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Abstract

Ordinary least-squares (OLS) estimators for a linear model are very sensitive to unusual

values in the design space or outliers among y values. Even one single atypical value may

have a large effect on the parameter estimates. In this proposal, we first review and de-

scribe some available and popular robust techniques, including some recent developed ones,

and compare them in terms of breakdown point and efficiency. In addition, we also use a

simulation study and a real data application to compare the performance of existing robust

methods under different scenarios. Finite mixture models are widely applied in a variety of

random phenomena. However, inference of mixture models is a challenging work when the

outliers exist in the data. The traditional maximum likelihood estimator (MLE) is sensitive

to outliers. In this proposal, we propose a Robust Mixture via Mean shift penalization

(RMM) in mixture models and Robust Mixture Regression via Mean shift penalization

(RM2) in mixture regression, to achieve simultaneous outlier detection and parameter esti-

mation. A mean shift parameter, which is denoted by γ, is added to the mixture models,

and penalized by a nonconvex penalty function. With this model setting, we develop an it-

erative thresholding embedded EM algorithm to maximize the penalized objective function.

Comparing with other existing robust methods, the proposed methods show outstanding

performance in both identifying outliers and estimating the parameters.

Key words: Robust; Outlier detection; Mixture models; EM algorithm; Penalized likeli-

hood.



ROBUST MIXTURE MODELING

by

CHUN YU

M.S., Kansas State University, 2008

DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

Doctor of Philosophy

Department of Statistics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Co-Major Professor
Weixin Yao, PhD

Co-Major Professor
Kun Chen, PhD



Abstract

Ordinary least-squares (OLS) estimators for a linear model are very sensitive to unusual

values in the design space or outliers among y values. Even one single atypical value may

have a large effect on the parameter estimates. In this proposal, we first review and de-

scribe some available and popular robust techniques, including some recent developed ones,

and compare them in terms of breakdown point and efficiency. In addition, we also use a

simulation study and a real data application to compare the performance of existing robust

methods under different scenarios. Finite mixture models are widely applied in a variety of

random phenomena. However, inference of mixture models is a challenging work when the

outliers exist in the data. The traditional maximum likelihood estimator (MLE) is sensitive

to outliers. In this proposal, we propose a Robust Mixture via Mean shift penalization

(RMM) in mixture models and Robust Mixture Regression via Mean shift penalization

(RM2) in mixture regression, to achieve simultaneous outlier detection and parameter esti-

mation. A mean shift parameter, which is denoted by γ, is added to the mixture models,

and penalized by a nonconvex penalty function. With this model setting, we develop an it-

erative thresholding embedded EM algorithm to maximize the penalized objective function.

Comparing with other existing robust methods, the proposed methods show outstanding

performance in both identifying outliers and estimating the parameters.

Key words: Robust; Outlier detection; Mixture models; EM algorithm; Penalized likeli-

hood.



Table of Contents

Table of Contents x

List of Figures xiii

List of Tables xiv

Acknowledgements xv

1 Robust Linear Regression: A Review and Comparison 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Robust Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 M-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 LMS Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 LTS Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 S-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.5 Generalized S-Estimates (GS-Estimates) . . . . . . . . . . . . . . . . 6

1.2.6 MM-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.7 Generalized M-Estimates (GM-Estimates) . . . . . . . . . . . . . . . 8

1.2.8 R-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.9 REWLSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.10 Robust regression based on regularization of case-specific parameters 11

1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

x



2 Outlier Detection and Robust Mixture Modeling Using Nonconvex Pe-

nalized Likelihood 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Robust Mixture Model via Mean-Shift Penalization . . . . . . . . . . . . . . 27

2.2.1 RMM for Equal Component Variances . . . . . . . . . . . . . . . . . 27

2.2.2 RMM for Unequal Component Variances . . . . . . . . . . . . . . . . 32

2.2.3 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Methods and Evaluation Measures . . . . . . . . . . . . . . . . . . . 38

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Real Data Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Proof of Equation (2.8) . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Proof of Equation (2.17) . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.3 Proof of SCAD thresholding rule in Proposition 1 . . . . . . . . . . . 44

3 Outlier Detection and Robust Mixture Regression Using Nonconvex Pe-

nalized Likelihood 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Robust Mixture Regression via Mean-shift Penalization . . . . . . . . . . . . 56

3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Simulation Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Methods and Evaluation Measures . . . . . . . . . . . . . . . . . . . 64

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Tone Perception Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 Proof of Equation (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 78

Bibliography 85

xii



List of Figures

1.1 Plot of MSE of intercept (left) and slope (right) estimates vs. different cases

for LMS, LTS, S, MM, and REWLSE, for model 1 when n = 100. . . . . . . 22

1.2 Plot of MSE of different regression parameter estimates vs. different cases

for LMS, LTS, S, MM, and REWLSE, for model 2 when n = 100. . . . . . . 23

1.3 Fitted lines for Cigarettes data . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Histogram for Acidity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 The scatter plot of the tone perception data and the fitted mixture regression

lines with added ten identical outliers (1.5, 5) (denoted by stars at the upper

left corner). The predictor is actual tone ratio and the response is the per-

ceived tone ratio by a trained musician. The solid lines represent the fit by

the proposed Hard and the dashed lines represent the fit by the traditional

MLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiii



List of Tables

1.1 MSE of Point Estimates for Example 1 with n = 20 . . . . . . . . . . . . . . 17

1.2 MSE of Point Estimates for Example 1 with n = 100 . . . . . . . . . . . . . 18

1.3 MSE of Point Estimates for Example 2 with n = 20 . . . . . . . . . . . . . . 19

1.4 MSE of Point Estimates for Example 2 with n = 100 . . . . . . . . . . . . . 20

1.5 Cigarettes data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Regression estimates for Cigarettes data . . . . . . . . . . . . . . . . . . . . 21

1.7 Breakdown Points and Asymptotic Efficiencies of Various Regression Estimators 21

2.1 Outlier Identification Results for Equal Variance Case with Large |γ| . . . . 48

2.2 MeSE (MSE) of Point Estimates for Equal Variance Case with Large |γ| . . 49

2.3 Outlier Identification Results for Equal Variance Case with Small |γ| . . . . 49

2.4 MeSE (MSE) of Point Estimates for Equal Variance Case with Small |γ| . . 49

2.5 Outlier Identification Results for Unequal Variance Case with Large |γ| . . . 50

2.6 MeSE (MSE) of Point Estimates for Unequal Variance Case with Large |γ| . 50

2.7 Outlier Identification Results for Unequal Variance Case with Small |γ| . . . 50

2.8 MeSE (MSE) of Point Estimates for Unequal Variance Case with Small |γ| . 51

2.9 Parameter Estimation on Acidity Data Set . . . . . . . . . . . . . . . . . . . 51

3.1 Outlier Identification Results for Equal Variance Case with Large |γ| . . . . 69

3.2 MeSE (MSE) of Point Estimates for Equal Variance Case with Large |γ| . . 70

3.3 Outlier Identification Results for Equal Variance Case with Small |γ| . . . . 71

3.4 MeSE (MSE) of Point Estimates for Equal Variance Case with Small |γ| . . 72

xiv



3.5 Outlier Identification Results for Unequal Variance Case with Large |γ| . . . 73

3.6 MeSE (MSE) of Point Estimates for Unequal Variance Case with Large |γ| . 74

3.7 Outlier Identification Results for Unequal Variance Case with Small |γ| . . . 75

3.8 MeSE (MSE) of Point Estimates for Unequal Variance Case with Small |γ| . 76

xv



Acknowledgments

First and foremost, I would like to express my appreciation to my major professor, Dr.

Weixin Yao and Dr. Kun Chen, for all their encouragement, guidance and suggestions.

I am grateful to Dr. Christopher Pinner for offering generous help and support as

chairperson of my final examining committee. I would also like to thank Dr. Haiyan Wang,

Dr. Weixing Song and Dr. Jianhan Chen for their willingness to serve on my supervisory

committee and for their valuable insight.

My gratefulness extends to everyone who supported me in any respect during the com-

pletion of the dissertation.

xvi



Chapter 1

Robust Linear Regression: A Review

and Comparison

1.1 Introduction

Linear regression has been one of the most important statistical data analysis tools. Given

the independent and identically distributed (iid) observations (xi, yi), i = 1, . . . , n, in order

to understand how the response yis are related to the covariates xis, we traditionally assume

the following linear regression model

yi = xTi β + εi, (1.1)

where β is an unknown p × 1 vector, and the εis are i.i.d. and independent of xi with

E(εi | xi) = 0. The most commonly used estimate for β is the ordinary least square (OLS)

estimate which minimizes the sum of squared residuals

n∑
i=1

(yi − xTi β)2. (1.2)
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However, it is well known that the OLS estimate is extremely sensitive to the outliers. A

single outlier can have large effect on the OLS estimate.

In this paper, we review and describe some available robust methods. In addition, a

simulation study and a real data application are used to compare different existing robust

methods. The efficiency and breakdown point (Donoho and Huber 1983) are two tradition-

ally used important criteria to compare different robust methods. The efficiency is used to

measure the relative efficiency of the robust estimate compared to the OLS estimate when

the error distribution is exactly normal and there are no outliers. Breakdown point is to

measure the proportion of outliers an estimate can tolerate before it goes to infinity. In

this paper, finite sample breakdown point (Donoho and Huber 1983) is used and defined as

follows: Let zi = (xi, yi). Given any sample z = (zi, . . . ,zn), denote T (z) the estimate of

the parameter β. Let z′ be the corrupted sample where any m of the original points of z

are replaced by arbitrary bad data. Then the finite sample breakdown point δ∗ is defined

as

δ∗ (z, T ) = min
1≤m≤n

{
m

n
: sup
z′
‖T (z′)− T (z)‖ =∞

}
, (1.3)

where ‖·‖ is the Euclidean norm.

Many robust methods have been proposed to achieve high breakdown point or high

efficiency or both. M-estimates (Huber, 1981) are solutions of the normal equation with

appropriate weight functions. They are resistant to unusual y observations, but sensitive to

high leverage points on x. Hence the breakdown point of an M-estimate is 1/n. R-estimates

(Jaeckel 1972) which minimize the sum of scores of the ranked residuals have relatively

high efficiency but their breakdown points are as low as those of OLS estimates. Least

Median of Squares (LMS) estimates (Siegel 1982) which minimize the median of squared

residuals, Least Trimmed Squares (LTS) estimates (Rousseeuw 1983) which minimize the

trimmed sum of squared residuals, and S-estimates (Rousseeuw and Yohai 1984) which

minimize the variance of the residuals all have high breakdown point but with low efficiency.

Generalized S-estimates (GS-estimates) (Croux et al. 1994) maintain high breakdown point

2



as S-estimates and have slightly higher efficiency. MM-estimates proposed by Yohai (1987)

can simultaneously attain high breakdown point and efficiencies. Mallows Generalized M-

estimates (Mallows 1975) and Schweppe Generalized M-estimates (Handschin et al. 1975)

downweight the high leverage points on x but cannot distinguish “good” and “bad” leverage

points, thus resulting in a loss of efficiencies. In addition, these two estimators have low

breakdown points when p, the number of explanatory variables, is large. Schweppe one-step

(S1S) Generalized M-estimates (Coakley and Hettmansperger 1993) overcome the problems

of Schweppe Generalized M-estimates and are calculated in one step. They both have high

breakdown points and high efficiencies. Recently, Gervini and Yohai (2002) proposed a

new class of high breakdown point and high efficiency robust estimate called robust and

efficient weighted least squares estimator (REWLSE). Lee et al. (2011) and She and Owen

(2011) proposed a new class of robust methods based on the regularization of case-specific

parameters for each response. They further proved that the M-estimator with Huber’s ψ

function is a special case of their proposed estimator.

The rest of the paper is organized as follows. In Section 2, we review and describe some

of the available robust methods. In Section 3, a simulation study and a real data application

are used to compare different robust methods. Some discussions are given in Section 4.

1.2 Robust Regression Methods

1.2.1 M-Estimates

By replacing the least squares criterion (1.2) with a robust criterion, M-estimate (Huber,

1964) of β is

β̂ = arg min
β

n∑
i=1

ρ

(
yi − xTi β

σ̂

)
, (1.4)

where ρ(·) is a robust loss function and σ̂ is an error scale estimate. The derivative of ρ,

denoted by ψ(·) = ρ′(·), is called the influence function. In particular, if ρ(t) = 1
2
t2, then

3



the solution is the OLS estimate. The OLS estimate is very sensitive to outliers. Rousseeuw

and Yohai (1984) indicated that OLS estimates have a breakdown point (BP) of BP = 1/n,

which tends to zero when the sample size n is getting large. Therefore, one single unusual

observation can have large impact on the OLS estimate.

One of the commonly used robust loss functions is Huber’s ψ function (Huber 1981),

where ψc(t) = ρ′(t) = max{−c,min(c, t)}. Huber (1981) recommends using c = 1.345 in

practice. This choice produces a relative efficiency of approximately 95% when the error

density is normal. Another possibility for ψ(·) is Tukey’s bisquare function ψc(t) = t{1 −

(t/c)2}2
+. The use of c = 4.685 produces 95% efficiency. If ρ(t) = |t|, then least absolute

deviation (LAD, also called median regression) estimates are achieved by minimizing the

sum of the absolute values of the residuals

β̂ = arg min
β

n∑
i=1

∣∣yi − xTi β∣∣ . (1.5)

The LAD is also called L1 estimate due to the L1 norm used. Although LAD is more

resistent than OLS to unusual y values, it is sensitive to high leverage outliers, and thus

has a breakdown point of BP = 1/n → 0 (Rousseeuw and Yohai 1984). Moreover, LAD

estimates have a low efficiency of 64% when the errors are normally distributed. Similar

to LAD estimates, the general monotone M-estimates, i.e., M-estimates with monotone ψ

functions, have a BP = 1/n→ 0 due to lack of immunity to high leverage outliers (Maronna,

Martin, and Yohai 2006).

1.2.2 LMS Estimates

The LMS estimates (Siegel 1982) are found by minimizing the median of the squared resid-

uals

β̂ = arg min
β

Med{
(
yi − xTi β

)2}. (1.6)

4



One good property of the LMS estimate is that it possesses a high breakdown point of near

0.5. However, the LMS estimate has at best an efficiency of 0.37 when the assumption of

normal errors is met (see Rousseeuw and Croux 1993). Moreover, LMS estimates do not

have a well-defined influence function because of its convergence rate of n−
1
3 (Rousseeuw

1982). Despite these limitations, the LMS estimate can be used as the initial estimate for

some other high breakdown point and high efficiency robust methods.

1.2.3 LTS Estimates

The LTS estimate (Rousseeuw 1983) is defined as

β̂ = arg min
β

q∑
i=1

r(i) (β)2 , (1.7)

where r(i)(β) = y(i) − xT(i)β, r(1) (β)2 ≤ · · · ≤ r(q) (β)2 are ordered squared residuals, q =

[n (1− α) + 1], and α is the proportion of trimming. Using q =
(
n
2

)
+1 ensures that the

estimator has a breakdown point of BP = 0.5, and the convergence rate of n−
1
2 (Rousseeuw

1983). Although highly resistent to outliers, LTS suffers badly in terms of very low efficiency,

which is about 0.08, relative to OLS estimates (Stromberg, et al. 2000). The reason that

LTS estimates call attentions to us is that it is traditionally used as the initial estimate for

some other high breakdown point and high efficiency robust methods.

1.2.4 S-Estimates

S-estimates (Rousseeuw and Yohai 1984) are defined by

β̂ = arg min
β

σ̂ (r1 (β) , · · · , rn (β)) , (1.8)

5



where ri (β) = yi − xTi β and σ̂ (r1 (β) , · · · , rn (β)) is the scale M-estimate which is defined

as the solution of
1

n

n∑
i=1

ρ

(
ri (β)

σ̂

)
= δ, (1.9)

for any given β, where δ is taken to be EΦ [ρ (r)]. For the biweight scale, S-estimates can

attain a high breakdown point of BP = 0.5 and has an asymptotic efficiency of 0.29 under

the assumption of normally distributed errors (Maronna, Martin, and Yahai 2006).

1.2.5 Generalized S-Estimates (GS-Estimates)

Croux et al. (1994) proposed generalized S-estimates in an attempt to improve the low

efficiency of S-estimators. Generalized S-estimates are defined as

β̂ = arg min
β

Sn(β), (1.10)

where Sn(β) is defined as

Sn(β) = sup

{
S > 0;

(
n

2

)−1∑
i<j

ρ

(
ri − rj
S

)
≥ kn,p

}
, (1.11)

where ri = yi−xTi β, p is the number of regression parameters, and kn,p is a constant which

might depend on n and p. Particularly, if ρ(x) = I(|x| ≥ 1) and kn,p =
((
n
2

)
−
(
hp
2

)
+ 1
)
/
(
n
2

)
with hp = n+p+1

2
, generalized S-estimator yields a special case, the least quartile difference

(LQD) estimator, which is defined as

β̂ = arg min
β

Qn(r1, . . . , rn), (1.12)

where

Qn = {|ri − rj| ; i < j}(hp2 ) (1.13)

6



is the
(
hp
2

)
th order statistic among the

(
n
2

)
elements of the set {|ri − rj| ; i < j}. Generalized

S-estimates have a breakdown point as high as S-estimates but with a higher efficiency.

1.2.6 MM-Estimates

First proposed by Yohai (1987), MM-estimates have become increasingly popular and are

one of the most commonly employed robust regression techniques. The MM-estimates can be

found by a three-stage procedure. In the first stage, compute an initial consistent estimate

β̂0 with high breakdown point but possibly low normal efficiency. In the second stage,

compute a robust M-estimate of scale σ̂ of the residuals based on the initial estimate. In

the third stage, find an M-estimate β̂ starting at β̂0.

In practice, LMS or S-estimate with Huber or bisquare functions is typically used as the

initial estimate β̂0. Let ρ0(r) = ρ1 (r/k0), ρ(r) = ρ1 (r/k1), and assume that each of the

ρ-functions is bounded. The scale estimate σ̂ satisfies

1

n

n∑
i=1

ρ0

ri
(
β̂
)

σ̂

 = 0.5. (1.14)

If the ρ-function is biweight, then k0 = 1.56 ensures that the estimator has the asymptotic

BP = 0.5. Note that an M-estimate minimizes

L(β) =
n∑
i=1

ρ

ri
(
β̂
)

σ̂

 . (1.15)

Let ρ satisfy ρ ≤ ρ0. Yohai (1987) showed that if β̂ satisfies L(β̂) ≤ (β̂0), then β̂’s BP is

not less than that of β̂0. Furthermore, the breakdown point of the MM-estimate depends

only on k0 and the asymptotic variance of the MM-estimate depends only on k1. We can

choose k1 in order to attain the desired normal efficiency without affecting its breakdown

point. In order to let ρ ≤ ρ0, we must have k1 ≥ k0; the larger the k1 is, the higher efficiency

7



the MM-estimate can attain at the normal distribution.

Maronna, Martin, and Yahai (2006) provides the values of k1 with the corresponding

efficiencies of the biweight ρ-function. Please see the following table for more detail.

Efficiency 0.80 0.85 0.90 0.95

k1 3.14 3.44 3.88 4.68

However, Yohai (1987) indicates that MM-estimates with larger values of k1 are more sen-

sitive to outliers than the estimates corresponding to smaller values of k1. In practice, an

MM-estimate with bisquare function and efficiency 0.85 (k1 = 3.44) starting from a bisquare

S-estimate is recommended.

1.2.7 Generalized M-Estimates (GM-Estimates)

Mallows GM-estimate

In order to make M-estimate resistent to high leverage outliers, Mallows (1975) proposed

Mallows GM-estimate that is defined by

n∑
i=1

wiψ

ri
(
β̂
)

σ̂

xi = 0, (1.16)

where ψ(e) = ρ′(e) and wi =
√

1− hi with hi being the leverage of the ith observation.

The weight wi ensures that the observation with high leverage receives less weight than

observation with small leverage. However, even “good” leverage points that fall in line with

the pattern in the bulk of the data are down-weighted, resulting in a loss of effiency.

8



Schweppe GM-estimate

Schweppe GM-estimate (Handschin et al. 1975) is defined by the solution of

n∑
i=1

wiψ

ri
(
β̂
)

wiσ̂

xi = 0, (1.17)

which adjusts the leverage weights according to the size of the residual ri. Carroll and Welsh

(1988) proved that the Schweppe estimator is not consistent when the errors are asymmetric.

Furthermore, the breakdown points for both Mallows and Schweppe GM-estimates are no

more than 1/(p+ 1), where p is the number of unknown parameters.

S1S GM-estimate

Coakley and Hettmansperger (1993) proposed Schweppe one-step (S1S) estimate, which

extends from the original Schweppe estimator. S1S estimator is defined as

β̂ = β̂0 +

 n∑
i=1

ψ′

ri
(
β̂0

)
σ̂wi

xix′i
−1

×
n∑
i=1

σ̂wiψ

ri
(
β̂0

)
σ̂wi

xi, (1.18)

where the weight wi is defined in the same way as Schweppe’s GM-estimate.

The method for S1S estimate is different from the Mallows and Schweppe GM-estimates

in that once the initial estimates of the residuals and the scale of the residuals are given, final

M-estimates are calculated in one step rather than iteratively. Coakley and Hettmansperger

(1993) recommended to use Rousseeuw’s LTS for the initial estimates of the residuals and

LMS for the initial estimates of the scale and proved that the S1S estimate gives a breakdown

point of BP = 0.5 and results in 0.95 efficiency compared to the OLS estimate under the

Gauss-Markov assumption.

9



1.2.8 R-Estimates

The R-estimate (Jaeckel 1972) minimizes the sum of some scores of the ranked residuals

min
n∑
i=1

an (Ri) ri, (1.19)

where Ri represents the rank of the ith residual ri, and an (·) is a monotone score function

that satisfies
n∑
i=1

an (i) = 0. (1.20)

R-estimates are scale equivalent which is an advantage compared to M-estimates. However,

the optimal choice of the score function is unclear. In addition, most of R-estimates have

a breakdown point of BP = 1/n → 0. The bounded influence R-estimator proposed by

Naranjo and Hettmansperger (1994) has a fairly high efficiency when the errors have normal

distribution. However, it is proved that their breakdown point is no more than 0.2.

1.2.9 REWLSE

Gervini and Yohai (2002) proposed a new class of robust regression method called robust and

efficient weighted least squares estimator (REWLSE). REWLSE is much more attractive

than many other robust estimators due to its simultaneously attaining maximum breakdown

point and full efficiency under normal errors. This new estimator is a type of weighted least

squares estimator with the weights adaptively calculated from an initial robust estimator.

Consider a pair of initial robust estimates of regression parameters and scale, β̂0 and σ̂

respectively, the standardized residuals are defined as

ri =
yi − xTi β̂0

σ̂
.

A large value of |ri| would suggest that (xi, yi) is an outlier. Define a measure of proportion
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of outliers in the sample

dn = max
i>i0

{
F+(|r|(i))−

(i− 1)

n

}+

, (1.21)

where {·}+ denotes positive part, F+ denotes the distribution of |X| when X ∼ F , |r|(1) ≤

. . . ≤ |r|(n) are the order statistics of the standardized absolute residuals, and i0 = max
{
i : |r|(i) < η

}
,

where η is some large quantile of F+. Typically η = 2.5 and the cdf of a normal distribution

is chosen for F . Thus those bndnc observations with largest standardized absolute residuals

are eliminated (here bac is the largest integer less than or equal to a).

The adaptive cut-off value is tn = |r|(in) with in = n−bndnc. With this adaptive cut-off

value, the adaptive weights proposed by Gervini and Yohai (2002) are

wi =


1, if |ri| < tn

0, if |ri| ≥ tn.

(1.22)

Then, the REWLSE is

β̂ = (XTWX)−1XTWy, (1.23)

where W = diag(w1, · · · , wn),X = (x1, . . . ,xn)T , and y = (y1, · · · , yn)′.

If the initial regression and scale estimates with BP = 0.5 are chosen, the breakdown

point of the REWLSE is also 0.5. Furthermore, when the errors are normally distributed,

the REWLSE is asymptotically equivalent to the OLS estimates and hence asymptotically

efficient.

1.2.10 Robust regression based on regularization of case-specific

parameters

She and Owen (2011) and Lee et al. (2011) proposed a new class of robust regression methods

using the case-specific indicators in a mean shift model with regularization method. A mean
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shift model for the linear regression is

y = Xβ + γ + ε, ε ∼ N(0, σ2I)

where y = (y1, · · · , yn)T , X = (x1, . . . ,xn)T , and the mean shift parameter γi is nonzero

when the ith observation is an outlier and zero, otherwise.

Due to the sparsity of γis, She and Owen (2011) and Lee et al. (2011) proposed to

estimate β and γ by minimizing the penalized least squares using L1 penalty:

L(β,γ) =
1

2
{y − (Xβ + γ)}T {y − (Xβ + γ)}+ λ

n∑
i=1

|γi| , (1.24)

where λ are fixed regularization parameters for γ. Given the estimate γ̂, β̂ is the OLS

estimate with y replaced by y−γ. For a fixed β̂, the minimizer of (1.24) is γ̂i = sgn(ri)(|ri|−

λ)+, that is,

γ̂i =


0, if |ri| ≤ λ

yi − xTi β̂, if |ri| > λ.

Therefore, the solution of (1.24) can be found by iteratively updating the above two steps.

She and Owen (2011) and Lee et al. (2011) proved that the above estimate is in fact equiv-

alent to the M-estimate if Huber’s ψ function is used. However, their proposed robust

estimates are based on different perspective and can be extended to many other likelihood

based models.

Note, however, the monotone M-estimate is not resistent to the high leverage outliers.

In order to overcome this problem, She and Owen (2011) further proposed to replace the

L1 penalty in (1.24) by a general penalty. The objective function is then defined by

Lp(β,γ) =
1

2
{y − (Xβ + γ)}T {y − (Xβ + γ)}+

n∑
i=1

pλ(|γi|), (1.25)
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where pλ(|·|) is any penalty function which depends on the regularization parameter λ. We

can find γ̂ by defining a thresholding function Θ(γ;λ) (She and Owen 2009). She and

Owen (2009, 2011) proved that for a specific thresholding function, we can always find the

corresponding penalty function. For example, the soft, hard, and smoothly clipped absolute

deviation (SCAD; Fan and Li, 2001) thresholding solutions of γ correspond to L1, Hard,

and SCAD penalty functions, respectively. Minimizing the equation (1.25) yields a sparse

γ̂ for outlier detection and a robust estimate of β. She and Owen (2011) showed that the

proposed estimates of (1.25) with hard or SCAD penalties are equivalent to the M-estimates

with certain redescending ψ functions and thus will be resistent to high leverage outliers if

a high breakdown point robust estimates are used as the initial values.

1.3 Examples

In this section, we compare different robust methods and report the mean squared errors

(MSE) of the parameter estimates for each estimation method. We compare the OLS

estimate with seven other commonly used robust regression estimates: the M estimate

using Huber’s ψ function (MH), the M estimate using Tukey’s bisquare function (MT ),

the S estimate, the LTS estimate, the LMS estimate, the MM estimate (using bisquare

weights and k1 = 4.68), and the REWLSE. Note that we didn’t include the case-specific

regularization methods proposed by She and Owen (2011) and Lee et al. (2011) since they

are essentially equivalent to M-estimators (She and Owen (2011) did show that their new

methods have better performance in detecting outliers in their simulation study).

Example 1. We generate n samples {(x1, y1), . . . , (xn, yn)} from the model

Y = X + ε,
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where X ∼ N(0, 1). In order to compare the performance of different methods, we consider

the following six cases for the error density of ε:

Case I: ε ∼ N(0, 1)- standard normal distribution.

Case II: ε ∼ t3 - t-distribution with degrees of freedom 3.

Case III: ε ∼ t1 - t-distribution with degrees of freedom 1 (Cauchy distribution).

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102) - contaminated normal mixture.

Case V: ε ∼ N (0,1) with 10% identical outliers in y direction (where we let the first 10%

of y′s equal to 30).

Case VI: ε ∼ N (0,1) with 10% identical high leverage outliers (where we let the first 10%

of x′s equal to 10 and their corresponding y′s equal to 50).

Tables 1 and 2 report the mean squared errors (MSE) of the parameter estimates for

each estimation method with sample size n = 20 and 100, respectively. The number of

replicates is 200. From the tables, we can see that MM and REWLSE have the overall best

performance throughout most cases and they are consistent for different sample sizes. For

Case I, LSE has the smallest MSE which is reasonable since under normal errors LSE is the

best estimate; MH , MT , MM, and REWLSE have similar MSE to LSE, due to their high

efficiency property; LMS, LTS, and S have relative larger MSE due to their low efficiency.

For Case II, MH , MT , MM, and REWLSE work better than other estimates. For Case III,

LSE has much larger MSE than other robust estimators; MH , MT , MM, and REWLSE

have similar MSE to S. For Case IV, M, MM, and REWLSE have smaller MSE than others.

From Case V, we can see that when the data contain outliers in the y-direction, LSE is

much worse than any other robust estimates; MM, REWLSE, and MT are better than other

robust estimators. Finally for Case VI, since there are high leverage outliers, similar to

LSE, both MT and MH perform poorly; MM and REWLSE work better than other robust

estimates.
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In order to better compare the performance of different methods, Figure 1 shows the plot

of their MSE versus each case for the slope (left side) and intercept (right side) parameters

for model 1 when sample size n = 100. Since the lines for LTS and LMS are above the

other lines, S, MM, and REWLSE of the intercept and slopes outperform LTS and LMS

estimates throughout all six cases. In addition, the S estimate has similar performance to

MM and REWLSE when the error density of ε is Cauchy distribution. However, MM and

REWLSE perform better than S-estimates in other five cases. Furthermore, the lines for

MM and REWLSE almost overlap for all six cases. It shows that MM and REWLSE are

the overall best approaches in robust regression.

Example 2.

Y = X1 +X2 +X3 + ε,

where Xi ∼ N(0, 1), i = 1, 2, 3 and Xi’s are independent. We consider the following six

cases for the error density of ε:

Case I: ε ∼ N(0, 1)- standard normal distribution.

Case II: ε ∼ t3 - t-distribution with degrees of freedom 3.

Case III: ε ∼ t1 - t-distribution with degrees of freedom 1 (Cauchy distribution).

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102) - contaminated normal mixture.

Case V: ε ∼ N(0, 1) with 10% identical outliers in y direction (where we let the first 10%

of y′s equal to 30).

Case VI: ε ∼ N(0, 1) with 10% identical high leverage outliers (where we let the first 10%

of x′s equal to 10 and their corresponding y′s equal to 50).

Tables 3 and 4 show the mean squared errors (MSE) of the parameter estimates of each

estimation method for sample size n = 20 and n = 100, respectively. Figure 2 shows the

plot of their MSE versus each case for three slopes and the intercept parameters with sample
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size n = 100. The results in Example 2 tell similar stories to Example 1. In summary, MM

and REWLSE have the overall best performance; LSE only works well when there are no

outliers since it is very sensitive to outliers; M-estimates (MH and MT ) work well if the

outliers are in y direction but are also sensitive to the high leverage outliers.

Example 3: Next, we use the famous data set found in Freedman et al. (1991) to

compare LSE with MM and REWLSE. The data set are shown in Table 5 which contains

per capita consumption of cigarettes in various countries in 1930 and the death rates (number

of deaths per million people) from lung cancer for 1950. Here, we are interested in how the

death rates per million people from lung cancer (dependent variable y) dependent on the

consumption of cigarettes per capita (the independent variable x). Figure 1.3 is a scatter

plot of the data. From the plot, we can see that USA (x = 1300, y = 200) is an outlier

with high leverage. We compare different regression parameters estimates by LSE, MM,

and REWLSE. Figure 1.3 shows the fitted lines by these three estimates. The LSE line does

not fit the bulk of the data, being a compromise between USA observation and the rest of

the data, while the fitted lines for the other two estimates almost overlap and give a better

representation of the majority of the data.

Table 6 also gives the estimated regression parameters of these three methods for both the

complete data and the data without the outlier USA. For LSE, the intercept estimate changes

from 67.56 (complete data set) to 9.14 (without outlier) and the slope estimate changes from

0.23 (complete data set) to 0.37 (without outlier). Thus, it is clear that the outlier USA

strongly influences LSE. For MM-estimate, after deleting the outlier, the intercept estimate

changes slightly but slope estimate remains almost the same. For REWLSE, both intercept

and slope estimates remain unchanged after deleting the outlier. In addition, note that

REWLSE for the whole data gives almost the same result as LSE without the outlier.
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1.4 Discussion

In this article, we describe and compare different available robust methods. Table 7 sum-

marizes the robustness attributes and asymptotic efficiency of most of the estimators we

have discussed. Based on Table 7, it can be seen that MM-estimates and REWLSE have

both high breakdown point and high efficiency. Our simulation study also demonstrated

that MM-estimates and REWLSE have overall best performance among all compared robust

methods. In terms of breakdown point and efficiency, GM-estimates (Mallows, Schweppe),

Bounded R-estimates, M-estimates, and LAD estimates are less attractive due to their low

breakdown points. Although LMS, LTS, S-estimates, and GS-estimates are strongly re-

sistent to outliers, their efficiencies are low. However, these high breakdown point robust

estimates such as S-estimates and LTS are traditionally used as the initial estimates for

some other high breakdown point and high efficiency robust estimates.

Table 1.1: MSE of Point Estimates for Example 1 with n = 20

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)
β0 : 0 0.0497 0.0532 0.0551 0.2485 0.2342 0.1372 0.0564 0.0645
β1 : 1 0.0556 0.0597 0.0606 0.2553 0.2328 0.1679 0.0643 0.0733

Case II: ε ∼ t3
β0 : 0 0.1692 0.0884 0.0890 0.3289 0.3076 0.1637 0.0856 0.0982
β1 : 1 0.1766 0.1041 0.1027 0.4317 0.3905 0.2041 0.1027 0.1189

Case III: ε ∼ t1
β0 : 0 1003.8 0.2545 0.2146 0.3215 0.2872 0.1447 0.1824 0.1990
β1 : 1 1374.1 0.4103 0.3209 0.3659 0.3496 0.1843 0.2996 0.3164

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)
β0 : 0 0.3338 0.0610 0.0528 0.2105 0.2135 0.1228 0.0523 0.0538
β1 : 1 0.4304 0.0808 0.0644 0.3149 0.2908 0.1519 0.0636 0.0691

Case V: ε ∼ N(0, 1) with outliers in y direction
β0 : 0 9.3051 0.1082 0.0697 0.2752 0.2460 0.1430 0.0671 0.0667
β1 : 1 5.5747 0.1083 0.0762 0.2608 0.2029 0.1552 0.0746 0.0801

Case VI: ε ∼ N(0, 1) with high leverage outliers
β0 : 0 0.8045 0.8711 0.8857 0.2161 0.1984 0.1256 0.0581 0.0598
β1 : 1 13.426 13.750 13.849 0.3377 0.3019 0.1695 0.0749 0.0749
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Table 1.2: MSE of Point Estimates for Example 1 with n = 100

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)
β0 : 0 0.0113 0.0126 0.0125 0.0755 0.0767 0.0347 0.0125 0.0131
β1 : 1 0.0096 0.0102 0.0103 0.0693 0.0705 0.0312 0.0103 0.0112

Case II: ε ∼ t3
β0 : 0 0.0283 0.0154 0.0153 0.0596 0.0659 0.0231 0.0153 0.0170
β1 : 1 0.0255 0.0157 0.0164 0.0652 0.0752 0.0356 0.0163 0.0185

Case III: ε ∼ t1
β0 : 0 40.845 0.0416 0.0310 0.0550 0.0392 0.0201 0.0323 0.0354
β1 : 1 39.595 0.0469 0.0387 0.0607 0.0476 0.0274 0.0402 0.0447

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)
β0 : 0 0.0650 0.0119 0.0107 0.0732 0.0737 0.0296 0.0107 0.0110
β1 : 1 0.0596 0.0126 0.0123 0.0696 0.0775 0.0353 0.0122 0.0134

Case V: ε ∼ N(0, 1) with outliers in y direction
β0 : 0 8.9470 0.0465 0.0107 0.0674 0.0658 0.0283 0.0106 0.0108
β1 : 1 0.7643 0.0146 0.0120 0.0611 0.0704 0.0338 0.0119 0.0120

Case VI: ε ∼ N(0, 1) with high leverage outliers
β0 : 0 0.2840 0.2999 0.2983 0.0575 0.0595 0.0234 0.0107 0.0106
β1 : 1 13.230 13.591 13.721 0.0624 0.0790 0.0310 0.0127 0.0131
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Table 1.3: MSE of Point Estimates for Example 2 with n = 20

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)
β0 : 0 0.0610 0.0659 0.0744 0.3472 0.2424 0.1738 0.0679 0.0800
β1 : 1 0.0588 0.0664 0.0752 0.4066 0.3247 0.2299 0.0709 0.1051
β2 : 1 0.0620 0.0653 0.0725 0.3557 0.2724 0.2018 0.0716 0.0880
β3 : 1 0.0698 0.0719 0.0758 0.3444 0.2657 0.1904 0.0751 0.0999

Case II: ε ∼ t3
β0 : 0 0.1745 0.1125 0.1168 0.3799 0.3040 0.2326 0.1177 0.1210
β1 : 1 0.1998 0.1332 0.1364 0.4402 0.3404 0.2539 0.1311 0.1485
β2 : 1 0.1704 0.1203 0.1272 0.4868 0.3831 0.2118 0.1242 0.1461
β3 : 1 0.2018 0.1520 0.1732 0.5687 0.4964 0.3145 0.1649 0.2049

Case III: ε ∼ t1
β0 : 0 248.02 0.3492 0.2579 0.7935 0.4657 0.3615 0.2630 0.2957
β1 : 1 209.83 0.4503 0.3713 1.2482 0.9701 0.4355 0.3784 0.4443
β2 : 1 93.134 0.4089 0.2936 1.0517 0.6203 0.5086 0.2965 0.3365
β3 : 1 374.73 0.4387 0.3206 1.0829 0.7704 0.4717 0.3123 0.4023

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)
β0 : 0 0.3245 0.0853 0.0837 0.2820 0.2433 0.1873 0.0785 0.0924
β1 : 1 0.3391 0.1026 0.1001 0.4609 0.2875 0.2328 0.0996 0.1047
β2 : 1 0.3039 0.0898 0.0938 0.4077 0.3053 0.1887 0.0900 0.1170
β3 : 1 0.2618 0.0846 0.0941 0.4560 0.3023 0.2054 0.0900 0.1007

Case V: ε ∼ N(0, 1) with outliers in y direction
β0 : 0 9.9455 0.1442 0.0706 0.3127 0.2334 0.1759 0.0680 0.0713
β1 : 1 5.1353 0.1015 0.0636 0.3638 0.2769 0.1508 0.0617 0.0654
β2 : 1 5.1578 0.1245 0.0730 0.4647 0.2796 0.1759 0.0690 0.0722
β3 : 1 6.0662 0.1273 0.0612 0.3922 0.2733 0.1797 0.0597 0.0654

Case VI: ε ∼ N(0, 1) with high leverage outliers
β0 : 0 1.0096 1.0733 1.1334 0.3339 0.2491 0.1716 0.0821 0.0840
β1 : 1 13.663 14.071 14.169 0.4698 0.3126 0.2500 0.1467 0.1031
β2 : 1 0.9201 0.9684 1.0108 0.4088 0.2681 0.2064 0.0899 0.1088
β3 : 1 0.8538 0.9316 0.9937 0.4411 0.3373 0.2077 0.0709 0.0957
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Table 1.4: MSE of Point Estimates for Example 2 with n = 100

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)
β0 : 0 0.0097 0.0108 0.0109 0.0743 0.0690 0.0359 0.0108 0.0119
β1 : 1 0.0111 0.0120 0.0121 0.0736 0.0778 0.0399 0.0119 0.0130
β2 : 1 0.0100 0.0106 0.0107 0.0713 0.0715 0.0404 0.0107 0.0114
β3 : 1 0.0110 0.0116 0.0118 0.0662 0.0712 0.0388 0.0118 0.0121

Case II: ε ∼ t3
β0 : 0 0.0294 0.0145 0.0159 0.0713 0.0655 0.0330 0.0158 0.0179
β1 : 1 0.0464 0.0198 0.0180 0.0651 0.0674 0.0368 0.0181 0.0195
β2 : 1 0.0375 0.0183 0.0181 0.0727 0.0733 0.0352 0.0181 0.0195
β3 : 1 0.0365 0.0176 0.0167 0.0646 0.0736 0.0344 0.0167 0.0175

Case III: ε ∼ t1
β0 : 0 36.730 0.0388 0.0287 0.0681 0.0590 0.0317 0.0289 0.0326
β1 : 1 31.643 0.0499 0.0351 0.0624 0.0618 0.0262 0.0367 0.0372
β2 : 1 41.455 0.0422 0.0337 0.0788 0.0613 0.0321 0.0344 0.0369
β3 : 1 29.702 0.0476 0.0317 0.0714 0.0506 0.0320 0.0332 0.0362

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)
β0 : 0 0.0591 0.0109 0.0100 0.0656 0.0625 0.0281 0.0100 0.0109
β1 : 1 0.0492 0.0122 0.0112 0.0558 0.0643 0.0349 0.0110 0.0115
β2 : 1 0.0640 0.0123 0.0110 0.0635 0.0683 0.0337 0.0109 0.0118
β3 : 1 0.0696 0.0135 0.0122 0.0573 0.0608 0.0333 0.0122 0.0128

Case V: ε ∼ N(0, 1) with outliers in y direction
β0 : 0 9.1058 0.0560 0.0118 0.0631 0.0579 0.0322 0.0118 0.0120
β1 : 1 0.8544 0.0186 0.0137 0.0738 0.0814 0.0377 0.0136 0.0143
β2 : 1 0.9538 0.0189 0.0141 0.0672 0.0717 0.0379 0.0140 0.0146
β3 : 1 0.8953 0.0193 0.0121 0.0652 0.0696 0.0363 0.0120 0.0123

Case VI: ε ∼ N(0, 1) with high leverage outliers
β0 : 0 0.2673 0.2869 0.2901 0.0632 0.0596 0.0300 0.0114 0.0114
β1 : 1 13.259 13.635 13.675 0.0590 0.0658 0.0305 0.0123 0.0127
β2 : 1 0.1817 0.1889 0.1922 0.0660 0.0727 0.0344 0.0139 0.0144
β3 : 1 0.1546 0.1607 0.1643 0.0668 0.0710 0.0344 0.0107 0.0108
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Table 1.5: Cigarettes data

Country Per capita consumption of cigarette Deaths rates

Australia 480 180
Canada 500 150

Denmark 380 170
Finland 1100 350

GreatBritain 1100 460
Iceland 230 060

Netherlands 490 240
Norway 250 090
Sweden 300 110

Switzerland 510 250
USA 1300 200

Table 1.6: Regression estimates for Cigarettes data

Complete data Data without USA
Estimators Intercept Slope Intercept Slope

LS 67.5609 0.2284 9.1393 0.3687
MM 7.0639 0.3729 5.9414 0.3753

REWLSE 9.1393 0.3686 9.1393 0.3686

Table 1.7: Breakdown Points and Asymptotic Efficiencies of Various Regression Estimators

Estimator Breakdown Point Asymptotic Efficiency

High BP LMS 0.5 0.37
LTS 0.5 0.08

S-estimates 0.5 0.29
GS-estimates 0.5 0.67
MM-estimates 0.5 0.85

REWLSE 0.5 1.00

Low BP GM-estimates(Mallows,Schweppe) 1/(p+ 1) 0.95
Bounded R-estimates < 0.2 0.90-0.95

Monotone M-estimates 1/n 0.95
LAD 1/n 0.64
OLS 1/n 1.00
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Figure 1.1: Plot of MSE of intercept (left) and slope (right) estimates vs. different cases
for LMS, LTS, S, MM, and REWLSE, for model 1 when n = 100.
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Figure 1.2: Plot of MSE of different regression parameter estimates vs. different cases for
LMS, LTS, S, MM, and REWLSE, for model 2 when n = 100.
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Chapter 2

Outlier Detection and Robust

Mixture Modeling Using Nonconvex

Penalized Likelihood

2.1 Introduction

Nowadays finite mixture distributions are increasingly important in modeling a variety of

random phenomena (see Everitt and Hand, 1981, Titterington, Smith and Markov, 1985,

McLachlan and Basford, 1988, Lindsay, 1995, and Böhning, 1999). The m-component finite

normal mixture distribution has probability density

f(y;θ) =
m∑
i=1

πiφ(y;µi, σ
2
i ), (2.1)

where θ = (π1, µ1, σ1; . . . ; πm, µm, σm)T collects all the unknown parameters, φ(· ;µ, σ2) de-

notes the density function of N(µ, σ2), and πj is the proportion of the jth subpopulation

with
∑m

j=1 πj = 1. Given observations (y1, . . . , yn) from model (2.1), the maximum likeli-
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hood estimator (MLE) of θ is given by,

θ̂MLE = arg max
θ

n∑
i=1

log

{
m∑
j=1

πjφ(yi;µj, σ
2
j )

}
, (2.2)

which does not have an explicit form and is usually calculated by the EM algorithm (Demp-

ster et al. 1977).

The MLE based on the normality assumption possesses many desirable properties such

as asymptotic efficiency, however, it is sensitive to the presence of outliers. For the es-

timation of a single location, many robust methods have been proposed, including the

M-estimator (Huber, 1981), the least median of squares (LMS) estimator (Siegel 1982), the

least trimmed squares (LTS) estimator (Rousseeuw 1983), the S-estimates (Rousseeuw and

Yohai 1984), the MM-estimator (Yohai 1987), and the weighted least squares estimator

(REWLSE) (Gervini and Yohai 2002). In contrast, there is much less research on robust

estimation of the mixture model, in part because it is not straightforward to replace the

log-likelihood in (2.2) by a robust criterion similar to the M-estimation. Peel and McLachlan

(2000) proposed a robust mixture modeling using t distribution. Markatou (2000) and Qin

and Priebe (2013) proposed using a weighted likelihood for each data point to robustify the

estimation procedure for mixture models. Fujisawa and Eguchi (2005) proposed a robust

estimation method in normal mixture model using a modified likelihood function. Neykov

et al. (2007) proposed robust fitting of mixtures using the trimmed likelihood. Other related

robust methods on mixture models include Hennig (2002, 2003), Shen et al. (2004), Bai et

al. (2012) and Bashir and Carter (2012).

In this paper, we propose a new robust mixture modelling approach via a mean-shift pe-

nalization, which achieves simultaneous outlier detection and robust parameter estimation.

A case-specific mean shift parameter vector is added to the mean structure of the mixture

model, and it is assumed to be sparse for capturing the rare but possibly severe outlying

effects induced by the potential outliers. When the mixture components are assumed to
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have equal variances, our method directly extends the robust linear regression approaches

proposed by She and Owen (2011) and Lee, MacEachern and Jung (2012). However, even

in this case the optimization of the penalized mixture log-likelihood is not trivial, especially

for the SCAD penalty (Fan and Li, 2001). For the general case of unequal component vari-

ances, the variance heterogeneity of different components complicates the declaration and

detection of the outliers, and the naive mean-shift model for the equal variance case is no

longer appropriate. We thus propose a scale-free and case-specific mean-shift formulation

to achieve the robustness in the general mixture model setup.

2.2 Robust Mixture Model via Mean-Shift Penaliza-

tion

In this section, we will introduce the proposed robust mixture modelling approach via mean-

shift penalization (RMM). To focus on the main idea, we restrict our attention on the

normal mixture model. The proposed approach can be readily extended to other mixture

models, such as gamma mixture, poisson mixture, and logistic mixture. Due to the inherent

difference between the case of equal component variances and the case of unequal component

variances, we shall discuss them separately.

2.2.1 RMM for Equal Component Variances

Assume the mixture components have equal variances, i.e., σ2
1 = · · · = σ2

m = σ2. The

proposed robust mixture model with a mean-shift parameterization is to assume that the

observations (y1, . . . , yn) come from the following mixture density

f(yi;θ, γi) =
m∑
j=1

πjφ(yi − γi;µj, σ2), i = 1, . . . , n, (2.3)
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where θ = (π1, µ1, . . . , πm, µm, σ)T and γi is the mean shift parameter for the ith observation,

which is nonzero when the ith observation is an outlier and is zero otherwise. Therefore,

the sparse estimation of γi provides a direct way to identify and accommodate outliers.

Due to the sparsity assumption of γi, we propose to maximize the following penalized

log-likelihood criterion to conduct model estimation and outlier detection,

pl1(θ,γ) = l1(θ,γ)−
n∑
i=1

1

wi
Pλ(|γi|), (2.4)

where l1(θ,γ) =
∑n

i=1 log
{∑m

j=1 πjφ(yi − γi;µj, σ2)
}

, γ = (γ1, . . . , γn), wis are the weights

to reflect the prior information about how likely it is that the yis are outliers, Pλ(·) is some

penalty function used to induce the sparsity in γ, and λ is a tuning parameter controlling

the number of outliers, i.e., the number of nonzero γi. To focus on the key idea, we mainly

consider w1 = w2 = . . . = wn = w and discuss the choice of w for different penalty functions.

The commonly used penalty functions include the `1 norm penalty (Donoho and John-

stone, 1994a; Tibshirani, 1996, 1997) Pλ(γ) = λ|γ|, the `0 penalty (Antoniadis, 1997)

Pλ(γ) =
λ2

2
I(γ 6= 0), (2.5)

and the SCAD penalty (Fan and Li, 2001)

Pλ(γ) =


λ|γ|, if |γ| ≤ λ,

−
(
γ2−2aλ|γ|+λ2

2(a−1)

)
, if λ < |γ| ≤ aλ,

(a+1)λ2

2
, if |γ| > aλ,

(2.6)

where a is a constant usually set to be 3.7. In penalized estimation, each of the above

penalty forms corresponds to a thresholding rule, e.g., `1 penalization corresponds to a soft-

threshing rule and `0 penalization corresponds to a hard-thresholding rule. We mainly focus
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on the nonconvex hard penalty and SCAD penalty, due to their superior performance in

sparse estimation.

We propose a thresholding embedded EM algorithm to maximize the objective function

(2.4). Let

zij =


1, if the ith observation is from the jth component,

0, otherwise,

and zi = (zi1, . . . , zim). The complete penalized log-likelihood function based on the com-

plete data {(yi, zi)), i = 1, 2, . . . , n} is

plc1(θ,γ) =
n∑
i=1

m∑
j=1

zij log
{
πjφ(yi − γi;µj, σ2)

}
−

n∑
i=1

1

w
Pλ(|γi|). (2.7)

Based on the construction of the EM algorithm, in the E step, given the current estimate

θ(k) and γ(k) at the kth iteration, we need to find the condition expectation of the complete

penalized log-likelihood function (2.7), i.e., E{plc1(θ,γ) | θ(k),γ(k)}, which simplifies to the

calculation of E(zij|yi;θ(k),γ(k)) :

p
(k+1)
ij = E(zij|yi;θ(k),γ(k)) =

π
(k)
j φ(yi − γ(k)

i ;µ
(k)
j , σ2(k))∑m

j=1 π
(k)
j φ(yi − γ(k)

i ;µ
(k)
j , σ2(k))

.

In the M step, we then update (θ,γ) by maximizing E{plc1(θ,γ) | θ(k),γ(k)}. There is no

explicit solution, except for the πjs: π
(k+1)
j =

∑n
i=1 p

(k+1)
ij /n. We propose to iterate the

following two steps until convergence to get {µ(k+1)
j , j = 1, . . . ,m, σ(k+1),γ(k+1)}:

1. Given µjs and σ, update γ by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γi;µj, σ2)−

n∑
i=1

1

w
Pλ(|γi|),
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which is equivalently to minimizing

1

2

{
γi −

m∑
j=1

p
(k+1)
ij (yi − µj)

}2

+
1

w
σ2Pλ (|γi|) , (2.8)

separately for each γi.

2. Given γ, the µjs and σ are updated by

µj ←
∑n

i=1 p
(k+1)
ij (yi − γi)∑n
i=1 p

(k+1)
ij

, j = 1, . . . ,m,

σ2 ←
∑m

j=1

∑n
i=1 p

(k+1)
ij (yi − γi − µj)2

n
.

Note that for the hard penalty, w−1σ2Pλ (|γi|) = σPλ∗ (|γi|), where λ∗ = σ√
w
λ. Therefore, if

λ is chosen data adaptively, we can simply set w = 1 for the hard penalty. However, for the

SCAD penalty, such property does not hold and the solution may be affected nonlinearly by

the ratio σ2/w. In order to mimic the unscaled SCAD and use the same a value as suggested

by Fan and Li (2001), we need to make sure σ2/w is close to 1. Therefore, we propose to set

w = σ̂2 for SCAD penalty, where σ̂2 is a robust estimate of σ2 such as the estimate from the

trimmed likelihood estimation (Neykov et al. 2007) or the estimator using the hard penalty

assuming w = 1.

If the hard penalty is used, (2.8) is minimized by the hard thresholding rule. However,

if the SCAD penalty is used, we prove in the following proposition that the minimizer of

(2.8) is given by a modified SCAD thresholding rule.

Proposition 1. Let

ξi =
m∑
j=1

p
(k+1)
ij (yi − µj). (2.9)

If the penalty function in (2.8) is the hard penalty (2.5), then the thresholding rule to min-
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imize (2.8) is

γ̂i = Θhard(ξi;λ, σ) =


0, if |ξi| ≤ σλ,

ξi, if |ξi| > σλ.

If the penalty function in (2.8) is the SCAD penalty (2.6), then the thresholding rule to

minimize (2.8) is

1. when σ2/σ̂2 < a− 1,

γ̂i = ΘSCAD(ξi;λ, σ) =



sgn(ξi)
(
|ξi| − σ2λ

σ̂2

)
+
, if |ξi| ≤ λ+ σ2λ

σ̂2 ,

σ̂2

σ2
(a−1)ξi−sgn(ξi)aλ

σ̂2

σ2
(a−1)−1

, if λ+ σ2λ
σ̂2 < |ξi| ≤ aλ,

ξi, if |ξi| > aλ.

(2.10)

2. when a− 1 ≤ σ2/σ̂2 ≤ a+ 1,

γ̂i = ΘSCAD(ξi;λ, σ) =


sgn(ξi)

(
|ξi| − σ2λ

σ̂2

)
+
, if |ξi| ≤

a+1+σ2

σ̂2

2
λ,

ξi, if |ξi| >
a+1+σ2

σ̂2

2
λ.

(2.11)

3. when σ2/σ̂2 > a+ 1,

γ̂i = ΘSCAD(ξi;λ, σ) =


0, if |ξi| ≤

√
σ2(a+1)
σ̂2 λ,

ξi, if |ξi| >
√

σ2(a+1)
σ̂2 λ.

(2.12)

The detailed EM algorithm to maximize the penalized log-likelihood (2.4) is summarized

in Algorithm 1. The convergence property of the proposed algorithm is summarized in

Theorem 2.2.2 below, which follows directly from the property of the EM algorithm, and

hence its proof is omitted.
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Theorem 2.2.1. Each iteration of E step and M step of Algorithm 1 monotonically non-

decreases the penalized log-likelihood (2.4), i.e., pl1(θ(k+1),γ(k+1)) ≥ pl1(θ(k),γ(k)), for all

k ≥ 0.

Algorithm 1 Thresholding Embeded EM Algorithm for Equal Variances Case

Initialize θ(0) and γ(0). Set k ← 0.
repeat

E-Step: Compute the classification probabilities

p
(k+1)
ij = E(zij|yi;θ(k)) =

π
(k)
j φ(yi − γ(k)

i ;µ
(k)
j , σ2(k))∑m

j=1 π
(k)
j φ(yi − γ(k)

i ;µ
(k)
j , σ2(k))

.

M-Step: Update (θ,γ) by the following two steps:

1.

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, j = 1, . . . ,m.

2. Iterating the following steps until convergence to obtain

{µ(k+1)
j , j = 1, . . . ,m;σ2(k+1)

,γ(k+1)}:

(2.a) γi ← Θ(ξi;λ, σ), i = 1, . . . , n, where ξi =
m∑
j=1

p
(k+1)
ij (yi − µj),

(2.b) µj ←
∑n

i=1 p
(k+1)
ij (yi − γi)∑n
i=1 p

(k+1)
ij

, j = 1, . . . ,m,

(2.c) σ2 ←
∑m

j=1

∑n
i=1 p

(k+1)
ij (yi − γi − µj)2

n
.

k ← k + 1.
until convergence.

2.2.2 RMM for Unequal Component Variances

When the component variances are unequal, the naive mean shift model (3.3) can not be

directly applied, due to the scale difference in the mixture components. To illustrate further,
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suppose the standard deviation in the first component is 1 and the standard deviation in

the second component is 4. If some weighted residual ξi, defined in (2.9), equals to 5, then

the ith observation is considered as an outlier if it is from the first component but should

not be regarded as an outlier if it belongs to the second component. This suggests that

the declaration of outliers in a mixture model shall take into account both the centers and

the variabilities of all the components, i.e., an observation is considered as an outlier in the

mixture model only if it is far away from all the component centers judged by their own

component variabilities.

We propose the following scale-free mean shift model to incorporate the information on

component variability,

f(yi;θ, γi) =
m∑
j=1

πjφ(yi − γiσj;µj, σ2
j ), i = 1, . . . , n, (2.13)

where with some abuse of notation, θ is redefined as θ = (π1, µ1, σ1, . . . , πm, µm, σm)T .

Given observations (y1, y2, . . . , yn), we estimate the parameters θ and γ by maximizing the

following penalized log-likelihood function:

pl2(θ,γ) = l2(θ,γ)−
n∑
i=1

1

wi
Pλ(|γi|), (2.14)

where l2(θ,γ) =
∑n

i=1 log
{∑m

j=1 πjφ(yi − γiσj;µj, σ2
j )
}

. Since the γis in (2.14) are scale

free, for simplicity we set w1 = w2 = . . . = wn = 1 when no prior information is available.

We again propose a thresholding embedded EM algorithm to maximize (2.14). The com-

plete penalized log-likelihood function constructed based on the complete data {(zi,yi), i =

1, 2, . . . , n}, with the same setting of the binary label zij as the equal component variances

case, is

plc2(θ,γ) =
n∑
i=1

m∑
j=1

zij log
{
πjφ(yi − γiσj;µj, σ2

j )
}
−

n∑
i=1

Pλ(|γi|). (2.15)
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Similar to the arguments in Section 2.2.1, in the E step of the (k + 1)th iteration, we

only need to compute E{plc2(θ,γ) | θ(k),γ(k)}, which simplifies to the calculation of

p
(k+1)
ij = E(zij|yi;θ(k),γ(k)) =

π
(k)
j φ(yi − γ(k)

i σ
(k)
j ;µ

(k)
j , σ2(k)

j )∑m
j=1 π

(k)
j φ(yi − γ(k)

i σ
(k)
j ;µ

(k)
j , σ2(k)

j )
.

In the M step, we need to update (θ,γ) by maximizing E{plc2(θ,γ) | θ(k),γ(k)}. Therefore,

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij /n, and {µ(k+1)

j , j = 1, . . . ,m, σ
(k+1)
j ,γ(k+1)} can be found by iterating

the following three steps:

1. Given γ and σjs, µjs are updated by

µj ←
∑n

i=1 p
(k+1)
ij (yi − γiσj)∑n
i=1 p

(k+1)
ij

, j = 1, . . . ,m.

2. Given γ and µjs, σjs are updated by

σ2
j ← arg max

σj

n∑
i=1

p
(k+1)
ij log φ(yi − γiσj;µj, σ2

j ), j = 1, . . . ,m. (2.16)

3. Given µjs and σjs, update γ by minimizing

1

2

{γi − m∑
j=1

p
(k+1)
ij

σj
(yi − µj)

}2
+ Pλ (|γi|) . (2.17)

separately for each γi.

Note that, unlike the equal variances case, the update of σ2
j in (2.16) does not have explicit

solution and requires some one-dimensional numerical algorithm to sovle, e.g., the Newton-

Raphson method. To minimize (2.17), we have the following thresholding solutions for using
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the hard and SCAD penalties, respectively:

γ̂i = Θ∗hard(ξi;λ) =


0, if |ξi| ≤ λ,

ξi, if |ξi| > λ,

γ̂i = Θ∗SCAD(ξi;λ) =


sgn(ξi)(|ξi| − λ)+, if |ξi| ≤ 2λ,

(a−1)ξi−sgn(ξi)aλ
a−2

, if 2λ < |ξi| ≤ aλ,

ξi, if |ξi| > aλ.

where

ξi =
m∑
j=1

p
(k+1)
ij

σj
(yi − µj).

The detailed thresholding embeded EM algorithm to maximize (2.14) can be summarized

in Algorithm 2, with its convergence property summarized in Theorem 2.

Theorem 2.2.2. Each iteration of E step and M step of Algorithm 2 monotonically non-

decreases the corresponding objective function, i.e., pl2(θ(k+1),γ(k+1)) ≥ pl2(θ(k),γ(k)), for

all k ≥ 0.

2.2.3 Tuning Parameter Selection

In order to apply (2.4) and (2.14) in practice, we need to choose the tuning parameter λ.

Here, we provide a data adaptive way to select λ based on the Bayesian information criterion

(BIC):

BIC(λ) = −lj(λ) + log(n)df(λ), (2.18)

where j = 1 or 2, lj(λ) = maxθ,γ lj(θ,γ) is the maximum mixture log-likelihood function for

a given tuning parameter λ, and df(λ) is the model degrees of freedom which is estimated by

the sum of the number of nonzero γ values and the number of mixture component parameters

(She and Owen, 2011). The optimal tuning parameter λ is chosen by minimizing BIC(λ)
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Algorithm 2 Thresholding Embeded EM Algorithm for Unequal Variances Case

Initialize θ(0) and γ(0). Set k ← 0.
repeat

E-Step: Compute the classification probabilities

p
(k+1)
ij = E(zij|yi;θ(k)) =

π
(k)
j φ(yi − γ(k)

i σ
(k)
j ;µ

(k)
j , σ2(k)

j )∑m
j=1 π

(k)
j φ(yi − γ(k)

i σ
(k)
j ;µ

(k)
j , σ2(k)

j )
.

M-Step: Update (θ,γ) by the following two steps:

1.

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, j = 1, . . . ,m.

2. Iterating the following steps until convergence to obtain {µ(k+1)
j , σ2(k+1)

j , j =

1, . . . ,m,γ(k+1)}:

(2.a) γi ← Θ∗(ξi;λ), where ξi =
m∑
j=1

p
(k+1)
ij (yi − µj)/σj,

(2.b) µj ←
∑n

i=1 p
(k+1)
ij (yi − γiσj)∑n
i=1 p

(k+1)
ij

,

(2.c) σ2
j ← arg max

σj

n∑
i=1

p
(k+1)
ij log φ(yi − γiσj;µj, σ2

j ).

k ← k + 1.
until convergence
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over a grid of 100 λ values, equally spaced on the log scale between λmin and λmax, where

λmax is some large value of λ which corresponds to all zero values of γi and λmin is some

small value of λ which corresponds to all nonzero values of γi.

2.3 Simulation

We conduct several simulation studies to demonstrate the effectiveness of the proposed

method and compare it with some of existing estimation methods. We consider two exam-

ples: example 1 is equal variance case and example 2 is unequal variance case. For both

examples, we set the sample size n = 400. For nonzero γ, the absolute value of γ is gener-

ated by a uniform distribution either between 5 and 7 or between 11 and 13. We consider

two cases of the proportion of outliers: 5% outliers and 10% outliers by adding nonzero γis.

The number of replicates is 200 for each simulation setting.

Example 1: The samples (y1, y2, . . . , yn) are generated from model (2.3) with π1 = 0.3,

µ1 = 0, π2 = 0.7, µ2 = 8, and σ = 1. The observations (y1, y2, . . . , yn1) are assigned to the

first component (where n1 is generated by a binomial distribution with n = 400 and p = 0.3

and n1 is the sum of 1’s) and the rest of observations, (yn1+1, . . . , yn), are assigned to the

second component. For 5% outliers case (i.e., 20 nonzero γis), the first 5 observations are set

to be outliers in the first component and the last 15 observations are set to be outliers in the

second component; for 10% outliers case (i.e., 40 nonzero γis), the first 10 observations are

set to be outliers in the first component and the last 30 observations are set to be outliers

in the second component.

Example 2: The samples (y1, y2, . . . , yn) are generated from model (2.13) with σ1 = 1

and σ2 = 2. All other model parameters and simulation settings are the same as in Example

1.
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2.3.1 Methods and Evaluation Measures

We compare our proposed RMM method using hard and SCAD penalty to one existing

robust approach and the traditional MLE. To check the performance of the selection of

tuning parameter λ, we also report the “oracle” estimates for both hard and SCAD penalty

which are the estimates closest to the true values in the solution path. The seven methods

we compared are listed below:

1. traditional MLE assuming the error has normal density (MLE),

2. trimmed likelihood estimator (TLE) proposed by Neykov et al. (2007) with the per-

centage of trimmed data α set to 0.05 (TLE0.05),

3. TLE with the percentage of trimmed data α set to 0.10 (TLE0.10),

4. the proposed RMM using the hard penalty (Hard),

5. the proposed RMM using the SCAD penalty (SCAD),

6. the oracle estimate using the hard penalty (Hardoracle),

7. the oracle estimate using the SCAD penalty (SCADoracle).

Note that unlike TLE, the proposed RMM used the data adaptive tuning parameter λ.

In addition, unlike our proposed methods, TLE method requires a cutoff value to identify

which residuals are outliers. A fixed choice of η = 2.5 in various situations is applied (Gervini

and Yohai, 2002) to identify outliers for TLE method.

To evaluate the performance of different estimators, we report the median squared errors

(MeSE) of the parameter estimates. Similar to She and Owen (2011), to evaluate the

outlier detection performance, we report (1) the average proportions of masking (M), i.e.,

the fraction of undetected outliers, (2) the average proportions of swapping (S), i.e., the

fraction of good points labeled as outliers, and (3) the joint detection rate (JD), i.e., the

proportion of simulations with 0 masking. Ideally, M ≈ 0, S ≈ 0, and JD ≈ 1.
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Note, however, for mixture models, there are well known label switching issues (Celeux,

et al., 2000; Stephens, 2000; Yao and Lindsay, 2009; Yao, 2012). In our simulation study,

the labels are determined by minimizing the distance to true parameter values.

2.3.2 Results

Simulation results of Example 1 are summarized in Table 2.1 – Table 2.4. Tables 2.1 and

2.3 report the three fractions of outlier detection and Tables 2.2 and 2.4 report the median

of squared errors (MeSE) of parameter estimates for each estimation method. For equal

variance case, both hard and SCAD have similar results to “oracle” estimators. In case I

(5% outliers) with either large |γ| or small |γ|, hard, SCAD, TLE0.05, and TLE0.10 gain ideal

joint outlier detection rate and fraction of undetected true outliers, and small swamping rate

but TLE0.10 has bigger MeSE of parameter estimates with large |γ|. In case II (10% outliers),

hard, SCAD, and TLE0.10 get similar performance in terms of both outlier identification and

MeSE. TLE0.05 fails to work with either large or small |γ| due to the smaller α setting (less

than the proportion of outliers).

Simulation results of Example 2 are summarized in Table 2.5 – Table 2.8. Tables 2.5 and

2.7 report the three fractions of outlier detection and Tables 2.6 and 2.8 report the median

of squared errors (MeSE) of parameter estimates for each estimation method. In case I

(5% outliers), Hard, SCAD, TLE0.05, and TLE0.10 obtain similar outlier identifying rates.

Hard, SCAD, and TLE0.05 have similar MeSE, while TLE0.10 has bigger MeSE for σ. In case

II (10% outliers), Hard, SCAD, and TLE0.10 have the similar outlier identifying rates and

MeSE for π and µ but TLE0.10 has bigger MeSE for σ with large |γ|; SCAD fails to work

with small |γ| but its solution path does include good estimates of the parameters because

SCADoracle has similar results to hard. Therefore, a better method to choose the tuning

parameter might be able to improve the performance of SCAD. Like the equal variance case,

TLE0.05 performs poorly when there are 10% outliers in the data.

In summary, the proposed Hard has comparable performance to the oracle TLE, that
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used the correct trimming proportion α, in the simulation studies in terms of both outlier

identifying and MeSE (MSE). The proposed SCAD works well for equal variance case. For

unequal variance case, SCAD can still work well when there are 5% outliers or the absolute

value of γ is big, but does not work properly when the proportion of outliers in data is

10% and the magnitude of γ is small. A modification on tuning parameter criterion may

possibly solve this problem, since the oracle SCAD works well for all cases. The proposed

RMM using `1 norm penalty works with large absolute value of γ when there are 5% outliers

but fails to work with small absolute value of γ and more than 5% outliers (The results of

soft are omitted here); this agrees with She and Owen (2011). As we expect, the traditional

MLE fails to work when there are one or more outliers in the data.

2.4 Real Data Application

We further apply the proposed robust procedure to Acidity dataset (Crawford, 1994; Craw-

ford et al., 1992). The observations are the logarithms of an acidity index measured in

a sample 155 lakes in north-central Wisconsin. More details on the data analysis can be

found in Crawford (1994), Crawford et al. (1992), and Richardson and Green (1997). Figure

1 shows the histogram of Acidity dataset. Based on the result of Richardson and Green

(1997), the posterior for three components was largest. Hence we fit this data set by a

three-component normal mixture by the traditional MLE and the proposed RMM using

HARD penalty.

Table 2.9 reports the parameter estimates on the Acidity data set. For the original data

where there are no outliers, the proposed Hard has similar parameter estimates to that of

the traditional MLE. To see the effects of outliers on Hard and MLE, similar to Peel and

McLachlan (2000), we add one outlier (y = 12) to the original data. Based on Table 9, the

proposed Hard is not influenced by the outlier and gives similar parameter estimates to the

case of no outliers. However, MLE gives different parameter estimates from the case of no
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outliers. In addition, note that MLE provides the same component means for the first and

second components. We further add three identical outliers (y = 12) to the data. As we

expect, Hard still provides similar estimates to the case of no outliers. However, MLE fits

a new component to the outliers and gives totally different estimates from the case of no

outliers.

2.5 Discussion

The main contribution of this paper is to propose a robust mixture via mean shift penal-

ization model (RMM). In addition, we proposed a thresholding embedded EM algorithm to

find the proposed robust estimate. Based on the simulation studies and real data analysis,

we can see that RMM with Hard penalty has similar performance to TLE that uses an oracle

trimming proportion. Note, however, RMM can adaptively choose the tuning parameter λ

based on BIC. In addition, the proposed RMM can naturally detect outliers corresponding

to nonzero γis.

In this article, we mainly focus on normal mixture model. We think the proposed robust

procedure RMM can be also extended to other mixture models, such as mixtures of binomial

and mixtures of poisson. In addition, the proposed RMM can be also extended to mixture

of linear regression models and mixture of generalized linear models.

Appendix

2.5.1 Proof of Equation (2.8)

The estimate of γ is updated by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γi;µj, σ2)−

n∑
i=1

1

w
Pλ(|γi|).
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The problem is separable in each γi. Thus each γi can be updated by minimizing

−
m∑
j=1

p
(k+1)
ij log φ(yi − γi;µj, σ2) +

1

w
Pλ(|γi|).

Note that

log φ
(
yi − γi;µj, σ2

)
= log

[(
σ2
)− 1

2 · exp

{
−(yi − γi − µj)2

2σ2

}]
+ const

= −1

2
log
(
σ2
)
− (yi − γi − µj)2

2σ2
+ const.

Thus, the solution of γ has the following form,

γ̂i = arg min
γi

m∑
j=1

pij

{
1

2
log
(
σ2
)

+
(yi − γi − µj)2

2σ2

}
+

1

w
Pλ (|γi|) .

Since 1
2

∑m
j=1 pij log (σ2) does not depend on γ, we can ignore this term. The second term is

m∑
j=1

pij
(yi − γi − µj)2

2σ2
=

1

2σ2

m∑
j=1

pij
{
γ2
i − 2 (yi − µj) γi + (yi − µj)2}

=
1

2σ2

{γi − ∑m
j=1 pij(yi − µj)∑m

j=1 pij

}2

+ const


=

1

2σ2

{γi − m∑
j=1

pij(yi − µj)

}2

+ const

 ,
where

∑m
j=1 pij = 1. It follows that

γ̂i = arg min
γi

1

2σ2

{γi − m∑
j=1

pij(yi − µj)

}2
+

1

w
Pλ (|γi|) .

42



2.5.2 Proof of Equation (2.17)

The parameter γ is updated by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γiσj;µj, σ2

j )−
n∑
i=1

Pλ(|γi|).

Again, the problem is separable in each γi, and the estimate of each γi is obtained by

minimizing

−
m∑
j=1

p
(k+1)
ij log φ(yi − γiσj;µj, σ2

j ) + Pλ(|γi|).

After some algebra, the solution of γi has the following form,

γ̂i = arg min
γi

m∑
j=1

pij

{
1

2
log
(
σ2
j

)
+

(yi − γiσj − µj)2

2σ2
j

}
+ Pλ (|γi|) .

We have that

m∑
j=1

pij
(yi − γiσj − µj)2

2σ2
j

=
m∑
j=1

pij
2σ2

j

{
γ2
i σ

2
j − 2 (yi − µj) γiσj + (yi − µj)2}

=
1

2

{γi − ∑m
j=1

pij
σj

(yi − µj)∑m
j=1 pij

}2

+ const


=

1

2

{γi − m∑
j=1

pij
σj

(yi − µj)

}2

+ const

 ,
where

∑m
j=1 pij = 1. It follows that

γ̂i = arg min
γi

1

2

{γi − m∑
j=1

pij
σj

(yi − µj)

}2
+ Pλ (|γi|) .
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2.5.3 Proof of SCAD thresholding rule in Proposition 1

The penalized least squares has the following form:

1

2
(γ − ξ)2 +

σ2

σ̂2
Pλ(γ) (2.19)

where

ξ =

∑m
j=1 pij(yi − µj)∑m

j=1 pij
,

Note that for simplicity, we have omitted the subscripts in γi and ξi.

Consider the first derivative of (2.19) with respect to γ,

∂
{

1
2
(γ − ξ)2 + σ2

σ̂2Pλ(γ)
}

∂γ
= γ − ξ + sgn(γ)

σ2

σ̂2
P ′λ(γ)

where

P ′λ(γ) =


λ if 0 < |γ| ≤ λ,

(aλ−|γ|)+
a−1

if λ < |γ| ≤ aλ,

0 if |γ| > aλ.

We shall check the second derivative of (2.19) in three cases.

Case 1: when 0 < |γ| ≤ λ,

∂
{

(γ − ξ) + sgn(γ)σ
2

σ̂2P
′
λ(γ)

}
∂γ

=
∂
(
γ − ξ + sgn(γ)σ

2λ
σ̂2

)
∂γ

= 1 > 0.

Solving the equation γ−ξ+sgn(γ)σ
2λ
σ̂2 = 0, we have γ̂ = ξ− σ2λ

σ̂2 and γ̂ = −(−ξ− σ2λ
σ̂2 ) =

ξ + σ2λ
σ̂2 .
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Case 2: when λ < |γ| ≤ aλ,

∂
{

(γ − ξ) + sgn(γ)σ
2

σ̂2P
′
λ(γ)

}
∂γ

=
∂
{
γ − ξ + sgn(γ)σ

2(aλ−|γ|)
σ̂2(a−1)

}
∂γ

= 1− σ2

σ̂2(a− 1)
.

If σ2

σ̂2 < a − 1, then the second derivative is positive. Solving the equation γ −

ξ + sgn(γ)σ
2(aλ−γ)
σ̂2(a−1)

= 0, we have γ̂ =
σ̂2

σ2
(a−1)ξ−aλ

σ̂2

σ2
(a−1)−1

and γ̂ = −
{

σ̂2

σ2
(a−1)(−ξ)−aλ
σ̂2

σ2
(a−1)−1

}
=

σ̂2

σ2
(a−1)ξ+aλ

σ̂2

σ2
(a−1)−1

.

If σ2

σ̂2 > a− 1, then the second derivative is negative and the solution of the equation

γ − ξ + sgn(γ)σ
2(aλ−γ)
σ̂2(a−1)

= 0 is not a minimizer of the equation (2.19).

Case 3: when |γ| > aλ,

∂
{

(γ − ξ) + sgn(γ)σ
2

σ̂2P
′
λ(γ)

}
∂γ

=
∂ (γ − ξ)

∂γ
= 1 > 0.

Solving the equation γ − ξ = 0, we have γ̂ = ξ.

From the above three cases, we can see that the γ solutions depend on the values of σ2

σ̂2

and ξ. Next, we must verify γ solutions in the following scenarios:

When σ2/σ̂2 < a− 1

Note: For a positive λ, σ2

σ̂2 < a− 1 is equivalent to λ + σ2λ
σ̂2 < aλ. Since equation (2.19)

is symmetric and Θ(−ξ;λ) = −Θ(ξ;λ), we have γ̂ = Θ(−ξ;λ) = −Θ(ξ;λ). Here we only

discuss positive ξ.

1. When ξ > aλ, γ satisfies Case 3, then we have γ̂ = ξ.

2. When λ+ σ2λ
σ̂2 < ξ ≤ aλ, γ satisfies Case 2, then we have γ̂ =

σ̂2

σ2
(a−1)ξ−aλ

σ̂2

σ2
(a−1)−1

.

3. When σ2λ
σ̂2 < ξ ≤ λ+ σ2λ

σ̂2 , γ satisfies Case 1, then we have γ̂ = ξ − σ2λ
σ̂2 .
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4. For 0 ≤ ξ ≤ σ2λ
σ̂2 , γ satisfies Case 1. If γ ≥ 0, the first derivative of equation (2.19),

γ − ξ + σ2λ
σ̂2 , is monotone increasing, so γ̂ = 0; similarly, if γ ≤ 0, the first derivative

of equation (2.19) is monotone decreasing, so γ̂ = 0.

In summary, we have

γ̂ =



sgn(ξ)
(
|ξ| − σ2λ

σ̂2

)
+
, if |ξ| ≤ λ+ σ2λ

σ̂2

σ̂2

σ2
(a−1)ξ−sgn(ξ)aλ

σ̂2

σ2
(a−1)−1

, if λ+ σ2λ
σ̂2 < |ξ| ≤ aλ

ξ, if |ξ| > aλ

When a− 1 ≤ σ2/σ̂2 ≤ a+ 1

Note: For a positive λ, σ2

σ̂2 ≥ a − 1 is equivalent to λ + σ2λ
σ̂2 ≥ aλ. We consider the

following subcases:

1. When |ξ| ≤ aλ, based on the result summary when σ2/σ̂2 < a− 1,

γ̂ = sgn(ξ)

(
|ξ| − σ2λ

σ̂2

)
+

,

2. When aλ ≤ |ξ| ≤ λ+ σ2λ
σ̂2 , for γ̂1 = sgn(ξ)

(
|ξ| − σ2λ

σ̂2

)
+

, the objective function becomes

f1 =
1

2
(γ̂ − ξ)2 +

σ2

σ̂2
λ|γ̂|,

and for γ̂2 = ξ, the objective function becomes

f2 =
σ2(a+ 1)λ2

2σ̂2
.

Define d = f1 − f2. If d > 0, then γ̂ = ξ. If d < 0, then γ̂ = sgn(ξ)
(
|ξ| − σ2λ

σ̂2

)
+

.
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(i) When ξ > σ2λ
σ̂2 , γ̂1 = ξ − σ2λ

σ̂2 and

f1 =
1

2

σ22λ2

σ̂22
+
σ2

σ̂2
λ(ξ − σ2λ

σ̂2
).

Then

d = f1 − f2 =
σ2λ2

2σ̂2

(
2ξ

λ
− a− 1− σ2

σ̂2

)
.

When ξ >
a+1+σ2

σ̂2

2
λ, d > 0, so γ̂ = ξ. When ξ <

a+1+σ2

σ̂2

2
λ, d < 0, so γ̂ = ξ − σ2λ

σ̂2 .

Note that since σ2

σ̂2 > a− 1,
a+1+σ2

σ̂2

2
λ > aλ.

Note that in order to result in the soft thresholding rule γ̂ = sgn(ξ)
(
|ξ| − σ2λ

σ̂2

)
+

,

we need σ2λ
σ̂2 ≤

a+1+σ2

σ̂2

2
λ, i.e.,

[
−σ2λ

σ̂2 ,
σ2λ
σ̂2

]
is contained within

[
−a+1+σ2

σ̂2

2
λ,

a+1+σ2

σ̂2

2
λ

]
.

Accordingly, σ2λ
σ̂2 ≤

a+1+σ2

σ̂2

2
λ indicates σ2

σ̂2 ≤ a+ 1.

(ii) When 0 ≤ ξ ≤ σ2λ
σ̂2 , γ̂1 = 0, and f1 = ξ2

2
.

d = f1 − f2 =
ξ2

2
− σ2(a+ 1)λ2

2σ̂2

<
σ2λ2

2σ̂2

{
σ2

σ̂2
− (a+ 1)

}
.

Since σ2

σ̂2 ≤ a+ 1, d < 0, γ̂ = 0.

3. When |ξ| > λ+ σ2λ
σ̂2 , based on the result summary when σ2/σ̂2 < a− 1, γ̂ = ξ.

By summarizing the above three subcases and symmetry property, we have

γ̂ =


sgn(ξ)

(
|ξ| − σ2λ

σ̂2

)
+
, if |ξ| ≤ a+1+σ2

σ̂2

2
λ,

ξ, if |ξ| > a+1+σ2

σ̂2

2
λ.

When σ2/σ̂2 > a+ 1
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For σ2

σ̂2 > a+ 1, we have σ2λ
σ̂2 >

a+1+σ2

σ̂2

2
λ. Consider the following two subcases:

1. When ξ > σ2λ
σ̂2 >

a+1+σ2

σ̂2

2
λ, γ̂ = ξ.

2. When 0 ≤ ξ ≤ σ2λ
σ̂2 , γ̂1 = 0 and

d = f1 − f2 =
ξ2

2
− σ2(a+ 1)λ2

2σ̂2
.

If |ξ| <
√

σ2(a+1)
σ̂2 λ, d < 0, then γ̂ = 0; If |ξ| >

√
σ2(a+1)
σ̂2 λ, d > 0, then γ̂ = ξ.

By summarizing the above two subcases and symmetry property, we have

γ̂ =


0, if |ξ| ≤

√
σ2(a+1)
σ̂2 λ

ξ, if |ξ| >
√

σ2(a+1)
σ̂2 λ

Table 2.1: Outlier Identification Results for Equal Variance Case with Large |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10

5% outliers
JD 1.000 1.000 1.000 1.000 1.000 1.000
M 0.000 0.000 0.000 0.000 0.000 0.000
S 0.000 0.000 0.017 0.023 0.012 0.022
10% outliers
JD 1.000 1.000 1.000 1.000 0.010 1.000
M 0.000 0.000 0.000 0.000 0.732 0.000
S 0.001 0.001 0.042 0.035 0.001 0.013
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Table 2.2: MeSE (MSE) of Point Estimates for Equal Variance Case with Large |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10 MLE

5% outliers

π 0.001 (0.001) 0.001 (0.001) 0.001 (0.002) 0.001 (0.003) 0.001 (0.001) 0.001 (0.017) 0.165 (0.220)
µ 0.007 (0.010) 0.007 (0.010) 0.009 (0.017) 0.009 (0.014) 0.007 (0.010) 0.017 (3.159) 38.05 (64.42)
σ 0.001 (0.002) 0.001 (0.002) 0.002 (0.007) 0.001 (0.004) 0.001 (0.001) 0.024 (0.940) 15.89 (628.7)

10% outliers

π 0.001 (0.001) 0.001 (0.001) 0.001 (0.003) 0.001 (0.003) 0.840 (0.820) 0.001 (0.001) 0.151 (0.236)
µ 0.008 (0.013) 0.008 (0.013) 0.029 (0.039) 0.040 (0.045) 157.0 (153.6) 0.008 (0.013) 40.61 (68.39)
σ 0.003 (0.004) 0.003 (0.004) 0.012 (0.014) 0.001 (0.003) 7.743 (7.729) 0.001 (0.002) 24.73 (8808)

Table 2.3: Outlier Identification Results for Equal Variance Case with Small |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10

5% outliers
JD 0.990 0.990 0.960 1.000 0.99 1.000
M 0.001 0.001 0.030 0.000 0.001 0.000
S 0.004 0.004 0.004 0.081 0.013 0.022
10% outliers
JD 0.983 0.985 0.925 0.985 0.165 0.96
M 0.004 0.007 0.050 0.001 0.063 0.004
S 0.033 0.031 0.110 0.112 0.001 0.012

Table 2.4: MeSE (MSE) of Point Estimates for Equal Variance Case with Small |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10 MLE

5% outliers

π 0.003 (0.004) 0.003 (0.004) 0.001 (0.001) 0.003 (0.004) 0.001 (0.001) 0.002 (0.017) 0.003 (0.095)
µ 0.023 (0.030) 0.035 (0.031) 0.156 (0.157) 0.041 (0.050) 0.009 (0.014) 0.022 (3.887) 0.251 (13.04)
σ 0.018 (0.027) 0.002 (0.004) 0.404 (0.371) 0.016 (0.020) 0.001 (0.001) 0.022 (0.977) 0.539 (633.4)

10% outliers

π 0.001 (0.002) 0.001 (0.002) 0.001 (0.002) 0.001 (0.002) 0.001 (0.004) 0.001 (0.001) 0.003 (0.112)
µ 0.017 (0.022) 0.028 (0.033) 0.026 (0.065) 0.026 (0.037) 0.143 (0.723) 0.010 (0.032) 0.806 (13.82)
σ 0.019 (0.020) 0.004 (0.007) 0.034 (0.102) 0.031 (0.038) 0.261 (0.470) 0.001 (0.017) 1.315 (105.4)
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Table 2.5: Outlier Identification Results for Unequal Variance Case with Large |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10

5% outliers
JD 1.000 1.000 1.000 1.000 0.967 1.000
M 0.000 0.000 0.000 0.000 0.002 0
S 0.001 0.001 0.003 0.009 0.009 0.031
10% outliers
JD 1.000 1.000 0.995 0.995 0.000 0.985
M 0.000 0.000 0.005 0.001 0.476 0.000
S 0.001 0.001 0.009 0.013 0.000 0.012

Table 2.6: MeSE (MSE) of Point Estimates for Unequal Variance Case with Large |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10 MLE

5% outliers

π 0.001 (0.001) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001) 0.001 (0.039) 0.001 (0.001) 0.780 (0.767)
µ 0.014 (0.021) 0.014 (0.021) 0.015 (0.022) 0.014 (0.021) 0.022 (17.63) 0.022 (0.031) 92.76 (91.97)
σ 0.023 (0.028) 0.020 (0.024) 0.022 (0.044) 0.016 (0.021) 0.010 (0.551) 0.100 (0.108) 247.5 (243.6)

10% outliers

π 0.001 (0.001) 0.001 (0.001) 0.001 (0.002) 0.001 (0.001) 0.056 (0.058) 0.001 (0.001) 0.055 (0.058)
µ 0.018 (0.026) 0.018 (0.026) 0.019 (0.030) 0.019 (0.029) 18.13 (18.10) 0.010 (0.013) 11.83 (11.90)
σ 0.036 (0.045) 0.034 (0.042) 0.038 (0.334) 0.036 (0.223) 19.83 (19.92) 1.035 (1.031) 61.33 (61.29)

Table 2.7: Outlier Identification Results for Unequal Variance Case with Small |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10

5% outliers
JD 0.900 0.900 0.805 1.000 0.875 0.990
M 0.015 0.004 0.182 0 0.011 0.0005
S 0.001 0.001 0.008 0.073 0.008 0.031
10% outliers
JD 0.800 0.800 0.010 1.000 0.000 0.784
M 0.029 0.027 0.920 0.000 0.268 0.016
S 0.001 0.001 0.000 0.103 0.001 0.008

50



Table 2.8: MeSE (MSE) of Point Estimates for Unequal Variance Case with Small |γ|
Hard Hardoracle SCAD SCADoracle TLE0.05 TLE0.10 MLE

5% outliers

π 0.001 (0.001) 0.001 (0.001) 0.001 (0.003) 0.001 (0.001) 0.001 (0.148) 0.001 (0.012) 0.192 (0.174)
µ 0.017 (0.026) 0.017 (0.028) 0.045 (0.071) 0.022 (0.032) 0.025 (17.37) 0.024 (0.600) 21.97 (19.24)
σ 0.009 (0.016) 0.004 (0.008) 0.183 (1.212) 0.004 (0.010) 0.013 (2.031) 0.100 (0.232) 23.76 (20.64)

10% outliers

π 0.001 (0.001) 0.001 (0.001) 0.027 (0.028) 0.001 (0.001) 0.161 (0.130) 0.001 (0.180) 0.248 (0.257)
µ 0.021 (0.029) 0.022 (0.029) 0.086 (0.105) 0.025 (0.034) 14.45 (10.40) 0.008 (0.012) 30.41 (37.07)
σ 0.016 (0.241) 0.008 (0.015) 12.04 (11.96) 0.010 (0.023) 18.54 (13.74) 1.017 (1.020) 34.52 (30.22)

Table 2.9: Parameter Estimation on Acidity Data Set
π1 π2 π3 µ1 µ2 µ3 σ

MLE No outliers 0.589 0.138 0.273 4.320 5.682 6.504 0.365
1 outlier 0.327 0.324 0.349 4.455 4.455 6.448 0.687
3 outliers 0.503 0.478 0.019 5.105 5.105 12.00 1.028

Hard No outliers 0.588 0.157 0.255 4.333 5.720 6.545 0.336
1 outlier 0.591 0.157 0.252 4.333 5.723 6.548 0.334
3 outliers 0.597 0.157 0.246 4.333 5.729 6.553 0.331
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Figure 2.1: Histogram for Acidity data
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Chapter 3

Outlier Detection and Robust

Mixture Regression Using Nonconvex

Penalized Likelihood

3.1 Introduction

Given n observations of the response Y ∈ R and predictor X ∈ Rp, multiple linear regression

models are commonly used to explore the conditional mean structure of Y givenX. However,

in many applications, the underlying assumption that the regression relationship is homo-

geneous across all the observations (y1,x1), . . . , (yn,xn) can be easily violated. Instead, the

observations may form several distinct clusters indicating mixed relationships between the

response and the predictors. Such heterogeneity can be more appropriately modeled by a

finite mixture regression model, consisting of, say, m homogeneous groups/components. It is

assumed that a linear regression model holds for each of the m components, i.e., when (y,x)

belongs to the jth component (j = 1, 2, . . . ,m), y = xTβj + εj, where βj ∈ Rp is a fixed

and unknown coefficient vector for the jth component, and εj ∼ N(0, σ2
j ). (The intercept

term can be included by setting the first element of x as one). Let Z be a latent variable
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indicating the class/component membership, such that P (Z = j) = πj for j = 1, 2, · · · ,m,

where πjs are called mixing proportions. Then the conditional density of y given x, without

observing Z, is

f(y | x,θ) =
m∑
j=1

πjφ(y;xTβj, σ
2
j ), (3.1)

where φ(·;µ, σ2) denotes the density function ofN(µ, σ2) and θ = (π1,β1, σ1; . . . ; πm,βm, σm)T

collects all the unknown parameters of the model.

Since first introduced by Goldfeld and Quandt (1973), the above mixture regression

model has been widely used in business, marketing, and social sciences (see Jiang and

Tanner, 1999; Böhning, 1999; Wedel and Kamakura, 2000; McLachlan and Peel, 2000;

Skrondal and Rabe-Hesketh, 2004; and Frühwirth-Schnatter, 2006). Hennig (2000) proved

the identifiability of model (3.1) under some general conditions for the covariates, i.e., model

(3.1) is identifiable ifm is smaller than the number of distinct (p−1) dimensional hyperplanes

needed to cover the covariates of each cluster. Maximum likelihood estimator (MLE) is

commonly used to infer the unknown parameter θ in (3.1), i.e.,

θ̂MLE = arg max
θ

n∑
i=1

log

{
m∑
j=1

πjφ(yi;x
T
i βj, σ

2
j )

}
. (3.2)

The MLE does not have an explicit form and the problem is usually solved by invoking the

EM algorithm (Dempster et al. 1977).

Although the finite mixture models with the maximum likelihood inference have greatly

enriched the toolkit of regression analysis, the model is very sensitive to outliers, and failure

to accommodate outliers may greatly jeopardize mixture model estimation and inference.

Many robust methods have been developed for mixture regression models. Markatou (2000)

and Shen et al. (2004) proposed to properly weight each data point to robustify the es-

timation procedure. Neykov et al. (2007) proposed robust fitting of mixtures using the
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trimmed likelihood. Bai et al. (2012) proposed a modified EM algorithm for mixture re-

gression by replacing the least squares criterion in M step with a robust criterion. Bashir

and Carter (2012) extended the idea of S-estimator to mixture linear regression. Yao et

al. (2014) proposed a robust mixture regression approach using t-distribution. Song et al.

(2013) proposed a robust mixture regression model fitting by laplace distribution. There

also have been several related robust methods for linear clustering; see, e.g., Hennig (2002,

2003), Mueller and Garlipp (2005), Garćıa-Escudero et al. (2009), and Garćıa-Escudero et

al. (2010).

In this article, we propose a Robust Mixture Regression via Mean shift penalization

approach (RMRM or RM2), to conduct simultaneous outlier detection/accomodation and

robust parameter estimation in finite normal mixture regression models. Our method is

motivated by She and Owen (2011) and Lee, MacEachern and Jung (2012), in which penal-

ized estimation methods were adopted to induce the sparsity of a case-specific parameter

vector for accommodating outliers in linear regression models. Under the general framework

of mixture regression, there are several new challenges for adopting the nonconvex penal-

ization methods. For example, the problem of maximizing the likelihood itself becomes a

nonconvex problem, which complicates the computation. When the components have un-

equal variances, the simple mean shift model will not work well since the definition of an

outlier may become ambiguous as the scale of the outlying effect of a particular point may

vary across different components. We propose to add a component specific mean-shift term

for each component and for each observation and these terms are designed to be propor-

tional to the component variances, accounting for the potential heteroscedasticity among

different components. We propose an efficient iterative thresholding embeded EM algorithm

to solve the nonconvex RM2 problem, and our proposed estimator is demonstrated to be

highly robust against gross outliers and leverage points.

The rest of the article is organized as follows. In Section 3.2, we propose the RM2

approach. In Section 3.3, we compare the proposed methods to several existing methods
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via simulation studies. A real application showcasing the efficacy of the proposed method

is presented in Section 3.4, and we conclude the paper in Section 3.5.

3.2 Robust Mixture Regression via Mean-shift Penal-

ization

To illustrate the main idea, we start from the simple case that the mixture components have

equal variances, i.e., σ2
1 = · · · = σ2

m = σ2. Motivated by the mean-shift linear regression

model considered by She and Owen (2011) and Lee, MacEachern, and Jung (2012), it is

natural to consider the following mixture model with a mean-shift parameterization, i.e.,

f(yi;θ, γi) =
m∑
j=1

πjφ(yi;x
T
i βj + γi, σ

2), i = 1, . . . , n, (3.3)

where θ = (π1,β1, . . . , πm,βm, σ)T . Here, for each observation, a shift parameter, γi, is

added to its mixture mean structure; we thus refer to the above as a mean shifted mixture

model. Without any further constraints on the model parameters, it is obvious that the

mean-shift model is over-parameterized and hence the parameters are not fully identifiable.

The essence of this formulation lies in the sparsity assumption on γi, i.e., we shall assume

many γis are in fact zero, corresponding to the normal observations, and only a few γis are

nonzero, corresponding to the outlying observations. Therefore, promoting sparsity of γi in

model estimation provides a direct way for identifying and accommodating outliers in the

mixture model.

Now consider the general case that the mixture components are allowed to have unequal

variances, i.e., εj ∼ N(0, σ2
j ). This heteroscedasticity of component variances imposes ad-

ditional challenges for identifying outliers, as the definition of an “outlier” even becomes

ambiguous due to the fact that the mixture components are of different scales. In the gen-

eral setting, whether an observation is an outlier to a certain component should be judged
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based on the scale of that component, and an observation should be declared as an outlier

only if it is far away from all the centroids of the mixture components. This motivates us to

further extend model (3.3) to take into account the scaling issue. The main idea is to make

the case-specific mean shift parameter γi be scale invariant, so that the magnitude of γi

itself represents the standardized distance from the observation to all the cluster centroids.

We thus propose the following robust mixture regression model with mean-shift (RM2),

f(yi | xi,θ, γi) =
m∑
j=1

πjφ(yi;x
T
i βj + γiσj, σ

2
j ), i = 1, . . . , n, (3.4)

where we redefine θ = (π1,β1, σ1, . . . , πm,βm, σm)T . The outlying effect is made both case-

specific and component-specific, i.e., the outlying effect of the ith observation to the jth

component is modeled by γiσj, depending directly on the scale of the jth component. In

this way, γi becomes scale free, and can be simply understood as the number of standard

deviations shifted from the correct component mean structures.

The efficient and accurate recovery of the sparse vector γ = (γ1, . . . , γn)T holds the key to

realize the bearing of the powerful framework of the proposed mean shifted mixture model.

In recent years, the penalized estimation approach has undergone exciting developments for

sparse learning and variable selection. This motivates us to consider a penalized likelihood

approach. Given a random sample {(xi, yi), i = 1, 2, . . . , n} from model (3.4), the log-

likelihood function is given by

`n(θ,γ) =
n∑
i=1

log

{
m∑
j=1

πjφ(yi − γiσj − xTi βj; 0, σ2
j )

}
.

We propose a penalized likelihood approach to conduct model estimation and outlier detec-

tion,

pln(θ,γ) = `n(θ,γ)−
n∑
i=1

Pλ(|γi|), (3.5)

where Pλ(·) is some penalty function chosen to induce the sparsity in γ, with λ being a
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tuning parameter controlling the degrees of penalization (She and Owen, 2011). There are

many choices for the penalty function in the above criterion. To list a few, the `1 norm

penalty (Donoho and Johnstone, 1994a; Tibshirani, 1996, 1997) is given by Pλ(γ) = λ|γ|,

the `0 hard penalty (Antoniadis, 1997) can be written as

Pλ(γ) =
λ2

2
I(γ 6= 0), (3.6)

and the SCAD penalty proposed by Fan and Li (2001) is

Pλ(γ) =


λ|γ|, if |γ| ≤ λ,

−
(
γ2−2aλ|γ|+λ2

2(a−1)

)
, if λ < |γ| ≤ aλ,

(a+1)λ2

2
, if |γ| > aλ,

(3.7)

where a is a constant usually set to be 3.7. Each of these penalty forms corresponds to certain

thresholding rule, thus capable of performing shrinkage and producing exact zero solution,

e.g., `1 penalty corresponds to a soft-threshing rule and `0 penalty a hard-thresholding rule.

The advantages of using nonconvex penalties are well understood. Thus we shall mainly

focus on the nonconvex hard penalty and SCAD penalty.

In classical mixture regression problem, the EM algorithm is commonly used to maximize

the likelihood, as the component labels are unobservable and can be treated as missing data.

Here, we propose an iterative thresholding embeded EM algorithm to maximize the proposed

penalized log-likelihood criterion. Let

zij =


1, if ith observation is from jth component,

0, otherwise.

and denote the complete data by {(xi, zi, yi), i = 1, 2, . . . , n}, where the component labels

zi = (zi1, zi2, . . . , zim) are not observable in practice. The penalized complete log-likelihood
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function is

plcn(θ,γ) = `cn(θ,γ)−
n∑
i=1

Pλ(|γi|) (3.8)

where the complete log-likelihood is given by

`cn(θ,γ) =
n∑
i=1

m∑
j=1

zij log
{
πjφ(yi − γiσj − xTi βj; 0, σ2

j )
}
. (3.9)

In the E-step, the conditional expectation of the penalized complete log-likelihood (3.8)

is computed, and we then maximize it with respect to θ and γ in the M-step. Specifically, in

the M-step, we alternatingly update θ and γ with the other part held fixed, until convergence

is reached. For fixed γ, both pij and β can be solved explicitly. As each σj appears in the

mean structure, it no longer has an explicit solution; however, the estimation of each σj is

separable so that the problem is easily solvable by standard optimization method such as

Newton-Raphson. For fixed pij, β, and σj, γ is updated by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γiσj − xTi βj; 0, σ2

j )−
n∑
i=1

Pλ(|γi|).

It can be shown that the above problem is separable in each γi, for which it suffices to

minimize

1

2

{γi − m∑
j=1

p
(k+1)
ij

σj
(yi − xTi βj)

}2
+ Pλ (|γi|) . (3.10)

The thresholding rules for soft, hard, and SCAD are given, respectively, as follows,

γi = Θsoft(ξi;λ) =


0, if |ξi| ≤ λ

ξi − sgn(ξi)λ, if |ξi| > λ,
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γi = Θhard(ξi;λ) =


0, if |ξi| ≤ λ

ξi, if |ξi| > λ,

and

γi = ΘSCAD(ξi;λ) =


sgn(ξi)(|ξi| − λ)+, if |ξi| ≤ 2λ

(a−1)ξi−sgn(ξi)aλ
a−2

, if 2λ < |ξi| ≤ aλ

ξi, if |ξi| > aλ,

where

ξi =
m∑
j=1

pij
σj

(yi − xTi βj).

The detailed proposed thresholding embeded EM algorithm to maximize the penalized

log-likelihood (3.5) is summarized in Algorithm 1. Based on the property of EM algorithm,

for any fixed tuning parameter λ, each iteration of the E-step and M-step of Algorithm 1

monotonically non-decreases the penalized log-likelihood function, i.e., pln(θ̂
(k+1)

, γ̂(k+1)) ≥

pln(θ̂
(k)
, γ̂(k)), for all k ≥ 0.

The proposed scaled-invariate method is also applicable in the special case that εj ∼

N(0, σ2) in model (3.1), i.e., the mixture components have equal variance. We use the same

procedure as RM2 for unequal variance case by replacing σj with σ. Similar to algorithm 1,

the same iterating steps are used except for updating σ2 with the following formula:

(2.b) σ2 ← arg max
σ2

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γiσ − xTi βj; 0, σ2).

The proposed EM algorithm is for any fixed tuning parameter λ. In practice, we need

to choose an optimal λ and hence an optimal set of parameter estimates. We construct a

Bayesian information criterion (BIC) for tuning parameter selection,

BIC(λ) = −`(λ) + log(n)df(λ) (3.11)
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Algorithm 3 Thresholding Embeded EM algorithm for RM2 with Unequal Variances

Initialize θ(0) and γ(0). Set k ← 0.
repeat

(1) E-Step: Compute the conditional expectation:

Q(θ,γ | θ(k),γ(k)) =
n∑
i=1

m∑
j=1

p
(k+1)
ij

[
log πj + log φ(yi − γiσj − xTi βj; 0, σ2

j )
]
−

n∑
i=1

Pλ(|γi|)

where

p
(k+1)
ij = E(zij|yi;θ(k)) =

π
(k)
j φ(yi − γ(k)

i σ
(k)
j − xTi β

(k)
j ; 0, σ2(k)

j )∑m
j=1 π

(k)
j φ(yi − γ(k)

i σ
(k)
j − xTi β

(k)
j ; 0, σ2(k)

j )

(2) M-Step: Update π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
and update other parameters by maximizing

Q(θ,γ|θ(k),γ(k)), i.e., start from (β(k), σ2(k)

j ,γ(k)) and iterate the following steps until

convergence to obtain (β(k+1), σ2(k+1)

j ,γ(k+1)):

(2.a) βj ←

(
n∑
i=1

xix
T
i p

(k+1)
ij

)−1( n∑
i=1

xip
(k+1)
ij (yi − γiσj)

)
,

(2.b) σ2
j ← arg max

σ2
j

n∑
i=1

p
(k+1)
ij log φ(yi − γiσj − xTi βj; 0, σ2

j ),

(2.c) γi ← Θ(ξi;λ).

where Θ denotes a thresholding rule depending on the penalty form adopted, and

ξi =
∑m

j=1

p
(k+1)
ij

σj
(yi − xTi βj).

k ← k + 1.
until convergence
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where `(λ) is the mixture log-likelihood function evaluated at the parameter estimates with

tuning parameter λ, and df(λ) is the degrees of freedom of the resulting model. Following

Zou (2006), we estimate the degrees of freedom using the sum of the number of nonzero

elements of the vector γ̂(λ) and the number of component parameters in the mixture model.

We fit the model for 100 λ values equally spaced at the log scale in an interval (λmin, λmax),

where λmin is some λ value for which about 50% of the entries in γ are nonzero, and λmax

corresponds to some λ value for which γ is estimated as a zero vector.

We note that from outlier detection point of view or for practical consideration, there

may be other methods to determine the λ value or choose the optimal solution along the

solution path. For example, based on prior knowledge, one may decide to discard 5% of

the observations as outliers; then a solution with approximately 5% of nonzero γ values

can be chosen as the final solution. In the scale-invariate model, as γ can be interpreted

as the number of standard deviations from the mean structure, one may also examine the

magnitude of the γ estimates to determine the number of possible outliers. Although we

mainly use BIC in this paper, we shall see that by formulating the outlier detection problem

as a penalized regression method, the many well-studied model selection criteria including

Cp, AIC, and GCV are all applicable.

3.3 Simulation

3.3.1 Simulation Setups

We consider two mixture model setups, in which the observations are contaminated with

additive outliers, to evaluate the final sample performance of the proposed approach and

compare it with several existing methods.
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Model 1: For each i = 1, . . . , n, yi is independently generated by

yi =

 1− x1i + x2i + γiσ + εi1, if zi1 = 1;

1 + 3x1i + x2i + γiσ + εi2, if zi1 = 0.

where zi1 is a component indicator generated from Bernoulli distribution with P (zi1 = 1) =

0.3; x1i and x2i are independently generated from N(0, 1), and the error terms εi1 and εi2

are also independently generated from N(0, σ2) with σ2 = 1.

Model 2: For each i = 1, . . . , n, yi is independently generated by

yi =

 1− x1i + x2i + γiσ1 + εi1, if zi1 = 1;

1 + 3x1i + x2i + γiσ2 + εi2, if zi1 = 0.

where zi1 is a component indicator generated from Bernoulli distribution with P (zi1 = 1) =

0.3; x1i and x2i are independently generated from N(0, 1), and the error terms εi1 and εi2 are

independently generated from N(0, σ2
1) and N(0, σ2

2), respectively, with σ2
1 = 1 and σ2

2 = 4.

We consider two magnitudes of outliers, i.e., the absolute value of any nonzero mean

shift parameter, αi = |γi|, is generated from uniform distribution either between 5 and

7 or between 11 and 13. We consider two proportions of outliers, either 5% or 10%. In

each setting, the sample size is set to be n = 400 and we repeat the simulation 200 times.

Specifically, in Example 1, we first generate n = 400 observations according to Model 1

with all γis set to be zero; when there are 5% (10%) outliers, 5 (10) observations from the

first component are then replaced by yi = 1 − x1i + x2i + γi + ε1i with x1i = 2, x2i = 2,

and γi = −αi, and 15 (30) observations from the second component are replaced by yi =

1 + 3x1i + x2i + γi + ε2i with x1i = 2, x2i = 2, and γi = αi. In Example 2, the additive

outliers are generated in exactly the same fashion as in Example 1, and the only difference

is that the component variances are unequal in the latter example.
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3.3.2 Methods and Evaluation Measures

We compare our proposed RM2 approach with soft, hard, and SCAD penalties to three

existing robust approaches and the traditional normal mixture model. To alleviate the

inaccuracy in tuning parameter selection and examine the true potential of the proposed

approaches, we also report the “oracle” penalized regression estimator for each penalty,

which is defined as the solution whose number of selected outliers is the smallest number

greater than or equal to the number of true outliers on the solution path. These are the

estimators we would have obtained if the true proportion of outliers is known a priori. The

eleven methods we compared are listed below:

1. the traditional MLE in mixture linear regression with normally distributed error

(MLE);

2. trimmed likelihood estimator (TLE) proposed by Neykov et al. (2007) with the per-

centage of trimmed data α set to 0.05 (TLE0.05),

3. TLE with the percentage of trimmed data α set to 0.10 (TLE0.10),

4. the robust estimator based on an modified EM algorithm with bisquare loss (MEM-

bisquare) proposed by Bai et al.(2012),

5. the MLE in mixture linear regression assuming t-distributed error (Mixregt),

6. the proposed RM2 using the hard penalty (Hard),

7. the proposed RM2 using the SCAD penalty (SCAD),

8. the proposed RM2 using the soft penalty (Soft),

9. the oracle estimate using the hard penalty (Hardoracle),

10. the oracle estimate using the SCAD penalty (SCADoracle),

11. the oracle estimate using the soft penalty (Softoracle).
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For fitting mixture models, there are well known label switching issues (Celeux, et al.,

2000; Stephens, 2000; Yao and Lindsay, 2009; Yao, 2012). In our simulation study, the labels

are determined by minimizing the distance to the true parameter values. To evaluate the

estimation performance, we report both the median squared errors (MeSE) and the mean

squared errors (MSE) of the parameter estimates. To evaluate the outlier detection perfor-

mance, similar to She and Owen (2011), we report three measures: the average proportion

of masking (M), i.e., the fraction of undetected outliers, the average proportion of swapping

(S), i.e., the fraction of good points labeled as outliers, and the joint detection rate (JD),

i.e., the proportion of simulations with 0 masking. The simulation results are summarized

in Tables 3.1 – 3.8.

3.3.3 Results

The simulation results of Example 1 (equal variance case) are reported in Table 3.1 – Table

3.4. Tables 3.1 and 3.3 report the three fractions of outlier detection and Tables 3.2 and

3.4 report the median of squared errors (MeSE) of parameter estimates for each estimation

method. In the case of 5% outliers, all methods gain ideal outlier detection rates and small

MeSE of parameter estimates with large |γ|; all methods except for Soft have high joint

outlier detection rate and small MeSE with small |γ|. In the case of 10% outliers, Hard,

SCAD, and TLE0.10 work well in terms of both outlier detection rates and MeSE with large

|γ|, whereas Soft, TLE0.05, MEM-bisquare, and Mixregt have low joint outlier detection

rates and big MeSE; with small |γ|, TLE0.10, and Mixregt work better than other methods

in outlier identification but Hard, Hardoracle, and SCADoracle obtain similar MeSE to those

of TLE0.10 and Mixregt.

Table 3.5 – Table 3.8 summarize the simulation results of Example 2 (unequal variance

case). Tables 3.5 and 3.7 show the three fractions of outlier detection and Tables 3.6 and

3.8 show the median of squared errors (MeSE) of parameter estimates for each estimation

method. All methods except for soft have high joint outlier detection rates when the pro-
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portion of outliers is 5% with large |γ|; SCAD and MEM-bisquare have low joint detection

rates with small γ but SCADoracle has similar performance to Hard. When there are 10%

outliers in the data, Hard, SCAD, and TLE0.10 have outstanding performance in terms of

outlier identification rates and MeSE with large |γ|; Hard and SCAD do not work well in

terms of joint outlier detection rate with small |γ| but MeSE of Hardoracle is comparable to

TLE0.10. Mixregt has low joint detection rate with large |γ| and high JD rate with small |γ|

for 10% outliers case.

In summary, TLE0.10 has good results in terms of outliers detection in all cases but has

larger MSE for 5% outliers case. TLE0.05 fails to work in the case of 10% outliers due to the

small α setting (less than the proportion of outliers). Hard has comparable performance to

the oracle TLE and Hardoracle in terms of both outlier detection and MeSE in 5% outliers

case with either large or small |γ| and in 10% outliers case with large |γ|. With small |γ|

and 10% outliers in the data, Hardoracle has better performance than Hard. SCAD performs

as well as Hard and SCADoracle with large |γ|. But SCADoracle performs much better than

SCAD with small |γ|. Therefore, a better method to choose the tuning parameter for SCAD

and HARD might improve their performance in some cases. Like MLE, Soft is sensitive to

high leverage outliers, which has also been noticed by She and Owen (2011).

3.4 Tone Perception Data Analysis

We apply the proposed robust procedure to tone perception data (Cohen, 1984). In the

tone perception experiment of Cohen (1984), a pure fundamental tone with electronically

generated overtones added was played to a trained musician. The experiment recorded 150

trials from the same musician. The overtones were determined by a stretching ratio, which is

the ratio between adjusted tone and the fundamental tone. The purpose of this experiment

was to see how this tuning ratio affects the perception of the tone and to determine if either

of two musical perception theories was reasonable.
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We compare our proposed Hard and traditional MLE after adding ten identical outliers

(1.5, 5) into the original data set. Figure 3.1 shows the scatter plot of the data with the

estimated regression lines generated by the traditional MLE (dashed lines) and the proposed

Hard (solid line) for the data augmented by the outliers (stars). Based on Figure 3.1, the

MLE mistakenly assigns the outliers to one component and the rest of the data to another

component. In contrast, the proposed method using Hard penalty is not influenced by the

added outliers and fits the two regression lines to the two correctly identified components.

Using SCAD penalty leads to very similar results.

3.5 Discussion

In this article, we have proposed a robust mixture regression estimation procedure using

mean shit model. The new model focuses on outlier detection directly and can also provide a

robust model parameter estimate. Based on our simulation results, the proposed RM2 using

the hard penalty (Hard) and data adaptive chosen tuning parameter has overall comparable

performance to Hardoracle and the oracle TLE.

In addition, note that Hardoracle and SCADoracle have better performance than HARD

and SCAD in some cases, especially when |γ| is small. Therefore, we can further improve the

performance of SCAD and HARD if having a better method to choose the tuning parameter.

This requires further research.

The traditional definition of breakdown point as a criterion of robustness can not be

applied to mixture regression directly. Garćıa-Escudero et al. (2010) stated that the tra-

ditional definition of breakdown point is not the correct one to quantify the robustness of

clustering regression procedures to outliers, since the robustness of these procedures is not

only data dependent but also cluster dependent. Therefore, construction and investigation

of other robustness measures for mixture model setup may be an interesting future research

direction.
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3.6 Appendix

3.6.1 Proof of Equation (3.10)

The estimate of γ is updated based on updated pij, β, and σj by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γiσj − xTi βj; 0, σ2

j )−
n∑
i=1

Pλ(|γi|).

To do this, each γi is separately updated by maximizing:

m∑
j=1

p
(k+1)
ij log φ(yi − γiσj − xTi βj; 0, σ2

j )− Pλ(|γi|).

Equivalently, the estimate of γi is updated by minimizing

−
m∑
j=1

p
(k+1)
ij log φ(yi − γiσj − xTi βj; 0, σ2

j ) + Pλ(|γi|).

Note that

log φ
(
yi − γiσj − xTi βj; 0, σ2

j

)
= log

[(
σ2
j

)− 1
2 · exp

{
−
(
yi − γiσj − xTi βj

)2

2σ2
j

}]
+ const

= −1

2
log
(
σ2
j

)
−
(
yi − γiσj − xTi βj

)2

2σ2
j

+ const.

Thus, the solutions of γ have the following form:

γi = argmin
1

2

m∑
j=1

pij log
(
σ2
j

)
+

m∑
j=1

pij

{(
yi − γiσj − xTi βj

)2

2σ2
j

}
+ Pλ (|γi|) .

Since 1
2

∑m
j=1 pij log

(
σ2
j

)
does not depend on γ, we can ignore this term.
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The second term:

m∑
j=1

pij
(yi − γiσj − xTi βj)2

2σ2
j

=
m∑
j=1

pij
2σ2

j

{
γ2
i σ

2
j − 2

(
yi − xTi βj

)
γiσj +

(
yi − xTi βj

)2
}

=
1

2

{γi − ∑m
j=1

pij
σj

(yi − xTi βj)∑m
j=1 pij

}2

+ constant


=

1

2

{γi − m∑
j=1

pij
σj

(yi − xTi βj)

}2

+ constant

 ,
where

∑m
j=1 pij = 1.

Therefore,

γi = argmin
1

2

{γi − m∑
j=1

pij
σj

(yi − xTi βj)

}2
+ Pλ (|γi|) .

Table 3.1: Outlier Identification Results for Equal Variance Case with Large |γ|
5% outliers 10% outliers

M S JD M S JD
Hard 0.000 0.001 1.000 0.000 0.002 1.000
Hardoracle 0.000 0.001 1.000 0.000 0.000 1.000
SCAD 0.005 0.014 0.995 0.001 0.003 0.994
SCADoracle 0.000 0.031 1.000 0.000 0.002 1.000
Soft 0.066 0.017 0.920 0.840 0.005 0.000
Softoracle 0.000 0.033 1.000 0.179 0.024 0.375
TLE0.05 0.000 0.007 1.000 0.749 0.050 0.000
TLE0.10 0.000 0.003 1.000 0.000 0.007 1.000
MEM-bisquare 0.000 0.005 1.000 0.639 0.061 0.145
Mixregt 0.000 0.078 1.000 0.313 0.096 0.555
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Table 3.2: MeSE (MSE) of Point Estimates for Equal Variance Case with Large |γ|
5% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.002 0.001 0.058 0.042 0.020 0.005
Hardoracle 0.002 0.001 0.050 0.024 0.024 0.004
SCAD 0.003 0.001 0.053 0.042 0.018 0.005
SCADoracle 0.002 0.001 0.049 0.041 0.004 0.002
Soft 0.010 0.006 0.771 0.193 1.957 0.045
Softoracle 0.007 0.005 0.126 0.119 0.462 0.459
TLE0.05 0.002 0.001 0.047 0.037 0.002 0.001
TLE0.10 0.002 0.001 0.085 0.067 0.025 0.023
MEM-bisquare 0.002 0.001 0.050 0.041 0.007 0.004
Mixregt 0.003 0.002 0.090 0.080 0.123 0.121
MLE 0.470 0.680 17.20 20.33 2.912 2.920

10% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.002 0.001 0.059 0.047 0.015 0.006
Hardoracle 0.001 0.001 0.071 0.044 0.002 0.002
SCAD 0.002 0.001 0.088 0.047 0.037 0.005
SCADoracle 0.001 0.001 0.012 0.045 0.002 0.002
Soft 0.293 0.409 17.85 19.64 3.308 3.026
Softoracle 0.065 0.017 11.96 6.176 2.195 2.518
TLE0.05 0.274 0.046 50.94 49.08 0.298 0.275
TLE0.10 0.002 0.001 0.057 0.046 0.002 0.001
MEM-bisquare 0.279 0.043 39.81 45.74 0.143 0.120
Mixregt 0.212 0.005 18.05 0.174 0.058 0.056
MLE 0.075 0.014 11.55 10.09 4.462 4.459
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Table 3.3: Outlier Identification Results for Equal Variance Case with Small |γ|
5% outliers 10% outliers

M S JD M S JD
Hard 0.002 0.001 0.965 0.038 0.001 0.615
Hardoracle 0.000 0.060 1.000 0.005 0.001 0.790
SCAD 0.001 0.001 0.950 0.957 0.001 0.000
SCADoracle 0.001 0.054 0.985 0.119 0.059 0.575
Soft 0.906 0.000 0.000 0.959 0.001 0.000
Softoracle 0.002 0.054 0.955 0.263 0.031 0.000
TLE0.05 0.002 0.008 0.965 0.490 0.015 0.000
TLE0.10 0.000 0.026 0.995 0.002 0.007 0.945
MEM-bisquare 0.038 0.008 0.865 0.471 0.019 0.200
Mixregt 0.000 0.074 0.990 0.007 0.050 0.930
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Table 3.4: MeSE (MSE) of Point Estimates for Equal Variance Case with Small |γ|
5% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.002 0.001 0.067 0.048 0.013 0.006
Hardoracle 0.002 0.001 0.057 0.048 0.005 0.002
SCAD 0.003 0.001 0.116 0.087 0.016 0.008
SCADoracle 0.002 0.001 0.080 0.068 0.006 0.003
Soft 0.003 0.001 1.056 1.031 0.281 0.259
Softoracle 0.002 0.001 0.306 0.286 0.058 0.054
TLE0.05 0.002 0.001 0.060 0.054 0.002 0.001
TLE0.10 0.002 0.001 0.093 0.086 0.027 0.026
MEM-bisquare 0.003 0.001 1.237 0.058 0.009 0.004
Mixregt 0.002 0.001 0.102 0.089 0.120 0.121
MLE 0.003 0.001 1.091 1.078 0.315 0.308

10% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.002 0.001 0.134 0.046 0.015 0.006
Hardoracle 0.001 0.001 0.057 0.049 0.008 0.007
SCAD 0.002 0.001 2.310 2.273 0.563 0.565
SCADoracle 0.002 0.001 0.784 0.129 0.131 0.008
Soft 0.003 0.001 2.357 2.322 0.538 0.539
Softoracle 0.003 0.001 1.734 1.685 0.344 0.340
TLE0.05 0.015 0.003 7.472 0.937 0.142 0.141
TLE0.10 0.002 0.001 0.058 0.050 0.002 0.001
MEM-bisquare 0.029 0.004 7.397 1.314 0.134 0.103
Mixregt 0.005 0.001 0.247 0.111 0.074 0.074
MLE 0.003 0.001 2.386 2.347 0.576 0.567
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Table 3.5: Outlier Identification Results for Unequal Variance Case with Large |γ|
5% outliers 10% outliers

M S JD M S JD
Hard 0.000 0.001 1.000 0.000 0.001 1.000
Hardoracle 0.000 0.001 1.000 0.000 0.000 1.000
SCAD 0.002 0.004 0.995 0.003 0.005 0.990
SCADoracle 0.000 0.010 1.000 0.000 0.005 1.000
Soft 0.894 0.005 0.050 0.960 0.001 0.000
Softoracle 0.005 0.225 0.995 0.728 0.084 0.010
TLE0.05 0.004 0.008 0.915 0.656 0.018 0.000
TLE0.10 0.008 0.032 0.845 0.003 0.008 0.900
MEM-bisquare 0.062 0.006 0.915 0.722 0.012 0.010
Mixregt 0.000 0.078 1.000 0.461 0.097 0.200
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Table 3.6: MeSE (MSE) of Point Estimates for Unequal Variance Case with Large |γ|
5% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.003 0.001 0.104 0.091 0.036 0.028
Hardoracle 0.003 0.001 0.102 0.091 0.029 0.025
SCAD 0.004 0.001 0.129 0.096 0.114 0.025
SCADoracle 0.003 0.001 0.112 0.095 0.029 0.016
Soft 0.689 0.757 36.76 37.74 160.0 182.2
Softoracle 0.011 0.004 0.405 0.196 1.574 0.556
TLE0.05 0.077 0.002 9.160 0.096 0.502 0.023
TLE0.10 0.259 0.007 1.528 0.219 1.756 0.655
MEM-bisquare 0.087 0.004 9.835 0.115 0.637 0.102
Mixregt 0.008 0.003 0.421 0.182 0.683 0.655
MLE 0.761 0.763 43.20 41.84 186.2 186.5

10% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.003 0.001 0.122 0.100 0.060 0.052
Hardoracle 0.003 0.001 0.122 0.100 0.056 0.044
SCAD 0.006 0.002 0.319 0.115 1.837 0.044
SCADoracle 0.003 0.002 0.205 0.108 0.094 0.046
Soft 0.587 0.590 39.49 38.87 193.5 194.2
Softoracle 0.570 0.589 46.68 45.69 110.7 112.9
TLE0.05 0.654 0.679 98.20 90.68 1.960 1.970
TLE0.10 0.063 0.002 10.37 0.125 0.403 0.018
MEM-bisquare 0.622 0.652 94.93 86.53 2.397 2.291
Mixregt 0.516 0.638 70.46 81.49 0.968 0.998
MLE 0.593 0.593 40.89 38.98 188.1 195.2

74



Table 3.7: Outlier Identification Results for Unequal Variance Case with Small |γ|
5% outliers 10% outliers

M S JD M S JD
Hard 0.003 0.001 0.955 0.649 0.000 0.125
Hardoracle 0.001 0.001 0.995 0.051 0.006 0.725
SCAD 0.828 0.001 0.055 0.951 0.001 0.000
SCADoracle 0.001 0.070 0.980 0.300 0.061 0.215
Soft 0.889 0.001 0.000 0.952 0.001 0.000
Softoracle 0.000 0.233 1.000 0.423 0.050 0.000
TLE0.05 0.004 0.008 0.945 0.672 0.017 0.000
TLE0.10 0.001 0.029 0.980 0.005 0.008 0.885
MEM-bisquare 0.234 0.007 0.590 0.734 0.008 0.000
Mixregt 0.001 0.085 0.990 0.092 0.060 0.820
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Table 3.8: MeSE (MSE) of Point Estimates for Unequal Variance Case with Small |γ|
5% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.003 0.001 0.146 0.104 0.038 0.020
Hardoracle 0.003 0.001 0.125 0.112 0.022 0.011
SCAD 0.114 0.032 5.877 3.617 1.797 1.726
SCADoracle 0.003 0.001 0.167 0.136 0.022 0.013
Soft 0.123 0.037 6.296 3.819 1.954 1.814
Softoracle 0.003 0.002 0.451 0.425 0.023 0.015
TLE0.05 0.004 0.002 0.129 0.111 0.031 0.020
TLE0.10 0.017 0.003 0.863 0.145 0.237 0.176
MEM-bisquare 0.183 0.005 9.725 0.193 0.443 0.123
Mixregt 0.007 0.003 0.210 0.178 0.700 0.711
MLE 0.443 0.583 16.67 18.66 5.714 2.926

10% outliers
π β σ

MSE MeSE MSE MeSE MSE MeSE
Hard 0.086 0.019 7.360 6.213 1.743 1.764
Hardoracle 0.005 0.003 0.300 0.112 0.265 0.043
SCAD 0.150 0.077 10.98 8.265 3.037 3.005
SCADoracle 0.007 0.002 3.412 4.103 1.090 1.208
Soft 0.150 0.077 10.97 8.264 3.043 3.011
Softoracle 0.062 0.025 7.040 6.000 1.891 1.767
TLE0.05 0.437 0.487 25.00 23.95 1.555 1.552
TLE0.10 0.004 0.002 0.145 0.111 0.034 0.027
MEM-bisquare 0.429 0.477 22.85 22.22 2.362 2.290
Mixregt 0.074 0.004 4.298 0.303 0.513 0.444
MLE 0.310 0.361 16.44 17.62 3.480 3.613
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Figure 3.1: The scatter plot of the tone perception data and the fitted mixture regression
lines with added ten identical outliers (1.5, 5) (denoted by stars at the upper left corner). The
predictor is actual tone ratio and the response is the perceived tone ratio by a trained musi-
cian. The solid lines represent the fit by the proposed Hard and the dashed lines represent
the fit by the traditional MLE.
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