

KSU COURSE READER

By

KARTHICK KUMAR MALLI RAGHAVAN

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department Of Computing And Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2012

Approved by:

Major Professor
Dr.Gurdip Singh

Abstract

KSU Course Reader is an android application developed for Kansas State University

students to access their course materials, listen to the audio lectures, watch the video lectures and

read the lecture slides or other materials from all their enrolled courses with a single application.

A student can add RSS xml link associated with the courses enrolled in the current semester in

the application and can receive the course materials for each course automatically after every

lecture.

The aim of this project is to develop a one stop android application for students to access

the course materials of all their courses from their android smart phones and tablets. The project

also provides a jsp form for course instructors to update the course materials for every lecture

which automatically updates the xml file associated with the course. The application also allows

students to add other RSS xml like K-State News, K-state Events etc. The same application can

be used for adding public rss xml sites and can also be used as a podcast player.

It is very essential to provide the course materials readily available to the students all the

time wherever they are. Since most students have smart phones or tablets and use them for

accessing emails, surf internet etc , it becomes easier for them to use this KSU course reader

application to access, read or view all their course materials at one place which is also

customized for mobiles and tablets. As android is one of the leading and fastest growing smart

phone platforms the project becomes more appropriate to develop in android.

iii

Table of Contents

List of Figures ... v

List of Tables .. vi

Acknowledgements ... vii

Chapter 1 - Introduction .. 1

Chapter 2 - Requirements .. 1

2.1. Requirements Analysis... 1

2.2. Software Requirements .. 2

2.3. Hardware Requirements ... 2

Chapter 3 - Architecture and Design ... 2

3.1. System Architecture ... 2

3.2. System Design .. 3

3.1.1. Use Case Diagram ... 3

3.1.2. Class Diagram ... 5

3.1.3. Data Flow Diagram ... 6

Chapter 4 - Android Components ... 8

4.1 Android Manifest .. 8

4.2 Activity .. 9

4.3 Async Task .. 10

4.4 Intent and Intent Filter ... 10

4.5 SQLite ... 11

Chapter 5 - Implementation... 11

5.1. Android Module ... 12

5.1.1. User Interface .. 12

5.1.2. Splash Activity .. 13

5.1.3. Channels Activity .. 14

5.1.4. Parser Handler ... 16

5.1.5. Navigation Activity ... 17

5.1.6. Item Activity ... 18

iv

5.1.7. Browser Activity ... 20

5.1.8. DBLayout and DBoperations .. 20

5.2. Web Module ... 21

5.2.1. JAXB Class Creation .. 21

5.2.2. JAXB UnMarshalling .. 21

5.2.3. Constructing XML tag elements from Web page ... 22

5.2.4. XML Marshalling .. 23

Chapter 6 - Testing & Logging ... 23

6.1 Unit Testing ... 23

6.2. Logging .. 26

Chapter 7 - Conclusion .. 26

Chapter 8 - References .. 27

v

List of Figures

Figure 3.1 System architecture .. 3

Figure 3.2 Use case Diagram for student .. 4

Figure 3.3 Use case Diagram for Course Instructor .. 5

Figure 3.4 Class Diagram .. 6

Figure 3.5 Data Flow Diagram .. 8

Figure 4.1 Android Manifest file .. 9

Figure 5.1 Splash screen.. 14

Figure 5.2 Default Channels Screen .. 16

Figure 5.3 Items under One Channel .. 18

Figure 5.4 Detailed Item View .. 19

Figure 5.5 Course Instructor Updating XML .. 23

vi

List of Tables

Table 6.1 Test Cases.. 26

vii

Acknowledgements

My special thanks to Dr. Gurdip Singh for giving me suggestions, encouragement, and

guidance throughout the project.

I would also like to thank Dr. Xinming Ou and Dr. Torben Amtoft for graciously

accepting to serve on my committee.

I would like to thank the administrative and technical support staff of the department of

CIS for their support throughout my Masters program.

1

Chapter 1 - Introduction

The Project ‘KSU Course Reader’ is to develop a RSS course reader mobile application

for android handsets and tablets. The main motivation of this project is to learn developing

android application and understand the challenges involved in integrating server side

technologies with android applications. To simplify the process of accessing course materials

from android handsets and to develop an application that is useful for distance learning students

is another motivation to develop this project.

This application is a proof of concept that it is possible to develop an application that

provides features similar to KSOL in a more customized way for android mobile users. The

project also proves that it is possible to develop similar applications in other leading mobile

platforms like apple iOS and blackberry as well. The project is not just to implement an android

application that could act as a course reader but also to develop a web page for course instructors

to update the XML files for the courses in a simple way. This project also opens door to solve

many other similar problem areas with a similar approach.

Chapter 2 - Requirements

 2.1. Requirements Analysis

The project needed several materials to be gathered before designing and implementing

it. For the server module to automate the xml generation from the web page, a study of JAXB

plug-in and jar was needed. JAXB plug-in allows generating class files from xml schema

definition. Once the preparatory materials for server side were gathered, the fields to represent

the xml file for every course material and the tags for them were decided by comparing the rss

version 2.0 schema definition.

For the application side, materials for debugging tools like adb were gathered and the set

of features to support in the application were analyzed and documented. This document with list

of features to support was later used for design and implementation phases and also to write the

test cases for the possible usecases.

2

 2.2. Software Requirements

Operating System: Android 2.2 or higher

Language: Android, Java, JSP

Database: SQLite

Technologies: Java, SQLite, RSS, SAX Parsing, XML, JAXB

Tools: Eclipse IDE, JAXB utilities, Tomcat Apache, Android Plug-in for Eclipse

Debugger: Android Device Bridge, DDMS

 2.3. Hardware Requirements

Ø Samsung Galaxy Tablet Android 3.1

Ø HTC Tattoo Android 2.1

Chapter 3 - Architecture and Design

 3.1. System Architecture

This section describes the architecture of this system. The diagram below shows the

building blocks of the system architecture. The architecture contains both the server and client

side modules. The blocks ‘XML & Course Materials Server’ and ‘Course Webpage’ are built as

server side implementation. The apache tomcat server is run at the server to handle the requests

from client android applications. The blocks SAX Parser, SQLite Database, Channels, Items,

Detailed Item View are the blocks built as the client side implementation to be used in android.

The blocks Channels, Items and Detailed Item View act as the user interface module for

android application. All these components closely interact with the SQLite database module

whereas the Sax Parser interacts with SQLite database to save the parsed xml contents.

3

Figure 3.1 System architecture

 3.2. System Design

Once the features to implement and the system architecture were drafted out the

following design diagrams were necessary to implement the application. This section portrays

the following three diagrams that were used in the later stages of the project to implement and

test the application.

Ø Use Case Diagram

Ø Class Diagram

Ø Data Flow Diagram

 3.1.1. Use Case Diagram

A Use Case diagram shows the actors and the roles they take in a system. It represents the

actions performed by each actor. There are two actors for this project namely Student and the

SAX Parser

Channels

Items

Pull XML Updates from

Server

Pull the

Channels

Save parsed

contents in DB

Select

an item
Detailed Item

View

Populate

items

Displaying

an item

SQLite

Database

Course Web page

XML & Course

Materials Server

Update Course

Materials

Subscribe

4

Course Instructor. The diagrams below are the usecase diagrams for Student and course

Instructor.

Figure 3.2 Use case Diagram for student

5

Figure 3.3 Use case Diagram for Course Instructor

 3.1.2. Class Diagram

The class diagram below represents the important classes implemented for the application

with their operations and return types. The diagram also shows how each class is associated with

other classes in the system.

6

Figure 3.4 Class Diagram

 3.1.3. Data Flow Diagram

 The data flow diagram below describes the flow of code in the application depending on

the user action and represents the specific details of several possible data flow paths in the

application. This diagram acts as a blue print for implementing the application.

7

8

Figure 3.5 Data Flow Diagram

Chapter 4 - Android Components

This chapter briefly discusses several android concepts and components that were used to

implement the application.

 4.1 Android Manifest

AndroidManifest.xml file is the starting point of any android application. When an

android application is launched the android system looks for the application’s

androidmanifest.xml file. In specific, the android system looks for the first component that has to

be loaded for the application. This component can be an activity or a service. Activities and

services are later described in this chapter.(XML in Android)

AndroidManifest.xml file contains all android components that this application uses. This

file specifies the list of activities, services, broadcast receivers, Content providers, intents and

9

intent filers associated with each component and the set of permissions required to access each

component in the application. An application’s security is defined with the set of permissions

listed in this file. The permissions listed here are the permissions that will be shown to the user to

accept to proceed with the installation of application.

The snapshot below shows the KSU Course reader’s android manifest file.

Figure 4.1 Android Manifest file

 4.2 Activity

Activity is the most used component in a user interface based android application. An

activity component with the resource files represents the user interface in android. It provides a

screen which users can interact to do something. The following five activities are developed for

KSU course reader application. Each activity represents a user interface screen.

Ø Splash Activity

Ø Channels Activity

Ø Navigation Activity

10

Ø Item Activity

Ø Browser Activity

 4.3 Async Task

AsyncTask enables proper and easy way of accessing the UI thread in android. A

background operation should not block the user interface for more than few seconds in a mobile

application. It is important that any task blocking the UI for several seconds have to be separated

from the UI. Android works in two thread model where user interface is the main thread and the

background task is the worker thread. Accessing User Interface thread from the worker thread is

handled in android by the use of handlers. But when there are many instances of worker threads

that access user interface, the handler gets complicated. Hence Android provides a mechanism

called Async Task to manipulate the handlers.

An asynchronous task is defined by a computation that runs on a background thread and

whose result is published on the UI thread. It is defined by 4 steps called onPreExecute,

doInBackground, onProgressUpdate and onPostExecute. In this application AsyncTask is used to

retrieve the contents from the xml and parse those in the background while the user interface

shows the progress of the background process with a little progress image.

 4.4 Intent and Intent Filter

Intent helps for communication between two android components. The communicating

components can be in the same application or they can be in two different applications. The

calling component should have the permissions to access the target component if the target

component sets any permission. The component raising an intent can either specify a target

component class directly or can broadcast the intent. If the intent was broadcasted, any

component that has an intent filter matching one of the actions, data category of the intent can

respond to the intent. If there are multiple components that can respond to that intent, they are

shown to the user to select an appropriate or favorite component.

When an intent is raised specifically to a component it is termed as Explicit Intent. If the

intent was broadcasted, it is termed as Implicit Intent. Action represents the general action to be

11

performed and Data represents the information to act on when an intent is raised. The KSU

reader application uses both explicit and implicit intents at several usecases of the application.

 4.5 SQLite

A database operation in android is supported with a built-in SQlite database framework.

Though SQLite does not support all the features of a normal SQL for computers, it provides the

essential features to do any database operation for handsets and tablets. Android SDK provides

API to work with SQLite and simplifies the database operations. As each android applications

run in a separate sandbox, the database and tables created by one application is not accessible to

other application. This ensures security of data stored in the databases. Data can be inserted,

queried, removed or updated in the tables with simple queries. The components Content provider

and content resolvers also provide mechanism to retrieve or insert data into the tables. (SQLite in

Android)

The KSU Course reader application has the following three tables to perform database

operations:

Ø Channel Schema

Ø Item Schema

Ø Enclosure Schema

Chapter 5 - Implementation

The implementation of this project is mostly in the android application. However the

XML in the server corresponding to each course have to be updated by the course instructors.

This project also provides a jsp web page for the lecturers to automatically update the xml file

associated with the course they teach. Course Instructors can use this web page to update the xml

page or even edit them manually to update after every lecture. This chapter discusses the

implementation details of both the android module and the web module in detail.

12

 5.1. Android Module

This section discusses the implementation details of several activities, other classes

implemented and the user interface details of the application.(Developers Guide, 2011)

 5.1.1. User Interface

Android separates designing the user interface from the code handling the user interface

elements nicely. The modeling of several components within a screen is designed using xml.

Android also allows dragging and dropping the text box, labels, buttons and other possible

elements to generate the corresponding xml automatically. Android supports several kinds of

layout for user interface like Linear layout, Relative layout, frame layout, table layout, etc. Our

KSU course reader application mostly uses linear layout and in few places use relative layout.

The xml user interfaces developed for this application are as follows:

Splashscreen.xml: This xml corresponds to the initial loading screen when this

application is launched from the application tray. This user interface contains a text view to

display the application title ‘KSU Course Reader’ followed by the logo image and another

textview. This xml is set by the view of SplashscreenActivity in the code.

Channels.xml: The channels.xml file represents the screen that displays the list of

channels in a linear layout format. This screen also contains a button ‘Subscribe’ to add a new

channel to the list.

Item.xml: This xml file represents the user interface to display the text content of the

feeds. It just displays the contents of description tag. There is also a button ‘Read in Web’ to read

the same description from the web where this feed was posted. The read in web when pressed

redirects the user to the url mentioned in the <link> tag. The detailed view of the item contains

Audio.xml: This represent the user interface showing how the screen looks like when an

audio is listened from the application. This screen just contains an icon to show when the audio

is being heard.

13

Settings.xml: This xml file show the list of items that must be shown to the user when

the menu option ‘Settings’ is selected from channels screen or items screen. This xml contains 3

list preference elements to set or modify the time interval to update the feeds automatically,

number of items to keep in each channel and the number of days to keep the items before

removing them from the application.

There are also other user interface xml to show the popup dialogs for several usecases.

 5.1.2. Splash Activity

This is the first activity that is launched when this application is launched from

application tray. The android system loads AndroidManifest.xml to find the component that will

be launched first by checking which activity has an intent filter matching ‘Main’ action and

‘launcher’ category. In this application Splash Activity contains the intent filter with ‘Main’

action and ‘Launcher’ category. This activity sets the view with splashscreen.xml. The splash

activity is responsible for doing the following tasks in this application:

Ø Showing the initial loading screen

Ø Initiating the database connection

Ø Launching the Channels activity

When the database is initiated for the first time it loads each xml url in the defaultchannels.opml

file and sends to the parser handler file to parse them. The parsed contents are stored in database.

14

Figure 5.1 Splash screen

 5.1.3. Channels Activity

The Channels Activity is initially launched by an intent from splash activity. The

userinterface for this activity is set from Channels.xml. The default channels loaded from

defaultchannels.opml are initially listed in the channels activity. However none of these channels

have their items loaded yet. If all the items in each channel are loaded when this activity is

launched for the first time, then it takes several seconds to give the control to the user. Hence to

avoid this scenario, only the title of all the channels in the default channels are loaded initially

and displayed in the channels activity.

The ‘subscribe’ button at the bottom of the screen is tied to an onClickListener in

channels activity. When the subscribe button is clicked, it launches the Popup with Input text to

15

enter the xml link of the channel the user wish to subscribe. Once the xml URL is captured, this

activity passes this link to ParserHandler by instantiating the ParserHandler class.

If the user selects one of the channels listed in this activity and if the items of this channel

have not been loaded yet then the channel’s xml URL is passed to parser handler. If the items of

the selected channel have been loaded already, then parser handler is not called but an intent is

raised to Items activity to display the list of items in that channel. The channels activity also

maintains the total number of items in each channel and keeps track of the number of items

unread in each channel. This count is displayed adjacent to the channel title of each channel.

There are two context menu options set for the channels. Context menu is the list of menu

items that are shown when an item is selected and pressed for few seconds. The context menus

for each channel in this screen are “Mark all read” and “Remove Channel”. When selecting

‘Mark all’ option, the unread count for that particular channel is set to 0 and the color of each

item is changed to represent it as read content. When selecting ‘Remove channel’ all the items in

that channel are removed from the user interface and the database.

The Options menu is the menu that is shown to the user when the menu hard key is

selected from the handset or tablet. The two menu options for this screen are ‘Settings’ and

‘About’. When ‘Settings’ is selected an intent is raised to launch Settings Activity and Channels

activity is pushed to the back stack of the task automatically. When ‘About’ option is selected, a

popup is displayed to show what this application is for.

16

Figure 5.2 Default Channels Screen

 5.1.4. Parser Handler

The Parser handler class does an important task of parsing the contents of each channel

subscribed in the application. Parser handler class uses a built in Simple Api for Xml parser

(SAX Parser) to parse each tag in the xml file. SAX parser was preferred over DOM parser in the

application because DOM parser needs to have the entire xml file in memory to parse even a

single tag from the xml file. As this is a course reader application, size of the xml would grow

every week while the course instructor keeps updating the xml file. Hence there is a chance of

performance degradation of the application. On the other hand, SAX parser is an event based

parser and it doesn’t require memory to have the whole xml while parsing. The SAX parser

scans the file and for every matching token it performs some action. It can either trigger some

events or can save the contents between every matching tag to some data structure for some

processing later or even ignore the matched token depending on the logic. SAX parser contains 4

17

methods that need to be overridden for doing some useful processing of xml data. Those 4

methods are:(XML in Android)

Ø startDocument

Ø endDocument

Ø startElement

Ø endElement

In our course reader application startElement and endElement matches every open tag

and close tags and saves the content between each tag in a predefined class object. For example

the presence of <enclosure> tag represents that the content is of media type and the URL content

between the open and close tags of an enclosure correspond to the link of the media file. This

particular link will be saved in the constructed object and will also be saved in the enclosure

schema of this application’s database.

 5.1.5. Navigation Activity

Navigation Activity is an activity that acts as a bridge for Channel activity and Item

activity. When a channel is clicked from the channels activity, an intent is passed to navigation

activity with the channel name. The onResume method of navigation activity calls

refreshChannel method. This activity checks if the Internet connection is available or not. When

there is no internet connection at that moment before pulling the data from xml, it pops up with a

messagebox saying that internet connection is not available.

 If the channel for which this intent was raised has not loaded any items, navigation

activity starts an Async task to pull the items from the xml file. Here the navigation activity

works with Parser handler in parsing and saving the data to the database table and the object. The

‘Item Schema’ gets updated after the async task is complete. The Aysnc task publishes to UI the

progress of downloading the content that is parsed in the background. Once the async task

executes its onPostExecute method, the control comes back to navigation activity. Navigation

activity then updates the UI with the parsed content and displays the list of items in each channel

of this screen.

18

The navigation activity provides an onClick method which implements what to happen

when an item displayed in this activity is selected. Here it actually raises an intent to Item

activity by passing the item id. The navigation activity applies itemnotselected.xml to set the

content view and itemselected.xml when an item is selected. Navigation activity screen contains

two options in its menu namely ‘refresh’, ‘Channels’ and ‘Settings’. Selecting ‘refresh’ option

updates the user interface with the updated items. Selecting Channels takes back to the Channels

activity whereas selecting settings takes to Settings Activity with the help of intents.

Figure 5.3 Items under One Channel

 5.1.6. Item Activity

Item activity is launched when an item is selected from the navigation activity screen. As

soon as the item activity is launched, the color field associated with the item from which the

intent was launched is changed to represent that it is read. The unread/total count of items in that

19

particular channel is also updated. Then, from the database, item activity checks if there is an

Enclosure field associated with this item in Enclosure schema.

 If there was a non empty enclosure field then it is of media type and if there were no

enclosure tags associated with that item, it is of text type. If the item is of media type then an

intent is passed to Browser Activity with the URL within the enclosure tag. If the item is of text

type, then the detailed item view of that item is displayed by setting the item.xml with a button at

the bottom ‘Read Online’. The idea is to show the content within the ,description> tag in this

detailed view and take the user to the url within <link> tag when ‘Read Online’ button was

clicked with an intent to Browser activity.

There are four menu options available in this activity screen namely ‘Channels’,

‘Settings’, ‘Home’ and ‘About’. ‘Channels’ take to channels screen , settings take to settings

activity, ‘Home’ takes to the Navigation activity to show the list of items within the channel

associated with the current item and ‘About’ shows a popup to describe the purpose of this

application.

Figure 5.4 Detailed Item View

20

 5.1.7. Browser Activity

Browser activity is launched from the Item activity for both the media and non-media

types. The intent to launch the browser from item activity is an implicit intent. So the application

shows all the browsers that can handle this intent. The user will be allowed to choose the browser

of their choice. They can also set a default browser that needs to be launched automatically every

time when similar intents are passed by some components within the application.

If the URL that was launched needs some authentication, the login screen will be

prompted to the user. If the content is of media type (video, audio, image, flash, ppt, etc) the

browser decides which is the best component to play that media. If it is of video or audio type,

then media players installed within the android handset or tablet will be invoked to stream them

and play. If streaming is not supported the browser attempts to download the file and open it. If

the item is not of video or audio type, then browser can play those media and show to the user in

the user interface.

 5.1.8. DBLayout and DBoperations

The KSU course reader application needs a database to save the parsed data from each

channel subscribed by the student using the application. Following are the three database schema

that this application creates when the application is launched first after installing.

Ø Channel schema

Ø Item Schema

Ø Enclosure Schema

Channel schema contains the fields URL, title, type, refresh fields.

Item schema contains channel_id, link, title, description, content, image, pubdate, read fields.

Enclosure schema contains item_id, mime and URL.

DBOperations class provides methods to insert, update, and delete entries into the schema

mentioned above from various activities within the application. (Developers Guide, 2011)

21

 5.2. Web Module

This module discusses the server side implementation of this project. The android

application subscribes the xml links associated with each course in their application. The xml

could be manually updated by the instructor after every lecture. But to automate the xml update

with minimal effort this module has been implemented for the use by course instructors. Each

course will have an associated web page where the course instructor can update the materials and

links after lecture. From this web page the xml page of this course will be automatically updated.

Hence any student enrolled with the course and using KSU course reader application can refresh

the associated channel manually or by auto update option in android application to receive the

updated course material after every lecture. This module briefly discusses this automatic xml

generation from course webpage.

 5.2.1. JAXB Class Creation

Java Architecture for XML Binding allows Java classes to XML representation and vice

versa. The JAXB Plug-in for eclipse is needed for this module and the JAXB jar is also placed in

the library of this project. The xml files that we have used in this KSU course reader are based on

RSS version 2.0 and hence the XML schema definition for RSS version 2.0 is downloaded and

kept in the project folder. This rss-2.0.xsd file is the representation of the rss version 2.0. It

contains all possible xml tags in rss version 2.0 and their format within the xml file.

As the JAXB plug-in for eclipse has been downloaded, class representation of this XSD

file can be generated by Selecting ‘Generate JAXB class’ option in the JAXB plug-in for this

xsd.

These classes are generated just once from this xsd unless there are some updates to the xsd or if

we upgrade or downgrade our rss version for the xml files.(JAXB Reference)

 5.2.2. JAXB UnMarshalling

Automating the XML update is easier if the xml file is represented as a class and fields.

This is because if each tag is represented as a class and the attributes of the tags are represented

as fields in a class, it becomes simpler to instantiate each class when we need to introduce similar

22

tag with associated attributes and contents in the xml. For this purpose JAXB API provides

unmarshall method which helps to convert an XML file to object representation. The unmarshall

method works with the classes that were generated in 4.2.1 and with this xml to convert to its

object representation.

 5.2.3. Constructing XML tag elements from Web page

JAXB jar provides API to add and remove instances of each type of tag to the Object

representation of unmarshalled xml file. The web page for a course as in the screenshot below

allows the course instructor to update the materials for the lecture from the web page. For every

submission from this link one <item> tag is created. The title field in the web page corresponds

to the <title> tag of the item. The description field in the web page represents the <description>

tag of item. The material link where a course instructor can paste the url link of the lecture slide

or video lecture or audio file represent the <enclosure> tag of item.

A course instructor can attach more than one material for every submission. In this case,

for keeping it simple, if there are more than one material link attached in the web page separate

items are generated for each material link as <enclosure> and the title appended with the part

number. For example, if there are 3 materials attached, then 3 <item> tags are generated with

title tags appended with part1 part2 and part3 respectively for each item and each item with one

<enclosure> tag.

Once these item tags are generated from the course web page, each item tags are

prepended to the existing object representation of the xml. This is to make sure that a new

material updated recently shows as the first feed in the course channel of the android application

when refreshed. After all these items are prepended, a single object representing the xml with

new contents is available.

23

Figure 5.5 Course Instructor Updating XML

 5.2.4. XML Marshalling

The modified xml with the recent updates in the object representation can be converted

back to XML format using JAXB marshall method. The xml generated can now replace the old

xml at same location in the server.

The same process in 4.2.3 and 4.2.4 are repeated automatically when the course instructor

updates new material from the web page. The course instructors can also update the xml file

manually if they prefer to.

Chapter 6 - Testing & Logging

 6.1 Unit Testing

In Unit testing every usecase possible in the application is tested as an independent entity

to verify its correctness. All the unit testcases were tested in Emulator and real android devices.

The application is tested with the following devices to ensure the compatibility and uniformity

across different versions.

24

Ø Android HTC Tattoo OS Version 2.2

Ø Samsung Galaxy tablet Android OS version 3.1

Ø Android Emulator simulating OS versions 2.3.4 and 2.1

The table below shows all the test cases that were executed to test the application.

25

S.No Test Case Expected Behavior Result
1 Launch the application from application

tray
The splash screen should be shown for 3 seconds Pass

2 Launch the splash screen and wait for 3
seconds

Default channels should be displayed Pass

3 Select any of the available default
channels

Channel must load with the items Pass

4 Go to channels screen and add one of the
xml of enrolled courses

The course feeds are loaded and the list of items
are shown

Pass

5 Go to channels screen and hit menu
button

Settings and About options are shown Pass

6 Select settings menu from channels
screen

settings activity is loaded with Update items
periodically option, Remove items option and No.
of items to keep for each channel

Pass

7 Change the No. of items for each
channel option in settings screen

Every channel is updated to keep at most the no.of
items set in the settings activity

Pass

8 Change update periodically from once a
day to every one hour

Once the channel is updated with few items in the
server , the application must be updated
automatically updated with new items for every
channel

Pass

9 Change Update periodically option in
settings to Update manually

Auto update of items must be stopped and the
items are refreshed only after selecting Update
option manually from Menu

Pass

10 Change Remove items option from
'Never' to older than 1 week

The items older than 1 week must be removed
from each channel

Pass

11 Select 'About' option in Menu from
channels screen

A popup is shown describing what the application
is all about

Pass

12 Check Unread/Total items count for a
channel that is already loaded

Before any item is read from a loaded channel
unread and total count should be the same

Pass

13 Check Unread/Total count for a channel
that is not yet loaded in channels screen

The unread/Total count field must not be
displayed and should be empty

Pass

14 Read an item from one of the channel
having unread/total values field

Unread count is reduced and color of the item is
changed

Pass

15 Select 'Mark all Read' option from
context menu of a channel

Color of all items of the channel is changed and
unread count must change to 0

Pass

16 Select 'Remove channel' option from
context menu of a channel

The channel and its contents are removed from
the display

Pass

17 Select 'Remove channel' option when
there is only one channel in the
application

The application doesn't remove the channel and
pops up a message 'Sorry, the app requires atleast
one channel. We cannot remove it'

Pass

18 Select a video item from one of the
channel items

Browser is launched and favorite media player is
asked to be chosen by the user and the video is
played

Pass

19 Select an audio item from one of the
channel items

Media player is launched and the background is
set with an image

Pass

26

Table 6.1 Test Cases

 6.2. Logging

Android SDK has a built in tool called Android Device Bridge (adb) that helps to check

the logs and check user defined logs. ADB toolkit has several commands to monitor the system

logs. It also provides a sqlite3 tool to display the entries of all the tables in the application’s

database and execute queries. ADB tool kit works well with both emulator and real devices. The

devices need to be connected with the system via USB cable to read the logs in adb shell.

Android also comes with DDMS tool that would display android system and application logs in

the eclipse IDE.(Developers Guide, 2011)

Chapter 7 - Conclusion

The project attempts to prove how the KSU course access reader kind of applications can be

used to simplify accessing course materials for students. The application can also become a

podcast player when the students using this application subscribe to podcast feed sites. This

application development has given me an opportunity to understand the challenges and

limitations in developing an android application and has also taught how server side technologies

can be integrated with mobile applications. The project also bolsters the fact that it is possible to

add more values to the software when it is designed well before implementation. Same

application can also be developed in iOS for iPhones and iPads.

The application can be improved in several ways and can be extended or modified to solve

many similar problem areas. Below are some of the possible ways of improving the application

or modifying them for solving other problems:

20 Select a Text feed from one of the
channel items

The text feed is displayed properly and ‘Read
Online’ button is shown

Pass

21 Select 'Read Online' button for a text
feed

Browser is launched and the user is taken to the
url where this text feed has been posted.

Pass

22 Add 3 material links in the course web
page for one submission

Three individual feeds are added with one course
material each with the same title appended with
Part numbers

Pass

27

Ø The application can be extended to be used by course instructors as well to update the

course materials from their android handsets or tablets.

Ø The application can be extended to send emails to course instructors or to start a

discussion by adding more social values.

Ø It is possible to modify the application to receive the course update alerts in the form of

SMS messages or a WAP Push message alerts.

Ø The application can also support adding social networking feeds from twitter or facebook

etc.

Chapter 8 - References

Developers Guide. (2011). Retrieved September 2011, from Android Developers:
http://developer.android.com/guide/index.html

Hipp, R. (2011). sqlite. Retrieved September 2011, from documentation:
http://www.sqlite.org/docs.html

JAXB Reference. (n.d.). Retrieved September 2011, from
http://www.oracle.com/technetwork/articles/javase/index-140168.html#xmp1.

Reilly, O. (n.d.). Android Cookbook. Retrieved 2011, from
http://androidcookbook.com/home.seam.

SQLite in Android. (n.d.). Retrieved from http://www.screaming-penguin.com/node/7742.

XML in Android. (n.d.). Retrieved from
http://www.ibm.com/developerworks/opensource/library/x-android/.

	Chapter 1 -
	Chapter 1 - Introduction
	Chapter 2 - Requirements
	2.1. Requirements Analysis
	2.2. Software Requirements
	2.3. Hardware Requirements

	Chapter 3 - Architecture and Design
	3.1. System Architecture
	3.2. System Design
	3.1.1. Use Case Diagram
	3.1.2. Class Diagram
	3.1.3. Data Flow Diagram

	Chapter 4 - Android Components
	4.1 Android Manifest
	4.2 Activity
	4.3 Async Task
	4.4 Intent and Intent Filter
	4.5 SQLite

	Chapter 5 - Implementation
	5.1. Android Module
	5.1.1. User Interface
	5.1.2. Splash Activity
	5.1.3. Channels Activity
	5.1.4. Parser Handler
	5.1.5. Navigation Activity
	/
	5.1.6. Item Activity
	5.1.7. Browser Activity
	5.1.8. DBLayout and DBoperations

	5.2. Web Module
	5.2.1. JAXB Class Creation
	5.2.2. JAXB UnMarshalling
	5.2.3. Constructing XML tag elements from Web page
	5.2.4. XML Marshalling

	Chapter 6 - Testing & Logging
	6.1 Unit Testing
	6.2. Logging

	Chapter 7 - Conclusion
	Chapter 8 - References

