
SPARSE AND ORTHOGONAL SINGULAR VALUE

DECOMPOSITION

by

ROHAN KHATAVKAR

B.S., Institute of Chemical Technology, 2007

M.S., University of Georgia, 2009

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

Approved by:

Major Professor
Dr. Kun Chen

Copyright

ROHAN KHATAVKAR

2013

Abstract

The singular value decomposition (SVD) is a commonly used matrix factorization tech-

nique in statistics, and it is very effective in revealing many low-dimensional structures in

a noisy data matrix or a coefficient matrix of a statistical model. In particular, it is often

desirable to obtain a sparse SVD, i.e., only a few singular values are nonzero and their

corresponding left and right singular vectors are also sparse. However, in several existing

methods for sparse SVD estimation, the exact orthogonality among the singular vectors are

often sacrificed due to the difficulty in incorporating the non-convex orthogonality constraint

in sparse estimation. Imposing orthogonality in addition to sparsity, albeit difficult, can be

critical in restricting and guiding the search of the sparsity pattern and facilitating model

interpretation. Combining the ideas of penalized regression and Bregman iterative methods,

we propose two methods that strive to achieve the dual goal of sparse and orthogonal SVD

estimation, in the general framework of high dimensional multivariate regression. We set

up simulation studies to demonstrate the efficacy of the proposed methods.

Key words and Phrases: bregman iteration, multivariate regression, orthogonality con-

straint, singular value decomposition, sparsity.

Table of Contents

Table of Contents iv

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1

2 Literature Review 4
2.1 Introduction . 4
2.2 Ridge Regression . 5
2.3 Lasso . 8
2.4 Adaptive Lasso . 11

3 Linear Constrained Lasso 16
3.1 Lasso with Equality Constraints . 16
3.2 Simulation . 21

4 Sparse and Orthogonal SVD 25
4.1 Introduction . 25
4.2 SOSVD via SEA . 26
4.3 SOSVD via BEA . 31
4.4 Tuning Parameter Selection . 34
4.5 Simulation . 35

5 Discussion and future work 41

Bibliography 43

A R code 44
A.1 Code for constrained adaptive lasso . 44
A.2 Code for SOSVD via SEA . 46

iv

List of Figures

2.1 Geometery of Ridge estimator . 7
2.2 Geometery of Lasso estimator . 8

v

List of Tables

3.1 Constrained Adaptive Lasso: Low Dimensional Model (n=50, p=20) 23
3.2 Constrained Adaptive Lasso: High Dimensional Model (n=50, p=100) 24

4.1 SOSVD: Model I (p=q=25, n=100) . 38
4.2 SOSVD: Model II (p=100, q=25, n=50) . 39

vi

Acknowledgments

I am grateful to the Department of Statistics at Kansas State University for providing the

platform for my master’s program. Without the teaching support and excellent grooming

by all the professors I wouldn’t have come along so far. They say life is all about timing

and I am lucky to have my major professor, Dr. Kun Chen, guide me at the right time. I

consider myself privileged to have worked under him and develop a keen sense of interest

and motivation in High Dimensional Statistics and Optimization theory in general. I find

myself wanting to learn more and explore both fundamental and cutting edge topics in my

research area. I take inspiration from Dr. Chen’s hard work, leadership, and above all learn

the art of engaging others in one’s passionate interest.

I would like to sincerely thank my committee members, Dr. Weixing Song and Dr. Gary

Gadbury, for their insightful comments, support and guidance. Last but not the least I

thank my fellow graduate students in the department for their help and emotional support.

vii

Chapter 1

Introduction

High dimensional models have captured the imagination of many in recent times owing to

the ease with which large amounts of data can be collected, stored and processed by modern

computing facilities. It isn’t a surprise that high dimensional models arise in diverse fields

of scientific research such as: genomic/genetic studies, economics, marketing, finance, image

processing, medicine, etc. With large amounts of data at our disposal, the challenge is to

develop efficient tools that can extract the consistent patterns from the noisy observations.

In statistical language, high dimensional methods aim at revealing paramount aspects of

the underlying true model: low dimensionality and sparsity, for example, so that the result-

ing estimator facilitates ease of interpretation and improved predictive accuracy. Several

improvements over the traditional least squares method have been proposed under the pe-

nalized estimation framework, e.g., Lasso (Tibshirani, 1996), adaptive Lasso (Zou, 2006),

MCP (Zhang, 2010), and SCAD (Yuan and Lin, 2006).

A motivating example which involves imposing linear constraints on Lasso finds its ap-

plication in gross-exposure portfolio optimization problem (Fan et al., 2012). In the world

of finance an important goal is to minimize portfolio risk of large number of assets. Let w be

the vector of portfolio weights and Σ̂ denote the estimated covariance matrix for the returns

on the assets in the portfolio. A common portfolio optimization problem is to minimize the

portfolio risk, w>Σ̂w. Fan et al. (2012) approximately solved the portfolio optimization

problem using a gross-exposure parameter c (tuning parameter) via constraining the asset

1

weights:

w>Σ̂w, ‖w‖1 ≤ c, subject to w>1 = 1.

More generally, it can be shown that the above optimization problem is a special case of a

constrained Lasso problem:

min
β∈Rp

1

2
‖y−Xβ‖22 + λ

p∑
j=1

wj|βj| subject to Aβ = b,

where y ∈ Rn, X ∈ Rn×p, A = (a1, . . . , ap) ∈ Rh×p, b ∈ Rh×1, w = (w1, ..., wp)
> are some

predetermined weights, and λ is a tuning parameter controlling the degree of l1 penalization.

Here we assume that the coefficient vector β satisfies h known linear constraints. For the

portfolio optimization problem the matrix A will have at least one row to ensure that

the weights w sum up to one. Additional constraints may be placed on expected return,

industry weightings, etc. The constrained Lasso problem can be used to exactly solve the

above mentioned portfolio optimization.

Another motivating example is the multivariate reduced rank regression problems for

which several high dimensional methods have been recently proposed. Based on singular

value decomposition (SVD), the reduced rank estimator of a coefficient matrix of rank r∗

can be written as a sum of r∗ unit rank matrices. Each of the unit rank matrices, also

called SVD layers, is proportional to the outer product of the left and right singular vectors.

Chen et al. (2012) proposed a sparse reduced rank regression method to induce sparsity in

the aforementioned left and right singular vectors for easier interpretation and improved

prediction performance. The method was shown to be selection consistent, asymptotically

normal and possess oracle properties. The usefulness of such novel ideas is apparent when

studying microarray gene expression data (Lee et al., 2010). A typical microarray gene

expression data is high dimensional low sample size (HDLSS), wherein the expression levels

of thousands of genes are measured for a small number of subjects. The goal in some

applications is to recognize sets of biologically relevant genes that are significantly expressed

for certain cancer types. The bi-clustering via sparse singular value decomposition (Lee

2

et al., 2010; Chen et al., 2012) is a novel approaches of low rank matrix approximation for

simultaneously selecting significant genes and relevant subject groups that possibly represent

different cancer types. Chen et al. (2012) demonstrated that the microarray gene expression

data can be more effectively interpreted under a reduced rank regression framework by

incorporating the prior cancer type information for supervised learning of the gene clusters

and their contrasts across the different types of cancer.

Often the orthogonality among the estimated left and right singular vectors is relaxed to

facilitate an efficient search for their sparsity patterns. However, if we desire to retain the

orthogonality among the estimated sparse left and right singular vectors then we delve into

the realm of imposing constraints on the regularization procedure in addition to gaining

sparsity. Therefore, we strive to devise a methodology to achieve the dual goal: 1) spar-

sity within the estimated left and right singular vectors, 2) ensuring that the estimated left

and right singular vectors are orthogonal within themselves. In this report we propose two

methods that aim at obtaining sparse and orthogonal SVD for high dimensional multivari-

ate regression problems. The orthogonality constraint is incorporated or enhanced using

Bregman iterative methods and we show the usefulness of Coordinate Descent Algorithms

(CDA) to locally solve challenging non-convex optimization problems.

The rest of the report is organized as follows. In Chapter 2, we briefly review existing

penalized regression methods for shrinkage estimation and variable selection. In Chapter 3,

we propose the Bregman Coordinate Descent Algorithm (BCDA) to solve the constrained

adaptive Lasso problem and demonstrate its usefulness by conducting simulation studies.

In Chapter 4, we propose two methods to perform sparse and orthogonal singular value

decomposition. Both methods use the BCDA to impose constraints needed to promote

or enhance orthogonality. We also demonstrate the usefulness of these two methods by

conducting simulation studies. Finally, we wrap up by discussing the important learnings

from the report and suggesting some possible directions for future research.

3

Chapter 2

Literature Review

2.1 Introduction

We start our journey by introducing some basic concepts of penalized regression and even-

tually applying it to sparse singular value decomposition (SSVD) of the coefficient matrix

in a multivariate regression model. To understand the motivation for penalized regression,

consider the familiar linear regression model:

yi = xi1β1 + ...+ xipβp + εi, 1 ≤ i ≤ n, 1 ≤ j ≤ p, (2.1)

where n is the number of observed response yi ∈ R and predictor xi ∈ Rp, εi is the random

error assumed to be independently and identically distributed with mean mean zero and

some constant variance, and β1, ..., βp are the regression coefficients. We assume, without

loss of generality, the response are centered, i.e.,
∑n

i=1 yi = 0, and the predictors are centered

and standardized, i.e.,
∑n

i=1 xij = 0,
∑n

i=1 x
2
ij = n, for 1 ≤ j ≤ p. Therefore, equation

(2.1) has no intercept term. Equivalently we can express the above expression in terms of

matrix notation as:

yn×1 = Xn×pβp×1 + εn×1.

where Xn×p denotes the design matrix whose n rows are the predictors xi ∈ Rp, yn×1 is the

response vector, εn×1 is the error vector, and βp×1 is the regression coefficient vector. The

4

ordinary least squares estimate (OLS), β̂LS, minimizes the objective function:

β̂LS = min
β
‖y−Xβ‖22

In order to obtain a unique OLS estimate it is imperative that the p × p matrix, X>X, is

invertible. Therefore, when p > n, the OLS estimate is not unique. Apart from the case

when p > n, there are two well-known issues that demand improvement over OLS estimates

(Hastie et al., 2008): 1) the least square estimates, albeit unbiased, may have large variance

thereby hampering the accuracy of prediction, and 2) the interpretation using the least

square estimates is not terse, especially when the model has large number of predictors.

Therefore, a smaller and most important subset of predictors needs to be extracted to

achieve a reasonable interpretation.

The variable selection methods, such as forward and backward stepwise selection, that

are intended to improve interpretation often yield estimates that have high variance due to

the process being inherently discreet: the variables are either preserved or discarded from

the overall model (Hastie et al., 2008). Penalized regression methods can be implemented

when confronted with above mentioned shortcomings of least squares estimates. In the

penalized framework, some form of constraint is exerted on the parameters, for example,

shrinking of the regression coefficients toward zero. Shrinkage methods are usually designed

to be continuous unlike the discrete process of subset selection. We start with describing

ridge regression, a traditional shrinkage method, followed by more effective regularization

methods such as the Lasso and adaptive Lasso.

2.2 Ridge Regression

The ridge regression criteria enforces a constraint on the l2 norm of the coefficient vector, β.

Similar to the least squares criteria, the goal in ridge regression is to minimize the residual

sum of squares, although, subject to the squared l2 norm of the coefficient vector being less

5

than a fixed threshold value, s. The ridge regression criterion is expressed as:

β̂
ridge

= argmin
β
‖y−Xβ‖22, subject to ‖β‖22 ≤ s.

Equivalently it can also be expressed as:

β̂
ridge

= argmin
β
‖y−Xβ‖22 + λ‖β‖22, λ ≥ 0,

where λ is the tuning parameter which controls the amount of shrinkage. Note that λ and

s have one-to-one relationship between them. Higher the value of the tuning parameter,

larger is the shrinkage enforced.

An intuitive way to think about the ridge regression setup is to consider a modified

version of the objective function for the usual regression set up:

L(β) = min
β
‖y∗ −X∗β‖22, (2.2)

where y∗ =

(
y
0p×1

)
(n+p)×1

and X∗ =

(
X√
λIp×p

)
(n+p)×p

are the new response and pre-

dictors respectively. The solution of objective function (2.2) is the ridge estimator given

as:

β̂
ridge

= (X>X + λIp×p)
−1X>y.

The ridge regression estimator is a linear function of the response, y, and is unique for

λ > 0 even if X is not full rank. This is true because adding a positive constant, λ, to the

diagonal entries of X>X makes it a nonsingular matrix and hence it has a unique inverse.

From a practical point of view, we can compute the ridge estimator over a range of values

for the tuning parameter, λ ∈ [λmin, λmax], to obtain a solution path:

{β̂
ridge

(λ) : λ ∈ (λmin, λmax)}.

Using information criteria such as BIC we can select an optimal value for the tuning pa-

rameter to get the final ridge estimator. Even though the ridge estimator has desirable

6

qualities that make it useful in cases when p > n, it has certain limitations as far as variable

selection is concerned. The constraint on the l2 norm of β provides shrinkage, however, the

estimated parameters are still not shrunk to exactly zero. The best way to understand this

phenomenon is by considering a simple case when we have only two parameters, β1 and β2.

If we visually portray such a situation then it is not difficult to see why ridge estimators do

not give exact zero solutions. In Figure 2.1, the solution for the ridge estimator is the first

Figure 2.1: Intersection of contours of the error function (centered at the full least squares
estimate, β̂) as shown with red ellipses with the solid blue area of the constraint region,
β2
1 + β2

2 ≤ t2 (Hastie et al., 2008).

place that the contour of the error function (ellipse) touch the constraint region (shown by

the blue disk). To obtain a zero solution for either β1 or β2 the contour of the red ellipse

must touch the blue disk at a single point. Therefore, the probability of estimating the

parameters as exactly zero is zero. To address this issue it is worth thinking about different

shapes of the constraint areas such that we have a better chance of obtaining zero solutions

for the estimates. The next section builds upon this chain of thought.

7

2.3 Lasso

A simple strategy in penalized regression set up is to think about ways to minimize the

residual sums of squares subject to such a constraint on the coefficients that can perform

variable selection and shrinkage. The constraint region for the ridge regression method is

disk shaped for p = 2 case (and an ellipsoid for p > 2 case) which makes it impossible for

the elliptical contours to hit the constraint region where either of the parameter is zero as

shown in Figure 2.1. The Lasso penalty, which stands for “least absolute shrinkage and

selection operator”, gives advantages of both shrinkage and variable selection by shrinking

some coefficients and estimating the others to be exactly zero (Tibshirani, 1996). For the

Lasso penalty the constraint region is a rotated square (or a diamond) for p = 2 case (which

becomes a rhomboid for p > 2 case) as shown in Figure 2.2. Just like the ridge estimator

Figure 2.2: Intersection of contours of the error function (centered at the full least squares
estimate, β̂) as shown with red ellipses with the solid blue area of the constraint region,
|β1|+ |β2| ≤ t (Hastie et al., 2008).

the Lasso solution is the first place where the ellipse touches the rotated square. Note that

the advantage of choosing the constraint space as a rotated square for p = 2 case is that

the contour of the error function (shown by red ellipse) has a non zero probability of hitting

the rotated square at one of the corners implying a zero solution for β1 or β2. It is easy to

8

imagine that for p > 2 cases the very design of the rhomboid will allow for many corners,

flat edges and plain faces, thereby having the chance of the contour of error function to

hit the rhomboid where some parameters can be estimated to be zero. To understand why

the constraint area for Lasso is a rhomboid let us examine objective function for the Lasso

problem using the same set up where the response and predictors are centered and the

predictors are standardized:

β̂
Lasso

= argmin
β

1

2n
‖y−Xβ‖22, subject to ‖β‖1 ≤ t.

Equivalently it can also be expressed as:

β̂
Lasso

= argmin
β

1

2n
‖y−Xβ‖22 + λ‖β‖1, λ ≥ 0, (2.3)

where λ is the tuning parameter which controls the amount of shrinkage. ‖.‖1 denotes the

l1 norm. Note that λ and t have one-to-one relationship between them. Higher the value of

the tuning parameter, larger is the shrinkage enforced.

To obtain the Lasso solution we will use the “Coordinate Descent Algorithm” (CDA).

CDA starts with an initial estimator for the parameters in the objective function; least

squares or ridge estimator, for example, and then optimize the given objective function

with respect to a single parameter at a time while keeping the remaining parameters fixed.

This single parameter optimization step is performed for all the parameters in the objective

function, thereby completing one cycle of optimization process. The entire optimization

process is then repeated several times until the resulting estimators converge at which the

algorithm terminates. CDA are simple to implement, stable and useful in cases when p > n.

So for the Lasso optimization problem let’s start with an initial estimator, β̃, and min-

imize the objective function 2.3, denoted as L(β;λ). As per the CDA let us fix all the pa-

rameters at their respective initial estimator except the jth parameter, βj, where 1 ≤ j ≤ p.

The fixed p − 1 parameters are denoted as β̃k, k 6= j. Define r̃j = y −
∑

k 6=j β̃kxk as the

partial residual with respect to the jth parameter. Using this notation we can focus on

9

optimizing L(β;λ) with respect to βj since the other parameters are fixed:

Lj(βj;λ) =
1

2n
‖r̃j − xjβj‖22 + λ|βj|.

We can look at the above objective function from the point of view of a new model with

respect to a single parameter βj, response r̃j, and predictor xj. Denote β̃LSj = x>j r̃j/x
>
j xj

as the least squares solution for βj to express the above equation as:

Lj(βj;λ) =
1

2n
‖r̃j − xjβ̃

LS
j + xjβ̃

LS
j − xjβj‖22 + λ|βj|

=
1

2n
‖(r̃j − xjβ̃

LS
j)− (xjβj − xjβ̃

LS
j)‖22 + λ|βj|

=
1

2n
‖r̃j − xjβ̃

LS
j ‖22 +

1

2n
‖xjβj − xjβ̃

LS
j ‖22 −

1

n
(r̃j − xjβ̃

LS
j)>(xjβj − xjβ̃

LS
j) + λ|βj|

=
1

2n
‖r̃j − xjβ̃

LS
j ‖22 +

x>j xj

2n
(βj − β̃LSj)2 − 1

n
(r̃j − xjβ̃

LS
j)>xj(βj − β̃LSj) + λ|βj|.

Note that the first term of the above equation is a constant and hence can be ignored as

it is irrelevant for the optimization process. The cross term is zero since the error vector,

r̃j − xjβ̃
LS
j is orthogonal to the space spanned by the predictor, xj. We can also multiply

both sides of the objective function by a constant, n
x>j xj

. Since multiplying by a constant

does not affect the value of the optimizer we can simply express Lj(βj;λ) as:

Lj(βj;λ) =
1

2
(βj − β̃LSj)2 + λ∗|βj|+ const,

where λ∗ = nλ/x>j xj. Tibshirani (1996) showed that the minimizer of the above objective

function, β̂Lassoj , is given by the following soft threshold operator:

β̂Lassoj = sign(β̃LSj)(|β̃LSj | − λ∗)+ =


β̃LSj − λ∗, if β̃LSj > λ∗

0, if |β̃LSj | ≤ λ∗

β̃LSj + λ∗, if β̃LSj < −λ∗.
(2.4)

After solving for the jth optimizer, β̂Lassoj , let’s say that the next parameter in line is βm.

Before proceeding we have to update the value of the residual so that, r̃m = y−
∑

k 6=m β̃kxk,

is the current residual. β̂Lassom can be obtained similarly and the process can be repeated for

each parameter (updating the residual at every step) until we complete one entire cycle of

optimization to obtain β̂
Lasso

as the Lasso estimator.

10

The algorithm will terminate after few cycles when convergence of the Lasso estimator

is reached. Similar to the ridge regression set up we can obtain Lasso estimators for a

grid of values of λ. We can choose the maximum value for the tuning parameter, λmax,

as the smallest possible value for which all coefficients will be estimated as zero. If the

design matrix, X, is not rank deficient then we can select the minimum value for the tuning

parameter, λmin, as zero. Otherwise choose the minimum value as λmin = ελmax for a small

value of ε, e.g., ε = 0.001. We can express λmax as:

λmax = max1≤j≤p|(x>j xj)
−1x>j y|.

λmax can be viewed as absolute value of the least square estimate of that single predictor

which will be the first to enter the model, therefore, having the largest absolute least square

value. We can commence the optimization process starting with λmax as the tuning param-

eter and obtain Lasso estimators for few values between λmax and λmin. To speed up the

computation we can use Lasso estimator from a previous λ value as the initial estimator

for a next λ value in line. For practical purpose we can select Lasso estimator given by an

optimal lambda value using the BIC criteria:

BIC(λk) = log
‖y−Xβ̂

Lasso

k ‖22
n

+
log(n)df(λk)

n
, λmin ≤ λk ≤ λmax, (2.5)

where β̂
Lasso

k is the Lasso estimator for the kth value in the tuning parameter sequence and

df(λk) is the number of nonzero coefficients in β̂
Lasso

k . The optimal tuning parameter can be

selected as the one corresponding to minimum value of BIC. The next section will introduce

an improved version of Lasso called as “Adaptive Lasso”.

2.4 Adaptive Lasso

Lasso is a popular method for variable selection and prediction but under some situations

Lasso is not consistent as far as variable selection is concerned (Zou, 2006). Selection of the

important variables (as per the true model) and good prediction accuracy / model estimation

11

are the two fundamental goals in penalized regression. Let’s consider the regression set up as

discusses earlier where the response and predictors are centered so that the intercept term is

excluded from the model. Using the set up given by Zou (2006) let the set A = {j : β∗j 6= 0}

denote be the set of nonzero parameters in the true regression model and the cardinality

of this set is |A| = p0 < p. Thus the true model is sparse since p0 < p. The different

methods of estimation such as ridge regression, Lasso, etc., are given a generic name: “fitting

procedure”, denoted by δ. A highly desirable property for a excellent fitting procedure is

to behave as an oracle. An oracle procedure performs as if the true model is known in

advance. As explained by Fan and Li (2001), if β̂(δ) is the estimator obtained by some

oracle procedure, δ, then β̂(δ) should satisfy the following asymptotic properties:

1) Correct variable selection, {j : β̂j 6= 0} = A with high probability.

2) Optimal rate of estimation,
√
n(β̂(δ)A − β∗A)

D−→ N(0,Σ∗), where Σ∗ is the covariance

matrix for the true model.

In addition to the above two properties, an additional desirable property for oracle pro-

cedures is continuous shrinkage. Previous studies have shown that the Lasso procedure fails

to behave as an oracle in certain situations. Meinshausen and Bühlmann (2006) pointed at

a conflict in the Lasso procedure where the optimal λ chosen for Lasso to achieve good pre-

diction also leads to inconsistent variable selection, therefore, allowing for many redundant

variables in the estimated model. They derived an irrepresentable condition under which

the Lasso is consistent in variable selection. Zou (2006) illustrated situations when Lasso

can be inconsistent for variable selection via solid examples and then proposed a modified

version of Lasso called “adaptive Lasso”.

Unlike the Lasso where each coefficient in the l1 penalty term is given equal weight,

adaptive Lasso uses data driven adaptive weights so that the redundant coefficients are

penalized more than the ones important for variable selection. The objective function for

12

adaptive Lasso is given as:

L(β;λ) =
1

2n
‖y−Xβ‖22 + λ

p∑
i=1

wi|βi|,

where w = (w1, ..., wp)
> is the the vector of weights chosen based on some root-n-consistent

estimator of the true model, for example β̂
LS

(or β̂
ridge

if p > n). The weights can then be

defined as:

wi = |β̂LSi |−γ, γ ≥ 0.

To find the optimizer for the adaptive Lasso problem, β̂
adLasso

, let us define a p×p diagonal

matrix, W whose diagonal elements are given by the weight vector, w. Using this diagonal

matrix of the weights we can express the objective function for adaptive Lasso as:

L(β;λ) =
1

2n
‖y−XW−1Wβ‖22 + λ

p∑
i=1

wi|βi|, λ ≥ 0.

If we define X̃ = XW−1 and β̃ = Wβ so that β̃i = wiβi then,

L(β;λ) =
1

2n
‖y− X̃β̃‖22 + λ

p∑
i=1

|β̃i|

=
1

2n
‖y− X̃β̃‖22 + λ‖β̃‖1. (2.6)

The above objective function is similar to the one for Lasso (equation 2.3) except that X and

β are now defined as X̃ and β̃ respectively. Keeping this distinction in mind, the optimizer

for (2.6), ˆ̃βadLasso , can be obtained similar to the Lasso optimizer (2.4). Finally, β̂
adLasso

can be obtained as:

β̂
adLasso

= W−1 ˆ̃βadLasso.

The optimization for adaptive Lasso is convex and, therefore, we can use CDA to obtain

a global optimizer just as we did for the Lasso problem. Similar to Lasso, we can obtain

adaptive Lasso estimators over a grid of λ values. λmax for adaptive Lasso can be derived

similar to Lasso. Since the maximum value of the tuning parameter corresponds to the

13

smallest value of λ for which all coefficients are estimated to be zero, we can show λmax for

adaptive lasso as:

λmax = max1≤j≤p|
x>j y

nwj
|.

The computational algorithm for Lasso and adaptive Lasso is same. In fact, we can develop

the algorithm for adaptive Lasso and just set γ = 0 for Lasso. This is due to fact that when

γ = 0, the diagonal weight matrix, W, is simply an identity matrix and we go back to Lasso

framework. Zou (2006) suggested using γ = 2 for practical use and also proved that the

adaptive Lasso is an oracle procedure.

An intuitive way to understand why adaptive weights helps to perform better variable

selection and estimation compared to Lasso (thereby giving adaptive Lasso the properties of

an oracle procedure) we can imagine the constraint region for adaptive Lasso when p = 2.

Suppose the true model is such that β1 = 0 and β2 6= 0. If the weights are defined as

w1 = |β̂LS1 |−γ and w2 = |β̂LS2 |−γ then we can see that w1 → ∞ and w2 → 0. The adaptive

Lasso constraint area, w1|β1|+w2|β2| ≤ t, where t has one to one correspondence with λ, will

then be a distorted version of the constraint region for Lasso in Fig (1.3.1). The distortion

will be such that the rotated square for Lasso is stretched in the horizontal direction and

shrunk in the vertical direction. Therefore, we are promoting the chances of contour of the

error function (red ellipse) to first touch the constraint area where β1 will be estimated to

be zero. Therefore, cleverly chosen weights for adaptive Lasso can achieve better variable

selection as compared to Lasso.

Before we conclude this section it is noteworthy to mention few ingenious concepts

under the framework of penalized regression: group Lasso and non-convex penalties such

as MCP and SCAD. Yuan and Lin (2006) proposed the group Lasso method to address the

issue of selecting grouped variables. The group Lasso method extends the basic concept of

Lasso for group selection problems that naturally arise in several practical situations such as

multiple factor ANOVA. The combination of l1 norm (that encourages sparsity) and l2 norm

(that combines the grouped coefficients) gives group Lasso the ability to enforce sparsity

14

at the group level. Apart from convex penalties such as Lasso, non-convex penalties such

as smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and minimax concave

penalty (MCP) (Zhang, 2010) are proposed with appealing theoretical properties. One

challenge with non-convex penalties is efficient computation. See, e.g., Breheny and Huang

(2011) proposed an algorithm using local linear or quadratic approximation and coordinate

descent for solving the non-convex SCAD and MCP problems.

15

Chapter 3

Linear Constrained Lasso

3.1 Lasso with Equality Constraints

We reach the next important step in our journey where we deal with situations which

demand the Lasso/adaptive Lasso solution to satisfy certain linear constraints. We shall

then apply the methodology developed here to solve the sparse and orthogonal singular

value decomposition problem in the next chapter.

Consider the general constrained minimization problems of the following form,

min
u
{J(u) : H(u) = 0}, (3.1)

where u ∈ Rp, J(u) and H(u) are both convex functions and minu∈Rp H(u) = 0. In order

to solve (3.1), consider an unconstrained Lagrangian form,

min
u
J(u) + µH(u), (3.2)

where µ is the relaxation penalty parameter. For small µ, the penalty function may not

accurately enforce the constraint. To satisfy the constraint, a common approach is to use

continuation method and let µ→∞ or be extremely large. However, a large µ may make the

unconstrained problem hard to solve, especially when J(u) is not differentiable. Besides, in

many applications, µ must be increased with very small increments during the continuation

procedure, which makes the optimization inefficient (Goldstein and Osher, 2009).

16

An alternative to the aforementioned conventional approach is Bregman iteration method.

The fundamentals of Bregman iteration were laid out by Bregman (1967) who proposed to

solve a sequence of unconstrained problems for finding common point of intersection of con-

vex sets which could be used to approximate solutions of problems that arise in linear and

convex programming. Bregman iterative algorithms have been widely used in compressed

sensing particularly for solving constrained minimization problems such as basis pursuit.

We provide a brief description of Bregman iteration method, and refer the interested reader

to, e.g., Bregman (1967) and Goldstein and Osher (2009) for details. For a convex function

J(u), the Bregman distance at point v is defined as

BS
J (u,v) = J(u)− J(v)− < S,u− v >,

where S is the subgradient of J at v. It can be shown that BS
J (u,v) ≥ 0 and BS

J (u,v) ≥

BS
J (w,v) for any w on the line segment between u and v, i.e, w ∈ {(1−t)u+tv : 0 ≤ t ≤ 1.}

(Goldstein and Osher, 2009). Bregman (1967) showed that (3.1) can be solved by iteratively

solving

u(s+1) =argmin
u

BS
J (u,us) + µH(u)

=argmin
u

J(u)− < S(s),u− u(s) > +µH(u),

S(s+1) =S(s) −∇H(u(s+1)).

Here for simplicity we have assumed that H is differentiable and used ∇H to denote its

derivative. Bregman iterative method is guaranteed to converge and can be very fast in

several applications. In particular, when the constraint is linear, the method can be further

simplified (Goldstein and Osher, 2009). Consider

min
u
{J(u) : Au = b}, (3.3)

where A ∈ Rm×p, b ∈ Rm, and u ∈ Rp. The problem can be solved by iteratively solving

u(s+1) = min
u

J(u) +
µ

2
‖Au− b(s)‖22,

b(s+1) =b(s) + b−Au(s+1).

17

Inspired by the Bregman iterative algorithm we can solve the familiar Lasso problem

under linear constraints. Consider the following constrained (adaptive) Lasso problem,

min
β∈Rp

1

2
‖y−Xβ‖22 + λ

p∑
j=1

wj|βj| subject to Aβ = b, (3.4)

where y ∈ Rn, X ∈ Rn×p, A = (a1, . . . , ap) ∈ Rh×p, b ∈ Rh×1, w = (w1, ..., wp)
> are

some predetermined weights, and λ is a tuning parameter controlling the degree of l1 penal-

ization. Here we assume that the coefficient vector β satisfies h known linear constraints.

Henceforth we denote the problem as ConLasso(β; y,X,A,b, λw). While the problem here

is motivated by the orthogonality constrained optimization of the reduced rank regres-

sion set up (as elaborated in the introduction), we note that constrained Lasso arises in

many problems including fused Lasso, generalized Lasso, monotone curve estimation, etc;

for further discussion on this matter, we refer to an unpublished manuscript on the linear

equality or inequality constrained Lasso by Gareth M. James, Courtney Paulson and Paat

Rusmevichientong.

We construct an augmented Lagrangian function of the Lasso objective function (3.4)

for incorporating the equality constraints,

f(β, c;λ, µ) =
1

2
‖y−Xβ‖22 + λ

p∑
j=1

wj|βj|+
µ

2
‖Aβ − b− c

µ
‖22, (3.5)

where the third term is added to penalize the violation of the linear constraints Aβ = b, and

µ ≥ 0 is a fixed Bregman parameter. For a given c vector, this function can be efficiently

minimized by coordinate descent with respect to β, as the problem is separable in each βj,

j = 1, . . . , p. By the KKT optimality condition, it can be shown that each one-dimension

updating step is simply a scaled soft-thresholding operation, induced by the hybrid of the

l1 and l2 regularization. Once β gets updated, we can then update c to further enforce the

linear constraints. Therefore, the constrained Lasso problem can be solved by alternating

minimization between c and β until convergence, which combines the ideas of Bregman

iteration and coordinate descent. Note that in practice it is not necessary to completely

18

solve (3.5) for updating β as it is only one inner step of the proposed iterative algorithm.

We hence propose a Bregman coordinate Descent algorithm (BCDA) as follows.

Bregman Coordinate Descent Algorithm (BCDA)

Initialization: β(0) ∈ Rp, c(0) = 0, µ(0) = 1, and ρ ≥ 1.

For cycle s = 0, 1, 2, ...

1. Solve

β(s+1) = arg min
β∈Rp

1

2
‖y−Xβ‖22 + λ

p∑
j=1

wj|βj|+
µ(s)

2
‖Aβ − b− c(s)

µ(s)
‖22

by coordinate descent. For each j = 1, ..., p, the updating formula is given by

β̂
(s+1)
j ←−

S
(

(y−
∑

i 6=j βixi)
>
xj + µ(s){(c(s)

µ(s)
+ b)

>
aj − (

∑
i 6=j βiai)

>
aj}, λwj

)
x
>
j xj + µ(s)a

>
j aj

,

where S(t, λ) = sgn(t)(|t| − λ)+ is the soft-thresholding operator.

2. c(s+1) = c(s) − (Aβ(s+1) − b)µ(s)

3. µ(s+1) = µ(s)ρ

Repeat until convergence.

Note that with every cycle the parameter µ may be incremented since it is multiplied

by ρ > 1, which may improve the speed of convergence in practice. However, this is not

essential as we can simply set ρ = 1. To understand the updating formula for each βj

we have to solve the optimization problem (3.5) using coordinate descent algorithm such

that all parameters are fixed at their initial estimators except the jth parameter. Using the

initialization: β(0) ∈ Rp, c(0) = 0, and µ(0) = 1, the Bregman estimator for the s+ 1th cycle,

19

β̂s+1
j , for jth parameter is the minimizer of the following objective function:

fj(βj, c;λ, µ) =
1

2
‖y−Xβ‖22 + λ

p∑
j=1

wj|βj|+
µ(s)

2
‖Aβ − b− c(s)

µ(s)
‖22

=
1

2
‖y−

∑
k 6=j

xkβk − xjβj‖22 + λwj|βj|+
µ(s)

2
‖ajβj + (

∑
k 6=j

akβk − b− c(s)

µ(s)
)‖22.

Denoting rj = y−
∑

k 6=j xkβk we further simply:

fj(βj, c;λ, µ) =
1

2
‖rj − xjβj‖22 +

µ(s)

2
a>j ajβ

2
j + µ(s)βja

>
j (
∑
k 6=j

akβk − b− c(s)

µ(s)
) + λwj|βj|

=
1

2
(r>j rj − 2βjr

>
j xj + β2

jx
>
j xj) +

µ(s)

2
a>j ajβ

2
j + µ(s)βja

>
j (
∑
k 6=j

akβk − b− c(s)

µ(s)
)

+ λwj|βj|+ const.

Since multiplying by a constant does not affect the estimated solution we multiply both

sides by 1/x>j xj and simply express fj(βj, c;λ, µ) as:

fj(βj, c;λ, µ) =
1

2
(β2

j − 2zjβj) +
µ(s)a>j aj

2x>j xj
β2
j +

µ(s)βja
>
j

x>j xj
(
∑
k 6=j

akβk − b− c(s)

µ(s)
)

+ λwj|βj|+ const, (where zj = r>j xj/x
>
j xj)

=
1

2
(β2

j − 2zjβj + zj2 − z2j) +
µ(s)a>j aj

2x>j xj
β2
j +

µ(s)βja
>
j

x>j xj
(
∑
k 6=j

akβk − b− c(s)

µ(s)
)

+ λwj|βj|+ const

=
1

2
(βj − zj)2 +

µ(s)a>j aj

2x>j xj
β2
j +

µ(s)βja
>
j

x>j xj
(
∑
k 6=j

akβk − b− c(s)

µ(s)
)

+ λwj|βj|+ const.

Denote λ∗ = λwj/x
>
j xj, µ

∗ = µ(s)a>j aj/2x>j xj, and ν =
µ(s)a>j
x>j xj

(
∑

k 6=j akβk − b − c(s)

µ(s)
) so

20

that:

fj(βj, c;λ, µ) =
1

2
(βj − zj)2 + µ∗β2

j + λ∗|βj|+ νβj + const

=
1

2
β2
j − βjzj +

z2j
2

+ µ∗β2
j + λ∗|βj|+ νβj + const

= (
1

2
+ µ∗)β2

j − (zj − ν)βj + λ∗|βj|+ const

= (
1

2
+ µ∗)[β2

j − 2(
zj − ν

1 + 2µ∗
)βj + (

zj − ν
1 + 2µ∗

)2 − (
zj − ν

1 + 2µ∗
)2] + λ∗|βj|+ const

= (
1

2
+ µ∗)[βj − (

zj − ν
1 + 2µ∗

)]2 + λ∗|βj|+ const.

Dividing both sides by the constant (1 + 2µ∗) we simply express fj(βj, c;λ, µ) as:

fj(βj, c;λ, µ) =
1

2
(βj −

zj − ν
1 + 2µ∗

)2 +
λ∗

1 + 2µ∗
|βj| = S[

zj − ν
1 + 2µ∗

;
λ∗

1 + 2µ∗
],

where S(t, λ) = sgn(t)(|t| − λ)+ is the soft-thresholding operator. Expressing µ∗, λ∗, and ν

in their orginal form it can be easily shown that:

β̂
(s+1)
j =

S
(

(y−
∑

i 6=j βixi)
>
xj + µ(s){(c(s)

µ(s)
+ b)

>
aj − (

∑
i 6=j βiai)

>
aj}, λwj

)
x
>
j xj + µ(s)a

>
j aj

3.2 Simulation

We compare the prediction error, estimation error, sparsity, and conformance to linear

constraint for five methods: constrained adaptive Lasso (linear constraint and adaptive

weights), adaptive Lasso (adaptive weights only), constrained Lasso (linear constraint but

no adaptive weights), Lasso (no linear constraint or adaptive weights), and the ordinary least

squares. The Bregman parameter which governs the linear constraint is set as µ = ρ = 1.

The sparsity parameter, following the suggestion by Zou (2006), is set as γ = 2. The

simulation is done for two models: 1) low dimensional model where n = 50 and p = 20,

and 2) high dimensional model where n = 50 and p = 100. For both models the covariate

matrix X is constructed by generating its n rows as i.i.d. samples from MVN(0,Γ), where

21

Γ = (Γij)p×p and Γij = 0.5|i−j|. The true signal, β, is constructed as follows:

β = [unif(A, 5), rep(0, 10)]> (Model 1)

β = [unif(A, 5), rep(0, 90)]> (Model 2).

The notation unif(A, b) denotes a vector of length b whose entries are i.i.d. samples from

the uniform distribution on the set of real values A; we use A = [−1,−2] ∪ [1, 2]. The

notation rep(a, b) denotes a vector of length b, whose entries are all equal to a. The linear

constraints are such that the true signal, β, is orthogonal to the row vectors of matrix A2×p.

Therefore, the vector b is a zero vector. Using the notation A[i,] for the ith row, the matrix

A is constructed as:

A[1,] = [rep(0,10), rep(1,5), rep(0,5)]> (Model 1)

A[2,] = [rep(0,10), rep(0,5), rep(1,5)]> (Model 2).

Finally the vector y is constructed as y = Xβ + e, where the entries of e are i.i.d. samples

from N(0, σ2). We define the signal to noise ratio (SNR) as ‖β>Γβ‖2/σ. Therefore, the

standard deviation σ can be chosen to fix SNR at a certain level. The experiment was

replicated 100 times for each SNR = 5, 10, and 15 to cover decent range of signal strengths

relative to the noise level.

Tables 3.1 and 3.2 summarize the simulation results for low and high dimensional models

respectively. The averaged false positive rates (FPR) and false negative rates (FNR) are

reported. The estimation error (Er-Est) and prediction error (Er-Pred) for a single run is

defined as:

Er-Est = 100
‖β̂ − β‖22

n
,

Er-Pred = 100
‖Xβ̂ −Xβ‖22

n
,

where β̂ is the estimated solution for a particular method and SNR setting. The conformance

to orthogonality (linear constraint) for a single run is measured as:

constraint = ‖Aβ̂ − b‖22.

22

We report the average and standard deviation from all 100 runs for FPR, FNR, Er-Est,

Er-Pred, conformance to orthogonality for each method and SNR setting within both low

and high dimensional set up. Each simulation run was conducted for 100 lambda values and

the optimal solution was chosen using BIC (equation 2.5). The maximum lambda for Lasso

(or constrained Lasso) and adaptive Lasso (or constrained adaptive Lasso) was computed

as explained in the Lasso and adaptive Lasso section respectively.

Table 3.1: Constrained Adaptive Lasso: Low Dimensional Model (n=50, p=20)
SNR FPR FNR Er-Est Er-Pred Constraint

Constrained Adaptive Lasso
5 5.80% 0.00% 0.87 (0.97) 20.38 (12.67) 0.00

10 1.48% 0.00% 0.21 (0.18) 4.74 (2.77) 0.00
15 0.56% 0.00% 0.09 (0.07) 2.30 (0.98) 0.00

Adaptive Lasso
5 9.43% 0.00% 1.12 (0.71) 24.61 (13.67) 0.13 (0.11)

10 4.77% 0.00% 0.31 (0.22) 6.51 (3.85) 0.00
15 2.32% 0.00% 0.13 (0.11) 2.24 (0.91) 0.00

Constrained Lasso
5 28.23% 0.12% 1.42 (0.94) 30.21 (14.79) 0.00

10 11.94% 0.00% 0.43 (0.22) 8.21 (3.69) 0.00
15 4.81% 0.00% 0.19 (0.12) 3.43 (2.02) 0.00

Lasso
5 35.13% 0.11% 1.62 (1.03) 31.71 (16.01) 10.82 (12.58)

10 15.11% 0.00% 0.37 (0.31) 8.62 (3.79) 2.33 (2.64)
15 6.42% 0.00% 0.19 (0.12) 3.84 (2.02) 0.68 (0.93)

Least Squares
5 100.00% 0.00% 1.94 (1.01) 36.32 (15.84) 0.23 (0.18)

10 100.00% 0.00% 0.52 (2.65) 8.83 (54.93) 0.12 (0.11)
15 100.00% 0.00% 0.19 (0.12) 3.82 (1.84) 0.00

From tables 3.1 and 3.2 we can infer that the constrained adaptive Lasso method out-

performs rest of the methods. The constrained adaptive Lasso method is able to achieve

relatively low FPR, FNR, Er-Est, Er-Pred, and constraint values due to its ability to cleverly

use data driven weights that promote sparsity and enforce orthogonality, courtesy Bregman

iterative method. Therefore, it can be greatly useful for high dimensional models, particu-

23

larly when the SNR is on the lower side, as the orthogonality condition restricts and guides

the search for optimal sparse solution. Adaptive Lasso, the unconstrained counterpart of

Table 3.2: Constrained Adaptive Lasso: High Dimensional Model (n=50, p=100)
SNR FPR FNR Er-Est Er-Pred Constraint

Constrained Adaptive Lasso
5 16.83% 10.52% 10.31 (7.85) 75.81 (48.69) 0.00

10 13.62% 6.87% 6.42 (8.01) 33.82 (37.03) 0.00
15 10.91% 3.87% 3.53 (5.75) 19.42 (27.89) 0.00

Adaptive Lasso
5 18.79% 10.94% 11.92 (8.02) 78.51 (50.04) 0.21 (0.28)

10 12.82% 6.52% 6.52 (6.87) 31.68 (36.81) 0.09 (0.27)
15 10.66% 4.91% 4.61 (6.73) 21.52 (30.82) 0.07 (0.23)

Constrained Lasso
5 29.53% 1.21% 8.93 (4.85) 87.01 (34.03) 0.00

10 16.42% 0.11% 2.72 (2.84) 21.22 (7.85) 0.00
15 8.91% 0.18% 1.42 (2.01) 9.42 (3.91) 0.00

Lasso
5 28.41% 3.11% 10.48 (5.82) 93.11 (37.01) 0.13 (0.16)

10 18.01% 0.59% 2.91 (3.02) 19.68 (6.79) 0.11 (0.11)
15 10.64% 0.00% 1.31 (1.03) 8.91 (3.79) 0.00

Least Squares
5 100.00% 0.00% 25.61 (5.03) 91.77 (35.01) 0.51 (0.51)

10 100.00% 0.00% 23.63 (5.02) 22.81 (11.02) 0.56 (0.57)
15 100.00% 0.00% 22.56 (5.01) 10.53 (3.83) 0.51 (0.59)

constrained adaptive Lasso, slightly underperformed as far as sparsity, estimation and pre-

diction is concerned. However, with respect to linear constraints, constrained adaptive Lasso

is far better than adaptive Lasso. If we do not use adaptive weights, as in the case of Lasso

and constrained Lasso, we observe relatively high FPR which reflects the over-selection

property of the l1 regularization. However, the over-selection is not so bad when the SNR

is on the higher side. As expected the constrained Lasso conforms to the orthogonality

condition much better than the Lasso. Clearly the ordinary least squares solution does not

perform variable selection (or satisfaction of the linear constraint) as indicated by the high

FPR and high estimation / prediction error.

24

Chapter 4

Sparse and Orthogonal SVD

4.1 Introduction

Given n observations of the response variable yi ∈ Rq and predictor variable xi ∈ Rp, we

consider the multivariate regression model:

Y = XC + E, (4.1)

where Y = (y1, ...,yn)>, X = (x1, ...,xn)>, C is a p × q coefficient matrix, and E =

(e1, ..., en)> is a random n × q matrix; the error vectors are assumed to be independently

and identically distributed (i.i.d.) with mean vector E(ei) = 0 and covariance matrix

Cov(ei) = Σ, a q× q positive-definite matrix. We assume the variables are centered so that

there is no intercept term. It is assumed that C may admit certain low-dimensional matrix

structures, the exploitation of which may mitigate the curse of dimensionality, facilitate

model interpretation and improve predictive accuracy. Many desirable low-dimensional

properties of C can be revealed via examining its singular value decomposition (SVD),

which can be written as:

C = UDV> =
r∑

k=1

dkukv
>
k =

r∑
k=1

Ck, (4.2)

where r = min(p, q), U = (u1, ...,ur) consists of orthonormal left singular vectors, V =

(v1, ...,vr) consists of orthonormal right singular vectors, D = diag({dk, k = 1, . . . , r}) is a

25

r × r diagonal matrix with nonnegative singular values d1 ≥ ... ≥ dr∗ > 0 and dr∗+1 = ... =

dr = 0 on its diagonal, and Ck = dkukv
>
k .

This SVD representation could be used to parsimoniously reveal some complex depen-

dence structures between Y and X. Firstly, it shows that C is composed of r∗ orthogonal

unit-rank layers with decreasing singular values, i.e. there are r∗ distinct additive channels

of decreasing importance relating the responses to the predictors. Secondly, for each layer

k, the elements in uk can be viewed as the predictor effects and the elements in vk the

response effects. In order to conduct variable selection and facilitate interpretation, it is

then desirable that the left and right singular vectors be sparse, i.e. each pathway relating

the responses to the predictors may only involve a few responses and predictors. In addi-

tion to sparsity, it is also desirable to enforce orthogonality among the left/right singular

vectors which holds true for the coefficient matrix of the underlying true model. Imposing

orthogonality, albeit difficult, is critical in restricting and guiding the search of the optimal

sparsity pattern.

We propose two methods that strive to achieve the dual goal of sparse and orthogonality:

1) Sparse Orthogonal SVD via Sequential Extraction Algorithm (SOSVD via SEA) which

uses only one regularization parameter for each pair of singular vectors, and 2) Sparse

Orthogonal SVD via Block Extraction Algorithm (SOSVD via BEA) which allows for two

regularization parameters so that different levels of sparsity can be imposed on the left and

right singular vectors. Both methods use the Bregman iterative algorithm to impose linear

constraints needed to promote orthogonality.

4.2 SOSVD via SEA

Suppose that the rank of C has been correctly identified, i.e., rank(C) = r∗ so that∑r∗

k=1 dkukv
>
k represent the the SVD of C: sum of r∗ unit rank matrices with decreasing

singular values. We can estimate C in equation (4.1) by minimizing the following objective

26

function with respect to the triplets (dk,uk,vk) for k = 1, ..., r∗:

1

2
‖Y−X

r∗∑
k=1

dkukv
>
k ‖2F +

r∗∑
k=1

λk

p∑
i=1

q∑
j=1

wijk|dkuikvjk|,

subject to U>U = I,V>V = I. (4.3)

Note that ‖uk‖ = ‖vk‖ = 1 where ‖.‖ denotes the l2-norm. Further, wijk = w
(d)
k w

(u)
ik w

(v)
jk

are the data driven weights to promote sparsity (similar to adaptive lasso problem) and

low dimension recovery. λks are the regularization parameter controlling the degree of

penalization of the distinct layers. Similar to adaptive lasso, the second term in equation

(4.3) (also called penalty term) is proportional to the weighted l1-norm of an SVD layer

dkukv
>
k . Note that the penalty term has a multiplicative form so that the objective function

can also be expressed as:

1

2
‖Y−X

r∗∑
k=1

dkukv
>
k ‖2F +

r∗∑
k=1

{λk(w(d)
k dk)(

p∑
i=1

w
(u)
ik |uik|)(

q∑
j=1

w
(v)
jk |vjk|)},

subject to U>U = I,V>V = I.

The above expression shows that only one regularization parameter is needed for each

pair of singular vectors. A simple approach to achieve the dual goal of estimating sparse and

orthogonal r∗ layers of C, as alluded by Chen et al. (2012), is by sequentially performing

sparse unit rank regression for each of the r∗ layers such that every kth layer is orthogonal

to the previous k − 1 layers; implying the orthogonality (and sparsity) of the left/right

singular vectors. At each step of the sequential process, the data matrix Y is replaced by

the residual matrix that is obtained by subtracting previously estimated layer of the original

matrix. Therefore, estimation of the kth layer boils down to sparse unit rank regression, case

when r∗ = 1, while imposing orthogonality with respect to previous k − 1 layers.

The sequential approach can be used as a simple and practical algorithm for obtaining

sparse estimate of C in 4.1. For estimating the kth layer, the problem can be expressed as

27

minimizing the following objective function with respect to kth triplet (dk,uk,vk):

1

2
‖Yk −Xdkukv

>
k ‖2F + λk

p∑
i=1

q∑
j=1

wijk|dkuikvjk|, subject to U>1:k−1uk = 0,V>1:k−1vk = 0,

u>k uk = 1, v>k vk = 1.
(4.4)

Here Yk = Y −
∑k−1

r=1 XĈr denote the kth residual matrix obtained by subtracting the

previous k − 1 estimated layers from the original matrix Y. The columns of U1:k−1 and

V1:k−1 denote the first k − 1 left and right singular vectors respectively. As explained

earlier ‖uk‖ = ‖vk‖ = 1 and wijk = w
(d)
k w

(u)
ik w

(v)
jk are the data driven weights to promote

sparsity. To construct the weights we start with some initial consistent estimator of C, rank

r∗ reduced rank least squares estimator of C, for example. Let d̃k, ũk, and ṽk denote the

constituents that build up the kth layer of the initial estimator. As suggested by Zou (2006),

the weights can be constructed as:

w
(d)
k = |d̃|−γ,

w
(u)
k = (w

(u)
1k , ..., w

(u)
pk)> = |ũk|−γ,

w
(v)
k = (w

(v)
1k , ..., w

(v)
qk)> = |ṽk|−γ,

 (4.5)

where γ is a predetermined parameter. As suggested by Zou (2006), we can choose γ = 2.

The notation |.|−γ is defined element-wise for the vector under consideration. Inspired by

Chen et al. (2012) we propose to solve the objective function (4.4) by a block co-ordinate

descent algorithm in which two overlapping blocks of parameter, (dk,uk) and (dk,vk), are

alternatively updated until convergence, with either vk or uk held fixed.

For fixed uk, the minimization of (4.4) with respect to the block (dk,vk) becomes min-

imization with respect to v̌k = diag(dkw
(v)
k)vk of the following objective function (referred

to as V-step):

1

2
‖yk −X

(v)
k v̌k‖22 + λ

(v)
k

q∑
j=1

|v̌jk|, subject to V>1:k−1diag(dkw
(v)
k)−1v̌k = 0, (4.6)

where the expression diag(m) denotes a diagonal matrix with entries of the vector m on

its diagonal, yk = vec(Yk), X
(v)
k = diag(wv

k)
−1 ⊗ (Xuk), and λ

(v)
k = λkw

(d)
k (
∑p

i=1w
(u)
ik |uik|).

28

Note that the definition of v̌k can be used to show that the condition V>1:k−1diag(dkw
(v)
k)−1v̌k =

0 implies V>1:k−1vk = 0 which ensures that every kth estimated left singular is orthogonal to

the previously estimated (k − 1) left singular vectors. Solving the V-step, given by equa-

tion (4.6), is necessarily a lasso problem with respect to v̌k in addition to the orthogonality

constraint. Therefore, we invoke the constrained adaptive lasso algorithm, referred to as

ConLasso(β = v̌k; y = yk,X = X
(v)
k ,A = V>1:k−1diag(dkw

(v)
k)−1,b = 0, λ = rep(λ

(v)
k , q)).

Similarly for fixed vk, the minimization of (4.4) with respect to the block (dk,uk) be-

comes minimization with respect to ǔk = diag(dkw
(u)
k)uk of the following objective function

(referred to as U-step):

1

2
‖yk −X

(u)
k ǔk‖22 + λ

(u)
k

p∑
i=1

|ǔik|, subject to U>1:k−1diag(dkw
(u)
k)−1ǔk = 0, (4.7)

where X
(u)
k = vk ⊗Xdiag(wu

k)
−1, and λ

(u)
k = λkw

(d)
k (
∑q

j=1w
(v)
jk |vjk|). Again, the definition of

ǔk can be used to show that the condition U>1:k−1diag(dkw
(u)
k)−1ǔk = 0 implies U>1:k−1uk =

0 which ensures that every kth estimated right singular is orthogonal to the previously

estimated (k − 1) right singular vectors. Thus, solving U-step, given by equation (4.7),

is again a lasso problem with respect to ǔk in addition to the orthogonality constraint.

Therefore, we invoke the constrained adaptive lasso algorithm, referred to as ConLasso(β =

ǔk; y = yk,X = X
(u)
k ,A = U>1:k−1diag(dkw

(u)
k)−1,b = 0, λ = rep(λ

(u)
k , p)).

Empowered by the constrained adaptive lasso algorithm to the solve the U and V step

and owing to the multi-convex structure of the objective function (4.3) we propose the

sparse unit rank regression algorithm for estimating the kth layer of C. We denoted the al-

gorithm as SURR(Ĉk; X,Yk,A
(u)
k−1,b

(u)
k−1,A

(v)
k−1,b

(v)
k−1, λk). The matrix A

(u)
k−1 is a (k − 1)× p

matrix whose rows are the previously estimated k − 1 left singular vectors. Similarly, the

matrix A
(v)
k−1 is a (k − 1) × q matrix whose rows are the previously estimated k − 1 right

singular vectors. The vectors b
(u)
k−1 and b

(v)
k−1 are zero vectors each of length k − 1. For a

fixed value of the tuning parameter, λk, the SURR algorithm is given below.

29

SURR for the kth orthogonal layer

Initialization: Start with rank r∗ reduced rank least squares estimator of C and
let ũk denote the initial non-zero estimator of the kth right singular vector.

1. V-step: Given uk = ũk, minimize the objective function (4.6) to obtain v̌k.

Therefore, v̂k = diag(d̂kw
(v)
k)−1v̌k and d̂k = ‖diag(w(v))−1v̌k‖2.

2. U-step: Given vk = v̌k, minimize objective function (4.7) to obtain ǔk. There-

fore, ûk = diag(d̂kw
(u)
k)−1ǔk and d̂k = ‖diag(w(u))−1ǔk‖2.

3. Repeat steps (1) and (2), until Ĉk = d̂kûkv̂>k converges implying ‖
ˆCc−

ˆCp‖F
‖ ˆCp‖F

< ε,

where ε is the level of tolerance, ε = 10−6, for example. Ĉc denotes the current
fit and Ĉp denotes the previous fit.

Similar to the lasso / adaptive lasso problem, we can estimate the solution path for any

kth layer of C for a grid of 100 λk values in a decreasing order and equally spaced on a

log-scale, denoted as [λmax
k , λmin

k]. λmax
k is the smallest value of the tuning parameter at

which all coefficients are estimated as zero. λmin
k can be chosen as a small value at which the

model has excessive number of non-zero coefficients or model simulation becomes numerically

unstable (Chen et al., 2012). Also, owing to the continuous nature of the solution path,

we can choose the initial estimate for any particular λk as the estimate obtained from the

previous λk value in the sequence of the tuning parameter. This strategy is a key feature of

the coordinate descent algorithm to speed up computation.

Finally, we propose the SOSVD via SEA algorithm for estimating all r∗ layers of C as

summarized below.

30

SOSVD via SEA

Initialization: Start with rank r∗ reduced rank least squares estimator of C
denoted as C̃ =

∑r∗

k=1 C̃k and let C̃k = d̃kũkṽ
>
k denote its kth layer.

1. Layer 1: Start with the initial estimator C̃1 and estimate the first layer Ĉ1 by
solving SURR(Ĉ1; X,Y,A

(u)
0 = rep(0, p)>,b

(u)
0 = 0,A

(v)
0 = rep(0, q)>,b

(v)
0 =

0, λ1). Note that the first layer need not satisfy any orthogonality constraint.

For k = 2, 3, ..., r∗

2. Layer k: Start with the initial estimator C̃k and estimate the kth layer Ĉk

by solving SURR(Ĉk; X,Y = Yk,A
(u)
k−1 = (û1, û2, ..., ûk−1)

>,b
(u)
k−1 = rep(0, k −

1),A
(v)
k−1 = (v̂1, v̂2, ..., v̂k−1)

>,b
(v)
k−1 = rep(0, k − 1), λk).

Note that if X is a identity matrix in equation (4.1) then we revert to unsupervised learning

framework. The next section discusses SOSVD via BEA algorithm, which allows for two

regularization parameters so that different levels of sparsity can be imposed on the left and

right singular vectors.

4.3 SOSVD via BEA

Suppose the rank of C has been correctly identified, i.e., rank(C) = r∗. To obtain both

sparse and orthogonal left/right singular vectors of C, we propose to estimate C by solving

the following optimization problem with respect to the triplet (U,D,V), with U ∈ <p×r∗ ,

V ∈ <q×r∗ and D an r∗ × r∗ diagonal matrix,

min
(U,D,V)

{
J(U,D,V) ≡ 1

2
‖Y −XUDV>‖2F + λ1‖W(u) ◦UD‖1 + λ2‖W(v) ◦VD‖1

}
subject to U>U = I,V>V = I (4.8)

where ‖ · ‖F denotes the Frobenius norm, ‖ · ‖1 the l1 norm, and ◦ the Hadamard product.

Also, W(u) = (w
(u)
1 , ...,w

(u)
r∗) and W(v) = (w

(v)
1 , ...,w

(v)
r∗) denote the data driven weights

which are constructed similar to (4.5).

We combine the ideas of coordinate descent and Bregman iteration methods for solving

31

(4.8). The main challenge is how to effectively incorporate the orthogonality constraints in

l1-penalized optimization. Our proposed algorithm admits a nested block-wise coordinate

descent structure, and we show that within each block the problem boils down to solving

a Lasso problem with certain linear equality constraints originated from the orthogonality

condition. In the following, we first propose an efficient Bregman iterative coordinate descent

algorithm (BCDA) for solving a constrained Lasso criterion. Based on BCDA, we solve the

main problem (4.8) for each fixed set of tuning parameters.

We now consider solving the sparse regression problem (4.8). When r∗ = 1 and X is an

identity matrix, it can be recognized that the problem reduces exactly to a rank-one sparse

SVD criterion with respect to a triplet (d,u,v), which was proposed by Lee et al. (2010)

for microarray bi-clustering. Lee et al. (2010) developed an iterative algorithm to solve

the problem, in which two blocks of parameters (d,u) and (d,v) are alternately updated

until convergence, with either v or u held fixed. Here we adopt the same idea to our general

regression setting, minimizing criterion (4.8) by alternately updating two overlapping blocks

of parameters (U,D) and (V,D), referred to as the U-step and V-step, respectively. For

fixed V, the U-step is to solve

min
U,D

{
1

2
‖y −X(u)vec(UD)‖2 + λ1‖W(u) ◦UD‖1

}
subject to U

>
U = I. (4.9)

where y = vec(Y) and X(u) = V ⊗ X. On the other hand, for fixed U, the V-step is to

solve

min
V,D

{
1

2
‖yt −X(v)vec(VD)‖2 + λ2‖W(v) ◦VD‖1

}
subject to V

>
V = I. (4.10)

where yt = vec(Y
>

) and X(v) = (XU)⊗ Iq.

Both the U-step and the V-step can be solved by a blockwise iterative BCDA algo-

rithm. We use the U-step for illustration. The main idea is that the objective (4.9) can be

viewed as with respect to β = (β
>

1 , · · · ,β
>

r∗)
>

= (d1u
>
1 , · · · , dru

>
r∗)
>

= vec(UD), and it can

be shown that updating each dkuk with others held fixed is exactly a linearly constrained

Lasso problem. We emphasis that the nonlinear scale constraint u>k uk = 1 is completed

32

avoided as the optimization variable is dkuk rather than uk. The algorithm for solving the

U-step with any fixed λ1 is given below.

Iterative BCDA for Solving U-Step

Initialization: U(0) = (u
(0)
1 , . . . ,u

(0)
r∗) satisfying U(0)>U(0) = I; D(0) =

diag{d(0)k , k = 1, . . . , r∗}.

For s = 1, 2, . . .

1. Compute the current residual r = y−X(u)β(s).

2. For each k = 1, . . . , r∗,

(a) Xk ←− vk ⊗X;

(b) Update r←− r + d
(s)
k Xku

(s)
k ;

(c) Ak ←− U
>

−k; b = 0;

(d) Solve ConLasso(βk; r,Xk,Ak,b, λ1w
(u)
k).

(e) d
(s+1)
k ←− ‖βk‖; u

(s+1)
k ←− βk/‖βk‖;

(f) Update r←− r− d(s+1)
k Xku

(s+1)
k .

Repeat until convergence.

Finally, our sparse SVD regression algorithm is structured as follows.

33

SOSVD via BEA

Initialization: obtain V(0) ∈ <q×r, and V(0)>V(0) = I.

For k = 1, 2, ...

1. U step: solve (4.9) by iterative BCDA with y = vec(Y) and X(u) = V(k−1)⊗X.

2. V step: solve (4.10) by iterative BCDA with yt = vec(Y
>

) and X(v) =
(XU(k))⊗ Iq.

3. D step: solve the least squares problem:

d(k) = arg min
d
‖y − Zd‖2

where y = vec(Y) and Z = (z1, ..., zr) with zh = vec(Xu
(k)
h v

(k)>
h).

Repeat until convergence.

4.4 Tuning Parameter Selection

For the SOSVD via BEA algorithm, to efficiently determine the optimal set of tuning pa-

rameters λ = (λ1, λ2) and hence the optimal solution, we consider a Bayesian Information

criterion (BIC) (Schwarz, 1978), which is commonly used for model selection in regression

analysis especially in the case q = 1. However, the classical BIC may fail and lead to exces-

sive overfitting in high-dimensional models (An et al., 2008). We hence modify the BIC for

the setting of p ≥ n according to An et al. (2008). Denote (Û(λ), V̂(λ), D̂(λ)) as the fitted

value of (U,V,D) with the tuning parameter being λ. Define

BIC(λ) =

{
log(SSE(λ)) + log(qn)

qn
df(λ) when p < n

log(SSE(λ)) + 2 log(pq)
qn

df(λ) when p ≥ n

where SSE(λ) = ‖Y−XĈ(λ)‖2F stands for the sum of squared error, and df(λ) is the model

degrees of freedom. We consider

d̂f(λ) =
r∗∑
k=1

{
rx
p

p∑
i=1

I(û
(λ)
ik 6= 0) +

q∑
j=1

I(v̂
(λ)
jk 6= 0)− r∗

}

34

where rx is the rank of the design matrix X, I(·) is the indicator function. When λ = 0, the

model reduces to a reduced-rank regression problem and d̂f(0) becomes its effective number

of free parameters.

For the SOSVD via SEA method, to select the optimal solution in the solution path we

again consider BIC. Denote (d̂k, ûk, v̂k) as the fitted value of the kth triplet (dk,uk,vk) with

the tuning parameter being λk. Define

BIC(λk) =

{
log(SSE(λk)) + log(qn)

qn
df(λk) when p < n

log(SSE(λk)) + 2 log(pq)
qn

df(λk) when p ≥ n

where SSE(λk) = ‖Yk − d̂kXûkv̂
>
k ‖2F stands for the sum of squared error for the kth layer.

The model degrees of freedom, df(λk), is expressed as:

d̂f(λk) =

p∑
i=1

I(ûik 6= 0) +

q∑
j=1

I(v̂jk 6= 0)− 1

The loss of 1 degree of freedom is due to the two constraints (‖uk‖2 = 1 and ‖vk‖2 = 1)

and one free parameter dk (Chen et al., 2012). To illustrate the advantage of enforcing

orthogonality for sparse SVD recovery using the prosed SEA and BEA algorithm we conduct

a simulation study at different signal to noise ratio in the following section.

4.5 Simulation

The simulation study is performed under the supervised framework of multivariate reduced

rank regression problem. We compare the estimation, prediction and sparse SVD recovery

performance of the ordinary least squares estimator (OLS), the reduced rank regression

estimator (RRR), the proposed SOSVD via BEA (BEA) under µ = ρ = 1, and the esti-

mator proposed by Chen et al. (2012) based on an iterative exclusive extraction algorithm

(IEEA). The IEEA performs sparse reduced-rank estimation locally in the vicinity of some

good initial estimator, and the orthogonality condition is not enforced when searching for

the sparsity pattern in the SVD. In both BEA and IEEA methods, the penalization can be

made data adaptive; we hence also consider their adaptive versions, denoted as AdBEA and

35

AdIEEA, respectively, in which the adaptive weights are constructed based on an initial

reduced rank regression. See details in Chen et al. (2012). Further we run the simulation

for two additional set up: 1) the proposed SOSVD via SEA (µ = 1, ρ = 1.1) using adaptive

weights (AdSEAorth), and 2) the adaptive version of sequential extraction algorithm pro-

posed by Chen et al. (2012) to solve 4.3 without the orthogonality constraint (AdSEA). We

have implemented all the methods in R (R Development Core Team, 2012). All computation

was done on computers with 3.4 GHz CPU, 8 GB RAM and Linux operating system.

We consider two simulation models of different dimensions. In both setups, the covariate

matrix X is constructed by generating its n rows as i.i.d. samples from MVN(0,Γ), where

Γ = (Γij)p×p and Γij = 0.5|i−j|. In Model I we set p = q = 25, n = 100 and r∗ = 3. The

SVD of the 25 × 25 rank-3 coefficient matrix C is given by
∑3

k=1 dkukv
>
k , where d1 = 20,

d2 = 15, d3 = 10, and the uks and vks are generated as follows,

ǔ1 = [unif(Au, 5), rep(0, 20)]>,

ǔ2 = [rep(0, 3), ǔ4,1,−ǔ5,1, unif(Au, 3), rep(0, 17)]>,

ǔ3 = [rep(0, 8), unif(Au, 2), rep(0, 15)]>,

uk = ǔk/‖ǔk‖ for k = 1, 2, 3;

v̌1 = [unif(Av, 5), rep(0, 20)]>,

v̌2 = [rep(0, 5), unif(Av, 5), rep(0, 15)]>,

v̌3 = [rep(0, 10), unif(Av, 5), rep(0, 10)]>,

vk = v̌k/‖v̌k‖ for k = 1, 2, 3.

The notation unif(A, b) denotes a vector of length b whose entries are i.i.d. samples from the

uniform distribution on the set of real values A; we use Au = ±1, Av = [−1,−0.3]∪ [0.3, 1].

The notation rep(a, b) denotes a vector of length b, whose entries are all equal to a. The

notation ǔa,k denotes the ath entry of ǔk. In Model II we set p = 100, q = 25, n = 50 and

r∗ = 3. All settings are the same as in Model I except that additional 75 noise predictors are

36

added, i.e., each 25×1 left singular vectors uk from Model I is appended with 75 zeros. The

matrix Y is then generated by Y = XC + E, where the entries of E are i.i.d. samples from

N(0, σ2). We define the signal to noise ratio (SNR) as ‖d3Xu3v
>
3 ‖2/‖E‖2, and the error

standard deviation σ is chosen to make SNR at certain level. The experiment was replicated

100 times for each SNR = 0.25, 0.5, 1 or 2, covering a full range of signal strengths relative

to the noise level.

Our simulation setup characterizes a realistic high-dimensional multivariate dependence

structure, i.e., three subsets of response variables are related to three subsets of predictors,

and there exist many useless predictors that are not related to any response as well as

some irrelevant response variables that can not be explained by any predictor. The sets of

important predictors may overlap with each other, and their effects on the corresponding

response variables are allowed to be varying, as reflected by the distinct entries of each vk

vector, and some of the effects can be quite small. These make the estimation challenging.

Tables 4.1 and 4.2 summarize the simulation results for Models I and II, respectively.

The model accuracy is measured by the average scaled mean squared error from all runs, i.e.,

Er(Ĉ) = 100‖C−Ĉ‖2F/(pq) for estimating C, and Er(Ŷ) = 100tr{(C−Ĉ)>Γ(C−Ĉ)}/(nq)

for predicting Y, where tr(·) denotes the trace of a matrix. The averaged false positive rates

(FPR) and false negative rates (FNR) in recovering the sparsity pattern in the SVD of C

are reported. The orthogonality of the estimated SVD is measured by ORT = ‖Û>Û‖1 +

‖V̂>V̂‖1−2r∗, averaged from all runs. For each method, the average computation time per

iteration ans tuning parameter setting is also reported.

The sparse SVD methods greatly outperform both OLS and RRR, owning to their ca-

pability of conducting simultaneous latent and original variable selection for dimension re-

duction. By enforcing the orthogonality of the estimated SVD, the BEA method achieves

better performance than the IEEA method in every category. The improvement can be

substantial when the SNR is low or the model dimension is high; in these challenging cases,

the orthogonality condition is critical in restricting and guiding the search of the optimal

37

Table 4.1: SOSVD: Model I (p=q=25, n=100)
OLS RRR BEA IEEA AdBEA AdIEEA AdSEAorth AdSEA

SNR=0.25

Er(Ĉ) 34.16 (19.51) 6.17 (3.37) 2.89 (2.19) 3.79 (2.21) 0.92 (0.74) 0.93 (0.81) 2.10 (2.68) 2.32 (3.18)

Er(Ŷ) 5.24 (2.99) 1.07 (0.64) 0.49 (0.35) 0.63 (0.38) 0.18 (0.15) 0.18 (0.16) 0.42 (0.56) 0.43 (0.55)
FPR 100.00% 100.00% 2.01% 3.83% 0.20% 0.69% 2.44% 3.30%
FNR 0.00% 0.00% 0.11% 0.04% 0.04% 0.04% 0.45% 0.00%
ORT 0.00 0.00 0.10 (0.08) 0.11 (0.09) 0.04 (0.04) 0.07 (0.10) 0.01 (0.002) 0.16 (0.19)

SNR=0.5

Er(Ĉ) 17.52 (9.56) 3.11 (1.72) 1.27 (0.98) 1.98 (1.28) 0.43 (0.29) 0.46 (0.31) 0.87 (1.98) 0.51 (0.53)

Er(Ŷ) 2.66 (1.46) 0.54 (0.32) 0.21 (0.16) 0.32 (0.20) 0.08 (0.05) 0.09 (0.06) 0.17 (0.45) 0.10 (0.09)
FPR 100.00% 100.00% 1.49% 2.99% 0.08% 0.48% 0.62% 0.53%
FNR 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.20% 0.00%
ORT 0.00 0.00 0.06 (0.04) 0.08 (0.05) 0.03 (0.03) 0.04 (0.05) 0.01 (0.00) 0.04 (0.05)

SNR=1
ErC 8.94 (4.76) 1.56 (0.87) 0.63 (0.41) 0.95 (0.52) 0.21 (0.14) 0.23 (0.16) 0.23 (0.38) 0.21 (0.13)

Er(Y) 1.37 (0.72) 0.27 (0.15) 0.11 (0.07) 0.16 (0.09) 0.04 (0.03) 0.05 (0.03) 0.04 (0.07) 0.04 (0.02)
FPR 100.00% 100.00% 0.99% 2.04% 0.13% 0.54% 0.06% 0.07%
FNR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ORT 0.00 0.00 0.04 (0.02) 0.05 (0.04) 0.02 (0.01) 0.03 (0.05) 0.00 (0.00) 0.02 (0.02)

SNR=2

Er(Ĉ) 4.38 (2.48) 0.77 (0.45) 0.32 (0.24) 0.49 (0.28) 0.10 (0.07) 0.11 (0.08) 0.10 (0.06) 0.11 (0.06)

Er(Ŷ) 0.66 (0.37) 0.13 (0.08) 0.05 (0.04) 0.08 (0.05) 0.02 (0.01) 0.02 (0.02) 0.02 (0.01) 0.02 (0.01)
FPR 100.00% 100.00% 0.42% 1.04% 0.04% 0.32% 0.00% 0.00%
FNR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ORT 0.00 0.00 0.02 (0.02) 0.03 (0.03) 0.01 (0.01) 0.02 (0.02) 0.00 (0.00) 0.01 (0.01)
Time 0.01 0.03 0.41 0.14 0.18 0.15 0.04 0.03

sparsity pattern. Note that both BEA and IEEA tend to select slightly more linkages

than needed but rarely miss important linkages, especially in Model I, which reflects the

over-selection property of l1 regularization. Adopting adaptive penalization further boosts

the performance of the sparse SVD methods in general. While AdBEA and AdIEEA both

may substantially outperform their nonadaptive counterparts, the former achieves the low-

est estimation/prediction errors and FPR/FNR rates in most cases among all the methods

considered. As expected, using the BEA / AdBEA methods bears a higher computational

cost than the IEEA / AdIEEA methods, but the runtime is still manageable for practical

usage.

As pointed by Chen et al. (2012) the sequential extraction algorithm need not produce

SVD layers of C and, therefore, is not suitable to recover desired SVD structure of C. The

sequential extraction algorithm is rather suitable for the fitted-value SVD of C (refer to

remark on Lemma 1.3 of Chen et al. (2012) for more details). Thus, it is not surprising that

the AdSEA method under performs compared to the BEA and IEEA methods. However,

38

Table 4.2: SOSVD: Model II (p=100, q=25, n=50)

OLS RRR BEA IEEA AdBEA AdIEEA AdSEAorth AdSEA
SNR=0.25

Er(Ĉ) 36.03 (11.37) 18.76 (2.79) 5.16 (3.66) 8.45 (5.98) 3.82 (3.62) 4.63 (4.96) 7.71 (5.43) 8.69 (6.07)

Er(Ŷ) 61.45 (21.01) 28.68 (4.80) 5.91 (4.16) 10.17 (8.16) 4.55 (3.89) 5.49 (6.44) 9.65 (7.04) 12.60 (8.58)
FPR 100.00% 100.00% 3.88% 3.46% 2.78% 1.52% 2.76% 13.45%
FNR 0.00% 0.00% 19.22% 29.74% 15.15% 20.56% 9.03% 5.00%
ORT 0.00 0.00 0.19 (0.20) 0.24 (0.35) 0.16 (0.15) 0.26 (0.31) 0.03 (0.02) 0.55 (0.28)

SNR=0.5

Er(Ĉ) 26.65 (6.45) 16.96 (2.44) 2.27 (2.78) 4.03 (5.15) 1.97 (2.38) 2.12 (3.14) 4.92 (4.28) 5.54 (5.72)

Er(Ŷ) 44.06 (11.89) 25.45 (3.38) 2.63 (2.63) 4.66 (6.02) 2.34 (2.65) 2.40 (3.34) 7.19 (5.15) 7.60 (7.53)
FPR 100.00% 100.00% 3.08% 3.48% 2.45% 1.59% 2.01% 9.43%
FNR 0.00% 0.00% 7.93% 12.22% 7.85% 10.96% 7.73% 2.76%
ORT 0.00 0.00 0.13 (0.11) 0.19 (0.18) 0.16 (0.17) 0.31 (0.37) 0.03 (0.04) 0.46 (0.45)

SNR=1

Er(Ĉ) 19.17 (3.34) 15.50 (2.42) 0.88 (1.07) 1.70 (2.88) 0.81 (1.47) 0.66 (1.39) 4.90 (4.42) 4.76 (5.01)

Er(Ŷ) 31.15 (6.14) 23.60 (2.81) 1.02 (1.10) 2.05 (3.77) 0.94 (1.64) 0.78 (1.51) 5.68 (5.21) 4.77 (5.01)
FPR 100.00% 100.00% 1.84% 3.70% 1.97% 1.65% 1.30% 7.45%
FNR 0.00% 0.00% 2.96% 3.37% 2.59% 2.78% 6.93% 3.48%
ORT 0.00 0.00 0.07 (0.08) 0.2 (0.26) 0.08 (0.10) 0.26 (0.35) 0.03 (0.04) 0.39 (0.35)

SNR=2

Er(Ĉ) 17.31 (1.85) 15.21 (2.27) 0.46 (0.33) 1.14 (0.87) 0.52 (1.7) 0.62 (1.59) 1.95 (2.59) 3.38 (4.04)

Er(Ŷ) 27.12 (3.35) 22.62 (2.52) 0.53 (0.34) 1.32 (0.89) 0.60 (1.99) 0.72 (1.86) 2.18 (2.98) 4.10 (4.73)
FPR 100.00% 100.00% 1.49% 4.50% 2.11% 2.43% 0.56% 5.96%
FNR 0.00% 0.00% 0.00% 0.19% 1.22% 1.44% 5.00% 2.27%
ORT 0.00 0.00 0.05 (0.04) 0.23 (0.19) 0.07 (0.08) 0.25 (0.24) 0.02 (0.05) 0.33 (0.37)
Time 0.01 0.08 0.76 0.27 0.68 0.32 0.08 0.05

if orthogonality is enforced using the same sequential fitting procedure, the results are

improved as shown by the AdSEAorth method. The AdSEAorth method, albeit not as

effective as its BEA counterparts, performs best in conforming to orthogonality constraint.

Since the AdSEAorth method uses ρ = 1.1 (compared to BEA methods that use ρ = 1)

the orthogonality condition is imposed more strictly with every updating cycle. Overall,

the appeal of the sequential fitting strategy is its simplicity and computational efficiency

which can make it more suitable for solving more complicated objective functions than

the one under consideration in this report. The computation time for the AdSEA and

AdSEAorth methods is quite low as compared to AdBEA and AdIEEA methods, which

makes the sequential fitting procedure an attractive alternative for estimating models with

rank higher than 3. For improving the AdSEAorth procedure, one can iteratively perform

the sequential extraction procedure. Similar to the IEEA method, each time the previous

sparse estimates can be used as initial values to refine the estimation, until a convergence

39

is reached. Since the SEA is generally computationally efficient, the computational cost of

iteratively performing SEA will be reasonable for application purposes.

40

Chapter 5

Discussion and future work

In this report we demonstrated the usefulness of imposing the difficult non-convex orthog-

onality constraint for estimating sparse and orthogonal SVD of a noisy data matrix or a

coefficient matrix of a reduced rank multivariate regression model. When confronted with

situations that are more likely in real life applications,high dimensional model and low sig-

nal to noise ratio, for example, we demonstrate the effectiveness of the proposed SOSVD

via SEA and SOSVD via EEA methods to restrict and steer the hunt for optimal sparsity

to facilitate model interpretation. We also show the versatility of the Coordinate Descent

Algorithm and Bregman iterative methods to solve various formulations of non-convex op-

timization problems.

There are quite a few exciting ideas for future research that can build upon the current

work. We have focused on the adaptive lasso method for inducing sparsity. It will be

interesting to develop efficient algorithms for the current methods using other established

sparsity-inducing penalties, such as the elastic net penalty (Zou et al., 2004), adaptive

grouping penalty (Wang and Zhu, 2008), the smoothly clipped absolute deviation (SCAD)

penalty (Fan and Li, 2001), and minimax concave penalty (MCP) (Zhang, 2010). Since

SVD is one of many decompositions of a matrix, it may be worthwhile to consider other

matrix decomposition forms such as QR decomposition. In special cases when the coefficient

matrix is square one may consider Jordan decomposition, Schur decomposition, Cholesky

decomposition, LU decomposition and Takagi’s factorization.

41

Bibliography

An, H., Huang, D., Yao, Q. and Zhang, C.-H. (2008) Stepwise searching for feature variables

in high-dimensional linear regression. Technical Report, Department of Statistics, London

School of Economics.

Bregman, L. (1967) The relaxation method of finding the common point of convex sets and

its application to the solution of problems in convex programming. USSR Computational

Mathematics and Mathematical Physics, 7, 200 – 217.

Breheny, P. and Huang, J. (2011) Coordinate descent algorithms for nonconvex penalized

regression, with applications to biological feature selection. Annals of Applied Statistics,

5, 232–253.

Chen, K., Chan, K.-S. and Stenseth, N. C. (2012) Reduced rank stochastic regression with

a sparse singular value decomposition. Journal of the Royal Statistical Society: Series B.,

74, 203–221.

Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

Fan, J., Zhang, J. and Yu, K. (2012) Vast portfolio selection with gross-exposure constraints.

Journal of the American Statistical Association, 107, 592–606.

Goldstein, T. and Osher, S. (2009) The split bregman method for l1-regularized problems.

SIAM J. Img. Sci., 2, 323–343.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2008) The elements of statistical learning:

data mining, inference, and prediction. New York: Springer.

42

Lee, M., Shen, H., Huang, J. Z. and Marron, J. S. (2010) Biclustering via sparse singular

value decomposition. Biometrics, 66, 1087–1095.

Meinshausen, N. and Bühlmann, P. (2006) High-dimensional graphs and variable selection

with the lasso. Ann. Statist., 34, 1436–1462.

R Development Core Team (2012) R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6,

461–464.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society (Series B), 58, 267–288.

Wang, S. and Zhu, J. (2008) Variable selection for model-based high-dimensional clustering

and its application to microarray data. Biometrics, 64, 440–448.

Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68,

49–67.

Zhang, C.-H. (2010) Nearly unbiased variable selection under minimax concave penalty. The

Annals of Statistics, 38, 894–942.

Zou, H. (2006) The adaptive lasso and its oracle properties. Journal of the American

Statistical Association, 101, 1418–1429.

Zou, H., Hastie, T. and Tibshirani, R. (2004) Sparse Principal Component Analysis. Journal

of Computational and Graphical Statistics, 15.

43

Appendix A

R code

A.1 Code for constrained adaptive lasso

library(MASS)

library(Matrix)

frobenius.square = function (x) { sum(x*x) }

frobenius = function (x) { sqrt(sum(x*x)) }

l1 = function(x) { sum(abs(x)) }

l2 = function(x) { sum(x*x) }

bregman.lasso = function (x,y, A, lambda, b=rep(0, nrow(A)),mu=1, max.iter = 100,

nu=1.1, inner.conv=1e-5)

{ # input the design matrix x and then response vector y, and mu

n= nrow(x)

p = ncol(x)

gamma=2 is suggested

ols = abs (ginv(t(x) %*% x) %*% t(x) %*% y)

ols[ols==0] = 0.000001

wts=as.vector(ols−0) # can use positive value instead of 0

betaold=numeric(p) # creating a beta vector

betanew=numeric(p) # creating a beta vector

44

betaold = ginv(t(x)%*%x) %*% t(x) %*%y

ck=0

ckplus1=0

counter=0

repeat

{

counter=counter+1

betanew = betaold # store betaold in betanew

error = y - x %*% betanew # r is the residual

for(j in 1 : p)

{

r = error + betaold[j]*x[,j]

z = sum(r*x[,j]) + mu * (sum(((ck / mu)+b)*A[,j]) - sum((A[,-j]%*%betanew[-j]) *(A[,j]

))) # find the z tilda

lambdastar = lambda * wts[j]

betanew[j] = sign(z) * (abs(z) -lambdastar) * identity(abs(z) ¿ lambdastar) / (mu*sum(A[,j]*A[,j])

+ sum(x[,j]*x[,j])) # the jth element of betanew is updated using the soft thresholding

error = error - (betanew[j]-betaold[j]) * x[,j] # updating error for next iteration or next j.

}

beta difference = (betaold-betanew)

constraint = A%*%betanew - b

difference = sqrt(sum(beta difference*beta difference)) + sqrt(l2(constraint))# magnitude

of the difference

if (difference > inner.conv)

{

betaold = betanew

ckplus1 = ck - (A%*%betanew - b)*nu

45

ck = ckplus1

mu = mu*nu

}

if ((difference < inner.conv) | counter > max.iter) {break}

} #end of repeat loop

as.vector(betanew)

}

A.2 Code for SOSVD via SEA

The function surr.ortho performs unit rank SSVD for any particular layer to be

#orthogonal to previous layers

surr.ortho = function(x,Y, Au, bu=rep(0, nrow(Au)),Av, bv=rep(0, nrow(Av)), gamma,

mu,nu,inner.iter=100, max.iter=50,inner.conv=1e-5, ustar, vstar, dstar,lambdamax,

lambdamin,lambdalength)

ustar, vstar and dstar are initial estimators

{ n = nrow(x)

p = ncol(x)

q = ncol(Y)

qn = ncol(Y) * nrow(Y)

wd = abs(dstar)-gamma

wu = vector()

wu = abs(ustar)-gamma

wv = vector()

wv=abs(vstar)-gamma

wd = as.numeric (wd) # gamma=2

k= exp(seq (log(lambdamax),log(lambdamin),length=lambdalength))

k=sort(k, decreasing=TRUE)

46

ulambda = matrix(NA, nrow=length(ustar), ncol=length(k)) # ulambda matrix stores all

the descended u vectors for each lambda

vlambda=matrix(NA, nrow=length(vstar), ncol=length(k)) # vlambda matrix stores all

the descended v vectors for each lambda

dlambda=numeric(length(k)) # dlambda vector stores all the descended d entries for each

lambda

dlambda [1:length(k)]=NA

y = as.vector(Y) #vectorizing matrix Y

bic = numeric(length(k))

bic[1:length(k)]=NA

for (h in 1:length(k)) {

Cp = dstar * (ustar %*% t(vstar))

lambda = k[h]

counter=0

repeat {

counter = counter + 1

if (counter==1) dhat = dstar

XV = kronecker(diag((wv)−1) , x %*%ustar) # getting the design matrix using kronecker

lambda v = lambda* wd * sum (wu * abs(ustar))

tuning = lambda v

lasso beta = vector()

lasso beta = bregman.lasso(XV,y, A=Av %*% diag((dhat*wv)−1) , lambda=tuning, b=bv,mu)

vtick=vector()

vtick = lasso beta

dhat = (sum (diag((wv)−1% ∗%vtick) * (diag((wv) −1)% ∗%vtick)))0.5

if (sum(abs(vtick))==0) {break} # if the vtick obtained has all zero entries then break

vhat=diag((dhat*wv) −1)% ∗%vtick

47

We now fix v as vhat and get the objective function

XU = kronecker(vhat, x %*% diag((wu) −1))

lambda u = lambda * wd * sum (wv * abs(vhat)) # use vhat from previous step

lasso beta = vector() # store the list output in a list called output

tuning = lambda u

lasso beta = bregman.lasso(XU,y, A=Au %*% diag((dhat*wu) −1), lambda=tuning, b=bu,mu)

utick=vector()

utick=lasso beta

if (sum(abs(utick))==0) {break} # if the utick obtained has all zero entries then break out

dhat = (sum ((diag((wu) −1) %*% utick) * (diag((wu) −1) %*% utick))) 0.5

uhat=diag((dhat*wu) −1) %*% utick

Checking for convergence

Cc = dhat * (uhat %*% t(vhat))

error = frobenius(Cc-Cp) / frobenius(Cp)

if (error < 0.000001 | counter>max.iter) {break}

else {

Cp=Cc

ustar=uhat

vstar=vhat

}

} # end of repeat loop

if ((sum(abs(vtick)) >0.1) && (sum(abs(utick)) >0.1)) # iff the vtick and utick vectors

are non zero then update the ustar, vstar and dstar values for next lambda

{

ustar=uhat

vstar=vhat

dstar = dhat

48

ulambda[,h] = ustar

vlambda[,h]=vstar

dlambda[h]=dstar

Compute bic for each lambda

SSE = frobenius(Y-dlambda[h]* (x %*% ulambda[,h] %*% t(vlambda[,h])))

df = sum(ulambda[,h]!=0) + sum(vlambda[,h]!=0) -1

if(p≥q) bic[h] = log (SSE) + (log(qn) * df)/qn

if(p<q) bic[h] = log (SSE) + 2*(log(qn) * df)/qn

}

C est = dlambda[which.min(bic)]* (ulambda[,which.min(bic)] %*% t(vlambda[,which.min(bic)]))

list (C est = C est, d= dlambda[which.min(bic)], u = ulambda[,which.min(bic)] ,dpath=dlambda,

upath=ulambda, vpath=vlambda, v = vlambda[,which.min(bic)],bicpath=bic, lambda=k,

lambda.chosen=k[which.min(bic)],lambda.number=which(k==k[which.min(bic)]))

}

The following function uses all the above functions to perform SOSVD via SEA

sea.ortho = function (x, Y, rank.appx,mu,nu, gamma,lambdamin,

lambdamax,lambdalength=100)

{

n = nrow(x)

p = ncol(x)

q = ncol(Y)

qn = ncol(Y) * nrow(Y)

If rank.appx is greater than rank of X or q then stop and display an error message.

One way to determine rank of X is couting number or non zero singular values

#(or values greater than 10−8) of the SVD of X.

if (rank.appx> min(length(svd(x)$d > 1e-8),q)) stop (”Please provide a lower value for

rank.appx”)

49

ini=RRR(Y,x,nrank=rank.appx) # initial estimator is reduced rank least squares estimator

uinitial = matrix(NA, nrow=p, ncol=rank.appx)

vinitial = matrix(NA, nrow=q, ncol=rank.appx)

dinitial = numeric(length=rank.appx)

for (i in 1:rank.appx)

{

uinitial[,i] = ini$U[,i]

vinitial[,i] = ini$V[,i]

dinitial[i] = ini$D[i,i]

}

lets define vectors and matrices to store the final descended values for each layer

ufinal = matrix(NA, nrow=p, ncol=rank.appx)

vfinal = matrix(NA, nrow=q, ncol=rank.appx)

dfinal = numeric(length=rank.appx)

dfinal[1:rank.appx]=NA

Following loop will estimate each layer

for (r in 1:rank.appx)

{

ustar = uinitial[,r] # Assigning initial values for u, v and d

ustar[abs(ustar)<0.05]=1e-20

vstar = vinitial[,r]

vstar[abs(vstar)<0.05]=1e-20

dstar = dinitial[r]

if (r==1) #For the first layer we don’t need any orthogonality constraint.

#So set the Av and Au matrices to be zero.

{

Au = t(rep(0,p))

50

Av = t(rep(0,q))

a = surr.ortho(x=x, Y=Y, Au=Au, Av=Av, ustar=ustar, vstar=vstar, dstar=dstar,mu=mu,

nu=nu,gamma=gamma,lambdamin= lambdamin, lambdamax=lambdamax,

lambdalength=lambdalength)

}

if (r!=1)

{

Y = Y - x %*% C est

We sequentially perform sparse unit rank regression, each time with the data matrix Y

replaced by the residual matrix that is obtained by substracting previously estimated

#layers from the original data matrix

Au = t(ufinal[,1:(r-1)]) # For layers afer the first we need to enforce orthogonality.

#So Au takes on previously descended u vectors

Av = t(vfinal[,1:(r-1)]) # Same foe v vectors

a = surr.ortho(x=x, Y=Y, Au=Au, Av=Av, ustar=ustar, vstar=vstar, dstar=dstar, mu=mu,

nu=nu,gamma=gamma,lambdalength=lambdalength,lambdamin= lambdamin,

lambdamax=lambdamax)

}

ufinal[,r] = a$u

vfinal[,r] = a$v

dfinal[r] = a$d

C est = a$C est

} # End of for loop where r goes from 1 to rank.appx

list(Cfinal = ufinal %*% diag(dfinal, length(dfinal)) %*% t(vfinal), U=ufinal, V = vfinal,

D = diag(dfinal, length(dfinal)))

}

51

Given the data matrix Y, covariate matrix X, number of layers to be extracted, the

SOSVD via SEA can be performed as follows

sosvd = list()

sosvd=sea.ortho(X,Y, rank.appx=3,mu=1,nu=1.1, gamma=2, lambdamin=1e-30,

lambdamax=1e-1,lambdalength=500)

52

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Literature Review
	Introduction
	Ridge Regression
	Lasso
	Adaptive Lasso

	Linear Constrained Lasso
	Lasso with Equality Constraints
	Simulation

	Sparse and Orthogonal SVD
	Introduction
	SOSVD via SEA
	SOSVD via BEA
	Tuning Parameter Selection
	Simulation

	Discussion and future work
	Bibliography
	R code
	Code for constrained adaptive lasso
	Code for SOSVD via SEA

