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Abstract

In this thesis the measurement of production cross section of top-quark pairs in asso-

ciation with a photon in proton-proton collisions at a center of mass energy of 8 TeV is

presented. The data was recorded at the CMS experiment at the LHC in 2012. This mea-

surement aims to extend our knowledge of top quark properties and help to test consistency

of the Standard Model (SM) of particle physics. Data-driven methods are used to estimate
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Preface
Particle physics is a fascinating subject. It is a world of resonances, flavors, broken

symmetries, and forbidden decays that still happen. It is very easy to get lost in the jargon

if you are new to it. Here I will outline the basic principles and ideas, and show the

motivation and meaning of the work presented in this thesis.

Particle physics (also known as High Energy Physics or HEP) deals with objects small

enough that one needs Quantum Mechanics (QM) for the adequate description. But these

objects are often moving too fast for this classical theory to work. Description of fast (but

not small) moving objects is a job of Special Relativity, but it is known that these two very

good theories do not work well together. Moreover, when high energy particles interact,

sometimes different particles of new types are created, and this is not described by either

theory.

A theory that allows to describe behavior and transformations of small objects was

developed in the period from 1950s to 1970s. QM6,7 is the foundation for Quantum Field

Theory (QFT)8,9,10. However, it has a very different mathematical structure. QM deals with

quantum states represented as wave functions. Physical observables become operators acting

on the states (transforming functions into functions). Wave functions have a probabilistic

interpretation. QFT makes another big change in the way the world is viewed. A field

becomes the main building block, dynamical variable of the theory. Particles are understood

as quantum excitations of the field. That is, to have a particle one has to act with a creation

operator on the field. Interactions between different particles are described through adding

terms to the Lagrangian, which governs the dynamics of the fields. The quantity that can

be calculated in QFT is the amplitude of one state being transformed into other. Quantum

fields have no obvious connection with the observable world. So essentially QFT defines

a set of rules, that help to calculate (using perturbation theory) amplitude of a state to
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transform into another state given the fields and Lagrangian. This is useful numerical

output of the theory. The question is how do we know what fields are there and what kind

of Lagrangian do we use in certain situations? The most important concept – symmetry –

helps here. But essentially the process is based on a very educated guessing. This is where

input from experimental observations comes into play. The task is to build a model that

describes observed results and makes reliable non-trivial predictions. To do this we need

enough assorted data from experiments that would allow us to guess the Lagrangian and

the properties of the fields involved. When enough parameters were introduced the theory

may be in complete agreement with all observable data. Most importantly, even though

the number of parameters of theory may be much smaller than amount of input data,

the numerical results and predictions may be of extremely high accuracy. The Standard

Model (SM) is the most complete framework that includes electromagnetic, weak and strong

interactions between the fields that correspond to all known elementary particles. It works

remarkably well. For a long time it was ahead of the experimental reach predicting the top

quark and scalar boson (Higgs boson) that were necessary parts of its inner workings but

were not observed by experiments.

The top quark was discovered in 1995 at Tevatron11,12, and the Higgs boson in 2013 at

Large Hadron Collider13,14. It is believed that SM is not the final theory that would explain

all physical phenomena. Gravitational interaction could not be added to it. Cosmological

observations suggest that Dark Matter can not be explained by any existing SM particle.

Neutrinos are considered massless in the SM, however there is strong experimental evidence

that it is not the case15.

How one would improve the model that has demonstrated huge success and is built on

a long trusted mathematical foundation? Following the way it was settled, one has to find

either an entirely different model that will describe all the existing data (unlikely) or find a

way to introduce new fields and terms to the Lagrangian (need some crucial experimental

data). Both the top quark and Higgs boson seem to be natural ”suspects” to look for new
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properties at LHC, simply because they are the least studied parts of the SM. Top quarks

are produced at much higher rates than in Tevatron experiments because of higher collision

energy and higher collision rate. They are the heaviest elementary particles known today.

And since the Higgs boson is responsible for mass generation in the SM there may be some

interesting connection between the two. This thesis is based on the experimental study of

the top quark. The top quark decays very shortly after it is produced and this makes it a

challenging subject. Its mass was measured remarkably well16. Production cross section is

another very important quantity predicted by SM and measured experimentally17,18. This

study focuses on electromagnetic coupling of the top quark by measuring the production

cross section of top anti-top pair and a photon. The result is then compared with SM

prediction.

xiv



Chapter 1

Standard Model of Particle Physics

In this chapter the main structural elements of the Standard Model of particle physics will

be outlined. A complete description and technical details can be found in19.

Elementary particles can be divided into different categories based on their properties:

spin, mass, charge and other quantum numbers that determine their behavior. It is usually

convenient to start classification from spin. There are two groups of particles: with half

integer spin (fermions) and integer spin (bosons).

There are 12 particles with spin 1/2 that are grouped into three generations, similar to

chemical elements in the periodic table. Figure 1.1 shows all the particles of the SM in one

picture. Each generation consists of 2 quarks and 2 leptons. The differences between quarks

and leptons are the following. Quarks have color charge (which allows them to take part in

strong interaction) and electric charge (in units of absolute value of electron charge) +2/3

for up-type quarks and -1/3 for down-type quarks. Leptons have no color charge and integer

electric charge: 0 for neutrinos and 1 for charged leptons (electron, muon, tau-lepton for

the three generations). Masses of particles generally go up with number of generation. For

every particle there exists an antiparticle with same mass, spin and opposite electric and

color charge. All visible matter around us consist of quarks of the first generation (up and

down) and electrons. Protons and neutrons are formed by 3 quarks (uud and udd) and with
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Figure 1.1: Particles of the standard model, from1

electron they make atoms. Electron neutrino takes part in beta-decay. Particles with spin

1 are photon, Z, W+, W- and gluons (8 different kinds). Photons, Z bosons and gluons are

electrically neutral, W bosons have electric charge equal to charge of the electron. They

all do not have antiparticles in a usual sense, unlike quarks and leptons, rather they are

considered to be their own antiparticles. These particles are called mediators of interactions

because quarks and leptons in the Standard Model are interacting between themselves only

by exchange of bosons. Different kinds of interactions are described below.

The electromagnetic interaction happens between particles with non-zero electric charge

and it is mediated by the exchange of photon. The photon is massless and has no electric

charge.
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All fermions: quarks and leptons are subject to the weak interaction. It is mediated by

the exchange of electrically neutral Z bosons and charged W+ and W- bosons. Z and W

can also couple to themselves. Unlike the photon, Z and W are massive (mZ ≈ 91 GeV,

mW ≈ 80 GeV). This fact makes the weak interaction weak at low energies. It is less

probable to create (emit) a massive particle if the total energy of the system is less than

its mass. Another very peculiar property of weak interaction is the dependence on chirality

of the interacting particles. That is, particles that have their spin projection along their

momentum will interact differently then particles with spin projection opposite to their

momentum. The W boson couples only to left-chiral particles and right-chiral antiparticles.

The Z boson couples with different strength to right-chiral and left-chiral particles. This

property violates parity: the processes happening as they are and as if they were mirror

reflected would have different weak forces acting. Electromagnetic and weak interactions

are unified into electroweak interaction in the SM.

The strong interaction occurs between quarks – particles that carry color charge. There

are several aspects of strong interaction that make it different to electroweak interaction.

Gluons are massless, they carry color charge (unlike photons). This property makes it

possible for a gluon to emit another gluon. The coupling constant of the strong interaction

is much higher than the weak coupling constant at low energies. At short distances quarks

and gluons behave like free particles. As the distance between quarks increases, potential

energy increases until the creation of quark-antiquark pair becomes possible. This property

makes color charged states experimentally unobservable. Color neutral states can have a

quark-antiquark (color – anti-color) structure and are called mesons, or three-quarks (3

colors canceling when added together) and called baryons.

Mathematically the Standard Model is based on gauge quantum field theory10,9,8. The

main focus is on the symmetry of Lagrangian under continuous group of local transforma-

tions. From quantum mechanics we know that the Hamiltonian is the operator that defines

time evolution of the system and Dirac equation closely resembles the Schrodinger equation

3



of the free particle. However, it is more convenient to start with the minimum action prin-

ciple and consider Lagrangian as a primary point. The symmetry of the Lagrangian reflects

the structure of the interactions described by it.

One of the most non-trivial parts of the SM is the Higgs mechanism of electroweak

symmetry breaking20,21. It allows to assignment of masses to the W and Z bosons without

breaking the mathematical structure of the theory.

Despite the overall success of the Standard Model there are some indications that it is

not the final ”theory of everything”. There is no explanation of why three generations of

almost identical fermions exist with the masses being the only difference. One can expect

to have some mechanism responsible for this, similar to explanations of groups of chemical

elements or mesons and baryons. There is no suitable dark matter candidate in the SM

however it is known that dark matter is prevailing in the overall matter content of the

Universe22.

There are theories proposed to extend the SM and solve its problems, however they

have not had experimental confirmation so far. The most notable are Supersymmetry

(SUSY)23 and extra dimensions24. SUSY is a generalization of symmetries of quantum field

theory, models involving extra dimensions postulate existence of hidden dimensions of space

accessible by gravity but not by other forces.

The goal of this work is to make a cross section measurement of a rare SM process. A

deviation from the SM theoretical prediction could be an evidence of physics beyond the

Standard Model.
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Chapter 2

Top Quark

The top quark is the heaviest of known elementary particles and the most interesting one

in the context of searching for new particles beyond the standard model. Due to its high

mass it may play an important role in the electroweak symmetry breaking.

Theoretical motivation for the third generation of quarks was present since 197325. The

existence of the lightest quark of the third generation (bottom quark) was confirmed by

observing Upsilon resonance in 197726, which is interpreted as a bound state of the bottom

quark-antiquark pair. The existence of the second quark of the third generation (top quark)

took 20 years to be experimentally confirmed. Its mass was unknown (even today there is

no model explaining the wide range of all quark masses) and different experiments tried to

find it using existing particle accelerators. Only in 1995 Tevatron experiments CDF and

D011,12 observed direct production of top anti-top quark pairs. It is the only quark that

does not form bound states (none has been observed so far).

LHC is the only machine capable of producing top quarks right now. Because of its higher

center of mass energy compared to the Tevatron, top quarks are produced in abundance

and its properties has been studied in more details than before27.

Top quark production in proton-proton collisions and its decay modes will be briefly

described in the following two sections.

5



2.1 Production mechanism

Top quarks can be produced in pairs via the strong interaction. Production of a single top

quark is possible via Wtb vertex, but since it involves creation of a W boson and b quark,

the probability of this process is smaller than pair production.

Pair production in the leading order processes can happen in two different ways: quark-

antiquark annihilation and gluon-gluon fusion. The former was the dominant mode for

the Tevatron collider since protons were collided with antiprotons having both quarks and

antiquarks. At the LHC in proton-proton collisions there are no valence antiquarks, and

the gluon fusion mechanism is dominant. There are ways to produce top quark pair from

quark and gluon, but they include extra interactions and production of additional quarks

or gluons.

One of the most valuable parameters that can be theoretically calculated and measured

experimentally is inclusive top pair production cross section σtt̄, that is proportional to

probability of creation of a pair of top quarks by colliding two protons at given energy. In

proton-proton collision calculation is complicated by the fact that protons are composite

objects. The problem is solved by parametrization of probability of given parton (indi-

visible component of a proton) to carry certain fraction of proton’s momentum. These

probability distributions are called Parton Distribution Functions (PDF). They carry im-

portant information about the structure of a proton, and were deduced mainly by analyzing

proton-electron and proton-positron collisions.

2.2 Decay modes

Top quark decays by weak interaction almost exclusively into W boson and bottom quark.

Different top pair final states are characterized by the decay of two W bosons. Each W

boson can decay into lepton and neutrino (leptonic decay) or into quarks (hadronic decay).

There are three possible leptonic final states and two different hadronic final states possible

6



(if we neglect flavor mixing). However since quarks have color there are more options for

the unique final states in hadronic W decay. According to28 the W boson decays to quarks

(hadrons) with probability 0.676. This can help get a feeling of different top pair decay

modes:

• All hadronic (both W decay into quarks) is 0.676 · 0.676 = 0.457, a little less than half

of the time

• Semileptonic (one W decays into quarks, another into leptons) 2 · 0.676 · (1− 0.676) =

0.438, this includes all lepton generations, but we are primarily focused on one of them

(electron and electron neutrino)

• Dileptonic (both W decay into leptons) (1− 0.676) · (1− 0.676) = 0.105, this includes

all permutations of 3 lepton generations

Decay modes of a pair of top quarks can be graphically represented by Figure 2.1.
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Figure 2.1: Top pair decay channels, from2
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2.3 Top pair and photon

Our long term goal is to study electromagnetic interactions of the top quark. It is equivalent

to finding a coupling constant of the vertex with top quark radiating photon (top quark

charge) and an anomalous magnetic moment. It is experimentally challenging to select

events with hard photons radiated directly by a top quark, as it quickly decays into a W

boson and a b quark subsequently producing several jets and leptons. There are methods

to separate decay products of each top quark from other objects in the event, an example

is the kinematic fitter29. The idea of this method is to use a hypothesis of the event

topology (top quark pair decay) and by using kinematic constraints (W invariant mass, top

quark mass) detector resolution can be improved by varying the reconstructed particle’s

momenta to better match the known masses. However, presence of a hard photon that

may be radiated by initial state particles, top quarks or final state particles, makes the full

kinematic reconstruction much more difficult. In this analysis we focus on events containing

a pair of top quarks and a photon. With this selection we indirectly assess electromagnetic

interaction of top quark by performing inclusive tt̄+ γ cross section measurement30,31,32,33.

Top quark pair associated with photon production has some additional peculiarities30,34.

The photon can be emitted by one of the initial state particles (radiative tt̄ production) or

top quark and its decay products (radiative tt̄ decay). This analysis does not have sensitivity

to disentangle these production modes.

In this work we concentrate on the semileptonic top pair decay with an electron in the

final state, however, other decay modes can also pass the event selection. The choice of an

electron over a muon creates some complications, but resolves other. The main factors are:

lepton identification and reconstruction efficiency (which is reasonably higher for muons)

and photon purity and misidentification rate. A good description of the latter is one of

the most challenging parts of this analysis. By choosing the photon+electron+jets final

state one can use a data-driven method to estimate the number of elections misidentified as

photons, more details are given in Chapter6.5.
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Chapter 3

Experimental Setup

3.1 Large Hadron Collider

The Large Hadron Collider (LHC) is an accelerator located at the European Center for

Nuclear Research (CERN) near Geneva, Switzerland. It is designed and built to collide

proton beams head on to discover new fundamental particles. The first proton proton

collisions happened in 2008. The general layout of CERN accelerator complex is shown on

the Figure 3.1 It has a sequential structure. In the first step the hydrogen ions (protons) are

injected in the linear accelerator (LINAC), then the beam goes through several synchrotron

rings until it reaches the LHC – the biggest and most powerful accelerator currently built.

There are several experimental setups located around the LHC ring. Two of them

are made for particular subsets of physics measurements: ALICE (A Large Ion Collider

Experiment)35 and LHCb (Large Hadron Collider beauty experiment)36. Two more are

called general purpose experiments – to cover a variety of topics: ATLAS (A Toroidal LHC

ApparatuS)37 and CMS (Compact Muon Solenoid)38.

The data used in this study was collected in 2012 when the accelerator operated at the

energy of 4TeV per beam, making energy in the center of mass to be 8TeV.

From the point of view of experiment a single most important quantity describing the

9



Figure 3.1: CERN accelerator complex, from3

accelerator performance (other then collision energy) is instantaneous luminosity L. It is

proportional to the number of collisions happening in the interaction point per unit of time.

It depends on the number of circulating bunches, the number of protons per bunch and

the way two beams are focused. There are many other important quantities related to the

accelerator operation. Instantaneous luminosity is measured in cm−2s−1 (inverse area per

unit time). The total amount of data collected is called integrated luminosity (integral of

instantaneous luminosity over time) and is usually measured in inverse femtobarns (fb−1).
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3.2 Compact Muon Solenoid detector

The Compact Muon Solenoid (CMS) is one of the four major experimental setups to record

the results of the proton collisions at the LHC.

It is important to understand the design goals that determined the structure and prop-

erties of the CMS detector38. It was designed as a general purpose detector, that is, not for

detection of only a specific signature or type of events. Since LHC is more of a ”discovery

machine”, the prime goal of the detectors is to discover and not to miss new physics that

may be produced in proton-proton collisions. This may seem like a contradiction: the de-

tector should be designed to record a new kind of events, that have unknown properties by

definition. But there were several theoretically motivated types of events that, if existed,

should be recorded by all means. The Higgs boson, supersymmetric particles, new massive

vector bosons, extra dimensions, and of course Standard Model processes were the types of

events used to test the possible designs of the experiment.

The Standard model Higgs boson was used as a benchmark to test the performance of

the proposed designs. Its mass was constrained by direct searches at LEP and theoretically,

but was unknown at that time. Different mass ranges would result in different decay modes

and hence different background situations. Decays into hadrons would be nearly impossible

to separate from large multijet background, that is why the detection of isolated leptons and

photons was preferred. Among leptons, muon has very convenient properties: it is heavy

enough to loose very little energy while interacting with matter, but not as heavy as tau

lepton to decay quickly. Muons are relatively easy to detect and the CMS has a strong focus

on measuring them very well (hence ”Muon” in the name of the detector).

Decays of Higgs boson into a pair of photons, pair of Z bosons were among the most

interesting signatures. Good energy reconstruction is essential to infer the transverse mo-

mentum of escaping neutrino, which is important if W bosons are involved in the search.

Identification of b quarks by the displaced secondary vertex is important not only for Higgs

searches, but also for Standard Model measurements.
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Supersymmetry and extra dimension models would manifest themselves through high

energy quarks and leptons and heavy invisible particles escaping the detector. This implies

that good energy measurements are also necessary.

The Standard Model offers a vast amount of processes that can be calculated theoretically

and measured experimentally. One of them is the subject of this thesis.

Overall, the design requirements for the CMS detector are the following4:

• Good muon identification and momentum resolution

• Good charged particle momentum resolution and reconstruction efficiency, efficient

triggering and offline tagging of tau leptons and b-jets, requiring a pixel detector close

to the interaction point

• Good electromagnetic energy resolution, good diphoton and dielectron mass resolu-

tion, π0 rejection and efficient photon and lepton isolation at high luminosities

• Good missing transverse momentum and dijet mass resolution, requiring calorimeters

to be finely segmented

One of the most influential design decisions is the magnetic field configuration. In order

to precisely measure momentum of energetic charged particles large bending power is needed.

Magnetic field is needed inside the tracker to measure momenta of all charged particles and

outside – to measure momenta of muons. The choice was made to use one superconducting

solenoid to supply the magnetic field, unlike the ATLAS detector39 where a superconduct-

ing solenoid is located inside hadronic calorimeter, and system of coils produces toroidal

magnetic field outside exclusively for the muon system.

The layout of CMS detector is shown in Figure 3.2. The detector has cylindrical struc-

ture: it consists of central ”barrel” part and two ”endcaps”. All detectors in the barrel,

except for the muon chambers, are housed inside the superconducting solenoid. Muon de-

tectors are sandwiched between iron structures that serve as a return yoke for the solenoid

magnetic field.

12



8 Chapter 1. Introduction

superconducting technology for the magnets. The design configuration chosen by CMS [1]
is discussed below.

The overall layout of CMS is shown in Figure 1.2. At the heart of CMS sits a 13-m-long, 5.9 m
inner diameter, 4 T superconducting solenoid. In order to achieve good momentum resolu-
tion within a compact spectrometer without making stringent demands on muon-chamber
resolution and alignment, a high magnetic field was chosen. The return field is large enough
to saturate 1.5 m of iron, allowing 4 muon “stations” to be integrated to ensure robustness
and full geometric coverage. Each muon station consists of several layers of aluminium drift
tubes (DT) in the barrel region and cathode strip chambers (CSCs) in the endcap region,
complemented by resistive plate chambers (RPCs).

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic�
Calorimeter

Hadron
Calorimeter

Preshower

Muon�
Detectors

Superconducting Solenoid

Figure 1.2: An exploded view of the CMS detector.

The bore of the magnet coil is also large enough to accommodate the inner tracker and the
calorimetry inside. The tracking volume is given by a cylinder of length 5.8 m and diameter
2.6 m. In order to deal with high track multiplicities, CMS employs 10 layers of silicon mi-
crostrip detectors, which provide the required granularity and precision. In addition, 3 layers
of silicon pixel detectors are placed close to the interaction region to improve the measure-
ment of the impact parameter of charged-particle tracks, as well as the position of secondary
vertices. The EM calorimeter (ECAL) uses lead tungstate (PbWO4) crystals with coverage
in pseudorapidity up to |⌘| < 3.0. The scintillation light is detected by silicon avalanche
photodiodes (APDs) in the barrel region and vacuum phototriodes (VPTs) in the endcap re-
gion. A preshower system is installed in front of the endcap ECAL for ⇡0 rejection. The
ECAL is surrounded by a brass/scintillator sampling hadron calorimeter with coverage up
to |⌘| < 3.0. The scintillation light is converted by wavelength-shifting (WLS) fibres em-
bedded in the scintillator tiles and channeled to photodetectors via clear fibres. This light

Figure 3.2: Overview of CMS detector, from4

Inside the magnet there are several layers of detectors that perform different functions.

The innermost part closest to the interaction point (geometrical center of the detector)

is silicon pixel tracker which has 3 layers, see Figure 3.3. The silicon micro-strip tracker is

outside and has 10 layers of detectors, see Figure 3.4.

These detectors are measuring the positions of charged particles that go through them.

Charged particles create electron–hole pairs in sensitive semiconductor regions, electrical

signal is then amplified and recorded. Timing is a very important part of the data.

Tracking information is used to measure particle impact parameters and find secondary

vertices. The curvature of the tracks gives information about the momenta of charged

particles. This detector should be made as thin as possible as not to affect the particles

trajectories and avoid interactions like photon conversions. Tracking information is essential

13
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Figure 1.10: Layout of pixel detectors in the CMS tracker.

The spatial resolution is measured to be about 10 µm for the r-� measurement and about
20 µm for the z measurement. The detector is readout using approximately 16 000 readout
chips, which are bump-bonded to the detector modules.

1.5.5.3 Tracker control and readout scheme

The Silicon Strip Tracker (SST) readout system is based on a front-end APV25 readout chip
[21], analogue optical links [22] and an off-detector Front-End Driver (FED) processing board
[23]. The APV25 chip samples, amplifies, buffers and processes signals from 128 channels of
a silicon strip sensor. Each microstrip is readout by a charge sensitive amplifier with ⌧ =
50 ns. The output voltage is sampled at the beam crossing rate of 40 MHz. Samples are
stored in an analogue pipeline for up to the Level-1 latency of 3.2 µs. Following a trigger,
a weighted sum of 3 samples is formed in an analogue circuit. This confines the signal to a
single bunch crossing and gives the pulse height. The buffered pulse height data from pairs
of APV25 chips are multiplexed onto a single line and the analogue data are converted to
optical signals before being transmitted via optical fibres to the off-detector FED boards. The
output of the transmitting laser is modulated by the pulse height for each strip. The FEDs
digitize, process and format the pulse height data from up to 96 pairs of APV25 chips, before
forwarding zero-suppressed data to the DAQ online farm. The electronics noise/channel of
the tracking system is about 1000 to 1500 electrons before and after irradiation, respectively.
The SST control system comprises ⇡300 control rings that start and end at the off-detector
Front-End Controller (FEC) boards [24]. Slow-control commands, clock and Level-1 triggers
are distributed via digital optical links to Digital Opto-Hybrids (DOH) [25], which perform
optical-to-electrical conversion before the control signals are distributed to the front-end elec-
tronics.

The Pixel Tracker readout system is described in detail in [6]. A single pixel barrel module
is readout by 16 Read-Out Chips (ROCs). In the endcaps, the number of ROCs per module
varies from 2 to 10. Each ROC reads an array of 52⇥80 pixels. Analogue signals and corre-
sponding pixel addresses are stored in a data buffer, waiting for the Level-1 trigger decision.

Figure 3.3: Layout of pixel tracker, from4

and serves as a starting point for particle reconstruction.

Outside of the tracker is the electromagnetic calorimeter (ECAL), Figure 3.5. It uses

lead tungstate (PbWO4) crystals to absorb energy of electrons and photons by creating

electromagnetic showers. Energy is inferred by measuring scintillation light. The length

and density of the crystals allows electrons and photons to loose all energy. By using a

finely segmented structure, the position of the electromagnetic shower can be reconstructed

with a high precision.

The hadronic calorimeter (HCAL) surrounds the ECAL. It is brass/scintillator sampling

calorimeter that measures energy of hadrons that have passed through the ECAL by creating

hadronic showers and measuring the light produced in the scintillators by charged particles.

Unlike the ECAL, where the absorber and scintillator is the same medium, the HCAL

layers of brass serve as an absorber (where most of hard interactions take place) and the

scintillating plastic sandwiched in-between produces light when particles go through. The
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Figure 1. A quarter of the CMS silicon tracker in an rz view. Single-sided silicon strip module positions
are indicated as solid light (purple) lines, double-sided strip modules as open (blue) lines, and pixel modules
as solid dark (blue) lines. Also shown are the paths of the laser rays (R), the beam splitters (B), and the
alignment tubes (A) of the Laser Alignment System.

The CMS tracker consists of a silicon pixel detector and a silicon strip detector (figure 1). The
silicon pixel detector is composed of two sub-detectors, the barrel (BPIX) and the two endcaps in
the forward regions (FPIX). The pixel modules provide two-dimensional measurements of the hit
position in the module planes, which effectively translate into three-dimensional measurements in
space. The silicon strip detector is composed of four sub-detectors: the Tracker Inner and Outer
Barrels (TIB and TOB), the Tracker Inner Disks (TID), and the Tracker Endcaps (TEC). All sub-
detectors are concentrically arranged around the nominal beam axis. The two inner layers of both
the TIB and TOB, the two inner rings of the TID, and the first, second, and fifth rings of the TEC are
equipped with double-sided modules; all other positions have single-sided modules. Single-sided
modules provide rf measurements in the barrel and f measurements in the endcaps. Double-sided
modules are made of a pair of single-sided strip modules, one rf and one stereo module in the
barrel, and one f and one stereo module in the endcaps, precisely mounted back-to-back, with the
stereo module sensors tilted by 100 mrad. For simplicity, we refer to both rf and f modules as rf
in the rest of the paper.

In the barrel region, modules are arranged in linear structures parallel to the z-axis, such as
ladders in the BPIX, strings in the TIB, and rods in the TOB. The endcaps are composed of disks,
which in turn contain wedge-shaped structures covering a narrow f region, such as blades in the
FPIX and petals in the TEC. The BPIX and the TIB are composed of two half-barrel structures,
separated along the x = 0 plane for the BPIX and the z = 0 plane for the TIB.

A local right-handed coordinate system is defined for each module with the origin at the geo-
metric center of the active area of the module. As illustrated in figure 2, the u-axis is defined along
the more precisely measured coordinate of the module (typically along the azimuthal direction in
the global system), the v-axis orthogonal to the u-axis and in the module plane, pointing away from
the readout electronics, and the w-axis normal to the module plane. When double-sided modules
are considered as a single entity, the coordinate system is referenced to the rf module. For the
pixel system, u is always orthogonal to the magnetic field, that is in global rf direction in the BPIX

– 3 –

Figure 3.4: Schematic view of silicon tracker cross section together with laser calibration
system, from5

light is transferred by optical fibers to photodetectors. This method has lower spacial and

energy resolution, but there is no better alternative considering the space constraint and

possible energies of the incoming hadrons.

Outside of the magnet 4 layers of muon station are located, see Figure 3.6. Muons are

the only known charged particles that can not be slowed down by calorimeters. Muon sta-

tions are tracking detectors, although with much coarser granularity than the inner tracker.

Different types of detectors are used in different regions depending on the expected charged

particle flux. Drift tubes (DT) are used in the barrel region, resistive plate chambers (RPC)

are used in barrel and endcap regions, and cathode strip chambers (CSC) are used in the

endcap and forward regions.

The endcaps have ECAL, HCAL and muon system parts that extend the coverage closer

to the beam pipe.
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Chapter 4

Electromagnetic Calorimeter

4.1 Description of the ECAL
In this section, the layout, the crystals and the photodetectors of the Electromagnetic Calor-
imeter (ECAL) are described. The section ends with a description of the preshower detector
which sits in front of the endcap crystals. Two important changes have occurred to the ge-
ometry and configuration since the ECAL TDR [5]. In the endcap the basic mechanical unit,
the “supercrystal,” which was originally envisaged to hold 6⇥6 crystals, is now a 5⇥5 unit.
The lateral dimensions of the endcap crystals have been increased such that the supercrystal
remains little changed in size. This choice took advantage of the crystal producer’s abil-
ity to produce larger crystals, to reduce the channel count. Secondly, the option of a barrel
preshower detector, envisaged for high-luminosity running only, has been dropped. This
simplification allows more space to the tracker, but requires that the longitudinal vertices of
H ! �� events be found with the reconstructed charged particle tracks in the event.

4.1.1 The ECAL layout and geometry

The nominal geometry of the ECAL (the engineering specification) is simulated in detail in
the GEANT4/OSCAR model. There are 36 identical supermodules, 18 in each half barrel, each
covering 20� in �. The barrel is closed at each end by an endcap. In front of most of the
fiducial region of each endcap is a preshower device. Figure 4.1 shows a transverse section
through ECAL.

y

z

Preshower (ES)

Barrel ECAL (EB)

Endcap

 = 1.653

 = 1.479

 = 2.6
 = 3.0

ECAL (EE)

Figure 4.1: Transverse section through the ECAL, showing geometrical configuration.
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Figure 3.5: Cross section view of electromagnetic calorimeter, from4

3.3 Trigger System and Particle Identification

During normal operation the LHC delivers bunches of protons crossing at the rate of 40

MHz, which is about 109 interactions per second. Considering the amount of raw data

collected for one event and the rate at which data can be written to archival media, it is

impossible to record all events. In fact, it is necessary to achieve a reduction factor on the

order of 106. This can be compared to the task of finding a needle in a truck full of hay as

it drives by.

The decision of whether this particular event is worth saving must be made very quickly

– other potentially interesting events are appearing in the pipeline. It is also critical not

to make a mistake in the algorithm: if some class of events is not saved it will never be

analyzed (and discovered). Hence trigger system has a very strong influence on what kind

of physics can be studied.

CMS trigger system has two main parts: Level-1 trigger (L1) and High Level Trigger

(HLT). Events are first very quickly and superficially analyzed by L1 trigger and decision

is made to keep or discard them. The event rate is then reduced by an order of 103. Then
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high, cathode strip chambers (CSC) are deployed and cover the region up to |⌘| < 2.4. In
addition to this, resistive plate chambers (RPC) are used in both the barrel and the endcap
regions. These RPCs are operated in avalanche mode to ensure good operation at high rates
(up to 10 kHz/cm2) and have double gaps with a gas gap of 2 mm. A change from the
Muon TDR [4] has been the coating of the inner bakelite surfaces of the RPC with linseed
oil for good noise performance. RPCs provide a fast response with good time resolution
but with a coarser position resolution than the DTs or CSCs. RPCs can therefore identify
unambiguously the correct bunch crossing.

The DTs or CSCs and the RPCs operate within the first level trigger system, providing 2
independent and complementary sources of information. The complete system results in a
robust, precise and flexible trigger device. In the initial stages of the experiment, the RPC
system will cover the region |⌘| < 1.6. The coverage will be extended to |⌘| < 2.1 later.

The layout of one quarter of the CMS muon system for initial low luminosity running is
shown in Figure 1.6. In the Muon Barrel (MB) region, 4 stations of detectors are arranged in
cylinders interleaved with the iron yoke. The segmentation along the beam direction follows
the 5 wheels of the yoke (labeled YB�2 for the farthest wheel in �z, and YB+2 for the farthest
is +z). In each of the endcaps, the CSCs and RPCs are arranged in 4 disks perpendicular to
the beam, and in concentric rings, 3 rings in the innermost station, and 2 in the others. In
total, the muon system contains of order 25 000 m2 of active detection planes, and nearly
1 million electronic channels.
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Figure 1.6: Layout of one quarter of the CMS muon system for initial low luminosity running.
The RPC system is limited to |⌘| < 1.6 in the endcap, and for the CSC system only the inner
ring of the ME4 chambers have been deployed.

Figure 3.6: Cross section view of CMS detector with emphasis on muon system, from4.
Detectors chematically shown: pixel tracker in brown, strip tracker in light brown, ECAL in
light green, HCAL in purple.

events that passed the L1 are fully reconstructed and sorted by the trigger paths – particular

type of events of interest. Examples may be: events with at least one isolated muon, events

with three jets and missing transverse momentum, etc. Events that do not fall into any

trigger path are discarded.

Level-1 trigger receives information from calorimeters and the muon system. The decision

is based on the trigger primitive objects: photons, electrons, muons, jets (all above certain

transverse momentum thresholds). These objects are reconstructed with reduced resolution

data. Logic is made with custom Application Specific Integrated Circuits (ASIC), Field

Programmable Gate Arrays (FPGA) and such for maximum speed. During the time the
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decision is being made, all of the data from detector must be kept in pipelined memory.

When L1 the trigger gives positive decision all the data related to particular event

is transferred to one of the HLT machines that run full reconstruction software. This

approach gives much more flexibility and configurability (it is easier to make changes to the

reconstruction software than to ASIC), but it requires a large computing farm. (It would

be impossible for L1 trigger to operate in this manner)

Full event reconstruction is a complicated task involving taking all information from

the detector and identifying and reconstructing each individual particle that was created

in proton-proton collision. The Particle Flow (PF) algorithm40 is currently used for event

reconstruction.

Tracking information is a key element in PF reconstruction. The momentum of charged

hadrons is measured by a tracker much better that by calorimeters (in the range below few

hundred GeV). The tracker also provides very precise information on the location of the

interaction point, and helps to distinguish particles from different collisions that happened

simultaneously (10-20 interaction happen in each bunch crossing). Tracks are matched with

clusters of energy in the calorimeters and hits in the muon system to identify the type of

particle that made each track. All reconstructed particles are categorized by their type:

• PF muon

• PF electron

• PF charged hadron

• PF photon

• PF neutral hadron

The last two categories are for clusters of energy in the calorimeters which do not have

tracks pointing to them. Jets (collimated bunches of lower energy particles produced by a
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high energy quark or gluon) are then reconstructed by merging reconstructed particles, not

just clusters of energy in calorimeters.

The number of protons per bunch is big enough so that several proton-proton interactions

happen during the bunch crossing. They are spatially separated and tracking information

is enough to find the vertices – points in space where tracks originate. The vertex with

the highest total transverse momentum of the tracks originated there is called the primary

vertex. It is the point where the most energetic collision occurred.

For any analysis, the first step is to select interesting events. Selection is usually done

by requiring certain objects passing quality cuts. There is no one single recipe of selection

that satisfies all needs, as background contribution may be different in each case. Usually

events are selected by the presence of isolated leptons (electrons or muons) or jets above

certain energy threshold.

3.4 Coordinate System and Variables

The CMS uses a right-handed coordinate system with Y axis pointing up, X axis towards the

center of LHC and Z axis along counter-clockwise direction around the ring, see Figure 3.7.

A polar angle θ is measured from the positive Z axis direction, and azimuthal angle φ in

XY plane is measured as shown. Among other useful variables is pseudorapidity

η = −ln(tan
θ

2
).

For an ultra-relativistic particle pseudorapidity is equal to rapidity, which is linear with

respect to Lorentz boosts. A transformation made by two consecutive boosts along the Z axis

will have rapidity equal to a simple sum of rapidities of these two separate transformations.

This makes pseudorapidity a convenient choice of ”distance” between two particles in the θ

direction, as they may be moving along the Z axis together. When the φ distance is added,
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one gets a standard ∆R measure of distance between two particles:

∆R =
√

(∆η)2 + (∆φ)2Variables
Coordinate system: 

x - pointing to the center of LHC
y - pointing up 
z - along the counter-clockwise beam direction
θ - polar angle from positive z axis
ϕ - azimuthal angle in x-y plane
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Other variables:
• Transverse momentum - projection of particle momentum to x-y plane
• Isolation of a particle - sum of transverse momenta of particles surrounding it 
within a circle of certain radius in η-ϕ

• Differ by the type of particles we sum:
• Charged Hadron
• Neutral Hadron
• Photon

• Relative Isolation - Isolation divided by transverse momentum 
• Missing Transverse Energy (MET) - negative vector sum of transverse momenta 
of all observed objects in the event
• ΔR - distance in η-ϕ coordinates
• σiηiη - shower elongation in η direction
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Figure 3.7: CMS coordinate system

There are several variables that are extensively used later in the text.

• Transverse momentum: the projection of a particle’s momentum onto the X-Y plane

(transverse to the beam line). It is a vector quantity.

• Isolation of a particle: the sum of absolute values of transverse momenta of other

particles surrounding it within a circle of a certain radius in η − φ coordinates. See

Figure 3.8 for clarification. It can be calculated separately for different types of re-

constructed particles, and three types of isolation are used: charged hadron isolation,

neutral hadron isolation, photon isolation.

• Relative isolation: isolation divided by a particle’s transverse momentum.

• Detector based isolation: calculated by using spatial cluster separation in the calorime-

ters. Does not require particle flow machinery, and is used for triggering.

• Missing Transverse Energy (MET): negative vector sum of transverse momenta of all

objects reconstructed in the event. It should be called missing transverse momentum,
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(which it is) but in the old days this quantity was calculated using only energy deposits

in the calorimeters, hence its name.

• σiηiη photon’s or electron’s electromagnetic shower core elongation in η direction, cal-

culated for 5x5 EM calorimeter crystal array with the most energetic crystal in the

center.

σ2
iηiη =

∑
i(ηi − η̄)2wi∑

iwi
; η̄ =

∑
i ηiwi∑
iwi

;wi = max(0, 4.7 + log(Ei/E5×5))
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within a circle of certain radius in η-ϕ

• Differ by the type of particles we sum:
• Charged Hadron
• Neutral Hadron
• Photon

• Relative Isolation - Isolation divided by transverse momentum 
• Missing Transverse Energy (MET) - negative vector sum of transverse momenta 
of all observed objects in the event
• ΔR - distance in η-ϕ coordinates
• σiηiη - shower elongation in η direction
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Figure 3.8: Graphical representation of particle isolation. Green: energy cluster of the
particle, Red: energy deposits that fall into isolation cone.

In cases when there are more than one hard interaction in the event (which happens

almost all the time) the isolation of photons and electrons will be ”spoiled” by particles

unrelated to the primary interaction. The amount of extra particles may be different from

event to event. To correct for the presence of this random energy deposits the algorithm
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called ”ρ correction” was developed. It estimates the level of ”noise” in the event, which

can be subtracted from particle isolation using a correction factor.

3.5 Simulation of Events and Detector Response

The complexity of the detector and reconstruction algorithms requires some way to check

that chosen detector design suits the purpose and the reconstruction performs well. The

software package GEANT441 is capable modeling all necessary physics processes happening

when charged or neutral particles or quanta of light interact with matter in the detector. A

very detailed model of the CMS detector was created first to test the expected performance

before the detector was built and continues to be extensively used and updated.

The GEANT4 model can simulate energy deposits in active detector material (simula-

tion). Detector electronics response is then simulated (digitization) and it can be fed into

standard reconstruction algorithms (reconstruction). Results of the reconstruction can be

compared with simulated particles to estimate detector performance.

This leaves the initial step of generation of the particles that reach the detector. Event

generators42,43 are computer programs that use the existing knowledge of proton structure

and Standard Model Lagrangian to randomly sample the possible final states that can occur

after high energy particle collision. The calculation is done in several steps. First, hard scat-

tering is modeled, where two incoming particles generate several energetic remnants, such as

photons, W or Z bosons, gluons, quarks and leptons. In this process quarks and gluons are

treated as free particles. Then, in order to satisfy the condition that all final state particles

must be color neutral, the showering of the quarks and gluons is done. The algorithms use

some heuristics to make color neutral final particles by adding quark-antiquark pairs to the

event, making multiple mesons and baryons (thus making ”jets” of particles). Some of the

mesons and baryons can be unstable and decay, these processes are taken into account. In

the end, the generator provides the list of particles with their momenta as input for the
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Table 3.1: Simulated samples used in the analysis.
Process Description cross section(pb)
TTGamma top quark pair and photon 2.9 (estimate)
TTJets1l top quark pair and extra jets, semileptonic decay 104.7
TTJets2l top quark pair and extra jets, dileptonic decay 25.09
TTJets0l top quark pair and extra jets, all hadronic 109.2
W3Jets W boson and exactly 3 extra jets 519
W4Jets W boson and 4 or more extra jets 214
ZJets Z boson and extra jets 3350
Wgamma W boson and photon 553.9
Zgamma Z boson and photon 159.1
SingleTop single top or anti-top quark 1.8 - 56.4

GEANT4 detector model.

It is convenient to separate simulated collision events by the type of intermediate and

final states and interactions involved. In this way events with different probabilities (cross

sections, or weights) are kept in separate ”datasets”. One should be aware that this distinc-

tion is not absolute, and overlap between datasets is possible. This is done for convenience of

bookkeeping and analysis. In real collisions all processes occur with their natural probabil-

ities and only by selection one can enrich the sample with events of certain type. Table 3.1

summarizes the datasets used in this analysis listing their cross sections, which are pro-

portional to the probability to see this event in proton-proton collision (more details in

Section 6).

There are several ways to produce a single top quark (by different ways to look at Wtb

vertex).

Most of the simulated datasets are generated using MadGraph 542 with parton distribu-

tion function set CTEQ6L1. Single top quark events are generated by POWHEG44. Decay

of tau lepton is modeled with TAUOLA45. Signal TTGamma sample was simulated with

MadGraph. Hadronization and showering is done by PYTHIA 6.443.
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Chapter 4

Analysis Outline

In this chapter the analysis methodology is presented.

To perform the tt̄ + γ cross section measurement, events with a top pair and a hard

photon are selected. Among all of the possible top pair decays, we are interested in a

semileptonic signature with one electron and jets in the final state.

In order to reduce systematic uncertainties associated with top pair production cross

section tt̄ and integrated luminosity we measure the cross section ratio σtt̄+γ/σtt̄. Then it

can be converted to σtt̄+γ by multiplying by a recent theoretical or experimental tt̄ cross

section.

The analysis can be divided in two steps:

1. Top Selection is performed to get the tt̄ enriched data sample, that is used for nor-

malization of the tt̄ simulation and subsequent selection.

2. Photon Selection is applied on events passing top selection and aimed to select events

containing a genuine photon.

In both steps of the analysis there are events that pass the selection but do not have the

desired property:

• tt̄ background contains events that pass top selection but do not have a top quark
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Figure 4.1: Cartoon representation of signal and background for the two steps of the anal-
ysis.

pair. They may come from W or Z boson production associated with jets and photons,

multijet (or QCD) events, single top quark production.

• Photon selection is aimed at isolated photons from hard scattering. Non isolated

photons from jet fragmentation and jets with small hadronic component or electrons

may be misidentified as isolated photons.

These two properties of event are independent, as schematically shown on Figure 4.1.

The details of event selection are described in Chapter 5.

This analysis employs template fits to find the purity of tt̄ and purity of genuine pho-

tons passing photon selection. Finally, the number of signal events is inferred using these

parameters and simulated datasets. See Chapter 6 for details.

4.1 TTGamma Signal Simulation

To generate TTGamma events it is necessary to define the final state with some cuts on final

state particles’ energies and spacial separation, especially photon energy and separation of
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photon from other charged final state particles. The reason for it lies in the method of cross

section calculation. It happens that a cross section grows when photon energy becomes

smaller, and goes to infinity when photon energy goes to zero (infrared divergency). A

similar problem exists when considering photons emitted very close to the charged particle

(collinear divergency). Hence, to get a meaningful result from the calculation the cuts on

photon energy and distance to other particles have to be applied.

The phase space for generation was chosen in the following way:

• pT (γ) > 13GeV

• |η(γ)| < 3.0

• ∆R(γ, all) > 0.3

• pT (jet) > 15GeV

• pT (b) > 20GeV

• |η(b)| < 5.0

• |η(jet)| < 5.0

• |η(lepton)| < 3.0

• ∆R(jet, jet) > 0.5

• ∆R(jet, lepton) > 0.5

There is no cut on the lepton transverse momentum, but there are cuts on the quarks’

(jets) momenta. This makes the ratio of hadronic and leptonic W decays generated with

these cuts differ from the usual number.
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4.2 Overlap Removal

A signal sample (TTGamma) will overlap with TTJets samples in cases when a hard photon

is radiated by initial state quarks, top quarks, b quarks, W and its decay products (light

quarks or leptons) during the showering step of simulation. The difference between these

photons and signal photons is in the generation step they are produced. Signal photons from

TTGamma sample are produced in the very first step – they are in the matrix element.

Showering photons are subject to higher modeling uncertainty and should be avoided if

possible.

To evade double counting of events we apply an overlap removal procedure to remove

such events from TTJets samples. This procedure is applied only on TTJets events. In order

to be considered overlapping with TTGamma, the event has to have at least one generator

level photon with the following properties:

• pT (γ) > 13GeV

• |η(γ)| < 3.0

• Only quarks, gluons, bosons or leptons are in the parents list. This ensures that

photons from π0 decays are not considered as signal

• ∆R(γ, other) > 0.2 where other particles include leptons, b quarks and final state

particles (hadrons, charged leptons, photons) with transverse momenta above 5GeV

The last cut is used to suppress photons from showers. In such cases, parental information

will show that photon is radiated by electron, but it may be collinear to it. Figure 4.2

shows the distribution of the ∆R distance between generator photon and nearest generator

particle for signal (TTGamma) and TTJets2l where considerable fraction of reconstructed

photons comes from electrons radiating photons.

Similarly, there is an overlap between ZJets and Zgamma, and WJets and Wgamma

samples. Overlap removal procedure is applied on ZJets and WJets samples. In this case
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Figure 4.2: Distance from generator photon (matched with reconstructed photon) to near-
est generator particle for TTGamma (Red) and TTJets2l (Grey). Parentage cut is applied.
Normalized to match total area.

events with a signal photon on the generator level are removed if they are initial state

radiation (emitted off the colliding partons) or final state radiation of leptons from Z or W

(will be included in Zgamma or Wgamma).
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Chapter 5

Event Selection

Data recorded with the CMS detector in the year 2012 is used in this analysis. It corresponds

to an integrated luminosity of 19.6 fb−1.

An event should contain at least one primary vertex with the following properties:

• Number of degrees of freedom in the vertex fit should be greater or equal to 4

• Z coordinate of the vertex should be within 24cm from the geometric center of the

detector

• Distance from vertex to the z axis should be less or equal to 2cm.

5.1 Trigger selection

Events that passed ”single isolated electron” triggers are used in this analysis. Below are

some details on how selection at high level trigger is done. Trigger selection starts with L1

single egamma (EG) object with pT above 20 or 22 GeV, for different data-taking periods.

Then the high level trigger selection requires: pT greater than 27 GeV, shower shape cut on

σiηiη, relative detector based Ecal and Hcal isolation cuts (no ρ corrections applied) and the

relative track isolation cut. In the next step track matching is done. This allows a selection
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of isolated electrons on the trigger level. Detector based isolations are not used later in the

analysis. ρ correction is always used later in object selection. This makes the comparison

of trigger cuts and analysis cuts rather difficult.

Electron selection on the analysis level applies several additional cuts to identify isolated

electron and veto events with more than one isolated electron.

5.2 Physics objects selection

The next part of the event selection where individual reconstructed objects are selected

is done in several steps. There are selection cuts applied on an individual object basis.

Electrons, loose electrons, jets, loose muons and photons are selected. Then an additional

set of requirements is applied based on the relative positions of the objects (∆R cuts). After

that, a final decision is made if the event is to be considered in the further analysis.

The isolation of all objects is ρ corrected to reduce pileup dependence.

Electrons are required to have:

• Transverse momentum pT greater than 35 GeV

• Absolute value of pseudorapidity less than 2.5 excluding the gap 1.4442 to 1.566

• Combined relative PF isolation in cone 0.3 to be less than 0.1

• Trigger version of electron multivariate discriminator (MVAtrig) greater than 0.9

• Conversion rejection: there should be no extra tracks pointing same direction

• Distance in the plane transverse to the beam between electron track and primary

vertex should be less than 0.02cm

Loose electrons are selected from electron candidates that failed electron selection and

have:
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• Transverse momentum greater than 20 GeV

• Combined relative isolation in cone 0.3 to be less than 0.2

• MVAtrig greater than 0.0

The motivation for having loose electrons in the selection originally was to reject events

containing Z decaying to two electrons. The selection of exactly one electron rejects these

events well, so the number of loose electrons is not used in the event selection.

Jets are reconstructed by the PF AK5 algorithm, and the following selections are made

(PF loose Jet ID). Before applying any selection, the following corrections are made to

account for imperfect jet energy measurement: Jet Energy Scale correction, and Jet Energy

Resolution smearing. See more details about systematic uncertainties in Section 6.8. Jets

are selected by applying the following requirements:

• Transverse momentum greater than 30 GeV

• Absolute value of pseudorapidity less than 2.4

• Number of constituents greater than 1

• Charge multiplicity greater than 0

• Neutral hadron fraction of energy less than 0.99

• Neutral electromagnetic energy fraction less than 0.99

• Charged EM energy fraction less than 0.99

• Charged hadron energy fraction greater than 0

These cuts help to avoid picking detector noise and Ecal spikes as jets.

B-tagged jets are identified with Combined Secondary Vertex b-tagging algorithm in its

medium working point (CSVM) Event re-weighting is applied to correct for the difference

in b-tagging efficiency in data and simulation as explained later in Section 5.5.
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Loose Photon Candidates are defined as Photons without σiηiη and charged hadron iso-

lation cuts.

Photons are selected by applying modified EGamma Loose photon ID. The definition

of isolation was modified in order to make data-driven estimate of selection purity more

robust. Photons are required to have:

• Transverse momentum pT greater than 25 GeV

• Absolute value of pseudorapidity less than 1.4442 (only Ecal Barrel region is consid-

ered)

• No pixel seeds on the way from primary vertex to the photon cluster in the calorimeter

• No matched prompt electron should be found (the last two cuts significantly reduce

fraction of electrons misidentified as photons)

• Hadronic over electromagnetic energy fraction should be less than 0.05

• Electromagnetic shower core elongation in η direction σiηiη should be less than 0.012

• Particle flow neutral hadron isolation less than 3.5 GeV + pTγ · 0.04

• Particle flow photon isolation less than 1.3 GeV + pTγ · 0.005

• Super Cluster Footprint Removed (SCFR) charged hadron isolation less than 5 GeV

Standard particle flow charged hadron isolation cut is not used in photon selection.

Muons are selected by requiring:

• Transverse momentum greater than 10 GeV

• Absolute value of pseudorapidity less than 2.5

• Combined relative isolation in cone 0.4 to be less than 0.2.
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5.3 Footprint removal for photon isolation

Charged hadron isolation is used for the photon purity calculation, and this part of photon

selection requires special attention. We use a method called supercluster footprint removal46

to find one of the components of photon isolation.

The idea of this method is to calculate isolation in such a way that super cluster leakage

into the isolation cone is minimized.

Isolation of a photon is defined as sum of transverse momenta of all particles falling in the

isolation cone. The standard cone size is ∆R < 0.3 which means
√

(∆η)2 + (∆φ)2 < 0.3.

Differences in φ and η are taken from photon to other particle. The photon momentum

should not contribute to the isolation sum and, hence, particles found close to the photon

are not summed (veto cone).

In the standard particle flow algorithm isolation is calculated separately for different

types of particles. This is done for charged hadrons, neutral hadrons and photons. This

procedure has some potential pitfalls.

• If some energy deposit in the calorimeter is not associated with any reconstructed

particle it is not counted in the isolation sum and thus lost.

• If photon energy is spread widely in the detector it can be reconstructed as several

particles and they will affect the isolation of the photon.

These drawbacks are not too serious when dealing with standard cut-based particle ID,

but if the isolation profile shape is of interest some improvements can be made.

Super cluster footprint removed isolation in contrast with PF isolation deals with particle

flow candidates. The fact that particle flow candidates, but not identified particles are used

makes effect of reconstruction inefficiency on isolation less pronounced. This helps to avoid

the first pitfall.

The second problem is about leakage of photon energy into the isolation cone. A different

method of defining veto area around the photon is used. The isolation is calculated by
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summing particle flow candidates that fall into the isolation cone, but not close to the

photon super cluster in the electromagnetic calorimeter. η and φ dimensions of the super

cluster are calculated by checking positions of hits that contribute to it. If a particle flow

candidate extrapolated to the calorimeter surface falls in the rectangle of the super cluster

size enlarged by 25%, then it is considered close to the photon and is not added to the

isolation sum.

The standard ρ correction is used to account for pileup.

5.4 Event selection

In this section we explain how information about identified objects is combined to make a

decision if the event passes the selection.

The isolation cut for an electron will reject objects that are close to hadronic jets. To

make this rejection even stronger we apply ∆R cuts on jets and electrons in the following

order. First, jets that have ∆R < 0.1 to any electron or loose electron are removed from the

jet list. Second, electrons that have a reconstructed jet with transverse momentum above

20 GeV within 0.1 < ∆R < 0.5 are removed from the electron list. It is important to take

into account not only jets, that passed jet ID and transverse momentum cut on the analysis

level.

The following cuts are made on the event level:

• Number of electrons is exactly 1

• No muons are present

• Number of jets is greater or equal to 3

• Number of b-tagged jets is greater or equal to 1

• Missing transverse momentum (negative vector sum of all particles transverse mo-

menta) greater than 20 GeV
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Particle flow corrected MET (corrections type 0 and type 1) is used in the selection

cut. This selection and lepton veto enhances purity of semileptonic top pair decays since

they have a genuine neutrino and only one isolated lepton. It happens due to reduction of

multijet contribution, which usually do not have high missing energy.

The cuts described above are Top Selection cuts, and all events should pass them to be

considered further. Events passing this selection are used to find number of tt̄ events.

Next, another set of ∆R cuts is applied. Photons that lie between 0.1 and 0.7 to any jet

with transverse momentum above 20 GeV are removed from the photon list. Also, photons

that are closer than 0.7 to an electron are removed. This cut helps to avoid photons that

come from final state radiation of quarks and electrons.

Events passing Photon Selection should have at least one photon.

We employ data-driven method for photon purity estimation as explained later. This

method requires additional information about photon identification background. We keep

events passing Top Selection and having at least one loose photon candidate for this purpose.

5.5 Corrections of simulated events

Simulation does not describe all the processes happening in proton-proton collisions and

in the detector perfectly. There are several reasons why we want to correct simulation

to improve description of data. The simplest way to do this is to find a variable that

characterize the difference between data and simulation and re-weight simulated events in

such a way that chosen distribution matches data. The variable should be chosen carefully

so it will not be directly related to the quantity to be measured, otherwise such re-weighting

can bias the result. Here, we list the variables used for simulated events re-weighting. The

total event weight is a product of all of them.

Pileup re-weighting. Simulated events are produced with some reasonable number of

pileup interactions, but they have to be weighted in order to match distribution of pileup
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interactions measured in data.

B-taggging re-weighting. B-tagging is known to have slightly different efficiencies in

data and simulation. The re-weighting is done according to the recommendations of the

BTV group. The scale-factors (SF) for probability of tagging jet in data if it was tagged

in simulation are provided. To calculate the weight for the event with 1 or more b-tag, we

find probability of having exactly zero b-tags by
∏

i(1 − SFi) iterating over jets that were

b-tagged in simulation. The weight for one or more b-tag is 1−∏
i(1− SFi).

Electron trigger, reconstruction and identification efficiencies in data and simulation were

measured by tag and probe method in bins of pT and η. Scale factors are calculated as ratio

of data to simulation efficiencies in each bin.

Top pT re-weighting. It was found that transverse momentum of top quark in simulation

does not match one on data. The event weighting procedure was developed to fix it. For

every simulated tt̄ event event the weight is calculated to bring top transverse momentum

closer to one observed in data.
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Chapter 6

Cross Section Measurement

6.1 Ratio measurement, description of steps

The usual form of ”counting experiment” cross section measurement is

σ =
Nsignal

LεA ,

where Nsignal is number of signal events in data passing selection, L is integrated luminosity,

A is signal acceptance – fraction of signal events that fall into the region of phase-space

chosen for event selection, and ε is selection efficiency – fraction of signal events that pass

event selection after acceptance cuts. In the presence of background, we will find Nsignal as

Nobserved −Nbackground where number of background events should be estimated separately.

If event selection is done in two steps sequentially, the expression for cross section will

change. In our notation selection step one is top selection and selection step two is photon

selection, which is applied after top selection, as described above.

σtt̄+γ =
Nsignal

LεtopAtopεγAγ

where εtop and Atop are efficiency and acceptance of top selection, for top pair plus photon
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signal. Then, εγ and Aγ are the efficiency and acceptance of the photon selection, applied

after top selection. The idea of this calculation can be directly seen from a conditional

probability expression P (A ·B) = P (A) ·P (B|A). Here, we consider the signal as a top pair

and photon. Nsignal is number of events in data after top and photon selection with genuine

photon and top pair.

In this way we can find the desired top pair plus photon cross section provided we can

find all parameters involved.

The next step is to normalize the result to inclusive top pair production cross section to

simplify treatment of systematic uncertainties and cancel extra terms:

R =
σtt̄+γ
σtt̄

=
Nsignal

εtt̄γtopA
tt̄γ
topε

tt̄γ
γ Att̄γγ

· ε
tt̄
topA

tt̄
top

N tt̄
.

Here, the second fraction comes from tt̄ inclusive cross section: εtt̄top and Att̄top are the

efficiency and acceptance of tt̄ process, and N tt̄ is the number of top pair events passing

top selection. The efficiency for top pair selection is very similar for tt̄ and tt̄γ samples, as

selection of lepton, jets, b-jet, MET are the same. Acceptance depends on the generator

cuts and event selection, so it should be calculated for both tt̄ and tt̄γ separately. Integrated

luminosity has been canceled out.

The main difficulty in this analysis is to find the number of signal events.

Objects that pass photon ID are not guaranteed to be real photons. Jets or electrons

can be misidentified as photons. These two cases are distinct.

A jet misidentified as a photon does not have genuine photons in them but happen to

pass photon selection. Electron misidentified as photon has all the properties of a genuine

photon (isolated electromagnetic shower, etc), but in addition to that has a charged track

pointing to the energy deposit. These two sources of background will be treated differently.

First, the purity of isolated electromagnetic objects (photons and electrons) passing

photon selection πeγ will be calculated using an isolation profile fit. This method, proven to

work on simulated samples, will be used to find photon purity in data.
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Then, by using a kinematic variable, M3, the fraction of events having a top pair will be

estimated.

These two parameters and total number of observed events in data will be used to

estimate the number of signal events in data. The procedure will rely on simulation corrected

to describe the important properties of data.

6.2 Multijet estimation

Multijet (QCD) processes give noticeable background to electron + jets top selection channel

and are hard to simulate because of their large cross section and small probability of passing

the selection.

One of the jets can be misidentified as an electron and trigger the event. Other event

selection requirements may also be fulfilled. One needs to simulate a very large number of

events to get enough statistics for shape description. Another approach is to get necessary

sample from data. We will use the fact that multijet events can fire single electron trigger,

and that these misidentified electrons will not be isolated and will not pass MVA ID cut.

We select a sample of multijet events by inverting the isolation and MVA cuts:

• Electron relative isolation from 0.25 to 1.0

• Electron MVAtrig from -1 to -0.1

All other electron cuts remain untouched, as well as other top selection cuts. For the multijet

sample we do not require a photon.

TTJets and WJets events with genuine electrons can also pass the non-isolated electron

selection. Some important distributions may be affected by this contamination. We keep

all other event selection cuts so that data-driven multijet events will be by all other means

alike normal events passing selection. This selection leaves noticeable amount of TTJets

events. See Figure 6.1. We estimate their contribution using simulation and subtract it

from multijet sample selected in data.
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Figure 6.1: Result of multijet selection. Data and simulation.

At this point the shape of QCD is known but we have to determine correct normalization

to properly mix it with other backgrounds. We will use a MET distribution since it is

sensitive discriminator for this type of events. MET in QCD originates from jet energy

mis-measurement and has a different shape than in TTJets or WJets where MET is created

by high energy neutrino.

To have better shape information we remove the cut on the missing transverse energy.

This is for fitting purposes only, and once the normalization is found we apply the MET cut

as described in event selection.

The MET shape fit is performed with data after top selection and two templates: QCD

shape and all other MC samples added and scaled according to their cross sections. The fit

uses only shape information, so that all distributions are normalized to unity. In this way

uncertainties of non-QCD normalization will not affect the result. The only parameter of

the fit is the relative contribution of the QCD and non-QCD shapes in the data distribution.

QCD normalization is determined form scaling integral of data by fraction found from the

fit.

The result of the fit is shown on Figure 6.2. After taking into account the number of

events in data and fit result, the data-driven multijet histograms have to be scaled. After
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the photon selection is applied this gives 28 expected background events. It has a minor

contribution to the final result.

Uncertainty of the multijet estimation comes from the fit uncertainty and statistical

fluctuation of the templates, but most importantly from the selected procedure. To be sure

that multijet uncertainty is not under-estimated we apply the following procedure. The

nominal shapes after MET fit is scaled by factor of 2 up or down and the whole cross

section ratio is repeated. The difference in the answer is taken as systematic error.

Figure 6.2: Fit of missing transverse momentum shape to find QCD normalization. Black:
data, Green: QCD shape, blue: all MC, red: their sum.

6.3 Number of top pair events

This part of the analysis is very similar to measuring inclusive top pair production cross

section. There are several good methods that had been used for this. We employ the ”M3”

method. This method uses an M3 variable as a discriminator between events with a top

pair and background. It is not very sensitive to jet energy scale (JES) uncertainty.

We perform a fit of the M3 variable to extract tt̄ normalization from data. This is done

after top selection.

M3 is defined as invariant mass of three jets, selected among all jets in the event, that

41



have the highest transverse momentum of the 3-body system constructed of these jets. By

definition it can not be calculated for events with less than 3 jets. The idea of the M3

variable is the following. In semi-leptonic top pair decay there will be 3 jets from one of

the top quarks hadronic decay. By choosing a combination with highest total pT we have a

good chance to select these 3 jets from top quark decay if it was boosted. Hence, the M3

distribution from the top decay will have a peak near 175 GeV, and for all other processes

not having hadronic top, it will be a smooth combinatorial background.

The fit procedure is similar to the MET fit described above. We use the signal M3

distribution from tt̄ simulation (all decay channels added together), and the M3 distribution

from WJets sample as a background. Since WJets normalization is known to be relatively

poorly modeled we let it float in the fit. There are other background processes that are

estimated from simulation and normalized according their theoretical cross sections. These

processes include: single top, Z+jets, Z+gamma and W+gamma. Their normalization is

not varied in the fit and their contribution is relatively small. The multijet component of

the background is also fixed. These background processed are subtracted from the data

histogram before the fit.

The number of top pair events after top selection, N tt̄, is calculated by taking the integral

of data distribution, subtracting integrals of fixed backgrounds and multiplying the result

by a signal fraction from the fit. Both tt̄ and WJets simulated distributions are scaled to

conform with the fit result and number of events in data. The scale factor for tt̄ is measured

to be 0.993 ± 0.008(stat), while the WJets scale factor is 2.56 ± 0.05(stat). This shows

good agreement of the fit result with top pair production cross section, that was used to

normalize the simulated samples. The big scale factor for WJets stems from the fact that

only exclusive W+3jets and W+4jets samples were used in the fit. In this analysis WJets

is a background process and all we want is to model its contribution correctly. Figure 6.3

shows the fit and the result of scale factor application.

This gives us a number of tt̄ events estimate in data after top selection 162560 ±
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1240(stat).

Figure 6.3: M3 distribution fit and the result of applying scale factors on simulation.

A similar procedure is done after photon selection to find the total fraction of events

having a top pair in the selected sample. In this case, again, there are two templates (top

and background). One is taken from the sum of tt̄ and tt̄γ samples. Here, normalization of

tt̄γ is taken from a theoretical NLO calculation. This does not add bias to the measurement

because M3 shapes for both samples are nearly indistinguishable. The fit was also done

with the shape of tt̄ before photon selection and gave the same result.

The background shape is constructed from all non-ttbar processes where the shape is

taken from the top selection (higher statistics) and rescaled according to the expected event

yield after photon selection.

The fit gives a fraction of ttbar events after photon selection as shown on the Figure 6.4.

6.4 Photon purity estimation

The photon purity is a fraction of selected photons that are prompt (signal) photons. A

prompt photon originates in a hard interaction and is emitted by hard scattering particles.

Non-prompt photons appear during quark hadronization and interaction of charged particles

43



Figure 6.4: M3 distribution fit after photon selection.

with detector material. They are not isolated and generally have lower energy.

One way to find photon purity is simulation. In simulated events we have information

about all particles involved. To find whether a given reconstructed photon is prompt (signal)

we are looking for the generator level photon that can be matched with it. Matching is done

by comparing η and φ coordinates and transverse momenta of reconstructed photon and

generator level photon. We iterate over generated particles collection in the order they were

created by the generator. If ∆R between reconstructed photon and generated photon is less

than 0.2 and |precoT − pgenT |/pgenT is less than 1.0 we consider it a match and stop iterating.

Then we inspect the parentage of this matched photon looking where it came from. If

there are only quarks, gluons, charged leptons or bosons among its ancestors we conclude

that photon is prompt. However having the photon originating in the hard interaction

does not necessarily mean that it is isolated. Hadronization and showering may introduce

nearby activity and the photon originally generated as signal will not be isolated. These

photons may pass event selection, but for the purpose of the method explained below it is

necessary to add some selection cuts. To differentiate between prompt signal photons and

non-isolated photons the following set of additional selections is applied on reconstructed

photon and matched generator photon in addition to described above.
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• (precoT − pgenT )/pgenT < 0.1

• ∆R(γgen, other) > 0.2 where other particles include leptons, photons and final state

particles (hadrons, leptons, photons) with transverse momenta above 5 GeV

• |∆η(γreco, γgen)| < 0.005

• ∆R(γreco, γgen) < 0.01

These cuts help to select photons that are well measured and have no undesired activity

around them. Otherwise reconstructed photon considered non-prompt or mis-identified

(background).

Electrons give a trace in the electromagnetic calorimeter very similar to photons. In ad-

dition electron usually has a charged track pointing to the energy deposit. Electrons can be

misidentified as photons, although special selection is made to minimize the contamination.

Nevertheless there is noticeable amount of electrons misidentified as photons. We need a

criteria to find generator level electrons that are isolated. The selection is very similar to

generator photon selection. We consider electrons from W and Z decays only.

• (precoT − pgenT )/pgenT < 0.1

• ∆R(e, other) > 0.2 where other particles include leptons, photons and final state

particles (hadrons, leptons, photons) with transverse momenta above 5 GeV

• |∆η(γreco, e)| < 0.005

• ∆R(γreco, e) < 0.04

These cuts were checked with TTJets2l sample which has significant amount of electrons

identified as photons.

We want to have independent method of photon purity estimation since it directly affects

the cross section ratio.
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The photon purity can be found using the fact that signal photons are isolated, while

misidentified and non-prompt photons appear near or within a jet. We use super cluster

removed charged hadron isolation as discriminating variable. Then the template shape fit

is performed to find the fraction of prompt photons.

Template shapes for signal and background are determined from data using a method

similar to one described in46.

Signal shape is found by random cone isolation method where the same events that

passed photon selection are used to find sum of PF candidates transverse energy in the

same isolation cone with same η but random φ direction away from jets and leptons. This

gives isolation of ”completely isolated” photon. See data – simulation comparison of the

photon variables on Figure 6.5.

Background shape is found by taking side-band in photon σiηiη in the range 0.012 to

0.016. These events have non-prompt and misidentified photons.

Figure 6.5: Data and simulation comparison for photon variables: random cone isolation,
SCFR charged hadron isolation, σiηiη.

The fit is done in the range of SCFR charged hadron isolation up to 20 GeV/c, to

ensure good description of background. We use loose photon candidates for fitting, applying

nominal σiηiη cut. In this way they have same properties as photons except the isolation
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distribution extends farther. After fit is done the result can be corrected by applying nominal

isolation cut on the scaled templates and finding fraction of photons and electrons.

As a cross-check of this method we applied it to the mixture of simulated samples mixed

according to theoretical cross sections and integrated luminosity of the data used in the

analysis. The tt̄ has photons coming from jet misidentification, and tt̄γ has majority of

prompt photons. Other simulated samples are added to have more statistics and better

mixture of different kinds of events. We found that side-band region has only about 1%

of prompt photons. This simulation sample is also used for a cross-check of the method in

general. We perform data-driven technique of photon purity estimation on it and also cross-

check if the signal photon purity agrees with generator information. Signal and background

isolation templates can also be compared: Figure 6.6 and Figure 6.7

Figure 6.6: Signal shape from random cone isolation and prompt photons by generator
particle matching, all from simulation. Linear scale (left) and log scale (right)

After the fit is done (Figure 6.8 we get photon purity equal to 0.571 ± 0.031 (includes

statistical uncertainty for pseudo data only). By using generator level information the

prompt photon and isolated electron fraction in this test sample is 0.585.

This is a very important result. It shows that selection of signal photons and electrons

misidentified as photons on generator level is consistent with estimation using data-driven
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Figure 6.7: Comparison of isolation profiles of sideband region and isolation of non-prompt
and mis-identified photons by generator particle matching. Linear scale (left) and log scale
(right).

isolation shapes.

We have to consider several sides of the problem here. The idea is to make a signal

photon selection on generator level that will:

• Select as much signal photons from TTGamma sample as possible

• Make isolation profile of selected signal photons agree with random cone isolation

(data-driven signal shape) by filtering out non-isolated or badly reconstructed photons

• Do not reject isolated photons since they would contaminate background isolation

profile (whatever is not selected as signal goes to background)

On the other hand the data-driven background sample (σiηiη sideband region) should

contain as few signal photons as possible and still preserve the shape of background photon

isolation of the nominal σiηiη region.

On the event selection level it is important to avoid contamination from nearby jets.

They may be not a part of the photon and have no relation to it but contaminate isolation

and make it differ from random cone isolation shape.
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Figure 6.8: Fit of charged hadron isolation profile in pseudo data for closure test.

After we successfully tested this method on the simulation we apply it on data, see Fig-

ure 6.9. Statistical uncertainty given by RooFit does not include variation of the templates

but only uncertainty of data. However since templates are data-driven and suffer from low

statistics we have to take this uncertainty into account. We perform pseudo experiments

where for data, signal and background templates in each bin the value is randomly chosen

by Poisson distribution with mean of the bin content in the original histogram. Width of

the fitted purity distribution obtained in this way is taken as statistical error. This gives

photon purity in data 0.489± 0.06(stat) (with isolation less than 20 GeV). The uncertainty

is of a statistical nature but will be considered as systematic as it is related to measurement

procedure.

To get maximum information from the signal and background shapes we fit isolation

profile in the range up to 20 GeV. Photons used in the cross section calculation have charged

hadron isolation cut at 5 GeV, so this cut is applied to the templates after the fit is done.

Photon purity in the sample with 5 GeV cut on isolation is 0.564± 0.063(stat). Next step

is to estimate contamination from electrons.
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Figure 6.9: Fit of charged hadron isolation profile in data.

6.5 Estimation of electrons misidentified as photons

To estimate contamination from electrons misidentified as photons we will use simulation

with correction derived from Z → ee process in data.

In simulated events we use matching procedure to identify electrons that are recon-

structed as photons. As described in the Section 6.4 matching of reconstructed photons

to generated ones is done by ∆R and |precoT − pgenT |/pgenT . If no such photons are found the

same procedure with the same cuts is performed to find generated electron matching the

reconstructed photon.

After the matching simulated events can be categorized by the reconstructed photon

origin:

• Signal: matched to genuine photon

• Misidentified electron: matched to electron

• Misidentified jet: not matched to genuine photon or electron
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After the procedure of isolation template fit we have estimation of sum of the first two

compared to the third.

In order to cross-check the results given by simulation we can use the ”standard candle”

for electrons: Z → ee process. To use it we will plot invariant mass of electron and photon.

If the photon was misidentified electron from Z decay we will see a peak near 90 GeV.

Figure 6.10: Invariant mass of electron and photon, nominal selection.

As can be seen on Figure 6.10 Contribution from Z → ee (ZJets process) is highly

suppressed by event selection and does not give enough statistics to make any conclusion.

However we see no drastic disagreement between data and simulation.

In order to improve the situation event selection should be changed to allow more Z

events to pass. However as chances of misidentifying electron as photon may depend on

environment (number of tracks in the event for example) it is better to make this change

as slight as possible. By relaxing the requirement of having a b-tagged jet in the event and
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keeping all other cuts the same Z → ee contribution is enhanced, see Figure 6.11. All steps

for multijet estimation and M3 fit are repeated for this new selection.

Figure 6.11: Invariant mass of electron and photon, selection without b-tag requirement.

Since Z peak is much more pronounced the template fit can be performed to estimate

number of electrons from Z decay passing this modified event selection and compare its

number to expectation from simulated events.

Two templates will be used for the fit, both of them derived from simulation.

• Electron template: combination of ZJets and Vgamma events where reconstructed

photon is matched to generated electron. Makes narrow resonance shape of electron

and photon invariant mass.

• Background template: all simulated and data-driven multijet samples excluding the

previous category.

52



Figure 6.12: Template fit of the invariant mass of electron and photon, selection without
b-tag requirement. Green: Electron template, Blue: Background template, Red: weighted
sum, Black: data.

Result of the template fit is shown on Figure 6.12. Fit gives the fraction of electrons

from Z decay reconstructed as photons. To get the expected number of such events integral

of invariant mass distribution in data in the fit range should be multiplied by this fraction.

Comparing this number with expected number of events in simulation we get the scale factor

of 1.46± 0.19(fit+ stat).

This calculation is based on the assumption that simulated samples of ZJets and Zgamma

(minor contribution to Z peak) being normalized to their cross sections and integrated

luminosity describe the normalization of such events in data. This is not difficult to cross-

check. If we modify the event selection to require two electrons instead of one electron

and a photon we will have a lot statistics since in this case we will be looking at real

(not misidentified) electrons. All other event selection details remain the same (missing

transverse energy, number of jets, etc.) In that case we will be able to repeat the template

fit with invariant mass of two electrons to verify the normalization of simulated events. We

do it for both cases: with and without b-tag cut. Here we do not have to take into account

multijet contribution because Z → ee cross section is relatively big and events from multijet

processes are not expected to have peak in ee invariant mass.
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With all samples normalized to cross sections and integrated luminosity, di-electron

invariant mass with and without b-tag requirement are shown on Figure 6.13. Special care

was taken to account for electron trigger and identification scale factors. Since event with

two electrons has higher chances to fire a single electron trigger the trigger scale factor for

the event is calculated in this way:

SFtrigger = 1− (1− SF ele1
trigger)(1− SF ele2

trigger)

Identification scale factor is taken as a product of the scale factors for both electrons

(they should be both independently identified)

Figure 6.13: Invariant mass of two electrons, with (left) and without (right) b-tag require-
ment.

Templates for the fits are taken from simulation. ZJets and Vgamma are taken as Z →
ee component, and everything else is ”background”. The small bump in the background

shape is coming from di-boson samples. Even without fitting, di-electron mass distribution

suggests that ZJets normalization with b-tag requirement is a bit off. The fits are shown on
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Figure 6.14.

Figure 6.14: Template fits for Z contribution, with (left) and without (right) b-tag re-
quirement. Green: Z to ee component, Blue: everything else, Red: weighted sum, Black:
data.

Doing similar calculation to estimate correction necessary to apply to simulated Z events

normalization we get the following.

• With b-tag requirement: simulated samples should be scaled by 1.20±0.06(stat+fit).

This should correct normalization of ZJets sample in nominal selection. ZJets sample

was normalized according to the CMS measurement, but presence of b-jet may be the

reason for correction.

• Without b-tag requirement: simulated samples should be scaled by 0.95±0.015(stat+

fit). This shows that for the particular region of phase space used for electron +

photon invariant mass fit we have to apply extra correction to Z normalization.

This means that the estimate of Z events has to be corrected when we calculate electron

to photon misidentification rate correction. After taking this into account we have to mul-

tiply number of electrons misidentified as photons in simulation by 1.5± 0.2(fit+ stat) to

get their estimate in data. This number obtained by dividing 1.46 by 0.95. This correction

is confirmed by other studies.

The following Table 6.1 summarizes simulated samples by origin of the reconstructed

photon. Simulated samples are normalized by cross sections with correction from M3 fit
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and di-electron fit where applicable. Misidentified Electron counts are not multiplied by

the scale factor. Data driven multijet sample is not expected to have signal photons or

electrons. TTGamma sample normalized by theoretical estimate of cross section. All errors

are statistical. To get estimated number of background events from misidentified electrons

the third column must be multiplied by the scale factor obtained as explained above.

Table 6.1: Simulated samples categorized by reconstructed photon origin, after nominal
selection.

Sample Total Events Misidentified Jet Misidentified Electron Signal Photon
TTGamma 358± 5 10± 1 0.2± 0.1 348± 5

TTJets 234± 4 217± 4 18± 1 0
Vgamma 96± 13 3± 2 1± 0.7 92± 13

WJets 75± 10 67± 10 0 8± 3
ZJets 39± 10 11± 4 28± 7 0

Multijet 35± 8 35± 8 0 0
SingleTop 29± 4 16± 3 2.1± 1 12± 2

6.6 Number of signal events in data

To reach the goal of this study we need to answer the question: given the amount of observed

events in data, how many of them are signal events? Table 6.1 can help to understand the

difficulty. Reconstructed photon can come from signal photon, isolated electron or jet.

Different simulated samples contribute to these categories in different ways.

As was shown in Section 6.5 misidentified electron counts should be corrected by applying

the scale factor as this misidentification rate is not modeled perfectly.

Similar consideration should be applied to jets misidentified as photons. For this case

we should have another (so far unknown) misidentification scale factor.

Normalization of the TTJets, WJets, ZJets and Multijet(QCD) samples is cross-checked

and corrected by different template fits to data. This leaves two major contributing sources:

TTGamma, which is unknown by the setting, and Vgamma. The latter (combination of
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Zgamma and Wgamma) is normalized to NLO theoretical cross section and is known to be

potentially mis-modeled to the order of 20%47. Vgamma has the highest contribution to

signal photon category among non-ttbar samples. That is why it is important to cross-check

its normalization before taking into account.

Single top samples are normalized to theoretical cross sections, but do not contribute in

a significant way to the signal photon count and known to be relatively well modeled.

This leaves us with 3 unknowns:

• TTGamma scale factor (or normalization, the main unknown)

• Vgamma scale factor

• Jet to photon misidentification scale factor

From the collected events in data we extract the following:

• Photon purity (also includes misidentified electrons) from isolation data-driven tem-

plate fit

• TTbar purity from M3 fit after photon selection

• Total number of selected events in data

Every quantity is measured with uncertainty, so the problem can’t be solved just as 3

equations with 3 unknowns. Moreover, it is necessary to propagate the uncertainties to the

unknown quantities.

We can relate knowns to unknowns using the information from simulated samples and

build the likelihood function. L(tt̄γSF, V γSF, jet→ γSF ) = e−χ
2/2 where χ2 is the sum of

three terms:

χ2(ttγSF, V γSF, jet→ γSF ) =
(πdataeγ − πMC

eγ )2

σ2
πeγ

+
(πtt̄data − πMC

tt̄ )2

σ2
πtt̄

+
(Ndata

events −NMC
events)

2

σ2
Nevents
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Three unknown scale factors are used correct relevant contributions in the simulated

event counts to calculate these quantities: πMC
eγ ratio of events with reconstructed photon

matched to isolated electron or photon over all events in simulation, πMC
tt̄ ratio of events

with pair of top quarks over all events in simulation, NMC
events number of events in simulation.

Then scan over possible values of the parameters is made to find the combination with the

best likelihood. For every parameter one-dimensional projection of likelihood is calculated

by integration over other two parameters. The ranges of integration are chosen to cover

all relevant space where likelihood is non-zero except for V γSF . In this case we use prior

knowledge that it can’t be negative and not expected to be greater than 3.

Figure 6.15 shows three projections of likelihood. The width of the distribution is a

conservative estimate of the uncertainty on this parameter.

Figure 6.15: Likelihood distribution for tt̄γSF , jet→ γSF , V γSF .

The best agreement is achieved for these values of parameters, with errors from likelihood

width: tt̄γSF = 0.95 ± 0.25, V γSF = 1.35 ± 1, jet → γSF = 1.19 ± 0.20. It brings

simulated photon purity, top fraction and number of events to excellent agreement with

quantities measured in data.
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6.7 Signal acceptance calculation

Acceptance calculation for this analysis differs from usual inclusive cross section measure-

ments because we measure ratio of cross sections. The event selection is chosen to make use

of this fact: two steps (top selection and photon selection) are done sequentially.

So if we consider inclusive tt̄ process we start with number of generated events (within

some fiducial phase space) and count how many events are left after top event selection. We

have 3 separate datasets with 0, 1, 2 leptons in the final state, they were scaled according

their branching fractions. This gives acceptance of inclusive tt̄ process: εtt̄top ·Att̄top = 0.03404±
0.00002(stat) with negligible statistical error.

The same can be done for tt̄γ (signal sample). To get acceptance times efficiency we

have to divide number of events passing top selection by total number of events considered.

However in this case we have to choose what we take as denominator. The signal tt̄γ sample

is inclusive, but theoretical calculations for cross section are done for final states with 1 and

2 leptons30. On Figure 6.16 we can see that 0 lepton (all hadronic channel) is not surviving

event selection. To make comparison with theory easier we consider fiducial space for signal

when 1 or 2 leptons are present (they will be mostly electrons, but other combinations are

possible). Acceptance times efficiency of top selection for signal sample with 1 or 2 leptons:

εtt̄γtop · Att̄γtop = 0.0632± 0.0003(stat).

The calculation of signal acceptance explained above is done for the sake of comparison

with theoretical prediction. The biggest difference in the generated phase space and analysis

selection is transverse energy cut on photon. (13 GeV in generated sample and 25 GeV in

analysis). So effectively we measure the tail of this distribution and propagate it to the

generated phase space using εtop · Atop. In order to avoid this propagation of the result

into larger phase space we also quote the visible cross section ratio where photon transverse

energy cut is 25 GeV and |η| < 1.4442. εtt̄γV istop · Att̄γV istop = 0.1618± 0.0009(stat)

Acceptance and efficiency of signal sample includes term for photon selection. For cross

section ratio this term is a ratio of number of events passing top and photon selection and
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Figure 6.16: Classification of TTGamma signal events passing top selection.

having reconstructed photon matched to generator photon over number of events passing

top selection. εtt̄γγ Att̄γγ = 0.1329± 0.0025(stat)

For visible cross section ratio photon selection term includes only photon reconstruction

efficiency because by definition we are considering events where generator photon passes

analysis level pT and η cuts. Efficiency is calculated as ratio of events passing top and

photon selection with reconstructed photon matched to generator photon over number of

events passing top selection and with isolated generator photon passing pT and η cuts for

photon selection. εtt̄γV isγ = 0.281± 0.004(stat)

6.8 Systematic uncertainties

The measurement relies on simulation in several aspects.

Signal acceptance is pure simulation based quantity. Its uncertainty can be estimated

by comparing different event generators and hadronizers as in32. In that analysis the main

source of uncertainty was due to disagreement in the photon isolation templates and MC

truth matched templates which is not the case here.

Background normalization is important part of the measurement. We use theoretical

cross sections for di-boson and single top samples, but cross-check normalization of other
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samples using different template fits to data.

These uncertainties are t as independent and their effect on the ratio measurement is

summed up in one row of the table 6.2.

Estimation of systematic uncertainties related to modeling is done in the following way.

All quantities that are known to have some uncertainty are varied and the measurement is

repeated. The cross section ratio is then compared to nominal. In this way we can estimate

the effect it has on the final result. In the table 6.2 we list the uncertainties in decreasing

order of their effect on the cross section ratio.

Method is uncertainty on calculated number of signal events. It includes photon purity

uncertainty, uncertainty on top purity after photon selection and statistical uncertainty on

number of events in data. By changing each of these parameters up and down within their

uncertainties we can get an idea of how they contribute to the total uncertainty on number

if signal events (26%). Top purity uncertainty gives the biggest contribution (24%). Pho-

ton purity uncertainty translates to 13% of change of the signal normalization. Statistical

uncertainty on number of events in data gives variation of 4%. It means the uncertainty of

this measurement is systematics dominated, mainly because of the uncertainty on Wgamma

and Zgamma processes (the main reason to perform M3 fit after photon selection).

JEC jet energy correction (scale) uncertainty originates from parton energy reconstruc-

tion. Energy of the original parton that produced jet can’t be precisely reconstructed due to

different detector response to various types of particles in the shower and non-linearities in

the detector. Simulation-based procedure was developed by JetMET group to calibrate the

response to various energies of incoming particles and regions of the detector. As a result

one has a calibration constants with uncertainties. We vary all the calibration constants by

increasing or decreasing them by the uncertainty.

JER jet energy resolution uncertainty.

Multijet uncertainty is estimated by varying data-driven multijet sample normalization

by factor of 2 and 0.5 after the fit results. M3 fit is then done using this modified multijet

61



template.

TopPt re-weighting affects M3 shape and consequently fit results for tt̄ and WJets nor-

malization. Step up and down are done according to recommendation of CMS top group.

Step down is not applying re-weighting at all, step up is applying it twice.

Btag B-tagging uncertainty is done according to BTV group recommendations. The scale

factors and uncertainties are taken from dilepton tt̄ events and should not be correlated with

the data used in this analysis.

Photon Energy Photon Energy uncertainty mainly contributes to the acceptance. We

scale energy of all reconstructed photons by 1% up and down and redo the measurement.

PU Pile Up correction is applied to all MC events and derived for average number of

interactions in data. By scaling average number of pile up interactions by 5% up and down

we get different event weights.

Table 6.2 lists the uncertainties and their effect on measured cross section ratio and

visible cross section ratio. The latter has no signal acceptance term, so that the cross

section is defined in the analysis cuts phase space, not in generator particles phase space.

Table 6.2: Systematic uncertainties and their contribution to the cross section ratio.
Source Ratio change (%) Visible Ratio change (%)
Method 26 26
JER 5.3 5.4
JEC 4.2 5.0
Multijet 3.2 3.2
Electron FakeSF 2.1 2.1
TopPt 2.1 2.1
Electron Eff 1.1 1.7
Btag 1.1 1.6
Photon Energy 1.0 1.1
PU 1.1 1.1
Electron Energy 1.1 1.1
ZJetsSF 1.1 1.1
Total 27.3 27.6
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6.9 Plots

In order to check all procedures related to tt̄ and WJets samples are scaling and multijet

estimation we plot some important quantities after the events passed photon selection.

Here we use theoretical cross section for tt̄ + γ process. However this dataset is used only

for acceptance and photon reconstruction and identification efficiency cross-check and the

normalization is not used in the measurement.

6.10 Results

Cross section ratio can be calculated using the following values:

• Number of events in data after photon selection: 977± 31(stat)

• Electromagnetic object purity after photon selection: 0.564 ± 0.063(stat + fit), see

Section 6.4.

• Fraction of events containing top quark pair, from M3 fit after photon selection: 0.645±
0.084(fit), see Section 6.3.

• Expected number of signal events with genuine photon after photon selection, from

simulation, data-driven photon purity fit, and M3 fit: Nsignal = 330 ± 85. See Sec-

tion 6.6 for details. The number is obtained by multiplying the event count form

TTGamma sample with signal photon from Table 6.1 by the scale factor tt̄γSF from

Section 6.6.

• Expected number of tt̄ events in data after top selection: 162560 ± 1240(stat + fit),

obtained from M3 fit after top selection, details in Section 6.3.

• Signal acceptance times photon reconstruction and identification efficiency found from

signal simulation. (Section 6.7) Calculated as ratio of number of events in signal sample

passing photon selection with reconstructed photon matched to generator photon over
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Figure 6.17: Comparison of data and simulation after photon selection. Theoretical cross
section for tt̄+γ is used. No re-weighting for TTGamma scale factor, Vgamma scale factor,
jet to photon scale factor is done.
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number of events passing only top selection (1 or 2 lepton final state). This gives

εtt̄γγ Att̄γγ = 0.1329± 0.0025(stat)

We get the cross section ratio:

R =
σtt̄+γ
σtt̄

=
Nsignal

εtt̄γtopA
tt̄γ
topε

tt̄γ
γ Att̄γγ

· ε
tt̄
topA

tt̄
top

N tt̄
=

= 0.0082± 0.0022(stat+ syst).

Note that σtt̄+γ here is not inclusive cross section, but within a phase space defined in Sec-

tion 4.1 with cuts on particles transverse momenta and other quantities. Also, we consider

only semi-leptonic and di-leptonic top pair decays, while lepton flavor can be arbitrary.

Another result is visible cross section ratio where we do not extrapolate the measured

result to the phase space used for signal simulation. In this way we do not rely on kinematic

properties of simulated signal dataset. We will need photon reconstruction and identification

efficiency, but not signal acceptance for photon selection. Efficiency is calculated as ratio

of number of generated signal events that passed photon selection to number of generated

signal events with a generator level signal photon in the region of pTη space used for photon

selection. (Same Pt cut and eta cut on generator photon as used for reconstructed photon)

RV is =
Nsignal

εtt̄γV istop Att̄γV istop εtt̄γV isγ

· ε
tt̄
topA

tt̄
top

N tt̄
= 0.00152± 0.00041(stat+ syst).

By using the CMS measurement of inclusive tt̄ cross section17 we can convert ratio to

tt̄+ γ cross section:

σtt̄+γ = R · σtt̄ =

(0.0082± 0.0022(stat+ syst)) · (239± 2(stat.)± 11(syst.)± 6(lum.)pb) =

1.96± 0.53pb

All uncertainties were added in quadrature.
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Visible cross section calculated in the same manner:

σtt̄+γV is = RV is · σtt̄ =

(0.00152± 0.00041(stat+ syst)) · (239± 2(stat.)± 11(syst.)± 6(lum.)pb) =

0.36± 0.10pb

This result can be compared with theoretical NLO calculation30. For di-lepton channel

the cross section is 33fb, for lepton+jets channel it is 148fb. This is for one lepton species.

We calculated acceptance for all lepton flavors and charge combinations. For di-lepton

channel there are 3 lepton options for top quark and 3 for top anti-quark, which makes 9

combinations. For semi-leptonic channel one of the top quarks can decay leptonically (3

options), while other decays hadronically (2 options, because W can decay into first and

second generation quarks). The situation does not change if the top quark and antiquark are

swapped, this adds factor of 2, making total 12 different combinations. Total cross section

for 1 and 2 lepton final state is:

σNLOtt̄γ = 9 · 0.033pb+ 12 · 0.148pb = 2.07± 0.41(scale)pb

We see that experimental and theoretical results agree very well within their precision.
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Chapter 7

Summary and Outlook

The analysis presented in this thesis complements a similar measurement by the CMS exper-

iment in the muon+jets channel32 and by the ATLAS experiment in both the electron+jets

and muon+jets channels33. No significant deviations from Standard Model predictions were

observed.

The development of analysis methodology is the main result of this work.

Kinematic properties of events are explored through the M3 variable – invariant mass

of three jets that have highest transverse momentum when added together. The profile of

M3 distribution in data is fitted with simulation-based shapes to find the fraction of events

containing a top quark pair, called top purity for compactness. The method is cross-checked

in electron+jets event selection where top pair events are dominant and their amount is

known. Then the method is applied in electron+photon+jets event selection.

Photon identification efficiency is estimated by studying photon isolation profile, in-

spired by48, but the method was modified for the different environment. The modified

method allows extraction of signal and background isolation templates directly from data.

The procedure is tested on simulated events and then data-driven shapes are used in the

measurement.

Decay of Z boson to e+e− process was used to correct the description of electrons misiden-
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tified as photons in simulation.

A simultaneous fit for 3 parameters including number of top pair and photon events is

done by combining information obtained from the M3 fit and photon isolation fit.

The main sources of uncertainty of this measurement are photon purity estimation and

top purity estimation. Precision of the method is currently limited by the number of events

passing the selection. With more data available at LHC Run 2 it will be possible to improve

the precision.

At this point the uncertainty of the measurement is slightly bigger than the theoretical

uncertainty. By improving the result with more data and better analysis procedure one will

be able to put theoretical calculations at more stringent test.

Other analyses like the search for production of top pair and Higgs boson, which decays

in two photons, has a similar experimental signature, with two photons instead of one.

Understanding top pair and photon process will be of a high importance because it will be

a background for this search.
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