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I. INTRODUCTION

While the theory of suspension bridges has now reached a fairly
complete state, suspended roof structures are sﬁill under serious ex-
perimental and theoretical investigation. Many papers on this subject
have been published. But the approaches to the analysié and the methods
of solution are very different among the papers published.

The purpose of this report is to present an effective method for
the analysis of static prestressed cable nets. The method will con-
sider nonlinear behavior of the cable nets, yet it will involve only
simple mathematical equations and basic physical concepts.

Cable nets are usually designed to support roofs covering large
areas such as stadiums, arenas, and shopping centers. A cable net may
be formed by intersecting two or more sets of parallel cables as shown
in Fig. 1. It may belén orthogonal net, as shown in Fig. 1(a), in which
two sets of cables Intersect at right angles. It may just as well be
an oblique net, as shown in Fig. 1(b), in which two or more sets of
cables intersect at specified angles other than right angles.

Architects and engineers have a strong interest in utilizing sus-
pension systems for supporting roofs covering large spaces, There are
several advantages in using suspension systems for large space structures.
The first factor is economy. Suspension systems are usually less ex-
pensive than other structural systems for supporting long span roofs.
‘The second factor is esthetics. The variety of roof forms and building

shapes possible with suspension systems presents further opportunities



for architectural expression. The third factor is stability. Cables
work in pure tension so that very 1arge_spacings may be achieved with no
stability problem.

Though the flexibility of the cables provides the advantages men-
tioned above, disadvantages also arise from the same characteristics.
When the loading condition on suspension structures changes, it causes
large movements which complicate the analysis, design, erection and
maintenance of such structures in both static and dynamic aspects.

Suspension structures may be treated mathematically as discrete
or continuous systems., In the discrete approach, the real structure
1s idealized into an assemblage of elements interconnected at a finite
number of node points at which the loading is assumed concentrated as
shown in Fig. 2(a). At each node, after deformation, equilibrium of

forces and compatibility of displacements must be satisfied. The
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(a) Orthogonal Net (b) Oblique Net

Fig, 1 Cable Nets



mathematical model consists of a set of simultaneous algebraié equations.
In the continuous approach, simultaneous ordinary differential

equations or partial differential equations are set up to represent

the real structure. It is assumed that the cables are curved and con-

tinuous throughout the whole span as shown in Fig. 2(b). Physically,

this situation can exist only if the loadings are diétributed uniformly

along the cable. |
This report is intended to analyze prestressed cable nets by

the discrete approach. The study will be limited to elastic theory,

and will not include dynamic analysis.

1
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(a) Discrete

{b) Continuous

Fig. 2 Discrete and Continuous Approach to Cable Analysis



II LITERATURE REVIEW

According to Siev and Eidelman [l], a comprehensive survey of the
existing knowledge with regard to suspended roofs up to 1955, has been
compiled by Frei Otto [2]. The first article on the calculation of two-

directional networks was presented by H. K. Bandel in 1959 [3].

In 1964, Siev and Eidelman [1] presented a mathematical treatment
of stresses in prestressed suspension roof nets. The method followed
the discrete approach. It was assumed that the slope of the two-
~directional net was small and, therefore, that.the horizontal displace-
ment components were negligible. Based on this assumption, the equil-
ibrium equation for each joint was established. The relations thus ob-
tained between loads and deflections were non-linear. The analysis
further assumed that for small deflections, the non-linear terms, that
is the cross terms or square terms of the unknown displacement com-
ponents, may be disregarded. The simultaneous equations then become
linear, and the results yielded an approximate solution. For more
accurate results, a method of non-linear correction by an iterative

process was also investigated.

In 1965, H. Mollmann [4] presented a study on the theory of
suspension structures. The book covered the analysis of igolated

single cables and the continuous and discrete approach to cable networks.



In the continuous approach to the cable net problem, a membrane

theory was developed, in which cable spacings and the cross section

of the cables were assumed to approach zero. Inrthe discrete approach,
a linear stress—strain relation was assumed, and the nonlinear simul-
taneous algebraic equations were established, based on the equilibrium
conditions at each joint after the deformation of the structure had
taken place. The method considered all three compeonents of displace-
ment at each joint. The mathematical system consisted of 3n equations
for a network of n joints. The nonlinear simultaneous equations were
solved in two steps. In the first step, the set of equations were
linearized, temporarily, by neglecting the second order terms. The
solution thus obtained was used, in the second step, to compute the
second order terms. The corrections were then carried out iteratively
until the differences between two consecutive results were negligible.
The method dealt with all three components of displacement and thus
yields a complgte solution, although there were some minor terms which

were neglected.

In 1971, Krishna and Agarwal [5] conducted a model study on a
hypar shaped suspension roof net. A 12 ft. square plan was choosen,
The network was anchored into a rigid frame. Solid high tensile steel
wires were used instead of stranded cables. The results of the model
test were compared with the theoretical values [1,6] which were obtained

by neglecting nonlinearity. The comparison indicated that the difference



was small for the smaller values of load, but it increased with in-
creasing magnitude of loading. A general conclusion possible from
this study was that the approximate linear theory could be used for
the preliminary analysis of the behavior of a cable network. For some
loading conditions, however, the differences between the measured and
the computed results were rather large and the use of this approximate

theory for final analjsis would not generally be satisfactory.

In 1971, the Subcommittee on Cable-Suspended Structures of the
Task Committee on Spacial Structures of the Committee on Metals, of
the Structural Division of ASCE published a state-of-the-art paper [7].
The main purpose, as stated in that paper, was to aid engineers in lo-
cating information on the analysis, design, and errection of cable-
suspended structures. The shapes of suspension systems, the structural
analysis, the manufacture of wire cables and their physical properties,
the design and erection of such structures were each presented in
separate parts. In part II of that paper, the general, basic concepts
of the structural anélysis for continuous systems as well as for dis-
crete systems were discussed. Isolated cables, orthogonal nets, and
oblique nets were each presented. The discussion dealt with the initial
shapes of suspension structures and the displacements resulting from
changes of loading. The counterstressed double-layer suspension system
was also presented In great detail. The last section of this part dealt

with the dynamic response of suspension systems.



As to the structural strand and rope, the article covered some
experimental results in addition to the general material properties.

In the section on the design and errection of such structures,.
selection of suspension system, loading conditions, cable selection,
cable anchorage, fire proofing, watertightness, errection sequence,
placement and tensioning of cables were all briefly discussed.

Finally the article encouraged further studfes: (1} to develope
more sophisticated procedures for the static and the dynamic analysis;
(2) to investigate the mechanical properties of structural étrand and
rope; (3) to investigate the stress—strain relationshig above the
- proportional limit and at elevéted temperatures. Research on pro-
tection of cables and fittings against corrosion and fire was also
urged.

The article referred to 92 papers which should be most valuable

to interested engineers.



IIT METHOD OF ANALYSIS

A. Introduction

Cable roof structures are very flexible while the cables are hanging
freely, When such structures are subjected to a small external load, they
will deflect tremendously [8]. However, when the structure is prestressed
in a proper manner and then subjected to external loads, its deflections
will be significantly reduced. As a result, hypar shaped cable roof
structures are widely used since the nature of the opposite curvature in
their orthogonal axes makes possible the prestressing of the networks.
In the hypar shaped cable net system, the direction in which the curva-
ture is concave upward is considered to be the main axis. The direction
orthorgonal to the main axis is considered to be the auxilliary axis.
The cables along the main axis are the hanging cables; whereas those along
the auxiliary axis are the bracing cables [9]. While the cables in the
same family are parallel to one another, two cables from different families
intersect at a specified angle. For an orthorgonal net, the angle is 90
degrees.

Before the structure is subjected to external loads, both families
of cables are prestressed to give the structure some degree of stiffness.
When the structure is loaded, the stresses in the hanging cables increase
while those in the bracing cables decrease. Thus, the hanging cables are

the leoad carrying elements in such structures.



The stress analysis of a hypar shaped cable net can be carried out
by two different approaches, namely, the continuous approach and the
discrete approach. The discrete method of analysis presented by
Mollmann [4], and Mollman and Mortensen [9] will be followed in the

following discussions,
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B. General Assumptions
When a cable net system is treated as a discrete system, the fol-

lowing conditions are generally assumed:

(1). The network is made up of perfectly straight tension members.

(2). The tension members are connected by frictionless hinges.

(3). The centerlines of the tension members connected by one hinge
intersect at one point.

(4). The tension members are made of Hookean material, thus
g = Ee

is assumed throughout the analysis.

(5). The external loads can be applied only at the joints.

The general assumptions are very similar to those for a truss
system., However, there i1s a difference between the analySesrof con-
ventional trusses and prestressed cable nets. In conventional truss
systems, linear behavior is defined as the case where the change in
geometry is so small as to have a negligible effect on the stresses.
In prestressed cable nets, the situation is different: the stress in each
member and the positions of the related joints are interdependent so as
to satisfy the equilibrium conditions. Any displacement upsets the
equilibrium and thus affects the load carrying capacity of the nets [10].
Therefore, the analysis of prestressed cable nets cannot beldone without

considering the effect of the changes in geometry.
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Irrespective of the difference between the analyses of trusses and
cable nets, since the structural elements are very similar, the conven-

tional truss terminology will be used in this report.
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C. Initial State
Let the internal force in the member connecting joints j and k be

Tjk, with tension assumed to be pOSitiVE. The tension coefficient is

defined as

where ij is the length of the membér. Cartesian coordinates xk, yk
and zk will be used to denote the position of joint k. The analysis
will be done in two steps, namely, the initial state and the final state.
The initial state is the equilibrium configuration of the cable net, in
other words, the positions of the joints, under the action of the pre-
stress and a given external load. The external load is usually the weight
of the cables themselves.

Using wvector notation, as shown in Fig. 3, the position vector of

joint j is expressed by

£

x
a
3

b |

which is a directed line segment from the origin of the Cartesian co-

ordinates to the joint. The vector representing member jk is

( <) ( )

xk - X ijk
-ik - -k - k k
Apj‘p—pj=*y-y'=ij

\zk -z \Azij
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Aﬁjk k

Fig. 3 Vector notation

The equilibrium condition of joint j requires that

v

T (eapy® 4 fg =0 W
¢ . , |

If equilibrium of the joint is considered in the direction of each of

the three coordinate axes respectively, then

Jr =0,  yreeE - e xd -0 (1.a)
k

XFY = 0, Z{t(yk - yhk . Yg =0 (1.b)

: & ,

IF_= o, Fle(z® - 2313k + zd = 0 )

'k



g is the resultant load vector and Xg, Y%, Zg

at joint j; k is in turn, each of the four joints connected to joint j,

where, F are its component
including the boundary joints.

Since the weight of the cables is generally small when compared
with the other external loads, fhe initial state is usually assumed to
be the equilibrium configuration due to prestress only. Moreover, the
x and y coordinates of each joint, whether interior or boundary, are
specified before the analysis is performed. As a result, there is only

one equation of equilibrium, e.g., ZFZ = 0, at each interior joint, or

Je® - 2hHHk = o (2)
k

In the case when the tension coefficients are identical for each member

connected to joint j, Eq. (2) becomes

Z(zk - zj) =0 (2.2)
k .

The whole set of simultaneous linear algebraic equations consists
of n equations with n unknowns for a network with n interior joints.
The solution provides the z coordinates of the interior joints which,
together with the x and y coordinates and the boundary joints, form the

equilibrium configuration of the cable net under prestress.

14
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D. Final‘State

When a prestressed cable net i1s subjected to additional external
loads, it deforms into a new equilibrium configuration which will be
referred to as the final state. If several loading conditions are to
be investigated, as is often eﬁcountered at different construction
stages during erection, they will each be treated in the same manner, but
will be treated separately.

Let Ej represent the displacement vector of joint j from the
initial state to the final state. Then the new position vector of joint

3 is

3

(
xj + uj
Ej + &j = qyj + vj+

‘sz + wj‘

J ]

where, u’, v/ and w

3

represent the components of displacement of joint
J in the x, y and z directions. The vector representing member jk after

deformation is

(ax + au)JK

8p3% + add¥ = {ay + av}

Az + Aw)

The lengths of the member in both states are
ij

3k 4 a3k

Initial state:

Final state :
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Equilibrium Equations

The equilibrium equation at joint J In the final state 1s

E{%I—ﬁ% (aﬁw&)}j“ +H+# =0 ‘ (3)

or In x, y and z components:

THAT jk j 3 .
E{—HAL (Ax+Au)} + X+ % =0 (3.a)
THAT jk 3 J .
E{LML (i\yl-flv)} + Y5+ Y =0 (3.b)
Z{{ﬁ% (.&z+Aw)}jk + zg +z3 =0 (3.0)
k

The initial state values of x,y, z and thus Ax, Ay, Az are substituted
into Egqs. (3.a), (3.b), and (3.c), the problem iﬁ the final state is
limited to solving for u,v,w, AT and AL. If AT and AL can further be
expressed in terms of x,y,z,T,L, and u,v,w, then the mathematical
system will be a set of 3n simultaneous algebraic equations in 3n un-
known components of joint displacements for a network with n interior
joints. Based on that argument, such expressions for AT and AL will

be discussed next.



Elimination of AL
The length of member jk can be expressed in terms of the coordin-

ates and the displacement components of joints § and k as

R I O L= LSl

3 1k IAEjk + Aﬁjkl e {(AEjk + aatky . (Aﬁjk + a3k ji2

+ AL
Temporarily dropping superscripts,

@+aL)? = (Ap+Ad) o (Ap+Ad) = AF + AP + 285 - AT + AT - 43

Dividing both sides by L2, —

2 wor o =
(L+A§-) = (1+ )2 = 4pedp , 28p-Ad Ad-gd
L L L L

(4)

where £ is the strain of the member based on the length of the cable

under prestress, e.g., € = 0 at the initial state. Let

o £ gam o=

e = (&p. Ad)
L

e, -—--1—2- (Ard- Ad)
L

Since Ap:Ap = Lz, Eq. (4) becomes

+ e

(1 + 5)2 =1+ 2¢ + 52 =1+ Zel 2

17
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or

€y - 1
2e(1l + E) = 2(e1 + 3 e2)

Although the displacements of the joints in a network under load are
not necessarily small, the strain is usually small when compared to the

length of the member. Therefore, it would be reasonable to assume

En
1+'i‘l
Th R | (5)
en £ = el ) 62
and L+ AL = L(1 + €) (6)

Stress-8traln Relation (Elimination of AT)
Let €6 and LO be the strain and the length of the member corresponding
to the cable before prestress. As shown in Fig. 4, and defined in the

previous section,

L,
legl =£=»  1>1
T
i
AT
4
T
1
€ 0 € E

Fig. 4 Stress-Strain Curve



If sign 1s considered, then

L.~L
_ 0
so— L<0

Elastic theory requires that

L+AL-L

T + AT=EA"“—}::——*Q‘-‘- EA%—+EA%—L—EA
0 0 0
L--LO L
Since T=EFEA-———=EA— - FEA
L L
0 0
ar=EATE . Lopac I
0 0
T s LI
LO LO EA
Thus, AT = e(EAHT)

(7)

(8)

19



E. Solutdion I
Substituting Eq. (6) and Eq. (8) into Eq. (3), the equilibrium

equation at joint j becomes

HELEND G P+ 5+ 5 - o
k

T(1+c)+eEA Jk j =}
E{ML(”'E) (Ap-l-Ad)} Fy+ 7 = 0

or

T,-1ik , =j T = ., €EA ~ =k =
g{iﬂp} + Fy + I{{Lad * T (.&p+Ad)} +F =0

Substituting Eq. (1) and Eq. (5) into the last equation, and letting

I+e = 1, then

Z{—Ad + == (B, + e,) (4p +Ad)} + 7 =0 (9)
k

Since e = Epebd

o = Ad-Ad
2 L2
the term — L Ap is linear in Ad; but —— e, (Aptad) d Ad
L %1 °P 1S 2L € 0P an L e) 4d are

nonlinear in d. The summation term in Eq. (9) can be broken up and

20
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rearranged into two parts such that the nonlinear terms are separated

from the linear terms as follows:
Z EA . a5 + EA (o 41 gaqlik
IZC{L Ad + =7 e 4p } +Z{ = (e1+2e2)Ad}

+ 8 =0 (10)

In Eq. (10), the first summation consists only of the linear terms
in the displacement components, whereas the second summation consists only
of the nonlinear terms in the same joint displacement components.
Treating the nonlinear summation as the correction element in a successive

iteration scheme, the solution can be carried out in the following manner:

(1) Neglecting the correction term temporarily, let

- ):{ 23+ B e ap }jk - # | (11)

Expanding e; in terms of displacement components,

e —l——(Afa-a&)
12

(Axi + Ay5 + Azk) - (Aui + Avi + Awk)

r#opa

|H

(AxAu + AyAv + Azdw)



In which, 1, i, k

and

et
ol
I

Let }\=-I':, M

Then Egq. (11) can

e

ox

X L

- (.T..{.E

L

Accordingly,

iS

22

are unit vectors in the x, y and z directions respectivel

[ A |

+

L

EA k

A - Az
ooy a2

be expressed in the x component as

EA

3

(AxAu + AyAv + AzAw)Ax}jk = x
L

&+ B D B0 B

L

12y® = -I‘—:% auvE = -E-% A = 1 (12.32)

uluj + (%-+-E% ﬁz)vj + Eé-uij

L

T EA 2,k _EA k

- 28 - (= EA |
= uiu (L L ¥ v L MW Y (12.b)
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Z{Eé-vkuj +-Eé vuvj + (! + Fa vz)wj
Kk L L L L

EA , k _EA kT EA 2k _
I vAiu LA (L + TV Yw pA (12.¢)

The set of 3n simultaneous linear equations in 3n displacement components
yields the approximate wvalues of the components of displacement of the

n interior joints.

(2) With the displacement components, the correction term can be compu-

ted from the second summation from Eq. (10) as

FA .- , EA 1, =ldk |
cd = é{i%'EZAp +5 (e + 3 ez)Ad}j (13)
Let 3=A%s 5“%’ Y=£‘fi’
l e
Then, e, = =5 (Ad.Ad)
L

= 1—2 (Aui + AV + Awk) + (Aul + Avi + Awk)
"

= 15 (Au2 + sz + sz)
L

2 2

“« a2+ 8% + v
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and e, = l;-(AxAu + AyAv + AzAw)
1 LZ

= Ag + uB + vy

With the solution of the first step, ey and e, of any member can be
computed. In x, y and z components respectively, Eq. (13) can be re-

written as

J _ vJEA EA 1 jk
C E{ZL e2Ax + T (el + 3 e2)Au}

or

j_v[EA . 1 3k

c, = 1)2{—2- e,A + EAle, + 3 ez)a} (14.3)
and

1 _ v[EA 1 ik |

Cy = E{_E-EZU + EA(el + 2 ez)B} {l4.b)

J - yJEA oL jk

Cz E{ 2 €,V + EA(el + 2 ez)y} (14.c)

The final equations after correction are



T ., EA .2, j EA j . EA
Z{(L + =5 A Ju + T Awv + =5 Avwd

k

- ( + Eé Az) ¥ E% Auvk - E% kuwk = Xj + Cj (15.a)
X
R s @Bt 0 B
k
JEA kL BA 20k _EA Uk _ i, ]
L HAiu (L + T ¥ v T MW Y + Cy (15.b)
Z{Eé viud + EA wpvd + ( 4 B2 2)wj
L L L
k
_EA .k _EA_ Kk _ EA 2k _ 1. .
T viu L VWV (L + = LV w z7 + Cz (15.¢)

As a result of the correction, a set of refined displacement components
is obtained.
(3) Step 2 is repeated until the desired accuracy is obtained.

(4) The final stress in a member is then computed by

T+ AT =T + e(EA+ T) (16)

25



F. Solution II
According to Mollmann and Mortensen [9], convergence can be

achieved faster when Eq. (10) is rewritten by adding and subtracting

T -
Af Ad in the linear and the nonlinear terms respectively, as

THAT EA _ = EA 1, _ AT, =ik
E{ = Ad + T e 1} +z{ Ap+[ (el+2e2) L]Ad}

+F =0 Qa7”n

where AT is the predicted change of tension in each member. Since the
changes in the tension in the cables of the same family are fairly uni-
form, they may be predicted by a percentage of the initial prestresses
within some acceptable range of accuracy. According to Mollmann and
Mortensen [9], it is acceptable if they do not differ by more than
about 30 percent from the true AT values.

The final equations thus modified are

k
_ (T-f-AT £ _}}i_é 22y o E__i AuvE - E_is Yo® m X9 c;'l; (18. a)

! { E—f" _uluj + (TMT Ei whvd + E% e
k

EA k THAT EA 2, k _EA
- e - (R RSy - 22

B S|
L I Huwr Y + C

(18.b)

“ L.

26



Z-Eé vluj -i—-E-é vuvj + Q§i£3-+ E% vz)wJ

k L L L
_FA .k _EA k_ AT  FA 2, k _ ,j _ .
I viu L Vuv o = Guuf— + TV Jw Z7 + Cz
where
o [ EA 1 - jk
Cy E 5 e,h + [EA(e; + 5 e,) - ATl

| XCTTET

ik

C;]r = IZ{ { B2 e,u + [EACe;, +

J
c
+ 7

rol—

{EA v+ [EAe, + 5 e,) - AT]wf}jk

8

The method of solution follows the same steps as described in

Solution I,

27

(18.c)

(19.3a)

(19.b)

{19.¢)
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IV NUMERICAL EXAMPLE

As a practical matter, a hypar shaped prestressed cable net problem
has to be solved by the use of a computer. There are three times as
many equations as there are interior joints. Therefore, considerable
computer time is needed to set up the equations and to solve for the
displacements and the stresses in a rgal structure. As an example,
Mollmann and Mortensen [9] solved a system of 252 interior joints.
There were 3x252=756 equations. For each loading condition, with five
iterations, the computer time was about one hour. Thus for the purpose
of developing a computer program, a simple example structure has been
selected. The program thus developed was checked, in Example 1, by
long hand calculation using the same method. In Example 2, Solution I

and Solution II are performed in order to compare the convergence.
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Example 1:

A cable net, shown in Fig. 5, is fixed at the boundary joints. The
initial state corresponds to the prestress loading only. The cross
sections of the cables for both families of cables are 1.0 sq. in. and
Young's modulus is E = 24x106 psi. The horizontal component of cable
prestress is 20,000 1b each for all cables. The loading is P = 10,000
1b in the z direction at each interior joint.

A WATFIV program, as showm in Apfendix I, has been written to solve
diamend hypar shaped cable net problems following Solution I discussed
in Section III. The example problem is solved using the program. It
is further checked by calculations using a desk calculator to set up
the 15 simultaneous equations and then solving them by the use oflthe
NOVA 1200 digital mini computer. The results are listed in Table 1 to
Table 7 and Eq. (20) and (21).

The computer results were checked by long hand calculation because
there are many summation terms performed by do-loops in the computer
program and it -is very difficult to find an error by checking the state-
ments of the program itself. Therefore, the computer results were
checked, up to the correction terms. There after, the stresses are
computed by Eq. (16), which is a simple 0peratipn and the program can
be observed to be logically correct. The computer results for AT are
listed in Table 7. The table shows that AT ranges from 18,320 to 22,360
1b for the hanging cables and from -17,440 to -21,570 1b for the bracing

cables. These values would tend to indicate compression in some of the
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cables in the final state. This result would necessitate the redesign

of the cable net in a real design problem. It can be seen that the
maximum stress in the hanging cables occurs in the final state, but

the maximum stress in the bracing cables occurs in the initial state.

For the case of equal horizontal prestress in both families of cables,
the cross section of the hanging cables has to be designed to resist

the tension in the final state, while that of the bracing cables has to
be selected to resist the prestress in the initial state. TFor the
example, the cross sections for both families of cables are 1.0 sq. in.
If they are satisfactory for bracing cables, they will not be satisfactory
for the hanging cables. Furthermore, the final stresses in the hanging
cables are about two times their prestresses. For this reason, fhe cross

section for the hanging cables is revised to 2.0 sq. in. in Example 2.
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Table 1: Coordinates of the Joints in Feet

Joint Type p:4 vy z
13D p(2) 0 ~20.0 10.0
22 B -10.0 ~10.0 5.0
23 13 0 ~10.0 x(4)
24 B 10.0 ~10.0 5.0
31 B -20.0 0 0
32 1 ~10.0 0 %

33 I 0 0 *
34 L : 10.0 0 *
-35 B 20.0 0 0
42 B -10.0 10.0 5.0
43 I 0 10.0 *
44 B 10.0 10.0 5.0
43 B 0 20.0 10.0

(1) Joint 13 represents Joint M,N, as shown in Fig. 5.

(2) B represents boundary joint.

(3)
(4)

I represents interior joint.

* means the coordinate is to be determined.



Eq. (20) Initial State Matrix Equation

[ 4 0 | 0
0 4 -1 0
-1 -1 4 -1
0 0 -1 4
0 0 =1 0
L
Table 2:

0] fz23
0 |23
=1 1843
0 {234
4

10

20

33

Initial State Solution in Feet

Joint

23
32
33
34

43

6.251)
3.75
5.00
3.75

6.25

(1) The computer results and the long hand results were essentially

identical.



Table 3: Direction Cosines

Near Far
Joint Joint L A H ¥
23(1) 22 10.0778  -0.9923(? 0 ~0.1240
24 10.0778 0.9923 0 -0.1240
13 10.6800 0 -0.9363 0.3511
33 10.0778 0 0.9923 -0.1240
32 31 10.6800  -0.9363 0 -0.3511
33 10.0778 0.9923 0 0.1240
22 10,0778 0 -0.9923 0.1240
42 10.0778 0 0.9923 0.1240
33 32 10.0778  -0.9923 0 -0.1240
34 10,0778 0.9923 0 © =0.1240
23 10.0778 0 -0.9923 0.1240
43 10.0778 0 0.9923 0.1240
34 33 10.0778  -0.9923 0 0.1240
35 10,6800 0.9923 0 -0.3511
24 10.0778 0 -0.9923 0.1240
44 10.0778 0 0.9923 0.1240
43 42 10.0778  -0.9923 0 -0.1240
44 10.0778 0.9923 0 -0.1240
33 10.0778 0 -0,9923 -0.1240
53 10.6800 0 0.9363 0.3511

(1) The joint where equilibrium is considered.

(2) The computer results and the long hand results are essentially
identical.
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Table 4:

Final State Solution in Feet

36

v W
Joint Computer Hand Computer Hand Computer Hand
23 0 0 0.01225 0.01225 | 0.06047 0.06048
32 -0.01225  -0.01225 0 0 0.06047 0.06048
33 0 0 0 0 0.03227 0.03229
34 0.01225 0.01225 0 0 0.06047 0.06048
7~43 0 ] -0.01225 —0;01é25 0.06047 6;06048
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Table 6: Corrections

c c c

Joint B 4 2
Computer Hand Computer Hand Computer Hand
23 0 0 -259,100 -259.060 | -=25.220  -25.259
32 |-255,700 -255.684 0 0 9.261 9.255
33 0.002 0 0.003 0 1.250 1.250
34 255.700  255.684 0 0 9,261 9.255
43 0 0 259.100 259.060 | 25.220  =25.259
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Table | 7: AT in Pounds

Member AT

13 - 23 21570
22 - 23 18320
23 - 24 18320
28w B2 17440
23 - 33 20530
24 - 34 17440
31 - 32 22360
32 - 33 20730
33 - 34 20730
34 - 35 22360
32 - 42 17440
33 - 43 20530
34 - 44 17440
42 - 43 18320
43 - 44 18320
43 - 53 21570

39
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Example 2

The problem of Example 1 is used in this example to test the con-
vergence of Solutions I and II. The cross sgction of the hanging
cables is revised to 2.0 sq. in.. A modified program for solution II
is shown in Appendix II. The results are tabulated in Tables (8), (9),

(10), (11), (12) and Fig. 6.

Table 8: Initial State

z value in ft
JOint,‘Solution.I. Solution II
5% 6.25 6.25
32 3.75 '3.75
33  5.00 5.00
% 3.75 3.75
&3 6.25 6.25
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Table 12: Stress
- Tension in 1b Stress in psi
Meabes . Initial Final Initial Final
13-23  -0.000614 | 21360 6613 21360 6613
22-23 0.000515 | 20160 44890 10080 22450
23-24 0.000515 | 20160 44890 10080 22450
22-32  -0.000480 | 20160 8634 20160 8634
23-33  -0.000576 | 20160 6322 20160 6322
24-34  -0.000480 | 20160 8634 20160 8634
31-32 0.000604 | 21360 50380 10680 25190
32-33 0.000568 | 20160 47450 10080 23720
33-34 0.000568 | 20160 47450 10080 23720
34-35 0.000604 | 21360 50380 10680 25190
32-42  -0.000480 | 20160 8634 20160 8634
33-43  -0.000576 | 20160 6324 20160 6324
34-44  -0.000480 | 20160 8634 20160 8634
42-43 0.000515 | 20160 44,890 10080 22450
43-44 0.000515 | 20160 44890 10080 22450
43-53  -0.000614 | 21360 6613 21360 6613
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V. CONCLUSIONS

In conventional truss systems, the equilibrium condition of
mechanics i1s based on the original unloaded geometric ccnfiguration‘
under the assumption that the deformation of the system under load
has a negligible effect on the stresses, However, the analysis of
prestressed cable nets is based on equilibrium after the deformation
has taken place. Since the deformation has to be considered in the
analysis of a cable net, in the discrete method, the equilibrium con-
ditions at a given joint yield 3 functions in terms of the displacements
of all of the joints connected by members intersecting at that joint.
Moreover, the equations are nonlinear. As a result, a set of nonlinear
simultaneous algebraic equations in the displacements of all the interior
joints has to be solved. The physical concepts of equilibrium involved
are fairly familiar to every engineer, but the solution or even the
approximation of fhe solution is complicated. Thus the method of
solution becomes the center of interest to the investigator. |

The method of analysis followed in this report converges fairly
well. In Example 2, both solutions introduced were performed and the
results of convergence are almost identical for that particular problem.
In Solution I, as shown in Fig. 6, almost complete convergence was
achieved at the 2nd iteration., In Solution II, the first iteratiom
results were fairly poor. However, the 2nd iteration converged extremely

fast, such that on the 3rd iteration the results converged almost to

the same degree as Solution I did.



47

Though the example did not show clearly that Solution II converged
better than Solution I as Mollmann and Mortensen [9] had stated,
the different shapes of the convergence curves tended to show that the rate

of convergence for Solution II was greater.
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APPENDIX I

This is a program for performing the static analysis of diamond
hypar shaped prestressed cable networks following Solution I. The

dimensions of the arrays are described below:

X(M,N,J3) = the coordinates of joint M,N, where J3 = 1,2,3 is for
X,¥,2 resﬁectively.

DCSX{M,N,I4,J3) = the direction cosines, where I4 = 1 to 4 1s for each
of the four members intersecting at joint M,N, as shown

in Fig. 7, J3 = 1,2,3 for Xx,u,v.

M+1,N

T4=4

M,N+1
MN-1 =771 42 ’

L4=3

M-1,N

Fig. 7 Member Arrangement



A(T,J,M,N,J3) = the coefficients of Eq. (15.a), (15.b), and (15.¢),
where I = 1 to Il is the sequence of the Interior joints where
equilibrium is considered, I1 is the total number of the interior
Joints, J = 1,2,3 represents Eq. (15.3), (15.b), and (15.c) re-
spectively and J3 = 1,2,3 represents the u,v,w displacements
respectively,

KEY(M,N) = -1,0,1 denote the boundary joints, out-of-net joints, and
interior joints respectively.

DX(J3) = Ax,Ay,Az respectively for J3 = 1,2,3.

S(M,N,14) = the length of the member identified by I4, as shown in
Fig. 7.

F(I4) = EA/L.

C(IT,K) = the results of each iteration in turn, where IT = 1 to IT1
is the number of iterations, K = 1 to K1 is the number of
equations,

U(M,N,J3) = the joint displacement components u,v, and w.

COR(I1,J): fhe”correction terms to be added to the loading components.
For 1,J, see A(I,J,M,N,J3). |

DU(I4,J3): Au, Av, Aw.

E2H(I4): e2/2.

DCSU(T4,J3): a, B, Y.

B(K,L) = the coefficients of the matrix equations at the final state

before the operation of Gauss Reduction, where K = 1 to 3xI1,

L=1 to 3xI1+l.

52
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BP(K) = the components of external loads.

E12(14) = e, + e2/2.

1

P(K,L) = the elements of the stiffness matrix, where L = 1 to 3xIl, Il is
the total number of the interior joints.,

S58(J3) = the square of the components of the length of a member at the
final state.

DT(M,N,I4) = the change in the tension in a member.

G{(K,L) = the coefficients of the matrix equation at the initial state,
where K= 1 to Il and L = 1 to I1+]l, Il is the total number of
the interior joints.

GAMA(M,N,I4): the strain in a member identified by I4, as shown in

Fig. 7.

'The program follows.
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189

181
182
183
162
163

161
169

17%
174
1732
171
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COLyTIM:=15,P4n55=01"
THIS PFRGRAYM PrUsiE4S THE ANALYSIS OF THE DIAGMIMD HYPAR SHAPED CABLD NOT
OF EOUAL M0, 0= CARLES (TN RUTH DTRECTIONS, :
MN TS THS b0, OF JOINTS TN EACH OF THE OTAGRHAL CARLES INCLUDING THE

BOUNDARY 10OTHNTS,

Tl IS THE T0TAL Nde NF ITMTTREINE JDTMNTS. .

ITL IS THE MAX, Nie F TTETAYIONS TO TERMINATE THE SXFCUTION IF THE

ITERATION IS NOT CUNVFRGENT, :

SPOM . MM, AN AM O AUE THE SPACJAG, THFY HNRIZ. COMPANENT CF THF PRETENS [N

AND CPOSS SFCTTUNL OF THD CABRLES PARALLFL T THE M 8XIS TN FTay LPgy IN%x

SPCNy MY, AND AN ABF TWASE PARALLEL TO THE N AXISe

F IS THE YOUNAIS ™MD Lng 8 PST,

FPSI IS THE NECIIED ACCUNALY IN FT,. )

DIMENSTON X059 3o {5423 4845 4314 KEY(R5),BX[3145(5,:544),F1{4),
IDCSX(E s Sets 3 e T lB 535 2  y CORI B2 D432 ) oF2HI4) ¢NICSIH{G42),
180153 1e) 320250351204 ePU15915) ¢35 3T (54504050553 5),08M8{5,5,4])

FOAMAT{3TS5, 651 4 3) _

FORMATI1IHL '  SPACING-M SPACING=N  PRETEN=H=-M PRETEM—H=K
1f AREA—M AREA-N! / /T 1Z2.4/7)

FORMAT(£EL:53)

READES 170 WMLy TTLySPUMSPCHsHM HN,, AM, AN

PEAN{S,122) &

WREITE {64 131) SPCA,SPOCNsHYyHM JE  AM AN

REACTS,12) EPSI

FFAD'!FJ'I&:"} ["K{“vuvn’a)!J3=-r3)'N=1vHN}1:"""1'-“!'-',

EAMsE%AM

EAN=FE®AN ¥

TSM=HM/SPC M

TSN=HN/SPON

DN 160 M=1,%N

DO 161 N=1,MN

MIaMEN

MRa{MN+2)/7

TF{M2=-M3) 162+163,163

M4 =N=M

M5={MN=11/2

IF{¥4=-M5} 181,1634162

ME=M=N

[F{ME-M5) 1A2,163,162

MT={MN=23+1) /2

TR{MZ=MT) 183,155,162

KEY{MyN) =1 s

GO T 161 z

KTY (M, N) =
GO TN 1541

KTY(MyN ) ==1

CINTIMUE

CONTIMUS

N 179 =144\

N 171 N=1,4N

N 172 J3=1,3

UMM, J2)=0

0173 I=1,11

NY 174 =143

ATy Ny 3=

roe(la11=7

FANT A

COAMT RIS

CANTINs

COANTINIE



170

605

602
61
630

612
611
610

613

109
111

COMTIMNUE

I1=0

K=

DN 600 M=1,.MN

DN 601 MN=1,%N

TFIXEY{M4N) LT, 2) 60 TO 601
M1l=M-1

Nl=N-1

T=1+1

Ny 622 14=1,4

IF{i4 AT, 2) GO0 TOL AN3
AlTy3eMeMe 2 =801, 3% N+ 12TSY
1FIKEY(+,4N1) JFN, =1) an 70 634
AfT+30MeM1e30=A0 13 34MpNLy3)=12TSY
N1=N1+2

G0 TO 6062
CORELAI=COR LT 314X MeM143)+T5N
N1=N1+2

GA TO 622
AlT43,MeMe2)=020T 33 4M 4Ny 2 ) 1*TSM
IFIKEY(1M14N) 42704 =10 =00 TN 805
AlT939MML N3 =80[g3eM]y y3)=1%TSM

.ML=M1+2 v

6N TN 6G2
CARCI+31=COR(II 434X (ML 4Ny 3}5TSM
Ml=M1+2 :

GO TO 622

CONTINUE

CONTINIE .
CONTINUE )
K1l=11

L1=K1+l

L=0

NN 610 M=1,4Y

NG 611 N=1l, MY .

TIF(XCY(M,N) LI G) GO TO 611

L=l ¢}

NN 612 K=lyK1
GIKyL)=A{K,3,4,N,3)
CONT INVE

CONTINUE

CONT I NUE

NN 613 K=1,K1
GlK,Lll=Cﬂ“{ﬁ»3l
CONTINUF . .
CALL GAIISR{G,K1,L1)

FORMAT(/ /! M N z v/)

FNRMAT{Z215,F12.4%)
WRITE(6,129)
K=0

DN 625 M=1,.MY

N 621 MN=1,M¥N

TRIKEY(M,N) oLize Q) A0 TO 621
K=K+1

XUMgMNy I =" IK,L 1)

WRITELAYILLY) HaMaXIMaN, 3)
CONTINUE

.;. CrnTIRID

N 622 1=1,11
NO 623 M=] MY
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105
106
107
108
100
113
111
112
113
114
115
11¢
117
118
119
120
121
122
123
124
125
126
127
128
129
139
131
132
133
134
135
135
137
139
13¢
14
141
142
143
144
145
146
147
148
149
153
151
152
152

154
155
156
157
153
159
16
161
1¢72
163
164

s24
€23
&22

228

209

237

222

223
222
221

2246
224

227

56

NO £24 HN=1,M
A(I|315|1M0.3'=O
CANT TNIT
CONT [ MUE
CONTINDE
Kl=T1%Z
L1=K1+1

1=0

N 200 M=1,MN
N0 201 N=1,MN
JRIKEY{M,N) oLis 2) 69 TN 201

Ml=M-]

Nl=N=1}

nO 292 la=144

IF(14 GTe 20 KU T 204

nn 2403 J43=1,3 £

DXLJZ)=X(4, N1y )-X{ My, 13)

COMTINUYF

Ml=M1+2

G50 TN 2G6

No 205 J3=1,3

NXUJI V=X (ML My J3)=X(MaMy03)

CONTIMYE

Ml=M1+2

SIMeMy T I=SARATIOX( L+ 24DX{2)1%224NX (3} %% 2]

IF(I4 .GT. 20 67 T 208

FUI4)=FaAN/S T4 T4)

6D TN 239

FITa)=FAM/S MM, T4)

NN 237 J3=14+3 E

DCSX(MeNg T4 020=0(J3)/S5{MeNyT4)

CONTINUE

CUMTINUE

I=1+1

NN 220 J=1,3

DO 221 T4=1.4%

DO 222 J3=1,3

ALT g deMeNgd2I=A( Lo )y Ay N I3V +F (T4 IFNCSXIM N T4, JIDCSXIMe Ny T4y
YELUT4 oGTe 2) GO T 223

IF(J oFQa J3) AlTadeMeMNed3)=ATT 30y MyNgJ3)+TSN

GO TQ 222

TFUY o500 J3) AlLT,dyMyNed3)=A01 sy NyJ3)¢TSM
CONTIMNYE ' -

CONTINUE * F g a
P N1=N-1 2

M1=M=1

NO 224 T4=1.+4

IF{T4 6T, 2) 6N TN 225

TFIKEY {My"1) oLEs D) GI T 228

DN 226 J43=1,3 A
AlTedeMeMEad3=00T, 0 MeNT0d3)=C{T4)DCSXIMy Ny [ae J)N0SXIMGN,GT
TR affle J2) ATl 4aNLle)3)=801,0s Mgl J3)-TSN

CONT IMNUE

N1=N1+2

nO TN 224

TFEKEY(1y™n) LT ) GO T 229

0 227 A7=140 ;

AlToad Ml s d V)=t a0 Ly My I3 =5 T3 N0 (4, My T g JIT NS EA N T
TELD T2 J3) a0 Ded e lat g d3 =20l o dgMLatly )31 -TS™

CORT ININE



165
166
167
161
169
172
171
172
173
174
175
176
177
178
179
180
181
l1a2
183
- 184
185
184
187
188
189
130
191
1352
193
194

195"

15846
197
193
1909
200
201
292
203

204

205
206
207
208
202
210
211
212
213
214
215
216
217
219
2rn
220
221
227
223

224

229

224

221
?i)s
240

234%
231
232
231
232

240
114

1056
ics
117

241
262

57

fio o

“i=Mle?
CONT TAI7
CUuNTIMe
COANT TR
CONTIMNUS
L=0

W=y

00 230 M=1,4N

0N 221 Nzl M

IF(KFY({4yN) oL, O) AR TN 231

nO 232 J43=1,3

L=L+1

nn 233 1=1,11

NN 234 J=1,3

K=K+l

n‘tKl’L}=~"'i |Jo""n‘\i1..’3'

PIKeL )=P(K, L)

IF{K T1, K1) K=x-Kl

CRKRTINNF

CONTTHUT

CUNT LMbEE

CONT TNRIIE

COMT INHF

READ(S,152) (NP[KIK=1,4K1}

DN 240 K=1l,K1

BIK,L1}=RP(K}

CAONTIMYE

FARMAT{/ /" ([R3(X 1 JeL=1s0L2),K=l4K1) ARET//(EX:10E12.4)1)
WRITFINO114) ({R({XsL}el=14L1)eK=]4K1)

B0 340 TT=1,1T1L

CALL GANSRIR,K1,L1)

FORMAT{IHL,L1H TTEZATICNIT2)

ENRMAT L/ /! 1} v W Y/I{ZELZeG) )
FARMATUAL/ LA/ /A4 7104 TTFRATTIONETZ)

IFLIT 07, L} OO 10 Z24]

WRITS{6,1°5) 1T

GO TA 2472

WRITF (A, 1171 IT

WRTITE(&, 1A (UK, L1 ,K=14K1)

0N 301 K=l.K1

ClIT,KI=RI{K,L1)

CONT IMUC

IF({IT 4504 1) G} YOO 302

ND 303 K=1,K1.

D=ECLIT, X )-Cl{TT=-1).K)

IF(ARS(D) LGT, EPSII GO T 302

CONT INLIE

GO TN 929

K=

DO 311 M=1.¥N

DI} 312 M=1.MN

IF{REY (M) oLFs C) G0 TR 312

PN 313 313=1,3

K=K+] )

Uyl 2 =3 (K,L 1}

CouMT 1+

CNNTTMUF

CONT TP

1=0 .
0N 3420 M=1,MN



225 NO 321 M=1,MN

226 JRIRFY (M) JLFa J) G} T 321

227 Ml=M~-1

229 Ml=N=]

229 no 322 14=1.4

23N IFLt4 «GTe 2 G4 T3 323 .

-231 N 324 J3i=1453

232 NUL TG 023 =00M, N4 I3 ) =My led 3

233 3245 CONTIMUT

234 N1 =NL1+2

23% Gl TD 325

254 323 07 376 J2m1,.3

237 NE{T4 323 =i{M1,HNed3)-IMy Ny J3)

238 326 CURYINUE

239 Mi=Ml+2

250 A2k Fl=g

2% E2=0

242 No 327 J3=1,3

243 DCSULI4J3 )= UL T4 030 /50M M, 14)

244 El=FlenNosxib, My [4,J3 05 C5U(144d3)

245 E2=C240C S0 (1503 %22

2hb 327 COMTINE .

247 E2H{I&)y=F272 )

248 F12014)=F1+F 2H{] %)

24% 222 CONTINUE

251 I=1+1

251 DD 332 J=1,3

252 CARIT+J}=2

253 DO 335 14=1,44%

25% IFLT4 ,n7, Z) AT TN 336

255 CORET e V=005 0] 4 JheEcm [F2HITAINCEX (M [4, 01 +E120T41PCSUIIS,0))

256 £ TN 335 4

257 324 CORCTJI=COR(T ¢ 3 ) *#TaAMRIEIH{ T4 NCSX{ My N, 144 J)+E12(74)13NCSULTI4 001

258 335 CONTIMIE s

259 332 CONTTHUE

260 321 CANTINMUT

261 325 COKTIMNT .

262 L16 FORMAT(//Y COP[T,4J) ARGz Z2/Z(5%X,7512.40)

263 WRITE (6411860 {{COUT 4 dhad=1a3),T=%,11)

264 K=(

2565 DO 340 1=1,11

266 Nl 341 J=1+3

26T K=i+]

2613 BlK L 1)=00(K}+COR(T 4 J)

269 AL LONTINUS ’

2710 &3 CUMTINYFE

27l 00 3573 K=1,%K1

272 BN 351 L=l,¥1

273 Bl L)=2 (K, 1) -

2714 351 CONTIMNIE

278 350 CONTINgY

276 33 COMTTINIET

277 Gty r_jrni‘[]‘n;;.‘.‘

278 107 FORMAT(LIHL, /7t 4 M 14 GAMA T NELTA T
1IFIHAL T ST T BIMAL STRFESY//)

279 138 FOARMATIT,2104AF1044%)

287 WRTTE{A,177)

281 N AaE Ml

202 N 4G1 wslae N

293 TEQKTYIM M) oLie 31 00 TO 691



284
285
286
2R7
288
289
290
291
292
293
294
295
294
297
298
299
300
351
302
303
3N4
335
3056
307
ansg
3ige
310
311
312
313
314
315
3156
317

318
319
320
321
322
323
324
325
326
327
328
iz
339
331
332
333

407

432
401
A

Ml=M-]

N1=N-1

NO 422 T4=144

IF{I4 «NnTe 2) GV TD 404

M1 403 J3=1,3

SSUI3 )= (X0 A, J3T4TEM Mg J2)=X (Mg NT1, U3 )~ (Mg ML g J2] ) %52
CTINTINOE

N1=N1+2

G TN 406

NN 425 J3=1l.3

SSUI3I=( XMy 3T +UIM NG I3 =XM1 g Ny J3)=U(ML ¢NyJ2) )} *%2

- CONTINUE

Ml=M1+2
NS=SORTISSLLII+SSUII+ S (31 I=S{M N, T4)"
GAMA (Mo IS5 )=N57/5(AM,y14)

IF{T4 .nTe 2) 659 T 407

TN=TSN®G (MM, 14}

DT (M Ny T4)= (TANETHIANG/SIMN, 14)
TEN=TNADT(M Ny TS )

STN=TH/AN

STEN=TIM /AN .

29

WRITE(6.130) MyNo[doGAMAIMyN, T4y TNJDTIMpN T4, TEN,STNGSTFN

GO TN 4372

TU=TSMES [y Ny T4)
DT(MeN,T4)={FAMETMY¥NS/S (MM, 14)
TRM=TMEOT{M,N 4 )

STM=TM/AM

STFM=TFM/aM

HR!TEfﬁrlﬁﬁl'W-”-Té'GhﬁiquN|l4i,T“,DT(W.N.]é)'TFM,STM.STFV

CUNTIM)E
CONTINDE
CONTIMUF
sTae

END

SUBROUTINE GAUST [ALMNWN1T
DIMENSION A{M.n1)

DD 500 J=1+N

DIv=AlJ. )

S=1l.0/N1V

DN 501 ¥=J,.N1
AldpKI=Al) KIS

DO S02 T=1.N

{F{I=-J)} 5232,572,4303
ATJd==A1144)

NN 504 K=J.N1

ACToKI=SATT K I#ATIRALCI K} -
CONTINUE

CONT TNNE

FZTURN

“END

SENTRY



APPENDIX II

This is a program to perform the static analysis of diamond hypar

shaped prestressed cable networks following Solution II.

The program follows.

60



~

igisisEalalclalaNaNel gl

$J08

190
1G1

102

160

174
173
172
171

- 61

COLLTIME=1T,.PANES=T)

THIS PROGRAM PENFORMS THE AMALYSIS OF THE NDIAMUND HYPAR SHAPFU CADRBLF B
NF FOQUAL NNg OF CARLFS TH BNTH OTLFCTINNS,

MN IS THE Nu, % JMINTS IN FACH OF THE D1AGUNAL CARLES INCLUDIMG THE
BOUNDARY JINTS, .

11 IS THE TATAL N0« DF INTERINR JQINTS,

171 15 THE MAX, NO, NF [TERATINNS TOTTERMINATE THE EXECUTION IF THC
ITERATION [S NUT COMuIAGeENT, )

SPCM,y MMy AND AM ALY THE SOALTIMG, THE HORTZ, COMPONFENT OF THE PRETONSI
AND CROSS SFCTIOY DF THED CARLES PARALLEL TGO THE M AXIS TN FTes LPgay 1IN
SPCNy HM, AND 3N AKE THOSE PARALLEL TN THE N AXIS.

E IS THe ynuints MonuLtIs IN PSH,

EPSI IS THT OFSTRED ACCHIACY [N ST,.

DIMENSTIOM US55 3) 2205 ,3355 43 KoY {035 ) X {3 )45(5¢504)+F (4},

INCSXUSy 504 3) all TelB) ot as543),CIP {543 s NG 43}, 020{4) ,DTSHH{G43),
1RL154161,30028), F120+) 3P (15,150 ¢35¢3)e0TI54¢5164) 901501 4GAMEL5 T4
FORMAT{315,67 10. 39 :

FORMAT({LHL,t SPACTING=M SPACTING-N  PRETEM—H-M  PRETEN-H-NMN
1€ ARE 4=M AREA=NY /T 12447

FORMAT{HFL Ja3)

READ(Se10C) MNGT 1y ITL SPOM SPCN g HMGHN, AM AN

READ{5,152) F :

NRIT_E_‘E‘.! lJl] SPCM‘SDCNVH‘“'HNfEv-‘l"qlAN .

READ(5,102) =P<l

READIS, 102 [CIX AN aIZ )4 d35193) g N=] 4N s M=] 4 MN)

EAM=E*AM

EAN=E*®AN

TEM=HM/SPLM

TEN=HN/SPCN 3
DO 160 M=],MN ’

00 161 N=1,MNk

MZ=M+N

MA=(MN+3) /2

IFIM2-¥3) 162,163,180

Mg=N-¥

ME= {MN~-11)/2

IFIMG="5) 1R81,163,}3¢€2

MA=M=N

TF({MEa-M5) 1¢2,163,162

MT={MN*3+1)/2

IFIMZ-MT) 183,163,162

KEY[MaN) =1
6O T 161
KEY{M H) =0
GO TO 1AL
KEY{M,N)==-1
CONT TNITF
CANTINUL !
DO 179 M=1,MN : ' .

DO 171 N=l,4N

D0 172 43=1,3

UiMyNed2E=0

D 173 1=1,11

0D 174 J=1,3

AlTsdeMattyd3)=0

CORL I b}=7)

CHIMT I Mge

CONTIMNE

COMTTI™MF

CaNTINUF



170

604

63

605

692
601
600

612
611
610

613

179
111

671
620

CONT INUFE

I=0

K=D

Do ﬁ\.-o Mz ] g MY

DO 6G1 N=1+MN

TRIKFY(M,N) JLE. Q) AD TOD 6QL
Ml=M=1}

N1=N=-]

I=1+1

nn eG2 ]4=11t}‘ )

[F{l4 GTe 21 00 TO 603
AlTg3MaNy 3 =ATT] 4 3944 My 21 +15TSN
IF(KEY([M,81) oF0e —1) GG T 604
AT y34MyN2a3 401939 sMle3)-1%TSN
N1l=N1+2

GO T 602 -
CNR(145)=C08 1] 430 +X{MyNL,31%TSEN
N1=N1+2

G T all,
AlI.E,‘h-‘~I.3!=.’HT,3v:’"-1N.3i+1*TS‘-1
IFIKFY(M]l,5) LE0. =1) 50 TN &05
ALTo3,M1yMe30=800,3,M14Ny31-1%TSM
M1=M]1+2 ;

GO TO 6052
CDR(r,3}2(‘-39‘1113'+x(-‘41'”93)*TSM
Ml=M]14+2

GO TN 622 -
CONTIHUE .

CONT ITNNE )
CONTINUE
Kl=11
L1=X1+1

L=0G

00 610 M=1,MN
DO 611 N=Ll,7H
TF{KEY{M,N]) +LE. O GN TO 611
L=L+1}

DO 512 K=1.K1

GIKsLI=A(K 43 4MaN.3)

CONTTNUE

CONT IMUE

CONTINUEZ

N0 613 K=l,¥1

GUK L1Y=TRREK,3)

CONT L HY-

CALL GAUSRIG,K1,L1)

FORMAT{/ /1 A N z )
FARMET(215,812:4)

WRITE(6,1.9)

K=0

N0 62C M=1,44N

DO 621 M=1.MN4

TFIKEY(N,N) JL5. D1 GIT TN 621
K=K+1

X{MyNyI)=3lKeL1)

WRITS (A, 1110 N X[M,yite3)

COMT Irm™

CONT I M-

DO 622 Pel.li

NN 623 MslyaMN

62



105
104
197
108
lue
110
111
112
112
114
11s
116
117
113
119
120
121
122
i23
124
125
126
127
128
129
132
131
132
133
134
135
136
137
138
135
142
141
142
143
‘144
145
144
147

148,

149
150
151
152
153
154
155
156
157
158
15%
160
161
162
163
16%

62%
623
622

203

20%
205

2036

223
222
221

2256
223

225

227

63

D0 624 Nl MN

AlTe34M M1 )2]

CONT ITMUF

COMNTINYF

CUNTTHNUE

Kl=11%2 :

Ll=¥1+1 -
1=0

DO 200 M=1,MN

DO 231 M=l.%N

IF{KEY{ M N} JLte ) .00 TD 201
M1lz=M=1

Nl=N=1

DO 202 14=1,44

IF(14 46T, 2) GN TN-204

Do 293 J23=21,3
RX(JH=XL"‘."!L;JBi—XIM.'\i.JE)
CONTINUE

N1=N1+2

N TN 226

NN 2235 J3=1,3

DX(J3 =X (ML d31=XIMaN,.13)
CIOMNT [MUE

M1=M1+2

SIMyMN T4)=S0ATIDX(L)**24DNX(2)%*24NX {3} %x2)
[F(l4 GTe 21 60 TN 208
FI14)=FAN/SIM, N, [4)

G0 1O 209 :
F(IQA'=E-’\-'I’S(“|N‘:T4)

N 267 J3=143

T DCSX UM T4 I3 0XLU3) /S, N, 14)

CONTINUF

- CONT [NUE

1=1+1

NN 220 J=1,3 e

DN 221 T4=1,4%

DO 222 J3=1,3

AlIpd o e Nyd3i=AlT oo MpNGI3JHF{I4)EZDCSX LA M, [44J)EDCSXIMy Ny T4, J3)
IF(T4 0T, 2) 0O 71 223

TEGY SEQs J3) AlTadaMaNeJ2)=A1 14 d9MeNyJ3I+2,0%TSN

GO TN 227

IFLY a%de J3) ALT sde M ed31=A01 3 JeMeNy I3 )47 ,65TSM

CUNTIME

CONTIMNUF

N1=MN-1

Ml=M~1

DN 224 14=1.4

IF([4 &GT. 2) GO TN 225

TFLKFYIMyN1Y) LLFe i3} GN TH 228

DO 226 J3=1,3 .

AlTad oMo Ml a J31=A 0T daMy Ly J3)-FlTa)sDCSXIM, Ny T4 01 =NCSXIMN,14,J3)
TPl oF0a J3) A{Lade el d3N=A0T,JeMeNlsJ3)=2ail®TSN .
CONTIMNUE .

N1=Ni+?

GO Tr 2R4

TP KLY {AL,) JLD. 2} 60 TR 229

D 227 JI=143

A{Ta o™l etia I =20l 1a Ly ®l e JIN=F LTATEOESXKTIMa M I3 I GOSXI AN T4y D3}
TFLY oF% 320 AL T pdaMleMedal=AlTadeMl Ny ot —UadsT5M

CONTTNUT



165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
189
181
1382
183
184
185
184
187
183
183
190
191
192
193
194
195
196
197
198
199
202
201
202
203
204
205
206
207
208
2009
z1io
211
212
213
214
215
21é
217
219
215
229
221
222
223
224

229

2%

229
201
2U3

SRR L AT e deMyed3)

234
2313
232
231
239

117

241
242

303
3c2

313
312
311

M41=M1+2

CAONT ENUI=

CONT Th)F
CNANTIMNUT
CONTIT N

L=0

K=0

DO 230 M=144N
N 231 MN=l.MN
IFEKEY (™M) WLFo
DN 232 J3=1.3
L=L+1

nno 233 1=1,11
0N 234 J=1,3
K=K+1

PIKL)="(K,L)

IFIK JE0e K1) K=K=K}

CONT TN
CANTIN'E
CONTTINUE
CART IMte
CONTTNUEF

READ(5:132) (RO[K) K=1l,K1)

D0 240 K=1,K1
R(K,L1)}=2P(K)

} CONTINUF
FORMAT (/7Y ((BIX,L)sL=1,L1),K=],K1)

DO 336 1T=1,171

CALL GADSR{R,KIsL

1l

o

G TN 231

FARMAT(1HL,11H [TZRATIONZII2)

EQRULT s/

RIS S NN N S

IFLIT JAT. 1) 52
WRITE(6,1°5) 1T
GO TO 242

WRITEL6,117) 1T

il

15

241

WRITE (6, 126) {2(KsL1)sK=1,4K1}

DN 301 k=1,%1
C{IT,K)=H{K,L1)
CONT INNIE

IFLIT «50. 1) GO TO 302

DO 353 x=1,K1

D=CLIT,KI-ClTT=1),K)

IF(ARS(L) LGT. EPST)

CAMTINUFE

GO TO 999

K=0

N 311 M=1,“M
0N 312 M=1,MN
IFIKEY{MeN) oLE e
No 312 J==1.3
K=K+]

VM h g 17 )=r(KyL 1)
r‘r)h"!‘!ﬂl'f

COOMT UM
CONTINDT

I1=2

N0 32G M=1,YN

a1

v

TYERATIONZTZ)

GO TO 202

R TR

12

ARFY//{5Xy 13E12e 4))
WRITC (& 114) L8 (K, L) L=13L1)aK=14K1)

w

*7/7(2E12.4)0)

64



225
226
227
228
229
230
221
232
233
234
235
236
237
238
239
24
251
242
243
244
245
246
247
243
249
250
251
252
253
254
255

256
257

258
259
260
261
262
263
264
265
266

276
277
276

279
280
281

(T3]
fat )
-4

322

NN 321 N=1,MY

TFIKEY(MyN) «LFe Q) GO TD 321
Ml=4-1

N1=N-1

NN 322 T4=1.4

[FOI4 oGTe 2) 64 TN 323 -

DO 324 J3=1,3

DULT 4,03 =11, M1, 030 =U(MyN,JI3)
CONTINUE

Nl=N1+2

G TO 325

NN 326 J32=1,3
DUIT4d3)=1 (ML Ny J3)=1{HMyNyJ3)
CONT IRUE

Ml=M1+2

El=y

£2=0

00D 327 J3=1,3
DOSULL4,yJ31=NUC T4 31 /5 M N, [ 4)
E1=L14DCSX{M Ny 14,J3120CSUC144J3)
E2=E24PC 5 T+9J3) %2
CONTINUE

E2H{l4)=:0/2
E12(T4)=C1+E2HIT4)
CONTINUE

I=T+1

00 332 J=1,3
CNRI{T4J)="

DO 335 T4=1.%

IFil4d «5Te 2) OO TC 276

65

CORIT ¢ J)=CO00 (L) 45 2N= (2414 )ADNCSX M Ny [Gy JI+ELZTTIG)EDCSUT40d) )

11.0%TSNE0CSUL T4, B} 5 (FaM T4
GO TN 335

336 COR{ IV =NTRIT ) # 8t (T2H{TA)RNCSX Iy Ny L4 JIHELZ(T41DCSULTS, D0 )

335
332
321
322
116

341
340

351
3545
307
Qny
137

lud

106wV S8 = LCSUT I3, ) SNy Ta)

CUNT It

CIONTIMUE

CUNTINRUE

CONTINUF

FORMAT(//® CNR{L1.Jd) ARI:'//1SXe3EL12:410)
WRTTEL6,116) ({COR(IsJded=ly3)yI=1,11)
K=0

00 240 I=1,11

DN 341 Jd=1,5

K=K+1 .

B{KyL1)1=RO (K )+COR(T 4 J)

COMTINUE

CONTINUE

no 356G k=1,Kl1

N1 351 L=14K1

BIKyL)=2{K,L)

COnTINYE

CANIT.IAE

CONT I MU

SEHMT A

FOARAATLIHYL 270 ™ N 14 GAMA
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ABSTRACT

A discrete method of analysis for prestressed cable networks is
studied in this report. The method includes a basic solution and a
modified solution following the same procedure. As the loading is
applied to the structure, it deforms. Static equilibrium conditions
at the joints of the deformed configuration provide a set of nonlinear
simultaneous algebraic equations in displacement components of the
interior joints for the fixed boundary case. The set of equations
thus obtained is linearized for the first iteration. The solution is
subsequently corrected to the desired accuracy. Some error is introduced
by neglecting the strain effect in some minor terms, and thus itris an
approximate method. However, since the strain is extremely small, for
practical purposes, the error is negligible. The method considers the
horizontal displacement as well as the vertical displacement and there-

fore, is a complete solution.



