STATIC ANALYSIS

OF PRESTRESSED CABLE NETWORKS

bу

1226-5600

CHIANG-CHUN LAI

Diploma, Taipei Institute of Technology, 1961

A MASTER'S REPORT

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1973

Approved by:

Major Professor

ii	

LD 2668 R4 1973 L3

TABLE OF CONTENTS

	TV:	TOPE OF CONTENTS	
	C. Z.	d	
	•		page
	List of Tables	g e	iii
	List of Figures		iv
	List of Symbols		v
I.	Introduction		1
II.	Literature Review		4
III.	Method of Analysis		8
	A. Introduction		8
	B. General Assumptions		10
	C. Initial State		12
	D. Final State		15
	E. Solution I		20
	F. Solution II		26
IV.	Numerical Examples		28
	Example 1		29
	Example 2		40
v.	Conclusions		46
	References		48
	Acknowledgements		50
	Appendix I: Program for So	Solution I	51
	Appendix II: Program for So	olution II	60

LIST OF FIGURES

Fi	gure	page
1	Cable Nets	2
2	Discrete and Continuous Approach to Cable Analysis	3
3	Vector Notation	13
4	Stress-Strain Curve	18
5	Example Structure	31
6	Comparison of Convergence for w Components of Displacement at Joints 23, 32, and 33	45
7	Member Arrangement	51

LIST OF TABLES

Ta	Table	
1	Coordinates of the Joints	32
2	Initial State Solution	33
3	Direction Cosines	34
4	Final State Solution	36
5	α , β and γ Values	37
6	Corrections	38
7	$\Delta \mathbf{T}$	39
8	Initial State	40
9	Final State Displacements in feet, Solution I	41
10	Final State Displacements in feet, Solution II	42
11	Differences in the w Components Between Iterations	43
12	Stresses	44

LIST OF SYMBOLS

- A cross section of cable
- C correction
- displacement vector
- E Young's modulus
- e strain expression
- F force
- F external force vector
- i unit vector in x direction
- j joint notation
- j unit vector in y direction
- k joint notation
- k unit vector in z direction
- L length of member
- p position vector of joint
- T tension
- t tension coefficient
- u component of displacement in x direction
- v component of displacement in y direction
- w component of displacement in z direction
- X component of external force in x direction
- x Cartesian coordinate
- Y component of external force in y direction
- y Cartesian coordinate

- Z component of external force in z direction
- z Cartesian coordinate
- Δ increment in a variable
- ε strain
- σ stress
- λ direction cosine of x component
- μ direction cosine of y component
- v direction cosine of z component

$$\alpha \qquad \alpha = \frac{\Delta u}{L}$$

$$\beta \qquad \beta = \frac{\Delta \mathbf{y}}{L}$$

$$\gamma \qquad \gamma = \frac{\Delta w}{L}$$

I. INTRODUCTION

While the theory of suspension bridges has now reached a fairly complete state, suspended roof structures are still under serious experimental and theoretical investigation. Many papers on this subject have been published. But the approaches to the analysis and the methods of solution are very different among the papers published.

The purpose of this report is to present an effective method for the analysis of static prestressed cable nets. The method will consider nonlinear behavior of the cable nets, yet it will involve only simple mathematical equations and basic physical concepts.

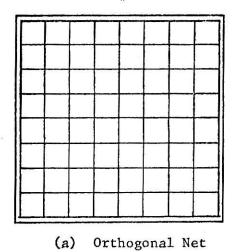
Cable nets are usually designed to support roofs covering large areas such as stadiums, arenas, and shopping centers. A cable net may be formed by intersecting two or more sets of parallel cables as shown in Fig. 1. It may be an orthogonal net, as shown in Fig. 1(a), in which two sets of cables intersect at right angles. It may just as well be an oblique net, as shown in Fig. 1(b), in which two or more sets of cables intersect at specified angles other than right angles.

Architects and engineers have a strong interest in utilizing suspension systems for supporting roofs covering large spaces. There are several advantages in using suspension systems for large space structures. The first factor is economy. Suspension systems are usually less expensive than other structural systems for supporting long span roofs. The second factor is esthetics. The variety of roof forms and building shapes possible with suspension systems presents further opportunities

for architectural expression. The third factor is stability. Cables work in pure tension so that very large spacings may be achieved with no stability problem.

Though the flexibility of the cables provides the advantages mentioned above, disadvantages also arise from the same characteristics. When the loading condition on suspension structures changes, it causes large movements which complicate the analysis, design, erection and maintenance of such structures in both static and dynamic aspects.

Suspension structures may be treated mathematically as discrete or continuous systems. In the discrete approach, the real structure is idealized into an assemblage of elements interconnected at a finite number of node points at which the loading is assumed concentrated as shown in Fig. 2(a). At each node, after deformation, equilibrium of forces and compatibility of displacements must be satisfied. The



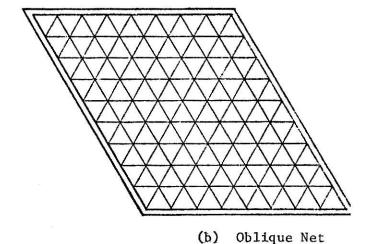
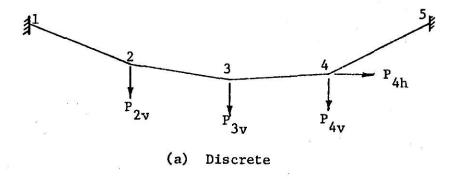


Fig. 1 Cable Nets

mathematical model consists of a set of simultaneous algebraic equations.

In the continuous approach, simultaneous ordinary differential equations or partial differential equations are set up to represent the real structure. It is assumed that the cables are curved and continuous throughout the whole span as shown in Fig. 2(b). Physically, this situation can exist only if the loadings are distributed uniformly along the cable.

This report is intended to analyze prestressed cable nets by the discrete approach. The study will be limited to elastic theory, and will not include dynamic analysis.



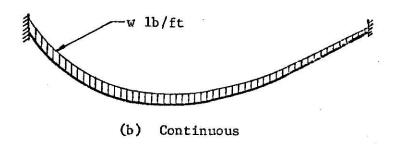


Fig. 2 Discrete and Continuous Approach to Cable Analysis

II LITERATURE REVIEW

According to Siev and Eidelman [1], a comprehensive survey of the existing knowledge with regard to suspended roofs up to 1955, has been compiled by Frei Otto [2]. The first article on the calculation of two-directional networks was presented by H. K. Bandel in 1959 [3].

In 1964, Siev and Eidelman [1] presented a mathematical treatment of stresses in prestressed suspension roof nets. The method followed the discrete approach. It was assumed that the slope of the two-directional net was small and, therefore, that the horizontal displacement components were negligible. Based on this assumption, the equilibrium equation for each joint was established. The relations thus obtained between loads and deflections were non-linear. The analysis further assumed that for small deflections, the non-linear terms, that is the cross terms or square terms of the unknown displacement components, may be disregarded. The simultaneous equations then become linear, and the results yielded an approximate solution. For more accurate results, a method of non-linear correction by an iterative process was also investigated.

In 1965, H. Mollmann [4] presented a study on the theory of suspension structures. The book covered the analysis of isolated single cables and the continuous and discrete approach to cable networks.

In the continuous approach to the cable net problem, a membrane theory was developed, in which cable spacings and the cross section of the cables were assumed to approach zero. In the discrete approach, a linear stress-strain relation was assumed, and the nonlinear simultaneous algebraic equations were established, based on the equilibrium conditions at each joint after the deformation of the structure had taken place. The method considered all three components of displacement at each joint. The mathematical system consisted of 3n equations for a network of n joints. The nonlinear simultaneous equations were solved in two steps. In the first step, the set of equations were linearized, temporarily, by neglecting the second order terms. solution thus obtained was used, in the second step, to compute the second order terms. The corrections were then carried out iteratively until the differences between two consecutive results were negligible. The method dealt with all three components of displacement and thus yields a complete solution, although there were some minor terms which were neglected.

In 1971, Krishna and Agarwal [5] conducted a model study on a hypar shaped suspension roof net. A 12 ft. square plan was choosen. The network was anchored into a rigid frame. Solid high tensile steel wires were used instead of stranded cables. The results of the model test were compared with the theoretical values [1,6] which were obtained by neglecting nonlinearity. The comparison indicated that the difference

was small for the smaller values of load, but it increased with increasing magnitude of loading. A general conclusion possible from this study was that the approximate linear theory could be used for the preliminary analysis of the behavior of a cable network. For some loading conditions, however, the differences between the measured and the computed results were rather large and the use of this approximate theory for final analysis would not generally be satisfactory.

In 1971, the Subcommittee on Cable-Suspended Structures of the Task Committee on Spacial Structures of the Committee on Metals, of the Structural Division of ASCE published a state-of-the-art paper [7]. The main purpose, as stated in that paper, was to aid engineers in locating information on the analysis, design, and errection of cablesuspended structures. The shapes of suspension systems, the structural analysis, the manufacture of wire cables and their physical properties, the design and erection of such structures were each presented in separate parts. In part II of that paper, the general, basic concepts of the structural analysis for continuous systems as well as for discrete systems were discussed. Isolated cables, orthogonal nets, and oblique nets were each presented. The discussion dealt with the initial shapes of suspension structures and the displacements resulting from changes of loading. The counterstressed double-layer suspension system was also presented in great detail. The last section of this part dealt with the dynamic response of suspension systems.

As to the structural strand and rope, the article covered some experimental results in addition to the general material properties.

In the section on the design and errection of such structures, selection of suspension system, loading conditions, cable selection, cable anchorage, fire proofing, watertightness, errection sequence, placement and tensioning of cables were all briefly discussed.

Finally the article encouraged further studies: (1) to develope more sophisticated procedures for the static and the dynamic analysis; (2) to investigate the mechanical properties of structural strand and rope; (3) to investigate the stress-strain relationship above the proportional limit and at elevated temperatures. Research on protection of cables and fittings against corrosion and fire was also urged.

The article referred to 92 papers which should be most valuable to interested engineers.

III METHOD OF ANALYSIS

A. Introduction

Cable roof structures are very flexible while the cables are hanging freely. When such structures are subjected to a small external load, they will deflect tremendously [8]. However, when the structure is prestressed in a proper manner and then subjected to external loads, its deflections will be significantly reduced. As a result, hypar shaped cable roof structures are widely used since the nature of the opposite curvature in their orthogonal axes makes possible the prestressing of the networks. In the hypar shaped cable net system, the direction in which the curvature is concave upward is considered to be the main axis. The direction orthorogonal to the main axis is considered to be the auxilliary axis.

The cables along the main axis are the hanging cables; whereas those along the auxiliary axis are the bracing cables [9]. While the cables in the same family are parallel to one another, two cables from different families intersect at a specified angle. For an orthorogonal net, the angle is 90 degrees.

Before the structure is subjected to external loads, both families of cables are prestressed to give the structure some degree of stiffness. When the structure is loaded, the stresses in the hanging cables increase while those in the bracing cables decrease. Thus, the hanging cables are the load carrying elements in such structures.

The stress analysis of a hypar shaped cable net can be carried out by two different approaches, namely, the continuous approach and the discrete approach. The discrete method of analysis presented by Mollmann [4], and Mollman and Mortensen [9] will be followed in the following discussions.

B. General Assumptions

When a cable net system is treated as a discrete system, the following conditions are generally assumed:

- (1). The network is made up of perfectly straight tension members.
- (2). The tension members are connected by frictionless hinges.
- (3). The centerlines of the tension members connected by one hinge intersect at one point.
- (4). The tension members are made of Hookean material, thus

 $\sigma = E\varepsilon$

is assumed throughout the analysis.

(5). The external loads can be applied only at the joints.

The general assumptions are very similar to those for a truss system. However, there is a difference between the analyses of conventional trusses and prestressed cable nets. In conventional truss systems, linear behavior is defined as the case where the change in geometry is so small as to have a negligible effect on the stresses. In prestressed cable nets, the situation is different: the stress in each member and the positions of the related joints are interdependent so as to satisfy the equilibrium conditions. Any displacement upsets the equilibrium and thus affects the load carrying capacity of the nets [10]. Therefore, the analysis of prestressed cable nets cannot be done without considering the effect of the changes in geometry.

Irrespective of the difference between the analyses of trusses and cable nets, since the structural elements are very similar, the conventional truss terminology will be used in this report.

C. Initial State

Let the internal force in the member connecting joints j and k be T^{jk} , with tension assumed to be positive. The tension coefficient is defined as

$$t^{jk} = \frac{T^{jk}}{L^{jk}}$$

where L^{jk} is the length of the member. Cartesian coordinates x^k , y^k and z^k will be used to denote the position of joint k. The analysis will be done in two steps, namely, the initial state and the final state. The initial state is the equilibrium configuration of the cable net, in other words, the positions of the joints, under the action of the prestress and a given external load. The external load is usually the weight of the cables themselves.

Using vector notation, as shown in Fig. 3, the position vector of joint j is expressed by

$$\bar{p}^{j} = \begin{cases} x^{j} \\ y^{j} \\ z^{j} \end{cases}$$

which is a directed line segment from the origin of the Cartesian coordinates to the joint. The vector representing member jk is

$$\Delta \bar{p}^{jk} = \bar{p}^k - \bar{p}^j = \begin{cases} x^k - x^j \\ y^k - y^j \\ z^k - z^j \end{cases} = \begin{cases} \Delta x^{jk} \\ \Delta y^{jk} \\ \Delta z^{jk} \end{cases}$$

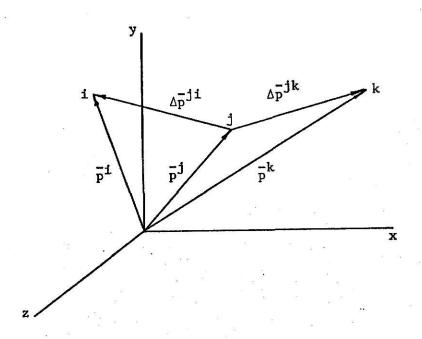


Fig. 3 Vector notation

The equilibrium condition of joint j requires that

$$\sum_{k} \left\{ t \Delta \overline{p} \right\}^{jk} + \overline{F}_{0}^{j} = 0 \tag{1}$$

If equilibrium of the joint is considered in the direction of each of the three coordinate axes respectively, then

$$\sum_{k} \{t(x^{k} - x^{j})\}^{jk} + x_{0}^{j} = 0$$
 (1.a)

$$\sum F_y = 0, \qquad \sum_k \{t(y^k - y^j)\}^{jk} + Y_0^j = 0$$
 (1.b)

$$\sum_{\mathbf{z}} \mathbf{F}_{\mathbf{z}} = 0, \qquad \sum_{\mathbf{k}} \{ \mathbf{t} (\mathbf{z}^{\mathbf{k}} - \mathbf{z}^{\mathbf{j}}) \}^{\mathbf{j}\mathbf{k}} + \mathbf{Z}_{\mathbf{0}}^{\mathbf{j}} = 0$$
 (1.c)

where, \bar{F}_0^j is the resultant load vector and X_0^j , Y_0^j , Z_0^j are its components at joint j; k is in turn, each of the four joints connected to joint j, including the boundary joints.

Since the weight of the cables is generally small when compared with the other external loads, the initial state is usually assumed to be the equilibrium configuration due to prestress only. Moreover, the x and y coordinates of each joint, whether interior or boundary, are specified before the analysis is performed. As a result, there is only one equation of equilibrium, e.g., $\sum F_z = 0$, at each interior joint, or

$$\sum_{k} \{t(z^{k} - z^{j})\}^{jk} = 0$$
 (2)

In the case when the tension coefficients are identical for each member connected to joint j, Eq. (2) becomes

$$\sum_{k} (z^{k} - z^{j}) = 0 \tag{2.a}$$

The whole set of simultaneous linear algebraic equations consists of n equations with n unknowns for a network with n interior joints. The solution provides the z coordinates of the interior joints which, together with the x and y coordinates and the boundary joints, form the equilibrium configuration of the cable net under prestress.

D. Final State

When a prestressed cable net is subjected to additional external loads, it deforms into a new equilibrium configuration which will be referred to as the final state. If several loading conditions are to be investigated, as is often encountered at different construction stages during erection, they will each be treated in the same manner, but will be treated separately.

Let \overline{d}^j represent the displacement vector of joint j from the initial state to the final state. Then the new position vector of joint j is

$$\bar{p}^{j} + \bar{d}^{j} = \begin{cases} x^{j} + u^{j} \\ y^{j} + v^{j} \end{cases}$$
$$z^{j} + w^{j}$$

where, u^j , v^j and w^j represent the components of displacement of joint j in the x, y and z directions. The vector representing member jk after deformation is

$$\Delta_{\mathbf{p}}^{-\mathbf{j}\mathbf{k}} + \Delta_{\mathbf{d}}^{\mathbf{j}\mathbf{k}} = \begin{cases} \Delta \mathbf{x} + \Delta \mathbf{u} \\ \Delta \mathbf{y} + \Delta \mathbf{v} \end{cases}$$
$$\Delta_{\mathbf{z}} + \Delta_{\mathbf{w}}$$

The lengths of the member in both states are

Initial state: Ljk

Final state : $L^{jk} + \Delta L^{jk}$

Equilibrium Equations

The equilibrium equation at joint j in the final state is

$$\sum_{k} \left\{ \frac{T + \Delta T}{L + \Delta L} \left(\Delta \overline{p} + \Delta \overline{d} \right) \right\}^{jk} + \overline{F}_{0}^{j} + \overline{F}^{j} = 0$$
(3)

or in x, y and z components:

$$\sum_{k} \left\{ \frac{T + \Delta T}{L + \Delta L} \left(\Delta x + \Delta u \right) \right\}^{jk} + X_{0}^{j} + X^{j} = 0$$
(3.a)

$$\sum_{k} \left\{ \frac{T + \Delta T}{L + \Delta L} \left(\Delta y + \Delta v \right) \right\}^{jk} + Y_{0}^{j} + Y_{0}^{j} = 0$$
(3.b)

$$\sum_{\mathbf{k}} \left\{ \frac{\mathbf{T} + \Delta \mathbf{T}}{\mathbf{L} + \Delta \mathbf{L}} \left(\Delta \mathbf{z} + \Delta \mathbf{w} \right) \right\}^{\mathbf{j} \mathbf{k}} + \mathbf{Z}_{\mathbf{0}}^{\mathbf{j}} + \mathbf{Z}^{\mathbf{j}} = \mathbf{0}$$
 (3.c)

The initial state values of x,y, z and thus Δx , Δy , Δz are substituted into Eqs. (3.a), (3.b), and (3.c), the problem in the final state is limited to solving for u,v,w, ΔT and ΔL . If ΔT and ΔL can further be expressed in terms of x,y,z,T,L, and u,v,w, then the mathematical system will be a set of 3n simultaneous algebraic equations in 3n unknown components of joint displacements for a network with n interior joints. Based on that argument, such expressions for ΔT and ΔL will be discussed next.

Elimination of ΔL

The length of member jk can be expressed in terms of the coordinates and the displacement components of joints j and k as

$$L^{jk} = |\Delta_{p}^{-jk}| = (\Delta_{p}^{-jk} \cdot \Delta_{p}^{-jk})^{1/2}$$

$$L^{jk} + \Delta L^{jk} = |\Delta_p^{jk} + \Delta_d^{jk}| = \{(\Delta_p^{jk} + \Delta_d^{jk}) \cdot (\Delta_p^{jk} + \Delta_d^{jk})\}^{1/2}$$

Temporarily dropping superscripts,

$$(L+\Delta L)^2 = (\Delta \overline{p} + \Delta \overline{d}) \cdot (\Delta \overline{p} + \Delta \overline{d}) = \Delta \overline{p} \cdot \Delta \overline{p} + 2\Delta \overline{p} \cdot \Delta \overline{d} + \Delta \overline{d} \cdot \Delta \overline{d}$$

Dividing both sides by L²,

$$\frac{\left(L+\Delta L\right)^{2}}{L^{2}} = \left(1+\epsilon\right)^{2} = \frac{\Delta \overline{p} \cdot \Delta \overline{p}}{L^{2}} + \frac{2\Delta \overline{p} \cdot \Delta \overline{d}}{L^{2}} + \frac{\Delta \overline{d} \cdot \Delta \overline{d}}{L^{2}} \tag{4}$$

where ϵ is the strain of the member based on the length of the cable under prestress, e.g., ϵ = 0 at the initial state. Let

$$e_1 = \frac{1}{L^2} (\Delta \overline{p} \cdot \Delta \overline{d})$$

$$e_2 = \frac{1}{L^2} (\Delta \bar{d} \cdot \Delta \bar{d})$$

Since $\Delta \bar{p} \cdot \Delta \bar{p} = L^2$, Eq. (4) becomes

$$(1 + \varepsilon)^2 = 1 + 2\varepsilon + \varepsilon^2 = 1 + 2e_1 + e_2$$

or

$$2\varepsilon(1+\frac{\varepsilon}{2}) = 2(e_1 + \frac{1}{2}e_2)$$

Although the displacements of the joints in a network under load are not necessarily small, the strain is usually small when compared to the length of the member. Therefore, it would be reasonable to assume

$$1+\frac{\varepsilon}{2}\simeq 1.$$

Then
$$\varepsilon = e_1 + \frac{1}{2} e_2$$
 (5)

and
$$L + \Delta L = L(1 + \epsilon)$$
 (6)

Stress-Strain Relation (Elimination of ΔT)

Let ϵ_0 and L_0 be the strain and the length of the member corresponding to the cable before prestress. As shown in Fig. 4, and defined in the previous section,

$$|\varepsilon_0| = \frac{L-L_0}{L}$$
, $L > L_0$

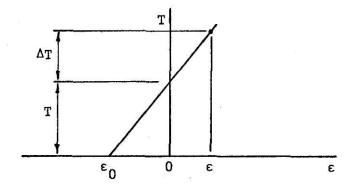


Fig. 4 Stress-Strain Curve

If sign is considered, then

$$\varepsilon_0 = \frac{L_0 - L}{L} < 0$$

Elastic theory requires that

$$T + \Delta T = EA \frac{L + \Delta L - L_0}{L_0} = EA \frac{L}{L_0} + EA \frac{\Delta L}{L_0} - EA$$
 (7)

Since
$$T = EA \frac{L-L_0}{L_0} = EA \frac{L}{L_0} - EA$$

$$\Delta T = EA \frac{\Delta L}{L_0} \cdot \frac{L}{L} = EA\epsilon \frac{L}{L_0}$$

$$\frac{L}{L_0} = \frac{L_0 + L - L_0}{L_0} = 1 + \frac{T}{EA}$$

Thus,
$$\Delta T = \epsilon (EA+T)$$
 (8)

E. Solution I

Substituting Eq. (6) and Eq. (8) into Eq. (3), the equilibrium equation at joint j becomes

$$\sum_{k} \left\{ \frac{T + \varepsilon (EA + T)}{L(1 + \varepsilon)} (\Delta \bar{p} + \Delta \bar{d}) \right\}^{jk} + \bar{F}_{0}^{j} + \bar{F}^{j} = 0$$

$$\sum_{k} \left\{ \frac{T(1+\varepsilon)+\varepsilon EA}{L(1+\varepsilon)} \left(\Delta \bar{p} + \Delta \bar{d}\right) \right\}^{jk} + \bar{F}_{0}^{j} + \bar{F}^{j} = 0$$

or

$$\sum\limits_{\mathbf{k}} \left\{ \frac{\mathbf{T}}{\mathbf{L}} \Delta \overline{\mathbf{p}} \right\}^{\mathbf{j} \, \mathbf{k}} \; + \; \overline{\mathbf{F}} \mathbf{j} \; + \; \sum\limits_{\mathbf{k}} \left\{ \frac{\mathbf{T}}{\mathbf{L}} \Delta \overline{\mathbf{d}} \; + \; \frac{\varepsilon \mathbf{E} \mathbf{A}}{\mathbf{L} \left(\mathbf{1} + \varepsilon \right)} \; \left(\Delta \overline{\mathbf{p}} + \Delta \overline{\mathbf{d}} \right) \right\}^{\mathbf{j} \, \mathbf{k}} \; + \; \overline{\mathbf{F}} \mathbf{j} \; = \; 0$$

Substituting Eq. (1) and Eq. (5) into the last equation, and letting $1+\epsilon \simeq 1$, then

$$\sum_{\mathbf{k}} \left\{ \frac{\mathbf{T}}{\mathbf{L}} \Delta \overline{\mathbf{d}} + \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \left(\mathbf{e}_{1} + \frac{1}{2} \mathbf{e}_{2} \right) \left(\Delta \overline{\mathbf{p}} + \Delta \overline{\mathbf{d}} \right) \right\}^{\mathbf{j} \mathbf{k}} + \mathbf{F}^{\mathbf{j}} = 0$$
 (9)

Since

$$e_1 = \frac{\Delta \overline{p} \cdot \Delta \overline{d}}{L^2}$$

$$e_2 = \frac{\Delta \overline{d} \cdot \Delta \overline{d}}{L^2}$$

the term $\frac{EA}{L}$ e_1 $\Delta \bar{p}$ is linear in $\Delta \bar{d}$; but $\frac{EA}{2L}$ $e_2(\Delta \bar{p} + \Delta \bar{d})$ and $\frac{EA}{L}$ e_1 $\Delta \bar{d}$ are nonlinear in \bar{d} . The summation term in Eq. (9) can be broken up and

rearranged into two parts such that the nonlinear terms are separated from the linear terms as follows:

$$\sum_{\mathbf{k}} \left\{ \frac{\mathbf{T}}{\mathbf{L}} \Delta \overline{\mathbf{d}} + \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \mathbf{e}_{1} \Delta \overline{\mathbf{p}} \right\}^{\mathbf{j} \mathbf{k}} + \sum_{\mathbf{k}} \left\{ \frac{\mathbf{E} \mathbf{A}}{2\mathbf{L}} \mathbf{e}_{2} \Delta \overline{\mathbf{p}} + \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \left(\mathbf{e}_{1} + \frac{1}{2} \mathbf{e}_{2} \right) \Delta \overline{\mathbf{d}} \right\}^{\mathbf{j} \mathbf{k}} + \overline{\mathbf{F}}^{\mathbf{j}} = 0$$

$$(10)$$

In Eq. (10), the first summation consists only of the linear terms in the displacement components, whereas the second summation consists only of the nonlinear terms in the same joint displacement components.

Treating the nonlinear summation as the correction element in a successive iteration scheme, the solution can be carried out in the following manner:

(1) Neglecting the correction term temporarily, let

$$-\sum_{\mathbf{k}} \left\{ \frac{\mathbf{T}}{\mathbf{L}} \Delta \bar{\mathbf{d}} + \frac{\mathbf{E} \underline{\mathbf{A}}}{\mathbf{L}} \mathbf{e}_{1} \Delta \bar{\mathbf{p}} \right\}^{jk} = \bar{\mathbf{F}}^{j}$$
(11)

Expanding \mathbf{e}_1 in terms of displacement components,

$$e_{1} = \frac{1}{L^{2}} (\Delta \vec{p} \cdot \Delta \vec{d})$$

$$= \frac{1}{L^{2}} (\Delta x \vec{i} + \Delta y \vec{j} + \Delta z \vec{k}) \cdot (\Delta u \vec{i} + \Delta v \vec{j} + \Delta w \vec{k})$$

$$= \frac{1}{L^{2}} (\Delta x \Delta u + \Delta y \Delta v + \Delta z \Delta w)$$

In which, $\bar{1}$, \bar{j} , \bar{k} are unit vectors in the x, y and z directions respectivel and

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$

$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$$

Let
$$\lambda = \frac{\Delta x}{L}$$
, $\mu = \frac{\Delta y}{L}$, $\nu = \frac{\Delta z}{L}$

Then Eq. (11) can be expressed in the x component as

$$-\sum_{\mathbf{k}} \left\{ \frac{\mathbf{T}}{\mathbf{L}} \Delta \mathbf{u} + \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}^{3}} \left(\Delta \mathbf{x} \Delta \mathbf{u} + \Delta \mathbf{y} \Delta \mathbf{v} + \Delta \mathbf{z} \Delta \mathbf{w} \right) \Delta \mathbf{x} \right\}^{\mathbf{j} \mathbf{k}} = \mathbf{X}^{\mathbf{j}}$$

or

$$\sum_{L} \left\{ \left(\frac{T}{L} + \frac{EA}{L} \lambda^{2} \right) u^{j} + \frac{EA}{L} \lambda \mu_{V}^{j} + \frac{EA}{L} \lambda \nu_{W}^{j} \right\}$$

$$- \left(\frac{T}{L} + \frac{EA}{L} \lambda^{2}\right) u^{k} - \frac{EA}{L} \lambda \mu v^{k} - \frac{EA}{L} \lambda \nu w^{k} = X^{j}$$
 (12.a)

Accordingly,

$$\sum_{\mathbf{k}} \left\{ \frac{\mathbf{E}\mathbf{A}}{\mathbf{L}} \, \mu \lambda \mathbf{u}^{\mathbf{j}} + \left(\frac{\mathbf{T}}{\mathbf{L}} + \frac{\mathbf{E}\mathbf{A}}{\mathbf{L}} \, \mu^{2} \right) \mathbf{v}^{\mathbf{j}} + \frac{\mathbf{E}\mathbf{A}}{\mathbf{L}} \, \mu \nu \mathbf{w}^{\mathbf{j}} \right\}$$

$$-\frac{EA}{L}\mu\lambda u^{k} - (\frac{T}{L} + \frac{EA}{L}\mu^{2})v^{k} - \frac{EA}{L}\mu\nu w^{k} = Y^{j}$$
 (12.b)

$$\sum_{k} \left\{ \frac{EA}{L} v \lambda u^{j} + \frac{EA}{L} v \mu v^{j} + (\frac{T}{L} + \frac{EA}{L} v^{2}) w^{j} \right\}$$

$$-\frac{EA}{L} \nu \lambda u^{k} - \frac{EA}{L} \nu \mu v^{k} - (\frac{T}{L} + \frac{EA}{L} \nu^{2}) w^{k} = Z^{j}$$
 (12.c)

The set of 3n simultaneous linear equations in 3n displacement components yields the approximate values of the components of displacement of the n interior joints.

(2) With the displacement components, the correction term can be computed from the second summation from Eq. (10) as

$$C^{j} = \sum_{k} \left\{ \frac{EA}{2L} e_{2} \Delta \overline{p} + \frac{EA}{L} (e_{1} + \frac{1}{2} e_{2}) \Delta \overline{d} \right\}^{jk}$$
(13)

Let
$$\alpha = \frac{\Delta u}{L}$$
, $\beta = \frac{\Delta v}{L}$, $\gamma = \frac{\Delta w}{L}$

Then,
$$e_2 = \frac{1}{L^2} (\Delta \overline{d} \cdot \Delta \overline{d})$$

$$= \frac{1}{L^2} \left(\Delta u \overline{i} + \Delta v \overline{j} + \Delta w \overline{k} \right) \cdot \left(\Delta u \overline{i} + \Delta v \overline{j} + \Delta w \overline{k} \right)$$

$$= \frac{1}{r^2} (\Delta u^2 + \Delta v^2 + \Delta w^2)$$

$$= \alpha^2 + \beta^2 + \gamma^2$$

and
$$e_1 = \frac{1}{L^2} (\Delta x \Delta u + \Delta y \Delta v + \Delta z \Delta w)$$

=
$$\lambda \alpha + \mu \beta + \nu \gamma$$

With the solution of the first step, e_1 and e_2 of any member can be computed. In x, y and z components respectively, Eq. (13) can be rewritten as

$$C_{\mathbf{x}}^{\mathbf{j}} = \sum_{\mathbf{k}} \left\{ \frac{EA}{2L} e_2 \Delta x + \frac{EA}{L} (e_1 + \frac{1}{2} e_2) \Delta u \right\}^{\mathbf{j}k}$$

or

$$C_{x}^{j} = \sum_{k} \left\{ \frac{EA}{2} e_{2}^{\lambda} + EA(e_{1} + \frac{1}{2} e_{2}) \alpha \right\}^{jk}$$
 (14.a)

and

$$c_y^j = \sum_{k} \left\{ \frac{EA}{2} e_2 \mu + EA(e_1 + \frac{1}{2} e_2) \beta \right\}^{jk}$$
 (14.b)

$$C_z^j = \sum_{k} \left\{ \frac{EA}{2} e_2 v + EA(e_1 + \frac{1}{2} e_2) \gamma \right\}^{jk}$$
 (14.c)

The final equations after correction are

$$\sum_{k} \left\{ \left(\frac{T}{L} + \frac{EA}{L} \lambda^{2} \right) u^{j} + \frac{EA}{L} \lambda \mu v^{j} + \frac{EA}{L} \lambda \nu w^{j} \right\}$$

$$- \left(\frac{T}{L} + \frac{EA}{L} \lambda^{2}\right) u^{k} - \frac{EA}{L} \lambda \mu v^{k} - \frac{EA}{L} \lambda \nu w^{k} = X^{j} + C_{x}^{j}$$
 (15.a)

$$\sum\limits_{\mathbf{L}} \left\{ \frac{\mathrm{EA}}{\mathrm{L}} \; \mu \lambda \mathbf{u}^{\mathbf{j}} \; + \; (\frac{\mathrm{T}}{\mathrm{L}} \; + \; \frac{\mathrm{EA}}{\mathrm{L}} \; \mu^2) \, \mathbf{v}^{\mathbf{j}} \; + \; \frac{\mathrm{EA}}{\mathrm{L}} \; \mu \nu \mathbf{w}^{\mathbf{j}} \right.$$

$$-\frac{EA}{L}\mu\lambda u^{k} - (\frac{T}{L} + \frac{EA}{L}\mu^{2})v^{k} - \frac{EA}{L}\mu\nu w^{k} = Y^{j} + C_{y}^{j}$$
 (15.b)

$$\sum_{k} \left\{ \frac{EA}{L} v \lambda u^{j} + \frac{EA}{L} v \mu v^{j} + \left(\frac{T}{L} + \frac{EA}{L} v^{2} \right) w^{j} \right\}$$

$$-\frac{EA}{L} \nu \lambda u^{k} - \frac{EA}{L} \nu \mu v^{k} - \left(\frac{T}{L} + \frac{EA}{L} \nu^{2}\right) w^{k} = Z^{j} + C_{z}^{j}$$
 (15.c)

As a result of the correction, a set of refined displacement components is obtained.

- (3) Step 2 is repeated until the desired accuracy is obtained.
- (4) The final stress in a member is then computed by

$$T + \Delta T = T + \varepsilon (EA + T)$$
 (16)

F. Solution II

According to Mollmann and Mortensen [9], convergence can be achieved faster when Eq. (10) is rewritten by adding and subtracting $\frac{\Delta T}{L} \; \Delta \overline{d} \; \text{in the linear and the nonlinear terms respectively, as}$

$$\sum_{\mathbf{k}} \left\{ \frac{\mathbf{T} + \Delta \mathbf{T}}{\mathbf{L}} \Delta \mathbf{d} + \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \mathbf{e}_{1} \Delta \mathbf{p} \right\}^{\mathbf{j} \mathbf{k}} + \sum_{\mathbf{k}} \left\{ \frac{\mathbf{E} \mathbf{A}}{2\mathbf{L}} \mathbf{e}_{2} \Delta \mathbf{p} + \left[\frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \left(\mathbf{e}_{1} + \frac{1}{2} \mathbf{e}_{2} \right) - \frac{\Delta \mathbf{T}}{\mathbf{L}} \right] \Delta \mathbf{d} \right\}^{\mathbf{j} \mathbf{k}} + \mathbf{F}^{\mathbf{j}} = 0$$

$$(17)$$

where ΔT is the predicted change of tension in each member. Since the changes in the tension in the cables of the same family are fairly uniform, they may be predicted by a percentage of the initial prestresses within some acceptable range of accuracy. According to Mollmann and Mortensen [9], it is acceptable if they do not differ by more than about 30 percent from the true ΔT values.

The final equations thus modified are

$$\sum_{k} \left\{ \left(\frac{T + \Delta T}{L} + \frac{EA}{L} \lambda^{2} \right) u^{j} + \frac{EA}{L} \lambda \mu v^{j} + \frac{EA}{L} \lambda \nu w^{j} \right\}$$

$$-\left(\frac{T+\Delta T}{L} + \frac{EA}{L} \lambda^{2}\right) u^{k} - \frac{EA}{L} \lambda \mu v^{k} - \frac{EA}{L} \lambda \nu w^{k} = X^{j} + C_{x}^{j}$$
 (18.a)

$$\sum_{k} \left\{ \frac{EA}{L} \mu \lambda u^{j} + \left(\frac{T + \Delta T}{L} + \frac{EA}{L} \mu^{2} \right) v^{j} + \frac{EA}{L} \mu v w^{j} \right\}$$

$$-\frac{EA}{L}\mu\lambda u^{k} - \left(\frac{T+\Delta T}{L} + \frac{EA}{L}\mu^{2}\right)v^{k} - \frac{EA}{L}\mu\nu w^{k} = Y^{j} + C_{y}^{j}$$
 (18.b)

$$\sum_{\mathbf{k}} \frac{\mathbf{E}\mathbf{A}}{\mathbf{L}} \, \mathbf{v} \lambda \mathbf{u}^{\mathbf{j}} \, + \, \frac{\mathbf{E}\mathbf{A}}{\mathbf{L}} \, \mathbf{v} \mu \mathbf{v}^{\mathbf{j}} \, + \, (\frac{\mathbf{T} + \Delta \mathbf{T}}{\mathbf{L}} \, + \, \frac{\mathbf{E}\mathbf{A}}{\mathbf{L}} \, \mathbf{v}^{2}) \mathbf{w}^{\mathbf{j}}$$

$$-\frac{EA}{L} \nu \lambda u^{k} - \frac{EA}{L} \nu \mu v^{k} = \left(\frac{T + \Delta T}{L} + \frac{EA}{L} \nu^{2}\right) w^{k} = Z^{j} + C_{z}^{j}$$
 (18.c)

where

$$C_{\mathbf{x}}^{\mathbf{j}} = \sum_{k} \left\{ \frac{EA}{2} e_2 \lambda + \left[EA(e_1 + \frac{1}{2} e_2) - \Delta T \right] \alpha \right\}^{\mathbf{j}k}$$
 (19.a)

$$c_y^j = \sum_k \left\{ \frac{EA}{2} e_2 \mu + [EA(e_1 + \frac{1}{2} e_2) - \Delta T] \beta \right\}^{jk}$$
 (19.b)

$$C_{z}^{j} = \sum_{k} \left\{ \frac{EA}{2} e_{2} v + [EA(e_{1} + \frac{1}{2} e_{2}) - \Delta T] \gamma \right\}^{jk}$$
 (19.c)

The method of solution follows the same steps as described in Solution I.

IV NUMERICAL EXAMPLE

As a practical matter, a hypar shaped prestressed cable net problem has to be solved by the use of a computer. There are three times as many equations as there are interior joints. Therefore, considerable computer time is needed to set up the equations and to solve for the displacements and the stresses in a real structure. As an example, Mollmann and Mortensen [9] solved a system of 252 interior joints. There were 3x252=756 equations. For each loading condition, with five iterations, the computer time was about one hour. Thus for the purpose of developing a computer program, a simple example structure has been selected. The program thus developed was checked, in Example 1, by long hand calculation using the same method. In Example 2, Solution I and Solution II are performed in order to compare the convergence.

Example 1:

A cable net, shown in Fig. 5, is fixed at the boundary joints. The initial state corresponds to the prestress loading only. The cross sections of the cables for both families of cables are 1.0 sq. in. and Young's modulus is $E = 24 \times 10^6$ psi. The horizontal component of cable prestress is 20,000 lb each for all cables. The loading is P = 10,000 lb in the z direction at each interior joint.

A WATFIV program, as shown in Appendix I, has been written to solve diamond hypar shaped cable net problems following Solution I discussed in Section III. The example problem is solved using the program. It is further checked by calculations using a desk calculator to set up the 15 simultaneous equations and then solving them by the use of the NOVA 1200 digital mini computer. The results are listed in Table 1 to Table 7 and Eq. (20) and (21).

The computer results were checked by long hand calculation because there are many summation terms performed by do-loops in the computer program and it is very difficult to find an error by checking the statements of the program itself. Therefore, the computer results were checked, up to the correction terms. There after, the stresses are computed by Eq. (16), which is a simple operation and the program can be observed to be logically correct. The computer results for ΔT are listed in Table 7. The table shows that ΔT ranges from 18,320 to 22,360 lb for the hanging cables and from -17,440 to -21,570 lb for the bracing cables. These values would tend to indicate compression in some of the

cables in the final state. This result would necessitate the redesign of the cable net in a real design problem. It can be seen that the maximum stress in the hanging cables occurs in the final state, but the maximum stress in the bracing cables occurs in the initial state. For the case of equal horizontal prestress in both families of cables, the cross section of the hanging cables has to be designed to resist the tension in the final state, while that of the bracing cables has to be selected to resist the prestress in the initial state. For the example, the cross sections for both families of cables are 1.0 sq. in. If they are satisfactory for bracing cables, they will not be satisfactory for the hanging cables. Furthermore, the final stresses in the hanging cables are about two times their prestresses. For this reason, the cross section for the hanging cables is revised to 2.0 sq. in. in Example 2.

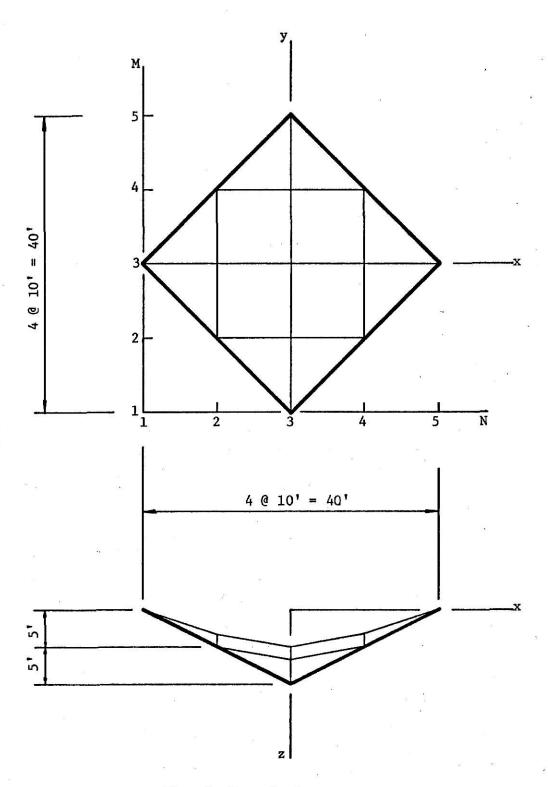


Fig. 5 Example Structure

Table 1: Coordinates of the Joints in Feet

Joint	Туре	x	У	z
13 ⁽¹⁾	B ⁽²⁾	0	-20.0	10.0
22	В	-10.0	-10.0	5.0
23	₁ (3)	. 0	-10.0	*(4)
24	В	10.0	-10.0	5.0
31	В	-20.0	o	0
32	I	-10.0	0	*
33	I	0	. 0	*
34	I,	10.0	0	*
· 35	В	20.0	0	0
42	В	-10.0	10.0	5.0
43	I	0	10.0	*
44	В	10.0	10.0	5.0
43	В	0	20.0	10.0
	10 10 10 10 10 10 10 10 10 10 10 10 10 1			

⁽¹⁾ Joint 13 represents Joint M,N, as shown in Fig. 5.

⁽²⁾ B represents boundary joint.

⁽³⁾ I represents interior joint.

^{(4) *} means the coordinate is to be determined.

Eq. (20) Initial State Matrix Equation

$$\begin{pmatrix}
4 & 0 & -1 & 0 & 0 \\
0 & 4 & -1 & 0 & 0 \\
-1 & -1 & 4 & -1 & -1 \\
0 & 0 & -1 & 4 & 0 \\
0 & 0 & -1 & 0 & 4
\end{pmatrix}
\begin{pmatrix}
z_{23} \\
z_{32} \\
z_{33} \\
z_{34} \\
z_{43}
\end{pmatrix} = \begin{pmatrix}
20 \\
10 \\
0 \\
10 \\
20
\end{pmatrix}$$

Table 2: Initial State Solution in Feet

Joint	z
23	6.25 ⁽¹⁾
32	3.75
33	5.00
34	3.75
43	6.25

(1) The computer results and the long hand results were essentially identical.

Table 3: Direction Cosines

Near Joint	Far Joint	L	λ	μ	ν
(1)	200 10		(2)		
23 ⁽¹⁾	22	10.0778	-0.9923 ⁽²⁾	0	-0.124
	24	10.0778	0.9923	0	-0.124
	13	10.6800	0	-0.9363	0.351
	33	10.0778	0	0.9923	-0.124
32	31	10.6800	-0.9363	, O	-0.351
	33	10.0778	0.9923	0	0.124
	22	10.0778	0	-0.9923	0.124
	42	10.0778	0	0.9923	0.124
33	32	10.0778	-0.9923	0	-0.124
	34	10.0778	0.9923	0	-0.124
	23	10.0778	0	-0.9923	0.1240
	43	10.0778	0	0.9923	0.124
34	33	10.0778	-0.9923	0	0.124
	35	10.6800	0.9923	0	-0.351
	24	10.0778	0	-0.9923	0.1240
	44	10.0778	0	0.9923	0.124
43	42	10.0778	-0.9923	0	-0.124
	44	10.0778	0.9923	0	-0.124
	33	10.0778	0	-0.9923	-0.124
	53	10.6800	0	0.9363	0.351

⁽¹⁾ The joint where equilibrium is considered.

⁽²⁾ The computer results and the long hand results are essentially identical.

Eq. (21) Final State Linearized Matrix Equation (1)

0	•	10.0	•	•	10.0	0	•	10.0	0	0	10.0	0	•	10.
U23	V23	W ₂₃	U ₃₂	V ₃₂	W 32	\ ^U 33(^)	V 33	W 33	U34	۷ 3٤	¥ 34	U43	V43	2
				0								_	_	-
				0										
				0										
				0										
			- 68	0										
0	0	0	0	0	0	-2347.0	0	293.0	4323.0	0	-1032.0	0	0	•
0	293.0	-38.6	-293.0	0	-38.6	0	0	154.5	293.0	5	-38.6	0	-293.0	
•	-2347.0	293.0	0	-2.0	0	•	4698.0	0	0	-2.0	0	•	-2347.0	
-2.0	0	0	-2347.0	0	-293.0	4698.0	0	0	-2347.0	0	293.0	-2.0	•	•
				0										
				4698.0										
0	0	0	4323.0	0	1032.0	-2347.0	0	-293.0	0	0	0	0	0	
0	-1032.0	395.0	0	0	0	0	293.0	-38.6	0	0	. 0	0	0	
•	4323.0	-1032.0	0	0	0	0	-2347.0	293.0		0	0	0	0	
698.0	0	0	0	0	0	-2.0	0	0	0	0	0	0	٥	

 $^{(1)}$ This is the equation developed by long hand calculation. The computer developed equation compared closely.

Table 4: Final State Solution in Feet

		U		V	<u> </u>	٧
Joint	Computer	Hand	Computer	Hand	Computer	Hand
23	0	0	0.01225	0.01225	0.06047	0.06048
32	-0.01225	-0.01225	0	0	0.06047	0.06048
33	0	0	0	0	0.03227	0.03229
34	0.01225	0.01225	0	0	0.06047	0.06048
43	0	0	-0.01225	-0.01225	0.06047	0.06048

Table 5: α , β and γ Values

		7300	8700	<i>L</i>	7 8 0 0	33 7
γ	Hand	-0.006000 -0.006000 -0.005663 -0.002797	-0.005663 -0.002797 -0.006000 -0.006000	0.002797 0.002797 0.002797 0.002797	-0.002797 -0.005663 -0.006000 -0.006000	-0.006000 -0.006000 -0.002797 -0.005663
	Computer	-0.006001 -0.006001 -0.005662 -0.002798	-0.005662 -0.002798 -0.006001 -0.006001	0.002798 0.002798 0.002798 0.002798	-0.002798 -0.005662 -0.006001 -0.006001	-0.006001 -0.006001 -0.002798 -0.005662
В	Hand	-0.001216 -0.001216 -0.001147 -0.001216	0000	0 0 0.001216 -0.001216	0000	0.001216 0.001216 0.001216 0.001147
	Computer	-0.001215 -0.001215 -0.001147 -0.001215	0000	0 0 0.001215 -0.001215	0000	0.001215 0.001215 0.001215 0.001147
ß	Hand	0000	0.001147 0.001216 0.001216 0.001216	-0.001216 0.001216 0	-0.001216 -0.001147 -0.001216 -0.001216	0000
	Computer	0000	0.001147 0.001215 0.001215 0.001215	-0.001215 0.001215 0	-0.001215 -0.001147 -0.001215 -0.001215	0000
300	Joint	22 24 13 33	31 33 22 42	32 34 23 43	33 35 24 44	42 44 33 53
No or	Joint	23	33	33	34	43

Table 6: Corrections

T		C _x		C _y		$^{\mathrm{C}}_{\mathbf{z}}$
Joint	Computer	Hand	Computer	Hand	Computer	Hand
23	0	0	-259.100	-259.060	-25.220	-25.259
32	-255.700	-255.684	0	0	9.261	9.255
33	0.002	0	0.003	o	1.250	1.250
34	255.700	255.684	0	0	9.261	9.255
43	0	0	259.100	259.060	25.220	-25.259
	n 1					0 <u>0</u> 0

Table 7: ΔT in Pounds

	······
Member	. ΔΤ
13 - 23	- 21570
22 - 23	18320
23 - 24	18320
22 - 32	- 17440
23 - 33	- 20530
24 - 34	- 17440
31 - 32	22360
32 - 33	20730
33 - 34	20730
34 - 35	22360
32 - 42	- 17440
33 - 43	- 20530
34 - 44	- 17440
42 - 43	18320
43 - 44	18320
43 - 53	- 21570
	*

Example 2

The problem of Example 1 is used in this example to test the convergence of Solutions I and II. The cross section of the hanging cables is revised to 2.0 sq. in.. A modified program for solution II is shown in Appendix II. The results are tabulated in Tables (8), (9), (10), (11), (12) and Fig. 6.

Table 8: Initial State

	z val	ue in ft
Joint	Solution I	Solution II
23	6.25	6.25
32	3.75	3.75
33	5.00	5.00
34	3.75	3.75
. 43	6.25	6.25
		SE AND

Table 9: Final State Displacements in ft., Solution I

Joint	Components	1st Iteration	2nd Iteration	3rd Iteration	4th Iteration	5th Iteration
23	n	0.00858	0.00834	0.00835	0.00835	(1)
S.,	ß D	0.04175	0.04114	0.04117	0.04117	
32	ΔΜ	0.04013	0.03959	0 0.03962	0.03962	
33	Z C C	0 0 0.02042	0 0 0.02136	0 0 0.02132	0 0 0.02132	
34	ΣΑC	0.00820 0 0.04013	0.00803	0.03962	0.00804 0 0.03961	ū.
43	DÞB	0 -0.00858 0.04175	0 -0.00834 0.04114	0 -0.00835 0.04117	0 -0.00835 0.04117	

Convergence achieved at the 4th iteration. The desired accuracy between iterations was 0.00001 ft. Ξ

Table 10: Final State Displacements in ft., Solution II

Joint	Joint Components	1st Iteration	2nd Iteration	3rd Iteration	4th Iteration	5th Iteration
	=			c	c	(1)
23	> >	0.00881	0.00832	0.00835	0.00835	0.00835
	W	0.04235	0.04110	0.04117	0.04117	0.04117
	n	-0.00840	-0.00800	-0.00805	-0.00804	-0.00804
32	Δ	0	0	0	0	0
	M	0.04062	0.03950	0.03963	0.03961	0.03961
	F	c	c	C	0	0
. 33	Δ	0	0	0	0	0
	M	0.01920	0.02155	0.02130	0.02133	0.02132
	D	0.00840	0.00800	0.00805	0.00804	0.00804
34	Λ	0	0	0	0	0
	м	0.04062	0.03950	0.03963	0.03961	0.03961
	D	0	0	0	0	0
43	> :	-0.00881	-0.00832	-0.00835	-0.00835	-0.00835
	3	0.042.33	0.04110	0.0411/	71140.0	1110.0

(1) Convergence achieved at the 5th iteration. The desired accuracy between iterations was 0.00001 ft.

Table 11: Differences in the w Components Between Iterations:

Joint	Solution	1st-2nd	2nd-3rd	3rd-4th	4th-5th
	I	0.00061	- 0.00003	0	
C 7	11	0.00125	- 0.00007	0	0
9	н	0.00054	- 0.00003	0	
76	11	0.00112	- 0.00013	0.00002	0
7	I	- 0.00094	0.00004	0	
C	11	- 0.00235	0.00025	0.00003	0.00001

Table 12: Stress

	ε	Tension in 1b		Stress in psi	
Member		Initial	Final	Initial	Final
13-23	-0.000614	21360	6613	21360	6613
22-23	0.000515	20160	44890	10080	22450
23-24	0.000515	20160	44890	10080	22450
22-32	-0.000480	20160	8634	20160	8634
23-33	-0.000576	20160	6322	20160	6322
24-34	-0.000480	20160	8634	20160	8634
31-32	0.000604	21360	50380	10680	25190
32-33	0.000568	20160	47450	10080	23720
33-34	0.000568	20160	47450	10080	23720
34-35	0.000604	21360	50380	10680	25190
32-42	-0.000480	20160	8634	20160	8634
33-43	-0.000576	20160	6324	20160	6324
34-44	-0.000480	20160	8634	20160	8634
42-43	0.000515	20160	44890	10080	22450
43-44	0.000515	20160	44890	10080	22450
43-53	-0.000614	21360	6613	21360	6613
	22 N =	je u si	58		

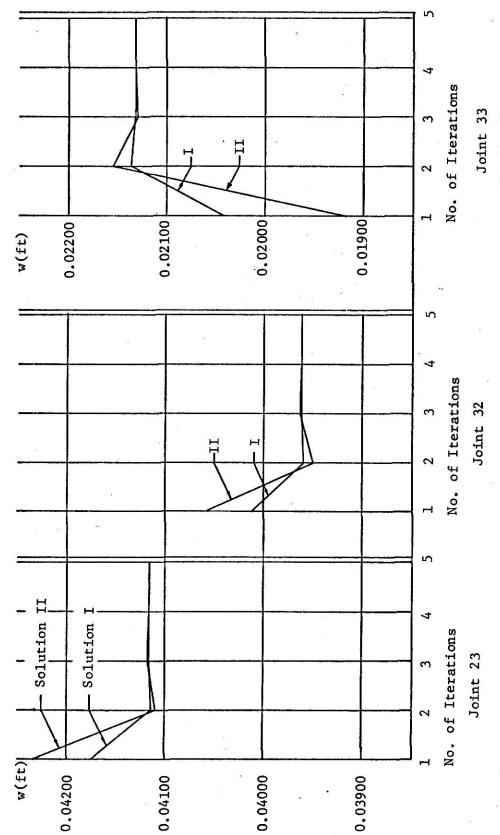


Fig. 6 Comparison of convergence for w components of displacement at Joints 23, 32, 33.

V. CONCLUSIONS

In conventional truss systems, the equilibrium condition of mechanics is based on the original unloaded geometric configuration under the assumption that the deformation of the system under load has a negligible effect on the stresses. However, the analysis of prestressed cable nets is based on equilibrium after the deformation has taken place. Since the deformation has to be considered in the analysis of a cable net, in the discrete method, the equilibrium conditions at a given joint yield 3 functions in terms of the displacements of all of the joints connected by members intersecting at that joint. Moreover, the equations are nonlinear. As a result, a set of nonlinear simultaneous algebraic equations in the displacements of all the interior joints has to be solved. The physical concepts of equilibrium involved are fairly familiar to every engineer, but the solution or even the approximation of the solution is complicated. Thus the method of solution becomes the center of interest to the investigator.

The method of analysis followed in this report converges fairly well. In Example 2, both solutions introduced were performed and the results of convergence are almost identical for that particular problem. In Solution I, as shown in Fig. 6, almost complete convergence was achieved at the 2nd iteration. In Solution II, the first iteration results were fairly poor. However, the 2nd iteration converged extremely fast, such that on the 3rd iteration the results converged almost to the same degree as Solution I did.

Though the example did not show clearly that Solution II converged better than Solution I as Mollmann and Mortensen [9] had stated, the different shapes of the convergence curves tended to show that the rate of convergence for Solution II was greater.

REFERENCES

- Siev, A., and Eidelman, J., "Stress Analysis of Prestressed Suspended Roofs," Journal of the Structural Division, ASCE, Vol. 90, No. ST4, Proc. Paper 4008, August, 1964, pp. 103-121.
- 2. Otto, Frei, "Das Hangende Dach," Bauwelt Verlag.
- Bandel, H. K., "Das Orthogonale Seilnetz, Hyperbolisch-parabolischer Form unter vertikalen Lastzustanden und Temperatur-anderung," Der Bauingenieur, 394, October, 1959.
- Mollmann, H., A study in the Theory of Suspension Structures,
 Akademisk Forlag, Denmark, 1965.
- Krishna, P., and Agarwal, T. P., "Study of Suspended Roof Model," Journal of the Structural Division, ASCE, Vol. 97, No. ST6, Proc. Paper 8168, June, 1971.
- Krishna, P., and Natrajan, P. R., "Behaviour of Doubly Curved Cable Roof Networks," Bulletin of the International Association for Shell Structures, No. 34, June, 1968.
- 7. ASCE Subcommittee on Cable-Suspended Structures of the Task Committee on Special Structures, of the Committee on Metals, of the Structural Division, "Cable-Suspended Roof Construction State-of-the-Art," Journal of the Structural Division, ASCE, Vol. 97, No. ST6, Proc. Paper 8190, June, 1971.

- 8. Michalos, J., and Birnstiel, C., "Movements of a Cable Due to Changes in Loading," Transactions, ASCE, Vol. 127, Part II, Paper No. 3368, 1962.
- 9. Mollmann, H., and Lundhus Mortensen, P., "The Analysis of Prestressed Suspended Roofs (Cable Nets)," Space Structures, ed. by R.M. Davis, John Wiley and Sons, Inc., New York, N.Y., 1967.
- 10. Siev, A., "A General Analysis of Prestressed Nets," Publications, International Association for Bridge and Structural Engineering, Zurich, Vol. 23, 1963.

ACKNOWLEDGMENTS

The sincere appreciation I feel, and I will remember, toward my major professor Dr. Robert R. Snell, Head of the Department of Civil Engineering, for his advice, guidance, patient correction and valuable suggestions on this report is beyond expression.

I am also grateful to Dr. Peter B. Cooper, Associate Professor of Civil Engineering, Dr. Edwin C. Lindly, Associate Professor of Applied Mechanics, and Dr. Stuart E. Swartz, Associate Professor of Civil Engineering, for their enthusiastic assistance which made my career as a graduate student at KSU fruitful and successful.

Thanks are extended to my wife Den-May Lai for her encouragement and her support of our family of three children in Taiwan, Rep. of China during the period of my study at KSU.

APPENDIX I

This is a program for performing the static analysis of diamond hypar shaped prestressed cable networks following Solution I. The dimensions of the arrays are described below:

X(M,N,J3) = the coordinates of joint M,N, where J3 = 1,2,3 is for x,y,z respectively.

DCSX(M,N,I4,J3) = the direction cosines, where I4 = 1 to 4 is for each of the four members intersecting at joint M,N, as shown in Fig. 7, J3 = 1,2,3 for λ,μ,ν .



Fig. 7 Member Arrangement

- A(I,J,M,N,J3) = the coefficients of Eq. (15.a), (15.b), and (15.c), where I = 1 to I1 is the sequence of the interior joints where equilibrium is considered, I1 is the total number of the interior joints, J = 1,2,3 represents Eq. (15.a), (15.b), and (15.c) respectively and J3 = 1,2,3 represents the u,v,w displacements respectively.
- KEY(M,N) = -1,0,1 denote the boundary joints, out-of-net joints, and
 interior joints respectively.
- $DX(J3) = \Delta x, \Delta y, \Delta z$ respectively for J3 = 1, 2, 3.
- S(M,N,I4) = the length of the member identified by I4, as shown in Fig. 7.
- F(14) = EA/L.
- C(IT,K) = the results of each iteration in turn, where IT = 1 to IT1
 is the number of iterations, K = 1 to K1 is the number of
 equations.
- U(M,N,J3) = the joint displacement components u,v, and w.
- COR(I,J): the correction terms to be added to the loading components. For I,J, see A(I,J,M,N,J3).

DU(14, J3): Δu, Δv, Δw.

 $E2H(14): e_2/2.$

DCSU(I4,J3): α , β , γ .

B(K,L) = the coefficients of the matrix equations at the final state before the operation of Gauss Reduction, where K=1 to 3xI1, L=1 to 3xI1+1.

- BP(K) = the components of external loads.
- $E12(I4) = e_1 + e_2/2$.
- P(K,L) = the elements of the stiffness matrix, where L = 1 to 3xI1, I1 is the total number of the interior joints.
- SS(J3) = the square of the components of the length of a member at the
 final state.
- DT(M,N,14) = the change in the tension in a member.
- G(K,L) = the coefficients of the matrix equation at the initial state, where K=1 to II and L=1 to II+1, II is the total number of the interior joints.
- GAMA(M,N,I4): the strain in a member identified by I4, as shown in Fig. 7.

The program follows.

ILLEGIBLE DOCUMENT

THE FOLLOWING DOCUMENT(S) IS OF POOR LEGIBILITY IN THE ORIGINAL

THIS IS THE BEST COPY AVAILABLE

```
CCL, TIME=15.PAGES=97
     SJOB
           THIS PEDGRAM PERHORMS THE ANALYSIS OF THE DIAMOND HYPAR SHAPED CABLE NOT
     C
     C
           DE EQUAL MUL DE CABLES IN ROTH DIRECTIONS.
           MN IS THE NO. OF JOINTS IN EACH OF THE DIAGONAL CABLES INCLUDING THE
     r.
           BOUNDARY ICINTS.
     C
           II IS THE TOTAL NO. OF INTURIOR JOINTS.
     C
           ITE IS THE MAX. NO. OF ITECATIONS TO TERMINATE THE EXECUTION IF THE
     C
     C
           ITERATION IS NOT CONVERGENT.
           SPOM, HM. AND AM ARE THE SPACING, THE HORIZ. COMPONENT OF THE PRETENSION
     C
           AND CROSS SECTION OF THE CABLES PARALLEL TO THE M AXIS IN FT. , LR. , IN##
     C
           SPON, HY, AND AN APP THOSE PARALLEL TO THE N AXIS.
     C
           E IS THE YOUNG'S MODULUS IN PSI.
     C
           FPSI IS THE DESIRED ACCURACY IN FT ..
           DIMENSION X(5,5,3),A(5,3,5,5,3),KEY(5,5),DX(3),S(5,5,4),F(4),
 1
          10CSX(5,5,4,3),C(9,15),U(5,5,3),CPR(5,3),CU(4,3),F2H(4),DCSU(4,3),
          1B(15,10),17(15),#12(4),P(15,15),$S(3),3T(5,5,4),G(5,6),G4M4(5,5,4)
       100 FORMAT(315,6E1%3)
 2
 3
       101 FORMAT(1H1, SPACING-M
                                      SPACING-N PRETEN-H-M PRETEN-H-N
                     AREA-M
                                 AREA-N1//7512.4/)
          1E
       102 FORMAT (6E10.3)
           READ(5,173) WN.II.ITI.SPCM.SPCN.HM.HN.AM.AN
 5
           READ(5,102) E
 6
 7
           WRITE (6, 101) SPC 4, SPCN, HM, HM, E, AM, AN
           READ(5,102) EPSI
 8
 9
           READ(5,102) (((X(M,N,J3),J3=1,3),N=1,MN),M=1,MN)
           EAM=E*AM
10
11
           EAN=E*AN
12
           TSM=HM/SPC4
           TSN=HN/SPCN
13
           DO 160 M=1, MN
14
           DO 161 N=1.MN
15
16
           MZ=M+N
           M3={MN+3]/2
17
           TF(M2-M3) 162,163,183
18
19
       180 M4=N-M
20
           M5=(MN-1)/2
           IF{M4-M5} 181,163,162
21
22
       181 M6=4-N
23
           IF(M6-M5) 182,163,162
24
       182 M7=(MN×3+1)/2
           IF(M2-M7) 183,163,162
25
       183 KEY(M,N)=1
26
           GO TO 161 :
27
28
       162 KEY(M, N) =0
29
           GO TO 161
30
       163 KEY(M,N)=-1
       161 CONTINUE
31
32
       160 CONTINUE
33
           00 170 M=1,4N
           PO 171 N=1, MN
34
35
           DO 172 J3=1.3
36
           (EL, M, M, J3)=7
37
           DO 173 [=1.[1
39
           DO 174 J=1.5
30
           4(I,J,4,V,13)=3
47
           rna([,1]=5
41
       174 CANTINUE
       173 CONTINUE
42
       173 CONTINUE
43
       171 CONTINUE
```

```
170 CONTINUE
 45
 46
             1=0
 47
             K=.)
 48
             DO 600 M=1.MN
 49
             DO 601 N=1.4N
             IF (KEY(M, N) .LE. 0) GO TO 601
 5)
 51
             M1 = M - 1
 52
             N1 = N-1
 53
             [=[+1
 54
             DO 602 I4=1.4
             IF(14 .GT. 2) GOT TO 603 -
 55
             A(1,3,M,N,3)=A(1,3,M,N,0)+1*TS4
 56
             IF(KEY(M,N1) .FO. -1) GO TO 604
 57
             A(1,3,4,41,3)=A(1,3,4,11,3)-1*TSN
 58
 59
             N1 = N1 + 2
 60
             GO TO 602
        604 COR(1,3)=COR(1,3)+X(M,M1,3)+TSN
 61
 62
             N1 = N1 + 2
             GO TO 602
 63
 64
        603 A(1.3,M.N.3)=A(1.3,M.N.3)+1*TSM
             IF(KEY(M1.N) .EQ. -1) GO TO 605
 65
             A(1,3,41,N,3)=A(1,3,41,4,3)-1*TSM
 66
 67
             M1 = M1 + 2
             GO TO 602
 68
 69
        605 CDR(I,3)=CDR(I,3)+X(M1,N,3)*TSM
 70
             M1 = M1 + 2
 71
             GD TO 602
 72
        602 CONTINUE
        601 CONTINUE
 73
 74
        600 CONTINUE
 75
             K1=I1
 76
             L1=K1+1
 77
             L=0
             DO 610 M=1, MM
 78
 79
             00 611 N=1,4N
 80
             IF(KEY(M,N) .LE. 0) GO TO 611
 81
             L=1+1
 82
             DO 612 K=1,K1
             G(K,L)=4(K,3,M,N,3)
 83
 84
        612 CONTINUE
 85
        611 CONTINUE
 86
        610 CONTINUE
 87
             DO 613 K=1.K1
88
             G(K:L1)=COR(K.3)
 89
        613 CONTINUE .
             CALL GAUSR (G, KI, L1)
 90
 91
        109 FORMAT(//! . M
 92
        111 FORMAT(215, E12.4)
 93
             WRITE(6,109)
 94
             K=0
             DO 620 M=1, MN
 95
 96
             00 621 N=1,4N
             IF(KEY(M.N) .La. 0) GO TO 621
 97
 98
             K = K + 1
             X(M,N,3)=G(K,L1)
 99
100
             WRITE(6,111) M.N.X(M.N.3)
101
        621 CONTINUE
        620 CUNTINUE
102
193
             DO 622 I=1, 11
             DO 623 M=1.MN
104
```

```
105
             DO 624 N=1, MN
            A(1,3,M,N,3)=0
106
107
        624 CONTINUE
        623 CONTINUE
108
100
        622 CONTINUE
110
            K1=11*3
111
            L1=K1+1
112
             I = 0
            DO 200 M=1.MN
113
             00 201 N=1,MN
114
             1F(K5Y(M,N) .LE. 0) 60 TO 201
115
             M1 = M - 1
116
            N1=N-1
117
             DO 202 14=1,4
118
             IF(14 .GT. 2) GU TO 204
119
             DO 203 J3=1,3
120
121
             DX(JE)=X(M,N1,J2)-X(M,N,J3)
122
        203 CONTINUE
123
            N1=N1+2
             GO TO 206
124
125
        204 00 205 J3=1.3
126
            DX(J3)=X(M1,N,J3)-X(M,N,J3)
        205 CONTINUE
127
128
             M1=M1+2
        206 S(M.N.14)=SQRT(DX(1)++2+0X(2)++2+0X(3)++2)
129
             IF(14 .GT. 2) GO TO 208
130
            F(14)=FAM/S(M,N,14)
131
            GO TO 209
132
        208 F(14)=FAM/S(M,N,14)
133
        209 00 207 J3=1.3
134
135
             DCSX(M,N,14,J3) = OX(J3)/S(M,N,14)
        237 CONTINUE
136
137
        202 CONTINUE
139
             I=[+1
            nn 220 J=1,3
139
            00 221 14=1,4
143
            DO 222 J3=1,3
141
             A(1,J,M,N,J3)=A(1,J,M,N,J3)+F(14)#9CSX(M,N,14,J)*DCSX(M,N,14,
142
             IF(14 .GT. 2) GU TO 223
143
144
            IF(J .FQ. J3) A(I.J.M.N.J3)=A(I.J.M.N.J3)+TSN
145
            GO TO 222
146
        223 IF(J .EO. J3) A(I,J,M,N,J3)=A(I,J,M,N,J3)+TSM
147
        222 CONTINUE
        221 CONTINUE :
148
            N1=N-1
149
150
            M1 = M - 1
            DO 224 I4=1.4
151
             IF(14 .GT. 2) GO TO 225
152
            IF(KEY(M.411) .LF. 01 GO TO 228
153
154
            DO 226 J3=1,3
155
            A(I+J+M+NI+J3)=A(I+J+M+NI+J3)=F(T4)*DCSX(M+N+I4+J)*DCSX(M+N+I
156
             1F(J .EO. J3) A(T,J,M,N1,J3)=A(I,J,M,N1,J3)-TSN
157
        226 CONTINUE
        223 N1=N1+Z
153
159
            GO TO 224
160
        225 IF(KEY("1,") .LC. 3) GC TO 229
            DO 227 43=1.5
161
            A(I,J,MI,V,J)=1(I,J,M1,M,J3)-#(I4)#DCSX(M,V,I4,J)*DCSX(M,N,I
16?
             IF(J .30. J3) A(I,J,MI,K,J3)=A(I,J,MI,N,J3)-TSM
163
        227 CONTINUE
164
```

```
229 M1=M1+2
165
166
        224 CONTINUE
167
         220 CONTINUE
169
         201 CONTINUE
         220 CONTINUS
169
170
             1=0
171
             X = 0
             00 230 M=1.44
172
             DO 231 N=1, MN
173
174
             IF(KFY(M,N) .LE. 01 GO TO 231
175
             DO 232 J3=1,3
             L=L+1
176
             DO 233 I=1.I1
177
178
             DO 234 J=1.3
             K=K+1
179
180
             B(K,L)=5(1,J,M,N,J3)
             P(K,L)=B(K,L)
181
182
             IF(K .F). K1) K=K-K1
        234 CONTINUE
183
184
        233 CONTINUE
185
        232 CUNTINUE
186
        231 CONTINUE
187
        230 CONTINUE
188
             READ(5,132) (8P(K),K=1,K1)
189
             DO 240 K=1.K1
190
             B(K,L1)=8P(K)
191
        240 CONTINUE
192
        114 FORMAT (//' ((B(K.E), L=1, L1), K=1, K1) ARE 1/(5x, 10E12, 4))
193
             WRITE(6,114) ((B(K,L),L=1,L1),K=1,K1)
194
             DO 300 IT=1.IT1
195
             CALL GAUSS (B.KI.LI)
        105 FORMAT(1H1.11H [TERATION:[2]
106 FORMAT(//' U
196
197
                                                               1//(3E12.4))
        117 FORMAT[///////11H ITFRATION:[2]
198
199
             IF(IT .GT. 1) 00 TO 241
             WRITE(6.1.5) IT
200
             GO TO 242
201
        241 WRITE(6.117) IT
202
        242 WRITE(6,156) (3(K,L1),K=1,K1)
203
204
             DO 301 K=1.K1
205
             C(IT,K)=B(K,L1)
206
        301 CONTINUE
             IF(IT .EQ. 11 G) TO 302
DO 303 K=1.K1
207
208
209
             D=C(IT,K)-C((IT-1),K)
210
             IF(ABS(D) .GT. EPSI) GD TO 302
211
        303 CONTINUE
             GO TO 929
212
213
        302 K=3
             DO 311 M=1.MN
214
215
             DD 312 M=1, MN
216
             IF(KEY(M,N) .LF. 0) GD TO 312
             nn 313 J2=1.3
217
             K=K+1
210
            U(M.N.J3)=R(K.L1)
210
        313 CONTIMUE
220
        312 CONTINUE
221
        311 CONTINUE
222
223
             I = 0
224
             DO 320 M=1.MN
```

```
225
             00 321 N=1,MN
226
             JEIKEY(M+M) .LF. 0) GO TO 321
             M1 = M - 1
227
             N1=N-1
228
             00 322 14=1.4
229
             IF(14 .GT. 2) GO TO 323
230
231
             DO 324 J3=1.3
             PU(14,43)=H(M,N1,43)-U(M,44,43)
232
233
        324 CONTINUE
             N1 = N1 + 2
234
235
             GO TO 325
        323 DO 326 J2=1.3
236
237
             DH(14.J3)=U(M1.N.J3)-U(M.N.J3)
238
        326 CUNTINUE
             41=41+2
239
        325 F1=0
240
24 i
             E2=0
             00 327 J3=1.3
242
             DCSU(14, J31=0U(14, J3)/S(M, Y, 14)
243
             E1=F1+DCSX(M, M, I4, J3)*FCSU(I4, J3)
244
             E2=52+00SU(14+J3)**2
245
        327 CONTINUE
246
247
             E2H(14) =62/2
248
             F12(14)=F1+F2H(14)
240
        322 CONTINUE
250
             1=1+1
             DO 332 J=1,3
251
252
             COR(T.J)=0
             DO 335 14=1,4
253
            IF(I4 .GT. 2) GD TD 336
CDR(I,J)=GGR(I,J)+E4N*(F2H(I4)*DCSX(M,M,I4,J)+E12(I4)*DCSU(I4,J))
254
255
256
             GD TO 335
257
        336 COR(I.J)=COA(I.J)+FAM*(E2H(I4)*PCSX(M,N,I4,J)+E12(I4)*DCSU(I4,J))
        335 CONTINUE
258
        332 CONTINUE
259
        321 CONTINUE
260
        320 CUNTINUE
261
        116 FORMAT(//: COP(I.J) ARE: 1/(5X, TE12.4))
262
             WRITE(6,116) ((COR(I,J),J=1,3), [=1,[1)
263
264
             K=0
             DO 340 I=1.11
265
             00 341 J=1.3
266
267
             K=K+1
             B(K,L1) = PP(K) + COR(I,J)
263
269
        BAL CONTINUE
        340 CONTINUE
270
271
             DO 350 K=1.K1
             09 351 L=1, KI
272
273
             R(K,L)=P(K,L)
274
        351 CONTINUE
275
        350 CONTINUE
        300 CONTINUE -
276
        999 CONTINUE
277
        107 FORMAT(1H1,//! 4
                                       14
                                                GAMA
                                                               Ţ
                                                                        DELTA T
278
           IFINAL T
                         STRESS FINAL STRESS !//)
        138 FORMAT(13,215,6F12.4)
279
280
             WRITE(6,107)
             DA 400 M=1, MY
281
             99 461 M=1.74
282
             IF(KEY(M,N) .LF. 3) GO TO 401
293
```

```
M1=M-1
284
            N1=V-1
285
286
            00 402 14=1.4
287
            IF(14 .GT. 2) GO TO 404
288
            00 403 33=1.3
            $$ (J3)=(X(A,N,J3)+01 M,N,J3)-X(M,N1,J3)-U(M,N1,J3))**2
289
290
        403 CONTINUE
291
            N1=N1+2
            GO TO 406
292
293
        404 NO 405 J3=1.3
            SS(J3)=(X(M,M,J3)+U(M,M,J3)-X(M1,N,J3)-U(M1,N,J3))**2
294
295
        405 CONTINUE
294
            M1=M1+2
        406 DS=SQRT(SS(1)+SS(2)+SS(3))-S(M.N.14)
297
298
            GAMA (M.M. 14) = DS/S (M.N. 14)
            IF(14 .GT. 2) GO TO 407
299
            TN=TSN*S (M, N, 14)
300
            DT (M.N.14)= (FAM+IN) #DS/S(M.N.14)
301
302
            TEN=TN+DT(M,N,I4)
303
            STN=TN/AN
         . STEN=TEN/AN
304
            WRITE(6.138) M, N. 14, GAMA(M, N, 14), TN, DT(M, N, 14), TFN, STN. STFN
305
306
            GO TO 402
        407 TM=TSM#5(M,N,14)
307
            DT (M.N.14) = (FAM+TM) +DS/S (M.N.14)
308
            TEM=TM+OT(M,N,14)
309
310
            STM=TM/AM
             STEM=TEM/AM.
311
            WRITE (6.138) M.N.I4.GAMA(M.N.I4).TM.DT(M.N.I4).TFM.STFM.STFM
312
313
        402 CONTINUE
314
        401 CONTINUE
315
        400 CONTINUE
316
            STOP
317
            END
            SUBROUTINE GAUSE (A.M.N1)
318
319
            DIMENSION A(M, NI)
320
            DD 500 J=1.N
            (L.L)A=VIG
321
            S=1.0/DIV
322
323
            DO 501 K=J.N1
324
        501 A(J,K)=A(J,K)*S
325
            DO 502 T=1.N
326
            IF(I-J) 503,502,503
        503 AIJ=-A(I,J)
327
            DO 504 K=J,N1
328
        504 A(I,K)=4(I,K)+AIJ*A(J,K)
329
        502 CONTINUE
330
331
        500 CONTINUE
            RETURN
332
333
            END
```

SENTRY

APPENDIX II

This is a program to perform the static analysis of diamond hypar shaped prestressed cable networks following Solution II.

The program follows.

```
CCL.TIME=15.PAGES=90
     $J08
           THIS PROGRAM PERFORMS THE ANALYSIS OF THE DIAMOND HYPAR SHAPED CABLE A
     C
           OF EQUAL NO. OF CABLES IN BOTH DIRECTIONS.
     C
     C
           MN IS THE NO. OF JOINTS IN EACH OF THE DIAGONAL CABLES INCLUDING THE
     C
           BOUNDARY JOINTS.
           11 IS THE TOTAL NO. OF INTERIOR JOINTS.
     C
            ITT IS THE MAX. NO. OF ITERATIONS TO TERMINATE THE EXECUTION IF THE
     C
           ITERATION IS NOT COMVERGENT.
     C
            SPCM, HM, AND AM ARE THE SPACING, THE HORIZ. COMPONENT OF THE PRETENSI
            AND CROSS SECTION OF THE CARLES PARALLEL TO THE M AXIS IN FT. . LP. . IN
           SPON, HM, AND IN ARE THOSE PARALLEL TO THE N AXIS.
           E IS THE YOUNG'S MODULUS IN PSI.
     C
           EPSI IS THE DESTREM ACCURACY IN ST..
 1
           DIMENSION X(5,5,3),4(5,3,5,5,3),KFY(5,5),DX(3),S(5,5,4),F(4),
          10C$X(5,5,4,3),C(9,15),U(5,5,3),CDP(5,3),DU(4,3),C2H(4),DCSU(4,2),
          18(15,16),3P(15), E12(4),P(15,15),SS(3),OT(5,5,4),G(5,6),GAMA(5,5,4)
 2
       100 FORMAT(315.6F10.3)
 3
       101 FORMAT(1H1.* SPACING-M
                                     SPACING-N PRETEN-H-M PRETEN-H-N
                     VEE V-M
                                 AREA-Nº//7612.4/)
          1E
       102 FORMAT (6F1J.3)
 4
 5
           READ(5.100) MN.II.ITI.SPCM.SPCN.HM.HN.AM.AN
 6
           READ(5,102) F
           WRITE (6, 1)1) SPCM, SPCN, HM, HN, E, AM, AN.
 7
           READ(5,102) FPSI
 8
 9
           READ(5,102) (((X(M,M,J3),J3=1,3),N=1,MN),M=1,MN)
10
           EAM=E*AM
           EAN=E*AN
11
12
           TSM=HM/SPCM
           TSN=HN/SPCN
13
14
           DO 160 M=1.MN
15
           00 161 N=1, MN
16
           M2 = M + N
17
           M3=(MN+3)/2
           IF(M2-M3) 162,163,180
18
19
       180 M4=N-Y
20
           M5=(MN-1)/2
           IF(M4-45) 181,163,162
21
22
       181 M6=M-N
           IF(M6-M5) 182,163,162
23
24
       182 M7=(MN+3+11/2
25
           IF(M2-M7) 183,163,162
26
       183 KEY(M,N)=1
27
           GO TO 161
28
      . 162 KEY(M.N)=0
29
           GD TO 161
30
       163 KEY(M,N)=-1
31
       161 CONTINUE
32
       160 CONTINUE
33
           DO 170 M=1.MN
34
           DO 171 N=1, MN
           00 172 33=1.3
35
36
           U(M,N,J3)=0
37
           DO 173 I=1, I1
38
           DO 174 J=1,3
30
           0=(EL.M.M.H.J3)=0
40
           COP([.J]=0
41
       174 CONTINUE
       173 CONTINUE
42
43
       172 CONTINUE
44
       171 CONTINUE
```

```
170 CONTINUE
            1=0
46
            K=0
47
            DO 600 M=1.MN
48
49
            DO 601 N=1.4N
            IF(KFY(M,N) .LF. O) GD TD 6Q1
50
51
            M1=Y-I
            N1=N-1
52
53
            I = I + 1
            DO 602 14=1.4
54
            IF(14 .GT. 21 GO TO 603
55
            A(1,3,M,N,3)=A(1,3,4,N,3)+1*TSN
56
            IF (KEY (M.M1) .FO. -1) GO TO 604
57
58
            A(1,3,4,N1,3)=4(1,3,4,N1,3)-1*TSN
            N1=N1+2
59
            GO TO 602
60
        604 COR(1,3)=COR(1,3)+X(M,N1,3)*TSN
61
            N1=N1+2
62
63
            GO TO 602,
        603 A(1,3,M,N,3)=A(1,3,M,N,3)+1*TSM
64
            IF (KFY(M1,N) .EQ. -1) SO TO 605
65
            A(1,3,41,N,3)=A(1,3,M1,N,3)-1*TSM
66
            M1=M1+2
67
            GO TO 602
68
        605 COR(1,3)=COR(1,3)+X(M1,N,3)*TSM
69
70
            M1=41+2
            60 TO 602
71
72
        602 CONTINUE
73
        601 CONTINUE
        600 CONTINUE
74
            K1=I1
75
            L1=K1+1
76.
            L=O
77
            DO 610 M=1.MN
78
            DO 611 N=1,97
79
            IF(KEY(M,N) .LE. 0) GO TO 611
80
 81
            L=L+1
            DO 612 K=1.K1
82
            G(K+L)=A(K+3+M+N+3)
83
84
        612 CONTINUE
        611 CONTINUE
85
        610 CONTINUE
 86
87
            DO 613 K=1,K1
            G(K,L1)=COR(K,3)
88
        613 CONTINUE
 89
            CALL GAUSR (G.K1.L1)
 90
        109 FORMAT (// M
                                               1/1
 91
        111 FORMAT(215,E12.4)
 92
93
            WRITE(6, 159)
 94
            K=0
            00 620 M=1.4V
 95
            00 621 M=1,MN
 96
            IF(KEY(N,N) .LE. 0) GO TO 621
 97
 93
            K=K+1
            X(M,N,3)=6(K.L1)
 99
            WRITE(6,111) M,N,X(M,N,3)
100
        621 CONTINUE
101
        623 CONTINUE
102
            DD 622 I=1.[1
103
            DO 623 M=1,MN
104
```

```
105
                             DO 624 N=1,MN
                             A(1,3,M,1,3)=5
105
137
                    624 CONTINUE
                   623 CONTINUE
108
109
                    622 CUNTINUE
                             K1 = 11 * 3
110
111
                             L1=K1+1
                             I = 0
112
                             DD 200 M=1,MN
113
                             NY, 1=1 105 00
114
                             IF(KEY(M,N) .LE. 0) .GO TO 201
115
116
                             M1=M-1
                             N1=N-1
117
                             00 202 14=1,4
118
                             IF(14 .GT. 2) GO TO 204
119
                             DO 203 J3=1.3
120
121
                             DX(J3)=X(M+11,J3)-X(M+N,J3)
122
                    203 CONTINUE
123
                             N1=N1+2
                             GO TO 236
124
125
                    204 DO 205 J3=1.3
                             DX(J3)=X(M1,M,J3)-X(M,N,J3)
126
127
                    205 CONTINUE
128
                             M1=M1+2
                    206 S(M,N,14)=SQRT(DX(1)**2+DX(2)**2+DX(3)**2)
129
130
                             IF(14 .GT. 2) GO TO 208 ...
                             F(14)=FAM/S(M,N,14)
131
                             GO TO 209
132
133
                    208 F(14)=EAM/S(M,N,T4)
                    209 NO 207 J3=1.3
134
                             DCSX(M, N, 14, J31=DX(J3)/S(M, N, 14)
135
                    207 CONTINUE
136
137
                    202 CONTINUE
138
                             I = I + 1
139
                             00 220 J=1,3
143
                             DO 221 I4=1,4
                             DO 222 J3=1,3
141
                             A(I,J,M,N,J3)=A(I,J,M,N,13)+F(I4)*DCSX(M,N,I4,J)*DCSX(M,N,I4,J3)
142
                             IF(14 .GT. 2) NO TO 223
143
                             IF(J .EQ. J3) A(I.J.M.N.J3)=A(I.J.M.N.J3)+2.0*TSN
144
145
                             GO TO 222
145
                    223 IF(J .54. J3) A(1,J,M,N,J3)=A(1,J,M,N,J3)+0.4*TSM
147
                    222 CONTINUE
                    221 CONTINUE
148
149
                             N1=N-1
                             M1 = M - 1
150
151
                             DO 224 14=1.4
                             IFII4 .GT. 2) GO TO 225
152
153
                             IF(KFY(M,NI) .LF. 0) GO TO 228
154
                             DO 226 J3=1,3
                             A(I,J,M,NI,J3)=A(I,J,M,NI,J3)-F(I4)*DCSX(M,N,I4,J)*DCSX(M,N,I4,J3)
155
                             IF(J .EQ. J3) A(I,J,M,N1,J3)=A(I,J,M,N1,J3)-2.0*TSN
156
                    226 CONTINUE
157
                   228 N1=N1+2
158
159
                             GO: TO 224
                    225 1F (KEY(M1.N) .LE. 0) GO TO 229
16.3
161
                             DO 227 J3=1.3
                             14.J3 (14.J4) X2.DC*(14.J4) X2.DC*(14.J4) = (14.J4) = (1
162
                             IF(J .FO. J3) A(T,J,M1,N,J3)=A(T,J,M1,N,J3)-U.4#TSM
163
                    227 CONTINUE
164
```

```
165
        229 41=41+2
        224 CONTINUE
166
167
        220 CONTIMUE
        201 CONTINUE
168
169
        200 CONTINUE
170
            L=0
            K=O
171
            DO 230 M=1, MN
172
            DO 231 N=1.MN
173
            IF(KEY(M,N) .LF. 10) 60 TO-231
174
175
            DO 232 J3=1.3
176
            1=1+1
177
            DO 233 I=1.T1
            DO 234 J=1,3
178
179
            K=K+1
            B(K,L)=4(I,J,M,V,J3)
180
            P(K,L)=9(K,L)
181
182
            IF(K .EO. K1) K=K-K1
        234 CONTINUE
183
        233 CONTINUE
184
        232 CONTINUE
185
        231 CONTINUE
186
187
        230 CONTINUE
            READ(5,132) (8°(K),K=1,K1)
188
189
            00 240 K=1.K1
            R(K,L1) = 3P(K)
190
191
        240 CONTINUE
        114 FORMAT(// ((B(K,L),L=1,L1),K=1,K1) ARF 1//(5X,10E12.4))
192
193
            WRITE(6,114) ((3(K,L),L=1,L1),K=1,K1)
            DO 300 1T=1,IT1
194
195
            CALL GAUSRIB, KI, LI)
        105 FORMAT(1H1,11H ITERATION:12)
196
        106 FORMAT (//!
                                                              •//(3E12.41)
                              i j
197
        117 FORMAT (/////////11H ITERATION: 12)
198
            IF(IT .GT. 1) GO TO 241
199
            WRITE(6.135) IT
200
201
            GD TO 242
        241 WRITE(6,117) IT
202
203
        242 WRITE(6,136) (8(K,L1),K=1,K1)
             DO 301 K=1,K1
204
205
             C(IT,K)=8(K,L1)
        301 CONTINUE
206
207
             IF(IT .=0. 1) GO TO 302
208
             DO 303 K≠1,K1
             D=C(IT,K)-C((IT-1),K)
209
            IF (ABS(U) .GT. EPSI) GO TO 302
210
        303 CONTINUE
211
            GO TO 999
212
213
        302 K=0
            DO 311 M=1.MN
214
             00 312 N=1, MN
215
             IF(KEY(M.N) .LE. 0) GO TO 312
216
             DO 313 J2=1.3
217
            K = K + 1
213
            11(M,N,,1?)=N(K,11)
219
        313 CONTINUE
220
        312 CONTINUE
221
        311 CONTINUE
222
            1 = 1)
223
             DO 320 M=1.MN
224
```

```
DO 321 N=1.MN
225
             IF (KEY(M, N) .LF. O) GO TO 321
226
             M1 = M - 1
227
             N1 = N - 1
228
229
             nn 322 T4=1,4 ·
            IF(14 .GT. 2) GJ TD 323
DO 324 J3=1,3
230
231
             DU(14,33)=U(M,M1,33)-U(M,N,33)
232
        324 CONTINUE
233
234
             N1=N1+2
             GO TO 325
235
        323 00 326 13=1,3
236
             DU(14,J3)=U(M1,N,J3)-U(M,N,J3)
237
238
        326 CONTINUE
             41=41+2
239
        325 E1=0
245
             E2 = 0
241
242
             DO 327 J3=1.3
             DCSU(14, J3)=DU(14, J3)/S(M,N,14)
243
             E1=E1+DCSX(M.N.14,J3) 40CSU(I4,J3)
244
             E2=E2+00 50(14+J3)**2
245
        327 CONTINUE
246
247
             E2H(14)=82/2
             E12(14)=E1+E2H(14)
248
249
        322 CONTINUE
250
             I = I + 1
251
             00 332 J=1,3
252
             COP(I,J)=7
253
             DO 335 14=1.4
             IF(14 .GT. 2) GO TO 336
254
             COR(1,J)=COP(1,J)+EPN=(F2H(14)+DCSX(M,N,14,J)+E12(14)+DCSU(14,J))-
255
            11.0*TSN*DCSU(14.J)*S(M.N.14)
256
             GD TO 335
        336 COR([+J]=COR([+J]+F4M*(F2H([4)*QCSX(M.N.[4+J]+E12([4)*DCSU([4+J])-
257
            10.6#75##CCSU(I4,J) ~5(M,N,I4)
258
        335 CONTINHE
259
        332 CONTINUE
        321 CONTINUE
260
261
        320 CONTINUE
        116 FORMAT(//' COP(I,J) ARE: 1//(5X,3E12.41)
262
             WRITE(6,116) ((COR(I,J),J=1,3), I=1, I1)
263
264
             K = 0
             DO 340 I=1, I1
265
266
             DO 341 J=1,3
267
             K=K+1
268
             B(K,L1)=RO(K)+COR(I,J)
        341 CONTINUE
269
270
        340 CONTINUE
271
             DO 350 K=1,K1
             NO 351 L=1.Kl
272
             B(K.L)=$(K.L)
273
274
        351 CONTINUE
275
        350 CONTAINIE
276
        300 CONTINUE
        909 CONTIMUE
277
        107 FORMAT(IHI.// M N 14 GAMA
IFINAL T STRESS FINAL STRESS'//)
                                                                        DELTA T
276
        108 FORMAT(13,215,6812.4)
279
             WRITE(6,107)
280
281
             DO 400 M=1. MN
```

```
282
             DO 401 N=1.MN
             IF(KLY(M.N) .LE. 0) 60 TO 401
283
284
             M1=V-1
285
             N1 = N - 1
286
             DO 402 14=1.4
             IF(14 .GT. 2) GD TO 404
287
288
             DO 403 J3=1,3
289
             SS(J3) = (X(4, 4, 4, 3) + H(M, N, J3) - X(4, N1, J3) - U(M, N1, J3)) **2
         403 CONTINUE
290
291
             N1=N1+2
292
             GO TO 496
293
         404 DO 405 J3=1.3
294
             SS(J3) = (X(M,N,J3) + U(M,N,J3) - X(M1,N,J3) - U(M1,N,J3)) **2
295
         405 CONTINUE
             M1 = M1 + 2
296
         406 DS=SQRT(SS(1)+SS(2)+SS(3))-S(M.N.14)
297
             GAMA(M. N. 14) = DS/S(M. N. 14)
298
299
             IF(14 .GT. 21 GT TO 407
300
             TN=TSN=S(M,N,I4)
             DT(M.N.14) = (EAN+TN) *DS/S(M.N.14)
301
             TEN=IN+DT(M,N,I4)
332
             STN=TN/AN
303
304
             STFN=TFN/AN
             WRITE(6, 108) M.N. 14, GAMA(M.N. 14), TN. DT(M.N. 14), TFN. STN. STEN
305
             GO TO 402
306
         407 TM=TSM&S(M,N,14)
307
             DT (M, N, 14) = ( EAM+TM) #DS/S (M, N, 14)
308
309
             TEM=TM+DT(H+N+14)
             STM=TM/AM
317
             STEM=TEM/AM
311
             WRITE(6,108) M, N, I4, GAMA(M, N, I4), TM, DT(M, N, I4), TEM, STM, STEM
312
313
         402 CONTINUE
314
        .401 CONTINUE
         400 CONTINUE
315
316
             STOP
             END
317
             SUBROUTINE GAUSE (A, N, N1)
318
             DIMENSION A(N.N1)
319
             DO 500 J=1.N
320
             DIV=A(J,J)
321
322
             S=1.0/DIV
323
             DO 501 K=J.NI
         501 A(J.K)=A(J.K)*S
324
325
             DO 502 I=1:N
             IF(I-J) 503,502,503
326
327
         503 AIJ=-A(1,J)
             DD 504 K=J.N1
328
329
         504 A(I,K)=A(I,K)+ATJ#A(J,K)
         502 CONTINUE
330
         500 CONTINUE
331
332
             RETURN
             END
333
```

SENTRY

STATIC ANALYSIS

OF PRESTRESSED CABLE NETWORKS

by

CHIANG-CHUN LAI

Diploma, Taipei Institute of Technology, 1961

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1973

ABSTRACT

A discrete method of analysis for prestressed cable networks is studied in this report. The method includes a basic solution and a modified solution following the same procedure. As the loading is applied to the structure, it deforms. Static equilibrium conditions at the joints of the deformed configuration provide a set of nonlinear simultaneous algebraic equations in displacement components of the interior joints for the fixed boundary case. The set of equations thus obtained is linearized for the first iteration. The solution is subsequently corrected to the desired accuracy. Some error is introduced by neglecting the strain effect in some minor terms, and thus it is an approximate method. However, since the strain is extremely small, for practical purposes, the error is negligible. The method considers the horizontal displacement as well as the vertical displacement and therefore, is a complete solution.