reduced 

microsclerotia survival by the reduction of O2. Substances found in flooded soils such as 

alcohols, volatiles and increased levels of CO2 can have a detrimental effect on the inoculum 

(Olaya et al., 1996; Wyllie et al., 1984). Microsclerotia germination is annulated in artificial 

atmospheres containing less than 16% of O2 concentration in soil column systems; indicating 

that reduction in viability is not due to nutrient deprivation (Wyllie et al., 1984). This knowledge 

has been used to reduce propagule densities in the soil not only for M. phaseolina but Sclerotinia 

sclerotiorum and Sclerotium cepivorum under anoxic-flooded soils (Abawi et al., 1985; Banks 

and Edgington, 1989).  

Goudarzi et al. (2008) describes M. phaseolina fungal growth creating different matric 

and osmotic potentials by using polyethylene glycol (PEG 6000) and sodium chloride 

respectively, on in vitro conditions. Microsclerotia germination and radial growth increases as 

the osmotic and water potentials decreases. However, there is an optimum of - 0.6 MPa for the 

osmotic potential and - 1.2 MPa for the matric potential, this suggest that a positive turgor is 

maintained in the hypha of M. phaseolina during growth and this adaptation to survive in low 

water potentials is used for the pathogen to survive in host tissue under these conditions. 

Epidemiological data of the disease shows differences in mortality of B. juncea across 

three different soil textures in soils inoculated with M. phaseolina. Sandy soils lead plant 

mortality of approximately 90% in comparison to loamy and clayey soils in which plant 

mortality reached 77% and 52%, respectively. In addition, in low levels of soil moisture disease 

severity is higher and the microsclerotia population in soil increases as well (Srivastava and 

Dhawan, 1980). 

Microsclerotia soil populations declined in soils at 60 to 100% water holding capacity 

amended with glucose, sucrose, starch, cellulose, and NaNO3. At high soil moistures, soil 

bacterial populations increased and parasitized M. phaseolina, degrading its cell walls. 

Compounds such as amino acids, sugars, and organic acids have been found to stimulate 

microsclerotia germination in soil (Dhingra and Sinclair, 1978). 
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Survival of Macrophomina phaseolina on plant debris, and soybean roots in soil 

 

Infected crops residues are one of the most important sources of inoculum and inoculum 

dispersal of M. phaseolina in the field and provide a mechanism of survival for long periods in 

the soil. Degradation of plant debris and relative longevity of M. phaseolina depends upon 

several factors, such as soil moisture and temperature (Baird et al., 2003). 

In general, M. phaseolina populations in soybean root debris or residue in the soil tend to 

increase over time. Root debris at or near the soil surface increases the M. phaseolina population 

more rapidly than buried residue, but surface residues are more directly exposed to 

environmental variations. Fluctuations in the population are inversely related to soil depth (Short 

et al., 1980).  

Tissue degradation is affected by soil depth and this has a significant impact on M. 

phaseolina survival. Microorganisms associated with plant tissue degradation are isolated more 

frequently with increasing burial depths of M. phaseolina-infected soybean root tissues 

compared with surface debris. As reported by Baird et al. (2003), cellulose degrading fungi such 

as Trichoderma spp. and basidiomycetes are more active at soil depths in which temperature and 

moisture are favorable and could be partially responsible for the reduced survival of M. 

phaseolina on those degrading tissues since their isolation frequency increases as that of M. 

phaseolina decreases. 

Soil moisture affects microsclerotia in crop residue. Microsclerotia embedded in infected 

roots can survive longer under dry and hot temperature conditions than in saturated soil 

conditions. According to Dhingra and Sinclair (1978), recovery of microsclerotia from soybean 

root tissues in soils that have less than 40 to 100% moisture holding capacity is 0 to 12% after 

four weeks. In soils having a moisture holding capacity at 20%, the percentage of recovery from 

soybean root tissues was 100% after eight weeks. 

In soils where soybean or susceptible hosts are planted successively year after year, M. 

phaseolina populations tend to increase. Cook et al. (1973) reported an increase in microsclerotia 

in a field planted on soybeans for three years from 80, 120, to 149 microsclerotia per gram of 

soil. 
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Macrophomina phaseolina disease cycle 

 

M. phaseolina can survive in the soil as microsclerotia (resilient structure) for about two 

years or survive embedded in root debris for longer periods (Baird et al., 2003). Microsclerotia 

are black, spherical structures produced in host tissue that are released into the soil and allow the 

fungus to survive adverse conditions (Hartman et al., 1999). Each microsclerotium consists of a 

number of globose cells that can germinate independently. 

Germination of microsclerotia in the soil occurs throughout the growing season when 

temperatures are between 28 to 32°C. Microsclerotia germinate in the presence of a susceptible 

host on the root surface or in proximity producing numerous germ tubes. Penetration generally 

occurs from swellings of mature hyphae (described as hyphopodia) that penetrate the epidermal 

cells walls or through natural openings (Bressano et al., 2010; Dhingra and Sinclair, 1977). In the 

first stages of pathogenesis hyphae are restricted to the intercellular spaces in the root cortex, and 

later intracellularly colonize the vascular tissue through the xylem (Wyllie and Scott, 1988). In 

this stage, penetration of the cell wall is the result of both mechanical pressure and chemical 

softening by producing pectolytic enzymes (Ammon et al., 1974). Infection can occur at 

emergence, cotyledon (VC) or even early vegetative stages 2-3 weeks after planting (V1-V2). 

Infection remains latent until environmentally stressful conditions overlap with plant 

reproductive stages (R1-R7), creating conditions that enable the fungus to further colonize the 

root and stem tissues of the weakened plant (Hartman et al., 1999; Wyllie and Calvert, 1969). At 

reproductive stages and close to maturity, infected plants show loss of vigor, chlorotic and 

necrotic leaves remain attached to the stem. Eventually, when levels of M. phaseolina in the root 

and stems are high, a grey or silvery discoloration can be observed in root and stem epidermal 

and subepidermal tissues (Ammon et al., 1974). High levels of M. phaseolina colonization are 

positively correlated with poor seed quality and lower yields. After harvesting, roots loaded with 

microsclerotia start decaying and release the microsclerotia into the soil (Olaya et al., 1996). 

Inoculum survival in the soil depends on soil moisture, temperature, and the soil microbial 

community (Collins et al., 1991) (Figure 1-1).  
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Figure 1-1. The Macrophomina phaseolina disease cycle in soybean. 

(Pedersen, 2003; Wrather et al., 2007) 
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Management strategies 

 

The primary aim of M. phaseolina management is to reduce pathogen propagule in soil 

and host roots, and avoid favorable conditions for further pathogen survival and propagation.   

Impact of irrigation on microsclerotia survival in soil and roots has been studied by 

several researchers. Irrigation has been one of the most effective ways to deal with charcoal rot 

for different plant species (Kendig et al., 2000). Irrigation through the whole soybean growth 

season reduces the population and colonization of M. phaseolina on roots compared with a non-

irrigated crop system, even though the propagules remain during the season in both systems and 

no symptoms in soybean plants were found in the irrigated field (Kendig et al., 2000). 

Microsclerotia of M. phaseolina can be degraded and eliminated from the surface to 20 

cm depth under paddy rice soil conditions. Such flooded conditions reduced the number of viable 

microsclerotia by 83% in two years. After two years, cotton roots only showed 20% of infection 

by M. phaseolina (Zaki and Ghaffar, 1988). 

Herbicides can also have an impact on the M. phaseolina population. Plant stress and root 

injury due to high herbicides doses can lead to an indirect increase of root colonization. 

Herbicides such as alachlor, chloramben, and 2,4-D cause extensive proliferation of adventitious 

roots in the upper 5-7 cm of soil where dry conditions predominantly exist and favor M. 

phaseolina root colonization (Canaday et al., 1986). 

Fungicide has been unsatisfactory for the control of M. phaseolina on host species such 

as groundnut (Arachis hypogaea L.) and cotton (Gossypium arboretum L.). Root exudates from 

the plant host, such as amino acids, carbohydrates, phenolics, and sulphydral compounds, play an 

important role on reversing the toxic effect of fungicides to control root diseases (Dhingra and 

Sinclair, 1978; Raaijmakers et al., 2009). 

 Hooda and Grover (1989) reported inefficacy of five fungicide seed treatments 

(Carbendazim, Thiophanate-methyl, Captafol, Thiram, and PMA) for the control of charcoal rot 

on five different plant species. Under in vitro conditions, mungbean and cotton root exudates 

reduced the efficacy of Carbendazim and Captafol at low concentrations in more than 50% 

compared to the non-treated control.  
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An important method for reducing the viability of microsclerotia in the soil is 

polyethylene mulching. Increasing soil temperatures within a range of 52-65°C for one week 

reduced propagule viability by 100% in the first 5 cm of soil depth and 50% in 20 cm depth of 

naturally infested soils (Sheikh and Ghaffar, 1984). Maintenance of high soil moisture was 

necessary for increasing soil thermal conduction in the mulched soil. Higher populations of 

bacteria and actinomycetes were found in soils that were heated compared to untreated soils 

(Sheikh and Ghaffar, 1984). 

In Turkey, where M. phaseolina is becoming a serious disease on strawberry, the use of 

plastic covers is showing promise. Plastic covers raised the soil temperature in the first 5 cm to 

56.6°C. Survival of microsclerotia in soil declined rapidly after 17 hours at 50°C and was 

completely reduced after 20 hours. A 66% reduction in microsclerotium viability was observed 

at a depth of 5 cm. However, viability was not significantly reduced at 10 to 20 cm depth where 

temperatures remained at about 48°C and 40°C, respectively (Yildiz et al., 2010). 

Antagonistic microorganisms have been investigated for the control of charcoal rot on 

diverse species. Bacteria (Bacillus, Pseudomonas, and Streptomyces spp.) and fungi 

(Trichoderma, penicillium, Gliocladium, Aspergillus and Rhizopus spp.) are known to suppress 

M. phaseolina growth under specific conditions and temperatures (Gacitua et al., 2009). 

Pseudomonas spp. may inhibit a wide range of root pathogens, including M. phaseolina. 

This is due to the production of antifungal compounds and the ability of this microorganism to 

create symbiotic associations with higher plants. Such antagonistic activity is attributed to the 

production of hydrolases, including chitinases and glucanases, which degrade the main 

components of the fungal cell wall (Ajit et al., 2006). In vitro, isolates of Pseudomonas showed 

80% inhibition of fungal growth, mycelia grew to the interaction zone, deformed and degraded. 

In addition, mustard plants show no symptoms of charcoal rot 60 days after planting in soils 

inoculated with M. phaseolina when mustard seeds were inoculated with Pseudomonas 

fluorescens. Production of β-1,3-glucanase by P. fluorescens caused significant inhibition of M. 

phaseolina (Arora et al., 2008).  

  P. fluorescens also has proven to have antagonistic activity on M. phaseolina causing 

groundnut (Arachis hypogaea L.; peanut) root rot. A talc-based formulation of the P. fluorescens 

isolate Pf 1 which showed 86% of growth inhibition of M. phaseolina in vitro, was applied to the 

seeds and soil before planting. Bacterial treatments reduced incidence and severity of charcoal 
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rot and increased root nodulation as well as yield (Shanmugam et al., 2003). Kumar et al. (2007) 

also reported positive effects in the inhibition of M. phaseolina by P.  fluorescens isolate Pf4-99 

in greenhouse and field conditions on chickpea.  

In vitro, Trichoderma harzianum can inhibit M. phaseolina microsclerotia production and 

growth by 82% (Elad et al., 1986). Trichoderma spp. are able to degrade fungal cell walls by the 

production of cellulase (Baird et al., 2003). In turn, cell wall components of M. phaseolina 

stimulate T. harzianum conidia production. Likewise, viability of microsclerotium decreased 

from 3400 to 100 CFU/mL when exposed to T. harzianum in dual culture. T. harzianum is able 

to reduce M. phaseolina disease severity by 37-74% on melon (Cucumis melo L.) when conidia 

are applied to soils artificially infested with M. phaseolina. Similarly in commercial fields, 

melon plants from seed treated with T. harzianum yielded 61% more fruit than plants from non-

treated seeds in naturally infested soils (Elad et al., 1986). Trichoderma spp. have also been 

reported to be isolated in high frequency from root, stalks and stubble debris in soil. This 

antagonistic fungus reduces the viability and longevity of M. phaseolina microsclerotia on 

decaying crop tissues (Baird et al., 2003). 

 

Effects of manganese on fungal pathogens and soybean plants 

 

Studies of the effects of microelements on the growth of M. phaseolina under in vitro 

conditions have been conflicting. Zinc (Zn), manganese (Mn) and boron (B) increase the growth 

rate of M. phaseolina in concentrations ranging from 5 to 100 µg/ml. In contrast, copper (Cu) 

was toxic at concentrations above 3.5 µg/ml (Daftari, 1966). 

In addition, there is no effect on the M. phaseolina growth rate on media having low 

concentrations of magnesium (Mg) and sodium (Na) (Sankhla and Mathur, 1967). M. phaseolina 

is a nutrient scavenger, especially in soil with nutrient deficiencies and at high soil temperatures 

(Wyllie and Scott, 1988). 

The positive effects of Mn application on soybean yield have been reported by Gettier et 

al. (1984). Consecutive soil applications of Mn to soil during two soybean seasons can increase 

seed weight by 29%. Under severe Mn deficiency seed viability in soybean is reduced 
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significantly. Excess Mn causes root thickening, lignification of the cortex cells, and 

disorganization of the xylem vessels in some soybean varieties (Lavres et al., 2009). 

Direct effects of Mn against pathogens include growth inhibition, reduced sporulation, 

and toxin production. For example, some strains of Gaeumannomyces graminis and 

Magnaporthe grisea that lack the ability to oxidize Mn exhibit decreased aggressiveness and 

severity in take-all disease of wheat and rice blast, respectively (Datnoff et al., 2007).  

 

Soil-water relations  

 

Soil and water undergo a series of gradual physical changes when they remain in contact. 

These behaviors are due to the capillarity forces generated by the soil pores and the physical 

properties of water such as cohesion, adhesion, and surface tension (Brady and Weil, 2004). 

As water is depleted from soil, the level of tension also increases, holding water more 

tightly in the smallest soil pores. Porosity is a function of soil particle size distribution, which 

refers to the proportion of small, medium, and large particles (clay, silt and sand, respectively) 

and the air spaces between them (McVay et al., 2006). 

Several authors have reported a correlation between soil water-holding capacity and sand, 

silt and clay content, organic matter and bulk density and have used those variables to accurately 

predict the water content of soils (Arya and Paris, 1981; Manrique et al., 1991). Soils composed 

mainly of small soil particles, such as clay and silt, have more porosity and surface area than 

those with larger soil particles. This characteristic allows clayey soils to hold more water per unit 

volume and retain water of higher tensions (Brady and Weil, 2004). 

According to Brady and Weil (2004), a soil is considered "saturated" when all soil pores 

are filled with water. In a saturated state the volume of water in the soil is equal to the volume of 

the total soil porosity. As long as water percolates from the macropores due to gravitational 

forces the soil is at a maximum retentive capacity. As water moves downwards in the soil profile 

by capillarity and gravity. When the soil stops draining and water in the macropores is replaced 

with air, the soil is said to be at "field capacity".  

The term field capacity does not apply to pots in a greenhouse because there is not 

underlying soil that pulls the water downwards. However, the term "pot capacity" can be used, 
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which is the amount of water remaining after irrigation and when visible drainage has stopped 

(Kirkham, 2005).  

As the soil continues to dry, the water retained at higher tensions in the smaller pores is 

removed. Consequently, the amount of water leftover in the soil is held so tightly that plants are 

not able to take it up and will wilt. This level of available water is known as the "permanent 

wilting point" (Brady and Weil, 2004; Kirkham, 2005). 

Available water is considered to be the water retained in the soil between field capacity 

and the permanent wilting point and can be impacted significantly by soil texture and organic 

matter (Table 1-1). 

 

Table 1-1. Field capacity and permanent wilting points for common textural classes. Values are 

given in volumetric water content (ϴV), which is the relationship between a volume of water 

associated with a volume of dry soil (Rowell, 1994). 

 

 Volumetric water content (ϴV) 

Soil Texture Permanent wilting point Field capacity 

Sand  0.04 0.12 
Loamy Sand 0.06 0.14 
Sandy Loam 0.1 0.23 

Loam 0.12 0.26 
Silt Loam 0.15 0.3 

Silt 0.165 0.32 
Sandy Clay Loam 0.175 0.33 
Silty Clay Loam 0.19 0.34 

Silty Clay 0.21 0.36 
Clay 0.21 0.36 

 

Soybean irrigation 

 

In adequate soil conditions, soybean roots can grow to a depth of 6 feet in the soil profile. 

However, roots are more concentrated in the upper half of the root zone. A root depth of 3 feet is 

commonly used to calculate the water requirements of soybean plants (Rogers, 1997). 

Soybean water requirements during the season range from 18 to 24 inches per year. The 

higher water demand during soybean growth occurs when plants are approaching the beginning 
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of pod development (R2-R3) and demand decreases as plants mature. For maximum yields, 

water availability is critical at the beginning of pod fill (Rogers, 1997; Scott et al., 1986). 

Studies have demonstrated that irrigation is also beneficial at the latter part of the 

reproductive stages because water requirements for vegetative growth can be supplied by rainfall 

and/or stored soil water. In the worst-case scenario, a 5% reduction in yield can result if soybean 

is under water stress during the vegetative growth stages (Stegman et al., 1990). 

Once established, soybean is quite drought tolerant, sometimes the only water required to 

supplement rainfall is a 4-inch flood irrigation in the late bloom to early pod filling stages in 

medium and fine-textured soils. In contrast, sandy soils require a more frequent irrigation, about 

1 to 2 inches of water every three to seven days during the critical period of soybean 

reproductive development (Rogers, 1997).     
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CHAPTER 2 - Macrophomina phaseolina quantitative detection 

methods from soil and inoculum potential  

Introduction 

 

Numerous methods have been developed in order to understand the biology of M. 

phaseolina (Tassi) Goid. in soil and plant debris. Most of these methods involve, grinding, 

sieving and bleaching of soil in a variety of simple to complex protocols. In addition, the use of 

selective media for quantification and enumeration of microsclerotia have played an important 

role in the study of soil borne fungi (Pratt, 2006). 

There are several methods for M. phaseolina microsclerotia isolation and quantification 

from soil and root tissue, going from microscopic counting, water flotation, microsclerotia 

staining, sieving, direct counting and soil serial dilutions. However, none of these methods have 

been compared in its efficiency of recovering of M. phaseolina microsclerotia in the same level 

of inoculum and soil conditions (Papavizas and Klag, 1975; Pratt, 2006). 

Production of M. phaseolina inoculum has been useful to determine the effectiveness of 

different detection methods. Soils artificially and naturally infested ranging from one to more 

than one thousand microsclerotia per gram of soil has been used (Papavizas and Klag, 1975). 

However, details of the inoculum viability and the sources in which it is obtained from have been 

poorly described in the literature.  

Factors that affect the survival and quality of M. phaseolina inoculum  such as size, 

productioon of germtubes, percentage of germination, and number of cells per microsclerotia 

have been documented (Short et al., 1980), but there are other factors that may influence directly 

or indirectly the inoculum quality, such as source of inoculum, time, conditions of storage and 

nutrient availability. 

 

The objectives of these studies were: 

- Determine the impact of nutrient deprivation on microsclerotia size, production of 

germ tubes and percentages of microsclerotia germination. 
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- Characterize and evaluate M. phaseolina inoculum produced by two different 

methods and sources, infested Japanese millet and PDA pure culture extraction. 

- Compare the effect of soil nutrients on M. phaseolina inoculum by using soil extract 

agar (SEA). 

- Evaluate the efficiency and sensitivity of two standard methods for M. phaseolina 

quantification and recovery from soil. 

- Develop a suitable method to identify and detect M. phaseolina inoculum and observe 

early stages of soybean root infection in seedlings under microscope.  

 

Material and methods 

Microsclerotia size and production of germ tubes by Macrophomina phaseolina 

Two different sizes of microsclerotia were produced by growing M. phaseolina inoculum 

in two different volumes of PDA media in 100 mm-diameter petri dishes. A volume of PDA of 5 

cm
3
, equivalent to a media layer of about 0.8 mm thick, in which small M. phaseolina 

microsclerotia were produced after incubation for four days at 30°C. In contrast, a volume of 30 

cm
3
,
 
equivalent to a layer of 5 mm thick produced larger microsclerotia after incubation for four 

days at 30°C. M. phaseolina microsclerotia were harvested from these pure cultures and serial 

dilutions were performed. Microsclerotia from the diluted solutions were placed over a glass 

depression slide containing PDA media and the slides were placed on sealed 100 mm-diameter 

plastic petri dishes with a drop of sterile distilled water and incubated at 30°C in the dark to 

promote the production of germ tubes.  Microsclerotia were evaluated for germination at 10, 11, 

and 19 hours. Counting of germ tubes and measurement of microsclerotium size produced by 

two different procedures were performed under the stereoscope and microscope, respectively. 

Microsclerotia diameters were measured using Zeiss AxioVision (version 4.7) software. 

Analysis of variance (ANOVA) was performed using SAS version 9.2, (SAS institute 

Inc., Cary, North Carolina, USA). The "microsclerotia size" was analyzed using SAS Proc Glm 

using a completely randomized design (CRD). On the other hand, the "number of germ tubes" 

variable was analyzed using SAS Proc Mixed in a CRD with repeated measures over time. 
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Results and discussion 

Effect of growth media thickness on microsclerotium size 

Media thickness had a significant impact on microsclerotium size when the fungus was 

grown at 30°C in the dark for four days. On a 0.8 mm thick media layer, the average diameter of 

microsclerotia was 86 µm. For a 5 mm thick media layer, the average diameter of microsclerotia 

was 106 µm. Differences in microsclerotia size may be attributed to a reduction in nutrients and 

water availability while growing over the media as reported by Dhingra and Sinclair (1977). 

There were not observable differences in growth rate between the two thicknesses of media set in 

the experiment. On the other hand, there were visual differences in colony morphology. 

Production of aerial mycelium was common at 0.8 mm media thickness, but not at the 5 mm 

thickness. 

Impact of microsclerotia size and time upon the number of germ tubes 

Significant differences in microsclerotium size (p = 0.0002) and time (p < 0.0001) were 

found in the "number of germ tubes". Small microsclerotia (86 µm diameter) produced greater 

numbers of germ tubes than inoculum having larger microsclerotia (106 µm diameter). In 

addition, the number of germ tubes per microsclerotia significantly increases over time (p < 

0.0001). Microsclerotia start geminating after the first ten hours of incubation, producing in 

average one germ tube per propagule. One hour later, at eleven hours of incubation, 

microsclerotia have produced in average five germ tubes per microsclerotium. Between the 

eleventh and eighteenth hours of incubation there was not a significant increase in the number of 

germ tubes. However, at nineteen hours of incubation, microsclerotia have produced in average 

fourteen germ tubes per propagule. In the subsequent observations, after twenty hours of 

incubation, the numbers of germ tubes per microsclerotia were so many that it was difficult to 

count them reliably. For this reason, all the observations were stopped at nineteen hours of 

incubation. 

These findings agree with those reported by Pratt (2006) who observed a high rate of 

microsclerotia germination at eighteen to twenty-four hours on PDA, water agar (WA) and 

cornmeal agar (CMA) media. 
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Even though small microsclerotia produced higher numbers of germ tubes, the 

germination rate was low compared to larger microsclerotia. Only 30% of the smaller 

microsclerotia germinated in the incubation conditions previously described, whereas 

germination rate for larger microsclerotia was about 80%. This may provide insights into 

inoculum survival and potential. Growing inoculum in more stressful nutrient conditions, may 

lead to smaller inner globose cells, which are required for the germination of microsclerotia, 

compromising the integrity and continuity of the entire cellular mass of the propagule as 

suggested by Wyllie and Brown (1970). 

Inoculum potential of microsclerotia on rifampicin media 

Inoculum potential of M. phaseolina microsclerotia was assessed from two different 

sources: dried microsclerotia harvested from culture media (full strength 39 g/L PDA, mg/L 

penicillin 40, 20mg/L streptomycin, and 20 mg/L tetracycline), and microsclerotia produced on 

M. phaseolina-infested Japanese millet seeds. Inoculum was prepared using a M. phaseolina 

isolate taken from infected soybean roots obtained from 30-year continuous soybean plots at 

Ashland Bottoms research farm in Riley County, Kansas. 

Inoculum was passed through a 600 µm sieve and blended in a 0.5% NaOCl solution for 

3 min, collected in a 45 µm sieve and rinsed with distilled water for 2 min. Inoculum was spread 

over sterile plastic trays and dried in the laminar flow hood for one day. Dried microsclerotia 

were collected from the tray surface and stored in the refrigerator in plastic bags. Inoculum from 

Japanese millet was kept in the refrigerator at 4°C for one and four months and inoculum 

obtained from PDA pure isolation was kept in the refrigerator at the same conditions for one 

month. 

In order to assess the inoculum potential, the number of CFUs (colony forming units) and 

number of microsclerotia contained in the inoculum samples were assessed. A selective medium 

[PDA (39 g/L), penicillin (40 mg/L), streptomycin (20mg/L), tetracycline (20 mg/L), and 

rifampicin (20 mg/L)] was used to estimate the number of CFUs. From each source of inoculum 

0.02 g samples of pure microsclerotia were added to 10 mL of sterile-distilled water. Aliquots of 

1mL were taken from the 10 mL microsclerotia solution and added to 50 mL of the previously 

described media. The 50 ml of molten media with the microsclerotia were poured evenly into 
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five 100 mm-diameter petri dishes (10 mL of molten media each) and they were incubated for 

five days at 30°C in the dark, in order to assess the number of CFUs in the inoculum samples. 

To count the number of microsclerotia extracted from the inoculum sources, 0.02 g 

samples of pure microsclerotia were added to 10 mL of sterile-distilled water. Aliquots of 1mL 

were taken from the 10 mL microsclerotia solution and placed in a nematode counting slide.  

Inoculum potential was calculated as follows: 

 

Equation 1 

100
inoculum of otia /gmicroscler ofNumber 

inoculum  /gCFUs ofNumber 
potentialInoculum  

 

Analysis of variance (ANOVA) was performed using SAS system version 9.2, (SAS 

institute Inc., Cary, North Carolina, USA). The number of CFUs, number of microsclerotia and 

inoculum potential were analyzed using SAS Proc Mixed in a completely randomized design 

(CRD) with repeated measures. The response variable "number of CFUs" was logarithmically 

transformed in order to meet the assumptions of the ANOVA (normal distribution of data and 

equal variances). 

Results and discussion 

Effect of inoculum source on the number of colony forming units (CFUs) and number of 

microsclerotia 

Sources of inoculum differed significantly in the number of CFUs (p < 0.0001). Inoculum 

harvested from infested Japanese millet produced higher numbers of CFUs compared to the 

inoculum harvested from PDA plates. Inoculum extracted from infested Japanese millet 

produced 25,000 CFUs per 0.02 g of inoculum whereas inoculum extracted from PDA pure 

culture produced 6,008 CFUs per 0.02 g of inoculum. Inoculum from infested Japanese millet 

produced more than four times CFUs compared to the inoculum extracted from PDA pure 

culture.   

In addition, storage time for the infested Japanese millet inoculum also had a significant 

impact on the number of CFUs. A threefold decrease in the number of CFUs was found in the 

infested Japanese millet inoculum due only to the storage time, going from 25,233 CFUs per 
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0.02 g of inoculum to 8,508 microsclerotia per 0.02 g of inoculum in only four months of 

storage. The number of microsclerotia contained in the different sources of inoculum also differs 

significantly (p < 0.0001). Inoculum obtained from PDA pure culture isolation had the highest 

number of microsclerotia approximately (67,250 microsclerotia per 0.02 g of inoculum). The 

number of microsclerotia found between the Japanese millet inoculums was different, (43,300 

and 28,808 microsclerotia per 0.02 g of inoculum for the four and one month storage inoculum 

respectively). It is not completely clear why the amount of microsclerotia varied between the 

sources of inoculum. However, these results may indicate that inoculum growing freely over an 

even surface such as PDA media generates high numbers of microsclerotia after extraction. On 

the other hand, it seems that inoculum growing on the millet seeds surface generates a lower but 

more highly variable amount of microsclerotia. 

Effect of inoculum source on microsclerotia viability  

Inoculum potential differs significantly between the sources of inoculum (p < 0.0001). 

Inoculum extracted from infested Japanese millet presented a high inoculum potential (85.6%) 

after one month of harvest, and relatively low inoculum potential (20.2%) after four months of 

harvest. This is consistent with previous reports by Pratt (2006), who stated a significant 

reduction in the frequency of microsclerotia germination after four weeks of storage and 

completely reduced or even eliminated germination after 6 or 8 weeks; pointing out that this 

phenomenon may not happen on M. phaseolina inoculums storage in soil that can provide 

nutrient to microsclerotia. Inoculum potential from the PDA pure culture isolate was the lowest 

compared to the infested millet inoculum, having only 9% of germination (Figure 2-1). 

According to these results, inoculum produced on PDA pure culture isolate result in a 

poor source of inoculum. Even though this inoculum has the highest number of microsclerotia its 

viability is low. In contrast, inoculum extracted from infested Japanese millet does not have a 

high amount of microsclerotia but its germination rate is higher (85%). However, storage time 

and low temperatures can affect microsclerotia viability. 
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Figure 2-1. Effect of inoculum source and storage time upon inoculum potential. Means with the same letter are not significantly 

different (p < 0.05). Vertical bars denote the standard deviation. "PDA" and "Millet" denote the two different sources of inoculum; "1" 

and "4" denote months of storage. 
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Based on findings by Short et al. (1980) inoculum source was critical for  M. phaseolina 

microsclerotia viability and inoculum potential. Inoculum extracted from ground infected 

soybean roots had a greater ability to survive than inoculum extracted from potato dextrose broth 

(PDB). Comparisons between sources of inoculum, indicate that a more natural growing media, 

such as soybean root tissues or millet seeds, provide the inoculum with better sources of nutrients 

and produce more vigorous microsclerotia than the standard growing media used for fungal 

isolates such as PDA or PDB. 

In addition, inoculum potential gives a real measure of the inoculum conditions. 

Measurement of the inoculum potential is highly valuable since the amount of microsclerotia and 

number of CFUs can vary each time the inoculum is prepared (Smith and Carvil, 1997). 

Effect of soil extract agar (SEA) on M. phaseolina inoculum  

Soil extract agar was prepared from five artificial soils (Table 2-1). 500 g of soil were 

added to 1 L of tap water and autoclaved at 121°C for 1 h. Soil suspensions were decanted for 30 

min and the soil water suspension was filtered through a Whatman No. 2 sterile filter paper. 

Glucose (2 g), yeast extract (1 g), KH2PO4 (0.5 g), and agar (15 g) were added to the filtered soil 

solution and brought to 1 L. The solution was re-autoclaved at 121°C for 30 min and antibiotics 

added (40 mg/L penicillin, 20mg/L streptomycin, and 20 mg/L tetracycline) when cooled. The 

final pH solution was 7.0. 

 

Table 2-1. Artificial soil textures generated by mixing sand and silt loam in a weight basis. 

          

SAND (%)   SILT LOAM (%)   TEXTURAL CLASS 

100 

 

0 

 

Sand 

75 

 

25 

 

Loamy sand 

50 

 

50 

 

Sandy loam 

25 

 

75 

 

Loam  

0   100   Silt loam 

     M. phaseolina microsclerotia germination was assessed using two types of inoculum 

obtained from different methods and sources: dried microsclerotia harvested from culture media 

(full strength PDA (39 g/L), penicillin (40 mg/L), streptomycin (20 mg/L), and tetracycline (20 

mg/L)), and microsclerotia produced on M. phaseolina-infested Japanese millet seeds.  
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Both inocula were prepared from an M. phaseolina isolate taken from infected soybean roots 

obtained from 30 year continuous soybean plots at Ashland Bottoms Research Farm in Riley 

County, Kansas near Manhattan. 

Inoculum potential for each soil extract agar was estimated by doing serial dilutions of 

the two sources of inoculum. Samples of 0.02 g of microsclerotia were added to 10 mL of sterile-

distilled water. Aliquots of 1 mL of the 10 mL shaken microsclerotia solution were added to 50 

mL of molten soil agar and poured evenly into five 100 mm-diameter petri dishes (10 mL each). 

Dishes were incubated in the dark at 30°C for five days and colony forming units (CFUs) were 

counted.  

Analysis of variance (ANOVA) was performed using SAS version 9.2 (SAS institute 

Inc., Cary, North Carolina, USA). The number of CFUs was analyzed using SAS Proc Mixed in 

a completely randomized design (CRD) with repeated measures. The response variable CFUs 

was logarithmically transformed in order to meet the assumptions of the ANOVA (normal 

distribution of data and equal variances). 

Results and discussion 

Effect of the inoculum sources and soil extract agar (SEA) on the number of colony 

forming units (CFUs) 

Significant differences between sources of inoculum (p < 0.0001) were found in the 

response variable number of colony forming units (CFUs). As it was observed and discussed 

before in previous analysis, the inoculum extracted from the infested Japanese millet presented a 

significantly higher number of CFUs than the inoculum obtained from PDA pure culture 

isolation.  According to the averages of non-logarithmic transformed data, microsclerotia 

extracted from infested Japanese millet had 19,430 CFUs per 0.02 g of inoculum and the 

microsclerotia extracted from PDA pure culture had in average 4,837 CFUs per 0.02 g of 

inoculum, which is almost four times higher number of CFUs for the millet inoculum and also 

agrees with the number of CFUs previously obtained from both inoculums.   

The five different soil extract agars used had not significant effect on the number of 

CFUs (p = 0.0693). Soil constituents such as organic matter and soil nutrients present in the 

media did not have a suppressive or enhancing effect on the number of CFUs at the incubation 

conditions (30°C in the dark for four days), neither observable changes in colony morphology or 
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colony formation. However, it is likely that the soil extract agar media does not reflect the impact 

on microsclerotia viability as in the case when inoculum is incubated in soil for longer periods of 

time. Even though significant differences in the SEAs were not observed, trends were similar 

between both sources of inoculum. Sand extract agar yielded one of the lowest numbers of CFUs 

whereas Loamy extract agar yielded the highest number of CFUs (Figure 2-2). 

Quantitative determination of two M. phaseolina soil populations detection methods 

In order to determine the best method for the isolation of M. phaseolina from soil, two 

techniques were compared regarding work input and most importantly efficiency of the recovery 

of propagules (microsclerotia) from infested artificial soils on different soil textures and M. 

phaseolina infestation levels. 

Soils were mixed and passed through a 2 mm sieve to homogenize the samples. Soils 

were autoclaved twice at 121°C for 20 min. After autoclaving, 1 g samples for each artificial soil 

were placed in 100 mm-diameter petri dishes containing PDA (39 g/L), tergitol (1mL/L), 

penicillin (40 mg/L), streptomycin (20 mg/L), tetracycline (20 mg/L), and placed in the incubator 

at 21°C. Dishes were incubated and observed for four days to detect any undesirable fungal 

growth and to confirm that soil was sterile.  

Soils were artificially infested with dried M. phaseolina microsclerotia obtained from 

culture media (full strength PDA (39 g/L), penicillin (40 mg/L), streptomycin (20mg/L), and 

tetracycline (20 mg/L)). The total number of dried microsclerotia was counted and weighed in 

order to determine the inoculum potential. 

Dilutions of infested and non-infested soils with microsclerotia were made for every 

artificial soil to determine which M. phaseolina soil population levels for each procedure will 

work the best. Soils were infested with 200 microsclerotia per g of soil for the direct counting 

technique and 100 microsclerotia per g of soil for the serial dilution technique. Afterwards, five 

levels of infestation were made on a weight basis: 0 % infested soil, 25% infested soil + 75% 

non-infested soil, 50% infested soil + 50% non-infested soil, 75% infested soil + 25% non-

infested soil, and 100% infested soil. Afterwards soils were incubated for two weeks in the dark 

at 30°C. 
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Figure 2-2. Number of CFUs for two M. phaseolina sources of inoculum (infested Japanese millet-left and PDA pure culture isolate-

right) in different soil extract agars (SEAs). Vertical bars denote the standard deviation. 
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For the two methods tested, a selective media containing rifampicin was used for the 

isolation of M. phaseolina. This media consisted of PDA (39 g/L), penicillin (40 mg/L), 

streptomycin (20mg/L), tetracycline (20 mg/L), rifampicin (20 mg/L), and tergitol (1mL/L). 

The first method used for M. phaseolina counting and isolation from soil is described by 

Cloud (1991) and it is also known as the direct counting technique. One g of soil infested with 

100 microsclerotia was blended for three 30 sec intervals, alternated with 30 sec idle periods in a 

0.5% NaOCl solution. The resulting soil slurry was then poured into a 45 µm sieve and rinsed 

with distilled water while gently shaking for 1 min. By using a squeeze bottle containing sterile-

distilled water, the washed soil was concentrated in one side of the sieve and transferred to a 50 

mL plastic tube that was later filled with 50 mL of the rifampicin selective media (described 

above). The inoculated media was dispensed into three 100 mm-diameter petri dishes (10 mL 

each) and incubated in the dark at 30°C for 4 days. Additional 10 g soil samples were placed in 

an oven at 105°C for 24 hours to determine percentage of soil moisture. 

The second method for isolation and quantitative determination of M. phaseolina used 

was a modification of the serial dilution technique as described by Papavizas and Klag (1975). 

One g of soil infested with 200 microsclerotia was blended for 5 sec in 100 mL of distilled water. 

The triturate content was passed through a 600 µm sieve in tandem with a 45 µm sieve. Residues 

in the 600 µm sieve were discarded and the soil residue on the 45 µm sieve was transferred to a 

250 mL beaker containing a solution of 100 mL of 0.5% NaOCl. After exposure of NaOCl for 8 

min, the beaker content was washed with distilled water for 1 min on a 45 µm sieve. The soil 

slurry was resuspended in 10 mL of sterile-distilled water to produce a 1:10 dilution. One mL 

aliquots were taken from the dilution while shaking and pipetted on the surface of 2 day old 100 

mm-diameter petri dishes containing the selective media as described above, and spread with a 

sterile plastic stick over the surface. Plates were incubated in the dark at 30°C for four days. 

Additional 10 g soil samples were placed in an oven at 105°C for 24 hours to determine 

percentage of soil moisture. 

The experimental design was a completely randomized design (CRD) with repeated 

measures. The data set was composed of four replications for the direct counting technique and 

five replications for the serial dilution technique.  Differences between methods for isolation of 

M. phaseolina from soil were evaluated using analysis of variance with SAS system version 9.2, 

(SAS institute Inc., Cary, North Carolina, USA) using Proc Mixed protocol. 



 

44 

 

 Detection methods were analyzed independently for the response variables percentage of 

recovery and levels of M. phaseolina soil infestation, since highly significant differences 

between techniques (p < 0.0001) were found in the overall ANOVA. Infestation treatments 

comparisons were done with LSD multiple comparison procedures. Logarithmic transformation 

was used to standardize the response variable number of CFUs per gram of soil. 

 

Percentage of recovery was calculated as follows:   

 

Equation 1        



 

 

 

Where inoculum potential is equal to: 

 

Equation 2 

100
 inoculum of gotia / microscler ofNumber 

inoculum of  /gCFUs ofNumber 
potentialInoculum  

 

Results and discussion 

Differences between soil detection techniques on the number of CFUs 

Analysis of variance (ANOVA) was used to assess any differences in detection methods, 

soil texture and M. phaseolina levels of infestation on the response variable number of CFUs. 

Interactions between these factors were also included in the analysis (Table 2-2). 
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Table 2-2. Overall and split ANOVAs including main affects and interactions for two M. phaseolina detection methods for the 

response variables soil CFUs and percentage of recovery. Overall ANOVA is split by detection methods.  

                    

 Soil CFUs  Percentage of recovery 

  

Split ANOVA by detection 

method   

Split ANOVA by detection 

method 

Effect  † 

Overall 

ANOVA 

Direct 

counting  

Serial 

dilutions  

Overall 

ANOVA 

Direct 

counting  

Serial 

dilutions 

Detection methods *** ---  ---  ns ---  --- 

Soil types  ** ns  ns  *** ***  *** 

Infestation levels *** *  *  ns ns  ns 

Detection methods-Soil types ns ns  ns  *** ns  ns 

Soil types-Infestation levels ns ---  ---  ns ---  --- 

Detection methods-Infestation levels ns ---  ---  ns ---  --- 

Detection methods-Soil type-Infestation levels ns ---   ---   ns ---   --- 

          
† Detection methods = direct counting and serial dilutions, Soil types = sand, loamy sand, sandy loam, loam, and silt loam, Infestation level = (0% infested soil, 

25% infested soil, 50% infested soil, 75% infested soil, 100% infested soil). Level of significance from F-tests are indicated by the asterisks, *, **, and *** 

correspond to p < 0.05, 0.01 and 0.001 respectively, ns = no significant difference, and --- = not determined. 
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According to the overall ANOVA there is a differential effect of the detection method in 

the number of soil CFUs. On average the serial dilution technique has more CFUs per gram of 

soil than the direct counting technique. Serial dilution method was assessed with double amount 

of inoculum (200 microsclerotia per g of soil) than the direct counting method (100 

microsclerotia per g of soil). When serial dilution technique was assessed with 100 

microsclerotia per g of soil about 80% of the data obtained were zeros, meaning that this 

technique was not reliable at that level of soil infestation. When comparing the non-transformed 

data the serial dilution technique had almost four times higher CFUs than the direct counting 

technique at levels of infestation of 200 and 100 microsclerotia per gram of soil, respectively. 

There were also significant differences between the soil types and the M. phaseolina 

infestation levels in the number of CFUs (Table 2-2). 

In the split ANOVAs infestation level is significant for both techniques in the number of 

CFUs (Table 2-2).  There is an increase in the number of CFUs as the levels of infested soil 

increases. However, soil infestation levels of 25% and 50% did not show any difference but 

higher levels of infestation (75% and 100%) were statistically different for both detection 

techniques; soil infestation levels at or higher than 75% increases significantly the number soil 

CFUs (Figure 2-3).  

Differences between soil detection techniques on the percentage of recovery 

According to the overall ANOVA there is a significant effect of the soil type in the 

response variable "percentage of recovery", and also a significant interaction between detection 

method and soil type (Table 2-2).  

Overall ANOVAs split by detection method showed that percentage of recovery is highly 

influenced by soil type in both techniques. For the serial dilution technique the percentage of 

recovery varies across soil types whereas in the direct counting detection method the percentage 

of recovery had a gradual increase from the lightest soil textures (sand and loamy sand) to the 

heaviest ones (sandy loam, loam and silt loam), the direct counting detection method appeared to 

have good performance in clayey soils, with 65% and 85% of recovery from loam and silt loam, 

respectively (Figure 2-4).  
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Figure 2-3. Effect of soil infestation levels in the number of soil CFUs. Non-infested soil (0% infestation level) data were not 

included in the graph. Vertical bars represent the standard deviation. Means with the same letter are not significantly different at p < 

0.05. Small letters correspond to comparisons of soil infestation levels within the serial dilution technique, capital letters correspond to 

comparisons of soil infestation levels within the direct counting technique. 
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Even though there is not information about the differences in percentage of recovery in 

these detection methods due to soil type, according to Ammon et al. (1974) there are several 

previously described phenomena that could explain recovery efficiency. Initial modest increases 

in the M. phaseolina soil population are frequently reported in soils that have been physically 

manipulated. In addition, the soil was incubated for two weeks and the impact of soil nutrient 

status is reflected in the viability of microsclerotia and also recovery. For example, it is likely 

that sand did not offer a good nutritional environment for the propagules. During the two weeks 

of soil incubation, M. phaseolina population levels decreased and that could affect the 

percentage of recovery indirectly.  

In addition, M. phaseolina soil infestation levels did not have a significant impact on the 

percentage of recovery for both techniques (Table 2-2), meaning that the performance in the 

recovery of propagules from soil by using the techniques is similar even though the amount of 

inoculum in the soil increases.   

In summary, both detection methods are useful; they recover the same relative proportion 

of inoculum over different levels of M. phaseolina soil infestation, as described by Campbell and 

Vandergaag (1993). However, the serial dilution technique is time consuming; an average of 8 

Figure 2-4. Impact of the soil type on the percentage of recovery of M. 

phaseolina for each detection method. Vertical bars represent standard 

deviation. Means with the same letter are not significantly different at p < 0.05. 
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min per soil sample is required. Another important disadvantage of this technique is its high 

amount of variability, which is likely due to the preparation of the serial dilutions. However, 

according to the results of this experiment, the serial dilution technique could be useful for small 

numbers of soil samples in which there is previous knowledge of high populations of M. 

phaseolina propagules present in the soil.  

On the other hand, the direct counting technique provided a reliable estimate of 

populations even when M. phaseolina soil populations were low, or when a considerable number 

of soil samples needed to be processed, requires only 3 min per soil sample. 

KOH aniline-blue fluorescence microscopy technique for the detection of M. phaseolina 

inoculum and root infection 

In order to detect the interaction of M. phaseolina with soybean seedling roots at the 

microscopic level, a staining procedure utilizing aniline-blue fluorescence as described by Hood 

and Shew (1996) was used. Detection of pure inoculum also was performed by autoclaving pure 

dried microsclerotia at 121°C for 30 min in a 1M KOH solution. Microsclerotia were rinsed with 

sterile-distilled water for 2 min and stored in the refrigerator at 4°C until observed under the 

microscope. PDA agar cubes with a pure isolate of M. phaseolina on the upper surface were 

placed in a glass slide, stained with several drops of aniline blue solution, and after 20 min 

observed under the microscope. 

Soybean seedlings were collected from soils infested with 0.02 g of M. phaseolina 

microsclerotia (obtained from infested Japanese millet). Seedlings were collected at the V1 and 

V2 soybean developmental stages. Plants were cut below the cotyledonary node and roots were 

washed with tap water in order to remove soil particles from the surface. Subsequently, roots 

were autoclaved at 121°C for 30 min in a 1M KOH solution followed by a rinse under sterile-

distilled water. Roots were maintained in sterile distilled water in 50 ml plastic tubes at 4°C until 

they were observed in the microscope. 

The aniline-blue dye solution contained 0.05% aniline-blue in 0.067 M K2HPO4 adjusted 

to a pH of 9.0, and was prepared at least two hours before use. Otherwise, the solution was 

maintained in the refrigerator at 4°C in a glass container covered with aluminum foil.  

Autoclaved root samples were mounted on glass slides in several drops of the stain solution for 

at least 20 min before observation under the microscope. 
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Microscopy was performed using a Zeiss Axioplan 2 IE MOT microscope (Carl Zeiss, 

Thornwood, New York). Images were acquired with an Axiocam HRc camera using the 

Axiovision software (release 4.6.3). Fluorescence was observed with an X-Cite
®

 120 (EXFO 

Life Sciences) mercury lamp. Filters were set as follows: (excitation 358 ± 10 nm, emission 463 

± 10 nm) at 423 microseconds exposure. 

Results and discussion 

The KOH-aniline blue technique for fluorescence allowed the detection of inoculum even 

when it was not autoclaved in the KOH solution. Germ tubes emerging from microsclerotia had 

enough fluorescence to contrast with dark backgrounds and also host tissue (Figure 2-5). 

Microsclerotia from M. phaseolina inoculum infected soybean seedling roots by 

producing germ tubes that attached to the root surface. According to the images collected by 

using this technique, germ hyphae start growing intercellularly at early stages of the infection as 

reported by Ammon et al. (1974). Infecting hyphae was observed to grow upon and colonize the 

root tissue in different directions. Hyphae grew in an unrestricted manner on the epidermal root 

tissues, since the integrity of the hyphae appeared intact and mainly parallel to the root axis as 

reported by Bressano et al. (2010). 

Through the use of fluorescent microscopy we were able to observe the initial stages of 

infection in soybean roots by M. phaseolina. In addition, all the observations in the fluorescence 

microscope were done on intact root segments placed on glass slides. This mounting technique 

did not allow us to explore the pathogen host interaction in more detail beyond the initial stages 

of epidermal root infection where the M. phaseolina start colonizing intercellularly.  

Detection of M. phaseolina root infection points were more easily located in seedlings 

growing in sand than in other textures such as loamy sand, sandy loam, loam, and silt loam.  
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Figure 2-5. Detection of M. phaseolina inoculum by KOH-aniline blue fluorescence microscopy technique. 

Detail of microsclerotium growing on PDA media, image obtained after 20 min of aniline blue addition. Left = 

view under standard light microscopy, right = fluorescent image at 423 microseconds exposure, fluorescence of 

germ tubes (hyphae). Bar = 100 µm. 
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The KOH-aniline blue technique was useful to stain and detect M. phaseolina inoculum on infected soybean seedling roots and 

also to see in more detail the interactions between the pathogen and host in early stages of root infection (Figure 2-6).  

 

 

 

 

 

 

 

 

Figure 2-6. Observation of M. phaseolina soybean root infection. A and B, C and D, represent a point of initial 

root infection respectively. A´, B´, C´, D´ = fluorescent images under filter (excitation 358 ± 10 nm, emission 463 

± 10 nm). A, B, and C = arrows indicate germ tubes from microsclerotium. D = arrow indicates epidermal root 

infection. A´, B´ and D´ = arrows indicate intercellular hyphal proliferation on the epidermal root tissue. C´ = 

arrow indicates two initial infection points.  
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Conclusions 

Nutrients availability highly impacts the survival of M. phaseolina inoculum. Inoculum 

potential, microsclerotia size and germination were reduced by a short period of nutrient 

deprivation. In contrast, inoculum showed an increase in the number of CFUs when incubated in 

soil for a period of two weeks at 30°C.  

However, CFU produced on soil extract agar (SEA) may indicate that soil could have a 

positive or negative impact on the viability of the propagules in the long term, depending on the 

level of nutrients, organic matter or soil texture. Even though there were no significant 

differences in the SEAs used for each of the five soil types, trends indicate that soil textures such 

as sand and loamy sand could have a negative impact upon inoculum survival. In contrast, more 

clayey soils such as silt loam or loam may have a positive effect on the propagules; they would 

be at least maintained or increased by growing in richer nutrient conditions via higher organic 

matter content. 

Source of inoculum was important for inoculum potential. Isolation of M. phaseolina on 

PDA media is not the most adequate method to produce inoculum. This method of extraction is 

time consuming and limited the amount of propagules that can be obtained from a single culture 

plate. Conversely, inoculum production by extracting microsclerotia from M. phaseolina-infested 

Japanese millet provides high quality inoculum in reasonable amounts and in a timely manner.  

Both direct counting and serial dilution methods for quantifying M. phaseolina soil 

populations have their own advantages and disadvantages. The serial dilution detection method 

had good performance at high M. phaseolina soil populations; however, it is highly variable 

across soil textures and time consuming. In addition, direct counting had good performance at 

low M. phaseolina soil populations, and its variability across soil textures was lower compared to 

the serial dilution technique.  

KOH-aniline blue technique was useful to detect M. phaseolina inoculum and it was 

adequate to observe the early stages of root colonization by this pathogen in soybean root 

seedlings at V1 and V2 developmental stages. However, it was only possible to observe the 

pathogen-host interaction at lower magnifications (20) and only in the root epidermis when 

fungus colonizes intercellularly when using this technique.  
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CHAPTER 3 - Influence of soil texture and soil water availability 

upon charcoal rot caused by Macrophomina phaseolina at two 

different soybean seedling stages. 

Introduction 

 

Nowadays more attention is given to the relationships between the soil physicochemical 

properties and M. phaseolina microsclerotia. M. phaseolina soil population dynamics can be 

explained by several soil properties such as soil moisture, texture, porosity, bulk density, and 

cationic exchange capacity between others (Gangopadhyay et al., 1982). 

Soil moisture is also considered to be one of the most important factors affecting the 

survival and activity of microsclerotia in soil and root infection.  

Sandy soil supports higher germination rates of microsclerotia in soil, because sandy soils 

retain less water compared to a clayey soil, providing an optimum range of oxygen and a reduced 

microbial competition in these kind of soil environments (Collins et al., 1991). Some authors 

have reported a higher disease severity caused by M. phaseolina in sandy soils across different 

hosts. However, in these soils conditions levels of M. phaseolina soil populations were not 

affected (Srivastava and Dhawan, 1980; Wyllie and Calvert, 1969). 

Conversely, M. phaseolina soil populations may be compromised at high levels of soil 

moisture, mainly by low concentrations of soil oxygen and the proliferation of actinomycetes and 

bacteria that proliferates in high moisture conditions and degrade microsclerotia and germ tubes 

(Srivastava and Dhawan, 1980; Dhingra and Sinclair, 1975). 

M. phaseolina can infect plants at seedling stages, one or two weeks after planting. 

Afterwards, infection stays dormant if stressful environmental conditions are not present during 

this period of time, once the plants reach reproductive stages physiological stress occurs and 

infection will progress (Hartman et al., 1999). However, information of charcoal root of soybean 

disease processes at seedling stages has been poorly documented. 
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The objective of these studies were: 

- To estimate the impact of artificial soil textures and soil moisture upon M. phaseolina 

soil populations and root infection on soybean seedlings. 

- To evaluate the effect of soil texture and soil water content on soybean seedling root 

length and its potential effect on M. phaseolina root infection. 

- To compare the effect of M. phaseolina artificially infested soils and non-infested 

soils on soybean seedling root length.  

- To assess the relationships between root length and M. phaseolina root infection 

across different artificial soil textures and irrigation regimes. 

 

Materials and Methods 

Setting variables  

Charcoal rot of soybean was assessed at seedling stages V1 and V2 by the production of 

M. phaseolina inoculum from infested Japanese millet. Artificial soil textures were infested with 

M. phaseolina microsclerotia and seedlings were exposed to different soil moisture contents 

including pot saturation (PS), pot capacity (PC), and permanent wilting point. Ability of the 

inoculum to infect seedling root tissue was qualitatively confirmed by visualization with KOH-

aniline blue fluorescence staining under the microscope (Hood and Shew, 1996). However, the 

infection quantification in seedling root tissue was determined by counting M. phaseolina CFU’s 

in rifampicin media as well as the level of infestation in soil using similar procedures as 

described by Pearson et al. (1984) and Cloud (1991) respectively. M. phaseolina soil and root 

populations were quantified at two soybean developmental stages V1 (first trifoliate leaves 

unfolded) and V2 (second trifoliate leaves unfolded). 

Generation of artificial soil and textures  

Experiments were performed under greenhouse conditions to understand the influence of 

soil textural classes upon charcoal rot disease. Artificial soils were constructed by mixing sand 

and silt loam in different proportions (Table 3-1). Sand and silt loam soils were pasteurized in a 

soil steamer for 2.5 hours and dried on the greenhouse bench for two days. Mixtures were made 
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on weight basis to generate a range of textures such as sand, loamy sand, sandy loam, loam and 

silt loam. Resulting textural classes were confirmed using sodium hexametaphosphate by the 

hydrometer method (Bouyoucos, 1951).  

 

Table 3-1. Textural classes generated by mixing sand and silt loam in a weight basis. 

          

SAND (%)   SILT LOAM (%)   TEXTURAL CLASS 

100 

 

0 

 

Sand 

75 

 

25 

 

Loamy sand 

50 

 

50 

 

Sandy loam 

25 

 

75 

 

Loam  

0   100   Silt loam 

     

Calibration of soil moisture levels 

Since the soil water retention properties for each soil texture differ, three levels of soil 

moisture including pot saturation, pot capacity, and permanent wilting point were set for each 

soil. Pots containing 1200 mL of dried soil were watered to saturation. One day after the pots 

were saturated and water drainage has stopped, each pot was weighed once a day for five days.  

After obtaining, weights a calculation of volumetric water content was performed for 

each pot using the following equation: 

 

Equation 2 

s

w
V

V

V
  

 

Where θV is the volumetric water content of soil, Vw is the volume of water, and Vs is the 

volume of soil. However, to calculate θV, Vw was calculated as follows: 

 

Equation 3 

Vw = weight of watered pot – soil weight 
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A linear relationship was constructed for each soil textural class with the pot weight and 

volumetric water content of each soil. With this calibration it was possible to set three levels of 

soil moisture or irrigation regimes based on volumetric water content for each soil texture: pot 

saturation (PS), pot capacity (PC), and permanent wilting point (PWP) (Figure 3-1). 

 

 

 

 

 

Pots were set to the three levels of soil moisture (pot saturation (PS), pot capacity (PC), 

and permanent wilting point (PWP)) for three days. Six pots were used for each irrigation level 

and the experiment was repeated with the five soil textures (Table 3-1). Every 24 hours pots 

were weighed and water was added to maintain the desired level of soil moisture. An electronic 

probe soil sensor (Stevens Hydra-probe Soil Sensor, Stevens Water Monitoring Systems Inc., 

Portland, Oregon) was used in preliminary experiments during the calibration phase to estimate 

the volumetric water content in each pot after the desired irrigation level was reached. Since the 

electronic probe had volumetric water content levels established for each soil texture in the 

settings, using this electronic soil probe served as a control for the soil moisture levels (Figure 3-

2). 

Figure 3-1. Relationship between pot weight and volumetric water content and of a sandy textured 

soil. Pot saturation (—PS), Pot capacity (
…

PC), Permanent wilting point (---PWP) 
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Inoculum production  

M. phaseolina microsclerotia were obtained from infested Japanese millet seeds with a 

procedure as described by Mengistu et al. (2007). Four kg of Japanese millet (Echinochloa 

frumentaceae L.) seeds were soaked for twenty hours in a 3 L solution containing 40 g of sucrose 

and 1 g of tartaric acid. The solution was decanted using a 45 µm No325 sieve and seeds were 

divided into four autoclave bags with a 5 cm diameter and 10 cm long PVC plastic tube inserted 

into each autoclavable bag approximately half the length of the tube. The autoclave bags were 

secured around the tube, a foam plug was inserted in the top of the tube, and covered with 

aluminum foil. Inoculum bags were autoclaved at 121°C for 30 min. Subcultures of ~1 cm
2
 of M. 

phaseolina (prepared from an M. phaseolina isolate taken from infected soybean roots obtained 

from 30-year continuous soybean plots at Ashland Bottoms research farm in Riley County, 

Kansas) grown on full strength PDA, were added to the Japanese millet carrier in the autoclave 

bags. Five petri dishes colonized with M. phaseolina were used per bag. Inoculum bags were 

stored at lab temperature (~21°C). One week after inoculation, bag contents were mixed by 

shaking, and left to incubate for an additional 10 days. After incubation the colonized millet was 

Figure 3-2. Evaluation of soil water content regimens by two methods in a sandy soil 

texture: manual weighing of pots (fixed θV, %) and an electronic probe sensor. Probe soil 

sensor bars are the average of three replications. 
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dried on a plastic sheet and passed through a 600 µm sieve, blended in a 0.5% NaOCl solution 

for 3 min, collected in a 45 µm sieve and rinsed with distilled water for 2 min. Inoculum was 

spread over sterile plastic trays and dried in the laminar flow hood for one day. Dried 

microsclerotia were collected from the tray surface and stored in the refrigerator in plastic ziploc 

bags.  

Experimental design  

The experimental design was a completely randomized design (CRD), containing five 

factors: soil texture (sand, loamy sand, sandy loam, loam and silt loam), soil volumetric water 

content (ϴV) (pot saturation (PS), pot capacity (PC), and permanent wilting point (PWP)), soil 

infestation (inoculated soil, non-inoculated soil), soybean developmental stage (V1, V2), and 

three independent experiments (three replications) (Figure 3-3). 

The soybean variety used for these experiments was NK S37-F7 (RR (Roundup Ready), 

SCN-R (soybean cyst nematode-resistant), SDS-tolerant (sudden death syndrome-tolerant) 

obtained from plants at the Ashland Bottoms location in 2009. Seeds with visual symptoms of 

fungal or bacterial diseases and viruses were discarded. Healthy seed was kept in the refrigerator 

for six months until the greenhouse assays were initiated.  

A constant volume of soil was kept in each pot in order to maintain a regular 

concentration of M. phaseolina inoculum. 1200 mL of each soil type was measured in a 

graduated plastic cylinder and inoculated with 0.02 g of M. phaseolina microsclerotia obtained 

from infested Japanese millet. 1200 mL of soil and inoculum were mixed by shaking in a plastic 

bag and added to a 1350 mL plastic pot.    

This greenhouse experiment consisted of three experiments (replications). The first 

experiment was planted on May 28
th

, 2010. The second and third experiments were planted 

simultaneously on September 6
th

, 2010. Soils for the first replication were artificially inoculated 

with microsclerotia collected four months before the experiment started, and for the second and 

third, the microsclerotia were collected one month before soil inoculation. Inoculum was kept in 

the refrigerator at 4°C for one and four months, these inocula were characterized for inoculum 

potential (see Chapter 2 – ―Microsclerotia inoculum potential on rifampicin media‖). 



 

62 

 

 

 

 

 

 

 

 

Figure 3-3. Experimental design representing one of the five soil types and two soybean developmental stages assessed in the 

greenhouse experiment. Volumetric water contents (V) in each pot are represented by pot saturation (—PS), pot capacity 

(
…

PC), and permanent wilting point (---PWP). 
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After inoculating soils with microsclerotia, soybean seeds were surface sterilized with a 

10% bleach solution (approx. 0.5% NaOCl) for 3 min and rinsed with distilled water for 8 min. 

Nine seeds per pot were planted immediately after sterilization at a depth of 2 cm. Pots were 

watered every day until the seedlings reached the VC (cotyledon) stage. Pots were thinned to 

four seedlings per pot to keep a constant rate of evapotranspiration in each pot. Pot saturation 

(PS), pod capacity (PC), and permanent wilting point (PWP) irrigation regimes were introduced 

at the VC stage until the experiments were completed.  

  Relative humidity and greenhouse temperature were recorded during the term of the 

experiments using a data logger (Model HOBO U10-003, Onset Computer Corporation, Bourne, 

Massachusetts). 

 

Evaluation of M. phaseolina soil populations and root infection 

M. phaseolina soil and root populations were evaluated by taking soil samples from each 

pot and seedling roots at V1 and V2 soybean developmental stages using a destructive sampling. 

The soil contained in each pot was spread out upon a sterile plastic sheet on a greenhouse bench 

and dried for 2-3 days (depending upon the soil’s water content). Once the soil was dried, it was 

returned to sterile plastic bags and stored in the refrigerator at 4°C until further processing. Soil 

samples were ground individually (by pot), and passed through a 2 mm sieve in a soil grinder 

(Model H-4199, Humboldt Corporation, Illinois) to remove the larger soil particles. A 1 g sub-

sample from each sample was used to estimate the M. phaseolina soil population following a 

modified procedure as described by Cloud (1991).   

One g of ground soil was blended in 250 mL of 0.79% NaOCl (15% household bleach 

solution, v/v) solution for 3 min, with 30 sec idle intervals. The resulting soil slurry was poured 

into a 45 µm No325 sieve and rinsed with distilled water while shaking gently. The washed soil 

was concentrated in on side of the sieve using a squeeze bottle containing sterile-distilled water 

and transferred to a 50 mL plastic tube that was later filled with 50 mL of selective media (39 

g/L PDA, 1mL/L tergitol, 40 mg/L penicillin, 20 mg/L streptomycin, 20 mg/L tetracycline, and 

100 mg/L rifampicin) and poured into five 100 mm-diameter petri dishes (10 ml each) (Cloud, 

1991; Mengistu et al., 2007). Petri dishes were placed in an incubator at 30°C in the dark. After 

five days CFUs were counted and converted to CFU/g of dried soil (Figure 3-4). Another 10 g 



 

64 

 

soil sample was taken to calculate the gravimetric water content to be used in the calculation of 

the M. phaseolina soil population. 

Simultaneously, soybean seedlings were collected and cut below the cotyledonary node, 

transported to the lab and rinsed with sterile-distilled water to remove soil particles. Roots were 

scanned, rinsed and dried on a paper towel for one day at room temperature (21°C). Roots were 

maintained in plastic bags at 4°C until processing. With a UDY cyclone sample mill (Model 

0.14, UDY Corporation, Fort Collins, Colorado) containing a 600 µm No30 sieve, the root 

samples were ground separately, cleaning the unit with compressed air between samples. For 

each root, a 0.05 g sub-sample of ground tissue was obtained to calculate root CFUs using a 

modification of the procedure described by Mengistu et al. (2007), Mihail (1992), and Pearson et 

al. (1984). The crushed tissue was blended in 250 ml of a 0.5% NaOCl solution for 3 min with 

30-sec idle intervals, collected in a 45 µm sieve and rinsed with distilled water for 1 min. The 

root tissue was concentrated in one side of the sieve using a squeeze bottle containing sterile-

distilled water, and poured into a 50 mL sterile plastic tube. Afterwards, a selective media, as 

described above, was added to each tube, mixed, and poured in three 100 mm-diameter petri 

dishes. Poured dishes were placed in the incubator at 30°C in the dark for 5 days (Figure 3-4). 

After the incubation period, CFUs of M. phaseolina were counted and transformed to CFUs/g of 

root tissue. 

Stage V1 and V2 soybean roots were rinsed to remove the soil debris from their surface. 

Roots were immersed in a glass tray filled with water to spread out the secondary and tertiary 

roots, then scanned at a 400 dpi resolution (using an EPSON Expression 10000 XL scanner, 

Epson America, Inc.) and images imported into Adobe Photoshop Elements 2.0. Water from the 

tray was frequently replaced to avoid debris or soil particles that could interfere with image 

quality. Assess 2.0 (The American Phytopathological Society (APS), Saint Paul, Minnesota) was 

used to measure root length. Recommended settings for measuring root length in the ASSESS 

user guide were modified to generate the appropriate contrast for imaging. 

Results and discussion 

Main factor effects on the number of soil CFUs  

Analysis of variance (ANOVA) was performed by using the SAS system version 9.2, 

(SAS Institute, Inc., Cary, North Carolina, USA) using the PROC GLM to test levels of 
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significance of main effects for the response variable "soil CFUs". In this analysis, pots that 

contained non-inoculated soil were not taken in consideration (the soil infestation main factor 

was removed from the analysis). The effects of the three independent experiments were 

considered as fixed factor, since they differed in type of inoculum. Inoculum for experiment one 

had four months of storage after harvest and inoculum for experiments two and three had one 

month of storage after harvest). Linear contrast analysis was performed to assess significant 

differences between the three blocks. Interactions for main factors were also included in the 

analysis. Correlation analyses and second-degree polynomial regressions were performed 

between root CFUs and root length across the different soil textures and soil volumetric water 

contents in SAS using Proc Corr and Proc Reg respectively (Table 3-2). 
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Figure 3-4. Procedure to obtain M. phaseolina CFUs from soil and root tissue. Modified from 

Smith and Carvil (1997). 
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Table 3-2. Significance of the main effects in the response variable "soil CFUs".  

                  

Soil CFUs 

Factor † 
 Overall 

ANOVA 

 Overall ANOVA split by blocks 

   Experiment 1  Experiment 2  Experiment 3 

ST  ***  *  ***  *** 

ϴV  ns  ns  ns  ns 

ST - ϴV  ns  ns  ns  * 

Stage  ns  ns  ***  ns 

ST - Stage  ns  ns  ns  ns 

ϴV - Stage  ns  ns  ns  ns 

ST - ϴV - Stage  ns  ns  ns  ns 

Block  ***  ---  ---  --- 

ST - Experiment  ***  ---  ---  --- 

ϴV - Experiment  *  ---  ---  --- 

ST - ϴV - Experiment  ns  ---  ---  --- 

Stage - Experiment  ***  ---  ---  --- 

ST - Stage - Experiment  ns  ---  ---  --- 

ϴV - Stage - Experiment  ***  ---  ---  --- 

ST - ϴV -Stage - Experiment   ns   ---   ---   --- 

Orthogonal contrast          

Experiment 1 VS 2,3  ***       

Experiment 2 VS 3   ns             

         
† ST = soil texture (sand, loamy sand, sandy loam, loam, and silt loam); ϴV = soil volumetric water content (S, PC, 

PWP), Stage = Developmental soybean stage (V1, V2); Experiment = replications (3 reps.). For the SAS analysis 

the response variable "soil CFUs" was logarithmically transformed (Log(1+CFU/g of soil). Overall ANOVA is split 

by blocks. Level of significance from F-tests are indicated by the asterisks: *, **, and *** correspond to p < 0.05, 

0.01 and 0.001, respectively; ns = no significant difference, and "---" = not determined. 

 

Based on the overall ANOVA, results indicate a differential effect of experiments in soil 

CFUs.  Linear contrast show a significant difference of experiment one from the other two in the 

number of soil CFUs. Experiment one fewer CFUs per gram of soil than experiments two and 

three. This effect is due mainly by differences in M. phaseolina inoculum potential (Figure 3-5). 
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Figure 3-5. Interaction of soil type and experiments for M. phaseolina soil populations. Vertical bars represent 

the standard deviation. Averages only include M. phaseolina infested soils. 
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Inoculum for experiment one  produced fewer soil CFUs and had a different trend in the 

artificial soil textures except for sandy soils in which the soil populations presented similar 

levels. When analysis was made by experiment, soil texture was significant in all in experiments 

meaning that this factor had a high impact on the M. phaseolina soil populations According to 

these results, soil texture has a significant impact on M. phaseolina soil population dynamics. 

There was variation in the populations across soil types but this variation was significantly 

different in the sandy soil texture in which populations were reduced (Figure 3-6).  

Decline in the viability and germination of M. phaseolina propagules in sandy soils could 

be attributed to nutrient deprivation. In poor soil nutrient conditions, secondary microsclerotia 

are more likely to be smaller than primary microsclerotia and consequently a lower energy 

reserve. Thus, reducing propagule viability in the long term (Gagopadhyay et al., 1982).  

Decreasing effects in the M. phaseolina populations were observed for soil textures such 

as silt loam, loam, sandy loam, and loamy sand. Nevertheless the soils were steamed, it was 

found an increasing number of colonies of other inhabiting soil fungi along with M. phaseolina 

as the amounts of silt loam in each soil were increased in order to form the artificial soil textures 

(Table 3-1). Saprophytic fungi from different genera such as Fusarium, Aspergillus, Rhizopus 

were identified as being part of the soil microflora, except for sandy soil texture in which only 

M. phaseolina was present. When the colonies of saprophytes increased, M. phaseolina soil 

populations decreased. This may be attributed to the amount of soil organic matter present that 

can sustain a diverse fungal soil population, which may compete with M. phaseolina in the soil 

and in vitro. 
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Figure 3-6. Effect of soil texture on M. phaseolina soil populations. Vertical bars represent standard deviation. 

Letters above the bars denote significant differences between soil populations at p < 0.05. Averages only include M. 

phaseolina infested soils. 
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In summary there are two phenomena that can explain the changes in M. phaseolina soil 

populations. First, deprivation of soil nutrients in textures such as sand, in which the inoculum 

slowly dies and in which the presence of antagonists is virtually zero, and second, soils more rich 

in organic matter that can sustain a diverse number of microorganisms. These assumptions are 

supported by findings in which different soil microorganisms such as actinomycetes or other 

bacterial species have been reported to act as antagonists to M. phaseolina (Collins et al., 1991; 

Dhingra and Sinclair, 1975). Furthermore, these antagonists have been observed surrounding M. 

phaseolina hyphae inhibiting microsclerotia germination under pot study conditions (Arora et al., 

2008; Pratt, 2006). 

Volumetric soil water content (ϴV) levels did not affect the number of soil CFUs during 

the time the experiment was performed. However, the PWP soil water content treatment had the 

highest number of M. phaseolina CFUs per gram of soil for experiments 2 and 3 (Figure 3-7). 

These findings agree with Olaya (1996), who described a similar survival of microsclerotia in 

soil under dry conditions that affected the development of antagonistic microflora.  

M. phaseolina soil populations decreased between the V1 and V2 evaluation times. 

Although this reduction in the soil population was significant only in experiment two, and 

experiment three maintained a similar trend, whereas experiment one had a completely different 

soil population dynamic in which only loamy sand and sandy loam soils exhibited a reduction in 

the soil population. The effect of time upon the M. phaseolina soil population is difficult to 

explain. However, the reduction in M. phaseolina populations from V1 to V2 across the soil 

textures indicate that inoculum in these artificially infested soils was decaying (Figure 3-8). 

Similar findings were found by Gangopadhyay et al., (1982), who reported reduction in the 

viability of M. phaseolina propagules in soil after 120 days of incubation at 30°C in the dark at 

different soil moisture levels under laboratory conditions. In addition, soil microflora may play 

an important role in the M. phaseolina soil population dynamics. A laboratory study conducted 

by Collins et al. (1991) reported a maximum of 50% microsclerotia germination for 

unpasteurized soil and a maximum of 80% to 90% germination for pasteurized soils at constant 

temperatures of 25°C and 33°C, respectively. 

 It is important to consider that there was also a high fluctuation in the daily greenhouse 

air temperature that may have affected germination of propagules in the soil (Table 3-3).  
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Figure 3-7. Effect of soil volumetric water content (V) on M. phaseolina soil populations. PWP = permanent wilting 

point, PC = pot capacity and PS = pot saturation. Experiments 1, 2, and 3 denote replications. Vertical bars represent 

standard deviation. Letters above the bars denote significant differences between soil populations at p < 0.05. 

Averages only include M. phaseolina infested soils. 

 



 

73 

 

 

 

 

 

 

 

Table 3-3. Temperature and relative humidity data recorded during the greenhouse study. 

                        

 Temperature (C)  Relative humidity (%) 

 Experiment 1  Experiment 2  Experiment 3  Experiment 1  Experiment 2  Experiment 3 

Average 29 A  26 B  26 B  63 a  54 b  52 b 

Max 31  30  28  72  70  70 

Min 25   22   22   54   40   38 

            
Capital letters denote levels of significance for temperatures and small letters denote levels of significance for relative humidity,  

LSD test p < 0.05. Max = Maximum, Min = minimum. Averages were obtained by using a data logger. 
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 Main factors effects in the root infection (root CFUs) 

 

 

 

 

  

 

Figure 3-8. Effects of soil texture and soybean developmental stage on M. phaseolina soil populations. Vertical bars represent standard 

deviation. Experiments 1, 2, and 3 denote replications. Averages only include M. phaseolina infested soils. 
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Main factors effects in the number of root CFUs  

Analysis of variance (ANOVA) was performed by using Proc Glm (SAS version 9.2) 

(SAS institute Inc., Cary, North Carolina, USA). For the statistical analysis only plants grown on 

M. phaseolina infested soils were taken in consideration for the analysis (i.e., the soil infestation 

factor was removed from the analysis). An average of the root CFUs from the four plants 

contained in each pod was obtained for the statistical analysis and also to meet assumptions of 

normality and equal variances.  

Main factors effects and their possible interaction were considered in the analysis. Linear 

contrast analyses were performed in order to identify differences between experiments 

(replications). Finally, overall ANOVA was split by experiments (replications) and soybean 

developmental stages in order to elucidate their impact in the root infection (Table 3-4).  

According to the overall ANOVA all the main factors had significant effects on root 

CFUs (Table 3-3). Similarly to M. phaseolina soil populations, root infection presented 

significant differences between experiments; there is an appreciable reduction in the M. 

phaseolina root populations in experiment one compared to experiments two and three. This 

reduction in the number of root CFUs is mainly due to the quality of the inoculum used in each 

of the blocks. For experiment one the inoculum potential was 20% and for experiments two and 

three, 85% (Figure 3-6). 

Inoculum potential plays an important role in soybean root infection. According to the 

non-transformed data, M. phaseolina inoculum with 85% microsclerotia viability averaged 6.6 

CFUs per g of root tissue, whereas inoculum with 20% viability averaged 1.2 CFUs per g of root 

tissue, this is a 5.5-fold increase in the number of root CFUs when the inoculum potential was 

high. 

Soil texture had a highly significant impact on seedling root infection. Plants growing in 

sand resulted in the highest M. phaseolina root populations, followed by seedlings planted in 

loamy sand and loam soil textures (Figure 3-10). Likewise, Collins (1991) and Dhingra and 

Sinclair (1975) described increasing M. phaseolina root populations and root severity in sandy 

soils for corn and sorghum.  
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Table 3-4. Significance of the main effects and interactions for the response variable "root CFUs". 

                          

Root Infection (root CFUs) 

Factor † 
 Overall 

ANOVA 

 Overall ANOVA split by blocks  Overall ANOVA split by stages 

   Experiment 1  Experiment 2  Experiment 3  Stage V1  Stage V2 

ST  ***  ***  ***  ***  ***  *** 

ϴV  ***  ***  ***  ***  ns  *** 

ST - ϴV  **  ***  ***  ns  ns  ** 

Stage  ***  ***  ***  ns  ---  --- 

ST - Stage  ns  ns  ns  ns  ---  --- 

ϴV - Stage  ***  ***  ***  ns  ---  --- 

ST - ϴV - Stage  ns  ns  ns  ns  ---  --- 

Experiment  ***  ---  ---  ---  ***  *** 

ST - Experiment  ***  ---  ---  ---  ns  *** 

ϴV - Experiment  ***  ---  ---  ---  *  * 

ST - ϴV - Experiment  ns  ---  ---  ---  ns  ns 

Stage - Experiment  *  ---  ---  ---  ---  --- 

ST - Stage - Experiment  ns  ---  ---  ---  ---  --- 

ϴV - Stage - Experiment  ns  ---  ---  ---  ---  --- 

ST - ϴV -Stage - Experiment   ns   ---   ---   ---   ---   --- 

Orthogonal contrasts              

Experiment 1 VS 2,3  ***           

Experiment 2 VS 3   ns                     

             

† ST = soil texture (sand, loamy sand, sandy loam, loam, and silt loam); ϴV = soil volumetric water content (S, PC, PWP); Stage = soybean developmental stage 

(V1, V2); Experiment = replications (3 reps.). For the SAS analysis the response variable "root CFUs" was averaged and logarithmically transformed 

(Log(1+CFU)/g of root tissue). Overall ANOVA is split by blocks and soybean developmental stages. Level of significance from F-tests are indicated by the 

asterisks: *, **, and *** correspond to p < 0.05, 0.01 and 0.001, respectively; ns = no significant difference and "---" = not determined. 
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Figure 3-9. Effects of soil texture on M. phaseolina root populations. Experiments 1, 2, and 3 denote biological 

replications. Vertical bars represent standard deviation. Letters above the bars denote significant differences between 

root populations p < 0.05. Averages only include both soybean stages (V1 and V2), and all volumetric soil water 

contents (PS, PC, PWP). 
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Results suggest that M. phaseolina colonized the root surface more freely in sandy soils 

compared to other soil textures in which there was an antagonistic effect by other soil fungi. It 

may that both inoculum and seedlings were under nutrient stress in sand but this particular 

stressful condition favors root infection. M. phaseolina is a soilborne pathogen that takes 

advantage of stress, as reported by Kendig et al. (2000).  

M. phaseolina root populations responded differently across levels of soil volumetric 

water content (ϴV) (Table 3-3). Exposure of the soybean seedlings to a water deficit (PWP) 

regime resulted in high numbers of root CFUs. In contrast, PS was detrimental to root infection 

and possessed the lowest numbers of M. phaseolina root CFUs, except for a few exceptions in 

loam soil, in which the lowest populations were present under the PC water content regime 

(Figure 3-10). 

 

Soil water holding capacity also caused variations in M. phaseolina root populations 

across soil textures. Soils with low percentages of sand such as sandy loam, loam and silt loam 

soils retain water more strongly compared to soils with higher contents of sand such as sand and 

sandy loam. These differences in water holding capacity are mainly due to differences in the soil 

pore size and hygroscopic forces. Small pore sizes, such as those in clayey soils, generate high 

hygroscopic forces that retain water more strongly than sandy soils, which have larger pores. For 

this reason, levels of moisture remain more constant in a clayey soil across time. Even at soil 

saturation, sandy soils lose water content faster than clayey soil at the same temperature. This 

results in higher levels of stress for the plant and consequently greater root infection (Brady and 

Weil, 2004).  

Seedlings grown in sand had the highest levels of root infection and silt loam and loam 

soils reported the lowest number of root CFUs. Similar findings about root infection at low levels 

of soil water content have been reported by Kendig et al. (2000) and Olaya et al. (1996). These 

authors describe strong effects of water stress at R2 soybean stages in M. phaseolina root 

populations and high rates of colonization in soybean root segments buried in the soil at low 

water potentials.  
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Figure 3-10. Effects of soil texture and soil volumetric water content (V) upon root infection by M. phaseolina. Experiments 1, 2, and 3 

denote biological replications. PWP = permanent wilting point, PC = pot capacity, and S = pot saturation. Vertical bars represent the standard 

deviation. Averages includes both soybean stages (V1 and V2), and all volumetric soil water contents (PS, PC, PWP). 
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Colonization and infection of roots by M. phaseolina does occur at early soybean 

seedling stages. If environmental stressful conditions for the plant are avoided soybean root 

infection remains latent and progresses only at the reproductive stages (Hartman et al., 1999). 

Evidence presented here shows increasing numbers of root CFUs from V1 to V2 soybean stages, 

which indicates that M. phaseolina root colonization is in progress throughout vegetative growth.  

Significant effects of the volumetric soil water contents were also observed in soybean 

stage V2 in addition to the changes in M. phaseolina root populations from stage V1 to V2 

(Table 3-4) (Figure 3-12). 

Trends remained similar when comparing V1 and V2, but differences were only 

appreciable when plants reached V2 stage, implying a cumulative effect of volumetric soil water 

content treatments upon M. phaseolina root populations. Root infection increased when plants 

were under water stress (PWP) across all soil textures, but this effect was more evident at V2. In 

contrast, soil saturation (PS) had a significant detrimental effect on root populations in all soil 

types, being significantly different from the PWP treatment at V2. Volumetric water content in 

saturated soils (PS) showed good control of the M. phaseolina root population, even in saturated 

(PS) sandy loam soils where zero root CFUs were obtained at V2. This indicates that it is likely 

for plants to produce new root tissue without further infection if moisture remains relatively 

constant. 

This information relates to the impact irrigations or rain events at during the early 

vegetative stages in order to prevent root colonization by M. phaseolina. Previous studies have 

also documented the strong effect of water stress early in the season on field conditions (Kendig, 

2000). Optimum water conditions are an integrated management strategy for the disease when 

soils are sandier. These lighter soils lead to dry conditions predisposing the plant to stress and 

subsequent M. phaseolina colonization.  
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Figure 3-11. Comparisons of M. phaseolina root populations by soybean developmental 

stage V1 and V2 in five artificial soils. PWP = permanent wilting point, PC = pot capacity, 

and S = pot saturation. Vertical bars represent standard deviation.  
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Main factors affecting root length 

For the statistical analysis all plants were taken in consideration (infested and non-

infested soils), except for plants in experiment one, since they did not have homogeneous 

distribution and equal variance. Additionally all four plants in each pot were averaged and the 

averages were considered for the statistical analysis. Analysis of variance (ANOVA) was 

performed to test the impact of the soil texture, soil volumetric water content, soil infestation and 

soybean developmental stages and their interactions on the response variable "root length". SAS 

system software version 9.2 (SAS institute Inc., Cary, North Carolina, USA) was used to 

construct the ANOVAs using Proc Glm. All the main factors and some interactions were highly 

significant (Table 3-3).  

Soil texture and soil volumetric water content impacted root morphology and length. Soil 

texture influenced the vertical and horizontal distribution of roots. It was observed that root 

length increased when the content of sand in each soil type increased. In sandy soil, root systems 

were able to grow profusely. This "loosen" soil optimized the capabilities of soybean roots to 

explore the soil because the relatively big pore size in the sandier soil textures decreased the 

resistance to root penetration. In contrast, soil textures with lower contents of sand augmented 

the soil strength in a manner that had a negative effect in root penetration of the soil and caused a 

negative impact on the root length. Soybean seedlings growing in sandy soils got longer roots 

compared to seedling that grown on more heavy clayey soils such as silt loam and sandy loam. 

(Figure 3-13).  

This is consistent with previous reports that have shown significant impacts of soil 

texture on root morphology and root length in grapevines under irrigation. Vines had a deeper 

root system growing in coarse soils than moderately coarse and fine soils (Nagarajah, 1987; Soar 

and Loveys, 2007).  

Even though root diameter (thickness) was not measured, an appreciable thickening of 

roots was observed in soils with high percentages of sand such as sand and loamy sand. On the 

other hand, thin roots were observed in soil with higher contents of clay such as silt loam and 

loam. This phenomenon of root thickening may be explained by the arrangement of soil particles 

micro and macro pores. Plants have to modify its root thickness to the soil pore sizes to grow and 

penetrate the soil (Drew, 1991). 
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Table 3-5. Significance of main effects and interactions on the response variable "root length". 

Root length 

Factor † 
 

Overall 

ANOVA 
 

Overall ANOVA split by block 
 

Overall ANOVA split 

by stages  
Overall ANOVA split by Infestation and soybean stages 

  
Experiment 

2  
Experiment 

3  
Stage 

V1  
Stage  

V2  
V1 

Inoculated  
V1 Non-

inoculated  
V2 

Inoculated  
V2 Non-

inoculated 

ST  ***  ***  ***  ***  ***  ***  ***  ***  *** 

ϴV  ***  ***  ***  ***  ***  ***  ***  ***  *** 

ST  ϴV  ***  ***  ***  ***  ***  ***  ***  ***  *** 

Stage  ***  ***  ***  ---  ---  ---  ---  ---  --- 

ST  Stage  ***  ***  ***  ---  ---  ---  ---  ---  --- 

ϴV  Stage  ***  ***  ns  ---  ---  ---  ---  ---  --- 

ST  ϴV  

Stage  
ns  ns  ns 

 
---  --- 

 ---  ---  ---  --- 

Infest  ***  ***  ***  ***  ***  ---  ---  ---  --- 

ST  Infest  ***  ***  ***  ***  ***  ---  ---  ---  --- 

ϴV-Infest  ***  *  ***  ***  **  ---  ---  ---  --- 

ST-ϴV-Infest  ***  ***  ***  ***  ***  ---  ---  ---  --- 

Stage-Infest  ns  ns  ns  ---  ---  ---  ---  ---  --- 

ST-Stage-Infest  ns  ns  ns  ---  ---  ---  ---  ---  --- 
ϴV-Stage-

Infest  
ns  ---  --- 

 
---  --- 

 ---  ---  ---  --- 
Soil-ϴV-Stage-

Infest  
*  ---  --- 

 
---  --- 

 ---  ---  ---  --- 

Experiment  ***  ---  ---  ***  ns  ***  ***  *  ns 
ST - 

Experiment  
**  ---  --- 

 ***  ns  ns  *  ns  ns 
ϴV - 

Experiment  
**  ---  --- 

 ***  ns  ns  ns  ns  ns 
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ST - ϴV - 

Experiment  
ns  ---  --- 

 ns 
 

ns  ns  ns  ns  ns 
Stage - 

Experiment  
***  ---  --- 

 
---  --- 

 ---  ---  ---  --- 
ST - Stage - 

Experiment  
ns  ---  --- 

 
---  --- 

 ---  ---  ---  --- 
ϴV - Stage - 

Experiment  
*  ---  --- 

 
---  --- 

 ---  ---  ---  --- 
ST - ϴV -Stage 

- Experiment  
ns  ---  --- 

 
---  --- 

 ---  ---  ---  --- 
Infest- 

Experiment  
**  ---  --- 

 
**  ns 

 ---  ---  ---  --- 
ST-Infest- 

Experiment  
ns  ---  --- 

 
ns  ns 

 ---  ---  ---  --- 
ϴV-Infest- 

Experiment  
ns  ---  --- 

 
ns  ns 

 ---  ---  ---  --- 
ST-ϴV-Infest- 

Experiment  
**  ---  --- 

 
ns  ns 

 ---  ---  ---  --- 
Stage-Infest- 

Experiment  
ns  ---  --- 

 
---  --- 

 ---  ---  ---  --- 
ST-Stage-

Infest- 

Experiment  
ns 

 
--- 

 
--- 

 ---  ---  ---  ---  ---  --- 
ϴV-Stage-

Infest- 

Experiment  
ns 

 
--- 

 
--- 

 ---  ---  ---  ---  ---  --- 
ST-ϴV-Stage-

Infest- 

Experiment   
ns 

  
--- 

  
--- 

  ---   ---   ---   ---   ---   --- 

                   
† ST = soil texture (sand, loamy sand, sandy loam, loam, and silt loam); ϴV = soil volumetric water content (S, PC, PWP); Stage = Soybean development stage 

(V1, V2); Experiments = replications (3 reps.); Infest=infestation (Inoculated and non-inoculated soils). For the SAS analysis the response variable "root length" 

was averaged and logarithmically transformed. Overall ANOVA is split by blocks, soybean developmental stages, and infestation. Level of significance from F-

tests are indicated by the asterisks, *, **, and ***, which correspond to p < 0.05, 0.01 and 0.001, respectively; ns = no significant difference and "---" = not 

determined. 
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Figure 3-12. Effect of soil texture and soil volumetric water content (V) on root length. Averages include only 

experiments 2 and 3, infested and non-infested soils, soil volumetric water contents (PS, PC, and PWP) and 

seedling stages V1 and V2.  
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Regarding volumetric soil water content, PC presented the largest roots across all five 

soil types tested in this experiment. Conversely, PWP had a negative impact on root length 

across the sandiest soils (sand and sandy loam). However, plants growing under saturated soil 

conditions PS had short roots in soils with higher contents of clay such as loam, silt loam and 

sandy loam (Figure 3-13). 

Water holding capacity is critical in root development and root length. For example, the 

lowest values in root length in the PWP treatment were present in sand. As previously described, 

these kinds of soils lose water content faster than any other soil and expose plants to drought for 

longer periods of time compared to heavier soil types. According to Wang and Yamauchi (2006), 

one of the most common causes for reduced root growth is drought at water potentials lower than 

-1.5 MPa (i.e., PWP). However, other important responses to drought may include increased 

branching, deep rooting and enhanced geotropism, but this is dependent upon plant species and 

soil conditions. 

Saturated soils (PS) also resulted in decreased root length in silt loam and loam textures. 

Other authors have reported similar results about hypoxic conditions in soils; oxygen diffusion is 

lower in water than in air, in flooded soil conditions root growth is limited in length and mass by 

absence of O2. It may also be associated with the production of ethylene by root apices and 

accumulation of CO2 produced by the roots and also soil microorganisms (Jackson and Ricard, 

2003).  

Saturated conditions in silt loam and loam soils may also promote activities of facultative 

anaerobes that diminish the nitrate availability to the roots by soil denitrification (Wang and 

Yamauchi, 2006). Since the soils have higher water holding capacity, the PWP treatment was not 

detrimental for the roots (Figure 3-13). 

The effects of the volumetric soil water content were more evident at V2 in which roots 

from the PWP regime in sandy soils did not show a significant increase in root length from V1 to 

V2. This was also true for the PS water regime in the heavier silt loam, loam and sandy loam 

soils. These had a greater impact on the V2 stage because the water demand for the plant 

increases with its growth and development, resulting in more severe water deficit-stress in sandy 

soils, whereas PS produces the same stress in heavier soils by generating anoxic soil conditions 

(Figure 3-14). 
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Figure 3-13. Impact of M. phaseolina upon root length by soybean developmental stages V1 and V2. Averages include only experiments 

2 and 3 and M. phaseolina infested soils.  
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Inoculum also had a detrimental effect on root length in both experiment one and 

experiment two and soybean developmental stages V1 and V2. Differences in root length from 

inoculated and non-inoculated soils were evident in all soil types except for sand, in which plants 

from inoculated and non-inoculated soil had virtually the same root length (Figure 3-15). 

 

 

 

 

 

 

 

Results suggest that M. phaseolina inoculum had a suppressive effect on the growth of 

soybean root seedlings regardless the level of volumetric soil water content. The detrimental 

impact on root growth is more evident in fine-textured soils with higher percentages of silt. 

There was no impact of inoculum on root length in sandy soils, even though M. 

phaseolina root infection did occur, root infection was no detrimental for the plant as it can 

freely produce more roots due to a lower resistance in coarse textured soil. In contrast, for clayey 

soils the production of new roots was lower and the effect of the inoculum was more obvious. 

For example, roots in silt loam soils exhibited a lower level of root infection, but they were also 

shorter in length.  

Figure 3-14. Impact of M. phaseolina inoculum upon root length in five artificial 

soils. Vertical bars represent standard deviation. Averages include only 

experiments 2 and 3 and seedling stages V1 and V2.  



 

89 

 

Relationships between root length and root infection 

Complex relationships were observed between root length and root infection. Linear 

regression and polynomial regression analyses were performed with these variables across the 

soil types and the soil volumetric water contents (ϴV). The relationship between root length and 

root infection differed across the soil types on its level of significance, being highly significant in 

sand and less or not significant in the other artificial soil textures (Table 3-6)  

Significant correlations were obtained in sandy textured soils; this trend was kept after 

splitting the correlation analysis by volumetric soil water content treatment and by soybean 

developmental stages. These high correlations may be explained by the high levels of root 

populations obtained in roots grown in sandy soils and the overall frequency of root infection. In 

addition, root infection tended to decrease as the levels of clay increased as well as the level of 

significance in the correlations in fine-textured soils such as silt loam, loam and sandy loam. 

Relationships seem to be more correlated in V2 than in V1 soybean stage except for 

loamy sand soil texture; however, these relationships are not highly significant except for plants 

at V2 stage in sandy soils. 
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Table 3-6.  Correlation coefficients for root length and M. phaseolina root populations 

 
† OVERALL 

 

Volumetric soil water content (ϴV) 

 

Soybean developmental stage 

  PWP  PC  PS  V1  V2 

Soil 

textures 
R2  P > F  R2  P > F  R2  P > F  R2  P > F  R2  P > F  R2  P > F 

Sand 0.3094  0.004  0.5035  0.0052  0.5467  0.023  0.4736  0.004  0.3612  0.0049  0.4471  0.0046 

                        
Loamy 

sand 
0.0721  0.2729  0.4372  0.1852  0.2204  0.0568  0.3826  0.3109  0.1632  0.7341  0.0052  0.8647 

                        
Sandy 

loam 
0.0314  0.7963  0.0695  0.9848  0.1151  0.4665  0.5835  0.0776  0.0967  0.9816  0.3478  0.6848 

                        

Loam 0.0108  0.4116  0.5641  0.1909  0.418  0.2133  0.1715  0.064  0.0049  0.837  0.6298  0.7745 

                        
Silt 

loam 
0.126  0.1545  0.228  0.4253  0.1674  0.7227  0.8497  0.0423  0.0355  0.7417  0.0467  0.1948 

                        
† Overall = corresponds to correlation analysis including the entire data set obtained in the respective soil texture. S, PC, and PWP correspond to "pot saturation", 

"pot capacity", and "permanent wilting point", respectively. Overall correlation analysis on each soil texture is split by volumetric soil water content and soybean 

developmental stage. Coefficients in the table correspond to a polynomial second grade regression. "Experiment 1" was not included in the correlation analyses. 
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Conclusions 

In summary, the M. phaseolina soil population dynamics, root infection, root length and 

root morphology are highly influenced by soil texture and soil water content. Evaluation times 

and soybean developmental stages (V1 and V2) also played an important role in the charcoal rot 

disease processes. 

 Findings in the soil and root populations, suggest that there is a slight decrease in the M. 

phaseolina soil populations across time (from V1 to V2), but root colonization levels increased 

in this period of time.   

In the soil M. phaseolina populations may be indirectly influenced by clay content. There 

is some evidence to suggest that increasing levels of organic matter contained in the silt loam soil 

used to form artificial soil textures can support antagonistic microorganisms that compete with 

microsclerotia in the soil having a negative impact on soil populations. Decreasing soil 

populations in sandy soils also suggest that propagules require a certain level of soil nutrients to 

remain viable and active in soil. Even though soil water regimes did not have a significant effect 

on M. phaseolina soil populations there was a positive effect of (PWP) in the average soil 

population. 

Seedling root infection is impacted by the level of water stress to which the plants were 

exposed and the water-holding capacity of each soil. Sandy soils resulted in higher root 

populations due to low water-holding capacity, which exposes plants to a constant water deficit 

that predisposes plants to root infection.  

In sandy soil textures, levels of root colonization may be higher due to the fact that root 

length was longer and got more in contact with the inoculated soil, increasing the sites of root 

infection. In contrast, soils with high clay content can retain water for a longer period of time 

diminishing the impact of water stress and decreasing the possibility of M. phaseolina root 

colonization. Moreover, adequate volumetric soil water content in soybean seedling such as PS 

in most sandy soils and PC in heavy clayey soils can suppress but not prevent M. phaseolina root 

colonization or root infection.  

Dynamics of root infection were observed in the worst and the best-case scenarios. Sandy 

soil texture at PWP soil water content generated the highest levels of root colonization, 

contrasting to silt loam and loam soils at PS having the lowest levels of root colonization. 
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However, PS in fine textured soils can produce a level of water stress by anoxic conditions that 

impact negatively plant growth and development. 

Relationship between root length and root infection resulted to be complex and it could 

not be expressed by a simple linear regression. However, the most significant relationships were 

found in the coarsest soil textures where root infection and root length were the high. It may 

imply that root architecture and root development play an important role in the charcoal rot 

disease progression. In poor nutrient and in stressful soils water conditions soybean seedlings 

may produce more roots to find more water and nutrient acquisition, which lead to higher levels 

of root infection. 
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CHAPTER 4 -  Influence of soils and water relations upon charcoal 

rot of soybean caused by M. phaseolina in two different field 

locations in Kansas. 

Introduction 

Several strategies for the suppression of charcoal rot of soybean have been tested, crop 

rotation, plant populations, moderate tolerant varieties, soybean late maturity cultivars, compost 

amendment, biological control, irrigation and soil fertilizers.  

Mn plays an important role in the suppression of root diseases on different hosts. Mn 

participates in photosynthesis and consequently the production of root exudates that can affect 

the soil microflora. Mn is also involved in the synthesis of lignin and phenols and activates 

enzymes involved in the shikimic acid pathway. High concentrations of Mn inhibit the 

production of pectin-methylases by fungal pathogens (Graham and Rovira, 1984). Beneficial 

effects of Mn in charcoal rot of soybean have never been measured. 

Between other important cultural practices, irrigation may be the most important for the 

control of charcoal root. Soybean irrigation may be necessary at any stage of soybean in order to 

obtain the maximum yield a single irrigation during the early reproductive stages is enough to 

reduce the inoculum survival by 25 to 42% in bare soil (Lodha, 1995; Rogers, 1997). Soybean 

irrigation at R2-R4 full bloom and beginning of pot reduces M. phaseolina root colonization and 

favored soybean yield (Kendig et al., 2000). 

However, other factors may affect the M. phaseolina soil populations and root infection 

such as crop rotation and soil texture. One of the few options to control this disease is to crop a 

non-host in order to reduce the levels of inoculum in the soil (Short et al., 1980). In the case of 

soybeans, low microsclerotia densities in the soil generally resulted in less root infection and 

consequently more yield (Francl et al., 1988). 
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The objectives of these studies were: 

- To determine the effects of soil-applied manganese fertilization on M. phaseolina soil 

populations, soybean root colonization and yield. 

- To estimate the impacts of soil texture and cropping history on M. phaseolina soil 

populations, soybean root colonization and yield. 

- To evaluate the effect of irrigation regimes at different soybean developmental stages 

on M. phaseolina soil populations, soybean root colonization and yield. 

- To assess the relationships between physicochemical soil components and M. 

phaseolina soil and root populations. 

Materials and methods 

Description of the field location 

Experiments were conducted at two different Kansas State University’s experiment fields 

in 2008-2009: the Ashland Bottoms research farm near Manhattan in Riley County, and the 

Kansas River Valley Experimental Field located 3.5 miles east of Silver Lake at the Paramore 

research site in Shawnee County. The predominant soil series for the locations were 

Bismarckgrove-Kimo Complex (fine-silty, smectic, mesic Aquertic Hapludolls), and Eudora 

series for each location respectively. The area of experimentation within each location was 146.3 

m wide by 36.5 m long with a previous crop (2007) of soybean and wheat at Ashland Bottoms 

and 146.3 m wide by 27.4 m long with a preceding crop (2007) of corn at Paramore.  

 Soil samples were taken across the field locations at the beginning of each year of the 

study prior to planting (14 May 2008 and 20 May 2009 at Paramore; 15 May 200 and 22 May 

2009 at Ashland Bottoms), and analyzed for pH, Phosphorus (P), Manganese (Mn), Amonium 

(NH4), Nitrate (NO3), Electric Conductivity (EC), Cation Exchange Capacity (CEC), Organic 

Matter (O.M.), total N, total P and texture (Table 2-1). pH was measured directly using a 1:1 

slurry of 5 g of prepared soil with deionized water and also with the SMP buffer technique 

(Schofield and Taylor, 1955). Soil phosphorus (P) content was measured by Melich III extraction 

(Mehlich, 1984). Mn (manganese) was extracted by the DTPA method and assessed by flame 

atomic absorption spectrometry (Lindsay and Norvell, 1978). NH4 and NO3 were analyzed by 

1M KCl and cadmium reduction (Huffman and Barbarick, 1981). EC (electric conductivity) was 

determined with a conductivity meter. CEC (cationic exchange capacity) was assessed by the 



 

98 

 

saturating ammonium acetate method (Rhoades, 1982). Organic matter (O.M.) was determined 

by the Wakly-Black procedure (Walkley, 1947). Total nitrogen and phosphorus were assessed 

with a modified Kjeldahl digestion technique. Texture was determined using sodium hexameta-

phosphate by the hydrometer method. 

Soil variables including Mn, P and pH that were considered to change the most under the 

prevalent field conditions were reassessed with a second set of soil samples taken before planting 

in the second year of study. 

 

Experimental design, soil and root sampling 

The experimental design used in both locations was a split plot design with four 

replications, where main plots consisted of four irrigation regimes conducted at different soybean 

growth stages as follows: non-, pre-flowering, R4-, full season irrigation. The subplots consist of 

two factors: amended and non-amended with a source of manganese (5% manganese 

glucoheptonate solution; ClawEL Manganese – Gold Label, Brandt Consolidated, Pleasant 

Plains, Illinois) applied at a rate of 5 lbs/A mixed with starter fertilizer  (10-34-0; 10 lbs/A), 

before planting in each year of the field experiment (Figure 2-2). 

Some irrigation treatments were not conducted imposed because of excess precipitation 

in parts of both growing seasons. In the year 2008, the pre-flowering irrigation treatment could 

not be imposed in either location. Thus, for data analysis, non-irrigated and pre-flowering 

irrigation treatments were combined. Only the R4 irrigation treatment was imposed at the 

Ashland Bottoms location and the Paramore field location remained constantly flooded for most 

of the season. During the field experiment, disease symptoms were not observed, because the 

prevalent weather conditions did not favor disease manifestation, although M. phaseolina was 

present in the soil and root infection did occur. 
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 Table 4-1. Averages of soil physicochemical properties for the two locations in two years (pre-planting soil samples). 

 

--- Correspond to soil variables not assessed in 2009 

P = corresponds to phosphorus, Mn = corresponds  to manganese, NH4 = corresponds to ammonium, NO3 = corresponds to nitrate, N = corresponds to 

nitrogen; P = corresponds to phosphorus; EC = corresponds to electric conductivity; CEC = corresponds to cation exchange capacity, OM = corresponds 

to organic matter. 

 

 

 

Year Location pH P Mn NH4 NO3 

Total 

N 

Total 

P EC CEC OM 

ppm mS/cm meq/100g (%) 

2008 
Ashland Bottoms 6.4 27.8 30.5 4.7 6.2 1000.4 398.6 0.2 16.9 2.2 

Paramore 6.2 37.1 19.4 3.6 6.7 770.8 362.9 0.2 10.7 1.4 

2009 
Ashland Bottoms 6.4 23.3 17.4 --- --- --- --- --- --- --- 

Paramore 6.1 35.3 20.5 --- --- --- --- --- --- --- 
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Figure 4-1. Plot layout and design of the field experiment (only showing replication 1). "+" = amended  with manganese, "-

" = non-amended with manganese at 5 lbs/A. Irrigation and manganese treatments were randomly assigned in the four 

replications across the field. 
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Table 4-2. Summary of weather data from the field locations Ashland Bottoms and Paramore in 2008 and 2009. 

                         

  Precipitation (mm)  Soil temperature (C)  Air temperature (C)  Relative Humidity (%) 

Location  Ashland  Paramore  Ashland  Paramore  Ashland  Paramore  Ashland  Paramore 

Year  2008 2009  2008 2009  2008 2009  2008 2009  2008 2009  2008 2009  2008 2009  2008 2009 

May  4 0  2 1  19 20  17 19  17 18  18 19  68 65  68 66 

June  10 7  3 5  25 25  24 25  23 24  24 24  73 73  74 75 

July  4 4  2 5  27 26  27 26  26 23  26 23  75 76  75 77 

August  4 4  1 3  27 25  26 25  24 23  24 23  74 76  75 76 

September  5 2  5 1  22 21  21 20  19 18  19 19  77 79  79 79 

October   2 2   3 1   16 12   15 12   13 9   13 10   71 77   73 77 

Average   5 3  3 3  23 22  22 21  20 19  21 20  73 74  74 75 

                         
Weather data were collected from the nearest meteorological station from each plot:  

- Weather data from Ashland Bottoms were collected from the Kansas State University Meteorological Station at Manhattan (KS) 

- Weather data from Paramore were collected from the Kansas State University Meteorological Station at Silver Lake (KS) 
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The soybean variety used for these experiments was NK S37-F7 (RR, SCN-R, SDS-

tolerant). Seed was treated with Apron XL, active ingredient mefenoxam (ISO-name: metalaxyl-

M), before planting to prevent seedling diseases and to provide a good germination rate. Seeds 

were planted at a density of 9 seeds/foot and at a row spaced at 30 inches for both locations. 

Additionally, a border space of four rows (120 inches) separated the main plots (e.g., irrigation 

treatments) (Figure 4-1).  

Samples were taken over time during two-year field study to examine M. phaseolina soil 

and root population dynamics within the experimental field locations. M. phaseolina soil 

populations were evaluated from a bulk soil samples that consisted of 5 cores removed with a 

steel probe to a depth of 20 cm. The first 4 cm of soil from each core sample were removed to 

discard the stubble; the probe was cleaned between each plot sampling (Figure 4-1).   

Soil sampling was done at pre-planting and post-harvest for the two locations in both 

years. Soil samples were transported to the greenhouse and dried at about 25-28°C for 2-3 days 

and refrigerated at 4°C for further processing.  

Ten soybean plants were uprooted arbitrarily across each subplot (consisting of four 

soybean rows per plot) at R2-R4 (full bloom to full pod, respectively) and R8 (full maturity) 

soybean plant development stages following the criteria established by Fehr et al. (1971). Entire 

plants were transported to the lab and the roots were cut off below the cotyledonary node. Each 

root was rinsed with tap water to eliminate soil residues. Plants collected at (R8) were also used 

for evaluation of plant yield. 

Sample processing, obtaining colony forming units (CFUs) 

M. phaseolina soil populations were measured from bulk soil samples composed of five 

20 cm cores collected within one of four subplot soybean rows. Each of the five soil cores were 

dried at room temperature, ground separately, and passed through a 2 mm sieve to remove the 

larger soil particles. Once the soil was sieved, a 10 g sub-sample from each of the five cores was 

taken to make a 50 g bulk soil sample. From this 50 g bulk soil sample M. phaseolina soil 

populations were evaluated. There were a total of 32 bulked soil samples replicated three times 

for each field location. 

M. phaseolina soil populations were estimated using the procedure described by Cloud 

(1991). Ten g of ground soil samples were blended in 250 ml of 0.5% NaOCl solution for 3 min, 
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with 30-sec idle intervals. The resulting soil slurry was poured into a 45 µm No325 sieve and 

rinsed with distilled water while gently shaking. The washed soil was concentrated in on side of 

the sieve using a squeeze bottle containing sterile-distilled water and transferred to a 50 ml 

plastic tube that was later filled with 50 ml of selective media (39 g/L PDA, 1mL/L tergitol, 40 

mg/L penicillin, 20 mg/L streptomycin, 20 mg/L tetracycline, 100mg/L rifampicin) and poured 

into five 100 mm-diameter petri dishes (Cloud, 1991; Mengistu et al., 2007). Petri dishes were 

placed in an incubator at 30°C in the dark. After five days CFUs were counted and converted to 

CFU/g of dried soil. Additionally, 10 g samples were taken from the soil bulk samples and 

placed in an oven at 105°C for 24 hours to estimate the soil gravimetric water content (Figure 3-

4). 

The level of M. phaseolina root severity was evaluated by splitting the taproot of each 

sample, and rating root discoloration caused by microsclerotia at the soybean growth stages 

previously mentioned using the root and stem severity scale by Mengistu et al., (2007) and Paris 

et al., (2006).  

Root colonization and M. phaseolina root population levels were estimated by grinding 

the split roots remaining after the severity evaluation. Ten soybean roots were ground with a 

UDY cyclone sample mill (Model 0.14, UDY Corporation, Fort Collins, Colorado), passing the 

samples through a 600 µm No30 sieve. All ten subplot roots were ground together to create a 

bulk sample. From the bulk sample three 0.05 g root tissue subsamples were used to estimate 

CFUs following a modification of the procedure described by Mengistu et al. (2007), Mihail 

(1992), and Pearson et al. (1984). The crushed tissue was blended in 250 mL of a 0.5% NaOCl 

solution for 3 min with 30-sec idle intervals, collected in a 45 µm sieve and rinsed with distilled 

water for 1 min. Using a squeeze bottle containing sterile-distilled water. The root tissue was 

concentrated in one side of the sieve and poured into a 50 mL sterile plastic tube. Afterwards, a 

rifampicin selective media, as described above, was added to each tube and this was poured in 

five 100 mm-diameter petri dishes, and placed in the incubator at 30°C in the dark for five days. 

After incubation, CFUs of M. phaseolina were counted and transformed to CFUs per gram of 

root tissue (Figure 3-4). 
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Data analysis 

Analysis of variance ANOVA was conducted using SAS version 9.2, (SAS institute Inc., 

Cary, North Carolina, USA) under the Proc Mixed. Response variables (M. phaseolina initial 

and final soil populations, root populations at R4 and R8 soybean reproductive stages, root 

severity at R8, secondary roots at R8, mechanical harvest and manual harvest) were 

logarithmically transformed to meet the assumptions of equal variances and normal distribution 

of data.  

Because the irrigation treatments were performed only in 2008 and did not have a 

significant impact on the response variables and the soil textures randomly distributed in the 

locations, years (2008 and 2009) and locations (Ashland Bottoms and Silver Lake) were 

considered as random factors and soil texture and manganese were consider as fixed factors in 

the ANOVA analysis using Proc Mixed protocol. 

Because plots at Ashland Bottoms location differed in cropping history (soybean and 

wheat), analysis of variance was also performed in order to find the possible effects of this factor 

on the response variables since the M. phaseolina soil and root populations can increase or 

decrease depending upon the previous crop. 

Correlations between the physicochemical variables obtained from the pre-planting soil 

samples in 2008 and 2009 and the response variables (M. phaseolina initial and final soil 

populations, root populations at R4 and R8 soybean reproductive stages, root severity at R8, 

secondary roots at R8, mechanical harvest and manual harvest) were performed using SAS 

system version 9.2, (SAS institute Inc., Cary, North Carolina, USA). Linear and second order 

polynomial regressions were developed in order to explore the relationships of M. phaseolina 

with soil physicochemical parameters.  

Results and discussion 

Effect of manganese on M. phaseolina soil and root populations and yield 

Manganese amendment did not have any impact on the soil and root M. phaseolina 

population or soybean yield (Table 4-3). Even though manganese was applied at pre-planting for 

two years, there was not a significant cumulative effect of this element in the soil; on the 

contrary, there was a decrease in the average Mn in the year 2009 in Ashland Bottoms. The 

average Mn content at Paramore soil remained constant (Table 4-1; Figure 4-2).  
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 These trends may be explained by the fact that Mn is less available in soils with higher 

contents of clay (Heitholt et al., 2002). The majority of plots at the Ashland Bottoms location 

contained clayey soils such as silty clay and clay loam and for the Paramore location soils 

possessed loam and sandy loam textures. There were not significant differences in the Mn 

content from amended and non-amended plots (Table 4-3). 

 

Effect of soil texture on M. phaseolina soil populations under field conditions 

Analysis from 2008 pre-planting soil samples indicated that there was variability in soil 

texture across the experimental plots for both locations. At Ashland Bottoms soil texture was 

diverse across the experimental plots including soil textures such as silty clay loam, loam, and 

silty clay. On the other hand, soil texture was more uniform across the experimental plots at 

Paramore, having only loam and sandy loam textures. However, the average soil composition for 

32 bulked soil samples (160 total samples) taken in the field was 20% sand, 52% silt, and 28% 

clay for Ashland Bottoms; and 34% sand, 50% silt, and 16% clay for Paramore (Figure 4-3). 

Figure 4-2. Soil manganese content at Ashland Bottoms and 

Paramore compared from 2008 to 2009. 
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Table 4-3. Significance of main effects and interactions for M. phaseolina soil and root populations and yield parameters.  

                              

   OVERALL ANOVA  OVERALL ANOVA (Split by location) 

RESPONSE 

VARIABLES † 

 Effects  Ashland Bottoms    Paramore  

 Mn  Soil texture  

Mn-Soil  

Texture  Mn  

Soil 

Texture  Mn  

Soil 

Texture 

Initial soil population  ns  **  ns  ns  ***  ns  ns 

Final soil population  ns  *  ns  ns  ns  ns  * 

Root population (R2-R4)  ns  ns  ns  ns  ns  ns  ns 

Root population (R8)  ns  ***  ns  ns  ***  ns  ns 

Root severity (R8)  ns  ***  ns  ns  ***  ns  * 

Secondary roots (R8)  ns  ns  ns  ns  ns  ns  ns 

Mechanical harvest  ns  ns  ns  ns  ns  ns  ns 

Plant yield   ns   ***   ns   ns   ***   ns   ns 

† Initial soil population = M. phaseolina soil population at pre-planting; Final soil population = M. phaseolina soil population at post-harvest; Root population 

(R2-R4) = M. phaseolina root population ("full bloom" to "full pod"), respectively; Root population (R8) = M. phaseolina root population at full maturity; Root 

severity (R8) = Root severity evaluated by a split-stem severity scale from 1 to 5 where 1 = no discoloration and 5 = highly discolored at full maturity soybean 

stage (see Mengistu et al., 2007); Secondary roots (R8) = Number of secondary roots at full maturity; Mechanical harvest = weight of soybean seeds obtained by 

harvesting whole plots with the combine; Yield = weight of soybean seeds obtained from ten plants arbitrarily selected on each plot. Response variables were 

logarithmically transformed. Manganese-soil texture interactions are not significant for all response variables in the ANOVAs split by location. Level of 

significance from F-tests are indicated by the asterisks: *, **, and *** correspond to p < 0.05, 0.01 and 0.001 respectively; ns = no significant difference. 
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The overall analysis of variance showed a significant effect of soil texture for most of the 

field variables determined. However there are some differences in the level of significance when 

the analysis was made by location, probably due to the differences in the soil textures between 

field locations as previously mentioned (Table 4-3). 

In general M. phaseolina soil populations remained steady during the two years of the 

field study. However, population sizes varied across soil textures. For Ashland Bottoms initial 

soil populations were higher in loam and silty clay loam soils. Loam soils in Paramore possessed 

higher densities of M. phaseolina than sandy loam soil; however, this difference was not 

significant (Figure 4-4). 

Overall, the coarser soil texture (loam) presented the highest densities of M. phaseolina. 

This effect may be attributed to the soil water holding capacity, which is negatively correlated 

with the percentage of sand; the higher the percentage of coarse sand, the lower the soil water 

holding capacity (Salter et al., 1966). For this reason, the lower soil water content supported 

higher germination percentages and production of secondary microsclerotia providing more 

optimum soil water content for M. phaseolina survival as reported by Collins et al. (1991) and 

Dhingra and Sinclair (1975). 

Reductions in M. phaseolina soil populations were observed between pre-planting (May) 

and post-harvest soil populations (October) for both locations and years. Similar findings were 

reported by Short et al. (1980) working with M. phaseolina-inoculated soils in a soybean field in 

Missouri. Numbers of germinable microsclerotia increased from January to April and latter 

declined on late October in a similar manner during two years.  

These fluctuations are mainly due to prolonged rainy periods; the greatesest drop in the 

population was observed at Ashland bottoms in the year 2008 from pre-planting to post-harvest. 

May and June above-average monthly precipitation: 4 mm and 10 mm, respectively (Table 4-2) 

(Figure 4-4). 
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Figure 4-3. Distributions of soil textures in each plot at the field locations in Kansas. Bars and numbers correspond to each plot (from 1 

to 32). Soil texture was determined using sodium hexametaphosphate analysis of the 2008 pre-planting soil samples.  
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Figure 4-4. Effects of soil texture on M. phaseolina soil populations at two locations. Vertical bars represent the 

standard deviation of the mean. 



 

110 

 

Effect of soil texture on M. phaseolina root populations and soybean yield 

Even though disease symptoms were not observable during the crop season, root 

infection did occur by the R2-R4 and R8 soybean stages when M. phaseolina was assessed. 

However, root populations at R2-R4 were lower than root populations close to the end of the 

season, near plant maturity (R8) (Figure 4-5).  

In the same manner, there was not a significant difference in root populations across soil 

textures at R2-R4 stages, but M. phaseolina root populations increased at R8 with significant 

differences across soils textures (Figure 4-5).  

According to the results, plant stress associated with low water-holding capacity soils has 

a great impact on M. phaseolina root populations from R2-R4 to R8. Low water holding capacity 

soils such as loam and sandy loam exhibited the greatest increase in the root population from R2-

R4 to R8. On the contrary, clayey soils with high water holding capacity such as silty clay and 

silty clay loam resulted in the smallest increase in root populations (Figure 4-5).  

These results may be attributed to higher water deficits presented in loam and sandy loam 

soils, producing higher root populations at the end of the crop season. In comparison, plants 

growing in finer textured soils, such as silty loam and silty clay had lower levels of M. 

phaseolina root infection since these soils offered more favorable soil moisture conditions. 

Kendig et al. (2008) described a gradual increase in the number of root CFUs under drought 

conditions from R1 to R8 in which root populations reach a maximum colonization at plant 

maturity (R8).  

Plant yield was impacted significantly by soil texture. The average seed weight obtained 

from soybean plants used for assessment of root populations and root severity at R8, indicated 

that soybeans on clayey soil textures yielded more seeds than those on sandy soil textures such as 

loam and sandy loam soils (Figure 4-6). 
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Figure 4-5. Impact of soil type on M. phaseolina root populations at R2-R4 ("R4") and R8 soybean 

stages. Vertical bars represent the standard deviation. Means with the same letter, for a soybean stage, 

are not significantly different at p < 0.05. 
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Figure 4-6. Effect of soil texture on soybean plant yield. Plant yield averages were obtained from the 

seed weight of ten arbitrarily selected soybean plants per plot. Vertical bars denote standard deviation. 

Means within a location, with the same letter, are not significantly different p < 0.05. 
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A closer view of M. phaseolina root populations at R8 and yield indicates a negative 

relationship. Increases in root populations at R8 lead to a decline in soybean yield, suggesting 

that yield is affected not only by water stress, but also by root colonization during water deficit 

(Short et al., 1980).   

Effect of irrigation on M. phaseolina root population and yield 

The nature of our experiment and the high level of rainfall present in the 2009 did not 

allow obtaining clear conclusions about the effect of irrigation treatments at different soybean 

stages on M. phaseolina root infection. However, interesting trends could be observed for both 

locations from yield averages in 2008, in which the following irrigation treatments were 

performed: non-irrigated, irrigation at R2-R4, and full-season irrigation) (Figure 4-7). 

Soybean yields were lower at Paramore than at Ashland Bottoms. This could be due, in 

part, to soil texture. Coarse-textured soils with low water holding capacity were predominant at 

the Paramore location, reducing the water availability to the plants and negatively impacting 

overall yield. In contrast, clayey fine-textured soils, present at Ashland Bottoms, have greater 

optimum water availability and a reduced water stress impact.  

The highest soybean plant yields were obtained from the full-season irrigated treatments 

in both locations. However, in Ashland Bottoms, non-irrigated plots also showed high yields, 

suggesting a low effect of water stress on the plants and higher levels of soil moisture during the 

cropping season. This is due the relatively high amount of moisture and moderate temperatures 

observed during both the 2008 and 2009 seasons (Table 4-2). 

Cropping history effect on M. phaseolina soil and root populations  

Plots at the Ashland Bottoms location had a different cropping history (wheat was 

planted in plots 1 - 20, and soybean was planted in plots 25 - 32) in the previous year (2007) 

where field experiments were performed (Figure 4 -2). Analysis of variance (ANOVA) showed 

significant effects of cropping history in the response variables evaluated at Ashland Bottoms 

(Table 4-4). 
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Figure 4-7. Effect of irrigation on plant yield (2008). Plant yield averages were obtained from the 

seed weight of ten arbitrarily selected soybean plants per plot. Vertical bars denote standard 

deviation.  
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Table 4-4. Effect of cropping history on M. phaseolina soil and root populations at Ashland 

Bottoms. 

              

RESPONSE VARIABLES† 
 Level of significance  Previous crops (2007) 

 F - tests  Soybean  Wheat 

Initial soil population  ***  1.170 a  1.007 b 

Final soil population  ns  0.910 a  0.848 a 

Root population (R2-R4)  ns  1.449 a  1.456 a 

Root population (R8)  ***  3.728 a  3.078 b 

Root severity (R8)  ***  0.554 a  0.462 b 

Secondary roots (R8)  ns  1.122 a  1.127 a 

Mechanical harvest  ns  1.641 a  1.652 a 

Plant yield   *   2.270 a   2.339 b 

       
† Initial soil population = M. phaseolina soil population at pre-planting (Log (1+CFUs / g of soil)); Final soil 

population = M. phaseolina soil population at post-harvest (Log (1+CFUs / g of soil)); Root population (R2-R4) = 

M. phaseolina root population (full bloom - full pod) respectively(Log (1+CFUs / g of root)), Root population (R8) 

= M. phaseolina root population at full maturity (1+CFUs / g of root)); Root severity (R8) = Root severity evaluated 

by scoring intensity of root discoloration from split roots, scales from 1 to 5, where 1 is no microsclerotia visible in 

the root tissue and 5 is highly darkened the root due to the microsclerotia embedded inside and outside of the root 

tissue (Log (severity sclale)); Secondary roots (R8) = Number of secondary roots at full maturity (Log(number of 

roots / plant)); Mechanical harvest = weight of soybean seeds obtained by harvesting with combine in whole plots 

(Log (seed weight (g))) ; Plant yield = weight of soybean seeds obtained from 10 plants arbitrarily selected on each 

plot (Log (seed weight (g))). Level of significance from F-tests are indicated by the asterisks, *, **, and ***, which 

correspond to p < 0.05, 0.01 and 0.001, respectively; ns = no significant difference. Different letters denote 

significant differences between previous crops. 

 

M. phaseolina soil populations were affected by cropping history at the experimental 

sites. Higher soil populations were found in plots where soybeans were grown previously, 

compared to soil populations in previously planted wheat. The fact that a M. phaseolina non-host 

was planted during the previous year likely reduced the inoculum survival of M. phaseolina in 

soil.  

Soil populations from the non-transformed data indicated a difference of 5 CFUs/g of soil 

more in the plots where soybeans were planted previously compared to plots previously planted 

with wheat. M. phaseolina survives well in soybean residues in soil. The presence of such 

residues increase M. phaseolina soil populations when microsclerotia are released into the soil as 

residue is decomposed (Short et al., 1980).  

Higher microsclerotia counts were found in soybean monoculture than when soybean was 

grown every other year or in rotation win a non-host. Further, M. phaseolina soil and root 
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populations increase as soybeans appear more frequently in rotations as reported by Francl et al. 

(1988).  

Soybean crop residues from 2007 may have increased the soil inoculum level in these 

plots, leading to a higher level of infection that were more evident in later stages of soybean 

development when soybean have passed through more stress during the crop season This may 

help explain the fact that there was no effect of previous crops at the R2-R4 soybean stages 

(Table 4-4).  

Detrimental effects on yield were observed in plots where soybeans were planted in 

previous years. High levels of inoculum and conditions of drought stress due to the nature of the 

soil texture (loam) in these particular plots predisposed the plants to a higher level of infection 

compared to the more favorable conditions in the plots where wheat was planted. In addition, 

some authors have found a direct relation between soil populations and yield reduction (Short et 

al., 1980). 

 

Conclusions 

There was not any effect of manganese soil amendment at pre-planting on suppressing M. 

phaseolina soil and root populations or a positive impact on soybean yield. There was no an 

accumulative effect of the manganese in soil after the subsequent amendments done at pre-

planting in 2008 and 2009, on the contrary, there was a decrease in the manganese content in the 

soil at Ashland Bottoms location.  

Results of M. phaseolina soil population dynamics were different for greenhouse 

experiments and field experiments. In the greenhouse, sandy soils had a negative impact on the 

fungal population; conversely, in the field studies it was observed that sandier soils had a 

positive effect on soil populations of the pathogen. Loamy soils (the sandiest soil texture found 

in the experimental plots) contained the highest populations. However, the cause of this contrary 

result is likely due to the cropping history present at Ashland Bottoms, which caused significant 

differences in the soil population. 

It is important to take into consideration many variables, including cropping history, that 

influence the behavior of M. phaseolina under field conditions. Soybean planted as a previous 

crop in Ashland affected the M. phaseolina soil populations and consequently the root infection 
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of soybean plant grown on these plots previously planted on soybeans. On the contrary, a 

previous crop such as wheat, a M. phaseolina non-host, reduced the soil populations and root 

infection in the soybeans planted the subsequent years. These are important factors that must be 

taken into consideration as they may affect the analysis or treatment performance of following 

experiments.    

It was not possible to estimate a clear effect of the irrigation treatments planned in the 

field experiments due to the rainfall presented during the two years of study. However, it seems 

that the full season irrigation resulted beneficial for the total average yield and also reduced the 

M. phaseolina soil and root populations compared to the non-irrigated treatment. 

M. phaseolina root populations and root severity at maturity (R8) presented a highly 

significant correlation (p < 0.0001); high root populations were obtained in roots with high 

severity by visually rating the scale of discoloration. In summary, the root severity scale 

(Mengistu et al., 2007) can give a good idea of the level of root population at least in the stage in 

which the evaluations were performed. 

 

Recommendations 

Manganese has been reported to have positive effects on yield and also to suppress root 

infection by different soil borne pathogens. It was shown in our experiments that manganese soil 

amendments did not have any impact on yield or M. phaseolina soil and root populations. 

However, it remains the question whether or not other sources of manganese instead of 

glucoheptonate such as manganese sulfate would have a different outcome for helping in the 

control of charcoal rot of soybean.  

Natural soil populations of M. phaseolina vary in the horizontal and vertical soil profile 

and this could add some complexity to the data analysis in field experiments. To avoid this 

natural variation that interferes with the proper data analysis of this soil borne pathogen, future 

experiments may include M. phaseolina artificial soil inoculation. Infested Japanese millet is a 

good quality source of M. phaseolina inoculum that can be produced in large quantities and can 

be incorporated into the soil at pre-planting. This approach may allow the study of charcoal rot 

of soybean at different levels of inoculum across experimental field. 
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M. phaseolina soil and root populations estimates and the physicochemical soil data 

collected in the field experiments during 2008 and 2009 in both locations resulted to be complex 

and the analysis of variance and correlations may be not enough to have the most proper 

statistical analysis. However, statistical methodologies such as spatiotemporal modeling or 

spatial statistics could serve as a better approach for data analysis since data were collected over 

time in a spatial pattern. In addition, natural soil conditions can vary enough in an experimental 

field, as it was the case for the soil texture in the locations where the field experiments were 

performed, in which conventional statistics (ANOVAs) are not a proper way to analyze this level 

of complexity.  

Future experiments should explore charcoal rot of soybean under controlled conditions in 

later vegetative stages to estimate the effect of soil volumetric water content and different soil 

textures on M. phaseolina soil populations and root infection in longer periods of time. It may 

also be important to establish amendments of manganese fertilizer under greenhouse conditions 

in pots with soils infested with M. phaseolina to observe its impact on the fungal soil populations 

and root infection and probably elucidate what are the best environmental conditions in which 

manganese could be an option for the control of charcoal rot of soybean.  

Soil steaming is not enough to get rid of all soil inhabiting fungi, for this reason when 

studying M. phaseolina soil populations it is going to be imperative for future experiments to 

assess the soil populations of other soil microorganisms that may suppress the viability of 

microsclerotia in soil; this may help to get a more clear interpretation of M. phaseolina soil 

population dynamics.  

M. phaseolina soil populations and root infection of soybean should be evaluated in a 

more broad range of soil textures. Including soil textures such as clay, sandy clay and clay loam 

in the experiments may allow to assess the impact of other physicochemical soil properties 

linked to soil texture such as organic matter, cation exchange capacity and water holding 

capacity that affect the levels of root infection and soil populations. Other soil properties that 

impact charcoal rot diseased processes such as soil bulk density and level of soil oxygen should 

be taken in consideration in future experiments since M. phaseolina is considered to be a 

facultative anaerobe and its survival in soil is affected by oxygen concentrations. 

Since we were able to set variables such as M. phaseolina inoculum and soil volumetric 

water content accurately in the experiments, it should be good idea to explore the response of 
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different soybeans varieties to charcoal rot in these experimental conditions. A screening of 

soybean varieties resistant to drought with some degree of moderate resistance to charcoal rot 

may be of interest to growers who struggle with the consequences of climatic change, high 

temperatures and drought. 
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Appendix A - Calibration curves of soil volumetric water content in 

different soil textures in pots. 

Calibration curves were constructed to reach tree different soil volumetric water contents 

pot saturation (—PS), pot capacity (
…

PC), permanent wilting point (---PWP) in five soil textures 

(sand, loamy sand, sandy loam, loam and silt loam).  
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Appendix B - Relationships between root length and M. phaseolina 

root infection 

Second grade polynomial regressions between soybean root length and root infection 

split by soybean stages V1 and V2 and soil volumetric water contents in sand texture. 

 

 

 

 

 

 

 

 

 

Overall regression includes data from V1 and V2 soybean stages, soil volumetric water 

contents pot saturation (—PS), pot capacity (
…

PC), permanent wilting point (---PWP) on M. 

phaseolina infested soils. 
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V1 soybean stage polynomial regression includes data from soil volumetric water 

contents pot saturation (—PS), pot capacity (
…

PC), permanent wilting point (---PWP) on M. 

phaseolina infested soils. 

 

 

 

 

 

 

 

 

 

V2 soybean stage polynomial regression includes data from soil volumetric water 

contents pot saturation (—PS), pot capacity (
…

PC), permanent wilting point (---PWP) on M. 

phaseolina infested soils. 

 

 

 

 

 

 

 

 

 

Pot saturation (PS) polynomial regression includes data from soybean stages V1 and V2 

on M. phaseolina infested soils. 
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Pot capacity (PC) polynomial regression includes data from soybean stages V1 and V2 

on M. phaseolina infested soils. 

 

 

 

 

 

 

 

 

 

Permanent wilting point (PWP) polynomial regression includes data from soybean stages 

V1 and V2 on M. phaseolina infested soils. 

 

 

 


