HOSTING THE NADEX ENVIRONMENT
ON THE UNIX OPERATING SY¥STEM

by

DENIS EVERETT EATON

B.S., Kansas Wesleyan, 1979

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

7). jw&

Maj r Drotesso;

TABLE OF CONTENTS

ILLUSTRATIONS. « ¢ ¢ ¢ o s s s s o s s s s s s »

ACKNOWLEDGEMENTS L] L - L - . [] - L - . L L] - L] L]

CHAPTER

e THtrodUCEion « « = = o % « = « = » & # *

2. Software Configurations. . « « « o« o ¢ « &

3. Hosting the NADEX Environment On
Top of the UNIX Operating System

4, Bringing Up NADEX Software Configurations
On Top of the UNIX Operating System. . . .

5' Future Work. L] - . L] L] - - L L] L] - - - - L]

BEPERENCES & w = 5 % % & © & 9 & & % & & & 5 & &

ii

iii

iv

w

18

28
30

31

8.
9.

ILLUSTRATIONS

Example of a Pipeline Software Configuration.

NADEX StIUCture L] * - L] - B L] . - L . . - L] .

NADEX Native Prefix « o« o « o o o o o o ¢ o «
The PCD Workbench « « « ¢ 2 « « o ¢ o o o o &
MIRACLE Command Processor Configuration . . .
NADEX Structure with UNIX COre. « « « « o o o
UNIX Version of the MIRACLE

Command Processor Configuration . « « « « « &
Mapping of Port Connections onto Pipes. . . .

The Data Type of the Parameter of a Node. . .

iii

17
49

21
22
24

ACEKENOWLEDGEMENTS

This research was supported in part by the Army
_Institute for Research in Management, Information, and
Computer Systems under grant number DAAG 29-78-G-0200 from
the Army Research Office.

Special thanks go to Dr, Virgil Wallentine, Quincy,

and the 0S Group for their contributions to this work.

iv

CHAPTER ONE

Introduction

Command language facilities £for the construction and
execution of software configurations (networks of
communicating processes) are very limited today because
current operating systems do not support this level of
complexity. The Network ADaptable EXecutive (NADEX)
[10,11,12] was designed to support dynamic configurations
(those configurations which are constructed at command
interpretation time) of cooperating processes., These
dynamic configurations include arbitrary graphs which may
contain cycles. NADEX runs on top of the NADEX core
operating system. The objective of this work is to adapt
the NADEX environmment so it will run with the UNIX* [5,6]
operating system as its' core operating system.

In chapter two software configurations are described
along with the capability of the UNIX and NADEX core
operating systems to handle them. Chapter three describes
the implementation of NADEX using the UNIX operating system

as its' core operating system. Chapter four contains a

* UNIX is a trademark of Bell Laboratories.

i

description of the procedure that brings up software
coﬁfigurations in the UNIX implemetation. Future work to be
done on the UNIX implementation of NADEX is given in chapter

five.

CHAPTER TWO

Software Configurations

2.1 Concept of Software Configurations

The idea of software configurations follows the idea of
modular programming. Each node (module) in the
configuration can be developed independently and all they
must Kknow about the other nodes is the interncde
communication protocol. They do this interprocess

communication over some standard communication mechanism.,

2.2 Software Configuration With the UNIX Operating System
The UNIX shell [1,5,6] supports limited software
coqfigurations called pipelines (Figure 1). A pipeline is
where processes are strung together with a process' standard
cutput connected to the next process!' standard‘input to form
a chain of processes. These processes do not know from
where their input comes or to where their output goes. It
could be a file, a physical device, or another process.
Processes running on top of UNIX can create software
configurations. This is done by the process getting pipes
from UNIX and by making _copies of itself with the FORK
system call. These different copies can communicate over

3

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ANIS

NOILVYNDI4NOY) JUYMLI0G ANITIdId ¥ 40 T1dWYX]

T 3dn9ly

EN]

44N0S

the pipes. Also any of these copies can bring up another

process in its place and pass the pipes to it.

2.3.1 NADEX

NADEX is a software environment whose objective is to
support modular programming., The concept of "programming in
the small" which has been so successful in UNIX is extended
under NADEX to support general graphs of communicating
nodes. These general graphs are called sof tware
configurations and consist of nodes which communicate via
Data Transfer Streams (DTS's). These DTS's are full-duplex
in nature, and therefore, support bi~-directional
communication between any two nodes which they connect.
Nodes access DTSs via .ports. These ports are
distribution-independent and, therefore, permit nodes of a
configuration to be distributed across a computer network
without reprogramming.

Figure 2 shows the structure of NADEX. Level one is
the level that provides the NADEX environment to the user,
while levels two through four are the NADEX core operating
system,

NADEX is written in Concurrent PASCAL [2] with the idea
of it being easily moved to different machines. It is
designed to run on top of the host machine's operation
system or on the bare machine.

5

PORTABLE
CODE
(PROGRAMS)

PROGRAM
[NTERCONNECTION AND
RESQURCE MANAGEMENT

DATA FLOW
CONTROL @

5

=
MACHINE gszz‘
ARCHITECTURE T
= W
= =
9a
st

=

=

CONFIGURATION
(THITIATION, QU [ESCING,
TERMINATICON

WIMOPMNMOMAZ—

FIGURE 2
MADEX STrRuUCTURE

2.3.2 Properties of NADEX Software Configurations

A configuration consists of a «collection of nodes
connected by DTS's. Nodes can be wuser programs (both
sequential and <concurrent 1languages such as SPASCAL and
CPASCAL), file access nodes (for accessing files within the
NADEX file system), I/0 device access nodes (for accessing
I/0 devices not supported by the NADEX file system), or
external configurations such as subsystems.

Nodes within the configuration are connected by DTS's
which are also called connections, Each connection consists
of two bi-directional components--data and parameter. The
data component transfers data in page-sized blocks (a page
is 512 bytes) and interfaces to the user program at the
page, logical record, or character 1level. The parameter
component transfers small parameter Dblocks typically used
for control information., The data and parameter components
are totally independent. The two directions of each
component are independent in the sense that each direction
has its own gueue, but the user protocol restrictions are
defined in terms of the bi-directional components,

For the purposes of these discussions, we will speak of
a node issuing reads and writes to a port which is local to
the node. The connection of these ports forms the DTS's,
Figure 3 contains the PREFIX which implements these
operations. These should be assumed to be read-page and
write-page requests for the data component, and read-parm

<

Figure 3

NADEX Native Prefix

Nhhkhhdrhkhkhhkdhhdhhdhhkhhhhhhdhhbhhhdhddhhhtdhddhddhdo kb hdiddd

* *
* NADEX NATIVE PREFIX *
* *

REKRKEI R AT AR AT TR AA I IR AT XA RA AT AR A Aok hhdhhdkhhhtrddhirnn

; CONST PAGE_SIZE = 512 "SIZE OF DATA PAGE"

; PARM_SIZE = 32 "SIZE OF PARAMETER BLOCKS"
; MAX_DTS = 40 "MAX GLOBAL DTS ID"

; MAX_PORT = 20 "MAX PORT ID"

; MAX_PARM = 10 "MAX PARM ID"

; SVC1_BLOCK_SIZE = 24 "SIZE OF SVC 1 PARM BLOCK"
; SVC7_BLOCK_SIZE = 28 "SIZE OF SVC 7 PARM BLOCK"
; SD = 700 "PREFIX STACK DEPTH"

CONST NL = '"(:10:)"
: CR= "(:13:)"
H
H

el

ETB = "{:23:)"'
EM = '(:25:)"?
BEL = "(:07:)"

TYPE PAGE = ARRAY [1 .. PAGE_SIZE] OF BYTE

PARAMETER = ARRAY [1 .. PARM_SIZE] OF BYTE
UNIV_SVC1_BLOCK = ARRAY [1 ,. SVCI_BLOCK_SIZE] OF BYTE
UNIV_SVC7_BLOCK = ARRAY [1 .. SVC7_BLOCK_SIZE] OF BYTE

~

e s w»

YPE DTS_INDX = 1 ., MAX_DTS
DTS_INDX0 = 0 .. MAX_DTS
PCRT_INDX = 1 .. MAX_PORT
PORT_INDX0 = 0 .. MAX_PORT
PARM_INDX = 1 .. MAX_PARM
PARM_INDX0 = 0 ., MAX_PARM

-e

8 we ne wa W

TYPE DTS_SET = SET OF DTS_INDX

TYPE BUF_TYPES = (PARM_BUF , DATA_BUF , NIL_BUF)
"BUFFER TYPES"

-~a

TYPE PREFIX TYPES = (NATIVE_PREFIX "OQO"
 PASDRIVR_PREFIX "1")

-

-

TYPE REQ_CODES
= { REQ_OK "0" , REQ NODE_ABORT "1" , REQ DTS_ABORT "2"

-e

-

1]

=

~e

~e

+ REQ_DEFER "3" , REQ_UNRES_DTS "4"
r REQ_PROT_ERROR "5" , REQ _BAD_PORT "6"
"PREFIX DTS OPERATION RETURN CODES"

PROCEDURE READ_CHAR (PORT :
PROCEDURE WRITE_CHAR (PORT :

PROCEDURE READ_DATA

(PORT : PORT_INDX
VAR DATA : UNIV PAGE
VAR LENGTH : INTEGER
VAR RESULT : REQ_CODES

S e wE W

PROCEDURE WRITE_DATA
(PORT : PORT_INDX
; DATA : UNIV PAGE
;+ LENGTH : INTEGER
+ CONDITIONAL : BOOLEAN
; VAR RESULT : REQ_CODES
)

PROCEDURE READ_PARM

(PORT : PORT_INDX
VAR PARM : UNIV PARAMETER
VAR RESULT : REQ_CODES

— g Ny

PROCEDURE WRITE_PARM
(PORT : PORT_INDX

PARM : UNIV PARAMETER
CONDITIONAL : BOOLEAN
VAR RESULT : REQ _CODES

S’ wp ™a ey

PROCEDURE MAP_PORT
{ PORT : PORT_INDX

; BUF_TYPE : BUF_TYPES
; VAR RDTS : DTS_INDXO0
; VAR WDTS : DTS_INDXO
)

PROCEDURE AWAIT_EVENTS

(VAR READ_WAITS , WRITE_WAITS
VAR READ_READY , WRITE_READY

VAR RESULT : REQ_CCDES

T’ el mE

PORT_INDX ; VAR

PORT_INDX ; C

DTS_SET
DTS_SET

~e

-

-

-e

-y

-

~a

-

-

-a

~e

PROCEDURE DISCONNECT
(PORT : PORT_INDX
VAR RESULT : REQ_CODES
)

PROCEDURE FETCH_USER_ATTRIBUTES

PROCEDURE SUBMIT_CONFIG

PROCEDURE SVC1l (VAR PARM : UNIV UNIV_SVC1_BLOCK)

PROCEDURE SVC7 (VAR PARM : UNIV UNIV_SVC7_BLOCK)

PROCEDURE FETCH_PARM

(PARM_ID : PARM_INDX
VAR PARM : UNIV PARAMETER
VAR OK : BOCLEAN

g TR T

PROCEDURE LOAD_QOVERLAY
(PORT_ID : PORT_INDX
; VAR OK : BOOLEAN
)

PROCEDURE INVOKE_OVERLAY

(VAR ARG : INTEGER
PREFIX_TYPE : PREFIX_TYPES
VAR RESULT , LINENO : INTEGER

i T IR 1

PROCEDURE CANCEL_NODE
PROCEDURE CANCEL_CONFIG

PROCEDURE BREAKPNT (LN : INTEGER)

10

and write-parm requests for the parameter component. The
blocking of character and logical record data into pages is
handled by the prefix of the nodes and will not be discussed
here. Unless otherwise specified all discussions apply
equally to data and parameters, and no distinction will be
made,

There are no structural restrictions on the graph
formed by the nodes and connections (DTS's). In particular,
it need not be linear (like SOLO [2] and OUNIX) or
hierarchical. It need not even be acyclic as in AMPS [4] or
connected. Nodes are not precluded from having connections
to themselves. Thus, the configuration is described by a
{labeled) undirected graph. The labeling occurs where each
connection enters the two (not necessarily distinct) nodes
it connects.

The user programs (as well as the various system
routines which implement the other nodes) address the
connections emanating from each node by DTS ids local to the
node. These local DTS 1ids are also called port numbers.
The meaning of the data stream associated with each port is
defined by the program. Port numbers are generally assigned
by the programmer starting with one (since the system will
place a configuration-dependent upper limit on the port
numbers for economy in table storage). These port numbers
are the labels on the configuration graph.

The structure of a configuration is defined by a

1l

language which builds a fiie called a Partial Configuration
Descriptor (PCD) [7,8]. Figure 4 shows the programs that
handle PCD and their relationships. The PCD defines the
structure of the configuration and the type (user program,
file access, etc,) of each node. PCD can be built
hierarchically in that a PCD can be included as part of
another PCD in a hierarchical way. When the user requests
that a configuration be run (either through a terminal
command or a command in a batch job), the PCD's are used
along with information from the command to construct a
Configuration Descriptor (CD). The CD includes all of the
information about the configuratioen including, for example,
the names of the files to be accessed by the file access
nodes. The CD contains enough information for the system to
allocate resources and run the configuration.

Examples of configqguration description 1languages are
given in reference [3,8]. There are statements which define
each node and the function it is to perform as well as those
which define each connection. The node definitions may
completely specify the function, or some information (such
as filenames) may be left to be filled in from the command.
The connection definition may include buffer allocation
parameters (to be discussed 1later). The program which
converts the PCD into a CD is part of the command processor

configuration and runs as a separate configuration.

12

User

Idtefractive

CD Commands
Construction for
Program Shell

Graphic
Display
Program fe

b

w Command Configuration
. Processaor Descriptor

of PCD

User
Profile

l Language (text

Resolved
PCO

Linker
Program

54
Lontiguracion
Descrintor

7

Submit to
NADEX for
Execution

Figure 4
THE PCO WORKBEMNCH
13

2.3.3 NADEX Subsystems

In addition to running isclated user configurations,
NADEX allows user configurations to communicate with special
configurations known as subsystems. As mentioned,
subsystems are themselves configurations, but also have an
interface to allow connection to nodes of user
configurations. Typical uses of subsystems would be a data
base management system, a file system, and an
interconfiguration communications system (for example a
network Interprocess Communication System).

A subsystem is unique in that it 1is not activated
directly by a user command or a user batch job. Instead, it
is activated whenever a <configuration is started which
requires the services of that subsystem. The 5ubsfstem then
continues to run until there are no more active users
(configurations). Then, depending on the subsystem, it may
be automatically terminated or it may remain active waiting
for additional users.

A subsystem serves multiple configurations concurrently
and has much of the responsibility for multiplexing itself
among its users. Furthermore, as user configurations are
initiated and terminated, they can dynamically connect to
and disconnect from the subsystem.

When a wuser describes a configuration, access to a
subsystem is shown as a single node with connections from
other nodes in the configquration. However, when the

14

configuration is implemented, the system will not create
such a node. Instead, the connections to the subsystem node
in the wuser description will be connections between user
nodes and the user interface of the subsystem.

The user nodes communicate with the subsystem just as
if it were another node. The normal DTS operations (read
and write parameter and data) are wused to implement a
protocecl defined by the particular subsystem. The user
nodes themselves are not aware that they are communicating
with a subsystem rather than with another node (which uses
the same protocol, of course),

From the subsystem's point of vwview, there is a set of
connections defined in ' the subsystem's configuration
description called the user interface connections. These
have one end which terminates within the subsystem (perhaps
on a one-to-many basis) and the other end is initially left
free. When user configuration is started, its connections
to the subsystem will be implemented over some of these user
interface connections.

The subsystem again uses the normal DTS operations to
communicate with the various users which it serves. Since
subsystems serve multiple users, they will typically be
users of the multiple-condition wait, which waits for
requests coming from the various users.

Note that neither the subsystem nor the user
configuration is aware (at this point) that the subsystem is

15

actually a subsystem. In fact, without changing any of the
programming discussed so far, the collection of nodes which
constitute a subsystem could be taken and placed in the user
configuration. The «connections from user nodes to the
subsystem would be the user interface connections, and the
two parts of the configuration would otherwise be
independent. This allows a user to use a private copy of
the subsystem within a user confiquration if necessary.
This is the recommended procedure for debugging subsystems.
Note that no changes in any of the programming is required

to move between these two modes.

2.3.4 MIRACLE Command Processor Configuration

The MIRACLE command processor configuration (Figure 5)
is a software configuration that runs on top of NADEX.
Using the MIRACLE command processor [3] a user can
interactively describe a software configuration. MIRACLE
builds a completely resolved PCD which 1is a complete
description of the configuration to be run. This PCD is
given to LINK [8] which makes a configuration descriptor
from it. This configuration descriptor is given by LINK to
the NADEX core operating system which brings up the

configuration and runs it (Figure 4).

16

X3AWN
40 N

s

NOILVINOI4ANO) ¥OSSII0dd ANVWWO) JTIWHIW

G 3unol

J10SNOD

ANTT

SS)

VYW

S

SSAN

5S4

17

CHAPTER THREE

Hosting the NADEX Environment
On Top of the UNIX Operating System

3.1 Introduction

In this chapter the interface number one between levels
one and two in figure 2 is described. This new interface
allows levels two through four, which is the NAﬁEX Core
Operating System, to be replaced by the UNIX Operating

System (Figure 6).

3.2 MIRACLE Command Processor Configuration

In implementing the MIRACLE command processor
configuration under UNIX it was desirable that as little
modifications as possible be made to the software and that
the implementation be consistent with the rest of the NADEX
network. The procedures of MIRACLE, LINK, and UFSS [9] did
not have to be changed. Although new versions of the
subsystems had to be made available to run with UNIX. Since
the network resource controller (NRC) subsystem of NADEX is
not available with the UNIX implementation to have

configurations brought up, a procedure UNIXSC (UNIX Software

18

PORTABLE
CODE

OPERATING
SYSTEM

>

MACHINE
ARCHITECTURE

FlGURE §

NADEX StrucTure
wiTH UNIX Core

19

(proGraMs) @

NETWORK
MESSAGE
SUBSYSTEM

MOX NN~ Z

Configurations) was writen to bring up the Software
Configurations. UNIXSC is connected to LINK in the NRC's

place (Figure 7).

3.3 Mapping NADEX Ports Onto UNIX Pipes

Under NADEX nodes communicate over ports, The ports of
two nodes are connected by means of NADEX Connections (CONN)
(figure 8-a). These connections consist of two Data
Transfer Streams (DTS}, one for each direction
(figure 8-b). Each of these data transfer stream can handle
two types of separate transmissions, one called data buffers
(up to 512 bytes) and the other called parameter buffers (32
bytes). The DTS keeps these two types of buffers separate
(figure B-¢c}). Thus each connection <can be considered as
four separate transmission streams, two in each direction.
The mapping of these connections onto pipes is simply having
one pipe for each of these four separate transission streams
(figure 8-c). If either data buffers or parameter buffers
are not used then the pair of pipes for the one not used are
not needed.

On data buffers the length of the buffer is put on the
pipe before the buffer is. This is so that when the buffer
is taken off of the pipe the buffer length is known which

allows the right number of bytes can be taken off the pipe.

20

NOTLVHN9I4NO?) ¥OSSII0H] ANVWWO)
J1OVYIW FHL 40 NOISH3A XINN

J10SNOJ

S3dn

/ 391
XINN
0l 370SN0J 310SN0J
ST1V)
N
|
_
uv—‘s
WX E—— N1 E——— TN
/N
\/

354

21

Node 1's Port #1 /Node 2's Port #1

' CONN #1 1
Node 1 ? f// 1 Node 2

e e

Figure 8-A

CONN #1
L e
g >
Node 1 1 43(] 1 Node 2
Fam
Xt
“NNyrs 42
Figure 8-B
CONN #1 DTS #1 for Data —— Pipe #3
DTS #1\>\ /J/DTS #1 for Parm — Pipe #1
Node 1 1 i) A 1 Node 2
.é ~
NV R
A \A\
DTS #2 for Parm — Pipe #2
DTS #2 DTS #2 for Data — Pipe #4
Figure 8-C
FiGure §

MAPPING OF PoRT
CONNECTIONS ONTO PIPES

22

3.4 NADEX Prefix for the UNIX implemetation

The UNIX implementation of NADEX must have its own
prefix which is similar té the NADEX WNative Prefix
(Figure 2). When a node 1is brought up it is passed a
parameter which contains the node's parameters, the node's
attributes, and the table for mapping ports onto pipes
(Figure 9).

The readland write <calls appear the same to the user
except not all of the REQ,CODES can be implemented. The
read and write calls use the port to pipe wmapping described
in section 3.2. If the CONN_NUM in the node's port to pipe
mapping table is not zero then this port is connected to the
file subsystem and the port to pipe mapping is done in the
way described in section 3.4.3. DISCONNECT just removes all
the pipe ids in the NODE_PIPE_TABLE for this port so that
this node c¢an not wuse it again. FETCH_USER_ATTRIBUTES
returns the nodes attributes which were pasted to it in its
parameter., The CANCEL_NODE and the BREAKPTN calls causes

the node to terminate. The rest of the prefix calls are not

implemented.

3.5.1 Subsystems

The subsystems in the NADEX implementation are
dynamically connected to the configurations as they are
activated. When the configuration is finished.it goes down

23

r

-

-

TYPE UNIX_PIPE_TABLE_ENTRY

RECORD

PIPE_PARM_READ

r PIPE_PARM_WRITE

y PIPE_DATA_READ

¢ PIPE_DATA WRITE

: INTEGER

CONN_NUM : CD_CONN_INDXO0 (* IS ZERO UNLESS ONE END
OF THE CONN IS TO THE

: FSS *)
; PORT_PARM : PARAMETER
END
TYPE NODE_ATTRIBUTES
RECORD
USER_ID : CHARS
; NODE_ID : PL_NODE_INDX
; TERM_ID : INTEGER
END

TYPE NODE_PARM_TYPE

=

RECCRD

PIPES : ARRAY [CD_PORT_INDX]
OF UNIX_PIPE_TABLE_ENTRY
; ATTRIBUTES : NCDE_ATTRIBUTES

; PARAMETERS : ARRAY [NODE_PARM_INDX] OF CHAR
END

Figure 8

Data Type of the Parameter to a Node.

24

but the subsystem stays up and is dynamically connected to
whatever comes up next. In the UNIX implementation using
pipes there is no dynamic connect, because the pipes must be
known ahead of time by the users of it, Thus subsystems
must be implemented differently. This is done by having the
subsystems brought up with each of the configuration that

uses them.

3.5.2 Congole Subsystem

The Console SubSystem (CSS) [9] is not needed in the
UNIX implementation because UNIX does the multiplexing of
the conscle itself. So each connection that was connected
to the console subsystem is directly connected to the

console node,

3.5.3 Eile Subsystenms

The command processor configuration as well as most
other configurations need the File SubSystem (FSS). The
file subsystem is system dependent because it makes calls to
the host operating system for file operations., To make
software easily transportable to the UNIX implemetation the
protocol to the file subsystem was not changed.

There are three ways to implement the file subsystenm.

(1) They can be accessed directly by the program with
25

the normal UNIX system calls.,

{2) They can be accessed as they are in NADEX by
having a file subsystem that does the actual
access operations. All requests and responses to
the subsystems are done over ports in the usual
way.

(3) They can be done as in (2) as far as the node
knows. But instead of having a separate file
subsystem to do the accesses, the operations sent
over the ports are interpreted by the prefix and
the prefix does the accesses by doing system
calls to UNIX. Thus the subsystem is included in
the prefix.

In this adaptation the file subsystem is done in the way
described in (2) above.

The file subsystem only has one incoming pipe and all
nodes that are connected to the file subsystem do their
sending over this one pipe. For each node connected to the
file subsystem over a port there are two pipes for the £file
subsystem to write to and the other node to read from. The
mapping of the port onto these two pipes is the same as
normal port to pipe mappings. The mapping of the one
incoming pipe to the file subsystem looks the same as any
other port to the wuser node, but the prefix treats it
differently. The prefix uses the one pipe to the file
subsystem for both parameter buffers and data buffers. In
front of the buffer on the pipe the prefix puts two things:
the connection number for this port connection (provided by
UNIXSC) and the type of the buffer being sent. The file
subsystem knows who sent the buffer by the connection

number. This allows it to also tell which set of pipes to

26

use to respond over if a responce is required. Thé buffer
type tells the file subsystem how many bytes to take off the
pipe for this buffer.

Since the protocol between the file subsystem and the
rest of the configuration has not been changed the rest of
the configuration will still think it is dealing with the
NADEX file system. The file subsystem must emulate the
NADEX file system on the UNIX file system. This design
choice was made for the portability of software and because
the NADEX file system is the NADEX network file system.
Since the NADEX file system is the network file system, UNIX
will also need to emulate it so that when it is added to the

NADEX network it is consistent with the NADEX network.

27

CHAPTER FOUR

Bringing Up NADEX Software Configurations
On Top of the UNIX Operating System

A configuration is activated by UNIXSC when it gets a
configuration descriptor from LINK. If it is a SPIN_OFF
then UNIXSC makes a copy of itself with the UNIX system call
FORK and this copy brings up the configuration. If it is
not a SPIN_OFF then UNIXSC brings up the configuration
itself.

Pirst UNIXSC builds a PIPE_TABLE with one entry for
each entry inlthe configuration descriptor's CD_PORT_TABLE,
It does this one connection at a time. It checks to see if
PARM's are used by looking at the minimum number of PARM_BUF
for this connection. If PARM_BUF is more than zero then two
pipes are gotten, one for each direction, by using the UNIX
system call PIPE, The pipe ids are put in the two
PIPE_TABLE entries for this connection. Each pipe is put in
one table as read and the other as write . If no PARM_BUF's
are used for this connection then no pipes are gotten for
PARM's. Then the same thing is done for DATA_BUF's for this
connection. This is repeated for all the connections in the
configuration,

Next UNIXSC forks once for each node in the

28

configuration with NODE_NUM set for the entry 1in
CD_NODE_TABLE that it wants that forked copy to bring up.
Then the parent copy of UNIXSC waits for all of its children
to terminate. Then if the configuration was a SPIN_OFF the
parent copy of UNIXSC also terminates. If it was not a
SPIN_OFF then it Dbrings back up the command processor
configuration.

Each copy of UNIXSC that is to bring up a node in a
configuration sets up a parameter 1list for that node and
then does an EXEC system call to run that node., The
parameter list consists of the parameters for the node that
are in the configuration descriptor, the nodes attributes,
and a NODE_PIPE_TABLE which is a table of the pipes for this
node., This table is wused by the prefix to map port
operations onto UNIX pipe operations.

To bring up the command processor configuration the
user starts UNIXSC and UNIXSC brings up the rest of the
configuration. It gets the pipes and sets up the PIPE_TABLE
for the configuration and does a FORK for each of the other
nodes in the configuration. Each of these forked copies
brings up their node by using EXEC.

When a configuration, other than a SPIN_OFF, is brought
up all the nodes in the command processor configuration
except UNIXSC terminate. So when all the nodes, in the
configuration that was brought up, terminate the command
processor configuration is brought back up by UNIXSC.

29

CHAPTER FIVE

Future Work

Future work on the UNIX implementation is to make it a
host in the NADEX network. Before this can be done the port
mechanism developed at RAND [13] needs to be installed.
This will allow nodes to be dynamically connected to
subsystems., The dynamic connect 1is needed to implement
NADEX's message subsystem, which is needed for interhost
communication, This is because there <can only be one
message subsystem (MSS) on a host and it must be available

to all configurations all the time,

30

l.

REFERENCES

Bourne, S.R. The UNIX shell. The Bell Svstem
Journal 57, 6, Part 2 (July-August 1978), 1971-1990.

Brinch Hansen, Per, Ihe Architecture of Concurrent
Programs. Prentice_Hall, Englewood Cliffs, N. J.,
1977.

Fundis, R.M. and Wallentine, V.E. Command processors
for dynamic control of software configurations,
Technical Report TR-80-03. Department of Computer
Science, Kansas §State University, Manhattan, Kansas
(1980) .

Morrison, J.R. Data Stream Linkage Mechanism. 1BM
Systems Journal 17,4, 1978,

Ritchie, D.M, UNIX time-sharing system: A

retrospective The Bell System Technical Journal 57, 6,
Part 2 (Jule-August -1978), 1947-1969,

Ritchie, D.M. and Thompson, K. ‘The UNIX time-sharing

system. IThe Bell Svstem Technical Journal 57, 6, Part
2 (July-August 1978), 1905-1930.

Rochat, K.L. and Wallentine V.E., A software structuring
tool for message-based systems. Technical Report
TR-80-04. Department of Computer Science, Kansas
State University, Manhattan, Kansas (1980).

Rochat, K.L. and Wallentine, V.E. NADEX Jjob control
system implementation. Technical Report TR-80-05,
Depar tment of Computer Science, Kansas State
University, Manhattan, Kansas (May 1980).

31

10,

11,

12.

13+

Rochat, K.L. and Wallentine, V.E, Utility programs for
NADEC command processors. Technical Report TR-80-06.
Department of Computer Science, Kansas State
University, Manhattan, Kansas (June 1980).

Wallentine, V.E., Young, R.A., and Rochat, K.L. NADEX
implementation notes. Department of Computer Science,
Kansas State University, Manhattan, Kansas.

Young, R. and Wallentine, V. The NADEX core operating
system services. Technical Report TR-79-11.
Department of Computer Science, Kansas State
University, Manhattan, Kansas (November 1979).

Young, R and Wallentine, V. The structure of the NADEX
operating system. Technical Report TR-79-12.
Department of Computer Science, Kansas State
University, Manhattan, Kansas (December 1979).

Zucker, S. Interprocess communication extensions for
the UNIX operating system: II. implementation.
Technical Report R-2064/2-AF. Rand Corp, Santa Monica
(June 1977).

32

HOSTING THE NADEX ENVIRONMENT
ON THE UNIX OPERATING SYSTEM

by

DENIS EVERETT EATON

B.S., Kansas Wesleyan, 1979

AN ABSTRA;T OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

ABSTRACT

Command language facilities for the construction and
execution of software configurations -networks of
communicating processes—- are very limited today because
current operating systems do not support this level of
complexity. The Network Adaptable Executive (NADEX) was
designed to support dynamic configurations -those
configurations which are constructed at command
interpretation time- of cooperating processes. These
dynamic configurations include arbitrary graphs which may
contain cycles, The NADEX environment runs on top of the
NADEX core operating system., The object of this work is ¢to
make the NADEX environment so it will run with the UNIX (a
trademark of Bell Laboratories) operating system as its core

operating system,

