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A Simply-Supported Barrel Shell Roof

SYNOPSIS

The purpose of this report is to analyse and design a simply-

supported barrel shell roof by the method suggested in the ASCE

Manual No. 31 published by the American Society of Civil Engineers.

This paper presents the derivation of the internal stress equa-

tions by using the membrane theory. The corrective internal stress

equations produced by the bending theory sre shown. A discussion

of the advantages of using shell structures, the development and

improvement of the shell theories, and the structural behavior of

the barrel shell are included. A design example is given, following

the procedures suggested by the above-named manual. The tables and

charts in the Manual will be used to facilitate the work of design.



INTRODUCTION

Constructing roofs for large unobstructed areas with a minimum

of material has been a goal of engineers for years. The use of deep

girders, trusses, arches, etc., makes it possible to attain this

goal, but often the appearance of the resulting structures does not

satisfy the architects. Thin concrete shells built in the shape of

domes and barrel roofs offer the best possibility of achieving the

architectural fashion as well as satisfying engineering demands.

In recent years, both in the United States and abroad, shells have

been utilized in modern architectural design and the competition in

architectural showmanship has resulted in complicated shell design.

As a result there is a pressing demand for basic information about

shells on the part of consulting engineers who face the double task

of designing the shells and of explaining them to architects who

still retain their own ideas. Therefore, the analysis of thin

shells has become an important part of structural analysis.

Shell construction is economical. Even though the cost of form-

work and scaffolding increases rapidly with the span, most shell

structures are multi-unit, so it is usually possible to re-use the

same forms in constructing each unit of the structure, which makes

the overall cost lower. That is why concrete shells are the favor-

ite forms of structures adopted by engineers and architects. Shell

construction is now expanding rapidly. Different forms of shell

roofs can be seen all over the world. In the U. S. alone, over 12

million sq. ft. of shell roofs have already been constructed (3).

^Numbers in parentheses refer to items in list of references.



THE HISTORY OF SHELL ROOF CONSTRUCTION
AND DESIGN THEORIES

The original work on shell theory was done by G. Lame and E.

Clapeyron of Germany (2), who in 1828 produced the "membrane analogy"

in which a shell was considered capable of resisting external loads

by direct stresses unaccompanied by any bending.

During the late nineteenth century, G. B. Airy and A. E. H.

Love of England (5) made a more accurate analysis than the membrane

analogy by taking the shearing forces and moments into consideration.

Following this development, Carl Zeiss of Germany (2) produced the

mathematical equations based on Love's theory for practical shell

design. These formulae were made use of by Dischinger (2), who in

1923 attempted the design of a shell to cover a rectangular floor

area in Germany, but the first attempt failed because the difficul-

ties of mathematical computation became too great for solution. In

the following year, a simplified version of the design was attempted

successfully. In 1933, Finsterwalder of Germany (2) presented an

approximate theory which involved displacements and which was proved

by experiments. In 193&, H. Schorer (8) of the United States fur-

ther improved Finsterwalder 's equations. Since that time, shell

analyses have been studied intensively by many investigators, such

as Jakobsen (5) > Fliiger (6), and Timoshenko (1) and various improved

theories have been published. The American Society of Civil Engineers

published a manual (2) in 1952 in which were presented a set of

practical formulae and numerical tables for cylindrical shell de-

sign. This manual is extremely useful and many designers consider

it a valuable hand book for shell design.



STRUCTURAL BEHAVIOR OP A SIMPLY- SUPPORTED BARREL SHELL

Structural shells can be divided into three general classes

1. Cylindrical shells; e. g., barrel shells (Pig. 1).

2. Shells of revolution; e. g., domes (Pig. 2).

3. Shells formed by double curves; e. g., hyperbolic parab-

oloids (Pig. 3 ) •

Pig. 1. Barrel
Shell

Pig. 2. Dome

CURVE a

Pig. 3. Hyperbolic
Paraboloid Shell

This report deals with a simply- supported shell of the first

type. Although the barrel shell is strictly a three-dimensional

structure , its structural behavior can be examined as a two dimen-

sional problem by the simple beam theory. Longitudinally, the

barrel shell of Fig. 1 can be considered as a beam supported by

tvjo transverse supports. This visualized beam (the shell) is

different from an ordinary beam because it has a thin curved-slab

cross section. When this beam is subjected to load applied along

its longitudinal span, it produces bending stresses in the shell.

These are called direct stresses, T-^, as if they "were flexural

stresses, f c , in a beam. At any cross section in an ordinary beam

these bending stresses are always linear, while in the shell, they



change as the ratio of the radius to the., length increases. The

variation of direct stresses and the ratio of the radius to the

length can be best illustrated by curves shown in Fig. 4 . The

-lb

Tx

L = span length
t = thickness of slab
y = distance measured from the edge
h = height of the crown
Tx= direct stress

Fig. I4 . Longitudinal stress distribution corresponds to
the change of radius to length.

direct stress is linear (see the shaded area, which is equivalent

to the fiber stress of an ordinary beam) when the span length of

the shell exceeds five times the radius, i. e., r/L is less than

0.2. For larger values of r/L, the direct stress at the lower edge

is greater than that given by an ordinary beam theory. This incre-

ment of stress at the free edge, indicating that additional forces

are present at the edge, is necessary for equilibrium.

The behavior of the shell in the transverse direction exhibits

a distinctive action. For a beam, the transverse loads are resisted
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by the development of bending and shear stresses. A plate is liken-

ed to a two-dimensional beam and resists transverse loads by two-

dimensional bending and shear (Pig. 5) j whereas a shell ? s resistance

to load is through tension and compression as well as small bending

moments (Pig. 6). In order to illustrate more clearly how the in-

ternal forces, due to the applied loads, operate in the transverse

direction, a typical shell strip is shown in Pig. 7. The normal

REACTIONS

LOAD

Pig. 5. Plate under applied
load .

LOAD

M_ REACTIONS

Pie:. 6. Shell subjected
to applied load

NORMAL COMPOWEMT

HORIZONTAL COMPONENT

EXTERNAL LOAl>

Pig. 7. Transverse action of a unit shell strip.

component of the external load is resisted by the vertical component

of the transverse force, Tv , on the radial sections, while the

horizontal component of the external load is resisted by the shear-

ing forces and the transverse forces. If face BD is taken at the
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lower edge of the shell, then the radial moment, Mj , equals the

difference between the moment due to external load acting on the

unit strip and the moment due to the tangential shears, S. This

radial moment at any point is always acting counterclockwise or neg-

ative, and in most cases is insignificant

.

Besides the longitudinal and transverse action, the boundarv

displacements and reactions should be given much attention. The

edges of the barrel shell in this report are considered as being

without restrictions (free). These free edges are the major struc-

tural weaknesses in the shell, and thus many problems arise, such

as cracking and deflection due to applied loads and the transmission

of internal stresses along the edges. These weaknesses can be over-

come either by supplying beams along the edges or by thickening the

edges. The latter form of reinforcement is used in this paper.

At the ends, the barrel shell is considered to be simply sup-

ported by two end diaphragms (Fig. 8). These diaphragms are assumed

to be flexible in the longitudinal direction, but rigid in resisting

loads in the plane of the- diaphragms

.

ACTUAL DEFLECTION

A

r~z?
I ASSUMED DEFLECTION
I

J

nJ
END DIAPHRAGM SHELL

7&

Fig. 8. Flexural deflection at supports.



METHODS OF ANALYSIS

There are three general methods that can be used in the analy-

sis of barrel shells:

1. "Exact" solutions of the differential equations for given

boundary conditions.

2. Application of the strength of materials beam theory.

3. The method outlined in ASCE Manual Ho. 31.

In the first method, eleven equations due to the applied load

in terms of direct forces, shear forces, bending moments and dis-

placements are first derived. By successive differential elimina-

tion and applying suitable boundary conditions, 8n eighth-order

compatibility equation in terms of one variable is then obtained.

The general solution of this compatibility equation involves eight

unknown constants. Determining these eight constants requires a

lot of tedious computation and consumes innumerable hours. The

equations involved in this method are so complicated that it is not

practical for shell design purposes.

In the second method, the shell is assumed to act 8s a beam of

circular cross section spanning the two end diaphragms. Thus, the

longitudinal moment is determined as for a simply-supported beam,

and the longitudinal stresses are determined from the moment of

inertia of the cross-section. Unfortunately, this method is unable

to predict the transverse bending moment, M^ , and is limited to

the analysis of long shells.

The two above-mentioned methods have vital weaknesses. They

are either complicated or uncertain. Thus, a systematic and complete
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analysis is desired. The ASCE Manual No. 31 presents a method

which i3 considered sound and easy for barrel shell design. It is

the purpose of this paper to present the ASCE method.

The ASCE Manual states, "Contrary to a popular misconception,

the analysis of a concrete shell entails no store computation and

time than the analysis by elastic weights of an ordinary indeter-

minate structure." In this method, the procedures of analysis of

a thin barrel shell are the same 8s the analysis of an ordinary

indeterminate structure. The preliminary step (called "membrane

analysis") is that the surface load is assumed to be transmitted to

the supports by membrane stresses (direct stresses) only. The mem-

brane stresses cause displacements and reactions to occur along the

longitudinal edges of the shell, which do not comply with the bound-

ary conditions. This is equivalent to the first step in the analysis

of an indeterminate structure, that is removing some redundant forms

to make the structure determinate, thereby allowing rotation and

displacement to occur at the supports. To satisfy the boundary dis-

placements and reactions, the following step is to apply line loads

along the longitudinal edges of the shell by using the bending the-

ory. Due to the line load not only direct stresses and shearing

stresses appear, but bending moments will also be produced. The

second step is similar to applying reactions to the ordinary in-

determinate structure so as to bring the boundary back to its orig-

inal position. Finally, the stresses induced by the line loads are

added to the previously calculated membrane stresses to obtain the

final stresses. This is the same as the last step in the analysis



of the indeterminate structure, that is summing the stresses found

in the determinate state and those produced by the redundants.

Thus, the procedures of analysis of a simply- supported barrel

shell with free edges can be summarized as follows:

1. Find the membrane stresses (membrane theory).

2. Correct the membrane stresses for effects produced by the

line load acting along the free edges (bending theory).

3. Add the corrections and the membrsne stresses to obtain

the final stresses.
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INTERNAL STRESSES DUE TO SURFACE LOAD SOLVED
BY MEMBRANE THEORY

In the membrane theory, all forces are assumed to lie in the

shell surface and no bending moments are deemed to exist. Thus,

only three forces: T^, TU 8nd S are assumed to act on a shell ele-

ment 88 shown in Fig. 9. The direct force component T^ and Ij, ,

measured in pounds per unit length, are positive when they create

tension. The shearing force, S, also measured in pounds per unit

length, is positive when it produces tension in the diagonal direc-

tion of increasing values of X and ^> . The surface load R, in

pounds per unit area acting radially, is considered positive when

it acts outwardly. The surface load j$ , likewise measured in pounds

per unit area, is positive when it acts clockwise in tangential

direction.

The equilibrium equations of the element in three directions,

radial, tangential and transverse, are:

In the radial direction (Fig. 9b)

(T^ + -|^- d<j> ) dX sin ^ + T^ dX sin lil - Rrd (j> dX

=: o la

taking sin i^- = ^J-, Eq. la becomes

(iy + y + tY d i )
dX

^f~
- Rrd / dX = ° lb

1 TIgnoring the higher order differential term — d and

canceling dXd^ , we obtain

Ty - Rr =
y
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*ft<*

(t>)

where

1*
nnx
s

L
r
t

^

ft

the transverse direction.
the longitudinal direction.

= the direct force component in
= the direct force component in
= the tangential shearing force.
= length of the shell between supports.
= radius of the shell.
= thickness of the shell.
= longitudinal distance measured from the left support.
- angle measured from the right edge of the shell.
= angle substended by the edge of the shell measured from

the ccntorline axis.
= surface load acting normal to the shell.
= surface load acting parallel to the shell.

Fig. 9. Membrane forces per unit length acting upon a differen-
tial element.
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or

TU = Rr lc

In the tangential direction (Pig. 9c)

(S + JL* dX) rd
f>

- Srd <j> + (T^ + f^J" d j> ) cos &&• ^

- 1^ cos ^f- dX - § r-d $ dX = 2a

taking cos 4?- = 1, Eq. 2a may be written as
c

-i-
2

- rd<£ dX + ^-~ d <£ dX - $ rdrfdX =
<?X r

a<^> '
*

or

as
. r JLSt - $ r = 2b

ax a<^ *

Integrating Eq. 2b to obtain S, we get

S = - I
J
£2jl dX + / § dX + fx (<£) 2c

In the longitudinal direction (Fig. 8a)

(Tx + -j-| dX) rd^* Txrd f
+ ( s + "^ d ^ ) dX " SdX = — 3a

Simplifying Eq. 3a we find that

or

prefix* !f if« -o

7? * If - a 3b

Integrating Eq. 3b to obtain 3Sr, gives
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TX = " rjff + f2<?> 3c

The forces T^ , S and T^ can be obtained if we assign proper

values to R and 5 . The arbitrary functions fi(f) and f2(f) in

equations 2c and 3c represent functions of the variable^, and their

values depend on the boundary conditions.

In general, the load on the shell is assumed symmetrical about

the crown in the transverse direction and is assumed to vary as

sin °JL£ or cos BJlA in the longitudinal direction (n = 1, 3» 5, It

etc.) The reason for using a sinusoidal load instead of an ordinary

uniform load is that the second principal step in shell analysis

involving the application of corrective edge loads cannot be accom-

plished unless th^se edge loads bvq sinusoidal in shape. There-

fore, to achieve compatibility of stresses produced by both edge

and surface loads, the surface load is also assumed to be sinusoidal.

This sinusoidal load can be represented by a series which is called

"Fourier series." The Fourier series for a uniform load equals:

P , JtZ (sin JLS + I Bin i!LS + 1 aln 5£X + + I

sin —r— ) l|a

or

px = ¥ £ i am jues M>
•T

AJ n
l

n = 1,3,5

For common practical design purposes, only the first term of the

series is used.
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In order to compare the flexural effects of both types of

loads, two simple beams supporting sinusoidal and uniform loads

are shown in Fig. 10a.

-ii4ip=ix

r r

rfrrr

i \ \ \ \~T~~\
$17

— X
f/W r^r

T L-

(A) i»

P 1
Shear (uniform) : vx = or L =

"2
=

2
= °*

Shear (sinusoidal): V\ _
q

= O.4O5

PL h „„ a TTX 1 U
or t = "=r- x-r cos -^— = _ x —

Moment (uniform): MY . ~L = ft ?L^ = 0.125La -
2

T 2

d

Moment (sinusoidal): My — L - -

—

-x x rr~ sin —r

—

A
2 T[ 2 ll

^

= 0.128L2

Deflection (uniform): Yv _
TV —

r _ 5 ^ _ 4

38i| EI EI

Deflection (sinusoidal): Yx _ k = -rr 377 x

[

v T.k - TTX

ax-^x|I = 0.013

T[4 M L
x

T^

Pig. 10. A simple beam subjected to (a) uniform load and
(b) sinusoidal load.

Results of this comparison indicate that good agreement is

obtained for moments and deflections of beams with only the first

term of the Fourier series. This same trend holds for the shell.

To obtain the membrane stresses due to surface loads, two

types of loading are investigated as follows:
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A. Dead load membrane stresses.

From Pig. lie, we find that

R = - Pd cos (<£k -<j>) sin SO

and

$ • - P
d sin (4 -

<f>)
sin £JL£.

Substituting the value of R in Eq. la, we obtain

T^ * - P
d r cos (<£k -^>) sin UlL* -. £a

' Li

which, when substituted in Eq. 2c, gives

- - | /" pa r ^ c °s <ric -?> sln H? dX +/ P
a

sin (fk -4>) sin MI dX + f1 U) 6a
L

Differentiating Eq. 6a with respect to and integrating the re-

sulting expressions with respect to X,

S = Pd r ||){C sin (4 *j\ ( - ~ cos M^)] + [sin (^ -^)

or

(-HT^^)])^! <*>'

S = - P
d

r (|) (J^ [sin (fk -^) cos J3J££J+ *X ty)
6b

When symmetrically loaded, S = when X = 5 and n = 1, it is found

from Eq. 6b that
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tiih

P=P<s;n^

TTTrT

(a) (b)

'ig. 11. A simply supported barrel shell subject to dead load

nTrx

LU
P-ftSin™

1
I I I 1 1 i j ) j]

7/777""
~frrVT

(a)

,R cosVjii-#; sin^
v/|^PttCosc<35

fe
-^)sin a?i

t

(b)

Fig. 12. A simply supported barrel shell subject to uniform
live load.
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Hence,

S = - Pd r (|) i-L.) i sin <<f>k
- ^) cos M-£> 6c

Substituting Eq. 6c in Eq. 3c, we get

f2 (^) 7s

and after integrating -with respect to X, Eq. 7a becomes

T* " P
a r Cjf) (^H (^k ~^> (- BT Sin ^O

+ f2 (<J>)

or

TX = - p
d r (?)

2
(-»*-») cos ^k - fo sin H1 + f2 <+> - ?b
n^ 7T * «

For a simply supported shell, T^ = at the support when X =

or X = L, Eq. 7b yields

t2 (<f>> = °-

Thus:

TX = - Pd r j^
2
<-
a
L
f) cos (<£k -f>)

sin Ml 7c

B. Uniform live load membrane stresses.

Prom Pig. 12c, it is seen that

R = - Pu cos 2 ifk ~f ) sin SO

and
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5 = Pu cos (^ -<£) sin (<Pk -</>) sin S-O.
.

With the value of R, Eq. la becomes

?£ = - pu r cos2 (^ - ^) sin £IL£ - 8a

Substituting the T value in Eq. 2c yields

!IL£ dX + / Pu

(«^k -^) sin (^k m<f>) sin £iL£ dX + f x (^>) 9a

Differentiating Eq. 9a with respect to ^6 and integrating the re-

sulting expressions with respect to X, we find

S = Pu r (£){*/ 2 cos (<^k *j>) sin (< k̂
- <£ ) sin &

/cos (<k -</) sin
(<f>k -</>) sin S^ ) + fj

(<f)

HdX +

or

S = - Pu r (k) _J_ cos (4. -^ ) sin (<L - ^) cos BJSJku r n ?] * ' '* ' L

+ fi (^) 9b

Because of symmetry, S = at X = t, it is found by Eq. 9b that

fl («£) =

Therefore:

s = " pu r (?) (^) cos (^ - ^) si"
(ftc

- ^ )
cos ai5 - 9c
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Then by substituting Eq. 9c in Eq. 3c, the following value of Tx

can be obtained.

TX = "

\J
* *>u r (*) (^) J^. cos (^ -^) sin (f k -/)

cos B-3^ dX + f2 (<j>) 10a

Differentiating Eq, 10a with respect to <£> gives

dX + f2
(cj>)

and integrating T^ with respect to X, we get

TX = "Pur (

7^T ) (^)
2
[

cos2 (^ „<f>)
- sin2 (^ m </>)

sin ^~J+ f2 (f ) 10b

For simple supports, T^ = at X = or X = L. Hence, from Eq. 10b

f2 (f)
=

Thus:

Tx = " Pu r (^T2 ) (r
)2 I cos2 (<^ -^ " sin2 (^k "^

sin £JLSj. 10c

Equations 5a » 6c, 7c, 8a, 9c and 10c may be rearranged by taking

n = 1 and written as follows:

T^ = Pd r x (-) coefficient x sin -££ 5b

s = pd r E (k) x (-) coefficient] cos J^S 6d

TX " pd r L(p)
2 x (*) coefficient] sin JL£ 7d
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Ti, m P^ r x (-) coefficient x sin 2L£ — 8b

S = Pu r [(£) x (-) coefficient] cos 4~ 9d

TX = pu r H(r)
2 x ( ~) coefficientJ sin 5~ lOd

For the purpose of completeness, the displacements, a V and

A H, in the t8ngenti8l and radial direction, due to the surface

loads are listed as follows:

* v " - ?
d * £ &k^ Cl 2 a2 IT 2

(£)
2
J sin (^ - ^)

sin IL2U lla
L

* H - - Pa r
fc

(|)1 jJLj L 1 * 2 "2 rr 2 (g)2 °^E-i (^J

cos (^ -f ) sin £-3^ 12a

and

* v - - pu r fe *>* 3J^I
ooa (*k "^ sln (^ - ^>

L2 + t
aj^:

)
2
J«i» *$* 138

'H = -Pa r^ (^ -j-£_{[cos
2 (4-^) - sin? (^ - f

)

x[ 2 + {&|5)2 + £
{^k cos (^_^J sir

,n2£X„
11( ,

These displacement equations 8re derived from the bending

theory which will be discussed in the next section. The formulae

for the displacements are inserted here because they are produced
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by surface loads. Their simplified forms may be written with

(n = 1):

AV = T* r
[" (2£_)2 + 2 + ^r^ x ( + ) coefficient]
*- TT L tt4 L

and

d
r3tE

L vf L rT

si „ Jll lit.

A H = Pd r 4^~ [(£)** x (+) coefficient] sin £1 12b
r-^tE *•

^V = P„ r JJL r 1 + I (iLL) 2 * -I (4^)^] x ( + ) coefficient
r3tE L 2 L 12

TT Xx sin '- -.«•.-»•—«••--.«.—.-.-.---«.--.-««.-——-.--.------.--- 13b
L

4H = Pa r -jL ({£)** x (+) coefficient +[l + \ i^) 2

r-3tE L t 2 L

+ || C^) 1
*] x (-) coefficeint] sin JLS tyfe

Equations 5b, 6d, 7d, 8b, 9d, lOd, lib, 12b, 13b and ll+b

mentioned above are the design formulae for the simply-supported

barrel shell. The coefficients of the formulae depend on the vari-

able (Pk -^) and they are given in Table IB of the ASCE Manual,

No. 31.
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INTERNAL STRESSES DUE TO CORRECTIVE LINE LOAD SOLVED
BY THE BENDING THEORY

The previous membrane analysis gives transverse and shearing

forces as well as displacements occurring along the longitudinal

edge. In other words, the statical requirements of the boundary

conditions of the shell are unfulfilled. To satisfy the require-

ments of statics, line loads must be applied.

For a single barrel with free edges, subject to a symmetrical

load, the corrective line loads will consist of a tangential trans-

verse force, a radial shearing force, a longitudinal force and a

moment normal to the edge. The first two mentioned forces have been

resolved into vertical, Vl, and horizontal, HL , line loads as shown

in Fig. 13a and 13b; the other two, shear force, S, and moment, ML ,

are shown in Fig. 13c and 13d. These line forces must be equal and

opposite in direction to those boundary forces, so thst the bound-

ary conditions of the free edges are consistent. The applied line

loads produce not merely direct forces and bending moments but also

deformations as well (Fig. ll|). In general, only T
^ , Tx , S and Mj,

will be considered. The value of the other bending moments and

force components are omitted because they are insignificant. The

determination of the internal forces produced by the line loads

makes use of the exact solution of differential equations (bending

theory). As mentioned before, it is not the aim of this paper to

present this theory, but for the sake of the design example given

in the following section, equations of T^ , Tx, S snd M>>, which were

found by the bending theory, are as follows:
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(a) (b)

(a)
(b)
(c)
(d)

(c)

Due to vertical line load.
Due to horizontal line load.
Due to shear line load.
Due to moment line load

.

(d)

Fig. 13. The line loads acting on the longitudinal edge
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where
M^ = bending momen

u
V
w
Q

z on
moment on th

the radial face.
transverse face.

torsion moment

.

r adial shearing
the radial shearing

displacement of
displac nt of

te displace; . of

radial face.
longitudinal face.

longitudinal direction.
1 in the tangential direction.

the shell in the radial direction.

force en the
force on the
the shel!

= rotation of the shell.

. 1 . Internal stresses produced by the line loads.
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(1) Vertical line load, VL :

Tx VL [ (^)
2 x coefficient (1)] sin -O 1$BL

s = vl[^ x coefficient (2)] cos ILi 15b

T
^
= VL x coefficient (3) x sin &£ i£c

P'U
= VL L

r x coefficient (!$)] sin i^ i£d

(2) Horizontal line load, HL :

TX « %[(|) 2 x coefficient (5)] sin -El - i 6a
Li

S * HL[7 x coefficient (6) ]cos -12 16b

T4= Hl x coefficient (7) x sin ti 16c

Mi s HL [r x coefficient (8) 1 sin -5-£ I6d

(3) Shear line load, SL :

TX = SL [ (^)
2 x coefficient (9)] sin i£ l 7a

S ss slL^ x coefficient (10) J cos JLS l 7br L

T4
= SL x coefficient (11) x sin -0L2 17c

Li

M
<j>
* SL L r x coefficient (12) ] sin JUL l 7d

(k) Moment line load, ML :

•hjr

TX zrl (~)
2 x coefficient (13) ] sin 11 i8a

ML _r
s = r~L~ x coefficient (1J4)] cos JL£ 18b

Ml tty
T
f
* 7" x coefficient (15) x sin ^& 18c
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M^ = M^ x coefficient (16) x sin &•£ l8d

The equations of the def oi'raations £ V and a H in the W and V

directions were presented previously.

The coefficients for determining internal forces and moments

of the above formulae are given in Tables 2A and 2B of ASCE Manual,

No. 31. Tables 2A and 2B are developed for the cases when symmet-

rical loads are applied simultaneously at both longitudinal edges,

when r" is less then 0.6 and when n is taken as 1. As £ increases

beyond 0.6, analysis requires only one application of the line loads

at the near edge and neglect of the far edgQ effects. When £ is

0.6 or less, the line loads applied along one edge create sig-

nificant stresses and displacements at the opposite edge. To

eliminate the far edge effects, another set of loads has to be

applied at the far edge; this, in turn, creates inconsistent forces

at the near edge. This is the reason for applying line loads on

both edges as in Tables 2A and 2B, so that the repetitive correc-

tions are eliminated. Tables 3A and 3B cover shells whose ratio £

exceeds 0.6, and for which the first two terms of the Fourier ex-

pansion of the loading have been computed, one with n = 1 and one

with n = 3.
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DESIGN OP A SIMPLY- SUPPORTED SHELL ROOF

A simply- supported, single barrel shell roof is designed as

an example.

Dimensions of the shell:

Length of shell, L = 83 ft.

Radius of shell, r = 33 ft.

Half of shell angle, ^ k = I4O deg.

Thickness of shell, t <g in.'

Width of shell, 2R sin <^k = ij2,5 ft.

Rise of shell = 2R sin2 %f& = 7.72 ft.

Design data:

Dead load (measured along the curve), P^ = -J£ x 150 = 50 psf.

Live load (horizontal projection), Pu = 30 psf,

fc » 3000 psi.

n = 9,

fs * 20,000 psi.

V « 600 psi.

k m 83 m 2.518
r 33

(F)
2 = 6.3

"*The minimum shell thickness is determined by the reinforcement,
the cover required and the maximum size of aggregate. Based on the
A.C.I, building code, the following minimum thickness would be obtained.

Reinforcement cover 2 x 2>/k inch = 1.50 inch
Double m«sh reinforcement 2 x 2 x 3/8 inch = 1.50 inch
Minimum spacing between reinforcement =1.00 inch

4.00 inch
The minimum deformed bar size is #3 and hence for 3/1+ inch

gravel the minimum required thickness remains about ij inch.
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Pig. 15. & s Imply- supported single "barrel shell

Fig. 16. Components of transverse force
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| ft 33 g
12

ft 99 ( S ay 100)

£*|1 ft 0.393 (say O.lj)

Code:

ACT Building Code (318-63).

Design Procedure . The design example is a simply-supported

single barrel shell. Ey simply- supported, we mean that the shell,

supported by two end diaphragms, offers no flexural resistance.

Since the shell structure is symmetrical, only one-half of it -will

be considered. The design procedures follow the analysis procedures

on p. 9.

Step 1. In the membrane analysis surface loads, dead and

live, induce three forces throughout the shell: Tx , the force in

the longitudinal direction! Tw>, the force in the transverse direc-

tion; and S, the tangential shear force. For maximum values, Tx

and Tfo are found at mid-span or at X « ^, while S is found at the

supports where X * or X * L. The coefficients are taken from

Table IB on page 3J4 of the ASCE Manual No. 31.
T

For dead load, when X * ^, Eq. 5h becomes

or

Tj, = P^ r x (-) coef

.

h
*

T<£
=

tT x £° x 33 * (-) coef.

= 2,100 x (-) coef. lb. per ft

*See p. 15, Eq. ijb.
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At <£ = k0° Ti = 2,100 x 1.000 = -2,100 lb. per ft.

(f>-
30° T^= 2,100 x -0.98/^8 m -2,065 lb. per ft.

</> = 20° T^= 2,100 x -0.9397 = -1,970 lb. per ft.

cj>- 10° T^ = 2,100 x -0.8660 m -1,820 lb. per ft.

(j>= 0° T^= 2,100 x -0.7660 -1,610 lb. per ft.

When X or X = L, Eq. 6d gives

S = Pa r (p) x (-) coef.

or

S = L x 50 x 33 x 2.518 x (-) coef.

= 5>270 x (-) coef.

AtC$>= k0° S = 5,270 x =

<j> = 30° S = 5,270 x -0.1105 = -58I4 lb. per ft.

</>= 20° S = 5,270 x -0.2178 = -l,li|7 lb. per ft.

<£= 10° S * 5,270 x 0.3183 = -1,680 lb. per ft.

Cf>= 0° S = 5,270 x -O.I4O92 = -2,160 lb. per ft.

When X * — , Eq. Jd can be written as

or

Tx = ^jr x 50 x 33 x 63 x (-) coef.

= 13,230 x (-) coef. lb. per ft.

At <£= 40° Tx * 13,230 x -0.2026 m -2,680 lb. per ft.

<f>= 30° Tx = 13,230 x -0.1996 = -2,6i|0 lb. per ft.

4>= 20° Tx = 13,230 x -0.1901+ = -2,520 lb. per ft.

<£= 10° Tx = 13,230 x -0.175^4 = -2,320 lb. per ft.

<j>= o° Tx = 13,230 x -0.1552 = -2,060 lb. per ft.
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For live load, when X = "", Eq. 8b yields

Tj, =j, = Pu r x (-) coef.

Ti= J-x 30 x 33 x (-) coef.

= 1,260 x (-) coef. lb. per ft.

At<£= 40° T^ m 1,260 x -1.000 = -1,260 lb. per ft.

4>* 30° T^= 1,260 x -0.9693 ft -1,220 lb. per ft.

4= 20° T^= 1,260 x -O.883O m -1,120 lb. per ft.

<J>*
10° T^* 1,260 x -0.7500 ft -945 lb. per ft.

<£« 0° Ti= 1,260 x -0.5868 ~ -7^0 lb. per ft.

When X * or X = L, Eq. 9<3 becomes

s * pu r [{|) x M coef.]

or

S * ±~ x 30 x 33 x 2.518 x (-) coef

ft 3.165 x (-) coef. lb. per ft.

Atcf>- k0° S = 3,165 x = lb. per ft.

<£= 300 S * 3,165 x -0.1633 = -518 lb. per ft.

4= 20° S ft 3,165 x -0.3069 ft -973 lb. per ft.

cj>= 10° S - 3,165 x -O.I4II4O s -1,310 lb. per ft.

(£= o° S ft 3,165 x -0.4702 ft -1,490 lb. per ft.

When X = — , Eq. lOd may be written

Tx = p
u r L& 2 x {

-
] coef -l

or

1

Tx - L x 30 x 33 x 6.3 x (-) coef.* TV

= 7,950 x (-) coef. lb. per ft.
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At <f>= kO° Tx = 7,950 x -OOOlfO m -2,i|20 lb. per ft.

(f>m 30° Tx = 7,950 x -0.2856 = -2,270 lb. per ft.

<£= 20° Tx = 7,950 x -0.2329 = -1,850 lb. per ft.

^>= 10° Tx = 7,950 x -0.1520 = -1,210 lb. per ft.

<p* o° Tx = 7,950 x -0.0528 = -i|20 lb. per ft.

Step 2. Prora step 1, Tx , T^, and S were found at the unsup-

ported edges. Corrective line loads of equal and opposite values

must be applied, so that the edge conditions are consistent.

The unbalanced forces along the free edges, i.e.,^ k = 0°

are:

At X = |, TU = -1,610 - 7I4.O = -2,350 lb. per ft.

and at X = 0, S = -2,160 - 1,1*90 * -3,650 lb. per ft.

Then the vertical and horizontal components of the transverse force,

Tj>, are obtained from Fig. 12,

VL = 2,350 x sin<£ k

= 2,350 x 0.6i|28

= 1,510 lb. per ft.

and

H
L

= 2,350 x cos^

= 2,350 x 0.7660

= 1,800 lb. per ft.

Also, the shearing force is found as SL = 3,560 lb. per ft.

The internal forces due to these corrective line forces are

found by the equations on pages 25 and 26. The coefficients In

those equations are taken from Table 2A of the manual where fa. = l±Q° 9

r m
I = 100 and i- = 0.I4.
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1. Due to the vertical line load, V*

Equations 15« to l^d may be rewritten as

TX * VL x ^ 2 x coef
* (1)

= 1,510 x 6.3 x coef. (1)

= 9,520 x coef. (1) lb. per ft.

S * VL x (^) x coef. (2)

ss 1,510 x 2.518 x coef. (2)

= 3,300 x coef. (2) lb. per ft.

T^ = VL x coef. (3)

a 1,510 x coef. (3) lb. per ft.

Mi= VL x r x coef. (i|)

= 1,510 x 33 x coef. (k)

= i|9,800 x coef. (I4) lb. -ft. per ft.

2. Due to the horizontal line load, HL .

The corrected internal forces may be obtained from Eq. 16a

to l6d, as follows:

Tx = HL x (jr)
2 x coef. (5)

= 1,800 x 6.3 x coef. (5)

m 11,350 x coef. (5) lb. per ft.

S = HT x ~ x coef. (6)

= 1,800 x 2.518 x coef. (6)

* 4,530 x coef. (6) lb. per ft.

T^= HL x coef. (7)

= 1,800 x coef. (7) lb. per ft.

M^= HL x r x coef. (8)
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- 1,800 x 33 x coef. (8)

= 59,500 x coef. (8) lb. -ft. per ft.

Table 1. Corrected internal forces and moments due to V^.

* in

Degrees

Tx in

lb. /ft.

S in

lb./ft.

T^ in

lb. /ft.

M^in
lb. -ft. /ft.

10

20

30

ko

Coefficients

+ 1.720

- 2.811*

- 4.296

+ 0.117

+ 2.485

- 2.749

- 0.278

+ 0.913

+ 0.643

- 0.749

- 1.730

- 1.512

- 1.221

0.0862

0.1580

0.1948

0.2044

Multipliers 9520 3800 1510 49800

10

20

30

40

+ 164000

- 26800

- 40800

+ 1112

+ 23700

- 10450

- 1060

+ 3470

+ 970

- 1130

- 2620

- 2285

- 1840

4300

787O

9700

10200

3. Due to the shear line load, St.

From Eq. x7fi ta l?d, the corrected internal forces are found

as below:

U\2Tx Sl x (£)* x coef. (9)
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Table 2. Corrected Internal forces and moments due to Hl.
in 1 1 1 ...1 1

4> k
ln

Degrees

Tx in

lb ./ft.

S in

lb. /ft.

T^in

lb. /ft.

MJLn
r

lb. -ft ./ft.

Coefficients

•» 7*122 + 0.766

10 + 2.1495 + 0.6036 + 1.272 + 0.0665

20 + 2.058 - 0.9139 * 1.236 + 0.1013

30 - 1.123 - 1.171 + 0.606 + 0.1093

ko - 2.661* * 0.250 + 0.1088

Multipliers 11350 U530 1800 59500

- 808OO + I38O

10 * 281*00 + 2730 + 2290 + 3960

20 + 23I4OO - 14.1U0 * 2220 + 6050

30 - 12780 - 5300 + 1090 + 6520

I4O - 30300
1

+ i|50 + 61*60

TX

S m

Ta =
<t>

3,560 x 6.3 x coef. (9)

22,1*00 coef. (9) lb. per ft.

SL x ~ x coef. (10)

3,560 x 2.518 x coef. (10)

8,950 x coef. (10) lb. per ft

SL x coef. (11)

3.560 x coef. (11)
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KM = SL x r x coef . (12)

= 3,560 x 33 x coef. (12)

m 117,500 x coef. (12) lb. -ft. per ft.

Table 3. Corrected internal forces and moments due to Sl.

<£k
ln

Degrees

TX in

lb./ft.

S in

lb./ft.

T^ in

lb. /ft.

MM in

lb. -ft. /ft.

Coe fficients

+ 1.3680 + O.I4OOO

10 + 0.1*228 - 0.0471 + 0.0728

20 + 0.0023 - 0.1351 + 0.0079 - 0.0017

30 - 0.1315 - 0.0851 - 0.0567 - 0.0039

ko - 0.1542 - 0.0818 - 0.00i|9

Multipliers 221*00 3950 3560 117500

+ 30600 + 3650

10 + 8i|50 - 1*22 + 260

20 + 52 - 1210 + 4 - 200

30 - 2950 - 760 - 202 - 458

1*0 - 34 60 - 292 - 575

When the edge conditions are complicated by the presence of

longitudinal edge beams or adjoining shells, equations lib to lljb

and 18a to l8d will be considered in addition to the above equations

Step 3:

Adding the results of Steps 1 and 2, the final values of Tx ,



T ^ , S and M ^ are obtained.

Table 1*. Internal forces and moments In the shell.

No. Loadings

Angles jP in Pegrees

10 20 30 1*0

Tj, at X = g (Pounds Per Foot)

1

2

3

k
5
6

Dead
Live
VL
HL
SL

1610

970
1380

- 1820
- 91*5
- 1130
+ 2290
+ 260

• 1970 - 2065
• 1120 - 1220
- 2620 - 2285
+ 2220 + 1090
+ km 202

g 13^5 . 31^56 - gggj

2100
1260
I8I4O

ii5o

292
Top"

1

2

3
14

5
6

Dead
Live
VL
HL
SL

S at X = (Pounds Per Foot)

2160
11+90

- 1680
- 1310
- 10Q50
+ 2730

1*22
- 11132 »

111*7 - 58I4

973 - 518
1060 + 3^70
1*11*0 - 5300
1210 - 760

1
2

3

h
5
6

Dead
Live
VL
hl
sl

Tx at X = -g (Pounds Per Foot)

2060 - 2320 - 2520 - 26I4O - 2680
1*20 - 1210 - 1850 - 227O - 22*20

+ 161*000 - 26800 - 1*0800 + 1112 + 237OO
• 80800 + 281*00 + 231*00 - 12730 - 30300
+ 30600 ± 81*50 I 52 - 2950 - 31* 60
+ 111320 + 6520 - 217ia - 20538 - o5&0"

1
2

3

5
5
6

Dead
Live
VL
Ht

sl

M
t

at X k (Foot Pounds Per Foot)

* 1*300 « 7870 - 9700
+ 3960 + 6050 * 6520

_0 * 200 - 1*58
Z 5P - 2020 Z 363B"

- 10200
+ 61*60

-J25
- 4315
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Since the line loads applied at the edges are assumed to be

either sine curves or cosine curves, the internal forces at any-

other point in the shell may be found by proportioning the maximum

value to the desired value. This can be done by simply multiplying

the values of TU, and Tx and M^ found in Table ig by the sin i» and

S by the cos 3-~. Taking the distances at £ = 0, 1/8, I/I4, 3/8,

and 1/2 from one end of the shell, T^, T^, and Mj> and S are listed

in Table 5.

Rows 6 of Table l\ give internal forces in the simply- supported

barrel shell roof. These are obtained by summation of membrane

forces and effects of line loads applied at both longitudinal edges.

Variation of these forces is shown graphically in Fig. 17.

Step i|

.

Checking the accuracy of the internsl forces is necessary as

a precaution against computation errors in Step 3. The sum of

horizontal forces, Tx , across a transverse section of the barrel

must equal zero, the sum of vertical components of the shearing

force S at each support must equal one-half the total load en the

shell, and the total internal longitudinal moment at midspar.- due to

Tx forces must equal the external moment.

(1) Since the variation between ordinates is not linear, the

summation of horizontal forces at midspan is made by means of

Simpson's rule.

Area = ij& (yQ + [
l y1 + 2y2

+ Ifl^ + kj n )

in which yQ to y are equally spaced ordinates of the curve en-

closing the area, n is an even number, and A L is the distance
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Table 5« Force components throughout the shell.

k
in Degrees

10
20
30

M.

xT^ (Pounds Per Foot) at p

1/8 l/k 3/8

515
1338
1790
1928

952
2I465
33io
3 §60Mmmmnhm

121|2

3220
'4320

Jl650

1/2

1345
3U86
4682
501*2,

10
20
30
ko

S (Pounds Per Foot) at S
Li

11132
8530
3692

10360
7870
3410

8020
6030
2610

4320
3265
14 10

1

2

3

1

10
20
30M

Ty (Pounds Per Foot) at S

+ i|2600 * 78900 + 102800
+ 2500 + I4620 + 59^0
- 8320 - 15350 - 20000
- 786O - llj 900 - 18100
- 3280 - 6060 - 791

+ 111320
+ 6520
- 21718
- 20578

8560

1
2

3

k

10
20
30
40

M
y

A (Pounds Foot Per Foot) at g

130 240 - 3 111

- 775 - 1430 - 1865
- 1392 - 2561} - 3358
- 1650 - 3070 - 3980

340
2020
3638
1+315

between ordinates. We find

L * I = I™ = 33 xl|0 xTf = 5#y5 ft#
n 4 li x 180

and s is the arc distance from shell edge to crown divided into

four parts. Using the values of T^ in Table I4, the summation of
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longitudinal forces isj

H m %^& (111,320 + it x 6,520 + 2 x (-21,718) + k x (-20,530)

+ (-8,560) » 266,000 - 258,000 * 1*8,000 lb.

The difference between positive and negative values is less than 2

percent of their arithmetic sum,

(2) The moment about the bottom edge of the shell is computed

by using Simpson »s rule in the following form:

Moment m £& x 2 (yf>h + kfifh * ^i^z * ^ y
3
h
3

"""—~ + ynhn^

where j^ to y are the magnitude of the forces T^ at the specified

locations of h, and h^ to h^ ©re the moment arms measured from the

lower edge of the shell (see Fig, 17). Also, the moments on either

side of the crown have to be included. The total internal moment is

M m -%Ii x 2 [ + k x 6,520 x 3.29 + 2 x (-21,718) x 5.7*4 h

x (-20,578) x 7.22 + (-8,560) x 7.72] m - 3,200,000 ft. lb,

The moment due to external load may be obtained by using the raid-

span moment equation shown on page 13.

m - —- sin -—
7]-2 L

or

Iky L V (i mmmmpm X «"*•»»•

Since Pu m 30 psf , P
d

m $Q psf and the arc length of the shell =

8 x 5.75 ft., the external moment is
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M m
-

m i§iL x k_ (30 x i|2.5 + 50 x 8 x 5.75)

= - 3*170,000 ft. lb.

The difference of the two moments is about 1 percent.

(3) Summation of vertical components of the shearing force S

at one end of shell is:

V = 4~ x 2 [y Q sin (^ - 4 ) + kj%
sin (^. - ^) + 2^ sin

(*k -4>
2 >

+ yn sin <4 -^n^
in which yQ to yn are the magnitudes of the shear forces and the

total upward force is:

V as 2jJ1 x p [ + I4 x 11,132 x 0.5 + 2 x 8,530 x 0.3i4.2 k

x 3,692 x 0.1736] = - 116,000 lb.

Again, the equation of the total shear due to the external load

is shown on page 13 and reproduced here as

TT H" L

or

V = - 11 x L [ 30 x I42.5 + 50 x 2|6] = - 122,000 lb.

The difference of the two vertical forces is less than 5 per-

cent.

Step 5.

The design of reinforcement for the shell roof is based on the

final forces in Tables I4 and 5. In general, shell reinforcement is

provided for three force conditions:
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(a) Longitudinal reinforcement, this being required to over-

come Tx .

(b) Transverse reinforcement, this being due to T^ and Ma .

(c) Diagonal reinforcement, this being to resist the com-

bination of Tx , Ti and S.

The determination and arrangement of these reinforcement

patterns are as follows:

(a) Longitudinal reinforcement.

The longitudinal steel stress varies linearly from a maximum

at the edge of the shell to zero at the neutral axis, i.e., Tx = 0.

L
Prom Table k» at X = £ with Tx = + 111,320 lb. per ft. the

required reinforcement iss

As =
^Q^OQQ * 5 ' 56 Sq

"
in

-
Per ft '

To provide the required steel area two layers of 1 inch round

bars at 3 inch centers are used. Between the edge and the neutral

axis, Tx scaled from Pig. 13 is about 52,000 lb. per ft. The re-

quired steel is:

%? 000
A
s " 2 ,000

= 2 ' 6 Sq
'

ltK P0T ft *

which is supplied by one layer of 1 in. diameter bars at 3 1/2 in.

centers. Above the neutral axis, in the compression zone, reinforce*

ment is theoretically unnecessary but for the sake of safety 3/8 in.

round bars at 1 ft. centers are provided. The steel area can be

reduced by 30% at X = f and by $0% at X = £, The arrangement of

the longitudinal steel is shown in Fig. 21.
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(b) Transversal reinforcement.

The required transverse reinforcement is computed for the

moment Mi and the transverse force T> . The procedure is similar

to that used for ordinary reinforced concrete beams subject to

combined stresses. Prom equation 5 on page 8? of the Reinforced

Concrete Design Handbook,** the steel area is determined by

A - -85s " adi - 17

where

N = 8xial lo8d

E = the distance between the equivalent eccentric load and

the resultant of tensile stresses

a = coefficients in the handbook

d = effective depth of a beam

i-ii
e

At the center of the span at the crown, with an effective depth of

3 in., an M& = J4 , 315 ft. -lb. and a T^> = - 5,0i|2 lb., A
s is found to

be 1.07> sq. in. per ft. by Eq. 17. To furnish the area required,

1/2 in. round bars spaced at 2 in. centers are used. Because both

M^and T^, decrease towards the edge, 2/3 of the bars are terminated

at
(f>=

20°. Also, the bars may be reduced 30% It X = r and 50$

^Published by the A.C.I.

"^Determined according to Example B of the Reinforced Con-
crete Design Handbook.
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at X = TT. The arrangement of the bars is shown in Fig. 20.

(c) Diagonal reinforcement.

To determine the steel necessary to resist the combined Tx ,

IS and S, the principal stresses have to be evaluated. Consider

a small element of the shell on which T^, T<£ and S are acting

(see Pig. 18), the principal stresses can be solved by using Mohr's

Circle as

T i T SB -== *— + / J—s
' ' + S2 .—-.—— liii-.ttT 18

-Pi' p2 2 -/ I4

in which T -^ and T « are k*113 principal stresses. The direction of

the principal stresses is given by

tan 2o< = —SS 19
TX " ^

The principal forces and plane of which they act are calculated

and tabulated in Table 6.

The forces listed in the table may be conveniently plotted

as in Fig. 19. From Fig. 19 it is seen that only the forces act-

ing along the rim need to be considered. At <p = 10°, the required

steel is A_ m '^21 = }}r l 22 * 0.565 sq. in. and at <£ = 20° the re-
s

fs 20,000 '

quired steel is A s =20000 = °*^ 2^ S<1' in » Tlie required steel is

provided by using 1/2 in. diameter bars placed at l\$ degrees with

the edge and spaced at I4 in. and 5 1/2 in. center to center. The

arrangement of the bars is shown in Fig. 21.
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Fig. 18. Principal stresses acting on an element
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DISCUSSION OP RESULTS

In this example, the maximum difference of value between ex-

ternal and internal vertical forces, horizontal forces and moments,

as obtained from Step I4 , is less than 5 percent. This compares

favorably with the results of a similar example with a length of

62 ft. and a radius of 31 ft. in the manual where the maximum dif-

ference was more than £ percent. "Concrete Information" (3)

stated, "Scaled ordinates, approximate integration given by Simpson ! s

rule, and, to a minor extent, the incomplete satisfaction of edge

conditions may result in differences amounting to as much as 10

percent in exceptional cases." It is seen that good agreement has

been obtained in this example.

The clearances in the assumed I4 in. thickness of the shell can

be checked by the summation of the sizes of the bars at the edge

as found in Step $\

2 x 1 in. round bars = 2 in.

1/2 in. round bars = 1/2 in.

1/2 in. round bars 1/2 in.

Protection = 1 in.

k in.

It is a safe practice to thicken the edges 1 in. in order to

guard against the secondary stresses that may occur.
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CONCLUSION

The ASCE Method presented herein is a very useful tool for

cylindrical shell design, provided that the shells are subjected

to uniformly distributed loads. The example illustrates that

this method is efficient since it leads directly to the required

structure. The procedures used in the design are based on familiar

techniques and concepts and are relatively easy to follow. Even

the complicated boundary conditions •which create the difficult

mathematical problems of shell design may be quickly determined

by the tables and charts in the manual.

This method is not only an excellent one for use in design-

ing single barrel shells with simple supports, but also for de-

signing multiple barrel shells with either simple or several

supports.
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AN ABSTRACT

There are three theories in treating the problems of cylindrical shell

structures, namely: the bending theory, the beam theory and the membrane

theory. Each of thes3 theories has its shortcomings the bending theory in-

volves complicated mathematical calculations! the beam theory is limited to

long shells onlyj and the membrane theory is unable to predict the boundary

conditions of shells. To overcome these weaknesses, AXE Manual Wo. 31 pre-

sents a method of solving cylindrical shell problems by using a combination

of the membrane theory and the bending theory.

The purpose of this report is to demonstrate the ASCE method in solving

the problem of a simply-supported barrel shell. The principle used in this

method in analyzing a shell problem is similar to the analysis of an ordinary

indeterminate structure, that is, releasing some restraints to make the struc-

ture determinate, then applying reactions to bring the boundary back to its

original posit ion 5 and summing up the stresses found in the determinate state

and those induced by the restraints to get the final stresses. The procedures

of the ASCE method are:

1. Find the membrane stresses.

2. Correct the membrane stresses for the effects produced by the line

loads acting along the free edge,

3. Add the corrections and the membrane stresses to obtain the final

stresses-

By use of the membrane theory, the general equations for the membrane

stresses can be obtained by writing the expressions for the equilibrium of a

differential element in the shell. The resulting expressions are the three equa-

tions of stress in the longitudinal, tangential and radial directions. Bending



_nts are not taken into consideration in this theory. Six design equations

for the membrane stresses are then found from the general equations when the

surface loads and proper boundary conditions are provided. The membrane

stresses and deformations occurring along the free edges cause the boundary

condii ." -.-one inconsistent. To make ----- edge conditions compatible,

line loads are applied. Using the bending theory, the equations for the

corrective stresses and deformations due to the applied line loads can be

obtained.

A design example is given, shoving the application of the ASCE method.

The tables and charts in the Manual will be used as an aid in working out the

design.




