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Abstract 

 The motivation for the preparation of gold nanoparticles includes their potential utility in 

sensors, nanoelectronics, and the vast basic knowledge we can gain from these novel materials. 

Colloids of gold nanoparticles are also one of the most stable and easiest to manipulate. 

Synthesizing gold nanoparticles with narrow size distribution, uniform shape, and good crystalline 

nature represents a significant challenge. 

 Thiols were found to be very efficient capping ligands for the digestive-ripening process in 

our research group, during which a colloidal suspension in a solvent is refluxed at the solvent 

boiling temperature in the presence of a capping ligand to convert a highly polydispersed colloid 

into a nearly monodispersed one.  

 The current thesis research focuses on using amines instead of thiols as the capping ligands, 

which were also found to have similar efficiency for this purpose. The major part of the work is 

devoted to understanding the digestive ripening of gold-amine colloids system, and the effect of the 

nature of the amine ligands.  

 A noteworthy achievement of the current work is the ability to synthesize stable gold 

colloids with different sizes by using different amine ligands. A diverse set of instrumental 

techniques is used for the characterization of the gold nanoparticles
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Chapter 1. Introduction and significance 

The study of gold colloids has been one of the most ancient subjects of investigation in 

science. Since ancient Roman times, colloidal gold has been used to color glass intense shades of 

yellow, red, or purple, by changing the concentration of the gold. Modern scientific evaluation of 

gold colloids did not start until the marvelous work by Michael Faraday in 1857,1 by whom the first 

colloidal gold synthesis method was reported. After that discovery, numerous researchers have 

investigated the unique properties of gold nanoparticles.2 They are the most stable metal 

nanoparticles, presenting fascinating aspects such as individual particle behavior, electronic, 

magnetic and optical properties, as well as their wide application to catalysis and materials science. 

1.1 Synthesis and Assembly 

1.1.1 Review of Colloidal Synthesis Routes 

Numerous methods for synthesis of gold colloids have been reported.2 In general, two 

strategies can be distinguished, the bottom-up strategy and the top-down strategy. 

The bottom-up strategy includes reduction of gold(III) salts in the presence of different 

stabilizing agents in solution. The most famous synthesis route for a long time has been that using 

citrate reduction of tetrachloroaurate ions in water, which was first conducted by Turkevitch in 

1951.3 It can easily achieve functionalization of the gold nanoparticle with water-soluble capping 

ligands and give particle core size of ca. 20 nm, but the control over the particle monodispersity is 

rather poor. Using alkanethiols to stabilize gold nanoparticles was first reported in 1993 by 

Mulvaney and Giersig. They first introduced thiols of different chain length as the capping ligands, 

which can strongly bind gold due to the soft character of both Au and S.4 Inspired by this and 

Faraday's two-phase system1, the most popular Brust-Schiffrin method for Au nanoparticles 

synthesis was conducted and reported in 1994,5 which is another milestone in the overall field. It 

showed the possibility to synthesize thermally stable gold nanoparticles with narrowed dispersity 

and controlled size, and those nanoparticles can be repeatedly isolated and redissolved in organic 

solvents just like common chemicals. It was obtained by reducing  tetrachloroaurate ions with 

sodium borohydride in the presence of thiols and a phase transfer agent, 
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tetraoctylammoniumbromide (TOAB). However, one reported disadvantage is the contamination of 

isolated gold nanoparticles with excess TOAB. To avoid using the phase transfer agent, recently 

several single-phase syntheses have been reported.6-8 One involves reducing gold salts in aqueous 

(water/methanol) solution in the presence of water-soluble ligands.9,10 Another employs the 

reduction with borohydrides (LiBH4) that are soluble in the organic solvent (THF).  

Except for reducing gold (III) to gold (0) by these chemical methods, there also emerged 

several physical methods: Photochemistry,11-13 Sonochemistry,14-16 Radiolysis,17,18 and 

Thermolysis.19,20 They basically dissolve gold salts in solution in the presence of some stabilizer, by 

employing extreme conditions, like UV irradiation, near-IR laser irradiation, high intensity 

ultrasound, specific radicals, etc., to control the gold nanoparticle sizes and improve the quality of 

particles. 

The advantages of all of these bottom-up methods in the solution are (a) the possibility of 

controlling the particle size and dispersity by changing the reaction conditions (reaction time and 

temperature, as well as the reaction speed), and (b) producing the gold nanoparticles capped by 

various of  functionalized ligands, and (c) simply to get isolated nanoparticles. While on the other 

hand,  there  are  also  some  problems  with  these  methods,  such  as  (a)  it’s  difficult  to  remove  the  

impurities that are introduced to the process, like the extra surfactants, the reducing agents as well 

as  the  metal  salts,  and  (b)  it’s  hard  to  meet  the  requirements  for  scaling  up  from  bench  scale  to  

industrial scale, presenting a number of reaction conditions, equipment design, and technology 

risks.  

As for the top-down strategy, there are several ways to create gold clusters from bulk gold, 

including both attrition and pyrolysis.  In attrition, the bulk gold can be ground into macro or micro 

scale particles by some size reducing mechanism, which usually can not give nano scale particles 

and the particle size are poly-dispersed. In pyrolysis, the bulk metal can be heated to atoms and re-

form nano scale clusters. Specifically, in the Physical Vapor Deposition, the source metal will be 

thermally heated to atoms under an inert atmosphere and then those cooled metal atoms deposited 

on a cold finger to form metal clusters. When the process is finished, the metal clusters can be 

collected by removing them from the cold finger.21 The Solvated Metal Atom Dispersion (SMAD) 

technique was first developed by Klabunde et al.22-25 in 1979, which had a significant effect on the 

whole nano material field for more than a decade because it showed the possibility of synthesizing 
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pure gold nanoparticals on a large scale to make the functionalized gold nanoparticles being used in 

commercial application. 

As we discussed, compared with the bottom-up strategy, the major advantages of the top-

down strategy are obtaining size controlled and stabilized metal nanoparticles without any 

impurities, as well as scaling up the process for industrial application. However, the primary 

disadvantage lies in the restricted capping ligands which require stronger interactions between metal 

and capping ligands. 

1.1.2 Specific methods for gold nanoparticles 

1.1.2.1 Inverse Micelle Method 

The inverse micelle method provides the preparation of metal colloidal particles (e.g. gold, 

palladium, silver, rhodium, nickel, iron, platinum) or colloidal alloy particles (silver/iridium or 

platinum/gold). Typically, an inverse micelle solution of a metal salt is first formed by dissolving a 

surfactant and the metal salt in an organic solvent. The surfactant molecule contains a hydrophilic 

head and a hydrophobic tail, so those molecules order themselves into spherical inverse micelle 

separating the aqueous and organic phases. The metal salt will stay inside of the inverse micelles in 

the aqueous phase. Then it is reduced to metal colloidal particles by adding the reducing agent. The 

size and number of inverse micelles is controlled by changing the concentration of the surfactant, 

which also determines the size of the elemental metal particles and their size distribution. Another 

metal salt can be added with further reduction to form the colloidal alloy particles. After the metal 

colloids are formed, the two-phase homogeneous solution can be dissolved again into another 

solvent, in which the metal nanoparticles have low dissolubility.  Then the metal particles can be 

separated and dried to form a powder that is ready to use. Figure 1.1 represents a schematic 

overview of a typical inverse micelle method (Didodecyl dimethyl ammonium bromide (DDAB)).26  
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Figure 1.1  

 

 

Figure 1.1 The schematic overview of the inverse micelle synthesis procedure 

 

1.1.2.2 Solvated Metal Atom Dispersion (SMAD) Method 

 The SMAD technique was first reported by Klabunde and co-workers for the preparation of 

thiol capped gold colloids.27 Since then, a variety of metal colloids (silver, copper, magnesium, and 

palladium) have been synthesized by SMAD in our laboratory.24, 28 Compared with the inverse 

micelle and other methods, the major advantage of the SMAD technique is that it can yield pure 

metal colloids without any byproducts. Also it can provide wide industrial applications by scaling 

up the process to guarantee the products in large amounts and with reproducible quality.  

Figure 1.2 shows a sketch of the SMAD setup. It contains several parts: the solvent Schlenk 

tube, the bridge head, the shower head, the electrodes and the reactor. Inside the reactor, the two 

water cooled copper electrodes are connected by the crucible, where the metal will be placed. The 

temperature is required to reach high enough to evaporate the bulk metal. On top of the reactor the 

bridge head connects the Schlenk tube and shower head; when vacuum is applied, the vapor of the 

solvent will come through the shower head and co-condense with the metal atoms on the walls of 

the reactor cooled to 77K. After the warming up stage, the matrix is melted down and stirred with 

the capping ligand at the bottom of the reactor. The particles are stabilized both sterically (by 

solvation) and electrostatically (by incorporation of a negative charge). 
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Figure 1.2 

  

Figure 1.2 The SMAD setup 

 

1.2 Capping ligands  

 The capping ligands play an important part in controlling the size, shape, and interparticle 

separation of the metal nanoparticles. The most popular capping ligands for gold nanoparticles are 

the alkanethiols. The thiol-capped gold nanoparticles are nonpolar and with core diameter of 1-4 

nm, which have been extensively studied and reported covering a wide range of morphological, 

optical, electric, physical and chemical aspects,29-36 Various other ligands capped gold nanoparticles 

have also been prepared through a two-phase synthesis process. The list includes amines, 

phosphines, carboxylates, polymers, dendrimers, and bio-functionalized molecules.37, 38 

 The gold-ligand interactions may be explained by the hard and soft acid-base theory, which 

states that a soft acid-like gold cluster prefers to interact with a softer base such as RSH and RNH2, 

rather than hard bases such as ROH. As mentioned before, the SMAD technique was first reported 

by Klabunde and co-workers for the preparation of thiol capped gold colloids.27 Since then, a 

variety of metal colloids (silver, copper, magnesium, and palladium) have been synthesized by this 

method.28-29 Compared with the inverse micelle and other methods, the major advantage of the 
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SMAD technique is that it can yield pure metal colloids without any byproducts of metal salt 

reduction, also it can provide wide industrial application by scaling up the process, guarantee the 

products in large amounts and with reproducible quality.  

1.3 Digestive ripening process  

             As described above, gold nanoparticles can be gained either by bottom-up or top-down 

strategy, and those as prepared gold nanoparticles normally have a wide range of size distributions. 

In order to get monodisperse systems with narrowed size distribution and uniform shape, some post 

preparative process was needed. The well-known method is Ostwald ripening, which is a 

spontaneous process where smaller particles will disappear and form bigger particles. Unlike 

Ostwald ripening, digestive ripening is a process wherein a metal colloidal suspension is heated to 

near the boiling point of the solvent in the presence of excess capping ligands. During this process, 

bigger particles will be broken down and smaller ones will grow in size, and the system finally 

reaches a thermodynamic equilibrium. This process, used in conjuction with SMAD was first 

conducted in our laboratory,22 and has been successfully employed to gain monodisperse gold, 

silver, copper, magnesium, and palladium colloidal system.29-30, 39-40 It is a very simple but efficient 

way to convert the a polydisperse system into a monodisperse one. 

1.4 Characterization techniques 

 In this research, the gold nanoparticles were characterized by means of Ultraviolet-Visible-

Near Infra Red (UV-Vis-NIR) spectra and Transmission electron microscopy (TEM). The UV-Vis-

NIR spectra were collected on a fiber optic CCD array UV-Vis spectrophotometer of Spectral 

Instruments, Inc. Both size and concentration of gold nanoparticles can be determined directly from 

UV-Vis spectra.  

 TEM is the most common characterization technique for investigation of the morphology of 

small particles. TEM was performed with a Philips CM 100 electron microscope operating at 100 

kV.  The  samples  were  prepared  by  putting  a  3  μL  drop  from  the  gold  colloids  onto  a  carbon-coated 

copper grid. The grid, placed above the hot plate, was allowed to dry for 15 minutes and left 

undisturbed at ambient conditions. 
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1.5 Surface plasmon resonance 

             Metal nanoparticles, like gold and silver, possess a plasmonic band in the visible region of 

the electromagnetic spectrum. Thus, spherical gold nanoparticles have a characteristic red color, 

while silver spheres are yellow. The d-electrons in these metals are free to travel through the 

material and the mean free path is about 50 nm. Therefore, in metal nanoparticles that are smaller 

than this means there is no free path and no scattering of light is observed, as in the case of bulky, 

larger particles. Thus, the interactions of light in resonance with the surface free electrons of metal 

nanoparticles create oscillations. As a result of this optical effect, a new type of resonance called 

plasmon or surface plasmon resonance (SPR) localized between the metal nanoparticles and the 

surrounding dielectric medium produces an enhanced electromagnetic field at the interface and 

experimentally these resonances can be monitored by absorption spectroscopy. The wavelength of 

the absorption peak maximum is found to depend on the shape, size and dielectric constant of the 

surrounding environment. In fact, the capping material or stabilizing ligands does influence the shift 

of the surface plasmon resonance. For example, thiol stabilized gold nanoparticles will give a 

surface plasmon resonance at 530 nm, whereas amine stabilized gold nanoparticles exhibit SPR at 

540 nm. If the particle size is smaller than the wavelength of the absorption light, the shift in SPR 

will be in a narrow range. In the case of larger plasmonic metal nanoparticles, they exhibit a red 

shift. 

1.6 Aims of the thesis 

The aims of this thesis include the study of gold nanoparticles capped by different amines by 

two different methods, inverse micelle method and SMAD method. The goal is to understand the 

behavior and morphology of the amine capped gold colloids using these two methods. These 

approaches allow us to investigate the different effects of the capping ligand on gold nanoparticles, 

as well as the comparison between different synthesis methods. 
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Chapter 2. Gold-Aromatic Amine: A study of Solvated Metal Atom 
Dispersion method (SMAD), Digestive Ripening, Effect of the 

Condensing Solvent, and Ligand Concentration 

2.1 Methods and materials 

2.1.1 Chemicals 

Gold, Aniline (98%), and Phenethylamine (98%) were obtained from Sigma-Aldrich and 

used without further purification. Toluene (99.9%), Ethanol (99%), and Butanone (99%) were 

purchased from Fisher Scientific. Toluene was dried over sodium and butanone was dried over 
K2CO3, and those solvents were distilled and degassed four times by Freeze-pump-thaw procedure 

prior to use.  

2.2.2 Preparation Procedures 

2.2.2.1 Preparation of the condensing solvents 

 During the SMAD procedure, the distilled and degassed toluene and butanone were used as 

the condensing solvents. They were degassed by the Freeze-pump-thaw procedure, during which 

the solvent was placed in a Schlenk tube and first flash-frozen by using liquid nitrogen (77K), then 

a vacuum was applied, and the tube was sealed. Next, using a warm water bath to thaw the solvent, 

bubbles of gas formed and escaped. This procedure was repeated four times until the pressure inside 

of the tube remained constant. While we operated this procedure, we found that the temperature of 

the liquid nitrogen was so low that occasionally the Schlenk tube would break during thawing. So in 

order to avoid this problem, we dipped the Schlenk tube into a Dewar full of ethanol, then poured 

liquid nitrogen to freeze ethanol because the melting point of ethanol is lower than the solvents. As 

the temperature goes down to freeze ethanol, it is low enough to make toluene and butanone frozen. 

This procedure proved to be a better way to save the Schlenk tubes. 

2.2.2.2 Preparation of the gold-aromatic amine (aniline) as prepared colloids (SMAD method) 

  The tungsten crucible coated with alumina was assembled inside the SMAD reactor 

connecting to the two water cooled copper electrodes. Then the vacuum was applied to pump down 
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the whole reactor until the pressure reached 4×10-3 torr. The crucible was heated to red hot for about 

half an hour, then the reactor was cooled down naturally under vacuum overnight, to ensure no 

contamination. Then the reactor was filled with air and opened, 30 mg (1.5×10-4 mole ) gold was 

measured and placed in the crucible and 0.417 mL (4.5×10-3mole) capping ligand aniline was 

placed at the bottom of the reactor together with a stirring bar. The metal to ligand molar ratio was 

1:30, based on previous experiments.40 Outside of the reactor, a liquid N2 Dewar was placed to 

guarantee the temperature of the wall of the reactor was maintained at 77K. The Schlenk tube, 

which contained the distilled and degassed toluene or butanone solvent, was connected to the 

SMAD reactor under the vacuum line. When the vacuum reached to 4×10-3 torr again, the Schlenk 

tube was opened to the vacuum line, and then the solvent began to be evaporated and condensed on 

the wall of the SMAD reactor and then formed a uniform solvent matrix. After 30 mL of the solvent 

was frozen, the Schlenk tube was closed a little bit, to let the condensing speed slow down; 

meanwhile, the metal was heated gradually using water cooled electrodes until reaching the 

temperature when the gold began to evaporate. The vaporized metal and the solvent vapor were co-

condensed on the wall of the reactor, and this co-condensing restricts vaporized atoms from 

aggregation. During this time, the liquid nitrogen Dewar was kept full outside the reactor and the 

evaporation speed was controlled to make sure the solvent vapor condensed on the wall. The 

pressure of the whole process was maintained at 4×10-3 torr and the temperature required for the 

metal vaporization was about 900℃. As the reaction processed, the matrix became deep purple. At 

the end of the reaction, the liquid nitrogen Dewar was removed and the matrix was allowed to melt 

down to the bottom of the reactor stirred with aniline agitated for about an hour under argon 

atmosphere. Then the as-prepared gold colloid was prepared and siphoned to another Schlenk tube 

under argon.  

During this research, appropriate cleanliness and safety procedures were carefully followed. 

All of the glasswares including the SMAD reactor, Schlenk tube, shower head, bridge head as well 

as round bottom flasks were rigorously washed before starting this procedure. They were first 

washed by aqua regia, and then put in the base bath overnight and later stayed in the acid bath 

another day and finally washed with copious amounts of water. Goggles must be worn to protect 

eyes while working with a vacuum line. Also, acids and bases used for cleaning can cause severe 

burns, so proper acid proof gloves and clothing protection are very necessary.  
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2.2.3 Digestive Ripening Process 

2.5 mL gold-aniline as prepared colloids were dispersed in 10 mL solvent for the digestive 

ripening process, and the process was carried out in three different gold colloid systems (gold-

aniline-toluene, gold-aniline-butanone, gold-aniline). They were under reflux at the boiling point of 

the solvent for 2 h.  

2.2.4 Gold-aniline colloids synthesized in Butanone system 

This is a single-solvent system. In this system, butanone was used as the single solvent 

which served as co-condensing solvent, as well as digestive ripening solvent and the digestive 

ripening process was carried out at the boiling point (80℃) of butanone. 

2.2.5 Gold-aniline colloids synthesized in Toluene system 

Similar to the butanone system, in the toluene system the toluene was used as co-condensing 

solvent as well as digestive ripening solvent and the digestive ripening was carried out in toluene at 

the boiling point (110℃) of toluene. 

2.2.6 Gold colloids synthesized in pure aniline 

This procedure was conducted in a two-solvent system. Butanone was used as the co-

condensing solvent for the evaporated gold metal atom separation, while the digestive ripening 

process was carried out in pure aniline. After siphoning gold-aniline as prepared colloids into a 

Schlenk tube, butanone was removed under vacuum leaving gold-aniline colloids, which was then 

digestively ripened in pure aniline at the boiling point (185℃) of aniline. 

2.2 Characterization 

Analyses of the particles were carried out before and after the digestive ripening process. 

UV-Vis absorption spectra were obtained on a fiber optic, assisted by a DH-2000 UV-Vis optical 

spectrophotometer instrument (Ocean Optics Inc). Transmission electron microscopy (TEM) studies 

were performed on a Philips CM100 operating at 100kv. The TEM sample was prepared by placing 

a drop of gold colloid on a carbon coated grid and allowed to dry above the hot plate. The size 

distribution was calculated based on at least 200 particles. The snap shots were taken by iPhone 4. 
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 2.3 Results and Discussion 

 Since 1986 when the SMAD approach for producing nanoparticles was first reported by 

Klabunde and coworkers27 for the synthesis of gold colloids, lots of work has been done on the 

synthesis and characterization of different metal colloids in our group. Thiol-stabilized gold colloids 

in the acetone system have been intensively studied and are well understood. The molar ratio of 

gold to thiol at 1:3026 can result in the most highly monodispersed particles. And acetone, with its 

nonbonding electron pairs, can serve as a reasonably good ligand for capping gold nanoparticles 

during the preliminary stage.40 Based on this previous work, 1:30 gold to aniline ratio was 

investigated in the gold-aniline-butanone system and gold-aniline-toluene system respectively, to 

study the effect of the different condensing solvent (butanone or toluene) on stabilizing gold 

nanoparticles. Moreover, gold-aniline colloids that were digestively ripened in pure aniline were 

prepared to further understand the effect of the ligand concentration, as well as the competition 

between the condensing solvent and the capping ligand on stabilizing gold nanoparticles. The 

morphology and particle size distribution of these gold nanoparticles in these different systems were 

characterized by means of TEM and UV-Vis spectra. Representative images were selected and 

displayed in the figures. The results in different systems are discussed below. 

2.3.1 Gold-aniline colloid in butanone system 

The as prepared Au-aniline-butanone colloid has a dark purple color. TEM studies of this 

colloid (Figure 2.1 A) show particles with random geometrical shapes. After the digestive ripening 

process, the color of the colloid changed from dark purple to bright purple. TEM studies (Figure 2.1 

B) show nearly spherical particles with sizes in the range of 10 to 50 nm, which indicates that the 

digestive ripening procedure did improve the size distribution of the gold nanoparticles. This is also 

confirmed by the UV/Vis absorption spectrum (Figure 2.2). The surface plasmon resonance (SPR) 

peak of the as prepared colloid shows a broad peak with a low absorption maximum; but as the 

digestive ripening process progresses, the SPR peak becomes sharper and the absorption maximum 

increases.  

Two types of stabilization are characteristic for the as prepared gold colloid. One is steric 

stabilization which is obtained by the combination with butanone molecules and the other is 

electrostatic stabilization by acquiring electrons from the reaction vessel walls, using electrodes as 
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well as solvent medium. Both stabilizations took place at the same time during the warming up 

process, which took at least one hour to ensure good stabilization. The digestive ripening process 

turned out to be the key step to get monodisperse aniline capped gold colloid. Heating the as 

prepared colloid under reflux resulted in a narrowing of the particle size distribution.  

 

 
 

   

  

 
 
 
 
 
 
 
    
 

Figure 2.1 TEM images of (A) As prepared Au-aniline colloid in butanone, (B) Au-aniline 

colloid after digestive ripening 2 h in butanone. The particle size distribution of the digestive 

ripened colloid is given in the inset of (B) 
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Figure 2.2 UV-visible spectrum of Au-aniline in butanone before and after digestive ripening, 

and the digestive ripening process kept going for 2 h  

 

2.3.2 Gold-aniline colloid in toluene system 

In the gold-aniline-toluene system, gold nanoparticles precipitated during the warming up 

process, and after digestive ripening, big dark clusters formed at the bottom of the flask and the 

supernatant was light pink. Figure 2.3 shows snap shots of Au-aniline colloids in both butanone and 

toluene digestive ripened after 7 days. As we can see, in the butanone, the gold colloid was yellow 

brown, and some gold particles precipitated. While in the Au-aniline-toluene system, the 

supernatant became nearly clear, almost all the particles precipitated to the bottom. The UV/Vis 

absorption spectrums (Figure 2.4) of the gold colloid before and after digestive ripening confirmed 

there was no significant change of the size distribution after digestive ripening. They are 

characterized by a broad plasmon absorption band with no definite maximum.  

The results indicate that toluene is not a good condensing solvent, compared with butanone 

for the gold nanoparticles, and the digestive ripening process did not work as well in toluene. One 

possible explanation for the different stability of the two gold colloid systems is as follows: 

butanone is a polar solvent and with its nonbonding electron pairs it can act as a good ligand for 

gold nanoparticles at the preliminary stage. While the polarity of toluene is less, it is harder for 
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toluene to bind with gold atoms, so gold atoms aggregated together and big clusters formed. Once 

the big gold clusters formed,  it’s  even  harder  for  gold  nanoparticles  to  undergo  the  digestive  

ripening process in the presence of aniline.  

              

 

Figure 2.3 Snap shots of (A) Au-aniline colloids in butanone 7 days after digestive ripening 

and (B) Au-aniline colloids in toluene 7 days after digestive ripening 

 

Figure 2.4 UV-Vis spectrum of Au-aniline colloids before and after digestive ripening 2 h in 

toluene 
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2.3.3 Gold-pure aniline colloids  

In gold-pure aniline system, the gold colloids were under reflux in pure aniline. TEM studies 

(Figure 2.5 B) show that the average particle size is 4.6 ± 0.9 nm, compared with the gold-aniline in 

butanone system, in which the mean particle size is 28 ± 20 nm, so both the particle sizes and size 

distribution are much smaller. Figure 2.5 (A) shows the TEM of the same gold-pure aniline colloids 

after 7 days. As we can see the particles grew and aggregated to bigger ones, with mean particle size 

of 7.1 ± 5.3 nm. Figure 2.6 (A) shows the snap shot of Au-pure aniline colloids after 2 h digestive 

ripening process. The color of the gold colloid was brownish yellow, and colloid was uniform and 

quite stable. When kept in process for a longer time, the colloid became darker but still homogenous 

without any precipitates. Figure 2.6 (B) shows the digestively ripened gold-pure aniline colloid after 

one week.  

From the results above, we could draw a conclusion that aniline does play a significant part 

as a capping ligand in stabilizing the gold colloid, and as the concentration of the aniline goes 

higher the gold colloid is more stable and the particle sizes, as well as the size distribution, become 

smaller. The color of the colloid became darker when kept for a longer time, probably due to the 

gold particles rearranging, but particle sizes are still quite small since there were no precipitates 

formed in this system. 
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Figure 2.5 TEM images of (A) Au-pure aniline colloids after 7 days (B) Au-pure aniline 

colloids after digestive ripening. The particle size distributions of the Au-aniline colloid are 

given in the inset of (A) and (B), the mean diameter of the particle size is 7.1±5.3 nm, 4.6± 0.9 

nm respectively. They were calculated by Image Pro 7.0 software based on more than 200 

particles 

 

 

Figure 2.6 Snap shots of (A) Au-pure aniline colloids after digestive ripening process 2 h and 

(B) the Au-pure aniline colloids that was kept for 7 days 
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2.3.4 Gold-phenethylamine colloids 

 The gold-phenethylamine colloids were synthesized by the inverse micelle method, which 

will be discussed in detail in the following chapter. The digestive ripening process was carried out 

in butanone solution. Phenethylamine is a commonly used aromatic amine, which has similar 

structure as aniline. When it was used as a capping ligand in gold colloids, some interesting results 

were revealed. Figure 2.7 shows the TEM and UV-Vis spectra results of it. As can be clearly seen, 

the as prepared gold-phenethylamine (Fig.2.7 A) particles arranged nicely and tended to form a 2D 

monolayer. As digestive ripening progressed, the particles began to aggregate together (Fig. 2.7 B), 

and after 3 h almost all of the particles settled down and aggregated together, as shown in 

Figure.2.7(C). The UV-Vis spectra also confirm this, as it shows in Figure 2.8. After digestive 

ripening 2 h, the plasmon band became sharp and narrowed, indicating that the digestive ripening 

works during the first 2 h, when polydispersed colloids are transformed into monodispersed one. 

However, after 3 h, all of the particles aggregated and precipitated, as confirmed by UV-Vis spectra 

showing a broad band with no definite peak. 

 

 

Figure 2.7 TEM images of (A) As prepared Au-phenethylamine colloids in butanone,  (B) Au-

phenethylamine colloids after 2 h digestive ripening in butanone, and (C) Au-phenethylamine 

after 3 h digestive ripening 
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Figure 2.8 UV-visible spectrum of Au-phenethylamine colloids before and after digestive 

ripening 

 

2.4 Conclusion  

Aniline capped gold colloids were successfully synthesized in three different systems by the 

SMAD method. Butanone turned out to be a better choice for the condensing solvent as a 

preliminary capping ligand compared with toluene. Digestive ripening took place and greatly 

improved the size distribution of the gold-aniline-butanone system. The gold-aniline colloid in pure 

aniline system yields much smaller and more stable gold nanoparticles, which indicates that ligand 

concentration efficiently affects the particle sizes.  

Phenethylamine capped gold colloids also synthesized by the SMAD method, butanone was 

used as the condensing solvent. The TEM and UV-Vis spectra results indicate that as the digestive 

ripening progressed, the nicely arranged as-prepared phenethylamine capped gold particles began to 

aggregate together, and after 3 h almost all of the particles settled down. 
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Chapter 3. Gold-Alkyl Amine colloids: SMAD method and Inverse 
Micelle method, a study of Digestive Ripening, Stabilizing Ligands and 

Particle Size Distribution 

3.1 Methods and Materials 

3.1.1 Chemicals 

Didodecyldimethylammonium bromide (DDAB) was purchased from Fluka and used as 

received. Sodium borohydride, gold chloride (99.99%), Bulk Gold, butylamine (98%), octylamine 

(98%), dodecylamine (98%), hexadecylamine (98%), and octadecylamine (98%) were purchased 

from Sigma-Aldrich and used without further purification. Deionized distilled water was obtained 

from a Barnstead nanopure system. Toluene (99.9%), ethanol (99%) and Butanone (99%) were 

purchased from Fischer Scientific. The toluene and butanone were distilled, and degassed four 

times by the Freeze-pump-thaw procedure before use in SMAD experiments. 

3.1.2 Preparation of Au-phenethylamine, Au-butylamine, Au-octylamine, Au-

dodecylamine, Au-hexadecylamine, Au-octadecylamine as prepared colloids by inverse 

micelle method. Specific methods for gold nanoparticles 

3.1.2.1 Preparation of the as prepared gold colloid 

 The gold-amine as prepared colloid was prepared at room temperature using a 

DDAB/water/toluene inverse micelle system. Lots of work 41 has been done to get nanoparticles 

with a fairly narrow size distribution by carefully controlling the amount of water, surfactant, and 

the rate of reaction, as well as the reaction temperature. In order to study the effect of digestive 

ripening on the particle size distribution, a smaller amount of DDAB surfactant was used to create a 

polydisperse colloid.26 A typical synthesis is as follows. A 0.025M micelle solution was formed by 

adding 156 mg of DDAB ( 3.8×10-4
  
mole) in 15 mL toluene, and the toluene was degassed by 

bubbling with argon gas 2 h prior to use. Then 51 mg gold chloride (1.5×10-4 mole) was measured 

and dissolved in the micelle solution and sonicated for 15 min, to obtain a clear reddish brown 
colored solution. Meanwhile, a 9.4M NaBH4 solution was formed by adding 0.178 g NaBH4 

(4.7×10-3
 
mole)  to  0.5  mL  deionized  water,  54  μL  of  that  (5×10-5mole) was added dropwise to the 
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gold chloride micelle solution. The color of the solution changed to dark brown within one minute. 

Thus, the as prepared gold colloid was obtained after vigorously stirring for 30 min at room 

temperature. Then 5 mL of the as prepared gold colloid was transferred to a separate 30 mL vial to 

which different amine was added at the bottom, together with a stirring bar. To keep the molar ratio 

of Au/amine at 1:30, phenethylamine (0.8 mL), butylamine (0.8 mL), octylamine (0.8 mL), 

dodecylamine (0.308 g), hexadecylamine (0.401 g), and octadecylamine (0.448 g) were used during 

this experiment. After stirring for 1 min within each vial, the color of the colloid turned to purple. 

Similar to Dodecanethiol, these amines also have an affinity to the gold surface42 which results in a 

change of the interaction strength between the particles. The purple color was caused by the 

aggregation of the gold particles.43  

3.1.2.2 Isolation of the dried gold particles 

 The amine capped gold nanoparticles were then separated from the DDAB, excess amine, 

and the reaction by-product by precipitating with 15 mL of ethanol. After letting the vial stand 

undisturbed overnight, the particles which settled down to the bottom were isolated from the 

supernatant by decanting and vacuum drying.  

3.1.2.3 Digestive Ripening 

 The dried precipitates were redissolved into 5 mL toluene and transferred to a 50 mL round 

bottom flask, and the same amount of amine was added to the flask for digestive ripening process. 

Reflux of the each mixture for 2 h under an argon atmosphere led to the formation of monodisperse 

colloids. Figure 3.1 shows the inverse micelle procedure and digestive ripening. 
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Figure 3.1 Schematic representation of the synthesis of gold colloid by inverse micelle method 

and digestive ripening process 

 

3.1.3 Preparation of Au-butylamine, Au-octylamine, Au-dodecylamine, Au-

hexadecylamine, Au-octadecylamine as prepared colloids by SMAD method 

3.1.3.1 Preparation of the as prepared gold colloid 

 The SMAD technique allows synthesis of pure gold colloids on a large scale. Chapter 2 

provides a detailed description of the Au nanoparticle preparation by the SMAD procedure. The 

process was carried out under dynamic vacuum (4 × 10-3 Torr) in a settled reactor covered by liquid 

nitrogen Dewar. Bulk Au (150 mg) was heated by the electrodes in the crucible and then evaporated 

and co-deposited with butanone vapors (120 mL) on the walls of the reactor. At the end of this 

procedure, the liquid nitrogen Dewar was removed and the dark purple Au-butanone matrix was 

allowed to melt down. After stirring for about 1 h, the Au-butanone solution was siphoned into five 

vessels, which each contained a different amine (phenethylamine (0.6 mL), butylamine (0.6 mL), 

octylamine (0.6 mL), dodecylamine (0.224 g), hexadecylamine (0.292 g), and octadecylamine 

(0.325 g)) at the bottom. Each one was pumped down to remove butanone under vacuum. Then 

agitation was commenced for each vessel for about 2 h under argon atmosphere. Then the Au-amine 
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as prepared colloid was diluted to 80 mL with toluene for the preparation of the digestive ripening 

process.  

3.1.3.2 Digestive Ripening 

 The gold-amine-butanone as prepared colloid was then refluxed at the boiling point of 

toluene for 2 h under argon atmosphere. The final colloidal solution contains high quality Au 

nanoparticles stabilized by a different amine. Figure 3.2 shows the synthesis of gold colloid 

procedure by SMAD method and digestive ripening process. 

 

 

Figure 3.2 Schematic representation of the synthesis of gold colloid by SMAD method and 

digestive ripening process 

 

3.3 Characterization 

  3.3.1 UV-Vis Spectroscopy 

 UV-Vis spectra were taken on a Spectral Instruments 400 series spectrophotometer, and 

toluene solvent was used. 
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  3.3.2 Transmission Electron Microscopy 

 TEM images were taken with a Philips EM100 microscope operating at 100kV. The particle 

size distributions were determined from a sample of a minimum of 200 particles. The diameter of 

these particles was measured by using software. Every distance was accurate to the fifth decimal 

place and the mean particle size and stand distribution were calculated based on these original data. 
 

3.4 Results and Discussion  

3.4.1 Gold-amine by Inverse Micelle method: The effect of Alkyl chain length 

 A series of alkylthiols were used as capping ligands for gold colloid in our previous work.44 

It is very encouraging to find out that the digestive ripening process significantly reduced the 

average particle size and polydispersity, and formed separate particles with longer chain length 

(C16) thiols and aggregatde into 3D superlattices with short chain length (C8 and C10) thiols. 

Those superlattices have similar solubility behaviors to those of normal molecular solids.22 Inspired 

by that finding, our group recently focused on using different amines as the capping ligand, by the 

same synthesis method, to investigate the particle behavior of the gold-amine colloids. The results 

are discussed in detail below. 

 Different gold-amine colloids were synthesized by the inverse micelle method. The highly 

poly-dispersed gold colloids capped by DDAB are depicted in Figure 3.3. The addition of the 

different amine leads to many changes. Big polyhedral particles transformed into much more 

uniform particles, with sizes ranging from 8 to 22 nm. The morphologies and particle sizes of those 

as prepared gold colloids are very different due to the different capping ligands; they all easily 

settled down with different color, changing from dark blue to dark purple as the chain length of the 

ligands increases. The following procedure is digestive ripening, during which all gold colloids 

were reddish purple homogenous solution under reflux temperature of toluene, while visible 

changes appeared when they cooled down to room temperature. Au-butylamine (Au-C4N) colloids 

settled down quickly at the bottom, forming dark blue precipitates with almost clear supernatant. 

The dark purple particles of Au-octylamine (Au-C8N) colloid were also easy to precipitate, leaving 

a pink supernatant. The colloids of Au-dodecylamine (Au-C12N), Au-hexadecylamine (Au-C16N) 
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and Au-octadecylamine (Au-C18N) are very similar to each other. After cooled down, the color 

changed from reddish purple to purple, some purple precipitates formed and the supernatant 

remained purple color. The morphologies and particle sizes of the gold colloids were characterized 

by TEM before and after digestive ripening. The digestive ripening procedure greatly improved the 

particle size distribution. As can be clearly seen from the TEM images (Figure 3.4, 3.6, 3.8, 3.10 

and 3.12), a polydisperse colloid containing particles with sizes ranging widely transformed into an 

almost monodisperse colloid with narrow particle sizes distribution. The mean diameters of the Au-

C4N, Au-C8N, Au-C12N, Au-C16N and Au-C18N colloids were 17.2 ± 4.5, 16.9 ± 2.8, 8.8 ± 1.1, 12.1 

± 2.5 and 10.4 ± 1.6 nm respectively. As for the morphology of these gold colloids, except for Au-

C4N nanoparticles, which easily aggregated together and formed 3D superlattices, the others have a 

tendency to organize into 2D layers and the shape of the particles is more polyhedral rather than 

spherical after digestive ripening.  

 The UV/Vis absorption spectrum results (Figure 3.5, 3.7, 3.9, 3.11 and 3.13) taken before 

and after digestive ripening of each gold-amine colloid are in complete agreement with the TEM 

observations. The optical spectra of the as prepared colloids of Au-C4N, Au-C8N and Au-C12N 

show similar broad plasmon absorption bands with no definite maximum. Au-C16N and Au-C18N as 

prepared colloid reveals a broad peak with a peak maximum around 570 nm. As for the digestive 

ripened gold colloids, all show a sharp and narrow peak around 530 nm, indicating a dramatic 

narrowing of the particle size and distribution, except for Au-C4N, which has a broad plasmon with 

a large tail above 700 nm.   

It has been fully discussed now that the optical properties of gold colloids are mainly 

decided by the particle aggregation, particle sizes and distribution as well as interparticle 

separation.45 Thus, the large tail observed for Au-C4N indicates that the particles are aggregating 

together which agrees with the TEM images (Figure 3.4). The red shift of the colloid in UV-Vis 

spectra was caused by the stronger electromagnetic coupling between the particles, which happens 

when the superlattices are bigger, and the ligand chain length separating the particles is smaller.  

 The observations obtained above suggest that the chain length of amine has a great impact 

on  the  particle  size  variation  and  interparticle  separation.  Simple  explanations  like  “  lengthier  

ligands  stabilize  larger  particles”47 do not explain this phenomenon because as we can clearly see 

from the TEM images that C12N leads to the smallest particle sizes and narrowest size distribution   
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( 8.8 ± 1.1 nm), smaller than the longer ligands which are C16N (12.1 ± 2.5 nm) and C18N (10.4 ± 

1.6 nm). Many proposals have been reported on the stabilization of nanoparticles suggesting that 

control may be due to thermodynamics other than the kinetics of nucleation and crystal growth.48 

They discussed that the nanoparticle size resulted from a combination of the ligand-gold binding 

energy and the surface free energy of the particles to reach the minimum energy of the whole 

system. The ligand-gold binding energy favors smaller particles with larger surface areas, while the 

surface free energy favors larger particles with smaller surface curvature. Therefore, these two 

effects oppose each other and lead to a minimum energy with a thermodynamically favored size for 

each gold-amine colloid system.  

 As for the interparticle separation, it seems that the bigger particles are more likely to 

aggregate into 3D superlattices, and the smaller ones are more likely to form separate particles. One 

possible explanation for this tendency can be rationalized from the attraction energy between the 

particles. To understand qualitatively the interparticle features, we have calculated the van der 

Waals attraction potential between the particle cores, utilizing the equation shown below:49 
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 Here, A is the Hamaker constant, for gold it is 1.95 eV. R1 and R2 are the radii of the two 

spheres between which the attraction forces are to be calculated. D is the distance between the 

nearest surfaces of two adjacent spheres. Since the spheres are separated by the amine, we have 

assumed that the two alkyl chains attached to the two adjacent gold particles are fully interdigitated; 

that means D equals to the chain length of the amine. R is the reduced radius given by 2 R1 R2 / (R1
 

+ R2); in our case R1=R2=R. The attraction potentials turn out to be -2.7 eV, -1.5 eV, -0.61 eV, -0.72 

eV and -0.62 eV for Au-C4N, Au-C8N, Au-C12N, Au-C16N and Au-C18N, respectively.  From these 

results, we can clearly expect Au-C4N and Au-C8N to favor aggregation since the attraction 

energies are larger than the others.  
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Figure 3.3 TEM images of Au-DDAB colloid in toluene by inverse micelle method 

 

 

 

 

Figure 3.4 TEM images of (A) as prepared Au-butylamine colloid in toluene by inverse micelle 

method, (B) Au-butylamine colloid after digestive ripening 2 h in toluene 
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Figure 3.5 UV-Visible spectrum of Au-butylamine colloid by inverse micelle method before 

and after digestive ripening 2 h 

 

 

 

 

Figure 3.6 TEM images of (A) as prepared Au-octylamine colloid in toluene by inverse micelle 

method, and (B) Au-octylamine colloid after digestive ripening 2 h in toluene 
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Figure 3.7 UV-Visible spectrum of Au-octylamine colloid by inverse micelle method before 

and after digestive ripening 2 h in toluene 

 

 

 

 

Figure 3.8 TEM images of (A) as prepared Au-dodecylamine colloid by inverse micelle method 

in toluene, (B) Au-dodecylamine colloid after digestive ripening 2h in toluene 
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Figure 3.9 UV-Visible spectrum of Au-dodecylamine colloid by inverse micelle method before 

and after digestive ripening 2 h in toluene 

 

 

 

 

Figure 3.10 TEM images of (A) as prepared Au-hexadecylamine colloid by inverse micelle 

method in toluene, (B) Au-hexadecylamine colloid after digestive ripening 2 h in toluene 
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Figure 3.11 UV-Visible spectrum of Au-hexadecylamine colloid by inverse micelle method 

before and after digestive ripening 2 h in toluene 

 

 

 

 

Figure 3.12 TEM images of (A) as prepared Au-octadecylamine colloid in toluene, (B) Au-

octadecylamine colloid after digestive ripening 2 h in toluene 
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Figure 3.13 UV-Visible spectrum of Au-octadecylamine colloid before and after digestive 

ripening 2 h in toluene 

 

3.4.2 Gold-amine by the SMAD method: The effect of Alkyl chain length, Comparison 

between Inverse Micelle and SMAD method  

 Gold-amine colloids that were capped by C4N, C8N, C12N, C16N and C18N ligands were 

also synthesized by the SMAD method. The as prepared colloids which were pre-stabilized by 

butanone were divided into five portions along with different amine ligands. Then the solvent 

butanone was removed from those colloids by vacuum, and toluene was added. The colloids were 

re-dispersed and digestively ripened in toluene. TEM and UV-Vis were also conducted to 

characterize the morphologies and particle size distributions of the gold colloids before and after 

digestive ripening. However, it seems that there are no significant changes during the digestive 

ripening process. Before the digestive ripening, the color of the gold-amine colloids changed from 

dark blue to dark purple as the ligand length increases, and some precipitates formed at the bottom, 

while after being refluxed in toluene and cooled down to room temperature, the color of the each 

gold colloid stayed the same. The Au-C4N and Au-C8N colloids were settled down easily with 

almost colorless supernatants. Some precipitates were also formed in Au-C12N, Au-C16N and Au-

C18N colloids and the supernatant was purple color. Figure 3.14 shows the TEM images for Au-

C4N, Au-C8N, Au-C12N, Au-C16N and Au-C18N colloids after digestive ripening. Very interesting 
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results were obtained, as can be clearly seen. The morphology of these gold colloids, except for Au-

C12N, were no longer polyhedral spheres; they tended to form rod shapes, and the Au-C4N and Au-

C8N particles aggregated together forming 3D superlattices, while the Au-C16N and Au-C18N 

colloids have a tendency to organize into 2D layers. As for Au-C12N, after digestive ripening the 

particles were organized nicely forming 2D monolayer spherical particles with mean size 9.4 ± 1.2 

nm, compared with the Au-C12N colloid synthesized by inverse micelle method with particles  

mean size 8.8 ± 1.2. The morphologies are similar, but particles sizes are bigger. The UV-Vis 

spectra were in total agreement with those observations. As can be seen from Figure 3.15, which 

shows the surface plasmon absorption of Au-C4N, Au-C8N, Au-C12N, Au-C16N and Au-C18N 

colloids after digestive ripening, the plasmon band of both the Au-C4N and Au-C8N have a large tail 

above 700 nm, which illustrates that the particles are forming aggregates. Au-C12N colloids have a 

shoulder centered at 630nm after the 530nm peak, which reveals some particles forming 3D 

superlattices. As for Au-C16N and Au-C18N, we can see a broad gold plasmon peak around 530nm.  

 The morphologies of these gold amine colloids synthesized by inverse micelle method and 

SMAD method are quite different. The morphologies of the inverse micelle colloids are more like 

polyhedral spheres, nicely arranged, while the shape of the SMAD colloids are very irregular except 

for Au-C12N. The particle morphologies of the Au-C12N colloids by both methods are very similar, 

but the SMAD method yields bigger particle sizes. The differences can be explained by the different 

synthesis route of the two techniques. In the inverse micelle method, the nucleation and crystal 

growth are controlled by three factors: 1) the presence of DDAB, 2) the controlled reaction 

temperature, and 3) the reaction speed. While in the SMAD method, atoms aggregate and crystals 

grow in a more chaotic manner, since the vaporization and aggregation speed of the atoms is too 

fast to control. Previous work in our group has reported that particles synthesized by the inverse 

micelle technique preferentially assemble into face-centered cubic (fcc) structures, while the SMAD 

nanoparticles  behave  like  “hard”  spheres  and  predominantly  organize  into  hexagonal  close-packed 

(hcp) nanocrystal superlattices.50 Although the digestive ripening process was carried out in both 

synthesis methods, it seems that it was less effective regarding core particle size adjustments when 

the SMAD method was used, as compared to the inverse micelle method. 
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Figure 3.14 TEM images of (A) Au-C4N, (B) Au-C8N, (C) Au-C12N, (D) Au-C16N and (E) Au-

C18N colloids after digestive ripening in toluene 
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Figure 3.15 Comparison of surface plasmon resonance of these gold-amine colloids after 

digestive ripening in toluene 

3.4.3 Comparison between alkylthiol and alkylamine as the the capping ligand for gold 

colloids  

 The properties of thiol capped gold nanoparticles have been well investigated, including 

their monodispersity, the fact that they are easily isolated, as well as their nature to self-assemble 

into superlattices. The most stable gold colloid was that using dodecanethiol (C12S) as the capping 

agent. After digestive ripening, it yielded a monodispersed gold colloid with an average size of 4.7 

nm by inverse micelle method.51 In contrast, digestively ripened by dodecylamine (C12N) leads to 

larger particles with an average size of 8.8 nm. Recently, the nature of the ligand-gold bonding has 

been reported that thiol is bound to the gold surface as a thiolate with the release the hydrogen.52 

Compared to sulfur in thiol ligands, nitrogen in amine ligands binds less strongly with the gold 

surface. Thus, we can conclude that less ligand-gold binding energy leads to the larger core-particle 

sizes, which is also in support of the proposal we discussed above that a combination of a curvature-

dependent surface energy and the ligand-gold binding energy leads to the particular size of 

nanoparticle. 
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3.3 Summary 

 For the gold alkyl-amine colloids synthesized by the inverse micelle method, the digestive 

ripening process greatly changed the particle size distribution, and transformed the polydispersed 

colloid into a monodispersed colloid. As the chain length increases from Butylamine (C4N) to 

octadecylamine (C18N),  the gold particle size decreases with more narrowed size distribution, 

except for Au-C12N colloid, which yields the smallest particle sizes and the most narrow size 

distribution. The bigger particles, like Au-C4N and Au-C8N, seem to very easily aggregate and 

almost all the particles settled down and formed 3D superlattices. Smaller particles, like Au-C12N, 

Au-C16N and Au-C18N, have a tendency to form 2D monolayers; but when kept for longer time, can 

still form 3D superlattices. 

As to the gold colloids by SMAD method, the digestive ripening process did not take place 

in  most  of  the  cases;;  because  the  SMAD  particles  are  more  like  “hard”  sphere,  it  is  hard  for  the  

surface process to transform the core structure of the the crystal. TEM images show that the 

dodecylamine capped Au colloids (C12N) are nicely arranged to polyhedral sphere. With an average 

particle size of 9.4 ± 1.2 nm, the particle sizes are bigger than the Au-C12N colloids by inverse 

micelle method. The morphologies of Au colloids that are capped by C4N, C8N, C16N and C18N are 

irregular,  so  it’s  hard  to  determine  the  particle  size  and  size  distribution.  Au-C4N and Au-C8N very 

easily aggregate and settled down. 

 Compared with the alkyl-thiol as the capping ligand for gold colloids, amine capped gold 

nanopartilces are bigger, which indicates that stronger ligand binding can lead to smaller particle 

sizes. The final particle sizes of the colloid were determined by a combination of a curvature-

dependent surface energy and the ligand-gold binding energy to reach a minimum free energy of the 

system. 
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