
MAGNETIC AND MICROSTRUCTURE PROPERTIES 
J' 

OF IRON-RARE EARTH-CARBON MAGNETS 

by 

N. VENKATESWARAN 

B.E., B.I.T.S, Pilani, India, 1985 

A MASTER'S THESIS 

submitted in partial fulfillment of the 

requirements for the degree 

MASTER OF SCIENCE 

Department of Physics 

College of Arts and Science 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

1988 Approved by: 

Sec-̂  
Major Professor 



Acknowledgements 

I a m grateful to Dr.George Hadjipanayis for giving me the opportunity to work 
with him. Thanks are due to him for the support and encouragement through out 
this work. I would like to thank Dr M.J.O'shea and Dr.Talat Rahman for the 
useful discussions I had with them. 

Thanks are due to Anton Nazareth, who helped me learn the intricacies of 
experimental methods in magnetism. It is also my pleasure to acknowledge the 
helpful assistance of all my teachers, colleagues and friends. 



CONTENTS 

page 

A C K N O W L E D G E M E N T S i 
F IGURES iv 
C H A P T E R 1 

Theoretical Background 
1.1 Int roduct ion 1 
1.2 Domains 3 
1.3 Anisotropy Energy 4 

1.3.1 Domain walls and domain wall energy 5 
1.4 Theories of coercivity 5 

1.4.1 Domain wall pinning 5 
1.4.2 Single domain particles 8 
1.4.2(b) Coherent rotat ion of SDP 8 
1.4.3 Nucleation of reversed domains 10 

1.5 Permanent Magnets 11 
C H A P T E R 2 

Previous Studies 
2.1 In t roduct ion to Fe-R-C systems 13 
2.2 Objectives of present study 14 

C H A P T E R 3 
Experimental Methods 

3.1 Sample Prepara t ion 15 
3.2 Heat t rea tments 16 
3.3 Magnetic measurements 16 
3.4 T E M and X-ray observations 17 
3.5 Samples studied 17 

C H A P T E R 4 
Magnetic Measurements 

4.1 In t roduct ion 19 
4.2 Initial curves and hysteresis loops 19 
4.3 Tempera tu re dependence of He 27 
4.4 Thermomagnet ic measurements 27 
4.5 Ac susceptibihty 32 

C H A P T E R 5 
Microstructure 

5.1 In t roduct ion 37 
5.2 Microst ructure of Fe jTDyisCs 37 
5.3 Microstructure of FerTNdgDy6Cr.2Bo.s 38 
5.4 Microstructure of FeT6_iNdio_iDys,gCT,iBo.s 39 
5.5 Microstructure of Fe^^Ndl^Bs, 40 

C H A P T E R 6 

ii 



Analysis and Conclusions 
6.1 Phase Diagram 53 
6.2 Magnetic Hardening 54 
6.3 Effect of C on coercivity 56 
6.4 Effect of Nd on coercivity 56 
6.5 Effect of Dy on coercivity 57 
6.6 Conclusions 57 

R E F E R E N C E S 60 
A B S T R A C T 63 

111 



Figures 

1.1 Magnetization curve and hysteresis loop. 
1.2 Model to i l lustrate domain wall movement. 
1.3 The prolate ellipsoidal particle in a magnetic field. 
1.4 Energy product and working point for a permanent magnet . 
4.1 M Vs H curve for as cast Fe-j-jDyisCi. 
4.2 M Vs H curve for as cast Fe77iVd9l>y6C'7.2-Bo.8 
4.3 M Vs H curve for as cast Fere.iiVciio.ii^ys.gCT.i^o.s 
4.4 M Vs H curve for as cast H.T. F e j j D y i s C s . 
4.5 M Vs H curve for as cast H.T. Fe-,TNdQDy&CT.2BQ.i. 
4.6 M Vs H curve for as cast H.T. Feje. iNdio. iDys.gCT.iBo.s 
4.7 Il lustrating "ideal" domain wall pinning and "ideal" nucleation of reversed 

domains. 
4.8 H e Vs T for I, II, and III. 
4.9 Magnetization Vs Tempera ture for I. 
4.10 Magnetization Vs Tempera ture for II. 
4.11 Magnetization Vs Tempera ture for III. 
4.12 Ac susceptibility Vs Tempera ture for I. 
4.13 Magnetization Vs Tempera ture (below RT) for I. 
4.14 Magnetization Vs applied field for fine powders at T = 3 0 0 K . 
4.15 Magnetization Vs applied field for fine powders at T = 3 0 K . 
5.1 SEM of I showing three different grains. 
5.2 Microstructure of a region of I. 
5.3 Electron difraction pa t te rn of region A in fig 5.2 showing the F e n D y 2 C 

phase. 
5.4 Lattice image of the 2:14:1 phase. 
5.5 Microstructure of a different region of I. 
5.6 Electron diffraction of region in fig 5.5. 
5.7 SEM of II showing grains 1-2/ im in size. 
5.8 Microstructure of a faulted region of II. 
5.9 Electron diffraction pa t te rn of 2:14:1 phase showing distortion due to fault 

s. 
5.10 Lattice images seen in II. 
5.11 Electron diffraction of fig 5.11 showing heaxagonal s t ructure. 
5.12 Microstructure of II showing oriented grains. 
5.13 SEM of m . 
5.14 domain walls(dw) in III. 
5.15 2:17 phase corresponding to dw of fig 5.15. 
5.16 Microstructure of some region of III. 
5.17 2:14:1 phase corresponding to region X. 
5.18 Lattice image of another region of III. 
5.19 FeDyC phase corresponding to the lattice image of fig 5.18 

IV 



5.20 SEM of as cast F e j i N d i s B g . 
5.21 SEM of as cast heat t rea ted F e r y N d i s B s 



Chapter 1 

THEORETICAL BACKGROUND 

1.1 Introduction 

A ferromagnetic mater ia l is one in which the strongly coupled atomic dipole 

moments tend to align parallel. As a result of this spontaneous magnet izat ion 

exists in small domains in such materials; tha t is even in the absence of a magnet ic 

field there is a net magnet ic moment in the domains. Above a critical t empera tu re , 

Tc called the ferromagnetic Curie tempera ture , the spontaneous magnet izat ion 

vanishes. The material t hen becomes paramagnet ic . 

The principal bulk property of a ferromagnetic mater ia l is the appearance of 

a relatively large magnet izat ion M with the application of a small field H, and the 

tendency of this magnet izat ion to sa tura te at a value M, in higher fields. Other 

propert ies used as a test for the occurrence of fer romagnet ism are the existence 

of a " remanent magnet izat ion" Mr after the removal of the applied field, and the 

existence of irreversibility or "hysteresis", in the M-H magnet izat ion curve. A 

hysteresis loop is shown in Fig 1.1 . Wi th reference to this Figure, He called the 

coercive field or "coercivity", is the magnetic field tha t must be applied in an 

opposite manner to "reduce" the magnetizat ion M to zero. 

Similar effects occur in the B-H magnetizat ion curve, where B is the induct ion, 

or flux density defined as, [l], 

B = H + ^TrM (1.1) 



Fig 1.1 Magnetizat ion curve (OABC) and hysteresis loop 

^ O C D E F G C ) of a typical ferromagnetic mater ia l 



The "residual induction" Br is equal to AirMr- In the cgs uni ts used in this 

thesis, B is measured in gauss and H is measured in oersteds. 

1 . 2 Domains 

It is well known that in spite of the spontaneous magnet izat ion a ferromagnet ic 

specimen may exhibit no magnetic moment when the applied field is zero. In order 

to explain these observations, Weiss pos tula ted the existence of small regions, 

called domains, each of which is spontaneously magnetized. T h e magnet izat ion 

of the btilk material is then the vector sum of all the magnet izat ions present in 

the domains which make up the sample. Since the direction of magnet iza t ion 

in each domain need not be parallel, certain domain conf igu ra t ions lead to a 

zero net moment . The application of a relatively small field changes the domain 

ar rangement , and hence leads to an appreciable net magnet izat ion. The bounda ry 

region between two domains is called a domain wall, also called a Bloch wall. 

The ma in reason for the existence of domains in a crystal is t h a t their presence 

reduces the demagnetizat ion energy associated with it . The t rue magnet ic domain 

s t ruc ture of a sample is found by minimizing the total energy. 

The to ta l free energy of a ferromagnetic specimen in an applied magnet ic field 

may be wr i t ten as the sum of several free energy terms [2]: 

FT = FH + FD + FK + F„ + Fe + Fo (1.2) 

where the symbols have the following meaning. FT is the tota l free energy, FH is 

the energy of the specimen's magnetization in the applied field H, Fd is the self 



energy of magnet izat ion in its own field, Fk is the crystalline anisotropy energy 

which comes f rom the fact tha t it is easier to magnetize a crystal in certain direc-

tions called "easy directions" than in others, Ftr is the magnetostrictive energy, Fe 

is the exchange free energy and FQ represents any other contributions to the free 

energy tha t may be present. 

1.3 Anisotropy Energy 

Magnetic propert ies of a ferromagnet depend on the direction in which they 

are measured and therefore a sample possesses a certain magnetic anisotropy. 

There are several kinds of anisotropy : crystal anisotropy also called magnetocrys-

talline anisotropy, shape anisotropy, stress anisotropy etc. Only crystal anisotropy 

is intrinsic to the mater ial . Tha t is, all the others are external or can be induced 

in the mater ia l . 

T h e preferred direction of magnet izat ion of ferromagnetic materials are de-

fined as "Easy Axes" . The crystalline anisotropy energy is defined as the work 

required to make the magnetizat ion lie along a direction different f rom the easy 

direction. For a uniaxial crystal, the anisotropy energy is given by, [24], 

Ek = K i s i n ^ e + K i s i n ^ e (1.3) 

where K i and K2 are the anisotropy constants for a particular material . 



1.3.1 Domain Walls and Domain Wall Energy 

The change of magnet izat ion through the boundary between magnetic do-

mains is not abrup t bu t a gradual one, since the la t te r involves less exchange 

energy. For the simplest type, the 180° wall, the magnet izat ion simply changes 

direction. The actual width of the wall is determined by the competi t ion between 

Fc and FKI assuming FD = 0. It has been shown [2], tha t for a uniaxial crystal 

with 180° wall, the wall thickness is given by 

(1.4) 

where Jg is the exchange integred, K^ is the anisotropy constant , and a is the 

ineratomic distance. The wall energy per unit area associated with this value of 8 

is, f r o m (1.3) and (1.4), 

(1.5) 

1.4 Theories Of Coercivity 

Any theory t rying to explain coercivity is based on the irreversible movement 

of domain walls or irreversible rotat ion of the magnet izat ion vector. Below we 

present some of the mechanisms by which coercivity is obta ined. 

1.4.1 Domain Wall Pinning 

The hysteresis curve arises f rom irreversible energy changes. The simple model 

developed below will show how the various par ts of the hysteresis curve may be 



related to domain wall movements. Let us consider a 180° wall t ha t lies parallel 

to the y , z plane and moves in the x direction when a field is applied, as in Fig 

1.2. Let Ffut denote the energy arising f rom a unit area of one wall located at a 

certain position, regardless of the origin of this energy. Now suppose Fyjt for this 

wall depends on x in the manner shown in Fig 1.2(b). W h e n the field is zero, the 

wall will lie at an energy minimum, assumed to be at x = 0. W h e n the field is 

applied the equilibrium position of the wall is given by 

2MH = ^ (1.6) ax 

Hence the action of the field will be to displace the wall to the right by an amount 

depending on the slope of the F^t versus x curve. For positions on the wall between 

O and A in Fig 1.2(c) the motion is reversible. Once the wall has reached A it 

will spontaneously move to E. This motion is irreversible, since on decreasing the 

field the wall moves back to D and then to C , on reversing the field direction. 

Fur ther increasing the field to the range E F the motion remains reversible and at 

F spontaneous mot ion occurs. 

The coercive force is a measure of the field required to move a wall past energy 

barr iers and therefore depends on the max imum value of. The remanence 

is the result of a wall being taken f rom one one energy m i n i m u m to the other by 

the application and subsequent removal of the field. An actual mater ia l will have 

m a n y walls and the behaviour of the material may be found by superimposing the 

effects due to each wall or by taking the average s i tuat ion for one wall. 

6 



Fig 1.2 Model to i l lustrate domain wall movement , f rom Morrish [2 



In shor t , t he theory of domain wall pinning predic ts t h a t imperfec t ions or 

inclusions, magne t i c or otherwise, impede domain wall mot ion a n d i n c r e a s e the 

coercivity. F rom equat ion (1.6) we get 

where the s y m b o l s have their usua l meaning. T h e coercive force is a measure of 

t he field required to move a wall pas t the energy bar r ie rs and therefore depends 

on the m a x i m u m value of 

1.4.2 Single Domain Particles 

A magne t ic sample spontaneously breaks u p in to a number of domains in 

o rde r to reduce i ts magnetostatic energy. But under cer ta in c i rcumstances the 

sample may remain a single domain . This happens when t h e sample is a very 

smal l par t ic le . T h e n the exchange forces domina te , so t h a t insp i te of t h e presence 

of demagne t i za t ion energy, and t h e absence of an appl ied field t h e particle is 

un i formly magne t i zed and hence remains a single domain . T h e cri t ical size for a 

s ample to remain a single domain is given, by [24], as 

t 

1.4.2(b) Coherent Rotation of Single Domain Particles [2] 

Consider a prola te ellipsoidal par t ic le wi th Fk a n d F^ equal t o zero, a n d 

suppose a magne t i c field is appl ied. At equil ibrium, M will lie in t h e p lane defined 

8 



by the directions of the field and the polar axis as shown in Fig 1.3. The applied 

field, H, makes an angle 6 with the polar axis. 

where V is the volume of the particle and Dat Db are the demagnet izat ion factors 

along the " a " and the " b " axis, respectively. T h e energy in the applied field is 

given by 

Fig 1.3 The prola te ellipsoidal par t ic le 

in a magnetic field, Morrish [2 

Now the demagnet iza t ion energy is given by 

where (f) is the angle be tween H and M. Hence the total energy, f rom (1.2), is given 

by 

9 



For equilibrium Ft must be minimized, and this will give the direction along which 

the particle will be magnetized. Minimizing Ft, and simplifying, we obtain 

where we define 

Now if we consider a particle with uniaxial anisotropy, ins tead of the shape 

anisotropy discussed above, neglecting K2 and higher orders of K, and consid-

ering Fk instead of Fd in the expression for Ft-, and minimizing it we get (1.10). 

But now h, the field in reduced uni ts , is given by 

Hence the m a x i m u m coercive force occurs for h = 1, tha t is H = ^ ^ . For a 

powder of spherical non interact ing particles oriented randomly. He = ? [2]. 

1.4.3 Nucleation Of Reversed Domains 

This model was proposed to take care of the large discrepancies between 

observed and theoretical coercivities predicted by single domtdn particles . Brown 

[4] showed tha t the field required to reverse the magnet izat ion in a perfect crystal 

is given by 



However, the coercivities in actual crystals are much less. The condition for wall 

nucleation, which means the generation of one or more nuclei possessing a reversed 

magnetizat ion, is [24 

(1.12) 

where Ha is the applied magnetic field and Hd is the demagnetizat ion field at the 

nucleation posit ion. The applied field may be much less t h a n expected if : 1)Hd 

or M , is larger than normal or 2) K is smaller t han normal . The value of M , is 

determined by the magnet ic moment per a t om and the exchange coupling among 

atoms, and it may larger or smaller, in the vicinity of vacancies, interstitials, 

dislocations etc. The local value of K, which depends on spin-orbit coupling, may 

change due to imperfect ions or small variations in chemical composition. But it 

is believed tha t local variations in Hd play the prominent role in the nucleation of 

reversed domains. To pu t it succinctly, in this theory inclusions tend to decrease 

the coercivity, by making magnetizat ion reversal easy. 

1.5 Pennement Magnets 

On the basis of theories described earlier, we can classify magnetic materials as 

hard or soft depending on their intrinsic coercivities. Accordingly, a ha rd magnet ic 

mater ia l is one which has an intrinsic coercivity of at least 100 Oe. 

In order for a mater ia l to serve as a permanent magne t three things are 

necessary: a large value of remanence, a high coercivity, and a high vsJue of Tc-

The produc t of the magnet ic flux density B and the associated opposing field H, 

11 



also is a useful measure for pe rmanen t magnet materials . The (BH) product is 

commonly referred to as the energy p roduc t . In Fig 1.4, the working point [ B ^ H ^ ) 

has been so determined t h a t the the (BH) product shows a maximum [5]. This is 

designated by the symbol {BH)max- It is generally advantageous to have a large 

energy p roduc t , so t h a t magne t s can be made as small as possible. W h e n B r = He 

the loop has a square fo rm and the m a x i m u m energy p roduc t is given by [6] 

(1.13) 

BH-

Fig 1.4 Energy p roduc t a n d working point for a permanent magne t , f rom Heck[5 
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Chapter 2 

PREVIOUS STUDIES 

2.1 Introduction to Fe-R-C Systems [7-9] 

Prior to 1980 the most popular permanent magnet materials contained 

samar ium and cobalt. The critical and strategic impor tance of cobalt added to 

the short supply of samar ium stimulated a lot of research in the development of 

new permanent magnets tha t would consist almost entirely of relatively cheaper, 

and more abundan t , rare earths. In 1983,Hadjipanayis et at [10] reported the 

first non-cobalt FePrBSi magnet with a coercive field of 15 kOe and an energy 

product of 13 MGOe. Around the same t ime Croat [11] and Koon [12] repor ted 

similar res tJ ts . As soon as these reports were released Sumi tomo [13] announced 

the world's first i ron-neodymium magnet ( n e o m x ) with a record energy product 

of 35 MGOe. 

Since then , there has been a lot of activity, with the goal of unders tand-

ing and improving the propert ies of the magnet systems p repared by sintering 

or rapid solidification techniques. The principal components of these systems 

remain Fe, Nd, and B ; minor additions to replace Fe or Nd serve chiefly to 

improve the high t empera tu re behaviour of the Fe-Nd-B m a g n e t . Using X-ray 

and neu t ron diffraction d a t a , it has been determined [28]-[29] t h a t the magnet ic 

proper ty of Fe-Nd-B is derived from the N d 2 F e n B i ^ also called the 2:14:1 phase. 

The overall crystal s t ruc ture of the 2:14:1 phase is te t ragonal wi th a = 0.88 n m 

13 



and c = 1.22 nm, as shown in Fig 2.1 [14] . The fact tha t the tetragonal phase 

responsible for the high magnetic anisotropy is formed with carbon as the met-

alloid has largely been ignored even though such a compound was reported by 

Stadelmaier [15], two years before the disclosure of the Fe-R-B magnets . Stadel-

maier reported the intermediate phases that are formed in the Fe-Gd-C alloy. 

The ha rd magnetic phase was reported to be Fe2(iGdiC, now correctly identified 

as F e i 4 G d 2 C . The Fe-Gd-C as-cast compound did not show the 2:14:1 phase 

but the heat - t rea ted sample did. This led to a search for stable Fe-R-C, with R 

other t h a n Gd, where it was supposed tha t these stable carbides would exhibit 

propert ies similar to Fe-Gd-C. Stadelmaier et A1 [7-8], repor ted high coercivities 

in as-cast Fe-Dy-C alloys. However, they did not elaborate on the origin of these 

coercivities. 

2.2 Objectives of Present Study 

Our goal here, is to unders tand the mechanism by which a high coercivity is 

obta ined in these carbides. In other words, is the high coercivity due to pinning, 

nucleat ion of reversed domains, or format ion of single domain particles? We 

would also like to unders tand the exact role played by C, Dy in the achievement 

of high coercivities. To this end, we have conducted magnet ic measurements as 

well as micros t ructure studies which gave us information about the structured 

morphology of the sample at different stages of heat t r ea tment . 

14 



Chapter 3 

EXPERIMENTAL METHODS 

3.1 Sample Preparation 

The samples obtained by melting together the const i tuents of the alloy is 

termed as an "as-cast" sample. As-cast samples of the alloys to be studied were 

made in to bu t tons of 3-4 grams by arc-melting in high pur i ty argon atmosphere. 

The pur i ty of the materials was 99.9% or bet ter for all elements used. The 

weight losses of the samples after melting were kept below 0.5%. The samples 

were remelted three times, so as to improve their homogeneity. 

Powder samples were m a d e by the following procedure: T h e as-cast samples 

were first ground in to coarse powder by using a stainless steel grinding ja r . This 

coarse powder was passed through a 100 mesh sieve and the coarse powders of 

around 150/im were obta ined. Then the powder was g round into a finer size 

by ball milling. The t ime of milling wsis chosen to be a round 24 hours so as 

to get single crystals of the sample. During the miilling, the sample was always 

immersed in methylene chloride. For X-Ray studies the coarse powder was used. 

Aligned powder samples were prepared by taking the powders and encasing 

them in a small piece of a plastic straw. Then the powders were aligned in a 

strong magnet ic field and frozen in that con f igu ra t ion using molten wax. For 

T E M observations, the as-cast samples were first cut in to a small slice using a 

15 



diamond cut ter . Subsequently, these slices were shaped to a 3 m m diameter size 

discs by making use of the grinding wheel. These discs were then electropolished 

, and were then ready for T E M observation under the microscope. 

3.2 Heat Treatments 

T h e as-cast samples had to be heat - t rea ted at 900°C for 72 hours.This high 

t empera tu re required the use of quar tz tubes. The samples were sealed inside the 

quartz tube tha t had been evacuated prior to this. For magnetic annealing,the 

samples in ceramic holders were heat - t rea ted in-situ in a vibrat ing sample mag-

netometer ,equipped with a furnace capable of tempera tures up to 750°C and mag-

netic fields up to 17 kOe. Flowing argon gas served to protect the heated samples 

against oxidation. 

3.3 Magnetic Measurements 

Hysteresis loops were measured with a low field vsM (vibrat ing sample mag-

netometer ) upto 17 kOe,and a high field vsM (upto 75 kOe).A range of tempera-

tures f rom 4.2 K was provided by a Lakeshore t empera tu re controller. A SQUID 

(superconduct ing q u a n t u m interference device) was used to provide addit ional 

d a t a for t empera tures ranging from 1.7 K to 400 K and for fields ranging upto 

55 kOe. The high field vsM was used to measure M below room tempera tures 

up to a m a x i m u m applied field of 75 kOe. 

The t empera tu re dependence of M, above room tempera tures , was measured 

16 



to give us information about the different magnetic phases which are present in 

the sample and their t ransit ion temperatures . Such measurements are taJcen at 

very low applied fields, about 100 Oe, and the field is kept constant during the 

running of the experiment . The basic assumption of the me thod is that the total 

magnetizat ion, of a multiphase sample is a linear superposit ion of the 

magnetizat ion of the individual phases. 

Ac susceptibility (xac)measurements were also used to provide information 

about magnetic phase transit ions. In this case the susceptibility of the sample 

is measured as a funct ion of temperature in the presence of an alternating low 

applied field. 

3.4 TEM and X-ray observations 

Transmission electron microscopy (TEM) and electron diffraction, using a 

J E O L lOOC scanning and transmission electron microscope,were used to exam-

ine the s t ruc ture of the heat- t reated and as-cast samples. A T E M can only give 

informat ion about a small region of the sample. To get an overall picture of the 

s t ruc ture X-ray measurements were made on the same samples. The d-spacings 

determined from the X-ray diffraction were matched with the known d-spacings 

of all possible phases in order to identify the phases present in the system. The 

X-ray diffraction studies were made using Cr ( K a ) radiat ion. 

3.5 Samples Studied 

We basically dealt with four as-cast alloys having the following compositions: 

17 



(1) Fe^^Dy^5Cs 

(2) Fej jNdsDyeCT.2Bo.s 

(3) Fe^6.lNdio.lDy5.9C^.lBo.8 

(4) F e y j N d . s B s 

For the sake of convenience, let us label the above compositions as I, II, III , 

and IV respectively. Samples I, II, and III were as-cast and heat - t rea ted at 900°C 

for approximately 72 hours. Sample IV was as-cast and heat t rea ted at 900°C 

for approximately 45 hours. 

18 



Chapter 4 

MAGNETIC MEASUREMENTS 

4.1 Introduction 

In this chapter the magnetic properties of Fe-R-C-B alloys are discussed. 

The results are subdivided into sections tha t deal with different magnetic mea-

surements. The object ive of this work is to correlate the microstructure with 

the magnet ic measurements and thus come up with a logical explanation for the 

large coercivity, observed experimentally, in these systems. The microstructure 

is presented in the next chapter. 

4.2 Initial Curves and Hysteresis Loops 

The initial magnet izat ion curves and hysteresis loops were taken at room 

tempera tu re . The as-cast (not heat t reated) samples had negligible coercivities, 

Figs 4.1 - 4.3. Figs 4.4 - 4.6 show the hysteresis loops for the heat- t reated samples. 

As it can be seen, the hysteresis loops showed a subs tant ia l increase in coercivity, 

af ter the samples were heat- t reated. Therefore, most of our coercivity studies 

were focussed on samples which had been hea t - t rea ted . 

The hysteresis loops do not appear to be sa tura ted . Fig 4.4 shows an asym-

met ry abou t the Y axis and this is because the loops are minor loops. For all 

of the samples s tudied we observed a slight kink around a round H = 0. This is 

most probably due to the presence of a soft magnet ic phase[16], maybe a - Fe ? 
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Fig 4.1 M vs H curve for as-cast F e j j D y i s C s 
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Fig 4.2 M vs H curve for as-cast FeTTjVdgl^ye^"7.2-^0.8 
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Fig 4.3 M vs H curve for as-cast Fe(7g.I)iV(i(jo.1)2^2/5.9C'T.I-^o.8 



Fig 4.4 M Vs H curve for as cast H.T. Fi-- ; Dyi^C's 



Fig 4.5 M Vs H curve for as cast I l .T. / V 77 A Wo/Ji/p (''7.2^0.6 



Fig 4.6 M Vs H curve for as cast H.T. F ( TS I i ^ 0 . 8 



Fig 4.7 Il lustrating "iacar" 'I'MiK-in u:,l! iiiniiine 

and " i d e a P nucleation of ipversed domains 



The initial, also called "virgin", curves are very impor tant in determining 

the coercivity mechanism. Figs 4.4 - 4.6 show the initial curves for the different 

samples. In all the three samples, for low values of H, M increases slowly and 

steadily for small increments of H and then it sa tura tes at higher fields. For 

comparison purposes. Fig 4.7 shows the initial curves for two extreme situations: 

domain wall pinning and nucleation-type materials. It is obvious f rom Figs 4.4 

- 4.7 tha t the initial curves of our samples are between the two extreme cases, 

a l though more closer to those of nucleation-type materials . 

4.3 Temperature Dependence of H^ 

Figs 4.8 shows the temperature dependence of He for I, II, and III respec-

tively. Since the sample could not be sa tura ted at fields of about 17 kOe, we 

used a high field of 75 kOe to check the t empera tu re dependence of coercivity 

of I, for t empera tu res below 300 K. The coercivity, for I, shows a slight increase 

and then slowly tapers off to almost zero at around 300°C. For II and III the 

coercivity shows a slow decrease to zero. 

T h e t empera tu re coefficient of Hc is relatively small for the samples s tudied. 

This is in contrast to sintered Fe-Nd-B samples where the coercivity approaches 

zero at a much faster rate, at around 200°C [17], As the t empera tu re depen-

dence of I, II, and III is similar, it strongly suppor ts the idea tha t the coercivity 

mechanism in all three samples maybe the same. 

4.4 Thermomagnetic Measurements 
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Figs 4.9 - 4.11 show the t empera tu re dependence of M for the different sam-

ples, above room tempera ture . For I we observe a magnet ic transit ion around 

300°C, where the magnetization shows a sudden drop. For II and III we observe 

similar magnetic transit ions at around 313 and 289 degrees Celsius. These tem-

pera tures correspond to the Curie t empera tu re of the hard magnetic phase which 

is responsible for the magnetic propert ies observed in these samples. This hard 

magnetic phase could be the 2:14:1 phase since it has a curie t empera tu re of about 

300°C.Note that the magnetization does not go to zero at t empera tures beyond 

300°C. This is because of the presence of a small amount of a — Fe. Table 4.1 

summarises the magnetic properties of the above given samples. 

200 500 750 

T(°K) 

Figc 4-8 Temperature dependence of H 
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Fig 4.9 Magnet iza t ion vs T e m p e r a t u r e for I 
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Fig 4.10 Magnetizat ion \ s I ' !!• i-'^r;!) in e lor II 
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4.5 AC Susceptibility 

The susceptibility da t a for I. is shown in Fig 4.12. We note tha t Xac shows a 

decrease as T is lowered. But at around 175 K an increase in Xac is seen. Note 

also the change in slope in Fig 4.13, which shows M (T) for I, with H = 500e . 

The anomalies observed in Figs 4.12-13 may be due to spin reorientation or due 

to the presence of a second phase. To answer this question we made fine powders 

and measurement M(H) for powders aligned parallel as well as for those aligned 

perpendicular to the applied field at T = 3 0 0 K and at T = 3 0 K . As can be seen, 

f rom Figs 4.14 - 4.15, at 300 K the set of da ta for parallel is consistently below 

the corresponding set of da t a for perpendicularly aligned powders. This is unlike 

the set of d a t a taken at T = 3 0 K . So there seems to be some evidence for spin 

reorientat ion. A clearer pic ture can be obtained if a bet ter me thod to prepare 

single crystals is used. 
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Table 4 . 1 

sample He Tc M ; 

(kOe) (°C) ( emu/gm) 

I 23 300 27.3 

II 8.3 313 29.5 

III 9.4 289 59.9 

IV - 310 44.54 

* : M , is the value of M obtained at 17 KOe. 
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Fig 4.12 Ac suceptibili ty vs Tempera tu re for I 
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Fig 4.13 Magnetizat ion vs T e m p e r a t u r e (below RT) for I 
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Fig 4.14 Magnet izat ion vs Applied field for 

fine powders of I at T=300K 



Fig 4.15 Magnet izat ion vs Applied field for 

fine powders of I at T=30K 



Chapter 5 

MICROSTRUCTURE 

5.1 Introduction 

The hard magnetic properties (He,MR) of permanent magnet materials are 

dependent on their microstructure. Microstructure measurements are very im-

por tant for the study and understanding of the origin of high coercivities. In this 

chapter we will present the microstructure of the samples studied. 

5.2 Microstructure of 

SEM measurements were made to characterize the s t ructure morphology 

and chemical composition of surface grains. Figs 5.1 shows three different grains, 

corresponding to a dark phase, a light phase and a white phase. The chemical 

composition of these regions was found by averaging a large number of da t a 

obtedned through an energy dispersive X-ray analysis (EDXA). Unfortunately, 

EDXA cannot detect carbon or boron. So we have to make a guess about the 

final composition taking into account the T E M and metallurgical predictions. 

The results of EDXA showed tha t the light phase has 15 at% Dy and 85 at% Fe. 

This , most likely corresponds to the F e i i D y 2 C phase. The dark phase contains 

of about 25 a t% Dy and 75 a t% Fe and therefore is Dy richer. The white region 

has about 10 at% Dy and 90 at % Fe. This could possibly correspond to the 

F e n D y 2 phase. Note tha t the white phase is very sparsely located. The grain 
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size is calculated to be approximately 6-10 fim. 

The microstructure of a region of the sample obtained with T E M is shown in 

Fig 5.2 . Several grains are observed the smallest of which labelled G has a grain 

size of approximately Ifxm . It is difficult to est imate the size of the other grains, 

but they are probably bigger than l/Lxm. The diffraction pa t t e rn f rom region A 

is shown in Fig 5.3, and has been identified to be the F e i 4 D y 2 C i , called 2:14:1 

for convenience, phase. The indexing was done using a=8.756 A° and c = l 1.801 

A°, [l8]-[20]. Lattice imaging, Fig 5.4, shows a "d" spacing of approximately 

1.18 nm. This agrees very well with the established c axis values for the 2:14:1 

phase given earlier. Fig 5.5 shows the microstructure of a new region in sample 

I. The grainy region was selected for the diffraction pa t t e rn shown in Fig 5.6. 

The phase appears to be a mixture of the 2:14:1 , the Dy-rich and possibly, the 

Dy20z phases. 

T h e phases determined f rom X-rays show the presence of the FG\ iDy2C\ 

phase. This is consistent with the T E M pictures. 

5 . 3 M i c r o s t r u c t u r e of sample FeyTNdgDy5CT,2Bo,s 

An SEM picture of the surface of a sample, tha t had been polished and 

etched, is shown in Fig 5.7. The grains observed appear to be white, approxi-

mately 1-2 fim in size. From EDXA, the grains and the grey colored boundary 

appear to have an atomic composition of, approximately, Fesi{NdDy)i<i . This 

composi t ion of a toms, possibly, corresponds to F e n [ N d D y ) 2 { C B ) i . T h e dark 
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phase shows a composit ion of approximately 50 a t% Fe and 50 at% Nd and Dy. 

This could, possibly, be the Fe - {NdDy) - (CB) phase. Fig 5.8-9 show the 

microstructure and the corresponding diffraction pa t t e rn . The 2:14:1 phase is 

the one responsible for this pa t te rn . The distortion, appear ing as a curvature at 

the edges, in the pa t t e rn is due to the presence of faults in the sample. Lattice 

imaging, Fig 5.10, gives a "d" spacing of about 1.82 nm. The diffraction pat-

tern for this lat t ice. Fig 5.11, is possibly a hexagonal s t ruc ture with a = 9.3 n m 

and two different c-distances corresponding to, approximately c = 8 n m and c = 

18 nm. This s t ruc ture is possibly the Fe-Dy-C phase with stacking faults , [15]. 

Fig 5.12 shows grains which appear to be oriented. The smallest grain is about 

0.25/xm long. The other grains, par ts of which we observe, are probably larger 

t h a n 0.25/XTN. 

Note tha t the 2:14:1 phase is not formed with Fe, Nd and C as the metalloid, 

21]. X-ray observations showed that the bulk phase is the 2:14:1 phase. 

5 . 4 M i c r o s t r u c t u r e of FeTe.iiVtfio.i-Dys.gC'T.i^o.s 

SEM, Fig 5.13, shows small white grains embedded in a dark phase. EDXA 

of the small grains shows tha t it has an a t% composition of Fe^sNdgDye. It is 

possible t ha t this phase corresponds to F e ^ ^ N d D y ) 2 { C B ) i . The second phase 

contains approximately, Fe^\NdwDy^. The grains are, approximately 1-3 fj,m 

in size. 

Domain walls are observed ,£is shown in Fig 5.14, and the diffraction pa t t e rn 
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shows the presence of the rhombohedral F e 2 D y n , called 2:17 for convenience, 

phase, as in Fig 5.15 . The indexing for the 2:17 phase was done by using the 

d a t a for S m 2 C o n with a = 8 . 3 8 x l 0 n m and c = 12 .63x lOnm. Fig 5.16 shows 

the microstructure of some region of the sample. We observe tha t the diffraction 

pa t t e rn f rom the region labelled X, as shown in Fig 5.17, is identified as the 

2:14:1 phase. The "d" spacing f rom the lattice image of Fig 5.18 is calculated to 

be about 15 X lOnm. The diffraction pat tern f rom this area of the sample gives 

us the Fe — Dy — C phase and is shown in Fig 5.19 (compare wi th Fig 5.10). 

As before, X-ray diffraction was done and they are consistent with the elec-

t ron diffraction, and the 2:14:1 phase is seen along with the 2:17 phase. One of 

the lines which is strongly intense, could possibly correspond to the Fe2DyC2, 

[15], phase. 

5 , 5 M i c r o s t r u c t u r e of FeyTNdisBs 

Fig 5.20 is an SEM picture of the not heat- t reated sample which shows long 

plate-like grains. T h e white contrast is provided by another phase which could 

be the Nd-rich phase or a mixture of the Nd-rich phase and iV<£203,tentatively 

called FeNdB. In fact , what we see is the grain boundary along which the FeNdB 

phase exists. The grains are about 20-30 fim in size. The SEM for the as-cast 

sample tha t had been heat- t reated , called IV for convenience, shows a similar 

micros t ruc ture as the not heat- treated sample, Fig 5.21. But now the grains 

appear to be bigger than 30/im, and the FeNdB phase is also observed. 
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Fig 5.1 SEM of I showing three different grains 

Fig 5.2 Microstructure of a region of I 
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Fig 5.3 Electron diffraction pa t t e rn of region A in Fig 5.1 

showing the F e i ^ D y 2 C phase. 

Fig 5.4 Lattice image of the 2:14:1 phase 
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Fig 5.5 Microstructure of a different region of I 

Fig 5.6 Electron diffraction of region in Fig 5.5 
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Fig 5.7 EM of II showing grains 1-2um in size. 

Fig 5.8 Microstucturc of a region of II 
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F i g 5 . 1 3 S E M of III 

48 

Fig 5. Domain walls(dw) in III 



Fig 5.15 2:17 phase corresponding to the dw of Fig 5.14 

Fig 5.16 Microstructure of some region of III 
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Fig 5.19 FeDyC phase corresponding to the lattice image of fig 5.18 

F i g 5 . 2 0 S E M of a s c a s t Fe77Nd15B8 
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Fig 5.21 SEM of as cast heal t reated Fc-iyNdisBg 

r)2 



Chapter 6 

ANALYSIS AND CONCLUSIONS 

6.1 Phase Diagram 

The objective of this chapter , is to pu t together the da ta and microst ructure 

presented in the previous chapters and then come up with an explanation for the 

existence of large coercivity in as-cast Fe-R-C-B at room tempera ture . 

The as-cast alloys tha t were not heat - t rea ted did not show any coercivity 

at room tempera tu re . The as-cast material , af ter solidification has the rhombo-

hedral F e n D y 2 which is soft and H e is very small. This phase is t ransformed 

to the magnetical ly hard F e i i D y 2 C i upon annealing at 900°C [8]. Now there 

are two mechanisms by which one could obtain the 2:14:1 phase, (i) t ransforma-

tion f rom a - F e [23], by heat t rea tment or (ii) t ransformat ion f rom F e n R i or a 

derivative of it [8], by heat t rea tment . 

Let us consider the te rnary phase diagram corresponding to I. From [8], we 

know tha t the Fe^^^Dy^Ci phase can be formed f rom the following mechanisms: 

(i). F e n R 2 + Fe-R-X = F e n R 2 X i -h R-rich Phase 

(ii). F e ^ R i X + Fe-R-X = Fe-^^RiXi -f F e j i l i X z 

Where R = Dy, Nd and X = C, 

Therefore when microstructure determinat ions are made a search for the 

above phases should be made. The choice of 900°C as the annealing t empera tu re 
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is explained by the phase diagram. At this t empera ture , for the composition 

of I, ie., Fe-jTR-isCs , the three phases F e n R 2 , F e n R 2 C i , and FeRC are in 

equilibrium[8]. Therefore it is reasonable to expect a t ransformat ion around 

this t empera ture . The long annealing t ime of 72 hours was chosen as being 

appropriate to allow for the op t imum t ransformat ion of the 2:17 phase to the 

2:14:1 phase. 

6.2 Magnetic Hardening 

The microstructure studies of I, II, and III show the presence of more t h a n 

one phase. The magnetically hard phase has been identified as F e n D y 2 C . M 

vs T da t a predicts a T^ of approximately 300°C which agrees nicely with the 

reported value of 280° [18].The same da t a confirms the presence of a mult iphase 

microstructure, which agrees with the SEM's , the metal lurgy d a t a and the T E M . 

It is likely tha t the anomalies observed in Ac susceptibility d a t a at around 175 

K is due to spin reorientat ion. It can be concluded large grains of F e i i D y 2 C 

and irregularly dis t r ibuted smaller grains of F e n D y 2 and some other phase, 

tentatively called Fe-R-X phase. 

It is likely tha t the high coercivity we have observed in these samples is 

due to the format ion of single domain particles. To check this we calculated 

the single domain particle size, using the relation Dc = [25]. From (1.4) 

and (1.3), using J^ = O.SfcTc , [24], assuming a high value of K = 10® ergs/cc 

, a = 9°A, we get 7 = 15.85ergs/cm^. Note tha t for Fe^NdiB K = 4 X lO'̂  
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ergs/cc and it is known that K increases for Dy. Therefore, it was justified to 

use the K value given above. Since the density of the samples were not known, 

M, in emu/cc was obtained by assuming a density of 8 gm/cc. So we have for I, 

M, — 8g/cc X 20eTnu/g = 2A0€mu/cc, where 30 emu/g is an approximate value 

for Af,, from table 4.1. Using the above we get Dc = 4Afim. Since M, for II and 

III are greater than the M, value for I, therefore they have a lower Dc value. So 

it is safe to conclude that , assuming high reliability of the relation for Dc, the 

single domain particles have a size whose upper limit is AA^im. 

As the grain sizes found from microstructure studies are 1-3 fj.m, except for 

I, it is likely that the coercivity of our samples, II and III is due to formation 

of single domain particles. This result is, of course under the tacit assumption 

tha t Dc — , is a reliable relation. The coercivity predicted by noninteracting 

SDP's is He — which calculates to about 40 kOe. This value is much higher 

than the expected value of about 15 kOe. However, the high values of about 

0.7, point to a strong interaction between domains. The SEM's show us grains 

of 2:14:1 which are essentially contiguous with Fe-R-X dispersed at random. So 

it is possible that there is an interaction between these domains. As for I, the 

grains are much greater than Dc therefore we can declare with confidence that 

the H e for I is not due to SDP's. In all of the samples, we identified the 2:14:1 

phase and the microstructure did not show any pinning sites. The initial curves, 

Figs 4.1-3, show that there are no pinning sites inside the grains. Therefore, 

the magnetization reversal has to occur at the grain boundaries otherwise one 
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reverse domain could give rise to magnetizat ion reversal of the whole magne t . 

The pheise at the grain boundary is most probably the Fe-R-X phase. Therefore 

the nucleation of reversed domains occurs at this phase. This mechanism, is 

most likely, the one respons ib le for magnetizat ion reversal. T h e argument t h a t 

reversal occurs due to rotat ion of SDP has i t 's s t rengths but we are not sure of 

the calculated value for Dc-

6 . 3 E f f e c t of C on c o e r c i v i t y 

Compar ing the SEM's of I, II, III, and IV we can find out t he effect of C on 

the coercivity. Magnetic measurements for IV did not show any coercivity. Fig 

6.1 . In all of these the 2:14:1 phase was present. However, in I, II, and III t he 

size of the 2:14:1 grains were much smaller t h a n in IV. This is consistent wi th 

the observed increase in He with decreasing particle size [2]. The ext reme case 

occurs in r ibbons where the grain size is approximately 400°A [26]. So we can 

conclude tha t C aids in the formation of small grains. 

6 . 4 E f f e c t of Nd on c o e r c i v i t y 

It is well known tha t Fe and Nd couple ferromagnetically. Therefore addi-

tion of Nd increases the magnetization and hence [BH)max can be increased. 

But coercivity depends on the s t ructure of the phase and the high anisotropy 

of the 2:14:1 phase helps increase He- Fig 6.2 shows tha t IV has a negligible 

coercivity. The reason is tha t upon subst i tut ion of Dy with Nd the anisotropy 
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field is decreased. Also the grains are much larger t h a n the grains formed by 

alloys with C as the metalloid. 

6.5 Effect of Dy on the coercivity 

I, II, and III show large coercivities and this has been shown to be due 

to the format ion of SDP ' s of the Fe i4Dy2Ci phase which is formed when the 

as-cast alloy is annealed. To check whether H e could be due to the anisotropy 

introduced by Dy, we measured the He for Fe^^Dyl5Bs , bo th as-cast and as-cast 

heat - t rea ted . We find tha t the coercivity in bo th cases is close to 2 kOe. This 

means t ha t the anisotropy of Dy does not play a m a j o r role in the experimentally 

observed large coercivities. 

Fe and Dy couple anti-ferromagnetically and this reduces the magnetizat ion 

and therefore the energy product . By adding Nd we can increase M, but now we 

need to add a l i t t le B to stabilize the ha rd magnetic phase. This is because now 

lesser number of s, p electrons are needed to stabilize the s t ructure. It is to be 

noted tha t the 2:14:1 phase is composed entirely of C, as is expected statistically. 

6.6 Conclusions 

1. The ou ts tand ing magnetic propert ies of Fe-R-C alloys can be a t t r ibu ted 

to the F e n D y 2 C i phase. 

2. The F e i 4 D y 2 C i has the following propert ies, [20], : 

i) a = 0.8756 n m and c = 1.1801 n m 

ii) Tc = 553J: 
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iii) Easy axis is along the "c" axis. 

3. Unlike Fe-Nd-B alloys, the 2:14:1 phase does not crystallize out of the 

melt. This means that it is possible to increase Hc by metallurgical manipulation 

, for example, by introducing pinning sites etc which could hinder, the rotation 

of the SDP during magnetization reversal, or the movement of domain walls. 

4. Unlike Fe-Nd-B alloys does not require special processing such as powder 

metallurgy, rapid solidification etc. In Fe-R-C alloys the 2:14:1 phase is developed 

upon heat treatment of the as-cast alloy. 

5. The grains formed by using C as the primary metalloid are small as 

compared to the grains formed by using B. 

6. Magnetization reversal in these alloys takes place via the incoherent 

rotation of SDP's in II and III, or due to nucleation of reversed domains in all 

the samples. The latter is more likely. 

7. The Fe-Dy-C alloys have a low magnetization and it can be improved 

by proper addition of Nd and a bit of B to stabilize the 2:14:1 phase. Another 

serious disadvantage of the Fe-R-C magnets is their low Tc. 

8. The microstructure of these alloys shows the presence of the 2:14:1, the 

2:17, the Dy-rich, the Dy-oxide phases and the Fe-R-X phase. 

9. All of the samples studied, showed grains which had no preferred orien-

tation . It would be beneficial to orient the magnet during as-cast solidification. 

Then, when the sample is heat-treated the primary phase transforms to the 2:14:1 
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phase in the same conf igura t ion and we obtain grains which are all oriented in 

the same direction. In such a case we would expect the He to increase. 
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ABSTRACT 

The new generation of cobalt free Fe-Nd-B magnets have excellent hard 

magnetic propert ies which are a t t r ibuted to the te tragonal F e \ ^ N d 2 B phase tha t 

has a high anisotropy and magnetic moment . Subst i tut ion of B with C and Nd 

with Dy leads to a substant ia l increase in coercivity and a drop in magnetizat ion 

in as cast samples. The purpose of this work has been to s tudy the magnetic 

and microst ructure propert ies of Fe-R-C based systems. The magnets used were 

heat- t reated as-cast samples. The outs tanding hard magnet ic properties of this 

system has been a t t r ibu ted to the F e n D y 2 C phase tha t has a higher anisotropy 

but a lower magnet ic moment as compared to FenNd2B. T h e subst i tut ion of 

Nd tmd B for Dy and C enhances the magnet ic moment of Fe-Dy-C, but reduces 

the coercivity significantly. The origin of high coercivity has been examined 

by correlating the heurd magnet ic properties with the microstructure . The high 

coercivity and the magnet izat ion reversal can be explained by bo th the nucleation 

of reversed domains and interact ing single domain particles respectively. 
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