
SOME EXACT SOLUTIONS TO APPROXIMATE

LINEAR AND NON-LINEAR VIBRATION PROBLEMS

by

THAD ALAN KING

B. S., Kansas State University, 1961

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966

Approved by:

Jf.£ Qflfo/
Major Professor



lO

X f^if TABLE OF CONTENTS

NOMENCLATURE 3

INTRODUCTION U

SOME EXACT SOLUTIONS TO APPROXIMATE LINEAR AND NON-LINEAR VIBRATION

PROBLEMS

Formulation of Problem and Derivation of Equations $

Application of the Method of Runge-Kutta 9

Application of the Method of Steepest Descent 12

EXAMPLE PROBLEMS ^

Case 1 J-5

Case 2 15

Case 3 -16

RESULTS 2|*

CONCLUSIONS 26

REFERENCES 2?

APPENDIX

A. Displacement Curves from Polynomial for Runge-Kutta 28

B

.

Fortran Program for Runge-Kutta Method 32

C. Fortran Program for Steepest Descent Method . .«3U



NOMENCLATURE

A coefficients of solution

B , B
?

parameters of spring coefficient

c damper coefficient

C ratio of damper coefficient to mass

F spring force

k spring coefficient

K ratio of spring coefficient to mass

i, j, m, n integers

m mass

x, z displacement of mass from equilibrium position



INTRODUCTION

For many vibrating systems, displacement information may be obtained by

simplifications which reduce the system to a linear spring-mass-damper arrange-

ment with constant spring and damper coefficients. The solution of the

resulting differential equation of motion of the mass is easily obtained.

Although the solution is exact, it is still an approximate solution for the

original system. The degree of approximation, of course, depends upon the

similarity of the two systems. A solution determined in this manner for a

highly non-linear system may be inadequate.

There is a need for additional techniques to handle the non-linear cases.

Through recent studies involving other types of problems by Appl and Zorowski

[l], Appl and Byers[2], and Appl and Hung [3], such a technique has been

found. It involves the idea of determining an exact solution to an approx-

imate problem. In some types of problems upper and lower bounds for the

initial problem can be established in terras of the approximate problem solu-

tions. If the problem is bounded, the degree of approximation is known.

This report is the initial step in attempting to apply this technique

to a vibration problem. It is an investigation into a method for obtaining

exact solutions for approximate problems. Two methods are applied, steepest

descent, and the method of Runge-Kutta.



SOME EXACT SOLUTIONS TO APPROXIMATE
LINEAR AND NON-LINEAR VIBRATION PROBLEMS

Formulation of Problem and Derivation of Equations

Consider a free vibration system composed of a mass, damper, and spring,

where the spring coefficient, k, is a non-linear function of the displacement,

x, measured from the equilibrium position.

/'fiii tit

to I iT c -r ^.

The differential equation of motion of the mass is

where _ _C,

KM- .Vi

For this investigation, let

z

where B. and Bg are constants. Note that for B
2

« 0, the system becomes

linear.



The force exerted by the spring on the mass is

FCx^-BiX-B^X3
(2)

At this point consider another vibration system identical to the pre-

vious one except that now the spring coefficient is a function of time, t,

instead of the displacement, z.

tittttt

m^-r EQ -

The differential equation for this case is

£ + CE+ K(t)z~o

with a spring force

F(t) = -K(t)Z si'+ CZ (3)

The two systems now differ only by the spring forces.

Suppose that a solution z(t) is assumed in the form

a(4)» A +A,t*A
JLt%-A 3t

3
+... + Ah t

,rl



Then,

z(t) = A, + 2Ajtt+3A 3 t* •*-..+ (rOA n ti
Z /.,! *("-')

and

£(t)* 2Aj
L
+ GA 3 t + ieA*tV.. + C*V»-i)A„t^~^

These relations and (3) determine F(t). Thus,z(t) is the exact

solution for differential equation (3) which can be written

iitCi-F(t) = o

If 7(t) = F[z(t)] it means that the spring force in the second system is

the same as for the first case. Thus, the two systems are idential in

every respect so that

X= Z. - A.+ A.t + A, t
z
+...+

A

n t"z

is the exact solution for the initial vibrating problem.

For F(t) — F]jz(t)3 , z(t) is the exact solution for the approximate

problem described by

Thus an exact solution is known for an approximate problem. The



e

degree of approximation is unknown and is beyond the scope of this report.

However, some indication of the accuracy is given by determining how nearly

F(t) equals F^t)] • This, in turn, depends upon the coefficients in the

solution z(t).

•



Application of the Method of Runge-Kutta

Consider the differential equation

HtCi + K(^E=0 (U)

with the initial conditions

t - O ; Z ^ 2

k O

Introducing the transformation

••

Equation (U) can be written

Y + CY+ 1<(E)2=0

This, together with the transformation, yields two simultaneous first-

order differential equations suitable for application of the method of Runge-

Kutta [h].

After a period of time, At, has elapsed, the values of z, y, and t, become

2, =Z. * A 2.
, — — —

V, * Yo * AY

t, = t +At
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The changes, A z and A y, are approximated as follows

:

y - f^t^y)

z = f
2
(t,z,y)

AV= | (s, + 2S2.-+ 2 S3 + S+)

where

.

and

Si- -P, (t + £*, S + "^ , Yo + % ) At

S 3-+\(t +^i2o + %-> Yo+%)At

U- -Mto + At, Z«+l a ,
Yc-h S3) At
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.

Once z and y are determined at time t-^ another &t is chosen. Using

z and y, as "initial conditions," the procedure is repeated to approximate

z
2

and y for time t
g

. Additional iterations are effected until the desired

displacements and velocities, z and y, are known at specific times over the

period involved. This procedure can be easily programmed for execution on

a digital computer. The program used is shown in Appendix B.

By assuming the polynomial form for z(t), a linear algebraic equation

can be written for each z and its corresponding time value. The resulting

set of equations can be solved to determine the coefficients, A-j_, A^

A . Once these are known, z(t) is established in polynomial form,
n

t
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Application of the Method of Steepest Descent

This method [3] is employed to improve the function z(t) by determining

a more suitable set of coefficients in the solution.

A deviation function, ©c , is created from residual terms given by

R(tj)=>(tp-F[£(tj)]

where tj denotes particular time values. Then,

<*= 2[R(t;)]
>>

The function z(t) is improved as ©% is reduced.

The function OC may be considered as a function of T in n-dimensional

space where first and second derivatives exist. Vector A is considered to

be the displacement vector,

A = ^A n Ag^ ... , A;., . .
.

, A n )

The method of steepest descent is used to minimize &, by improving an

assumed A. This is achieved in this case by changing each coefficient

through an iterative scheme. The initial A is comprised of the coefficients

determined through the Runge-Kutta method.

Basically, the change for each A
i is

AA- **•
a
d04

-
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where V is a necessary constant which allows control of the amount of

change

.

For this problem,

a** = 2

V* \ dA,"» dAz '
•**» dA u

>
'

•
' ' dAnj

After all the Aa.'s have been determined for a given set of coefficients,

A . , , the change

A
;,z

A
i,. + AA i,.

is made and the new set, A,
2 » is then improved in the same manner. The

process is repeated until et has been reduced to the desired value. Appendix C

contains the basic fortran program used.
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EXAMPLE PROBLEMS

Three systems were chosen for investigation. All cases are for a

mass-damper-spring arrangement which is initially displaced a distance

Zq - 1.0 from the equilibrium position and released with zero velocity.

The method for obtaining a polynomial solution from the method of

Runge-Kutta is identical for the three problems. The time interval over

which the function is investigated is from t = 0.0 to t 1.0 with a time

increment, At » 0.01. Twenty algebraic equations are solved simultaneously

giving twenty coefficients. Three additional coefficients are determined

exactly by applying the initial conditions to the differential equation.

They are,

X
1

- 1.0

A
2

- 0.0

A3 - 4(Bi + B
2

)

The solution z(t) as obtained from Runge-Kutta, therefore, consists of

twenty-three terms.

Steepest descent is also employed in all cases. Again, the first three

coefficients retained their exact values. For Case 1 and Case 3, the remain-

ing twenty coefficients from the solution of the algebraic equations form the

initial displacement vector. Residuals, R(t^), are determined for various

values of t. The sum of the squares of these residuals is, then, the devia-

tion function o^

.
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Case 1. Linear undamped system. For this problem, the values of the

parameters are

0.0

B - 80.0

B - 0.0
2

.*. K(x) - 80.0 " constant

The differential equation for the linear case can be solved exactly

yielding

z(t)= z cos/i< t

This gives a means of checking the z(t) polynomial and the discrete

values of the displacement as obtained by applying Runge-Kutta.

Case 2. Non-linear damped system. Here,

C - 1.0

B
1

- 80.0

B
2

« 10.0

.'. K(x) - 80.0 + 10.Cx
2
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Case 3. Non-linear damped system. The values of the parameters are

1.0

B - UO.O

B - UO.O
2

2
K(x) » UO.O + UO.Cx

The results for each case are presented in tabular form, listing values

determined for z for numerous time values. Table 1 lists the percent error

existing between the exact displacement for the linear case and the numerical

results obtained for both the discrete values of z directly from the method

of Runge-Kutta and the functional values determined from the resulting poly-

nomial.

Tables 2, U and 6 give the values of the polynomial as determined from

Runge-Kutta for Cases 1, 2 and 3, respectively. The degree of approximation

between the actual problem and the approximate problem, for which z is the

exact solution, is indicated by the spring force percent error.

, toor - F<tl-Fte(Ol x 100 .

F[Z(tfl

The effect of the method of steepest descent when applied to the coeffi-

cients obtained through Runge-Kutta is demonstrated in Tables 3, 5 and 7

.

Again the spring force percent error is utilized. Initial and final values of

the deviation function, c< , are shown at the end of each table.

Appendix A contains graphs of the z(t) polynomial from the method of

Runge-Kutta for each of the three problems.
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Table 2 . Values of z(t) polynomial obtained from Runge-

Kutta method for Case 1. C - 0.0, ^ - 80.0

B„ = 0.0, Number of coefficients = 23

Time z F(t) F[z(t)J % Error

.000 1.00000 -80.00000 -80.00000 .00000

.075 .78331 -62.66U90 -62.66U97 -.00011

.150 .22716 -18.172U5 -18.172U7 -.0001U

.225 -.U27UU 3U.19550 3U.19553 -.00009

.300 -.89680 71.7U395 71.7lw02 -.00010

.375 -.97750 78.20031 78.200UO -.00011

.U5o -.63U58 50.76657 50.76663 -.00012

.525 -.01665 1.33133 1.3318U -.00058

.600 .60350 -U8.68009 -U8.6801U -.00010

.675 .9699U -77.5952U -77.59532 -.00010

.750 .91103 -72.83250 ' -72.88258 -.00011

.825 .U5730 -36.58U26 -36.58U30 -.00012

.900 -.19U61 15.56870 15.56371 -.00011

.975 -.76213 60.97U57 60.97U63 -.00009

1.000 -.88676 70.93819 70.9U069 -.00352
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Table 3. Effect of Steepest Descent Applied to Polynomial

from Runge-Kutta for Case 1. C 0.0, B - 80.0

B •* 0.0, Number of coefficients = 23 ^

Displacement
for Rung

from Polynomial
;e-Kutta

Displacement from Polynomial
for Steepest Descent

Time z

Spring Force

% Error z

Spring Eorce

% Error

.050 .90165568 -.000109 .90165568 -.000108

.100 .62596597 -.000117 .62596597 -.000115

.150 .22715590 -.OOOlliO .22715590 -.000131

.200 -.21633313 -.000070 -.2163331U -.000087

.250 -.61727189 -.000096 -.61727191 -.000105

.300 -.89680028 -.000102 -.89680032 -.000112

.350 -.99993828 -.000106 -.99993835 -.000120

.Uoo -.90639981 -.000110 -.906399921 -.000132

.U5o -.63U5328U -.000116 -.63158300 -.000161

.500 -.23795066 -.000139 -.23795091 -.000311

.550 .205I18368 -.000068 .205U8332 .000213

.600 .60850171 -.000096 .60850119 .000038

.650. .89183U38 -.000102 .8918336U .000021;

.700 .99975338 -.000106 .99975231* .00001*9

.750 .91103228 -.000110 .91103085 .000115

.800 .6U312152 -.000115 .6U311957 .000271

.850 .2U871610 -.00011a .2U871353 .000814;

.900 -.19U60893 -.000108 -.19U61207 -.000385

.950 -.59965658 .000075 -.59965969 .001208

.1.000 -.88675861 -.003525 -.88675952 -.000328

c*. = .OOOOO6360 oc =
, 000000500U
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Table U. Values of z(t) polynomial obtained from Runge-

Kutta method for Case 2. C = 1.0, B - 80.0
B2 - 10.0, Number of coefficients = \"$

Tijne z F(t) F[z(t)] % Error

.000 1.00000 -90.00000 -90.00000 .00000

.075 .76520 -65.73663 -65.69633 .06133

.150 .20372 -16.388U9 -16.382U8 .03670

.225 -.UOU55 33.02932 33.02626 .00927

.300 -.791*23 68.5U896 68.51*861* .0001*6

.375 -.80008 69.12765 69.128U1 -.00109

.U5o -.Uii702 36.65U91 36.65U98 -.00018

.525 .07367 - 5.8969U - 5.89732 -.00656

.600 , .52553 -U3.U9337 4*3.1*9339 -.00007

.675 .71712 -61.05769 -61.0573U .00057

.750 .57830 -U8.1992U -1*8.19830 .00191*

.825 .19799 -15.92UU7 -15.91686 .01*782

.900 -.23878 19.6691*0 19.23867 2.23835

.975 -.5U662 U3.53U50 U5. 36333 -1*.03172

1.000 -.59012 21*7.58990 1*9.261*25 U02.57523
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Table 5. Effect of Steepest Descent Applied to Polynomial

from Runge-Kutta for Case 2. C» 1.0, 1^-80.0
B~ = 10.0, Number of coefficients » 28

Displacement
for Rung

from Polynomial
e-Kutta

Displacement from Polynomial
for Steepest Descent

Time z

Spring Force

% Error z

Spring Korce

% Error

.Oil .92997599 -.0007k .92997637 -.00511

.12 .U5026398 . -.00089 .U5023993 -.0U227

.20 -.21U13690 .00013 -.21U00U62 .22196

.28 -.7238US82 -.00016 -.723UU200 .11*291

.36 -.831U8979 -.00023 -.3305227U .25213

.I*U -.50893267 -.00058 -.50691102 .76512

.52 .03856511 -.00106 .OU2U6563 -16.U1699

.60 .52552518 -.0007U .53271930 -2.1j293U

.68 .71797696 -.00038 .73099039 -3.2771k

.76 .5330U239 -.00315 .561U3598 -7.U3635

•8b .1086892U -.16130 .15001006 -37.20801

.92 -.33952395 .90U0U -.27953U39 -22.55675

1.00 -.58935300 236.6U735 -.61279712 21.32U21

OC» 13, 561.h ©c - l,k02.7
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Table 6. Values of z(t) polynomial obtained from Runge-

Kutta method for Case 3. C = 1.0, B - UO.O

B = U0.0, Number of coefficients = 1 23

Time z F(t) F[z(t)] % Error

.000 1.00000 -80.00000 -80.00000 .00000

.075 .795U2 -51.77067 -51.9U659 -.33866

.150 .32326 -1U.51888 -H..5H512 -.180U1

.225 -.19091 7.90U73 7.91U87 -.12813

.300 -.62601 3U. 85169 3U.853U6 -.00508

.375 -.81.096 57.1i2775 57.U2772 .0000U

.U50 -.7U579 U6.U2U32 U6 .i-2378 .00116

.525 -.U1389 19.39UH; 19.391U2 .01398

.600 .00261 - .10705 - .10U56 2.35072

.675 .388U9 -17.90136 -17.88523 .09021

.750 .6U701 -36.73012 -36.78666 -.15370

.825 .69528 -U0. 86585 -U1.25511 -.91355

.900 .52535 -37.08918 -26.81360 38.3222U

.975 .303U5 .33828 -13.255U8 -102.55237

1.000 .11225 -3821.90872 - U.5U6U1 83,96U.33809
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Table 7. Effect of Steepest Descent Applied to Polynomial
from Runge-Kutta for Case 3. C = 1.0, B = UO.O
B - UO.O, Number of coefficients =23

Displacement from Polynomial
for Runge-Kutta

Displacement from Polynomial
for Steepest Descent

Time z

Spring Force

% Error z

Spring Force
% Error

.050 .90U8 -.1290 .90U8 -.10U3

.100 .6568 .1907 .6568 .29U2

.150 .3283 -.180U .3281 .2768

.200 -.02122 -1.125 -.0216 -12.37

.250 -.3515 .02UU -.352U -1.021

.300 -.6260 -.0051 -.6276 -.8U5U

.350 -.8021 .0016 -.80U8 -.95U8

.Uoo -.8U36 -.0013 -.3U78 -1.29U

.U50 -.7U53 .0011 -.7519 -1.933

.5oo -.5101 -.0026 -.5U97 -3.071

.550 -.2778 .0101 -.2893 -5.130

.600 .0026 2.U18 -.0118 -U0.02

.650 .2691 -.0U91 .2531 -8.3U8

.700 .U939 .0692 .U808 -17.15

.750 .6U70 -.1550 .6507 -37.00

.800 .7058 .5603 .7593 -83.66

.850 .6599 -3.U8U .8527 -186.8

.900 .5253 38.35 1.080 -292.6

.950 .3322 -881 .U 1.800 -3109.

1.00 .1123 33,960. 3.82U 7238.

ex = 1U,589,000 £**. = 1,020,000
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RESULTS

The numerical values for the displacement given by Runge-Kutta in the

linear problem are very accurate, as shown in Table 1, with a maximum error

of .OQLiOo. This error can be reduced if desired by reducing the time incre-

ment, At, but for this case the results seemed adequate.

For a similar linear problem (B^ Of UO.O) a test was made using

At = .025. Values for z were determined through twenty periods of vibration.

At the end cycle (t 20), the results were compared with the exact solution

and the maximum percent error was calculated to be .09h%»

The polynomial determined from the numerical values for z is also

reasonably accurate for the linear case. As shown by Table 1, the percent

error existing is almost identical to the error resulting from the method of

Runge-Kutta. This accuracy is reflected in Table 2 where it is shown that

F(t) and F[z(t)J differ by a maximum of only .0035^ occuring at t = 1.0. This,

in turn, means the approximate linear problem is a very good approximation

for the actual problem.

For the non-linear cases, 2 and 3, a somewhat different situation exists.

The values of the polynomial solution appear adequate except near the end of

the time interval. Tables U and 6 show reasonably small spring force errors

for ± t — 0.90. However, for t - IP, the percent error becomes U02.6# and

83 ,96U.3% for Cases 2 and 3 respectively. A corresponding value for Case 2

using twenty-eight coefficients instead of the twenty-three was 235. k%.

Utilization of the method of steepest descent had a marked effect on

all cases. While the spring force percent error increased for some values

of t and decreased for others, the deviation function <* was reduced. This
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is best illustrated by Case 2 where as an example, for t 0.6, the percent

error increased from -.00007$ to -2.h2% as a result of the application of

the method of steepest descent. However, «* , the sum of the residuals

squared was reduced from 13,600 to 1,U00. It may be further reduced by

additional iterations.

It was noted that the & factor used in the method of steepest descent

was rather critical. For % » 1.0, <x. decreased for several iterations but

suddenly increased. Further iterations continued the reduction until another

increase occurred. By increasing the value of % , oC continued decreasing

to a smaller value before an increase was noted. The amount of decrease in

«. , however, appeared smaller for each iteration.
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CONCLUSION

The results of the example problems indicate that the method outlined

will provide exact solutions to approximate problems. The polynomial from

the method of Runge-Kutta provides good results for the linear case and

further improvement is made by the application of steepest descent.

The polynomial from Runge-Kutta is increasingly less accurate as the

system becomes more and more non-linear. In this case, it is necessary to

apply the method of steepest descent to improve the results to an adequate

level. However, the computer time required for steepest descent yields this

procedure undesirable for highly non-linear problems.

A major factor seems to be the number of coefficients in the solution.

Better results for a non-linear system are obtained by increasing this

number from twenty-three to twenty-eight, the maximum which was obtained with

the 1U10 computer.

It is, therefore, concluded that the use of a larger and faster computer

is essential for the success of this procedure when applied to non-linear

problems

.
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APPENDIX A

Displacement Curves from
Polynomial for Runge-Kutta



29

-1.2
0.0 0.1 0.2 0.3 0.U 0.5 0.6 0.7 0.3 0.9 1.0

TIME (t)

Figure 1. z(t) Curve for Case 1 from Polynomial for
Runge-Kutta. C => 0.0, B, - 80.0, B„ 0.0,
OStSl.O. 2
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TIME (t)

Figure 2. Displacement vs. Time Curve for Polynomial z(t)
Obtained from Runge-Kutta for Case 2. C = 1.0,

&L = 80.0, B
2

= 10.0
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Figure 3. Displacement ,,vs . Time Curve for Polynomial z(t)
Obtained from Runge-Kutta for Case 3. C = 1.0,
B = U0.0, B

2
= UO.O



APPENDIX B

Fortran Program for
Runge-Kutta Method
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BASIC RUNGE-KUTTA PROGRAM

10
11
12
14
16
17

100

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
R£AC(1
READd
REACH
READd
READd
REAOd
REAOd
WRITE(
WRITE!
WRITE(
WRITE!
T = 0.0
WRIT£(
D0100N
SK1=-C
SL1=2*
T2=T+(
11=1+1
Xl=X+(
SK2=-C
SL2=Z1
Z2=Z+(
X2=X+(
SK3=-C
SL3=Z2
Z3=Z+S
X3=X+S
T=T+DE
SK4=C*
SL4=Z3
DELX=(
DELZ=(
X=X+DE
Z=Z+DE
WRITEt
NQ=(N/
IF(N.£
CGNTIN
STOP
END

ME,7X,14HX DISPLACEMENT, 4X,1CHZ VELOCITY)
110)

(E16.8)
(15)
(4E16.8)
(8X,4HTI
(6E16.8,
(1H )

,10)C
,10)81
,10)82
,10)X
,10)Z
,10)0ELT
,li)NINT
3,15)
3,16)C,B1,B2,DELT,NINT
3,17)
3,14)

( INITIAL DISPLACEMENT)
(INITIAL VELOCITY)
(DELTA T)

(NUMBER OF STEPS)

(INITIAL TIME)
3,12)T,X
=1,NINT
*Z-B1*X-
DELT
DELT/2.0
SKI/2.0)
SL1/2.0)
*Z1-B1*X
*DELT
SK2/2.0)
SL2/2.0)
*Z2-B1»X
»D£LT
K3
L3
LT
Z3-B1*X3
*DELT
SL1+2.0*
SK1+2.0*
LX
LZ
3,12)T,X
10)*10
Q.NQJWRI
UE

,Z

82*X»X»X)*DELT

)

1-82*X1«X1*X1)*DELT

2-82*X2*X2*X2)*0ELT

-82*X3*X3*X3)*DELT

SL2+2.0*SL3+SL4)/6.0 (CHANGE IN DISPLACEMENT X)
SK2+2.0*SK3+SK4)/6.0 (CHANGE IN VELOCITY Z)

(CHANGE X TO BEGIN NEXT TIME INCREMENT)
(CHANGE Z TO BEGIN NEXT TIME INCREMENT)

,Z

TE(2,12)T,X,Z
(BEGIN NEXT STEP)



APPENDIX C

Fortran Program for

Steepest Descent Method
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BASIC STEEPEST DESCENT PROGRAM

DIMENSION A(29),T(28),?X(23) , PXD( 28 ) , PXDD(28 ) ,GALP(28)
10 F0R*AT(E16.8)
11 F0RMATU5)
13 FORMAT (7X,1HC,15X,2HB1, 14X, 2HB2,9X, 5HNCCEF,3X, 5HNTIME,3X,
25HGAMMA,12X,3HTAL, 12X, 5HTZER0, 9X, 5HNITER

)

14 FORMAT (3E1 6.8,216,3516.8, 17 J

17 FQRMAT(I20,E24.16)
L8 FQRMAT(19X,lHI,9X,8hCLD A(I))
19 FORMAT (E24. 16)
20 F0RMAT(19X,iHI,9X,8hNEW All))
26 F0RMAT(E16.8,4E24.16)
27 F0RMAT(1X,3HTRY)
28 FQRHATU3)
30 FURMAT(7X,4HTlME,12X,14hX DI SPLACEMENT, 13X , 5HF BAR.15X,

212HSPRING FCRC£,13X,13HPERCENT ERROR)
40 FCl<l>AT(15X,6HALPHA=»E24.16)

REACH, 11) NCOEF
REACH, 11) NTIME
REAC(1,11) MTER
REACH, 19} (A(I), 1 = 1, NCOEF) (COEFFICIENTS FROM R.K. POLY)
REACH, 10) C

REACH, 10) Bl
REACH, 10) B2
Re AC (1,10) GAMMA
REACH, 10) TAU
REACH, 10) TZERO
WRITE(3,18)
WRITE (3, 17) ( I, AH), 1=1, NCOEF)
WRITE(3,13)
WRITE(3,14)C,Bl t B2,NCCcF,NTIME,GAMMA,TAU,TZERC,NITER
A(3)=-(ei*A(L)+82»A(l)*A(l)*A(l))/2.0
DELTAU=TAU/(FLOAT(NHME-l)) (DETERMINE T(J))
NTRY=NITER
DC150N=1, NITER (BEGIN ITERATION)
TT=TZERO
IF(N.LT.2) GO TO 205
IF(N.LT.(NTRY-5)) GC TO 33

205 WRITE (3, 27)
WRITE(3,28)N
WRITE(3,30)

3_> ALP=0.0
DGlC9i=4, NCOEF

109 GALP( I)=0.0
SGALP=0.0
D01C0J=1, NTIME
T(l)=1.0
D0110K=2, NCOEF

110 T(K)=T(K-1)*TT
PXO(1)=0.0
PXDC( 1)=0.0
PXDC(2)=0.0
X = 0.0
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BASIC STEEPEST DESCENT PROGRAM (CONTINUED)

DO 501=1, NCOEF
PX( I)=T(I)
K=I + 1

IFtK.GT. NCOEF) GC TC 48
PXD(K)=FL0AT{I)*T{I)
K=l+2
IF(K.GT.NCGEF) GC TC 48
ZA1=FLQAT( I)

ZA2=ZA1+1.0
48 PXDC(K)=ZA1*ZA2*T(I)
50 X=X+A( I)*T(I)

XD=G.O
DG170I=2, NCOEF
XYZ=I-1

170 XD=XD+XYZ*A(I)*T(I-1)
XDD=0.0
DG180I=3,NCGEF
XYZ-=I-1

180 XD0=XDD+XYZ*(XYZ-1.0)*A(I)»T( 1-2)

AKT=XCD+C*XD (F BAR (T))
AKNC=-B1*X-B2*X*X»X (F(Z(T)))
RB=AKT-AKNG (RESIDUAL)
PER=RB*100.0/AKNC (PERCENT ERROR)
IF(i\.LT.2) GO TO 215
IF(J\.LT.(NTRY-5)) GC TO 216

215 WRITE(3,26)TT,X,AKT,AKNC,PER
216 ALP=ALP+R8*RB (CALCULATE ALPHA)

002001=4, NCOEF
PR=PXDD(I)+C*PXG(I)+B1*PX(I)+3.0*32*X*X*PX(I)

2C0 GALP(I)=GALP(I)+2.G*RB*PR (CALCULATE GRADIENT ALPHA)
100 TT=IT+DELTAU

0C2C9I=4, NCOEF
209 SGALP=SGALP+GALP(I)*GALP(I) (GRADIENT ALPHA SQUARED)

WRIT£(3,40)ALP
DC3C0I=4, NCOEF
CHG=ALP*GALP(I )/ ( SGALP*GAKMA) (CALC. DELTA A(D)

300 A( I)=A(I)-CHG (CHANGE Ad))
IFtN.LT.2) GO TC 230
IF(N.LT. (NTRY-5) ) GO TO 150

230 WRITE(3,20)
WRITE (3, 17) ( I, A( I), 1=1,.NCOEF)

150 CONTINUE (END ITERATION)
WRITE (2, 19) (A( I), 1=1, NCOEF)
STOP
END
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The report presents a procedure for determining exact solutions to

approximate linear and non-linear vibration problems. Two methods are

employed, Runge-Kutta and steepest descent.

Three example problems are given for a mass-damper-spring arrangement.

The first, a linear system, is compared to the actual problem. The results

are adequate for most engineering work. The second and third cases are non-

linear. For these cases the results are not as accurate but demonstrate the

abilities of the procedure.


