FORM EDITOR SYSTEM
by

JONY CHAXNG

B.S., National Taiwan University, 1976

A MASTER'S REPORT
submitted in partial fulfillment of the

requirements fcr the degree

MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by
2

’_?,s’_ x_/_ _______
essor

éf;g AlLl202 L1A&339
LR
IE R4 TABLE OF CONTENTS
52
<. 2 Page
CHAPTER 1 INTRODUCTION

=)
—

ACKETOUNA . .vnimes s emesammes oo stineens b o veensesins s s bameto
eview of Related Research

Business Definition Language (BDL) § RIS § 8 § e
System for Business Automation (SBA) R
Officetalk=Zero TR L T R e
Office Form System (OFS) EREEN § 3SR § §) SeTeee
Forms Programming System (FPS) § ¥ S BERER § 5 b R
. Structured Message System (SMS) § SRR § § R
1.2 The Probleéll ..cosesssassscssesscscossrsssssssrossssscsnsns
1e3 The SOlULiOR wewssemsammmessasevamey s ssoammnsn ooy sy
1.4 Organization of the Report U PO |~

1.0
1.1

. e

— =3 = =% 3y
¢« ¢ o ® @

oM EWN -

—t ok oA ok ad
s o @

—
oW -1 EW

CHAPTER 2 SYSTEM CHARACTERISTICS

2.0 ©System CapabilitieS .ecescsccosescescsaacansncanass —
2,1 User INLErfate yeu=sreeessnssereraoyssse sosnassyes s sweice 1.3
Zelel Cregfine @ FOPM sovmineses comenassss vomesnsss T
2.1:2 MOAITYItE 2 FOPM sniviwes s sosmenies s s sasmassss s suaine 16
2.1.3 Storing a Form o MewEEE § e b RN & 8 e G 8 & s 20

CHAPTER 3 SYSTEM DESIGN

3,0 IHENOQUOEION wiwme a6 ¢ swmmmminins ¢ o owiEEmese s s s omEL0E § §§ Gosuy o3
3.1 Overall System Structure S W N RS 8 8 8 R e 5 e 2

3.1.1 Data Structure SEiE R b e FIEE BRI B e G 24
3.1.2 Main Module S8 B RIS B R ST b AR S LR 2D
2 Create Module SR 5w BRI & 8§ AEREIRRGE B & B MCAA AT & & 8 wrmceraiacd T
3 Modify Module WS 8 eceRR TS e BTSSR se 8 watenmsecery D]
4 Store Module I SRR § SRS § B -
5 Print Module B S RN ¥ § SRR B § SR § 8 8 eeeeeE 159
6 Dolete MOdULE wussseunvinns onesiuse s venpssess s s pasveas U2
7 Exit Module SO SRR A A PR E YRS EEe S bR 4D

B0 TIntroduction seecsessswponsnessvsnsosessesswenssssssvweses 1
4.1 Programming Language WATHRICS § & SRS &8 BRI & b Sy BT
4.2 COGINE oiweswnsessnvmamsavdisspveisesssonasesssss saaase 90
4.3 Extent of Implementation ciceeeescoccoscscsvsssscersences 50
4.4

Testing LIRS B S S A I S B A B A A B A I R A I R B I A R A 51

CHAPTER 5 CONCLUSION (AR R R R NN N NN NN NNE NN 53
BIBLIOGHAPHY 40 S S OPT NSO EPPTIRPIES SRS RS e EB ST REDRSESENSERDENS 56
APPENDIX

A. The UseP'S Manual S FOEFPIRESOEIRPROTEINRTRPEROPEOOESERTERDRS LR A A N R 57
Bo PPOgram Listing s e se P e T RRIITERRERSDS *essresrssLese T .e 66

LI:T OF FIGURES

Figure Page
2.0.1 WELCOME Display &8 SERSHEI § SRR eees 14
2.0.2 Main Menu Sl e 8 bR b s aaleeeEe v e e ensms
2.1.1 Address Form sevssssssrssnsssssscsessssasass 16
2.1.2 Payroll Form etessesssessesseareesarreneeaae 16
2.1.3 Modify Form Example (1) ..evvewe O —— 18
2.1.4 Modify Form Example (2) b 8RR 6§ ER 18
2.1.5 Modify Form Example (3) o MRS 8§ SRR § § 19
2.1.6 Modify Form Example (4) el e e P 19
2.1.7 Store Form Example bhacd § % Beawumed disbisaR e e 2E
2.1.8 Form Template Display teesssesescsectssnrenanes 22
3.1.1 Main Module & B & & Wowe R e & 8 S wiwwsy s o
3.1.2 Main Module Flow Chart B S B RIS § § 8 PR ces 2B
3.2.1 Create Module erwaeE e e e SR B G RV 2
3.2.2 Create Module Flow Chart 3% BT b S R d 29
3.2.3 Create Form Display .ceoceeess b & 8w B emmTEN § 30
3.2.4 Create Form Help Menu G 1 ¢
3.3.1 Modify Module v 5 SUBLSAERNE ® § b SENEEEIE 8§ 6 8 SRR § § 31
3.3.2 Modify Module Flow Chart ¥ SRR 33
3.3.3 Modify Form Display S § § R B 8 R RS B § 34
3.3.4 Modify Form Help Menu SRR § S AR S 34
3.4.1 Store Module cieeecccccscncs momcmsn 8, 3 § @ eumiemze eees 35
3.4,2 Store Module Flow Chart testsesserenanan 37
3.4.3 Store Form Display Wi § R b TS § 6 s emmavegis 30
3.4.4 Store Form Help Menu ..ccevicecss § SR B S 3&
3.5.1 Print Module b RS § A e 8 8§ ST i E s E 39
3.5.2 Print Module Flow Chart T e R 40
3.5.3 Print Display (1) ER a » AibBE ST E D R RATEEE & e 41
3.5.4 Print Display (2) o B u acuswsmmiees o » » wxndbcazens ¥« § wos 41
3.6.1 Delete Module .iceevcesceccans creesacanen ee. 42
3.6.2 Delete Display (1) tesessecsessereves ceernee 43
3.6.3 Delete Display (2) § ¥ BRI § ¢ MRS ¢ 8 Peen 9
3.6.4 Delete Module Flow Chart ..ceeeeresceveeesss Ul
3.7.1 Exit Module ceeseesssarsestrerssecn s s be e 45
3.T.2 Exit Module Flow Chart P | 1
3.7.3 Exit Display g SR & R RS ¢ b -
3.T.4 BYE Display SRR N SRR ¥ R e eews U6

- ii -

CHAPTER 1

INTRODUCTION

1.0 Background

Office automation is becoring a very important subject of computer science
research. The office 1is the part of business wiich handles information cealing
with such operations as accounting, payroll, and billing. Office work involves
information~handling activities such as text editing, form editing, filing docu-
ments, performing simple computations, verifying information, and communicating
within the office and between offices. An automated office attempts to perform or
assist office workers in performing some of the functions of an ordinary office by
means of a computer system [2]. One goal of office automation is the design of

application systems and facilities to help improve personnel efficiency.

Forms play a central role in the technologically advanced busiress world.
Day-to-day business activities generally involve the use of forms. lost business
organizations use forms as communication tools. Forms can be thought of as texts
which require certain values to be filled in certain slots called fields. 4
filled form can be thought of as a document, and ic called a form instance (i.e.,
a form instance is a sirgle filled form that is cne of a group of forms of the
same style, all having the same field names). Blank forms are usually called fcrm
structures. Forms arise because there are many documents which are similar in that
they have basically the same form structure. They differ from each other only in

terms of the filled entries. These entries are called field data.

Computerization has led to the development of so-called ‘'intelligent' elec=-
tronic forms which are preferred over the ordinary paper form due to the following

advantages : An intelligent form can automatically retrieve data from data base (a

data base is a collection of rany data files), which zay reside in other work sta-
tions, for certain fields on the form; it can make calculations for the extension
or total item field; and it can have routing infcrmation associated with it such
that they will be delivered automatically to the next person on the routing 1list.
Electronic forms provide a very good interface for the clerical facet of office
automation system such as handling personnel information, purchase orders and air-

line tickets.

Forms can serve as a high-level protocol for infcrmation communication. Data
can be extracted from a form for transmission. Transferring infcormation from one
or more forms to another is a common activity in an office enviromment. The
extraction of information from forms for various purposes such as report genera-
tion is another common activity. Scrutinizing data given in fcrms to ensure that
they fit certain criteria is an exercise practiced in almost all organizations
[11]. Therefore, an important part of an office automation is a system for pro-
cessing forms as a patural and effective interface between an office worker and
information. To carry this out, one reguires the means to specify the processing
of data in the forms. Basically each form processing specification contains the
following : (1) the name of the input form, the operation to be performed (e.g.,
enter, create, copy, send, ete.), and the name of the output form; (2) a descrip=-
tion of the field data constituting the form (called field types) and the con-
straints to be imposed {(such as allowance of data ranges, signature, and unchange-
able fields); and (3) qualifications for the intended process which may include
the source of data, the conditions to be applied in selecting form instances, etc.
Once the form specification is def'ined, the flow of forms within the system and

the functional relationships among them can be defined.

To implewent form processirg in a system, one has to design and create form

structures and store form templates in the system. A form template is a defini=-
tion of the form structure, describing the types, lengths, and the contents of
fields in a form structure. 4 facility which does this is called a form editor
system. A form editor system also allows a user to modify an old form structure,
print a hard copy of the form structure, display it on the screen, or delete the

form template and form structure from the system.
1.1 Review of Related Research

Forms have been the subject in several completed research projects, These
studies gave rise to the following systems : Business Definition Language (BDL)
[5], System for Business Automation (SBA) [12,13,14], Officetalk-Zero [2], Office
Forms System (OFS) [7,9,10], Forms Programming System (FPS) [31, Structured Mes-

sage System (SMS) [11].
1.1.1 Business Definition Language (BDL)

IBM's Business Definition Language (BDL) was one of the first to make use of
forms as information processing specification. Ir BDL the basic data structure is
a form. Forms are the templates with which specific documents are produced. They
consist of preprinted information plus specifications about the data used to fill
them out. Using BDL, an applications programmer defines a form by specifying its
name and its width and height in character positions. This is fcllowec by speci-
fying its preprinted information : what a blank document would 1look like. Pre-
printed information consists of column headings, boxes, and the like. This infor-
mation is represented directly by drawing it on a graphic device over an array of

rectangles used to show character positions.

The remainder of a form's definition consicts of several definitions of the

various properties of the form. Each property has its own methed of definition,

but all are done by adding i:fcrmation to the form shown on the screen. A
description of these form definition properties of the form such as filelds, data
type, and data formats as follows : (1) Field definition : the form is filled out
with the names of the fields. Field names may not be longer than the field they
name; if they are shorter, they are extended with a special extender character.
Thus a field name specifies not only the location of the field but also its size.
(2) Data type definition : the form is filled out with data type mnames for each
field. Specific data types such as address, date, inches, and dollars are avail-
able, This permits better error detection and automatic conversion between fields
of like dimension but different units. (3) Data format definition : the form is
filled out with sample data generated by the system to show an example format for
each field. The format of any field can be changed by the programmer by selecting
an alternative from a list of samples generated by the syster. Once forms are
defined, their flow within the system and the precise functional relationships

among them can be defined.

1.1.2 System for Busiiess Automation (SEBA)

IBM's System for Business Automation (SBA) also makes use of forms as infor-
mation processing specification. An 8BA user views and manipulates a two=
dimensional picture of tables, forms, and reports on a display terminal. The SBA
project produced Query-By-Example (QBE), a query language based on two-dimensional
tables or forms [12]. A recent extension of QBE is the Office-By-Example (OBE)
[13]. OBE is a two-dimensional system that is an attempt to mimic manual pro-
cedures of business and office system. OBE is a superset and natural extension of
the QBE data base management system, ;nd contains features from IBM's earlier work

on a SBA. Although the fundamental data cbject in QBE i: the table, in OBE tre

cbjects are more general, and include letters, forms, reports, charts and graphs.

A form in OBE is a generalization of a table and is viewed as a data object.
A form skeleton is a derived object and must first be constructed by the users
before defining its various fields, Once the skeleton form is constructed, the
user links its fields to fields in columns of an associated table(s), and defines
these fields almost as though they were table fields. A fcrm is considered to be
a data base object and thus can capture data, and its data fields can be rodified.
Thus, The user first graphically structures the image of the form on the screen,
mimicking manual construction, then enters example elements in the fields to be

def'ined.
1.1.3 Officetalk-Zero

At the Xerox Palo Alto Research Center, a group of researchers have developed
Officetalk=-Zerao, a prototype of £ice information system based on forms.
Officetalk-Zero, referred to hereinafter as officetalk, is implemented in an
enviroment of multiple minicomputers interconnected by a high-speed communication
network. Officetalk is based on the data object of single page forms and files of
forms. Int;rcommunication is accomplished by electronically passing forms among
the work stations. The user is shown an image of a desktop (a2 desktop resembles
the top of an office desk) containing parts of forms and enploys a mouse (a _ouse

is a pointing device) to manipulate the forms on the desktop.

An officetalk desktop contains the following four forms, which are called
file indexes : (1) the in-basket, an index of incoming mail; (2) the out=-baszket,
an index of mail to be sent and mail that has been recently sent; (3) the forms
index, forms that the user has saved; and (4) the blank stock index, an index of
the set of available forms. Each file index entry contains several fields : one
field names the file, an action field specifies a command which can be applied to

that file entry, while other fields list other information. A file index form is

special in the sense that it contains a field on the form itself which allows com=-
mand invocation., Ordinary forms do not contain an action field (instead, all com-

mands are invoked from the window menu).

To implement a particular officetalk application, a tailored set of ©blank
forms must be designed and entered into the database. Officetalk provides a forms
editor which allows one to specify the graphical design of a form and the style of
each field on the form. The forms editor requires that the newly designed forms
satisfy certain conditions, such as no overlapping fields. It also permits cer-

tain fields to be designated as signature fields.

1.1.4 Office Form System (OFS)

At the University of Toronto, a group of researchers whose primary interest
is database management have begun to look at office automation and have chosen to
base their approach on forms. Forms can be viewed, at two different extremes, as
text and formatted data. By handling fcrms there is a natural way to incorporate
limited text capabilities, together with ways to structure data for further
retrieval and processing. 4 correspondence can be established between a form
instance and a record of values appearing in the form. In this way, we can
integrate office form procedures with regular data processing and data management

dealing with records.

Forms are manipulated by users via stations. A station ean be a personal
computer or a terminal running on a computer., Form processing in the system is
provided by OFS. Forms consist of form fields and have dispersed printed text.
Form fields take values from particular domains. Form fields can not constitute
repeating groups. Form fields are declared to be one of three distinet types.

The first type insists that the value in the field is entered at form instance

creation time and cannot change afterward. For instance, a person's name in an
expense account is of the first type. The second type allows delayed entry of the
field value but once the value is entered it cannot be changed. For instance, a
manager's authorization on a form is of the second type. Finally, the third type
allows the field to be updated. For instance, a field recording the status of a

form as it passes through stations can be of the third type.
1.1.5 Forms Programming System (FPS)

The Forms Programming System is based on forms and the flow of forms. A form
consists of blanks to be filled in, keywords or keyword phrases that -ndicate what
information should be filled in the blanks, and explicit or implieit relationships
among the various items of information on the form. An applications programmer
working with FPS accomplishes a programming task by sketching an applicable form
on a display screen, by specifying conditions under which the form is activated
and processed, and by indicating for each item of information on the form the
source and destination of its data. The programmer may also need to interact with
the system to assist in the determination of entry types for blanks and the formu-
lation of relationships amcng items on the form. Once forms are designed, infor-
mation may flow to them from a user, from the corporate database, and from other
defined forms. Such information may be combined to compute additional entries and
may then be displayed for the user, may invoke database updates, and may be

transmitted to other forms or work stations in the system.

In general, a form can be cast into a Pascal record definition : keywords are
field names and are associated with types defined appropriately for the domain of
expected entries. For each entry whose values is not obtained from a computa-
tional relationship, an appropriate input or database retrieval statement is

defined; output can be considered to simply be a filled ocut form.

1.1.6 Structured Message System (SHS)

The system is composed of a number of logical units called stations wiich may
be grouped together on physical wunits callec nodes. Each user of the systec
operates a single station. Each station contains a station database that is wused
to store information associated with the station. For each nessage type (such as
a meeting announcement or a referee report) that is known by the system there is a
relation (A relation is any subset of Cartesian product of one or more domains. A
Domains is simply a set of values.) in each station database. Tuples (tuples are
the members of a relations) within such a relation correspond to instances of the
message type. Attributes (attributes are the components of a relation) of this

relation correspond to the fields of the message type.

A user defines a message type by creating a display template. Once the type
has been defined users may create message instances by 'filling in' the template.
During message instance creation the system generates a globally unique identifier
for the new message instance. This identifier (known as the message key) is per-
manently attached to the message instance and cannot be modified. There are con-
straints upon the modification of particular message fields. Tuere are four types
of message fields. The first three types are all user supplied. Fields of the
first type must be entered during message creation and then cannot be modified.
Fields of the second type cannot be modified once entered. Fields of the third
type have no restrictions in terms of operations. The fourth type is used for
automatic fields (such as dates, signatures, message keys, and other functiomally
determined fields) which are generated by the system when required and cannot be

modified by the user.

1.2 The Problem

The form structure in BDL is represented directly by drawing it with a
graphic device, the terminal for user with this system must have modest graphic
capability. The field length is fixed by the field name, and the data field type
is not flexible. In SBA, forms are syntactically more restrictive than other form
based system and also require the user to have some understanding of the underly-

ing data base model.

Although Officetalk has the form editor, it still use the graphical design of
a form structure, and it does not support flexible operations on data base, and
the fields on a form does not permit to be designated as flexible type. In OFS,
they plan to implement a facility for outlaying forms and designing form blanks
via a terminal. At this point, the formats of a form blank for both display and
print outs are not very flexible. In SMS system stations are based on PDP 11/23's
running UKIX, Each PDP 11/23 has up to 64 K bytes of memory and a hard disk. In
contrast with SMS, the Form Editor System is an experimental system based on a
small microcomputer without hard disk storage capabilities. It tries to use a
small microcomputer with less memory and floppy disk to implement the form based

concept in an application system.

With FPS system, a programmer would sketeck forms, indicate the source and
destination for each data item, and give activation condition. FPS would formu-
late expressions for computed entries and access paths for data base queries and
would interact with the programmer to resolve any ambiguities and incomplete
specifications. In this kind of situation, it is conceivable that an application

specialist who is knowledgeable about the system is needed.

Most of the previously deseribed systems have a complicated system structure.

The user has to spend much more time to understand their operation before the sys-
tem can be used. Therefore, it is not understandable to a non~-technician like a
secretary. Both BDL and SBA are IBM products; they require a rainframe computer
which has a large memory. The corresponding cost for a system is high. Offi=
cetalk, OFS, and SMS use multiple minicomputers interconnected by a communication
network. Both the initial and maintenance cost are thus too high for a small

business to afford these systems.

With the rapid decline in hardware c¢ost, microcomputers are now easily
affordable. The microcomputer is bringing the advantages of computerization to
all levels of business. Computerization provides a convenient way of handling
business forms. However, although the small company businesses have the resources
to purchase small computers, they are often faced with the use of several non-
integrated software systems. Few are based on the form concept. Since the form
is an important user interface in the business world, there is a need for a form
editor system for the small company using a small microcomputer which does not

have hard disk storage capability.

1.3 The Soluticn

This paper describes a form editor system which can be effectively used on a
small microcomputer without hard disk storage. Due to the small disk storage, and
no facility available to connect other work stations, the system described is a
semi-intelligent form, which 3is capable of retrieving data from data bases and
make some very simple calculations but is not capable of manipulating itself among

other work stations.

The Form Editor System allows design of a form structure by use of the create

form function in the system without use of a graphic's device. The Form Editor

- 10 -

System is a user-friendly system which is menu~driven for easy operation. Khen
the menu is displayed on the screen, the user just strikes the command key for the
function he wants. There is a help menu for the user who is not familiar with the
system. A person who has the computer programming background possibly will not

need the user's manual, Therefore, it is understandable to a non programmer,

There were two kinds of microcomputers available for use with this research.
These were the Zenith-100 and the Columbia Data Products (CDP) Multi-Personal
Computer (MPC). The CDP is an IBM compatible microcomputer, and having more com-
pilers, such as CP/M-86 Pascal, IBM MS/DOS Pascal, and TURBO Pascal. It was

therefore chosen for this project.

In this research, we had the option of using the following languages : Ada,
BASIC, and Pascal. Pascal, a high level and general purpose language, was chosen
for the implementation of this research. Ada language is a new language with
stronger type checking and extensive data abstraction capabilities, but Ada/Janus
is only a subset of compiler of Ada language available at KSU. BASIC is not a
structured programming language. If complicated programs are written in BASIC,
they are difficult to read and maintain by others. Pascal, on the other hand,
allows easy modification of the system to a more intelligent system. The language
Pascal embodies the construcets for use in structured programming so that it is
easy for programmers to understand a program written by others. It also has the
following advantages : (1) better control structures, e.g., CASE, IF-THEN-ELSE
etc.; (2) strong type checking; (3) a variety of data structures, including RECORD
and SET; and (4) user defined types. TURBO Pascal was used for the implementation
because it has its own editor and it takes less compilaticon time than other Pascal
compilers available to this research (e.g., CP/M-86 Pascal, and IBM MS/DOS Pascal)

[15].

- 11 =

1.4 Organization of the Report

Chapter 2 introduces the system capabilities, and how the user interfaces to
the system. The overall system design with data structure and the detail design
of each module is presented in Chapter 3. Chapter U4 explains the progracming
language, coding, testing, and the extent of implementation. The limitations of

the system and the directions for future work are discussed in Chapter 5.

Finally, appendices are provided for those who intend to use the system or
modify the program. Appendix A contains the user's manual. Appendix B contains
the listing of the program. Appendix C containz the 1listing of screen display

files.

- 12 -

CHAPTER 2

SYSTEM CHARACTERISTICS

2.0 System Capabilities

The Form Editor System was designed to allow the user to create the form
structure, modify the form structure which was previously created, store the data
field type to create a form template, print the form structure on the printer or
display it on the screen, delete the form template (the accompanying focrm struc-
ture will also be deleted) from the system. From hereon the word 'form' shall be

taken to mean a 'form structure' unless otherwise specified.

To start the system, one has to follow three steps : (1) Put the system dis
on 'A' disk drive and load MS-DOS by entering the date and time. (2) Put the
working disk on 'B' disk drive., (3) Type 'form' (the name of program) and hit the
'return' key. The system first displays "WELCOME TO FORM EDITOR SYSTEM" on the
screen (see Figure 2.0.1) and then displays the main menu on the screen (see Fig-
ure 2,0.2). On the main menu, the user has six choices of commands: 'C', 'M',
ts', 'P', 'D', and 'E'. CREATE(C) allows the user to create a form within the
limits of 75 characters by 16 lines. MODIFY(M) allows the user to retrieve a pre-
viously created form and allows the user to add, change, insert or delete any
field on it. STORE(S) allows the user to store the field types of a form to
create the form template. PRILNT(P) allows the user to print out the form on the
printer or display it on the screen. DELETE(D) allows the user to delete the form
and the form template from the system. EXIT(E) allows the user to exit the syster.

The command 'E' is the only command which can exit and stop the system.

2.1 User Interface

What makes a good user interface ? There are four criteria for the design of

- 13 =

RN RSN RN NN R RN R R R R RN NN NN RN R R R G AR N AN I A RN AR IR RN IS IR IRARINNERIER

L L]
]
@ = # HEEEREEE & EERENED ERTER L % SRENRNERE]
& L & [L 4 L] *] & # ® #*)]
[] # L B # HERREAEE # #] & & & @] tiEEEdEN 4
| [BN | i B &] # # # # & #
) []] EREERNAE ARAARERR ERRUBER SEERR |) # #UREERERE #
&]
[] #
L [EIZ 2222} % % & #
[] E] # &
] L] & E
] [] L L] L
& & BEXEE L]
#* #
#* E]
#
|] #
’ FORM EDITOR SYSTEM *
L] #
% #
IR RN RN RN AR R AN R RN R R R R RN RN E IR E RN AR NSRRI R E SRS L NN AR IR

Figure 2.0.1 WELCOME Display

& MAIN MENU bl
BRRERREERRRRERRNN AR NANNERE
THERE ARE FIVE FUNCTIONS IN THE SYSTEM :

FORM CREATE - ALLOWS YOU TO CREATE A FORM WITHIN THE LIMITS OF
75 CHARACTERS X 16 LINES.

FORM MODIFY - ALLOWS RETRIEVAL OF A PREVIOUSLY CREATED FORM AND
ALLOWS YOU TO ADD, CHANGE OR DELETE ANY FIELDS ON IT.

FORM STORE - STORES THE FIELD DEFINITION AND THE FORM FOR LATER USE.,
FORM PRINT - PRINTS A COPY OF THE FORM ON THE PRINTER OR DISPLAYS IT.
FORM DELETE - DELETES THE NAMED FORM FROM THE SYSTEM FOREVER.

EXIT THE SYSTEM - ALLOWS YOU GET OUT OF THE SYSTEM.

—— - s - — - - - L T T i ——

COMMAND : (C-CREATE M-MODIFY S-STORE P-PRINT D-DELETE E=-EXIT)

Figure 2.0.2 Main Menu

- 14 -

arny office automaticn system user interface [6] : (1) It should be natural; that
is, the user should be able to communicate with the system in a vocabulary and in
a style that is comfortable for him and that reflects the context in which he
works. (2) It should be easy to learn, in order to minimize frustration, resis-
tance, and training costs. The user should feel that he is in control, that the
system will react in predictable ways to his commands, and that help is available
when he needs it. Learning should be system-assisted and incremental. (3) It
should be easy to use. The user should not have to struggle to accomplish what he
wants to do, and should not feel that the system gets in the way of his work. (4)

Most important, it should be consistent.

The system meets the criteria and is a 'user friendly' system. The following
subsections explain how forms are created, modified, and stored. Other functions

can be referred to in the User's Manual (Appendix 4).

2.1.1 Creating a Form

The FORM CREATE function allows the user to create a form within the limits
of 75 characters by 16 lines. To cesign the form required, ore simply needs to
duplicate the image of the paper form on the screen. After issuing a command 'C',
one fills in the name of the form being created. The form name must be a unique
for all other form names in the system. A '":' must follow the field name, and the
field 1length counted by the underscores length which must follow a blank. To exit
the CREATE function, one types '®' on a new line of the screen. On exiting, the
form is automatically saved as a form mapping file (a2 form mapping file is a file

that stores the form structure in the system).

Figure 2.1.1 illustrates how a form named 'Address' is created. The form

name 'Address' is typed first. When the form name is unique to the system, the

- 15 =

#% FORM CREATE ## !
FORM=NAME : Address H

Name:
Address:
City: States________ Zip:
#

|
!
|
|
|
|
l
|
I
|
!
|
|
I
!
!
l
|
l

la. Field name must be followed by ':'. b, Field length counted by underscores!
|y followed by a space, c. Type '#' on the new line to terminate the creation. !

Figuer 2.1.1 Address Form

#% FORM CREATE &% :
FORM-NAME : Payroll i
I
{

|

i

|

!

!

! |

! | Name:
i | Address:
| | Pay-Rate: Deduction:
! | Net-Pay:
[|
'

|

|

|

1

|

|

l

|

—— e ———— — —

la. Field name must be followed by ':'. b. Field length counted by underscores!
|, followed by a space. c. Type '#' on the new line to terminate the creation. |

Figuer 2.1.2 Payroll Form

- TH

cursor moves to the first line of the create form area (the create form area is 75
characters by 16 lines area). One then types the first field name, e.g., 'Name',
followed by a colon and then as many underscores (in this case, that is 20 under=-
scores) that are needed to fill the length of the field, followed by a blank for
the delimiter. The return key is pressed and the same routine is performed for
the !'Addreas' field. The process is repeated until the form is created. To ter-
minate the process, the user types a '¥#!' on a new line on the screen to denote the
end of the creating form. In Figure 2.1.2, another example, the 'Fayroll' form,

was created usirg a box line for the border of the form.

2.1.2 Modifying a Form

The FORM MODIFY function allows the user to retrieve a previously created
form, and to add, insert, change or delete any field on it. First the name of the
form which is to be modified must be typed. It must be a form nawe which is
already in the system. If the form name does not exist in the system, the system
will display an error message for the user to try again. The form can be modified

line by line on the sc¢reen by using the following symbols :

Symbols Meaning
1pt deleting the current line
rIt inserting a new line or lines
TAY adding a new line or lines to the end of form
o & changing the current line
'N' or <CR> no changing to the current line
'E! the end of modifying form

Figure 2.1.3 illustrates how the form 'Address' created earlier is modified.
The form name 'Address' is typed first. The system then retrieves the form,
displays it on the screen for modification. As the cursor moves from 1line to
line, the wuser will be asked about the status of the current line. In this exanm-

ple, the user has typed 'A' so the cursor goes directly to the line following the

T

#% FQORM MODIFY ## |
FORM=-NAME : Address STATUS |
]

o o o o o !
Name: (4)
Address:

City: State: Zip:

— e — e SEm S —— —— —— — T S m S S ———

1
|STATUS : E - end of modify. D - delete line. I - insert new line(s) before !
ithe line. A - add new line(s). Y - change line. N or 'EETURN' - no change. !

- S ,

| #% FORM MODIFY LA !
| FORM=-NAME : Address STATUS |
e — T |
Name:
Address:

City: State: Zip:
Phone:

Remarks: (E)

|
I
|
|
I
|
l
I
I
|
I
I
|
I
I
|

&% Are you finished with the modification (y/n) ? N

{STATUS : E - end of modify. D - delete line. I - insert new line(s) before |
|the line, A - add new line(s). Y - change line. N or 'RETURN' - no change. |
I

. A

Figure 2.1.4 Modify Form Example (2)

- 18 =

—— - - A

#%# FORM MODIFY &%

1

]

FORM=-NAME : Address STATUS |

]

__ !
Name: (D)
Address: (1)
City: State: Zip: (N)
Phone: (Y)
Remarks: (E)

|STATUS : E - end of modify. D - delete line. I - insert new line(s) before |
|the 1ine. A - add new line(s). Y - change line. N or 'RETURN' - no change. |
o e e e e e e e e i

— v —— —— —— — —— —— — — — e s vt |

C Ll L T L T T | P —————

#% FORM MODIFY L |
FORM=-NAME : Address STATUS |
I

Last Name: First Name:
Address:
City: State: Zip:
Office Phone: Home Phone:
Remarks:

8 Are you finished with the modification (y/n) 7 Y

- —— S e e e S S S - -l
|STATUS : E - end of modify. D - delete line. I - insert new line(s) before
lthe line. A - add new line(s). Y - change line. N or 'RETURN' - no change.
i ---------------- - S S D S S S e S G S S S S

|
|
!
|
!
l
I
I
|
|
|
|
|
|
I
l

Figure 2.1.6 Modify Form Example (4)

s P o

last line of the form. The user then types in the new lines as shown in Figure

2.1.4, and also types 'E' when finizhed with the addition. The user is then asked
the question, "Are you finished with the modification (y/n) ?". An answer of 'N',

the system returns to the routine modifying form for further nodification.

Figure 2.1.5 illustrates the operation of modification using other symbols.
When the cursor moves to the first line of the modifying form, the user types 'D'
(delete 1ine) for status, then the system will delete this current line. The cur=
sor goes on to the next line, the user types 'I' (insert line) for the status, and
the cursor then moves to the beginning of the current line to let the user type in
the new 1line, which will be overwritten on the original line (the original line
will not be deleted). In this example, the user types a new line shown on Figure
2.1.6. To specify that the 'City' field line does not change, the user just types
'*N' (no change). As the cursor moves on to the 'Phone' field line, the user types
'Y' (yes change). The cursor then moves to the beginning of the current line for
the user to type the whole line to rewrite the original line, which is shown in
Figure 2.1.6. Finally, the user types 'E' (end of modification) for the end of
modification., After finishing the whole modifications for the 'Address' form (it
is shown in Figure 2.1.6), the user is then asked the question, "Are you finished
with the modification (y/n) ?". An answer of 'Y', the system returns to the main

menu.

2.1.3 Storing a Form

The FORM STORE function allows the user to store the field types on a form to
create the form template. First, the system will display the message on the
screen, " Is the current form [Address] to be stored (y/n)} ?" If the answer is
'N', the system will ask for the user to type in the storing form name, and then

check the form name to see whether it exists in the system., If it does not exist

- 20 =

in the system, the system will display an error message and allow the user to try
again. Otherwise, the system retrieves the named form or the current form (if the
answer is 'Y') and displays it on the screen. For each field, the field type is

then inserted by typing the following field type symbols for each field.

Symbols Meaning
Al Alphanumeric
' Numeric
g Unchangeable
'R Retrieved
1cr Calculated
'Sy Signature

If the field type is 'R', the user will be asked for the retrieve file name
for retrieving. If the field type is 'C', the user will be asked fcr a formula to
calculate the value for the field. After the field types are stored, the system
will ask the user whether if he/she wants to check the form template. An answer
of 'N', the system returns to the main menu; an answer of 'Y' causes the form tem-
plate to be displayed on the screen for the user to check. After the user strikes

any key on the keybroad, the system returns to the main menu.

The storing of the 'Address' form is illustrated in Figure 2.1.7. An tA!
(for alphanumeric field) was inserted into the fields 'Last Name', 'First Name',
'Address', 'City', 'State', '0Office Phone', 'Howe Phone', and 'Remarks'. A N
(for numeric field) was inserted into the field 'Zip'. When all field types have
been inserted, the system creates a form template for the form and displays the
message, "Do you want to check the form template (y/n) ?". An answer of 'N'
returns the system to the main menu. An answer of 'Y' causes the form template to
be displayed on the screen (See Figure 2.1,8) which displays the field name, field
type, and field length. The system then dicplays the message, "If the form tez=-
plate is not correct, please store the form again 11", and then returns to the

main menu.

- 21 =

1
1
FORM-NAME : Address i
]

Last Name:A First Name:4

Address:A !
City:A State:A Zip:N

Office Phone:A Home Phone:A

Remarks:A

#% What is the field type 7

A B > T S o S A T A -

FIELD TYPE: A = alphanumeric N = numeric U = unchangeable i
R = retrieved C = calculated S = signature H

I

1

. S S S S - G e o S A S D A e e e O D S D S S D G S S S e - - -

#% FORM TEMPLATE CHECE ## |
FORM=NAME : Address H

Last Name:Alphanumeric[20] First Name:Alphanumeriec[20]
Address:Alphanumeric[40]

City:Alphanumeric[15] State:Alphanumerie[10] Zip:Numerie[10]
Office Phone:Alphanumeric[12] Home Phone:Alphanumeric[12]
Remarks:Alphanumerie[30]

- - - - - — —— D - -

8 Tf the form template is not correct, please store the form again !! !
Please hit any key to return to the main menu !! !

1

]

- o ———— —— T T S -

— i ———— ——— — . W S . —— —— —— S —— f— —

Figure 2.1.8 Form Template Display

% O w

CHAPTER 3

SYSTEM DESIGN

3.0 Introducticn

Design is the first step in the development phase for a system. It may be
defined as the process of applying various techniques and principles for the pur-
pose of defining a system in sufficient detail to permit its physical realization
[8]. The central phase in the software life c¢ycle is development which is
comprised of four distinet steps : preliminary design, detail design, coding, and

testing.

The functional requirements, information flow and structure feed the prelim-
inary design step to develop the software structure. The software structure is a
hierarchical representation that indicates the relationship between elements
(called modules) of the program. Detailed design transforms structural elements
into a procedural description of the software called software procedure which

focuses on the processing details of each module individually.

"A picture is worth a thousand words," but as Carl Machover (a leading com-
puter graphics expert) says, "it's rather important to know which picture and
which 1000 words." [8]. There is no question that graphical tools, such as the
hierarchical block diagram or the flowchart, provide excellent pictorial patterns
that readily depict procedural detail. The hierarchical block diagram depicts
information as a series of multilevel blocks organized as a tree structure. At
the top level of the structure, a single block is used to represent the entire
hierarchy. Succeeding levels contain blocks that represent various categories of
information that may be viewed as a subset of blocks further up the tree. The

flowchart is the most widely used method for design representation of software. In

- 23 -

the following sections, we use the hierarchical block diagram and the flowchart to

explain the structure of the Form Editor System.

3.1 Overall System Structure

The system allows the design of a form and the insertion of field types and
semantic information into a form to create a form template for later use. The sys-

tem is structured by a main module and six subsidiary modules as shown below

| MAIN |
| MODULE |
!

! | | | i i
|{CREATE{ |MODIFY| |[STORE | |PRINT | |IDELETE| | EXIT !
IMCDULE| |MODULE| |MODULE! |MODULE| |MODULE| |MODULE]

Figure 3.1.1 Main Module

3.1.1 Data Structure

All the screen displays in the system are declared as the text files. The

file is read line by line which is a string of 80 characters. There are nine text

files in different modules of the system. They are described as follows :

File Name Purpose Module
'init.doc! Displays the WELCOME screen Main
'menu, doc! Displays the main menu of the system Main
'create.doce! Displays the create form and the create

help menu Create
'modify.doc! Displays the modify form and the modify

help menu Modify
'store.doc! Displays the store form and the store

help menu Store
'template. doc! Displays the form template Store
Tprint.doc! Displays the print form Print
'delete. doc! Displays the delete form Delete
'exit,. doe! Displays the exit form and the BYE screen Exit

- 24 -

When the user creates a form in the Create module, a form mapping file is
created. This file consists of records of 75 characters fixed length string (max-
imum records is 16). The file name is the form name with an extension '.map' and
is a temporary file until the user creates the form template for it. In the
Modify module, the user retrieves the form mapping file and displays it on the
screen to modify and update this file. When the user stores the field types into
a form to create a form template in the Store module, a form template file is
created. This file consists of 24 fixed length records consisting of the field
number (2 digits), the field location (2 digits for X axis, 2 digits for ¥ axis),
the field type (1 character), the field length (2 digits), and the field content (
a string of 15 characters). The file name is the form name with an extension
'.tmp', Thus, after storing the form, the system has two files for each form :
the form mapping file and the form template file. In the Print module, the user
displays the form mapping file on the screen or prints this file (i.e., the form)
on the printer. When the user deletes a form in the Delete module, the form map-

ping file and the form template file are deleted at the same tiume.

3.1.2 Main Module

The main module consists of six submodules : Create(C), Modify(M), Store(S3),
Print(P), Delete(D), and Exit(E). The user is given the choice of six different
functions, each of which causes a different module to be called to perform a func-
tion, Except for the exlit function which allows an exit of the system, other
functions can be performed as many times as desired by entering the appropriate

keystroke.

The CREATE function allows the user to create a new form. The MODIFY func-
tion allows the user to modify an existing form. The STORE function allows the

user to store field type of each field on a form to create a form template. The

- 25 -

PRINT function allows the user to print out a hard copy of a form or display it on
the screen. The DELETE function allows the user to delete the form and the form
template from the system. The EXIT function allows the user to exit and stop the

systen,

Figure 3.1.2 depicts the flow chart of the main module, Once the system
starts, the main module displays the main menu on the screen (See Figure 2.0.2)
and waits for the command to continue the system. These commands are : 'C' (go to
the Create Module), 'M' (go to the Modify Module), 'S' (go to the Store Module),
P' (go to the Print Module), 'D' (go to the Delete Module), and 'E' (go to the
Exit Module). Each module performs different functions as was mentioned in the
previous paragraph. Upon finishing any one of modules : create, modify, store,
print, and delete, the system returns to the main menu for another command. Only

the exit module can exit and stop the system.

(START]

MAIN
----------------------- MENU
|
|
|
| COMMAND
| ?
!
I S S .
| c M s P \LD ‘ E
| .
{ CREATE MODIFY | | STORE | [PRINT DELETE EXIT
! MODULE MODULE | | MODULE ‘ MODULE MODULE MODULE
|
i
!

(STOP)

Figure 3.1.2 Main Module Flow Chart

- 26 -

3.2 Create Module

If the user selects command 'C' on the main menu, the create module (See Fig-

ure 3.2.1) 1is entered. The create module which consists of four procedures:

screen _display, help menu, check form name, and create form.

|CREATE |
{MODULE|

————— - - — —— -

ISCREEN ! | CHECK |
|DISPLAY /| |FORMN AME |
| |
| HELP | | CREATE |
| MENU | ! FORM !

Figure 3.2.1 Create Module

The screen display procedure displays the create form area on the screen, and

asks the user whether the help menu is needed. If the user needs the help menu,

the system executes the help menu procedure. The check form name procedure checks

the form name that the user types to see whether it is unique form to the system.

If the form name does not exist, then the create form procedure lets the user

create the form. The Pseudo code for this module is as follows :

START
screen display

IF help needed THEN
help menu
command
IF command = return to main menu THEN

go to END
ENDIF

ENDIF

REPEAT

= BT =

type formname

check formname
UNTIL unique formname
REPEAT

create form
UNTIL char = '#!'
mapping form
END

Figure 3.2.2 depicts the flow chart of the create module, When the system

enters the create module, the create form area (See Figure 3.2.3) is first
displayed on the screen, The system waits for the reguest for help menu. An
answer of 'N' continues the create form process; an answer of 'Y' displays the
help menu (See Figure 3.2.4). The create form area and the create help menu are
declared as the text file 'create.doc' which is read and displayed on the screen

by this module. If the help menu is selected, the user will be given two choices

of commands, 'R' to return to the main menu or 'C' to continue the create module.

The create form area is constrained to 75 characters by 16 lines, due to one
display screen for a form. The user has to type in the form name (maximum 15
characters) at the cursor position for the form name. A function ‘'exist! checks
whether the form name exists in the system. If it does (i.e., the form name is not
unique), the system displays an error message and lets the user type another form
name. The process is repeated until an acceptable form name is found, or until
three attempts have been made. When the form name is acceptable the cursor moves

to the first line of the create form.

Since the system needs a delimiter to identify the right boundary of a field
name, the user has to type a ':' after each field name. The field length is
specified by the number of underscores typed after the delimiter. A& space must be

typed after the desired number of underscores, otherwise a default length of 10 is

- 28 -

® TYPE & CHECK FORM NAME

ALLOWS ONLY 3 CHANCES
e====3 CHECK K—=-----
FORMN AME
ERROR
MESSAGE
Y
——-

%8 CREATE FORM :

& N
| (1) FIELD NAME FOLLOW ':°
(2) FIELD LENGTH COULTED BY
CREATE NUMBER OF UNDERSCORLS
| === FORM (3) FIELD LENGTH FOLLOW A
‘ SFACE
(4) ®

: END OF CREATION
4
MAPPING

&

@: MAIN MODULE

Figure 3.2.2 Create Module Flow Chart

- 29 -

#% FORM CREATE #% |
FORM=-NAME : |
]

Do you need help (y/n) ? __

|
!
|
|
|
!
!
l
|
|
|
|
|
|
II

{a. Field name must be followed by ':'. b. Field length counted by underscores|
{and followed by a space. c¢. To terminate the creation,type '#' on a new line.|

Figure 3.,2.3 Create Form Display

8% FORM CREATE HELP ##%
BEREERR AR RRR RN RN R U R AR

(1) First fill in the name of the form you are creating. It must be
a unique form name to all other forms in the system.

(2) You can create any kind of form on the FORM CREATE AREA, that is,
75 characters X 16 lines area.

(3) A ':* must follow all FIELD NAMEs. The FIELD LENGTH counted by
underscores length, and it must be followed a space.

(4) When you finish the form and want to exit the CREATE MODE, type
'#' on a new line of the screen.

(5) After you exit the create form module, you can print the form out
or you can store the form into system or both.

COMMAND : (C-CONTINUE CREATE FORM R-RETURN TO MAIN MENU)

—— e — e s S e ——- e —— T —— —— —r— —— —— — i —

Figure 3.2.4 Create Form Help Menu

- 30 =

given. To terminate the creation of a form, the user types a '®*' on a new line of
the screen. The system assigns a file as the form mapping file for the created
form, The file pame is the form name that the user types 1in with an extension
' .map'. This file is a temporary file until the user stores the form to the sys-

tem,

3.3 Modify Module

If the 'M' command is selected on the main menu, the modify module (See Fig-
ure 3.3.1) is entered. The modify wmodule which consists of five procedures:

screen _display, help menu, check form _name, retrieve form, and modify_form.

| MODIFY |
| MODULE |
|
| ! '
| SCREEN | | CHECK | | MODIFY |
IDISPLAY /| |FORMN AME | ! FORM !
| |
| HELP | |RETRIEVE!
| MENU | | FORM |

Figure 3.3.1 Modify Module

The screen _display procedure displays the form area on the screen, and asks
the user whether the help menu is needed. If the user needs the help menu, the
system executes the help menu procedure., The check form_name procedure checks the
form name that the user types to see whether it exists in the system. The
retrieve_form procedure retrieves and displays the acceptable form. The

modify_form procedure allows the user to modify the form.

Figure 3.3.2 depicts the flow chart of the modify module. As the system

- 3T -

enters the modify module, the form area (See Figure 3.3.3) is displayed on the
screen. The system waits for the request for help menu. An answer of 'N' contin-
ues the modify form process; an answer of 'Y' displays the help menu (See Figure
3.3.4). The form area and the modify help menu are declared as the text file
"modify.doe' which is read and displayed con the screen by this module. If the
help menu is selected, the user 1s given two choices of commands: 'R' to return to
the main menu or 'C' to continue the modify module. First, the user has to type in
the existing form name at the cursor position for the form name. The function
'exist! checks whether the form name exists in the system., If the form name is
not in the system, the system displays an error message and allows the user to
type another form name, The process is repeated until an acceptable form name is
found or until three attempts have been made. When the form name is acceptable,

the form is retrieved and displayed on the screen.

In the modify form process, a line editor is provided to allow modification
of the form 1line by 1line. At the end of each line, the system asks for the
status. The following symbols are used : 'E' to specify the end of modification;
"A' to add a new line or lines at the end of the form; 'I' to insert a new line or
lines before the current line (the new line will overwrite on the original line,
but the original line will not be deleted); 'D!' to delete the current line; 'Y' to
change the current line (the user has to retype the whole 1line); and 'K' or
"return' to leave the current line unchanged. When 'E' is typed, the system asks
the user whether the modification is finished. An answer of 'N' causes the modi-
fied form displayed on the screen again to allow the user to verify the modifica-

tion., An answer of 'Y' updates the form mapping file for the modified form.

- 32 -

qrm=mm-- ~3(RETRIEVE
FORM

& 4

MODIFY
s====3 FORM

MAPPING

- 33 =

% TYPE & CHECK FORMNAME

ALLOWS ONLY 3 CHANCES

%% MODIFY FCRM USE SYMBOLS :

(1)
(2}
(3)
(4)
(5)

(6)

E : END OF MODIFICATION
D : DELETE CUREENT LINE
I : INSERT LINE(S)

A : ADD LINE(S)

Y : CHANGE CURERENT LINE
N OR RETURN : KO CHANGE

@: MAIN MODULE

Figure 3.3.2 Modify Module Flow Chart

I #%# PFORM MODIFY ##
]
]

Do you need help (y/n) ? ___

ISTATUS : E - end of modify, D - delete line. I = insert new line(s) before

Figure 3.3.3 Meodify Form Display

#* FORM MODIFY HELP @ #%
EREREANERE NSRS RENRR AR

(1) First f£i11 in the name of the form you are modifying. It must be
a form name which is already in the system.
(2) The system will retrieve the form on the screen.
(3) The form will be modified line by line on the screen. Use symbols:
'E' : no more change to the end of the form.
'D' : delete the current line of the form.
'I' : insert new line(s) after the line of the form.
'A' : add new line(s) after the the last line of the form.
'N' or ‘return' : no change on the current line of the form.
'I' : change the current line of the form. Please type one
character by one character or press the 'return' for
each character to the whole line.
(4) After you get out of the modify form module, you can print the form
out or you can store the form in the system or both.

L —

! COMMAND: (C-CONTINUE MODIFY FORM R-RETURN TO MAIN MENU)

Figure 3.3.4 Modify Form Help Menu

« 3 =

3.4 Store Module

If the user selects command 'S' on the main menu, the store module (See Fig-

ure 3.4.1) is entered. The store module which consists of six procedures:
screen display, help menu, check form, retrieve_form, store_ form, and
form template.
| STORE |
| MODULE|
--_--T-_-
ISCREEN | | CHECK | | STORE |
|DISPLAY | | FORM | { FORM |
| RELP | |RETRIEVE] | FORM |
| MENU | | FORM | {TEMPLATE]
Figure 3.4.1 Store Module
The screen_display procedure displays the form area on the screen, and asks

the user whether

the help menu is needed.

If the user needs the help menu, the

system executes the help menu procedure. The check form procedure checks whether

the form exists in the system. If the form exists then the retrieve form pro-
cedure retrieves and displays the form on the screen. The store_form procedure
stores each field type of the form in the system. If the user asks for visually
checking the form template then the form template procedure displays the form tem=-

plate on the screen.

Figure 3.4.2 depicts the flow chart of the store module. When the system

enters the store module, the form area (See Figure 3.4.3) is displayed on the

screen. It then waits for the request for help menu. An answer of 'N' continues

- 35 -

the store form process; an ansWwer of 'Y' displays the help menu (See Figure
3.4.4), The form area and the store help menu are declared as the text file
'store.doc' which is read and displayed on the screen by this module. If the help
menu is sSelected, the user is given two choices of commands, 'R' to return to the

main menu or 'C' to continue the store form module.

In the store form process, the user first is asked whether the current form
is going to be stored. An answer of 'Y' causes the current form to be displayed
on the screen. Otherwise the user is asked to type in the name of the form. The
function ‘'exist' checks whether the form exists in the system. If it does not
exist, the system displays an error message on the screen and returns to the main
menu. If it does exist, the form is displayed on the screen and the system asks
for the field type for each field on the form. The user may use one of the fol-
lowing symbols : A, N, U, R, C, and S. 'A' specifies an alphanumeric field; 'N'
specifies a numeric field; '0' specifies an unchangeable field; 'K' specifies a
retrieved field; 'C' specifies a calculated field; and 'S' specifies a signa-

ture field.

In the process of storing a field type, the system checks the <field length.
If the field length has the default length of 10 (due to the underscores was not
followed by a space for delimiter use when the form was created), the user is
asked whether he wants to change the field length. If the user wants to change it
then gives the new field length, otherwise the length is set to 10. When the user
finishes storing a form, a form template file is created. The file consists of 2§
fixed length records comsisting of the field number (2 digits), the field location
(2 digits for X axis, 2 digits for Y axis), the field type (1 character), the
field length (2 digits), and the field content (a string of 15 characters). The

file name is the form name with an extension '.tmp'. After storing the form, the

- 36 -

CHECK
FORM

ey

RETRIEVE

:

: MAIN MODULE
: CONTINUE

Figure 3.4.2 Store Module Flow Chart

- 7 =

1
N
-y~ ERROR = -)@
MESSAGE
Y

FIELD TYPE :

(1
(2)
(3)
(4)
(5)
(6)

WO @Dma=ie

¢ ALPHANUMERIC

¢ NUMERIC

: UNCHANGEABLE

: RETRIEVE FROM DB
: CALCULATED FIELD
¢ SIGNATURE FIELD

Do you need help (y/n) ?

FIELD TYPE: A

alphanumeric N
retrieved c

unchangeable

numeric 0
S signature

calculated

R

Figure 3.4.3 Store Form Display

- - — D S

(2213222222212 2122222 21F]

#% FORM STORE HELP LA
RREARARRAAR ARSI R NNRI DR
(1) The system will retrieve the form and display it on the screen.
(2) The form will be stored field by field, and the field type has to
be assigned by the user, using the symbols as belows :
'A' : alphanumeric variable.
'N' : numeric variable.
g unchangeable field.
'"R' : retrieve from other data base. Requires the file name for
retrieving.
'C' : calculated from others fields. Requires the formula for
this field to calculate,
15" ¢ signature field.
(3) The field length will be calculated automatically by underscores
length.
(4) After you exit the store form module, you can check the field tyges
of the stored form.

e

T T S T S S S S . S D S S S S - -

COMMAND: (C-CONTINUE STORE FORM R-RETURN TO MAIN MENU)

Figure 3.4.4 Store Form Help Menu

= 3 =

system has two files for each form : the form mapping file and the form template
file, At last, the user is asked whether he wants to check the form template. An
answer of 'N' returns the system to the main menu; an answer of 'Y' causes the
form template which ineluding each field name, field type, field length, and field
content (only 'R' and 'C' field type have filled in for retrieving file name and
formula) to be displayed. The user may then hit any key to return to the main

menu.

3.5 Print Module

If the user selects the command 'P' on the main menu, the print module (See
Figure 3.5.1) is entered. The print module which consists of four procedures:
screen display, check form, hard _copy, and display_form. The screen display pro-
cedure displays all of the needed messages on the screen. The checl form procedure
checks whether the named form exists in the system. If the form exists then the
hard copy procedure prints out the form on the printer or the display_form pro-

cedure displays the form on the screen.

| PRINT |
| MODULE/!
|
|]
|SCREEN | | CHECK |
|DISPLAY| | FORM |
|
|]
| HARD | IDISPLAY |
| COPY | | FORM |

Figure 3.5.1 Print Meodule

- 39 -

Figure 3.5.2 depicts the flow chart of the print module. At the start of the
print module, Figure 3.5.3 is displayed on the screen and asks the user whether
the current form is to be printed or displayed. If the current form is not to Gte
printed or displayed, the system proceedzs to ask for the name of form to be
printed or displayed. If the named form cannot be found, the system displays the
message "The form can not be found !", and returns to the main menu. Otherwise
the system asks the user, "Do you want it to be printed or displayed (P/D) ?" An
answer of 'P' cause a hard copy of the form to be printed. An answer of 'D' causes
the form to be displayed on the screen (See Figure 3.5.4), When the system exits

the print module, a return to the main menu occurs.

SCREEN
DISPLAY

PRINT
FORM

|
@ @: MAIN MODULE

Figure 3.5.2 Print Module Flow Chart

- 40 -

— . —— . e iy —— —— —— e e ——— —

2221322222222 22222 2R

#% FORM PRINT #*=
SERRSREIRNENNNTRRRNRED

Is the current form (sample) to be printed or
displayed (y/mn) ? N

Enter the name of form to be printed or displayed ? address

Do you want it to be printed or displayed (P/D) ? D

Figure 3.5.3 Print Display

&% FORM DISPLAY ##

Name:
Address:
City: State: Zip:

%% Please hit any key to return to the main menu |

Figure 3.,5.4 Form Display

- 41 -

3.6 Delete Module

If the command 'D' is selected on the main menu, the delete module (See Fig-
ure 3.6.1) is entered. The delete module, which consists of three procedures:

screen _display, warning display, and delete form.

| DELETE |
| MODULE |
|
.y
1]
ISCREEN | IWARNING |
{DISPLAY] |DISPLAY |
- - - ----—E—---
| DELETE |
| FORM |

Figure 3.6.1 Delete Module

The screen _display procedure displays the needed message for the delete
module, The warning display procedure displays the confirmation of the decision.
If the user confirms to delete the form then the delete form procedure deletes the

form and the form template from the system.

Figure 3.6.4 depicts the flow chart of the delete module. At the start of
the delete module, Figure 3.6.2 is displayed on the screen. Before a form being
deleted, the user is given an opportunity to confirm the decision (See Figure
3.6.3). If the user answers 'N' then the system returns to the main menu. If the
user answers 'Y' then the delete form command erases the form and the form tem-
plate from the system forever. After deleting the form, a return to the main menu

Qeceours.

- 42 -

— e —— e ——— — e e —em e TEAE EEEE S RS YRR W T ———

FERENTEREERIRFRFAIRRRES

#% FORM DELETE @ ##
FREEERRREEESERFERE RN

Enter the name of form to be deleted 7 testform

#% The form can not be found ! ##

Figure 3.6.2 Delete Display (1)

—— e E—— —— —— S i S e S M v e e e A e

#% FORM DELETE &%
ERERESESRERASRERRNRRRR

The form will be erased PERMANENTLY,
Enter Y to confirm you wish to DELETE, or

enter N if you changed your mind.

The answer :

Figure 3.6.3 Delete Display (2)

- UT -

{ START |

SCREEN
DISPLAY

TYPE
FORM
NAME

WARNING
DISPLAY

DELETE
FORM

@: MAIN MODULE

Figure 3.6.4 Delete Module Flow Chart

3.7 Exit Module

If the command 'E' is selected on the main menu, the exit module (See Figure
3.7.1) 1is entered. The exit module which consists of two procedures: check store
and BYE display. The check store procedure checks whether the current form has
been stored in the system. If it has not been stored, a warning message to the

user, The Bye display procedure displays 'BYE' on the screen.

Figure 3,7.2 depicts the flow chart of the exit module. The exit module con-
tains codes to check whether the form has been stored. If it has not been stored
yet, the system provides the user an opportunity to store the form before termina-

tion (See Figure 3.7.3). If the user answers 'N' then the system returns to the

- b4y -

main menu. If the user answers 'Y' (or the current form has been stored before

exiting) then the system displays "BYE, FORM EDITOR SYSTEM" (See Figure 3.7.4) and

exits the system.

| EXIT |
IMODULE |

| CHECK ! | BYE |
| STORE | IDISPLAY !

- — - —

Figure 3.7.1 Exit Module

BYE
DISPLAY

Figure 3.7.2 Exit Module Flow Chart

- 45 -

FORM EXIT

FEFERRERAREZARRERERERES

YOU ARE ABOUT TO EXIT THE FORM EDITOR SYSTEM !

You have not STORED what you were creating or

modifying,

Enter Y to confirm that you do not want to store
the form or N for another opportunity to store.

The answer

t X

Figure 3.7.3 Exit Display

AR R RN R R R AR N AR R RN AN TR AR R R A RE NN NN R RHC N FEN RSN USROS

SEREREREEER
L] &%
L1 L 2]
L]] &8
FERERARREER
&% #%
&8 &8
&% L
FEESUTRENES

FORM

as
11
8
¥ ®
R
1]
1]
1
1
EDITOR

ERARTERTELS
&%
£ 2]
L]]
ERRBERAEFRT
&
®%
8
ERRRERETERR

SYSTEM

Figure 3.T.4 BYE Display

- 46 -

WM A MW M e sle 3 M ol e o e oo Ml ske e e R Mo

R R A I RN NN R R R R R R R R B RN E R NN NN R RN N F IR F R AR RN RSO G SR AR RTINS

CHAPTER 4

IMPLEMENTATION
4,0 Introduction

- This Form Editor System was implemented on the Columbia Data Products (CDP)
Multi-Personal Computer (MPC) using the TURBO Pascal language. The standard MPC
system is comprised of double sided (40 data track per side), double density, 320K
disk drives (5 1/4-Inch) to handle soft-sectored diskettes. The disk operating
system(s) provided by CDP are compatible with the IBM Personal Computer. The MPC
can execute a variety of high-level languages under CP/M, MS/DOS, or MP/M. The
System was implemented using Pascal, a general purpose and high level language,
because it would be easier to modify the system in the future and to move the sys-
tem from its present form to a more intelligent system if it is written in a high

level, and presumably, more portable language.
4,1 Programming Language

Pascal is a structured programming language developed in the early 1970s as a
language for teaching modern techniques (e.g., structured programming) in software
development. It is characterized by strong procedural and data structuring capa=-
bilities. It has been implemented ¢n computers of all sizes and shows particular

promise as a development language for microcomputer application.

TURBO Pascal closely follows the definition of the Standard Pascal as defined
by K. Jensen and N, Wirth in "The Pascal User Manual and Report”, There are two
additional advantages ¢f using TURBO Pascal for this-System. One is that the com-
pilation time 1is faster than other Pascal Compilers for microcomputer; the other
is that some built-in procedures and functions, such as screen related procedures

and string functions which do not exist in Standard Pascal, were used to increase

- 47 -

the versatility of the System.

The following is to list the built=in procedures or functions of TURBQO Pascal

that do not exist in standard Pascal and were used in the Form Editor System.

1.

6.

ASSIGN (Filevar, Filename)
The Filename is assigned to the file variable Filevar, and all further opera-

tion on Filevar will operate on the disk file Filename.

CLRSCR
The function clears the screen and places the cursor in the upper-left-hand

corner, It is used before the next screen is displayed.

CONCAT (Str1, Str2 {Strn})

The result is a string which is the concatenation of the arguments in the same
order as they are specified, This function is used to have an extension con-
nected with a form name in the Form Editor System, and the user just types in

the form name,

COPY (Str, Pos, Num)
The function returns a string containing Num character from Str starting at
position Pos. It is used to read nine text files for screen display. Read the

text file until it returns a mark '.PA' which means one whole screen display.

DELAY (Time)

The procedure creates a loop which runs for approximately as many milliseconds
as defined by its argument which must be an integer. This procedure is used
for displaying message on the screen so that they remained a short period of

time before being cleared.

ERASE (Filename)

- 48 -

10.

11.

12.

The procedure is used in '"Delete Function' of the System to erase the existing

disk file associated with Filevar,

GOTOXY (Xpos, Ypos)
The procedure moves the cursor to any addressable point on the screen. It is

used for displaying message, for input routines etec.

HALT

The procedure is used to exit the Form Editor System from the screen display to

MS=DOS system,

KEYPRESS

The function is used to check if a key has been pressed at the console.

LOWV IDEOC

The function sets the screen to the video attribute defined as 'end of
highlighting’ in the installation procedure, i.e., 'dim' characters.
Meanwhile, highvideo is the '"normal' screen mode. 1In the System, highvideo is

the yellow color, and lowvideo is the blue color.

POS (0Obj, Target)
The function scans the string target to find the first occurrence of Obj
within Target. If the pattern is not found, it returns 0. This function is

used to define the field length, field location etec.

RENAME (Filevar, Str)
The disk file associated with Filevar is renamed to a new name given by the
string expression Str. This procedure is used in "Modify Function' to have a

new form instead of the old form.

13. UPCASE (Char)

- 49 -

The function returns a capital character. Whatever the user inputs the char=
acter for command and answer in the Form Editor System which will be

transformed into capital character.

4,2 Coding

The System consisted of 869 lines of the main program of source code (See
Appendix B) which included a few statements of internal documentation, and occu-
pied 20,780 bytes of disk file memory. All the screen displays in the System are
declared as the text files, The file is read line by line each line of which is a

string of 80 characters, There are nine text files in the System as follows :

File Name Line Byte
'init.doc! hg 3858
*menu. doc? 26 1690
'create, doc! T7 5892
'modify.doc! 77 5892
*store. doc! 77 5892
'template. dog’ 27 1996
'print.doc! 50 3778
tdelete. doc! 48 3619
'exit.doc! 49 3698
TOTAL 480 36615

TURBO Pascal supports the separation of screen display from the main pro-
gram, They are linked with the main program prior to execution., This is useful

when creating a program which utilizes many screen displays for the menu display.

4.3 Extent of Implementation

In a form based system, a user defines a form by creating a form template.
Once the form has been defined users may create form instances by 'filling in' the
form template. The form instances will be stored into a data base, which will be
used for transmission. To interface to a form based system, the Form Editor System

is an important supporting component as it provides a facility for creating a form

- 5O -

template. The form template is a definition of the form, describing the field
type, field length, and the field content of a form. Once the form template has
been stored, the user may dinput the data or information to create many form

instances for the form processing that is not inecluded in this implementation.

The Form Editor System was designed to allow the wuser to create a form,
modify a form, store the field types to create a form template, print or display a
form, delete the form and form template in the system. Therefore, the implementa-

tion is centered on creating a form and a form template for later use.

4.4 Testing

The Form Editor System is highly dependent on the form based system which is
currently not implemented. This prevents the complete testing of the System, hou-
ever, a test program has been utilized to verify its consistency, completeness,

and correctness and to examine its behavior during execution.

First, we test the form editing. Actual examples of form editing in Create,
Modify, and Store functions have been presented in Chapter 2. When the user
creates a form, a form mapping file created in the system. We use the print form
function to display the form or the modify form function to retrieve the form on
the screen to test the created form. When the user modifies a form, a nes form
mapping file is created and replaces the old form mapping file. Using 'E' symbol
for modification in this module, the user can verify the modify form process to
prove its correctness, When the user stores a form to create the form template
for later use, the testing of form template is discussed in the next paragraph.
When the user prints or displays a form, the hard copy is the same as the screen
display, When the user deletes a form (both the form and the form template), it

can no longer be retrieved from the System., Therefore, the form editing can sup=-

- 51 =

ply electronic forms instead of paper forms,

Second, the test program was used to check the form template, It exercises
checks on the field length, and then the field type. When the user types in the
field data is too long for the defined field length. It displays an error message
and lets the user input the data again. When the field type is alphanumeric or
numeric, it checks the field type after the user typing the value for this field.
If the 1input data is wrong field type, it displays an error message and lets the
user input data again. When the field type is unchangeable or signature, it shows
the field type message and lets the user fill in the field. Their results should
be implemented in a form processing system. When the field type is retrieved or
calculated, the field content contains the name of the retrieving data file or the
formula for calculation. The result of calculation will be displayed on this
field automatically. The retrieved data from the named data file {(which is
designed for testing too) also will be displayed automatically. Thereflore, the

form template in this system is feasible for other form based systems.

= B8 o

CHAPTER 5

CONCLUSION

The preceding chapters describe a form editor system which allows the design
of a form and the insertion of field types and semantic information into a form to
create a form template for later use. The development phase for a system consists
of preliminary design, detail design, coding, and testing. The first two steps
have been presented in Chapter 3; the last two steps have been presented in

Chapter 4.

The System has been tested and actual examples have been presented in Chapter
2. This Form Editor System has proved that implementation of form-based concepts
on a microcomputer without hard disk storage capability is quite feasible. The
System appears to exhibit : (1) Simplicity - Functions are basically based on just
a few operations : create, modify, store, print, and delete. (2} Independence -
Each function in the system is independent. (3) Uniformity - The form in the Sys-
tem is uniform to any function. (4) Understandability - The system is user=-
friendly, and is understandable to a non-technician to operate it. (5) Feasibil-

ity - The form template in the System is feasible for form-based systems.

This Form Editor System is an important supporting component to a form=-based
system as it provides a facility for creation and storage of electronic forms and
form templates, but it does have some limitations which should be the subject of

future research work, Among these limitations are:

(1) In the create function, the users can design a form with a limited form area.
The form can not be scrolled, it is a single-paged form within an area of 75 char-

acters by 16 lines.

(2) One field name corresponds to one data item only. The main reason for this

- 53 -

restriction was to aveoid difficulty of displaying arbitrarily repeating groups

under the form template.

(3) The field name must be specified by a colon, otherwise it will be skipped.

(4) The field length is specified by the number of underscores and follows a space
for the delimiter |use. If the user forgets the space, the System provides a

default length for the field length.

(5) The modify function uses line editor to modify the form. To modify a form
line by line is inconvenient for the user. Also the insert and add functions for
the line overwrites the original line (the original line will not be deleted).

The change line has to be retyped the whole line.

(6) The store function is rudimentary. There are only six field types allowed;
they are Al phanumeric(4), Numeric(N), Unchangeable(U), Retrieved(R),
Calculated(C), and Signature(S). And only one field type is allowed for each

field on a form.

(7) Simple calculation involves only extensive or total field items. The formula

must be specified for each field for which it is used.

(8) The System does not let the user input data to create the form instance.

(9) The form template file in the System should be included the form mapping file.

In summary, the future work needs to be done on the following :
. Expansion of the form size.
. Scrolling the form as up-down, left-right, and the window function.
. More flexibility for allowable forms.

+ Fields should be able to be compound valued or repeating group values.

o Bl

. More field types and combined field types can be allowed.

« More complex calculation could be carried out.

. The formula can be specified once and applied to several fields.

o« The form mapping file and the form template should be able to be combined into
one file after store function.

. Connect to other work stations to make an intelligent form.

The broad objects of the Form Editor System have guided the ongoing develop-
ment, Actual user experience and feedback with the current system have been an
invaluable means of validating both the implementation and presentation tech=-
niques. More experience with the System will uncover new areas for potential

improvement.

- 55 =

10.

11.

12.

13.

14.

15.

16'

BIBLIOGRAPHY

Barcomb D. "0ffice Automation : A Survey of Toocls and Technology," Digital
Equipment Corporation, 1981,

K1lis, C. A., and Nutt, G, J. "Office Information Systems and Computer Seci-
ence," ACM Computing Surveys, Vol. 12, No. 1, March 1980, PP. 27-60.

Embley, D. W. "A Form-Based Programming System," Department of Computer Sci-
ence, University of MNebraska, October 1980, PP. 1-37.

Gehani, N, H. "The Potential of Forms in Office Automation,"™ IEEE Transac-
tions on Communications, Vol. COM=30, No. 1, January 1982, PP. 120-125.

Hammer, M., Howe, W. G., Kruskal, V. J., and Wladawsky, I. " A Very High
Level Programming Language for Data Processing Applications,™ Communications
of the ACM, Vol. 12, No. 11, November 1977, FP. 832-840.

Hammer, M., Kunin J. S., Schoichet S. "What Makes a Good User Interface 7"
The Fourth Annual Office Automation Conference, February 1983, FP. 121-130.

Ladd I., and Tsichritzis, D. "An Office Form Flow Model," National Computer
Conference, 1980, PP. 533-540.

Pressman, Roger S. "Software Engineering : A Practitioner's Approach,"
McGraw-Hill, Inec. 1982.

Tsichritzis, D. "OFS : An Integrated Form Management System," Computer Sys=-
tems Research Group, University of Toronto, 1980, PP. 1-17.

Tsichritzis, D, "Form Management," Communications of the ACM, Vol. 25, No.
7, July 198, PP, 453-4T78.

Tsichritzis, D., Rabitti F. A., Gibbs S., Nierstrasz 0., and Hogg J. "A Sys-
tem for Managing Structured Messages," IEEE Transactions on Communications,
Vol. COM=30, No. 1, January 1982, PP. 66-73.

Zloof, M. M., and de Jong, S. P. "The System for Business Autcmation (SBA)
Programming Language," Communications of the ACM, Vol. 20, No. 6, June 1977,
PP. 385-396.

Zloof, M. M. "Query-By-Example : A Data Base Language," IBM System Journal,
Vol. 16, No. 4, 1977, PP. 324-343.

Zloof, M. M, "Office-By-Example : A Business Language that Unifies Data and
World Processing and Electronic Mail,™ IBM System Journal, Vol. 21, No. 3,
1982, PP. 2T72-304.

IBM Disk Operating System Reference Manual, Microsoft, Inc., Boca Raton,
Florida 33432, 1983.

TURBO Pascal Reference Manual, Boralnd International Inc., 4808 Scotts Val-
ley Drive, Suite 1, Scotts Valley, CA 95066, 1983.

- 56 =

APPENDIX A

THE USER':S MANUAL

Table of Contents

Section Page

1.

2-

3.

9.

10.

Int!‘OductiOIl TP OB E B R BT REPF PRI P R PPN P TP FTFPTESRNTTO PSSRSO GRES 58

Starting the System ...cvvecrersesvecess § U R § ¢ 8 e 9 58

Ihe Main Menu 2 QST O CS PO T RFET NP P EFREIEE PSPPI TIETPPIRRPROERDS 59

CREATE FOBM FUnoBlon ..wswessseriesvens s svmesese s vimymae s s 59

MODIFY FORM Function ..ceicecesseccoccecsorassnenasanes i s o DO

STORE FORM Function s.ecesececes T TR, evevessenaes 62

PRINT FORM Function e.ceessecsssacs SR § b SO § 8 § SRR § 63

DELETE FORM PUnction ceswwwsssscomvinesss sesssasss s % e 64

EXTT FUunCLiOn eececesvescvncccssnssnscessrsssossnernesnaesonce 64

Error Message DirectOrY ecceccescesscscseseovacssscsosccsnassns 65

- 57 =

1. Introduction

Forms play a central role in the technologically advanced business world.
Day-to-day business activities generally involve the use of forms. This is a
reference manual for the Form Editor System, a facility designed to help you with

your form processing needs.

Forms can be thought of as texts which require certain values to be filled in
certain slots called fields. A blank form as we normally see it is called a form
structure and shall be referred to hereinafter simply as f'form'. To stcre a form
in this System, however, would require you to create what is called a form tem-
plate. This is done by specifying the field types on the form. The field type is
simply the entry of data type that goes into the field. Therefore, a form tem=-
plate is a definition of the form, describing the field type, field length, and
the field content (field content specifies the retrieving data file name for field

type 'R' or the formula for field type 'C'} of a form.

This System allows you to create a form, modify a form which was previously
created, store the field types to create a form template, print a form on the
printer, display a form on the screen, and delete the form and the form template
from the system. The System is 'user-friendly' and menu-driven, you should rarely
find yourself in need of going through the details in this manual. Refer to this
manual for starting procedures and for interpretation of command or message for
which you might not be sure of the meaning., An error message directory is pro-

vided in section 10.

2. Starting the System

To start the system, one has to follow four steps : (1) Connect a printer

with the computer, and turn on the power for both. (2) Put the system disk on 'A’

- 58 -

disk drive and load M3-DOS by entering the date and the time. (3) Put the working
disk on 'B' disk drive. (4) Type 'form' (the name of program) and hit the
'return' key. This will display the message, "WELCOME TO FORM EDITOR SYSTEM",
After the WELCOME display, the main menu will appear on the screen. From hereon,
the computer will be guiding you with questions. Answer the questions by typing
the letter corresponding to one of the answer options given. Capital and lower
case letters are both acceptable. Then, hit the return key to proceed. The fol=-

lowing sections describe the computer message and what they mean.

3. The Main Menu

The main menu allows you to specify what you want to do. You are given
access to one of six functions by simply typing the following letters. If any
other character is typed, the System will sound the bell twice as a warning, and
an error message " ** Sorry | It is a wrong command, Please try again ! #&n 4i1]
be displayed on the screen. After a correct command is given, the main menu will

be erased and the menu for the function you chose will appear.

Command Function
1ce Create a form within 75 X 16 area
™' Modify an existing form
130 Store the field types to create a form template
1pt Print a hard copy of form on the printer or
display it on the screen
'y Delete the form and form template
tE? Exit the system (the only command for quitting)

4, CREATE FORM Function

The System first displays the create form area on the screen; it then sounds
the bell and asks, "Do you need help (y/n) ?". If you answer 'Y', the help menu
will be displayed on the screen. At the same time, the following is displayed at

the bottom of the screen :

- 59 -

COMMAND :___ (C-CONTINUE CREATE FORM R~RETURN TO MAIN MENU)

This means you are to type 'C' or 'R' if you are through with the help menu. If
you type any other character, the system will sound the bell twice as a warning
and give the error message, " *%* Sorry! It is a wrong command, Please try again !!
&n, Type 'R' if you want to return to the main menu. If you type 'C' (or

answered 'N' to the first question), you may proceed with the create form process.

In the form creation process, the cursor first moves to the 'FORM=-NAME' posi=-
tion and waits for the name of the form that is to be created., After you type the
form name (maximum of 8 characters), the system checks whether it is unique to the
system, If it is not, the system will sound the bell twice as a warning and
display error message "#® Dyplicate form name, please use another form name |! ##n
on the screen. After the message, the cursor then goes back to the 'FORM-NAME'
position for another name to be entered. The system allows you three attempts to
give an acceptable form name. If you do not succeed after three attempts, the

system will return to the main menu.

It would be a good idea to sketch a draft of the form before starting. 211
you will need to do then would be to duplicate the image of the form on the
screen. In creating the form, be aware of the following : (1) A number of fields
can be put on the same line. (2) To get to the next line, hit the 'return' key.
(3) The field name must be immediately followed by a ':'. (U4) After the ':' type
the desired number of the underscores and a space(otherwise the length will be set
to only 10 underscores). (5) the maximum allowable field length is 60. When you
are done, type a '#' on a new line and the system will then return to the main

menu.

5. MODIFY FORM Function

- 60 =

Like the create form function, this function starts with a help menu. Please

refer to section 4 for details.

Once you are ready to proceed with the modification process, the cursor moves
to the 'FORM-NAME' position and waits for you to give the name of the form you
want to modify. After the form name has been typed, the system checks whether the
name exists in the system. If it does not exist, the system will sound the bell
twice as a warning and display the error message "#% Form is not found, please try
again 11 #®#%" opn the screen. After the message is displayed, the cursor will go
back to the '"FORM-NAME' position for you to enter another name. The system give
you three chances to give an acceptable form name. If you do not succeed after

three attempts, the system will return to the main menu.

After an acceptable form name has been entered, the system retrieves the
named form and displays it on the screen. The form can be modified line by line
only. At the end of each line, the system sounds the bell and waits for a com-

mand. You are givén the following options :

Command Meaning
TAY Add a new line or lines to the end of the form
1De Delete the current line
vIt Insert a new line or lines before the current

line (the new line will overwrite on original
line, but the original line will not be deleted)
'N' or <return> Make no change on the current line
'y Change the current line (type the whole line)
tE! End of the modification

- = e Y - T T - -

If you type the command 'E', the system will display the message "¥* Are you
finished the form modification (y/n) ? ", If you answer 'N', the modified form
will be displayed on the screen for verification. You may then repeat the modify-
ing procedure until you are satisfied. If you answer 'Y' then the system returns

to the main menu.

i B =

6. STORE FORM Function

This function starts with a help menu. Please refer to section 4 for detail.

Once you are ready to proceed with the store-form process, the system sounds
the bell and displays the message "Is the current form to be stored (y/m) 2". If
you answer 'Y' then you may proceed to store the current form. Otherwise the sys-
tem sounds the bell and displays the message "Enter the name of form to be stored
?" and waits for you to type in the form name. The system checks whether it
exists in the system. If it does not exist, the system sounds the bell twice as a
warning and displays the message "#% The form is not found !! #¥n and returns to

the main menu.

If the form exists, the system retrieves the form and displays it on the
screen. As the cursor moves to each field, the system will sound the bell and
display the message "#% What is the field type 2?". Use the following symbols to

specify the field type :

Sy mbol Meaning
TAY Alphanumeric
TN! Numeric

LRI Unchangeable
'R Retrieved
tct Calculated
s Signature

If the field type is 'R, the system will ask the question "## Retrieve from which
file ? ##" and wait for you to type in the name of the file. If the field type is
'C', the system will ask "®%* Please give the formula for this field = " and wait
for you ¢to type the formula for this field. The formula is expressed in term of
the other fields represented by ordinal number of fields on the form. The only

mathematical operators allowed are +, -, ¥, and /.

- 62 -

Before storing a field type, the system checks the field 1length, If the
underscores were not followed by a space when the form was created, the message
n"#% Field length not specified, length set = 10. Do you want to change the field
length (y/n) ?" is displayed. If you amswer 'l.', this field length is set to the
default field length of 10. If you answer 'Y', the system will ask you ™What is

the length 27,

When you have specified all the field types, the system will create a form
template. The system will sound the bell and display the message, "Do you want to
check the form template (y/n) ?" If you answer 'N', the system returns to the
main menu. If you answer 'Y', the system displays the form template which
includes the field name, field type, field length, and field content of each
field. The system will then sound the bell and display the message "##% If the
form template is not correct, please store the form again !!", and then return to

the main menu,

T. PRINT FORM Function

The system first displays the message "Is the current form to be printed or
displayed (y/n) ?". If you answer 'N' the system will display the message "Enter
the name of form to be printed or displayed ?" Type in the form name. The system
will check whether it exists in the system. If it does not exist, the system
sounds the bell and displays the message "The form is not found !" and returns to
the main menu. If it does, the system will display "Do you want it to be printed
or displayed (P/D) ?" If you want a hard copy, type 'P'. After printing the form
on the printer, the system returns to the main menu. If you want the form to be

displayed on the screen, type 'D'. To return to the main menu, hit any key.

- 63 =

8. DELETE FORM Function

The system first displays the message "Enter the name of form to be deleted
?" Once you have typed in the form name. The system will display a warning mes-
sage (in case you change your mind). Type 'Y' if you want to proceed with the

deletion. Otherwise, type 'N' the system then return to the main menu.

9. EXIT Function

Before exiting the system, the system first checks to determine if current
form has been stored. If the form has not been stored, the system displays a warn-
ing message to provide you an opportunity to store the form before exiting. Type
'N'* if you want to store the current form. The system then returns to the main.
Type 'I' if you want to exit the system. The system then displays the message,

"BYE FORM EDITOR SYSTEM" on the screen.

10. Error Message Directory

(1) ##* Duplicate form name, please use another form name !! ##

: When the user creates a form which exists in the system.

(2) #% Field length not specified, length set = 10] ##
: When the user stores a form, the field length is not followed

by a space for delimiter, the system gives a default length.

(3) ##% Form is not found, please try again 1! ##
: When the user retrieves a form for Modify and Store functions,

the system can not find the form.

(4) *% Sorry | It is a wrong command, please try again !l ##

¢ When the user requests a command which is wrong.

= Bl =

(5) #*#% The ending line of the form 1| ##

: When the user creates or modifies a form excess 16 lines.

(6) #% The form is not found |! ##

: When the user retrieves a form for Print function.

(7) #% The name is not acceptable, please type again |} #**
: When the user types in the form name which is up to 8 characters and

must be letters.

= 65 =

(BRI RN N RA RN RN E AR ERRNERARRARE)

(* FORM EDITOR SYSTEM MAIN PROGRAM B)
(FRREE RN RN RN R RN RN R SRR RRR R IR RN ERANRR)

program formeditor;

const
blankline = ' '
blank = ° P
type
ss = string[2];
nn = string[15];
mm = string[i0];
ms = string[60];
11 = string[75];
ls = string(80];
var

ch, bell : char;

q : file of 1l1;

h : text;

line : 11; 1line2: 1s;1

count : integer;

name, filename, flname : nn;
(# THE PROCEDURE FOR READING THE SCREEN DISPLAY FILE #)
procedure screendisplay;
begin

readln(h,line2);

repeat

writeln(con,line2);
readln(h,line2);

until (copy(line2,1,3) = '.PA') or eof(h);
end;
(®* THE PROCEDURE ACCEPTS THE COMMAND POSITION ¥)
procedure position(x,y:integer; var ch:char);
begin

gotoxy(x,y); read(kbd,ch);1

ch := upcase(ch);
end;
(* THE PROCEDURE DISPLAYS THE WRONG COMMAND MSSAGE #)
procedure errcorcommand;

begin
if ch in [* '..'"'] then
begin
gotoxy(10,21);
write(bell, bell);
write('#* Sorry | It is a wrong command, please try again !! ##1).
end;
end;

(* THE PROCEDURE DISPLAYS THE WELCOME SCREEN DISFLAY #)
procedure initial;
begin

assign{h,‘*b:init.doec?);

reset(h);

clrser; screendisplay;

delay(2000);

clrser; screendisplay;

- 66 -

elose(h);
end;
(% THE PROCEDURE DISELAYS THE MAIN MENU #)
procedure menu;
begin
assign(h,'b:menu. doec');
reset(h);
clrscr; screendisplay;
close(h); !
end;
(* THE PROCEDURE DISPLAYS THE HELP MENU FOR CREATE, MODIFY, ALD STORE }ODULES #)
procedure helpmenu(name:nn);
begin
assign(h, name);
reset(h);
clrscr; screendisplay;
gotoxy(10,10);
write(bell,'Do you need help (y/n) 2 ');
position(35,10,ch);
if ¢h = 'Y' then
begin
elrser; screendisplay;
repeat
position(16,23,ch);
case ch of
'C': begin clrser; screendisplay; end;
'R': begin clrser; close(h); end;
else errorccmmand; end;
until (¢h = 'C') or (ch = 'R');
end else
begin
gotoxy(10,10);
write(blankline); close(h);
end;
end;
(* THE FUNCTION FOR CHECKING WHETHER iLE FORM EXISTS Iii TLE SYSTEM ¥)
function exist(filen:nn): boolean;
var f:file;
begin
{$I-} assign(f,filen);
reset(f); {$I+}
if ioresult <> 0 then
exist := false else
exist := true;
end;
(* THE PROCEDURE CHECKS THE FORM NAME FOR CREATE, MODIFY, ALD STORE MODULES #)
procedure checkformname(ttype:char; var filename:nn; var count:integer);
var
flag : boolean;
message: ms;
i,3,ks1 : integer;
begin
if ttype = 'e' then
message := '#% Duplicate form name, please use another form name !! &#!

= BT =

else message := '*% Form is not found, please try again ! ##!;
if ttype = 'p' then
begin 1 := 10; J := 14; k := 48; 1 := g;
end else
begin 1 := 2; J :=10; k := 14; 1 := 3; end;
if ttype = 'e' then
flag := exist(filename)
ielse flag := not exist(filename);
while flag and (count < 3) do
begin
count := count + 1;
write(bell, bell);
gotoxy (i, j);
write(message);
gotoxy(k,1);
writeln(blank);
gotoxy(k,1);
readln(con, filename);
filename := concat(filename,'.map');
gotoxy (i, 3);
writeln(blankl ine,blank);
if ttype = 'e'! then
flag := exist(filename)
else flag := not exist(filename);
end;
end;
(®* THE PROCEDURE FOR CREATING A FORM #)
procedure createform(filename:nn);
var
X,¥ ¢ integer;
begin
assign(q,filename);
rewrite(q);
X :=3; y :1=5;
gotoxy(x,y);
readln(con,line);
while(copy(line,1,1)<> '#') and (y<20) do
begin
write(g,line);
y = y+1;
gotoxy(x,y);
readln(con,line);
end; close)q);
end;
(# THIS IS CREATE MODULE ¥)
procedure createmodule;
var
i,1,p : integer;
filename, ffname:nn;
namechar:string[1];
filelist:ms;
ok:boolean;
begin
filelist := 'abcdefghijklmnopqrstuvwxyzABCDEFGEIJKLM: OPQESTUVWXYZ';

- 68 -

i :=0; ok := false;
name := 'b:i:create.doc';
hel pmenu(name);
if ch <> 'R' then
begin
repeat
gotoxy(14,3);
readln(flname);
ffname := flname;
1 := length(ffname);
i =14+ 1;
namechar := copy(fframe,i,1);
p := pos(namechar,filelist);
if p = 0 then begin
gotoxy(10,10);
write('The name is not acceptable, please type again !!');
delay(2000);
gotoxy(10,10);
write(blankline);
ok := false;
end else
ok := true;
until (1 < 16) and (ok);
filename := concat(flname,'.map');
count := 0;
checkformname('c',filename, count);
if count < 3 then

begin
1l := pos('.,',filename);
1l :=1-=1;

flname := copy(filename,1,1);
createform(filename);
end;
end;
menu;
end;
(* THE PROCEDURE FOR RETRIEVINLG A FORM AND DIS:LAYILG IT ON THE SC; EEL *)
procedure retrieveform(filename:nn);
var
X,y : integer;
r : file of 1l1;

begin
filename := concat(filename,'.map');
assign(r,filename);

reset(r);
X = 3; y = b
while not eof(r) do
begin
y = y+1;
gotoxy (x,y);
read(r,line);
write(line);
end;
close(r);

- 69 -

end;

(# THE PROCEDURE FOR MODIFYING A FORM #)
procedure modifyform(filename:nn; var ok:boolean);

var
i,Js%,y ¢ integer;
f: file of 11;
fname : nn;
oldline, newline
finish : boolean;
begin
assign(q,filename);
reset(q);
fname := concat(flname,'.mmap');
assign(f, fname);
rewrite(f);

: 11,

ch 1= ' '; x :=3; y :=4; J :=0;
while (ch <> 'E') and (y < 20) do
begin
for i := 1 to 75 do
newline[i] := ' ';
yi=y+ 13

if not eof(q) then read(g,line)
else line := newlirne;
repeat
write(bell};
position(78,y,ch);
case ch of

'E' : begin
write(f,lire);
while not eof(q) do
begin read(q,lire);
A" : begin
write(f,line);
y =y + 1;

while not eof(g) do

write(f,line);

end;

begin read(g,line); write(f,line); y := y+1; end;

finish := false;

while (y < 20) and (finish = false) do

begin
gotoxy(x,y);
read(line);
write(f,line);
write(bell);
position(78,y,ch);
if ch = 'E’
then finish
else finisia :=
y i=y+ 1;
end;
if y = 20 then
begin
gotoxy(x,y);
lowvideo;
write(bell, ### The

- 70 -

= true

false;

endirg line of the form &#');

highvideo;
ch := 'E';
end;
end;
*I' : begin
oldline := line;
finish:= false; j:=y;
while (j < 19) and (finisk. = false) do
begin
gotoxy(x,y);
read(line);
write(f,line);
jJoi= 3+ 1
position(7&,y,ch};
if eh = 'I"
then finish := false
else begin
ch := 'I';
finisn := true; end;
end;
write(f,oldline);
end;
"Y' : begin
gotoxy(x,y);
readln(con,line);
write(f,line);
end;
"My 'N' : write(f,line);
'Dr s
end;
until ch in ['E','Y','N','D',"M, "A','I'];
end;
close(q); erase(qg); close(f);
rename(f, filename);
gotoxy(3,20);
write(blankline,blank);
gotoxy(3,20);
lowvideo;
write(bell,'®# Are you finis.ed the form nodification (y/n)
highvideo;
position(56,20,ch);
if ch = 'Y' then ok := true
else ok := false;
end;
(®* THIS IS THE MODIFY MOLULE #)
procedure modifymodule;
var
filename:nn;
l,i,x,y : integer;
ok : boolean;
begin
ok := false;
name := 'bimodify.doct;
helpmenu(name);

= T] =

7T

if ch <> 'R' then
begin
gotoxy(14,3);
readln(con, flname);
filename := concat(flname,'.map');
count := 03
checkformname('m' ,£ilename, count);
if count < 3 then
begin
whkile not ok do
begin
for i := 5 to 20 do
begin
gotoxy(3,1);
write(blankline,blank);
end;
= pos(',',filename);

flname := copy(filename,1,1);
retrieveform(flname);
modifyform(filename, ok);
end;
end;
close(h);
end;
menu;
end;
(¥ THE PROCEDURE FOR THE FIELD CCONTENT OF THE FORE. TEMPLLTE ¥)
procedure fieldcontent(typef: :char; content :nn);
var
message : 1ll;
begin
if typef = 'R’
then message :
if typef = 'C?
then message :
gotoxy(3,22);
write(bell,message);
gotoxy(3,23);
write('®#% Please hit any key to continue !!');
repeat
gotoxy(70,23);
until keypressed;
end;
(* THE PROCEDURE DISPLAY THE FORM TEMPLATE FOR CHECKING #¥)
procedure formtemplate(filename: nn);
type
fields = record
fno : integer;
fx : integer;
fy : integer;
ftype : char;
flength : integer;
finfo : nn;

concat('## Retrieved from [',content,'] ##');

concat('®#* The formula is [',content,'] ##!);

@ 79 -

end;
var
content : fields;
g : file of fields;
i,s : integer;
ff, fieldtype : nn;
begin
assign(h,'b:template.doec');
reset(h);
clrser; screendisplay;
gotoxy(14,3);
write(filename);
retrieveform(filename);
ff := concat(filename,'.tmp');
assign(g, ff);
reset(g);
while not eof(g) do
begin
delay(100);
gotoxy(10,10);
read(g, content);
lowvideo;
with content do
begin
case ftype of
YA' : fieldtype :
'N' : fieldtype :
10" : fieldtype :
'Rt : fieldtype :
'C' : fieldtype
13" : fieldtype
end;
delay(100);
s ;= fx =1;
for 1 := 1 to flength do
begin
S =8+ 1;
gotoxy(s, fy);
write(' ');
end;
EOton(fxp fy);
write(fieldtype,'[',flength,']");
if ftype = 'R!
then fieldcontent('R',finfc);
if ftype = 'C!
then fieldcontent('C',finfo);

'al phanumeric!';
"numerie';
'unchangeable!;
'retrieveaq';
'caleculated!';
'signature';

end;
delay(100);

end;
gotoxy(3,22);
write(bell,'®* If it is not correct, please store the form again !!');
gotoxy(6,23);
write('Please hit any key to return to the main menu !l 1');
repeat

- 73 -

gotoxy(70,23);
until keypressed;
highvideo;
end;
(# THE PROCEDURE FOR STORING A FORM #)
procedure storeform(filename:nn);
type
fields = record
fno : integer;
fx : integer;
fy : integer;
ftype : char;
flength : integer;
finfo : nnj;
end;
var
message : mm;
scent, lent, fxx,fyy,i : integer;
sfilename, finfo : nn;
ftype : char;
foum : ss;
content : fields;
g : file of fields;
ok : boolean;
begin
i := 0; sent := 0; 1lent := 0;
sfilename := concat(filename,'.tmp');
assign(g, sfilename);
rewrite(g);
filename := concat(filename,'.map');
assign(g,filename);
reset(q);
fyy := 4;
while not eof(q) do
begin
read(q,line);
scnt := pos(':',line);
lent := 0; fxx := 2;
fyy := fyy +1;
while sent <> 0 do begin
ok := false;
delay(1000);
i =1+ 1;
str(i:2,fnum);
content.fno := i
fxx := fxx + scnt + lent + 1;
content. fx := fxx;
content.fy := fyy;
message := concat('#* What is the [',frum,'] field type 2 ');
gotoxy(3,20);
write(bell, bell);
write(blankl ine,blank);
gotoxy(3,20);
lowvideo;

- Pl -

write(message);
highvideo;
repeat
position(fxx, fyy, ftype);
if ftype in ['A','N','U',"R','C",'S'] then
ok := true;
until ok;
case ftype of
"R' : begin
gotoxy(3,20);
lowvideo;
write(bell,'®## Retrieve from which file ? ##');
highvideo;
gotoxy(40,20);
read(finfo);
end;
'Ct : begin
gotoxy(3,20);
lowvideo;

write(bell, '## Please give the formula for this field = ');

highvideo;
gotoxy(47,20);
read(finfo);
end;
VAt N 0,8 finfo = ! '
end;
gotoxy(3,20);
write(blankline,blank);
content.ftype := ftype;
content.finfo := finfo;
delete(line,1,sent);
lent := pos(' ',line);
if lcnt = O then
begin
lowvideo;
write(bell,bell);
gotoxy(3,20);
write('## Field length not specified, length set = 10!');
delay(1000);
gotoxy(3,20);
write('Do you want to change the field length (y/n) ?2');
position(51,20,ch);
case c¢h of
'Y' : begin gotoxy(51,20);
write('What is the length ?2');
read(lent); end;
'N' : lent := 10;
end;
end;
content.flength := lent;
delete(line,1,1cnt);
sent := pos(':',line);
write(g, content);

end;

- 75 =

delay(1000);
end;
delay(1000);
close(q); close(g); close(h); clrser;
gotoxy(10,10);
write(bell);
write('Do you want to check the form template (y/n) ?2');
gotoxy(10,12);
write('The answer : ');
position(23,12,ch);
if ch = 'Y' then
formtemplate(flname);
end;
(* THE PROCEDURE FOR CHECK THE FORM IN THE SYSTEM #)
procedure checkformexist{filename:nn);
var ff:nn;
begin
ff := concatfilename,'.map');
if exist(ff) then
begin
flpame := filename;
gotoxy(14,3);
write(flname);
gotoxy(3,10);
write(blankline,blank);
gotoxy(3,12);
write(blankl ine, blank);
retrieveform(flname);
storeform(flname);
end else
begin
gotoxy (14,13);
write(bell,bell);
lowvideo;
write('®#% The form is not found !! ##1);
highvideo;
delay(1000);
end;
end;
(* THIS IS THE STORE MODULE ¥)
procedure storemodule;
var fname :nn;
begin
name := 'b:store.doe';
helpmenu(name);
if ¢h <> 'R' then
begin
gotoxy(6,10);
lowvideo;
write(bell,'Is the current form [',flname,'] to be stored (y/n) ? ');
highvideo;
repeat
position(70,10,ch);
¢ase ch of

- 76 -

'Y' : checkformexist(flname);
'N' : begin
gotoxy(14,12);
lowvideo;
write(bell,'Enter the name of form to be stored ?');
highvideo;
gotoxy(55,12);
read(fname);
checkformexist(fname);
end;
else errorcommand; end;
until ch in ['N','Y'];
elose(h);
end;
menu;
end;
(# THE PROCEDURE FOR PRINTING A HARD COFY OF FORM #)
procedure hardecopy;
begin
assign(q,filename);
reset(q);
while not eof(q) do
begin
read(q,line);
writeln(lst,lire);
end;
close(q);
end;
(®* THIS IS THE PRILT MODULE #)
procedure printmodule;
var ff:nn;
begin
assign(h,'b:print.doec');
reset(h);
clrscr; screendisplay;
gotoxy(35,10);
write(con, flname);
position(30,12,ch);
if ch = 'N' then
begin
gotoxy(12,14);
write('Enter the name of form to be printed or displayed ?');
gotoxy(65,14);
readln(con, ff);
end else
ff := flname;
filename := concat(ff,'.map');
if exist(filename) then
begin
gotoxy(12,16);
write('Do you want it to be printed or displayec¢ (P/D) ?2'):
repeat
position(65,16,ch);
case ch of

- T -

'P' ; hardecopy;
'D' : begin
clrser; screendisplay;
retrieveform(ff);
gotoxy(3,22);
write('®## Please hit any key to return to wain menu !');
repeat
gotoxy(70,22);
until keypressed;
end;
else errorcocmand; end;
until (c¢h = 'P') or (ch = 'D')
end else
begin
gotoxy(12,16};
write(bell, '#¥ The form is not fcund !!');
end;
close(h);
menu;
end;
(* THIS IS THE DELETE MODULE #)
procedure deletemodule;
var ffinn;
begin
assign(h,'b:delete.doc');
reset(h);
clrser; screendisplay;
gotoxy(53,9);
readln(con, ff);
filename := concat(ff,'.map');
ff := concat(filename,'.tmp');
clrser; screendisplay;
close(h);
position(33,16,ch);
if (ch = 'Y') and (exist(filename)) then
begin
assign(q,filename);
erase(q);
end;
if (eh = 'Y¥') and (exist(ff)) then
begin
assign(q,ff);
erase(q);
end;
menu;
end;
(* THE PROCEDURE FOR CHECKING STORE FORM BEFORE EXIT TEE SYSTEM #)
procedure checkstore(ff : nn; var out : char);
begin
if exist(ff) then
begin
repeat
readln(h,line2);
until copy(line2,1,3) = '.PA';

- 78 -

end else
begin
screendisplay;
position(33,16,0ut);
end;
end;
(®* THIS IS THE EXIT MODULE #)
procedure exitmoaule;
var
out : char;
fname, ffname : nn;
begin
out := ' ';
fname := concat(flname,'.tmp');
clrscer;
assign(h,'b:exit.doec');
reset(h);
checksore(fname, out);
if out = 'N' then
begin close(h); menu;
end else
begin
clrser; screendisplay;
close(h);
ffname := concat(flname,',tmp');
if not exist(fframe) then
begin
ffname := concat(flname,'.zap');
assign(q,ffname);
erase(q);
end;
halt;
end;
end;
(* THIS IS THE MAIN MODULE, AND THE PROGIAM STOPS IN EXITMODULE PROCEDURE #)
begin
initial;
bell := “G;
flname := 'dummyform';
repeat
position(18,23,ch);
case ch of
'C' : createmodule;
'M' : modifymodule;
'S' : storemodule;
'P' : printmodule;
D! : deletemcdule;
'E' : exitmccule;

else
errorcommand;
end;
until true = false;
end,

= 7 =

FORM EDITOR SYSTEM

by

JONY CHANG

B.S., National Taiwan University, 1978

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

Forms have been used extensively in offices. In addition, they
have been proposed and used as the basic user interface data structure
in many data entry and office information systems. Therefore. elec-
troniec forms are becoming part of our every life in the modern, techno-
logical society, ‘Generally anyone who deals in the business world knows
how to fill out forms, understands their processing and most people can
also design a form of their own for a given situation. Forms play a
central role in several current business automation projects, e.g.,
Business Definition Language (BDL), System for Business Automation
(SBA), Officetalk-Zero, Office Forms System (OFS), and Forms Programming

System (FPS), Structured Message System (SMS).

This report describes a Form Editor System which allows the design
of a form and the insertion of field types and semantic inforuation into
a form to create a form template for later use. The System is imple-
mented on the Columbia Data Products (CDP) Multi-Personal Computer (MPC)
using the TURBO Pascal language, This Form Editor System an implementa-
tion of form-based concepts on a microcomputer without hard disk storage
capability has shown the feasibility of the use of such concepts on con-

tempory personal computer systems.

