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NOMENCLATURE

Starting value of the independent variable in the process.
Constants in the general solution.

Cross-sectional area at the base of the fin,
dimensionless length parameter.

conductivity related parameter.

Biot number

generalized boundary condition at the starting point
of the process.

geometric constant of the fin.

function describing the variation of the heat transfer
coefficient.

functionals of the derivatives of the independent
variables 91 and g

functionals of the derivatives of the independent
variables Xl and Xz'

function of the parameter b,

heat transfer coefficient.

average value of the heat transfer coefficient.

heat transfer coefficient at the wall in the absence
of the fin.

functional of the radius, describing the heat transfer
coefficient variation.

Integral function.

Jacobian matrix

thermal conductivity.
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reference thermal conductivity.

function of b and m.

index of the heat transfer coefficient variation.
dimensiconless fin parameter.

heat removal number.

heat transfer from the fin.

heat flow due to conduction.

heat transfer in the absence of the fin.
dimensionless heat transfer from the fin,.

maximum possible heat transfer from the fin,
optimized value of heat transfer from the fin.
radial distance.

inner (base) radius of the fin.
outer (tip) radius of the fin.
missing initial condition.
dimensionless radius.

temperature.

temperature of the surroundings.
temperature scaled with respect to t_.
temperature at the base of the fin.
temperature at the wall surface in the absence of a fin.
dimensionless volume of the fin.

dimensionless parameter related to the base thickness
of the fin.

Volume of the fin.

semi-thickness at the base of the fin.

semi-thickness at the tip of the fin.
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w : semi-thickness of a fin of rectangular profile.

X, ,X : two dependent variables.

§=(y1 yz): known point about which the linearization is done.

y(r) : v co-ordinate (thickness)of the fin.

« : thermal conductivity variation parameter.

A : interval size for the duration of the process.
8 : defines the grid values of c.

by : slope parameter.

n : efficiency of fin.

8 : dimensionless temperature

91,94 : two dependent variables.

yry

dimensionless independent variable.

B : dimensionless thickness of the fin.
Supercripts

n-1 : previous iteration number

n : current iteration number

Subscripts

b : at the base of the fin.

c : base case. (A = 0.5, m = 0.0, == 0.0)
h : homogeneous solution.

P : particular solution.

o : case when either m = 0.0 or « = 0.0
op : optimum values

nf : in the absence of the fin
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Chapter I

INTRODUCTION

Fins are extended surfaces, used to reduce the thermal
resistance at a surface, and thereby increase +the heat trans-
fer rate from the surface to the adjacent fluid. Fins attached
to a surface, in effect, increase the total heat transfer area.
The use of fins is very common in various types of heat exchange
devices.

Familiar examples of the usage of fins are the circumfer-
ential or circular fins around the cylinder of a motorcycle
engine and pin fins attached to the condenser tubes at the back
of a domestic refrigerator. Fins have also been used in space
vehicles to dissipate heat energy by radiation in space, where
convection is absent. Finned surfaces are used to augment
heat transfer in heat exchangers. Some other typical appli-
cations are found 1in vehicles, their power sources, chemical,
refrigeration, cryogenic processes, electric and electronic
circuitry, conventional furnaces, process heat dissipators
and waste-heat boilers, and nuclear fuel modules.

Fins ean be of rectangular cross-sections, like ribs.
attached along the length of a tube, called longitudinal fins,
or concentrie annular discs around a tube called circumferen-
tial or circular fins. The thickness of the fins may be
uniform or variable. In this study circular fins with variable

thickness are considered.



Since a fin surface protudes from the primary heat trans-
fer surface, the temperature difference with the surrounding
fluid will steadily diminish as one moves outward along the
length of the fin. The design of a fin therefore requires a
knowleddge of the temperature distribution along the fin. The
objective of the study in the Part I is to determine the tem-
perature distribution in circular fins and to estimate the
rate of heat transfer and the efficiency for circular fins of
constant thickness.

The differential equation for the temperature distribution
in linear fin problems, that is assuming a constant thermal
conductivity and constant heat transfer coefficient has been
solved in several texts on heat transfer [1-3]. However, it
is seen that the thermal conductivity of pure metals tends to
decrease with increasing temperature, while the thermal con-
ductivity of alloys and insulators tends to increase with
increasing temperature. In general, it does not remain a
constant, Besides, another severe restriction that has been
imposed in previous work, is that the heat transfer coefficient
is assumed constant. It has been proved both experimentally
and theoretically, that in general, the heat transfer coeffi-
cient does not remain a constant along the length of fins,
[4-91].

In this study, the thermal conductivity is considered to
be linearly varying with temperature, and the heat transfer
coefficient to be varying along the length of the fin. Differ-

ent types of variations of the heat transfer coefficient have



been considered and their effects on the heat transfer rate
and efficiency have been studied.

With these wvariations in the problem, the differential
equations are nonlinear. The difficulties encountered with
nonlinear boundary value problems have been explained in a
later chapter. Aziz and Na [10]. have studied the nonlinear
fin problem with one of the boundary conditions being a
periodic function of time. Other researchers who have made
similar studies are Yang [11], and Eslinger and Chung, [12].
They considered the effects of radiation too. Lieblin [13]
has analyzed the temperature distribution and radiant heat
transfer in rectangular fins of constant thickness.

In Part I of this study, the nonlinear fin problem has
been solved by using the quasilinearization technique.
Quasilinearization is a method of linear approximation allied
with an iterative approach. This method has been explained in
full detail in Chapter 2. The fin problem has been formulated
in Chapter 3, and the solution and results are presented in

Chapters 4 and 5 respectively.



Chapter 2

METHOD OF QUASILINERIZATION

2.1 Introduction

The quasilinearization technique is essentially a gener-
alized Newton-Raphson method for functional equations. It not
only linearizes the nonlinear equation, but also provides a
sequence of functions, which converges quadratically to the
true solution of the original nonlinear equation.

In many aspects, the quasilinearization technique is -
similar to the generalized Newton-Raphson method. However
the unknown coefficients are functionals and not the fixed roots
as in the case of the Newton-Raphson method; hence both the
theoretical and computational aspects are much more complicated.

Two important properties of the quasilinearization tech-
nique are guadratic convergence and monotonic convergence.
Owing to the use of the Newton-Raphson type of linearizaticn
formula, the convergence is quadratic, if there is convergence
at all [14]. These properties of the Newton-Raphson and quasi-

linearization methods will be discussed later in this chapter.

2.2 Nonlinear Boundary-Value Problems

Most of this study will be concerned with the computational
solution of a nonlinear boundary value problem, The difficul-
ties connected with this problem may be briefly summarized

here. For illustrative purposes, let us consider a nonlinear



second order differential equation; with one initial and one
final condition known.

Since one of the initial conditions is unknown, a step
by step numerical integration technique cannot be used here.
This problem is known as a boundary value problem. It is much
more difficult to handle both theoretically and computationally
as compared to initial value problems. Theoretically, there
is no general proof of the existence and uniqueness of the
solutions to problems of this type. Computationally, there
exists no general effective approach to obtain the numerical
solutions. Most nonlinear differential equations cannot be
solved analytically. Quasilinearization presents an excellent

method to overcome this difficulty.

2.3 Convergence Properties of the Quasilinearization Technique

The convergence properties of the quasilinearization
technique can be understood from a knowledge of the Newton-
Raphson technique, and the special features which make it a
powerful tool. A rigorous mathematical derivation for the
convergence properties is given in [15].

Consider the single algebraic equation
f(u) = 6 (2-1)

Let us assume that f(u) is a convex function. Further, let
us assume that f'(u) < 0. We wish to obtain re, the exact

root of this equation. From an initial approximation Ui to
the root Ter 2 better approximation to r, can be obtained by

solving the following equation for u:



£(U;) + (U-U_) £'(U) = 0 (2-2)

Calling this approximation Ul’ an even better apprcximation
Uz, can be obtained similarly. Continuing this process, a

general recurrence relationship can be set up as follows:

£(U ) = f(Un) 4 (Un 1—Un) f’(Un) = 0 (2-3)

n+1l +

where Un is always known,andUn is the unknown. Note that

+1

equation (2-3) is a linear equation in the unknown Un+1'

equation (2-3) becomes
S f(Hn)

n+l n f'(Un)

Solving for Un+1;

U (2-4)

Equation (2.4) is in the Newton-Raphson form. It 1is clear,
that (2.4) does not hold good if f'(Un) = 0. Since f(u) is a
convex function, by assigning successive integer wvalues to n,

we observe that

Ui < Ul < U2 < ... < Un < ... (2.5)

Hence, the values of the sequence {Un} increase monotonically
to the exact root. This property is known as monotonic conver-
gence. This property makes quasilinearization very suitable
for the computation process, because it provides an upper or
lower bound for the convergent interval, and ensures automatic
improvement at each iteration.

For computational purposes, the rate of convergence is
another important property. For any particular iteration n,
the following expression can be written by use of the mean

value theorem:



(rr—;"Un)2
f(l‘e) - f(Un) = (I‘e-U_n) f'(Un) o f”(l‘v) (2-6)

where o lies between Ty and Un' Recalling that f(re) = 0,

as r, is the exact root, from (2.4) and (2.6) we obtain the

following expression
— =_l = 2 1 L

T U 5 (re Un) i (rv) (2-7)

From (2-7) it is seen that (Un+

0
(Un - re)z. That is, the error in the (n+l)st iteration is

- re) is proportional to

proportional to the square of the error in the nth iteration.

Numerically, the quadratic convergence means that after
a large number of iterations, the number of correct digits
for the root T is approximately doubled at each iteration.
It follows that as Un approaches r. there is an enormous

acceleration in the convergence rate.

2.4 Quasilinearization

The quasilinearization technique was developed by Bellman
[16], ard Kalaba [17], and applied extensively to chemical
engineering problems by Lee [18] in obtaining numerical solu-
tions of certain classes of nonlinear ordinary differential
equations of the boundary value type. The governing nonlinear
differential equation is first represented by a set of simul-
taneous first order differential equations. Each of the first
order nonlinear differential equations is linearized using the
Taylor series expansion, with second and higher order terms
omitted. Iterative solution of the resulting linear differ-
ential equations usually converges quadratically to the

solution of the original equation.
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Consider the most general case of an nth order nonlinear
ordinary differential equation, with n given boundary condi- -
tions. This nth order equation can be converted into n
simultaneous first order nomnlinear ordinary differential equa-

tions.
(xl, Xgyeor X ,t) (2.8)

i=1,2, ...n. 0< ts< ty

Of the n given boundary conditions, some may be final and the
remaining initial conditions. Let there be m final conditions
Xj (tl) = xjtl j=1,2, ... m (2.9)

and (n-m) initial conditions

Xy (0) = Xro k=m+ 1, m+ 2, ... n (2.10)

If g; (xl, x2, cee X t) is nonlinear, and all of the

boundary conditions are of the initial type, the Runge-Kutta
method can be directly employed. The nonlinear eqguation
(2.8) is first linearized around the point ? = (yl, Fos ...yn).

In vector notation this linearization can be written as

dx - = - =

ac - 8,t) + J(y) (x-y) (2.11)
where x and g represent the vectors (Xl, Koy »-o xn) and
(gl, 8g- - - gn) respectively, and the vector v is known, [197.

The Jacobian matrix is defined as
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98 087 28
3V 9¥g 84
Cl=2) agz 3g2
ayl Byz Byn
J () = . _ ] (2-12)
agn agn . . . agn
351 S . 3y,

in which agi/ayj represents partial differentiation. Equation

(2.11) can be explicitly written in the matrix form as follows:

[ax,T [ ' 10 - J-8 agI"
— 7o, .. - —t (X —+ -
at 81y Vg --¥ s8] | (g Yl)ayl (%g yz)ayé (X -Y 3,
d‘Xz agz agz agz
==={ = » e po (B
g% Bo(¥1s¥gs-e ¥ )|+ (% Vl)ayl+(x2 Yz)ayg (x, yn)ayn
dx 5g 8g 3g
n n _ n - _°n
It NGRS PYRERE S D (xl—yl)aylﬂx2 yz)ayz (X mYy 7,
(2.13)

From an initial approximation for ? = Eo’ the first approx-

imate solution X, can be obtained by solving (2.13), using a

1
step by step integration method such as the Runge-Kutta method.

Using El as 5 in {(2.13) an improved solution, say §2 can be
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obtained. This procedure is continued until the desired
accuracy (convergence) is achieved. The recurrence. relation
for the nth order system of linearized differential equations

can be written as follows:

dx; N
at Sl 8y (X y 10 Xg Ny -1r e Xy oy 10D
’“'rec 'reec *'rec
Bgi
+ (% X b i
l’Nrec LNt axl,Nrec—l
+ . . . (2.14)
ig.
i
+ (x - X s
n’Nrec NNyl aXn,Nrec—l
i=1,2, ... n Nrec =0,1,2,3

Here the first subscript i denotes the subscript of the depen-

dent wvariable X X

1, 2, . v

denotes the Nrec th iteration. In (2-14), x

X, and the second subscript Nzec
i N is an unknown
rec
function and i N -1 a known function obtained from the
'“rec
previous iteration.

The solution to the system represented by (2-9), (2-10)

and (2-14) can be expressed in the following form, [19]

TE-

xi(t) = xip(t) . AL Xi,Lh(t) i=1,2,...n (2.15)

i=1

In general, we need to assume a set of n initial conditions
for the particular solution, and n sets of n

. g6 -
initial conditions Xi,Lh(O) Xi,Lho for the n sets of
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homogeneous equations, reduced from (2-14). The integration
constants AL are determined from the n boundary conditions,
which are given and the assumed and computed boundary conditions
for the particular and homogeneous solutions.

If the initial conditions both for the particular and
homogeneous solutions are chosen appropriately, the number of
homogeneous soclutions required can be reduced, thus reducing
the total computation time. It has been proved mathematically
by Bellman [16], and can be seen intuitively that the general
solution (2~15) can be reduced to

m

xi(t) = xip(t) + I A X

(2-16)
‘L=1 b

i,Lh

i=1,2, ... m,m+]1, m+ 2, ...n

if the given initial conditions of the original differential
equations are chosen as the initial conditions of the parti-

cular solution, that is
xkp(o) = Xk;o) = X0 k=m+ 1, m+ 2, ... n (2-17)

and (n-m) of the initial conditions of the homogeneous solu-
tions satisfy the following condition,
m

r A
=1

|

k m+ 1, m+ 2, ... n (2-18)

L *k,1n(0) =0
L=1, 2, ... m

This condition is imposed to make the left hand side of (2-16)
compatible with the right hand side at the initial condition

i=m+ 1, m+ 2, ... n as shown below
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m
x,(0) = xip(o) + I A

(2.19)
. L=1

L *i,Lh(0)
i=m+1l, m+ 2, ... n

It can be seen that with such an appropriate selection of the
initial conditions,only m sets of the n homogeneous solutions

Xi Lh(t) L=11,2, ... m, i=1,2, ...h are required. The m

integration constants AL’ L 1,2, ...m are:determined :from
the m given final conditions, (2.98). ©Obviously, the number

of equations to be integrated is reduced from (1 + n) sets to
(1 + %) sets or less, since for the case m > n/2, the problem
can be treated in the reverse direction. It should be noted
that the initial conditions for the remaining particular solu-
tions xip(o) i=1,2, ...m and homogeneous solutions -Xi,Lh(O)
i=1, 2, ... m L=1,2, ...m can be chosen arbitrarily,

provided each row and column vector of the following matrix is

not identically zerc {(19).

%1, 1n¢°) X1,20(0) - - - X pp(o)
Xz’lh(o) x2’2h(o) Coe X2,mh(°) (2.20)
%n,1n(°) Xp,2n0) -+ - X, pp(0)

The system of the first order linear ordinary differential
equations (2-14) can be solved for the first set of approximate
solutions, that is when Nrec = 1, by a step by step integration

process, starting with the assumed and given initial conditions.
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The initial approximate function Eo can be obtained in a
variety of ways. The approximation must be chosen reasonably
and by exercising engineering judgement. For a number of
problems, a very rough initial approximation is enough for
convergence. It should be noted that both the particular and
homogeneous solutions thus obtained can be added to yield the
general solution (2-16), due to the superposition (additive)

property of a linear system.



Chapter 3

FORMULATION OF THE PROBLEM

3.1 Introduction

As stated earlier in this report, this part of the study
deals with the calculation of the temperature profiles among
the length of the fin, and the evaluation of the heat transfer
rate from the fin and the efficiency of the fin.

The quasilinearization technique, described extensively
in Chapter 2, is used to overcome the difficulties encountered
by a nonlinear boundary value problem.

The derivation of the nonlinear differential equation
governing the behavior of heat conduction in fins is presented
in this chapter, along with the expressions for the heat trané—
fer rate and the efficiency of the fin. The assumptions made
in this derivation are:

(i) heat conduction is one-dimensional,

(ii) effects of radiatidn are neglected,
(iii) curvature of the fin profile is not considered,

(iv) steady state conditions prevail,

(v) the thermal conductivity and heat transfer coefficient

are not constants

(vi) the fin thickness is uniform along the length of the

fin

(vii) the tip of the fin is assumed to be insulated.

15
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3.2 Derivation of the Fin Equation

Consider the fin configuration as shown in Figure 3-1.
Writing the heat balance on the differential element, under

steady state conditions, we have

_dqr

5 © dr - 2-(2rr dr)h(t-t,) = O (3-1)

where t_ is the temperature of the surroundings, and q,. is the

heat flow due to conduction along the length of the fin.
a, = -k-(2rr) (2y(r))3L (3-2)
r dr

Substituting (3-2) into (3-1), after simplification, we obtain

fkerey(ryE] - hr(t-t ) = 0 (3-3)

For a circular fin with a rectangular profile of constant

thickness Wr,
yirl) = Wr (3-4)

Let,

ar _ dt
o dr dr

(3-5)

The thermal conductivity k is not a constant, but is a functicn
of the temperature. The dependence of the thermal conductivity
on the temperature is assumed as a linear function and is
expressed as

K(T) = k(1 + af%;> (3-6)



— >
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insulated end

SECTION A-A

L~ T

2(2Tr )drh(t=14)

Figure 3.1: Cross-sectional view of a constant thickness fin.



18

where T, is the temperature at the base of the fin, and ka is

b
the reference thermal conductivity. The dimensionless temper-

ature 0 is defined as
= I _
e = T (3-7)
Therefore
k(T) = ka(l + «0) (3-8)

The heat transfer coefficient is a function of the radius r,
that is h = h(r). Substitution of equation (3-4), (3-5),

(3-7) and (3-8) into (3-3) yields

2h(r)T o
1 4d doe b~ _
Tar LK (r=e)r Ty gl - ——— =0
Rearranging the terms, we have
14 f(14ap)p 997 _ 28(x)O _
T dr [(1+=0)r ar T W 0 (3-9)
ar
The dimensionless radius is defined as
r-r
B (3.102)
r -r
o b
r = (ro"rb)R + Ty dr = (ro—rb)dR, (3.10b)

The variation of the heat transfer coefficient along the length
of the fin can be expressed as a function of the dimensionless

radius as follows

h = h(r) = haf(R) (3.11)
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ha is the average value of the heat transfer coefficient.
Subsitution of (3-10) and @-11) into (3-9) yvields the following

equaticn.

((r0~rb)R+rb) do Zhaf(R)O

[(1+=0) == = 0 (3-12)
(ro-rb) dR kawr

1 d
((ro—rb)R+rb) dR

The fin parameter N is defined as

2
2h_(r -r. )
2 _ a‘ "o b
N© = W (3-13)
ar

Rearranging the terms in (3-12), and substituting (3-13) into

(3-12), we obtain the following dimensionless equation:

((r -1 )R+ry) do

(ro—rb) dR

1 d
((ro—rb)R+rb) dR

[(1+=06) 1-N2%£(R)o = O (3-14)

Rewriting equation (3-14) in the explicit form, we have
2

d g "
dR

2

(E.~T )
) + (1+=0)S2 B, B

((ro—rb)R+r

(1+=0) (2 - ¥%(R)0 = 0 (3-15)

b)

which is a second order nonlinear ordinary differential equation.

For a given fin, the dimensions ry and r, are given. Hence, let

let

r

___o -
4= T (3-16)

be_g. known constant for the fin. With the substitution of 4,

the governing equation (3-15) can be expressed as

2 2
(W=0)S5 + «(qE) * (Frgo)qR - N E(RIO = 0 (3-17)
d



20

The fin tip is assumed to be insulated, and the temperature
at the base of the fin is assumed to be constant, Tb' The

boundary conditions can now be expressed as follows:

Atr=r, R=0;0=1 (3-18a)
Atr=r, R=1;%¥_9¢ (3-18Db)
o’ ' dR

Equations (3-17) and (3-18) form a nonlinear boundary value

heat conduction problem,

3.3 Heat Dissipation from the Fin

The heat being transferred out from the fin in the steady

state condition, is given by the expression

o aT -
q ==k(T) A, 35 r=r,, B = 0 (3-19)

where Ab is the area of the fin at the base. Substituting

(3-7), (3-8) and (3-10) into (3-19), we obtain the following

expression for the heat transfer rate:

T A
_ soy—Db_de | }
o b
Ab is given by the expression
Ab = 2werr (3-21)

The dimensionless heat transfer rate can now be defined as

g(r _=r. )
Q = 5oy Tbk = T 2raW T (3-22)
b rba a rb
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substituting (3-21) and (3-22) into (3-19), we obtain the

diménsionless steady state heat transfer rate to be

-Q = (1 + =0) %% (3-23)

R=20

3.4 Efficiency of the Fin

The fin efficiency is defined as the ratio of the actual
heat transfer to the maximum possible heat transfer from the
fin. The maximum possible heat transfer will occur, if the
whole fin is at the same temperature, as the temperature at

the base of the fin.

T
- o ; 2
Qo = f 7 2nr.dr h(r)-2T_ (3-24)
2
b
Converting this equation into the dimensionless form in terms

of R, we have

Q. = 4rTh (r-r)? [L(R+d) £(R) dr
o]

2

v k W N a (TGl £(R) ar (3-25)
8]

b

From equation (3-22), the actual heat transfer rate is given

by the expression

q=Q ka « 27d - Wr Tb

Therefore, the efficiency n is given by the expression

" Q
n= 3
Qmax szl(% + 1)f(R) dR
o)




Let

=l =]

1= tE& + 1rmR) ar
Q

then the efficiency

(3-26)

(3-27)

22



Chapter 4
IMPLEMENTATION OF THE QUASILINEARIZATION TECHNIQUE

The equations that formulate the nonlinear fin problem
are (3-17) and (3-18). Quasilinearization is used tc calculate
the temperature profile and the slope of the temperature pro-
file along the length of the fin. Equation (3-17) can be

written as

2
2 1 2
(1 + ce)ggg + =(%% + S(1 + ae)%% & - Nf(R)e = 0 (4-1)

where the coefficient of the third term
S = 1, for circular fins, and

S

]

0, for straight fins.
This is because the equation governing the behaviour of straight
fins is similar to the equation for circular fins. Hence this
formulation, makes the analysis suitable for longitudinal fins
also.

First of all, the second order non-linear ordinary differ-
ential equation (4-1) is converted into two first order

equations as follows::

Let g = 91 (4-2a)
= de
do _ 991 _ N
@&’ -~ dr - %2 (4-2b)
2
a2 d7e;  do,
5 = —3 < 4R (4-2c)
dR dR

23
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Therefore the two first order equations are
=L = (4-3a)

(1+ =08,)
(1+ “@1)“&1"12 + =02 + S -

2 -
- —mFay %2 - M E(R)e; = 0 (4-3b)

99

The boundary conditions (3-18) would now change to the form

at R = 0 (4-4a)

]
l.._]

9, (0)

at R = 1 (4-4b)

il
o

0y(1)

Obviously, 91 represents the value of the temperature and
62 the slope of the temperature profile,

Next, the two first order ordinary nonlinear differential
equations need to be linearized. For this purpose, let us

write the equations (4-3) into a more convenient form, as

follows:
del
dR =@2 = gl(R.E}l,OZ) (4“53.)
de, NPr(R)e,-=e2  So,
dR = (l+m91) (R+d) = gz(Riel,ez) (4-5hb)
Bgl
56, O (4-6a)
1
Bgl
36, - 1 (4-6b)
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28y (1+=0 N"£(R)-(N"L(R)8,~=03)=
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8@1 (1+=6 )2
1
= N?2(R) + =205 N£(R) + =7y
= 3 = 5 (4.7a)
(1+=0,) (1+ey,)
385 =28y s -2 s
56, - (i%=6.) ~ ®rd = (i*=y.) ~ ®+d (4-7b)
2 1 1
where y = (y1.¥,) is the point about which the governing

differential equations are linearized. The Jacobian matrix,

in this case, is
0 1
2 . 22
T = e = (;f:yz) @ | (+®
(1+=y;) 71

In general, y = (yl,yz) is obtained from the earlier iteration

and hence the following notation is used:

v, = 91 (4-9a)

Vg = 62 (4-9b)
where superscript (n-1) denotes the previous iteration. The

current iteration number is n. It follows from equation (2-11)

and (2-14) that the linearized equation can be written in the

form of a recurrence relationship



7

o
=]

n-1 n—1)2 =1

N f(R)e - (0,

(1+celn'1) I

n-1, |82 (R)+e? Cry 142

N f(H)On L

(]_+<xe -

o [N2rR)+e 2
(en_en lj
171

HCH
(1+=0]7H)?

20:an—l

n-._
+a
| ey
n
S@z
R+d

The given boundary conditions are now written as

9y (0) =

f
oud

eg (1) = 0

(4-10a)

(4-10b)

(4-11a)

(4-11b)
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Note that here, the value of S is 1, because this study deals
with the behaviour of circular fins.
The general solution to equations (4-10) and (4-11) is

of the form

Il= n * n * n =192
61 elp + Al el’lh + A2 61’2h (4-122a)
n _ . x Al % o0 L

Oy = O, * A 9 1n * A, %2 oh (4-12b)

But, as stated before in equation (2-16), the solution can be

reduced to the form

n_ _n ¥ wi »
@1 = elp + Al el,lh (4-13a)
n_ gt * ol -
EP 62p + Al 02’1h (4-13b)

if the initial conditions for the particular and homogenecus sol-
utions are properly chosen. Following equations (2-17), the given
initial condition of the original differential equation

@2 (0) = 1, is chosen as the initial condition for the parti-

cular solution, that is,

n _ .n _
elp(O) = 61(0) =1 (4.14)

Also, the initial conditions of the homogeneous solutions must

A_x (0) = 0 from equation (2-18).

. m
satisfy Lél L¥k, Lh

n =
Therefore, Gl,lh(o) =0 {4-15)

The initial condition, for the remaining particular solu-

tion, @gp(O), and for the remaining homogeneous solution
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eg 1h(O) can be arbitrarily chosen, provided each row and

column vectors of the following matrix

8 1n(®)

% 10 (D |

are not zero. The following values were arbitrairly chosen

during the computation,

n —
05 (0) = 0 (4-16)

n e —
@2’1h(0) = 1 (4-17)

The constant A, is evaluted from the one given final condition,

1

which has not been made use of, so far.

From equation (4-13b) at the final point,

n _ o I % ol
05(1) = 050 (1) + A * 05 1, (1)

Therefore A, 1s given by the expression

1

n n n
L 9B - 85, -ap,D)

n n
99,101 8g:1ntH)

1 (4-18)

Thus from equations (4-10) and the given and assumed boundary
conditions the iterative process can be started. However, we
still do need an initial approximation for the functions 62

and eg when n = 0, to start the iteration process.



29

One way to obtain an initial approximation would be to
solve the same fin problem, with no non-linearities involved.
The solution obtained to this linear problem is well known
and can be expressed in the form of exponential functions or
hyperbolic functions. But, it is seen that the initial approx-
imation need only be a very rough one. The rate of convergence
is not affected at all if we choose the initial approximations

to be

n
8, (R)

I
et
Q
| A
feo}
| A
—

(4-19a)

]
<

05 (R) 0 <R <1 (4-19b)

Hence, these initial approximation functions were used in the
computation.

The computer program, developed for this quaslinearization
technique, is listed in Appendix I. The Runge-Kutta-Gill
method of step-by-step numerical integration has been used in
the program. A flow chart of the program has also been pre-

pared, as a documentation of the procedure used.



Chapter 5

RESULTS AND DISCUSSION

5.1 Introduction

The quasilinearization computer program was run several
times to study the effects of four important parameters. These
parameters are:

(i) the thermal conductivity variation parameter «

(ii) the fin parameter N,

(iii) a geometric constant of the fin 4,
(iv) the type of variation of the heat transfer

coefficient along the length of the fin, f(R).

The dimensionless length of the fin has been divided into
100 intervals, with 0.01 as the step size.‘ The temperature
function was calculated at each of these points, and directly
plotted as a curve on the temperature versus radial distance
along the fin graph. The slope of the temperature profile
was also evaluated at these points. The slope of the temper-
ature at the base of the fin is used to calculate the heat
transfer rate by using equation (3-23). The efficiency of
the fin was evaluated then, by using equation (3-27).

The thermal conductivity variation parameter = was varied
between -0.2 to +0.2. The values of the fin parameter N
were varied from 0.25 to 3.00, and the values of the geometric

parameter d were between 0.5 to 4.0. The types of wvariation

30
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of the heat transfer coefficient considered were

f(R) = 1.0, 1i.e. h remains a constant,
f(R) = R, i.e. 1linear wvariation,
f(R) = Rz, i.e. parabolic variation,
f(R) = er, i.e. exponential variation

A comparison can be made between these four different

types of variations, because

R R2

e-=1+R+35+ ..., 0<R<l (5-1)

5.2 Temperature Profile Along the Fin

Temperature profiles along the fin length have been plotted
for 12 different cases, as shown in Figures 5-1 through 5-12.
A1l the curves have the similar profile as an exponentially
decaying curve. From the curves in Figures 5-2, 5-5, 5-8
and 5-11, as the value of the fin parameter N increases, the
temperature profile shifts downwards. In other words the
values of the temperature, obtained along the length of the
fin, are lower. This is due to the fact that N is a ratio of
the average heat transfer coefficient and the thermal conduc-
tivity at the base. Thus as N increases, the amount of heat
leaving the fin, especially near the base, increases. Hence
the temperature drops more with an increased value of N,

From Figures 5-3, 5-6, 5-9, and 5-12 it can be seen that
as the value of d increases, the temperature profile shifts
upwards, i.e., the values of the temperature along the dimen-

sionless length of the fin increases. By definition
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d = rb/(ro—rb); therefore, as d increases, the length of the
fin, (ro—rb) decreases. Hence the length available for the
heat dissipation to the atmosphere is less. As a result, the
fin has a higher temperature. A change in the value of d
does not affect the temperature profile significantly, as can
be seen from the cases when d is 4.0, 3.0 and 2.0.

Figures 5-1, 5-4, 5-7 and 5-10 show that as the thermal
conductivity variation parameter =« increases, the temperature
profile shifts upwards. This is because the heat transfer to
the surrounding medium at the base of the fin plays an important
role in the total heat transfer process. Now, as = increases,
the heat conduction at the base increases. As a result the
heat conducted along the length of the fin increases, relative
tb the heat being convected, at the base. Hence the temperatures
along the length of the fin increase with a higher « .

The type of heat transfer coefficient variation also
varies the temperature profile considerably. The variation
has been considered to be a function of the dimensionless
radius R, that is f(R). It should be noted that R is a frac-
tion, that is, 0 < R'i 1. The exponential variation eR,
dissipates the most heat. Hence the temperatures are the
lowest for the exponential case. The parabolic variation R2
dissipates the least amount of heat. As a result the temper-
ature values are the highest for this case. The temperature
profiles for the f(R) = 1.0 case and the f(R) = R case lie

B and the #(B) = R

inbetween the profiles for the f(R) = e
cases, with the temperatures of the f(R) = R case above the

temperature for the f(R) = 1.0 case.
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5.3 Heat Transfer Rate

Figure 5-13 shows the variation of the heat transfer rate
with respect to the fin parameter N, for the four different
types of the heat transfer coefficient variation. 1In studying
this variation, the values of d and =« were kept constant at
d =20 and « = 0,2, As N increases, the heat transfer rate
increases, and in the range of N values used, the increase is
almost linear. The reason for this is that, as N increases,
the amount of heat being convected out of the fin increases.
Also note that for the exponential variation of the heat trans-
fer coefficient, the heat being transferred out is the most,
and for the parabolic (f(R)=R2), the heat transfer rate is
minimum. The linear (f(R)=R) and constant (f(R)=1.0) cases
lie inbetween.

Figure (5-14) shows the variation of the heat transfer
rate with respect to the conductivity variation parameter =.
In studying this variation, the values of N and d were kept‘
constants at N = 1,0 and d = 2.0. It was noted in Figure
(5-13), that the heat transfer rateskwere a maximum for the
exponential variation of the heat transfer coefficient and a
minimum for the parabolic variation, with the linear variation
and constant cases lying inbetween. This dependence on the
type of the heat transfer coefficient variation is also
observed in Figure 5-14. The heat transfer rate varies almost
linearly with respect to the conductivity wvariation parameter
«, showing only a slight increase as « increases. The slope

of the curves increases as we go from the f(R) = R2 case to
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Figure 5,13: Heat Transfer Rate versus Fin Parameter.
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Figure 5.14: Heat Transfer Rate versus Conductivity Parameter.
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the £f(R) = eR case, thereby showing that the effect of variable
thermal conductivity is more prominent for more severe vari-
ations in the heat transfer coefficient.

Figure 5-15 shows the variation in the heat transfer rate
with respect to the geometric parameter d. In studying this
variation, the values of N and « were kept constants at
N = {:O and =« = 0.2. It is seen that as the value of d
increases, there is a decrease in the heat transfer rate. This
decrease has been found to be an exponential decrease in the
range of the d values studied. The reason for this is, that
as d increases, the length of the fin available for transferring
heat to the surroundings decreases. Once again, as noted in
Figure 5-14, the decrease in the heat transfer rate is more

prominent for more severe variations in the heat transfer

coefficient.

5.4 Efficiencyv of the Fin

Before analyzing the variations in the efficiency of the
fin, let us review the expression for the efficiency of the

fin, equations (3-26) and (3-27).

8

n= "=,
N°T

1 R
where I = [3(3 + DI(R)AR
[8)

T has been evaluated for each of the four types of vari-

ations of the heat transfer coefficients, f(R).
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£(R) = 1.0 I = (1+ 2d)/2d (5.2a)
f(R) = R I = (2 + 3d)/6d (5.2b)
£(R) = RZ I = (3 + 4d)/12d (5.2¢)
£(R) = eF I = (1.7183 + d)/d (5.2d)

Figure 5-16 shows the variations in the efficiency with
respect to the fin parameter N. The efficiency decreases
sharply as N increases inthe range of N values studied, because
of the N2 term in the denominator of equation (3-27). The
efficiency is also dependent on the type of the variation of
the heat transfgr coefficient. The efficiency is the highest
for the f(R) = R2 case and lowest for the £(R) = eR case, with
the f(R) = R and f(R) = 1.0 cases in between. This may not
be very obvious from Figures 5-13, 5-14, and 5-15 in which the
heat transfer rate is a maximum for the f(R) = eR case and
lowest for the f(R) = R2 case. The explanation for this is
that the value of I is highest for the f(R) = eR case and‘
lowest for the f(R) = R2 case. The denominator for the
f(R) = eR case is the highest, and hence theefficiency is a
minimum. This trend of the change in the efficiency, with
respect to the type of variations of the heat transfer co-
efficient, is also seen in the results obtained by Aziz and
Na [10].

Figures 5-17 and 5-18 illustrate the same change in the
efficiency as we go from the f(R) = eR to the f(R) = R2 case.

Figure 5-17 shows the effect of the conductivity variation
parameter = on the efficiency. The efficiency increases
almost linearly with an increase in = , but the increase is

less than 10 percent in the range of « values studied.
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Figure 5.16: Efficiency versus Fin Parameter.
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Figure 5-18 shows thé effect of the geometric parameter
d on the efficiency. As d increases, the efficiency increases,
but beyond a value of d = 2.5, the efficiency remains almost
a constant. As d increases, the value of I decreases. But
as d increases, the value of the heat transfer rate decreases.
The ratio of Q and I increases initially, because the decrease
in I plays a more significant role in the evaluation of the
efficiency. But beyond a value of d = 2.5, the two effects
combine to produce an almost constant value of efficiency.

In conclusion, it must be mentioned that the efficiency
is merely a number, which shows us how much heat is being; =
transferred from the fin, when compared tc the heat that would
have been transferred, under the condition that the whole
fin were at the same temperature as the temperature at the
base of the fin. Hence, in the selection or design of a fin,
the heat transfer rate, and not the efficiency, should be

considered.



PART II Optimization of Circular Fins

With Variable Thermal Parameters
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Chapter 6
INTRODUCTION TQO THE OPTIMIZATION PROBLEM

The importance of fins in heat exchange devices has been
discussed in Part I. The nonlinearities arise in the problem
from the variation of the thermal conductivity and the heat
transfer coefficient, which have been discussed previously.
This part will study the optimization of circular fins with
variable thermal parameters.

Invariant imbedding is used in the optimization process.
It will be discussed in deftail in Chapter 7, and the advantages
of using the invariant imbedding approach will be discussed
in Chapter 9.

The optimization of fins has been a classical problem.
The design of the optimum conling fin has been considered
by many researchers since the mid-1900s. In 1926 Schmidt [20]
suggested that the minimum weight cooling fin has a linear
temperature distribution along its length, that is each and
every cross-section of the fin carries the same heat flux.
Schmidt was the first to set forward a criteria for an
optimum fin. The optimization of straight fins has bheen con-
sidered in detail in a number of references, [21-23].

Duffin [24] has verified Schmidt's intuitive arguments
by an analytical method, and placed the problem on a firm
mathematical foundation. Wilkins [25,26] has studied minimum

mass straight fins, which transfer heat only the by mechanism

o6
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of radiation to the surroundings. In 1964 Brown [27] derived
an equation relating the optimum dimensions of uniform annular
fins to the heat transfer, thermal properties of the fin,

and the heat transfer coefficient. Cobble [28], studied the
problem of nonlinear fin heat transfer, and later he extended
his previous work to the problems of fin optimization.

The fin optimization has been investigated by many
researchers in the last decade. Cobble .[29] investigated the
problem of the optimum fin shape for steady-state nonlinear
heat transfer of a straight fin, with the surroundings, by
both convection and radiation. Later in 1974, Maday [30],
using Pontryagin’'s minimum principle, obtained the minimum
weight one-dimensiocnal straight cooling fin. Guceri and
Maday [31] followed up Maday's work with a paper on a least
weight circular cooling fin. Arora and Dhar [32] have
described methods of carrying out the minimum weight design
of finned surfaces of various types;

More recently, Razelos ﬁSS] has obtained the solution of
the optimization problem for longitudinal convective fins of
constant thickness, triangular or parabolic profile, and
uniform internal heat generation. He presented an analytical
method, and obtained a transcedental equation for determining
the optimum dimensions of straight fins from quantities which
are specified, namely the fin profile, the desired heat
dissipation, the thermal parameters and the heat generation.
Razelos and Imre in 1980, published a paper [34], on the
optimum dimensions of circular fins- with variable thermal

parameters. Optimum dimensions of circular fins of trapezcidal
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profile, with variable thermal conductivity and heat transfer
coefficients, were obtained. They used a guasi-Newton
algorithm to solve the nonlinear differential equation.

From the preceding discussion, we can conclude that the
fin optimization problems can be classified either as the
least volume fin or the maximum heat dissipation fin. The
least volume, also known as the minimum weight fin problem,
is to define the shape of the fin, which minimizes the fin
volume for a given heat dissipation. Solutions obtained to
these problems have resulted in desirable fin profiles. How-
ever, this type of optimization is only of academic interest
with 1little practical usage, because the manufacture of fins
with such complex profiles is exceedingly difficult and costly.

The maximum heat dissipation problem is more practical
in engineering design. We select a suitable and simple pro-
file, such as a trapezoidal or triangular fin, and then
determine the dimensions of the fin, such that the fin with
a given volume yields maximum heat dissipation. Due to the
behaviour of the nonlinearities being considered, it is not
possible to obtain a solution analytically. In the absence
of such a solution, one must resort to numerical methods in
evaluating optimal values. Invariant imbedding has been used
in this study. The results obtained from the study, have
been compared with the results obtained by Razelcs and Imre
[34], who used a quasi-Newton algorithm to solve this problem.

The optimization problem has been formulated in Chapter 8§,
and the solution and the results are prosented in Chapters 9

and 10 respectively.



Chapter 7

~ METHOD OF INVARIANT IMBEDDING

7.1 Introduction

In Part I of this study, quasilinearization has been used
to selve the nonlinear boundary value problem. In Part 2 of
this study, which deals with the optimization problem, a
completely different approach has been used.

The principles of invariance, which are now known as
invariant imbedding, were introduced by Ambarzumian [35], in
his studies on transport phenomenon. Later, problems in
radiative transfer, were solved by Chandrasekhar using this
concept [36]. Bellman, Kalaba and Wing developed this techni-
que in the study of neutron transport phencmenon, [37-41].
Others who made contributions in employing this technique
include Priesendorfer [42], Bailey [43], and Lee [14].

This chapter will deal with the numerical aspects of
the invariant imbedding approach. Invariant imbedding has
been proven useful in treating boundary value problems, [41].
In this chapter the basic concept of the invariant imbedding
will be emphasized, because this concept of imbedding is very
useful and frequently gives new insights to the problem being
studied, which may have been treated by other classical
approaches. Rigorous derivations of the invariant imbedding

method can be found in Bailey's paper [43].
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The difficulties encountered with the solution of non-
linear boundary value problems have already been discussed in
Section (2.2), Chapter 2 of Part I. The optimization of fins
is also governed by a nonlinear differential equation, and
the advantages in using invariant imbedding will be discussed

in a later chapter.

7.2 The Invariant Imbedding Approach

The invariant imbedding approach can be best illustated

by an example. Consider the problem

X

dx _ %

at = f(x,y,t) (7.1a)
dg i g(x v t) (? lb)
dt 18y 3 ’

where f and g are nonlinear functions.

The boundary conditions are
x(0) = ¢ ' (7.2a)
Y(tf) = 0 (7.2b)

with the independent variable t defined in the range 0 < t < tf.
Equations (7.1) and (7.2) represent a nonlinear, two

point, boundary value problem. In order to avoid the various

computational difficulties in solving the above boundary value

problem, we shall convert it to &n initial-value problem.

That is, we shall obtain the missing initial condition y(O0),

by using the invariant imbedding concept.
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To do this, we first convert this problem, to a problem

with a more general set of boundary conditions as follows:
x(a) = ¢ (7.3a)
y(teg) = 0 (7.3b)

where a < t < tf, and a is the starting value of the indepen-
dent variable t. By changing the value of a, we can change
the duration of the process, that is, a denotes the control
of the duration of the process. A whole family of problems
can be generated by assigning different values to a, say

a =0, A, 2A, ... tf, where A is an incremental value. If

a = 0, thenweget the original boundary conditions (7.2), and

the duration of the process will be tf. If a =t then the

£
duration of the process will be zero. For any intermediate
value of a, we will get a duration between 0 and tf. The
basic equations ofatypical problem of this family are repre-
sented by equations (7-1) and boundary conditions (7-3),

To convert the problem into an initial value problem,
we need to obtain the missing initial value y(a). y(a) will
be obtained in a general form for the whole family of problems.
The basic idea in imbedding is that neighbouring processes
within this family of problems, are related to each other.
Neighbouring processes are those, for which the duration
changes only by a small incremental value A, It is possible

to obtain the missing initial condition y(0) by examining the

relationships between neighbouring processes. "
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The most important step in the imbedding process, is to
recognize the fact, that the missing initial condition y(a)
for the family of problems, is not only a function of the
starting point of the process a, but also a function of the
starting state of the system, that 1s, the given initial
condition ¢, [14]. The functional of the missing initial

condition rm can therefore be defined as

the missing initial condition for the
B = P (c,a) = system represented by equations (7-1)
and (7-3), where aititf and x(a) = ¢

(7.42)
In other words
v(a) = r (c,2) (7-4Db)

Remember, that x(a) and y(a) represent the initial state of
a typical system.

The T is considered to be the dependent variable, and
¢ and a are considered to be the independent variables. An
expression for T in terms of ¢ and a will be obtained as
follows. Consider a neighbouring process having the starting
point (a + 5). The missing initial condition for this neigh-
bouring process can be related to the initial value ¢f the
previous process y(a), by the use of Taylor's series expansion.
We neglect all terms with powers of A higher than the first

order and obtain the following expression,

y(ata) = y(a) + y'(a)s + 0(4A), (7.5)
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where 0(A) represents higher order terms
Rewriting equations (7-1), at the starting point of the

process t = a, we obtain,

%% I X=a = f(X(a), Y(a-)y a) (7_6&)
= | xma = 8(X(2). y(2), 2) (7.6b)

Here, we do already know that x(a) = ¢ and y(a) = rm(c,a)

substituting these values into equation (7-6), we obtain,

dx

T | x=a = f(eTyleia), ) (7.72)
%% | <= ~ &(c,r (c,a), a) (7.7b)

Substituting equations (7-7b) and (7-4b) into equation (7-5),
we obtain the following expression for the missing initial

conditions of a process having the starting state at

t=a+ A
y(ata) = rm(c,a) # g(c,rm(c,a),a)A + 0(a) (7.8)
From equation (7-4) we know that r, = rm(c,a), which can
be rewritten as follows:
r. * rm(c,a) = rm(x(a),a) (7-9)

From equation (7-9) the function y(a+4A) can be obtained by

simply replacing a by a + A in the equation (7-92). Therefore

y(a + A) = rm(x(a + 4A), a + 4) (7-10)
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Again, we need to express x(a + A) in terms of x(a),
by using Taylor's series expansion with terms involving powers

of A higher than the first being neglected.
x(a + A) = x(a) + x'(a)s + 0(4) (7-11)

We know that x(a) = ¢. Substituting equation (7-7a) into

equation (7-11), we arrive at the following equation.
x(a + 4) =¢ + £(c,r (c,a),a)s + 0(s)  (7-12)

Substituting the expression (7-12) into equation (7-10),

we have,
y(a + A) = rm(c+f(c,rm(c,a),a)a + 0(a), a + &) (7-13)
Equating (7-8) and (7-13) we obtain the desired relation

ro(c,a) + gle,r (c,a),a)h
= rm(c+f(c,rm(c,a),a)A , a + A) (7-14)

We should note that in equation (7-14), we omit all terms
invoiving powers of A higher than the first.

Equation (7-14) governs the whole imbedding process, It
can directly be used to obtain the missing initial condition
rm(c,a).

Nevertheless, it is also possible to adopt a fully analyti-
cal approach from this point. A partial differential equation
can be formulated from eguation (7-14). Expanding the right

hand side of (7-14) by Taylor's series expansion we obtain
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r (ctf(e,r (c,a),a)s, a + a)= r (c,a)

Brm(c,a)
+ f(e,r (c,a),a)s (—5z7—)
ar_(c,a)
+ A(——%%f-—5+ 0(a) (7-15)

In the limit, A tends to zero, as neighbouring processes
approach one another. The following first order quasilinear
partial differential equation can be obtained from expressions

(7-14) and (7-15).

ar_ ar
f(c,r (c,a), a) ?gc’a) + mg:,a)
= g(C,I‘m(C,a), a-) (7—16)

From (7-3b) and (7-4), we know that when a = tf, we have a

zero duration process
rm(c,tf) =0 (7-17)

Thus, the missing initial conditions rm(c,a) for the family
of processes, with the starting values of the independent
variable a from zero to tf, can be obtained by solving the

system (7-16) and (7-17).

7.3 Considerations in Using the Invariant Imbedding Approach

Though equations (7-16) and (7-17) can be solved by
various techniques, the finite difference equation (7-14) is
often used. It is advantageous to use the difference equation
(7-14), whose limiting value yields the differential equation

(7-16), rather than constructing finite difference equations
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from the differential equation (7-16),[14]. The original
difference equation (7-14) preserves the physical character-
istics of the process, and thus yields more insight into the
problem being studied.

It should be noted in equation (7-14), that we are
attempting to obtain rm(c,a). Therfore, we can rewrite (7-14)

as follows
rm(c,a) = rm(c+f(c,rm(c,a), a)h, a + A)
- gle,r (c,a), a)a (7-18)

We note that rm(c,a) occurs an both sides of this equation.
~8ince we are considering neighbouring processes, we can
replace rm(c,a) on the right hand side of equation (7-18) by

the following approximation
rm(c,a) = rm(c,a + A) (7-19)

in both f and g functions, where A must be small. Substitut-

ing (7-19) into (7-18), we get
rm(c,a) = rm(c+f(c,rm(c,a + Ada, a)ha, a + A)
- g(csrm(cﬁ a + A)y a’)A (7—20)

Equation (7-20) can be solved in a backward recursive
fashion by starting with the condition,equation (7-17), at

t Clearly we cannot evaluate T at all values of c.

£
Hence, some discrete values must be chosen, say

c =0, 6§, 25,... (7-21)
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and T evaluated at only these discrete values of c¢. Thus
there are grid points in both dimensions (the duration tf

and the initial condition ¢) of the problem, The initial
state of the system, ¢, has been divided into ¢/8 grid points
and the duration of the process t, has been divided into te/s
grid points. There is very little sophistication involved

in choosing the grid values of the independent variables.
Experience, computer memory capacity and accuracy requirements
play a major role in the selection of A and § values used,
[14].

Since the function : is represented by a set of grid
values, some type of interpolation scheme is necessarily used
to create a general value from the values at the grid points,
during the calculations. From equation (7-20), adopting a
backward recursive approach, for the first step let a = tf - A,

Then,
-AY =
rm(c,tf A rm(c+f(c,rm(c,tf), ada, tf)
- gle,r (c,t.), a)h (7-212)

We know that for any value of c, rm(c,tf) = 0 from equation

(7-17) . Therefore (7-21a) can be written as
rm(c,tfuﬁ) = —g(c,0,a)h (7-21b)

Equation (7-21b) can be solved for rm(c,tf—A) for all the
grid values of ¢, that is 0, &6, 28, .... A table can then be
set up from 2ll the values of ro obtained at this particular

value of a = tf - A.
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For the second step, the duration of the process is
increased by a small value, by taking a = 1:f - 2A. Substitut-

ing this value of a in (7-20) we get,

rm(c,tf—ZA) = rm(c+f(c,rm(c,tf—ﬂ), aYA tf—A)

- gle,r (c,te=4), 2)h (7-22)

So to obtain the values of rm(c,tf-A) for different values

of ¢, we need to know the values of rm(c,tf—A) on the right

hand side. These values have been stored in a table as

mentioned above. By interpolating within this table, a gener-

al value of T, can be obtained for any particular value of c.
This recursive process is continued in the backward

direction till the terminating value of a is reached, that

is a = 0. At this point, the value of r we obtain will

be the missing initial condition y(0) which we have been

searching for.

7.4 General Discussion of the Imbedding Approach

The imbedding process is hinged on the fact that any
individual process can be considered as a member of a family
of related processes. The sizes of these individual.processes
are represented by the duration of the processes or the
intervals of interest (a < t < tf). The basic idea is that
although we do not know the value of the missing initial
condition of the original process with duration tf, we do
know the value of this missing initial condition if the

process has zero duration [14]. Thus starting with a process
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of zero duration, we gradually increase the duration of the
process by imbedding the present unknown process into the
previously known process with a shorter duration.

The invariant imbedding approach is a concept or an
idea. It is not a rigorous technique. Thus the invariant
imbedding equations can be obtained by various different
formulations or derivations. These equations can be obtained
not only from the usual equations representing the process,
but also from an analysis of the original physical process,
provided that the physical picture of the process is fairly
simple and clear. Since 1960, several schemes have been
developed to obtain the invariant imbedding equations, without
considering the physical process. The invariant imbedding
can also be applied to solve a general n-dimensional system

of nonlinear differential equations.



Chapter 8

ANALYTICAL FORMULATION OF
THE OPTIMIZATION PROBLEM

8.1 Introduction

As stated in Chapter 6, this part of the study deals with
the optimization or maximization of heat transfer rate from a
fin of given profile. The variation in the optimum conditions
with respect to thermal and geometric parameters has also
been considered. Invariant imbedding has been used to ovércome
the difficulties of the nonlinearities involved in the
optimization process.

The derivation of the nonlinear differential equation
governing the behaviour of the fins has already been presented
in section 3.2 of Part I. HReviewing the assumptions then made,
most of them do hold even in the optimization problem. 1In
brief, there is steady-state one-dimensional heat conduction,
radiation is neglected, fin profile curvature is neglected,
fin tip is insulated, and the thermal conductivity and heat

transfer coefficient are not constants.

8.2 The Optimization Problem

Under the assumptions stated above, the governing differ-
ential equation has been obtained in equation (3-3) of Part I

which is being repeated here.

70
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L s(o)ry(r)SE] - h(r)r(t-t_) = 0

IfT=1t - t_, then the above equation can be rewritten as

4 [k(T)ry(r)%% = h(r)rT (8-1)

The difference between this formulation and the one in
Chapter 3 of the first part, is that here an even more
generalized case has been considered, in the sense, that the
thickness of the fin is not a constant, and could vary between
a triangular profile and a constant thickness profile.

The boundary conditions are

T}r - r, = constant, T, - (8-2a)
dT -
dar [r=r =0 (8-2b)
e}
T| . _ : -
r=r, bounded if y(ro) =0 (8-2¢)

Now the optimization problem can be stated as follows:

For a given volume of the fin

vV = fro 4ny(r) r dr, (8-3)
rb
we need to determine the dimensions of the fin, (that is, the
semi-thickness at the base of the fin’'w, and the length of
the fin, (ro—rb)},which will maximize the heat being
dissipated by the fin under steady state condition, in other

words, the following gquantity will be maximized:



72

Temperature,t

fb\ :

insulated end r jdrj

Figure 8.1: Cross-sectional view of a trapezoidal fin.



Y3

_ oy
q = —4ﬁrb Wk(T)drlr = (8-4)

A constraint condition requires that

q > dg (8-5a)

where = 4rr Whn (8-5b)

9ht b T

f'nf

Anr is the heat transfer that would occur from the surface

in the absence of a fin, and hnf and Tnf are the correspond-

ing heat transfer coefficient and temperature at the base.
Once again, the thermal conductivity has been assumed

to be linearly dependent on temperature, and the heat transfer

coefficient has been assumed to vary with the radius. There-

fore,
kEk=k (1 +==) =Lk (1 + =09 (8-6)
a Tb 2
r-r m
and L=k [—=1 =1y (8-7)
a o b b

where X is a function of the slope of the fin profile A, the
index m and the length of the fin b, and ha is the average
heat transfer coefficient. o is the dimensionless temperature,

g = T/Tb, and ka is the reference thermal conductivity.

8.3 Dimensionless parameters

The nondimensional independent variable is defined as

£=r/ry (8-8)



The thickness of the fin is made dimensionless with respect

tc the base semi~thickness w.

B = y/w (8-9)
Therefore,

dy . w_dg (8-10)

dr rb £

Substituting (8-6), (8-7), (8-8) and (8-9) into (8-1), we

have

L [X(T)r ewsg r dt b] =h, Her, 0 T

ale

b

~ which on simplification leads to

2
g—g [(1+=0)g652] = (hia:,b)ﬁae (8-11)
Let v be defined as
a
Therefore,
%g [(1+<0)£652] = vPHED (8-13)

74

The boundary conditions (8-2) in terms of the non-dimen-

sional parameters are

ro= Ty, E=1, 6 = 1 (8-14a)
= = @: —
r=r. E b, az 0 (8-14b)
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o £ = b, & must be bounded, if B(b) = 0, (8-14c)

where b is a dimensionless length parameter defined as
b = ro/rb (8-15)

The dimensionless volume U is defined as

kaV
U = 4 (8-16)
4wrb h
a

The total given volume is

To br 2
V=2dnf " y(r)rdr = 4f mwry BEAE
rb 1

Let g(b) be defined as

g(b) = fb REAE (8-17)

1

Then,
2
vV = 4nwrbg(b)

Substituting this expression into (8-16), we have

‘ 2
_ ka 4 wrb z(b)
4

4 rE ha

= E(B) (8-18)
v

8-4 Heat dissipation

The heat dissipated under steady state conditions is

given by (8-4)
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LV

o m. dT
a = 41rrb L(T) a‘}*,r - rb

The dimensionless heat dissipation Qh is defined as

—_— (8-19)

2
4nrb haTb_

Qh

Substituting g in terms of « and @, equation (8-19) yields

Qh = (1+“)g'(1) (8-20)

e 7

do

where 0'(1) = dele = 1

The problem now is to determine the values of parameters
v2 and b, which maximize the heat dissipation Qh for a given
dimensionless volume U, under the constraint condition (8-5),
i.e.,

N::ﬁ_>1

(8-21)
¥ qnf

where N is called the heat removal number [34].
In concluding this chapter, it should be mentioned that
the main equations we are interested in are (8-13), (8-14),

(8-18) and (8-20).



Chapter 9

IMPLEMENTATION OF THE INVARIANT
IMBEDDING APPROACH

9-1 General Considerations

The governing differential equation (8-13) is a nonlinear
second order equation, which can be converted to two first

order equations as follows

Xm X2

T T TBE(l+ex))) (=12}

e . 9-1b

FE = VOHEX,, (9-1b)
where Xl = 0 (9-2a)

i 5 de -
X, = (l+=0)8tgy (9-2b)
The boundary conditions are
XlIE < = 1 (9-3a)
X2[E = P = 0 (9-3b)

Before proceeding, we need to note what kinds of functions
g, g(b) and K are.
For a trapezoidal profile, the y coordinate can be expressed

as

77
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(r-r)
y o= Wyt (W )
o o) (ro rb)
Ts Tr
— (= - )
w W ey r
- ¥ = _0 _ 0 ~b b
p=2=2+ -2 2 (9.4)
o]
b= ~ 1)
b
We define a slope parameter ) as
v,
l="—w- (9-5)
Eguation (ﬁ—4) now becomes
B = A + (1-1) (b-%) (9-6)

(b=1.)

Note that when X = 0, we have the case of a triangular profile
fin, and when A» = 1, we have the case of a straight fin. For
0 < X < 1, we have a trapezoidal fin.

From equation (8-7) we know that,

r-r. -m
E G
a o b
m

U“D‘
It
=
]

-1
=K [E:_]
K can be any arbitrary function of b and m, that is K = K(b,m).

In this study K(b,m) has been taken to be

(b+1)(m+1) (m+2)

K(b,m) = “oTa+1)br1]

(9-7)

This variation has been taken from the paper by Razelos and
Imre [34] and has been used for a qualitative study of the
effects of m on the optimﬁm conditions. It should be mentioned

that for design purposes, a2 complete knowledge of the h variation
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must be observed from the physical process and the flow of
coolant around the fin.
Knowing the expression for B equation (9-6), we can obtain

g(b) from its definition (8-17)

g(b) = [° pede
1
- R+ o=
- 3 ) (po1)498
= (b;sl) [(1-2)(b+2) + 3x(b+l)] (9-8)

A new expression for the heat dissipation Qh can be
obtained from the new independent variables Kl and Xz defined

in (9-2). Equation (8-20) defines Qh as

- (+=)e'(1
Qh - 2 )

From equation (9-2b), at & = 1,

Xp(1) = (I+=e(1))B] .y & ©'(1)

(]

(1+e=)0' (1)

Substituting this wvalue into egquation (8-20) we get

(9.9)

Ixpressions (9.6), (9.7) and (9.8) define B, K, and g(b).

Substituting these values into equations (9.1), we obtain
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d¥;  X,(b-1)
dg ~ E(IF X [A(b-1)+(1-2)(b-£)] (9-10a)
dX 2
2 _ v (b+1)(m+1)(mt2)
dg ( 2[(m+1)b+1] )E X, (9.10Db)
Further, substituting (9.8) into (8-18), we get
w2 = (b 1)[(1 A)(b+2) + 3A(b+1)] (9-11)

Substituting (9-11) into (9-10), we get the final form of the

differential equations as follows

Xm Xz(b—l)

_ (9-12a)
dg  E(1*aX D[ (b-1) + (1-2)(b-£)]

dZy _ (b=1)
az 60

b+1)(m+1)(m+2)(£ -1

(
[(1-2)(b+2)+32(b+1)][ S )b+ 1)

L1 %, (9.120)

9~-2 Application of the Imbedding Approach

Equation (7-20) is rewritten here again, for reference,
rm(c,a) = rm(c+f(c,rm(c,a+ﬂ), a)h, a +A)
- gle,r (c,a+a), a)A (7-20)

The functions f and g in this case are given in the eguations

(9-12a) and (9-12b), that is

Xz(b—l)
T %0 8) = FIFx DI (b1 (T3 ) (5-E) ]

(9.13a)

+1)(m+l)(m+2) E -1.m
S o) (bo1) 851

(9-13b)

g(X),%,,8) = (G55 [(1-2)(b+2)+32 (b+1) ][
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The boundary conditions (9-3) will now be converted to a more

general form as follows

Xl(a) (9-14a)

L]
le]

I
o

(9-14b)

%, (b)

Applying equation (7-20) to the system (9-13) and (9-14),
we obtain

r (c,ata)(b-1)a '
_ m s &1 b ; , a +A)
I'm(C,a-) = I'm(C + a(l+mc)[l(b—l)+(1"}\)(b_a)]

+1)(m+1)(m+2),a-1

m
S+ D)b+1)  (po1) Jach

- Lm0 (br2)+aa (+1) 112
(9-15)

To solve equation (9-15) in the backward recursive fashion,
we first need an initial condition, which will allow us to
start the process. This condition can be written from eguation

(7-17), and in this case, happens to be
rm(c,b) = Xz(b) = 0 (9-1%)

for all values of.c, at the final point b, when the process
has zero duration.

The first step in the recursive process is to obtain
rm(c,bmﬂ), that is when a = b - A. From equation (9-15)

we obtain

rm(c,b—A) = rm(c+rm(c,b)(b—1)ﬂ

, b)
(b=A)(I+=c)[A(b=1)+(1=2)A]

+1)(m+1)(m+2) b-A-1.m

'(%él)[(l-l)(b+2)+3x(b+1)][(bz{(m+1)b+1) (1)

J(b=-2)eca

(817 )
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The first term on the right hand side of (9-17), rm(...,b)
is zero from equation (9-1€). Thus rm(c,b—A) is calcuated for
different values of c¢. 1In this study, the values of c¢ used
were O, 0.1, 0.2, ... 1.0, that is 6 = 0.1. The value of &
used was A = 0.01. All the values of T, obtained for different
values of ¢, were stored in the computer memory in the form of
a table, to be used in the next step of the recursive process.
The next step is to obtain the value of rm(c,b—2A), that

is when a = b - 2A. From equation (9-15) we obtain,

rm(c,b-2ﬂ) = rm(c + rm(c,b-A)(b—l)A
(b-22)(1+=c)[A(b-1)+(1-2)2A]

> b"ﬂ)

b-1 (b+1)(m+1)(m+2) b-2A-1.m '
(9-18)

The first term on the right hand side of (9-18) needs rm(...,
b-A) to be evaluated. This value of rm(...,b—A) is obtained

by interpolation, using the values from the table of rm(...,b-A),
obtained at the end of the previous step. All the values of
rm(...,b-2a) obtained for different values of ¢ are now stored
in the computer memory in the form of a table, to be used

when calculating rm(...,b—BA) in the future step.

This recursive process is continued in the backward
fashion, reducing the value of a by A in each step. This
process is stopped when a = 1, since we are interested in
rm(c,l). Of al1l the ¢ values at this point, from the boundary

conditions (2-3), we know that the only one we are interested

in is ¢ = 1. In other words, we are interested in obtaining



rm(l,l = Xz(l), which is the missing initial condition.

8.3 Summary of the Optimization Process:

All the optimization principles and procedures have been
described in the foregoing discussions. But, it would be
appropriate to organize all the important features, and present
the optimization process in a summarized form.

A value of the dimensionless volume U, equation (8-16) is
selected, and the values of the dimensionless -variables vzw(8—12)
and b (8-15) which maximize the heat dissipation from the fin
Qnh (9-9), are calculated. Vz and b are not independent, but
are related by equation (8-18).

The optimization process starts by assuming a value of
the dimensionless length parameter b (which is the control
variable) and calculating v2 from equation (8-18), as we
already have a known value of U.

By the imbedding approach the missing initial value Xz(l)
is calculated, and the objective function Qh evaluated from
(9-9). Next the value of b is incremented and Qh calculated
again. The current calculated value of Qh is compared to the
eariier value of Qh. Initially the value of Qh keeps increas-
ing monotonically, until the optimum value of b is reached.
Beyond this optimum value of b, the heat dissipation Qh begins
to decrease. In other words, the value of the parameter b is
obtained, for which the heat dissipation Qh reaches the maxi-
mum value. From the optimum value of b, the optimum value of
vz is then calculated, and hence the optimum dimensions of

the fin for maximum heat dissitation are determined. With
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some intuition and experience, the value of b close to the
optimum can be selected, hence the computation time can be
reduced considerably. The computer program developed for

this invariant imbedding approach is listed in Appendix II.
A flow chart has also been prepared, as a documentation of

the procedure used.

8.4 Advantages of the Invariant Imbedding Approach

It may be argued that quasilinearization, which had been
used to calculate temperature profiles and heat transfer
rates in the first part, could also have been used in the
optimization process. But, the invariant imbedding approach
has three distinct advantages over quasilinearization, which
are described below.

It is believed, that for this optimization problem, the
invariant imbedding approach would reguire much less computatiocn
time, than the time required by the quasilinearization techni-
gue. This is because the quasilinearization involves an inte-
gration process, and an iteration process till convergence
is reached.

The invariant imbedding approach is much more stable in
the numerical computation than the quasilinearization technique.
This is because quasilinearization involves a.pﬁmerica;°¢
intergration, and even a slight error in selectiné the approp-
riate initial conditions could lead to a totally erroneous
result.

Finally, the invariant imbedding approach automatically

takes care of any possible mathematical singularities that may



occur near the tip of the fin, in case of triangular fins.
This singularity has been noted in equations (8-2c) and (8-14c).
By using the invariant imbedding approach in the backward

recursive fashion, no singularity problems were encountered

in this study, for the triangular fin (X = Q) case.



Chapter 10

RESULTS AND DISCUSSION

10-1 General Consideration

The invariant imbedding computer program was run to
obtain the optimum fin dimensions and to study the effects of
the three important parameters - thermal conductivity wvariation
parameter =, the index of the heat transfer coefficient m,
and the slope parameter of the fin profile X - on the optimum
dimensions.-

The value of « was varied between -0.4 and +0.4. Five
values of X, starting at » = 0 for a triangular profile to
» = 1 for a constant thickness fin, were selected. Values of
m selected were 0, 0.5, 1.0, 2.0. When = is 0, we have the
case of constant thermal conductivity, and wheﬁ m= 0, we
have the case of constant heat transfer coefficient. It must
once again be emphasized, that the variation of heat transfer
coefficient selected here was dnly for a qualitative examination

of its influence upon the optimum dimensions.

10.2 The Base Case

The program was run first for the case when » = 0.5,
= = 0.0 and m = 0.0. This was the base case and the effects
of varying A, « and m were compared to this base case.

The maximum Qh was obtained for wvarious values of U

1/2

between 0.01 and 400. The results obtained (Uop 5 Vop, ap’
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Qh) have been plotted in Figure 10-1. The dotted line shows
the results obtained by Razelos and Imre [34], by a method
using a quasi-Newton algorithm. It can be seen that both
results agree very well. Qh has been plotted on the horizon-
tal axis allowing for a better interpretation of the results.
From Figure 10-1, we can see that as Qh increases, the volume
required increases. Also note that Vop decreases as Qh
increases. A decrease in Vop implies an increase in w. This
is due to the fact, that a bulk of the heat transfer takes
place near the base of the fin. Hence the variation in the
width of the fin at the baée plays an important role in the
heat transfer process. The length also increases as Qh
increases. But the change in the magnitude of vOp is more

significant than the change in bO for a given change in the

p’
heat dissipation Qh.

10-2 Effects of the Slope Parameter 2

Figures 10-2 and 10-3 show the effects of the slope
parameter ) on the optimum conditions. 1In Figure 10-2, (U/Uc)
has been plotted versus Qh for different values of X, where
the subscript c denotes the base case and Uc is obtained from
Figure 10-1. « = 0.0 and m = 0.0 were held constant. Hence,
for the » = 0.5 case, we have a straight line at U/Uc = 1.0.
Note that as ) decreases, the ratio U/Uc decreases, that is
as we go from a constant thickness fin to a triangular fin,
less volume islrequired for the same heat dissipation. This
variation can be understocod by comparison with the shape of

the fin for a minimum volume or weight fin design. The
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minimum weight fin has a profile similar to a parabola, with
zero width at the tip of the fin, that is » = 0. Also note
that as Qh increases, for A less than 0.5, the U/Uc curve has
a negative slope, and for A greater than 0.5, the U/Uc curve
has a positive slope. The effects of A variation are more
significant at higher values of Qh. |

Figure 10-3 show the variation in the base thickness
W/Wc with respect to A for a given heat dissipation Qh, where
W denotes the base thickness of the base case, that is when
A = 0.5. Note that as ) decreases, the base width increases,
and is a maximum for the X = 0.0 case. As mentionea in the
preceding paragraph, the minimum weight fin has a profile
similar to a parabola, with a large base width. This is be-
cause each of the cross-sections of the fin is equally burdened
in the heat conduction process. This explains the reason
for the jincrease in the base width, as 3 decreases. Also note
that the change in the width, for a given heat dissipation Qh,
decreases as A increases. In the X = 1.0 case, w represents
not only the width at the base of the fin, but the width

everywhere along the length of the constant thickness fin.

10.3 Effects of the Conduction Parameter «

Figure 10-4 illustrates the effects of « on the optimum
conditions, U0 and Vg represent the case when « = 0.0. In
Figure 10-4, U/UO and w/wo have been plotted versus the heat
dissipation Qh. UO and Vs have been obtained from Figure 10-1.

It can be seen from Figure 10-4, that as = increases,

both curves, for the volume required, U/Uo and the base
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thickness of the fin, w/wo have a negative slope, and these
curves pass through the (0,1) point. Note that for a given
heat dissipation, we require larger volumes for the case of

= < 0.0, and smaller volumes for « > 0.0. The same also holds
good for the base thickness of the fin.

10.4 Effects of the Heat Transfer Coefficient Variation
Index m

Figures 10-5 and 10-6 illustrate the effects of the index
m on the optimum conditions. To study this effect, « and A
have been kept constant (at « = 0.0 and X = 0.5). It should
be noted that as m increases, the value of the heat transfer
coefficient decreases, because the index m is a power of a
fraction.

Figure 10-5 shows the effects of m on the volume ratio
U/Uo, where U0 is the optimum volume for the m = 0.0 case.
UO is obtained from Figure 10-1. As m increases, for the
same heat dissipation, the volume increases, because the
heat transfer cecfficient has decreased. Figure 10-6 shows
the change in W/Wo, with a change in m where LS is the optimum
base thickness for the m = 0.0 case. W is obtained from
Figure 10-1. It can be seen that the base thickness ratio
increases as m increases, and in the range of values of m
studied, the ratio reached values upto 2.5. Therefore, we
can conclude that the optimum base width of the fin changes
considerably with an increase in m.

From Figures 10-5 and 10-6, it can be observed that the

effect of a variable heat transfer coefficient decreases as
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the heat dissipation increases. At the low values of heat
dissipation, a change in the heat transfer coefficient varia-
tion causes a considerable change in the optimum conditions.
However, at higher heat dissipation values, the effect of the
variable heat transfer coefficient diminishes. At the high
values of heat dissipation Qh and volume Uo’ the ratio. U/Uo

is smaller than that for thelow wvalues of Qh and Uo'

10.5 Variation in the Length Parameter b

It was found that in all the cases considered (the base
case, the variable A cases, the variable « cases and the
variable m cases), the length of the fin does not vary by more
than 4 percent. Thus the optimum length parameter of the fin

is not significantly affected by a change in x, =, m.

10.6 The Constraint Condition

The constraint condition g > Ayt has already been stated

in equations (8-5). This condition can be rewritten as

ir Ant . ( )

where Nr has been referred to as the heat removal number.

From (8.5&) and (8.19), (10-1) can be expressed as

2

4wrb

ha Tb

whor The

N = @Qh .
r 4'nrb

This can be simplified to the following form

_gqh-v? BTy

(
¥ Br hn:ETnf

N y = 1 (10-2)




where Br is a parameter defined as

harb
Br = ka (10-3)

The optimum values of v and b must satisfy equation (10-2) to
demonstrate the usefulness of the fin. The ratio (haTb)/
(hnanf) in (10-2) needs to be evaluated for this purpose.

An assumption could have been made that the temperature of the
wall near the base of the fin remains the same both in the
presence and the absence of the fin. However, Sparrow, et al.
[44, 45], have shown that in the presence of the fin there is

a temperature depression near the interface of the fin and the
wall. This depression phenomenon of the base temperature can
be physically understood. If the presence of the fin augﬁggts;}
the heat transfer, then heat must be brought by conducti;; |
to the base from more remote regions of the wall, and this
conductive transport necessitates the temperature drop, [44].
Physical reasoning suggests that the presence of the fin will
act to depress the level of the base temperature, and this
needs to be considered in evaluating the usefulness of the
fin.

It has been shown [44], that the ratioi (Tb/Tnf) varies
between 0.77 and 0.92, for length to thickness ratios of the
fin varying between 2 and 20. An intermediate value of 0.8
is used in this study. The value of 0.8 also assures us of
more conservative results.

To evaluate hnf’ we need to obtain the heat transfer

coefficient for the flow a fluid perpendicular to cylinder.
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This can be done using the co-relation in [23]. To do this,
we need to know the Reynold's number of the flow around the
cylinder, and the values of the radius of the cylinder, and
the thermal conductivity. The co-relation is given in terms
of the Nusselt number.

It should be recognized that ha and hnf have different
values. However, since we are only interested in proving the
inequality (10-2), the ratio (ha/hnf) has been assumed to be
1 here.

Equation (10-2) is an inequality and the exact value of
this ratio is not critical. Hence a value of 1 has been
assumed, that is, let
‘ _on.v? (0.8) _

r B
r

(10-3)

Therefore

Qh'V2 (0.8) (10-4)

By

can be evaluated for a particular value-of Qh. Br is directly
dependent on the heat transfer coefficient and the radius Ty
and is inversely proportional to the thermal conductivity.
Specific values of these quantities need to be given in any
problem. In a more general sense, a plot of Qh versus Br will
give us the limiting values of Qh for any value of Br‘
Actually, Nr must be greater than 1. Hence, in Figure 10-7,
the usefulness or the operating values of Qb should lie to

the left of these curves. It can be seen from Figure 10-7,

that as B, decreases (i.e. the thermal conductivity k;‘
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increases), the heat dissipated Qh increases. Figure 10-7 has
been plotted for the X = 0.5 case, for two different wvalues

of m, and for the X = 0.0 and X = 1.0 cases.

10.7 The One-Dimensional Assumption

The justification of the one-dimensional approximation
is based on the criterion of a large fin length to thickness
ratio. This approach does not take into consideration the
ratio of interior (conductive) to exterior (convective)
resistances. The Biot number represents this ratio. It has
been shown by Irey [46], that only for small Biot numbers,
the one-dimensional approximation is satisfactory. Other works
(47, 48] have shown analytically that the sole reguirement
for reducing the exact solution to the one-dimensional approxi-
mation is that the Biot number is much less than one.

In equation (10-2), the term (haTb)/(hnanf) is a fraction,
due to the base temperature depression. Substituting the
values for Br and V2, we have the following inequality

2 ha k
N.< Qh -« *
r b kaw harb

This can be simplified to the form

N < Qv (10-5)

B, = A5F - (10-6)

The product (Qh-v) is found to have a maximum value of about
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2 in all the cases considered. If we choose a value of Nr

of about 6, which assures us that the use of fins is economi-
cally feasible, then the Biot number has a maximum value of
about 0.11. This statement can be seen from equation (10-6).
It has been shown in [49] that for Biot numbers of this order,
the error in the heat dissipation with a one-dimensional
approach is about 1 percent. Hence, the one-dimensional

approximation is justified here.

10-8 An Example for Design

Let us consider a circular fin of bore radius 0.05 m,
which will dissipate 500w, when the average heat transfer
coefficient is 200W/m2—0k, and the temperature difference
between the base of the fin and the coolant is 100°k. Three
different materials are studied, namely copper, aluminum and
cast iron. This problem has been abstracted from [34]. The
solution to the problem demonstrates the practical usage of
the results obtained here. The problem has been studied, for
three different cases, a constant thickness fin, a triangular
fin, and a trapezoidal fin with A = 0.5. Results are presented
in Table 10-1.

Note that in all the cases, the maximum value of Bi is
less than 0.05, which will justify the assumption of a one-
dimensional approximation. Also ncte that in most cases, the
heat removal number for the fin of cast iron material is
less than 6. An assumption has been made in section 10.6,

that for economical reasons, we need an Nr value of about 6.
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Cast iron has a very low thermal conductivity as compared to
copper agd aluminum;_ag& thus gives a low value of N_.

Obéérving the cases when m = 0.0 and m = 0.5, we conclude
that the base thickness and volume have both increased by
about 38 percent. A comparison of the cases when m = 0.0 and
m = 2.0 shows that the base thickness and volume increase by
about 94 percent. In all the cases mentioned, the optimum
length remains practically unchanged. The trapezoidal (i = 0.5)
requires about 33 percent greater volume than the triangular
fin. The constant thickness fin needs a 62 percent higher
volume than that of the triangular fin. The triangular fin
has the maximum thickness at the base. The trapezoidal
(A = 0.5) and the constant thickness fin have 14 percent and
22 percent smaller base thicknesses than that of the triangular
fin, respectively.

The consideration of different materials reveals that for
a given heat dissipation Qh, the optimum base thickness and
volume of the fin increase with a decrease in the thermal
conductivity of the materials, that is, the optimum base
thickness and volume are inversely proportional to the thermal
conductivity. However, the length of the fin is independent

of the thermal conductivity.

10-9 Future Study

The invariant imbedding approach has been effectively
applied to the problem of fin optimization, with variable

thermal parameters. The program presented in Appendix II, with
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minor modifications, can be utilized to solve a family of
fin optimization problems.

It is therefore suggested that further research should
study the following problems: (1) optimization of fins with
the consideration of radiation effects along with the variable
thermal parameters, (ii) optimization of fins, whose base
temperature is a periodic function of time, (iii) extension of
the results of (i) and (ii) to include other heat exchange
enhancing' devices, namely spines, pin fins, fin arrays on walls

and in internally finned tubes.
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| READ N,F(X),ALPHA |

| READ GP(X) & BS(X) |

n=@

—{ nent! bk

—_

PARTICULAR SOLUTION A=1, Im=]|
Alter=1.8 09 (8)=a.8

Ai

BY

SOLVE DIFF. EGUATION
SUBROUTINE RKG

Bipexy=g" X3
QoPIX)I=Qd (X)

BV hexy=g7 Xy
0%htx)=03 (X

HOMOGENEOUS SOLUTION
F=8, I=|

6" ter=g.8 67 (8r=1.8

| mA=(1.8-85P(13)/82K(1)]

Figure Appendix I: Fiow Chart for the Quasilinearization program.
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* o ¥ x ¥x ¥ ¥ Fx ¥ F ¥ £ % Fx x ¥ ¥ ¥ ¥ ¥ ¥ F ¥ ¥ ¥ X ¥ ¥ X

*%x%%xCOMPUTER PROGRAM FOR QUASIL INEARIZAT [ON®%x* %
% % & % & ¥ k & ¥ ¥ & ¥ % ¥ kK ¥ k% ¥ % % ¥ % ¥k ¥ & ¥ ¥ ¥

*¥*xTHI § PROGRAM COMPUTES THE TEMPERATURES AND THE SLOPE
*%%0F THE TEMPERATURE PRUFILE ALONG THE LENGTH GF THE FIN
*xx{SING QUASILINEARIZATICN. THE VALUES OF HEAT TRANSFER
**%FROM THE FIN AND THE EFFICIENCY OF THE FIN ARE ALSO
***EVALUATED.

* % % ¥ & ¥ & %

* MAIN PROGRAM=*
* ¥ ¥ ¥ K ¥ K X

DIMENSION YNIT{2},DYNIT(2},YPHNITL{10Q)},YPNIT2(100},
XYHNIT1(100),YHNIT2{100),YMITL{100),YMIT2{100),511100},
XS2{1D07),ERRI{100) ,ERR2{100},XK(103),T(103),TS5(103),
XXLIN{1033,TLIN{103),ALPHIS),ENISI,DDI5)

REAL N

KxxE START INPUT FORMATS %% drdok sk sk ookodale & ko

98 FORMATIF1D.2)
e %% END INPUT FORMAT S¥ itk ktkk kbt h kb ks

%% START DUTPUT FORMATS**:x k&b kR hkdkriEsk
112 FORMAT{'—?,9X,'AA=",F10.7)
114 FORMATH(/Z7/)
116 FORMAT {{9X+"HEAT TRANSFER RATE=",F10.6,49%Xs "EFFICIENCY="',
XF1C.06)77/7774727777)
296 FORMATUL12X P XK 916X " T 217X, TS5 //)
297 FORMAT({9X,F6.e3+99XyFLl0.546X,F10.5)
299 FORMAT ('~ ,9X,*F{X)=EXP(X]}*)
*%xTHIS PARTICULAR RUN ®AS MADE FOR THE CASE
*&EF (X )=EXP(X) ALPHA=D.2,D=2,0 THE PROGRAM WAS RUN
*s%F(CR FIVE DIFFLRENT VALUES GF N
300 FORMAT (' 1Y} :
301 FORMAT[1-7,9X, Y [NTERVAL SIZE=?,F6.3,GX, "NUMBER OF STEPS="',
X14)
302 FURMAT{*~1,9X,'N=1,F623,5Xs" ALPHA=',F6.2,9X,'D=' 4,F6.3}
304 FORMAT(*-'49X, 'NUMBER OF ITERATIUNS=1%,102}
kHk END DUTPUT FORMAT SH w3 ek ek ok ke fedk e

% % % % % ¥ X & ¥ ¥ % ¥ &k % ¥ ¥ ¥ ¥ % ¥ ¥ ¥ ¥ k & ¥ ¥ ¥

%%% START PLOTTING SUBPROGRAMS*®¥XxIex *
B ok %k & X ¥ k % ¥ ¥ ¥ ¥ ¥ & ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ * ¥ ¥ ¥ ¥ X X

CALL PLOT (2.051.0423)

CALL ASPECY (0.75)

CALL DAXIS {040+0.0s8e0sCe0y0e8s~1}

CALL S5AXIS {D.0s0.1¢1s1s=1,*RADIAL DISTANCE ALONG FIN',=-25)
CALL DAXIS (040704055402 904040e54+1)
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CALL SAXIS (0.0:0.15143,1,'TEMPERATURE?",~11)

CALL GRID (D.,040.078e095+0+141)

CALL SYMBOL (14.0+1.0,0.,10,38HTEMPERATURE DI STRIBUTION
XALONG THE FIN,90.0,38)

CALL SYMBUL (14.5¢1+540.1,24HFIXI=EXP(X) ALPHA=0,2,
X90.0424)

*FkxxEND PLOTTING SUBPROGRAMS *¥%kd%ksdkpdimik

%N ]TMAX SPECIFIES THE MAXIMUM NUMBER OF ITERATIONS
*%#%BEFCRE THE ITERATICN PROCESS IS TERMINATED

*xxMIT IS THE PREVIOUS ITERATION NUMBER.

¥*=H 1S THE STEP SIZE AND NS THE NUMBER CGF STEPS,
*2xNIT IS THE CURKENT ITERATICN NUMBER.

NITMAX=5

MIT=0

H=0.01

N5=100

NEC=2

READI[5,98) ALPHA
READ 15,98) D

DO 500 1I=1,5
READ{5,98) ENIII}
N=EN[II)

NIT=1

DO 120 K=1:NS5S
YMITLIKI=1.0
YMIT2{K)=0.0
CONT INUE

*¥*THE ARRAY XK STORES THE VALUES OF THE LENGTHS ALODNG
*x2THE FINy WHERE THE TEMPERATURE AND TEMPERATUKE PROFILE
**#SLUPE ARE CALCULATED.

XK{l3}=CuD

DC 211 K=2,101

XK “{): “‘(‘1.’)’1000

CONT INUE

WRITE{&,300)

WRITEL £4331) HyNS
WRITE{€y299)
WRITE{&,302) Ny ALPHA, D
GG TC 251

IFINIT. GT. NITMAX) GO TC 444
NIT=NIT+1

MIT=NIT-1

*+%THE VALUES OF THE TEMPERATURE AND THE THE TEMPERATURE
*%x%PROFILE SLOPE ARE STCRED IN ARRAYS S1 AND 52.

DO 260 K=1,NMS
YMITLILKI=S51({K)
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260

251

101

200

102

114

YMIT2(K)=52({K)
CONTINUE

d % % % % ok % & % &k ¥ ok ¥ ¥ ¥k ¥ k & F & X ¥ & ¥ ¥ ¥ F ¥k ¥

TG CBTAIN THE PARTICULAR SOLUTICN *
* kK & F & % k K &k ¥ ¥ % % ¥k ¥ ¥ & ¥ ¥ ¥ ¥ ¥ *k & ¥ & ¥ ¥ X

leﬂc
YNIT{1}
YMIT{2}
X=0.0
0O 101 I=1.NEQ

QUI)=0.0

Ki=1

DO 200 K=14NS

CALL RKGINEQsHeXe YNIT,DYKIT, YMIT1,YMIT2:+QsPs Ny ALPHAKL,D}
K1=K1+1

#%¥THE ARRAYS YPNIT1 AND YPNITZ2 STCRE THE VALUES FROM
**xTHE PARTICULAR SOLUTICN.

YPNITLIK)=YNIT{1]}

YPRNIT2{K)=¥YNIT(2}

CONT INUE

b

1.0
0.0

* % % % % % % ¥k % ¥ ok & Fx &k ¥ ¥ % ¥ ¥ &k x ¥ *k F F F F ¥k %

TO OBTAIN THE HOMOGENEQUS SOLUTION *
¥ x % % % ¥ ¥ X ¥ ¥ & ¥ ¥ ¥ ¥ & ¥ ¥ ¥ & X ¥ ¥ ¥ X ¥ ¥ ¥ X

P=0.0
YNITI{1)
YNITL2)
DO 102 f=14¢NEQ
Q{11=0,0

Kl=1

DO 206 K=1,NS

0.0
1.0

—
-

- CALL RKGINEGsHeXs YNITeDYNIT, YMITYL, YMIT2,Q,P s NoALPHA,K1,D}

206

Kl=K1+1

#%%THE ARRAYS YHNIT1 AND YHNIT2 STORE THE VALUES FRCM
*%x%FROM THE HOMUGENECUS SCLUTION.,.

YHNITLIK)=YNIT{1}

YHNIT2{K)I=YNIT(2)

CCANTINUE

**%THE SCLUTION IS IN THE FURM
LE R YNIT=YPNIT+AAXYHNIT Fk
#x#THE CONSTANT AA IS EVALUATED FRCM THE ENO CCONDITIONS

AA==YPNIT2({100}/YHNIT2{100}

00 208 K=1.NS
YNIT{1)=YPNITL{K}+AA®YHNIT1{K)
YNIT{Z2)}=YPNIT2(K)+AAXYHNITZ2{K])
SL{K)=YNIT(1)
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S2IK)=YNITI(2)
T{1})=1.00000
T5(1)=4A
L=K+1
TILY=YNIT{1)
TS{LI=YNITL(2)
CONTINUE

0% % % % % & & &k ¥ ok &% % k & ¥ ¥ % ¥ ¥ ¥ & ¥ ¥ ¥ & ¥ ¥ %

TEST FCR CONVERGENCE *
¥ % ¥ ¥ & ¥ ¥ ¥ ¥k ¥ ¥ F ¥ k % ¥ ¥ ¥ ¥ * ¥ & ¥ ¥ ¥ ¥ ¥ ¥ %

ERRMAX=0,0001

**xERRMAX SPECIFIES THE MAXIMUM PERMISSIBLE DIFFERENCE
*=¥* [N THE VALUES OBTAINED FROM TwWO SUCCESSIVE ITERATIONS.
DG 209 K=1NS

ERRL{K)=YMITL{K)I=S1(K]}

ERR2{KI=YMIT2{K)=52{K)

CONT INUE

DG 213 K=1,4NS

IF (ABS{ERRL{Kil. GT. ERRMAX} GO TO 259
IF{ABSIERRZ2IK))a GT. ERRMAX) GO TO 250

CONT INUE

CONTINUE

* % % % % % %k & % F & ok ¥ ok % ¥ ¥ ok & &k & ¥ ¥ ¥ ¥ %k & %

TO CALCULAYTE HEAT TRANSFER RATE QH
% ¥ ¥ % ¥ # ¥ ¥ % ¥ F ¥ F ¥+ o F ¥ ¥ ¥ ¥ F $ k % % F ¥ %k ¥

# ¥

QH=={1.0+ALPHA*]1 .00000) *AA

* % % ¥ K ¥ % % ¥ ¥ ¥ % % % ¥ & ¥ £ & ¥ ¥ & & ¥ ¥k & & & X

TO CALCULATE FIN EFFICIENCY ETA
* % & F % £ ¥ ¥ ¥ ¥ $ ¥ % & ¥ ¥ ok % % F ¥ % %k & ¥ & & ¥ %

#

ETA=CH2D/INENF{] .N+1.7182818%D 1))

#*#PRINT OUT RESULTS
WRITE{&,114)
WRITE(€,304) NIT
WRITE(E,112) AA
WRITE(&s1141)
WRITEL6,116) QH,ETA
WRITE{6,300)
WRITE(€,296)

DO 213 M=1,101
WRITE(E+297) XKIMIaTIM)},TS(M)
CONT INUE

*#xx35TART PLOT EXECUT ION%&*¥
AKE1021=0.0
XK{1031=0,125
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T{102)=0.0
T1103)=0.2
“CALL FLINE (XK,T+101,1++0,1)
WRITE(6,300)
500 CONTINUE
*¥%%END PLOT EXECUTIUN®®ZX®

sTCP
END
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% 2 % ¥ % % E ok %k *x ok F o % % % % % & %k ¥ F x ¥ ¥ ¥ % &
SUBROUTINE REGINEGIH s XY+ DY YML o YM23G4PeNyALPHALKL D) *
* % % ¥ %k & & & & % % & ¥ ¥ % K &£ ¥ F ¥ & H ¥ k ¥ ¥ x k& X

*¥¥THE INDEPENDENT VARIABLE X IS INCREMENTED IN THIS
***PROGRAM.,

*¥xY{I1) AND DY(1) ARE THE DEPENDENT VARIABLE AND ITS
**%DERIVATIVE.

=x¥ALL THE QUI) MUST BE INITIALLY SET TQ ZERO IN THE MAIN
*¥%PRUOCRAM.

*xxNEQ=NUMBER OF FIRST ORCER EQUATIONS

Xz INTERVAL SIZE

*¥%A SUBROUTINE DERIV {NEQ)X+YsDYsYM1,YM2,P, N, ALPHA,KL,D)
*%#MUST Bt PROVIDED.

F & & ¥ X X & & K & % ox ¥ &k & %k & Fx & F ok F Fx &k w Xx Kk Kk ¥

DIMENSICN  A{2)
DIMENSION YINEQ) oOYINEGQ) YML L1023 »¥M2U102),QINERQ)
REAL N
A{11=0,20289321881345
Al2)=1.T07106T81185655
H2=4 5%}
CALL DERIVIMNEQ XY sDY ¢ YMI  ¥M2,P,NyALPHAK1,D)
DU 13 [=1.NEQ
B=h2=DY{1)-Q(I)
Y{l)=Y{I)+B

13 QUI)=Q(I)+3 #B=HZ2*DY (1)
X=X+k2
DO 20 Jd=1,2
TCALL DEPIVANEQ )XY DY, YML,YMZ2,P,N+ALPHAK1,D]
oo 20 I=1,NEQ
B=A(J)I={H=DY{I}-Ql[I})
Y{Ii=yY{1)+B

20 QUIN=GUI }+3, . %B-A(J)=H=DY{ )
X=X+hk2

~ CALL DERIVINEQeXsYsOYs¥YM1,YM2,PsN,ALPHASKL,D)

CO 26 I=1,.NERQ
B=0, 1666066666066 6%F(R¥DY{II=-2.%0(1)1}
Y{1)=Y{I)+R

20 QUI)=CLlI)+3,%B=H2*DY{I)

RETURN
END
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* % % & %= ¥ F & % ¥ & % F Kk * &k ¥ ¥ ¥ ¥ % ¥ * ¥ & ¥ *k ¥
SUBRCUTINE DERIVINEQ X pYNIT DYNIT,YMITL1,¥YMIT2+PsN,
XALPHA K1 ,D}

% F % & A ok % ok % %k & ¥ ¥ X ok & ¥ % %k % % ¥ ¥ £ ¥ ¥ ¥
DIMENSIGN YNITINEQ) DYNITINEQ) ,YMITIC10D), YMIT2{100)
REAL N

K=K1

XKK=K/100.

FUNX=EXP[XKK)

**¥*DERIVATES FUR THE CIRCULAR FIN®X&&kkk¥

DYNITLLi=YNIT{(2}
DYRNIT(2¥=YNIT(L)*(NeN*FUNX+ALPHAZALPRARYMITZIKIRYMIT2IK)
X)/{{1e CHALPHAFYMITI( K} ) *%2,0) _
X=YNIT{2)22. 0FALPHA*YMIT2{K}/ (L. O+ALPHA®XYMITLIK))
X=YNITL{2V /7 { XKK+D]
X+PHNENRFUNXEYMITL{K)-ALPHEASYMIT2{KI*#YMIT2({K})/
X{LO4ALPHAXYMITLI (K} ]
X=PaYMITL(K)® (NEN=FUNX+ALPRA=ALPEA*YMIT2{KIF=YMIT2{K) )/
X{{1laO+ALPHAFYMITLIKI J=%2,0)
X+PEYMIT2{K) %2 DEALPHARYVMIT2{K) /(1. O+ ALPHA*YMIT1(K})

RETURN
END

# H#ou #
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120

IREHD Al.a.LI'H,“.J\’B,t‘rtl

STORE VALUES

B,.l..E....l
IN STOP(I).

STOR(I) SET
T0 ZEROQ

|

lB'Batart Oh-ﬂ.l

RINTPL=8.8

B=B+A
A=B-A

Ke=| C-B.Bl

P=C
C=C+s| NO
Lt Ko+ |

l STBRE(K)-RINTPL-EE]

YES

STORE(I) stored
fn STOR(I)

NO

YES

RINTPL=0. @ |
Aef-A
B>
CALCULRATE

Q=B

. W

RINTPL BY YES
INTERPOLATION X(2)=STOR({1)
CALCULATE Ghl
CRLCULRTE
|E1,E2,E3,E4
PeE4
Q=R+ A

I

Figure Appendix II: Flow Chart for the Invariant Imbedding program.
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¥ # * % % % % % &£ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥k ¥ ¥ ¥ ¥ ¥ ¥ & ¥ ¥ ¥ %

x%x%*xCOMPUTER PROGRAM FOR INVARIANT IMBEDD ING¥®%x% *
X ¥ K ¥ % % & &k ¥ ¥ % % % %k kx ¥ ¥ %k & % ¥ ¥ ¥ % k % ¥ ¥ &

*%33THIS PROGRAM COMPUTES THE OPTIMUM DIMENSIONS OF
*¥%*%CJRCULAR FINS., THE PROGRAM CALCULATES THE MAXIMUM
+xxxFEAT DISSIPATION FRCM A FIN FOR A GIVEN VOLUME,
**%x%8Y OPTIMISING THE HEAYT TRANSFER KWITH RESPECT TO
*%¥%THE DIMENSIONLESS LENGTH PARAMETER.

DIMENS ION STOP(11),STCR(11), STORE(11)},X(2)
REAL LAMCA,M

#2322 START INPUT FORMATS##2dk ¥ duskkdhiokdtdksk
100 FORMATI{2F10.3)
101 FORMATI4F1C.3)

102 FCRMAT (F10.3)
*xkEEND INPUT FORMAT S¥#sdwara e @ o ok doe sk e ok ok

*%2 2 START QOUTPUT FORMATSZd Ik sk s R dbihdragk
300 FUORMATIL'L®)
301 FORMAT (/S /(GX'DELTA=",FE£ 339X, "CEL=? ,F6,3) )
302 FORMATIlQK:'LAMDA='.Fb.B,QX.'U='.F6.3.9X.'M=',F6.3.9X.
XTALPHA=? ,F6.3)/7)
303 FCRMAT (//19X,"B=",F6.3))
304 FCRMATIOX, 'VSU=143FE43:SXs ' X{2)=",FS.6}
305 FURMAT[9X,'VSQ=" y FT 449X '"W1=9,FT.4,SX,'QH1=",FT.4)
3204 FGRMAT(!//(GXp'OPT.B="Ft.Z.QX,'GFT.V=';F9.4,9X,
XICPT .QF=?,FF9.4%1})
wxdx END QUTPUT FORMAT SR tdkxksdbdhbfddkhgbhsk

REAC(5,+100}) DELTA,DEL
READ(5,101) LAMDA,U,NM,ALPHA
REAC1{5,102) BSTART

*5*¥% | AMDA IS5 THE GIVEN SLCPE OF ThE FIN PRCFILE,
*xx%l IS THE DIMENSIONLESS VOLUME, M IS THE INDEX OF
*%xx%xTHE HEAT TRANSFER CCEFFICIENT VARIATION, ALPHA IS
%2 THERMAL CONDUCTIVITY VARIATION PARAMETER.
*x¥*xBSTART IS THE STARTINC VALUE OF YHE CIMENSIONLESS
»%xsxL ENGTH PARAMETER B, IN THE CPTIMISATION PRCCESS.

A2=0.0
DO 1C I=1,11
STCP (I )=A2*DEL
A2=A2%1.C

10 CCNTINUE

%k THE STGP{I) ARRAY CCNTAINS THE ELEMEANTS CalsCeZreseleD

WRITEL€,380)
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WRITE{€¢,301) DELTA,DEL
WRITE(€,302) LAMDA,UsMsALPHA
DIFF1=0.0

DIFF2=10.0

QH=0.0

DC 11 I=l,11
STCR{I)=0.0
CONTINLUE

%% ALL THE STOR(I) ELEMENTS ARE INITIALLY SET 7O ZEROC.

B=BSTART
CCNTINUE
B=B+DELTA
WRITE{€¢,303) B
A=B-DELTA

*#%x%A CONTROLS THE DURATION OF THE PROCESS AND VARIES
**x¥FRCM 8 TO l.0

CCNTINUE
K=1
C=0.0

*%%3C CAN TAKE VALUES FRCM 0.0 TC 1.CGs AND IS USED TO
#*¥¥%5ET UP TABLES FOR THE INTERPOLATIGN ROUTINE.

CCNTINUE

El=lB-1l.0)*DELTA/{{{1.0-LAMDA)*{B-A}+LAMCA%[B~1,0) ) %A%
X{1sC+ALPHA®(C})

E2=(B-1+01%{{1.0-LAMDA)*(E+2,0)+3.0+«LAMDA*(B+1.0))%*
X{(B+1CI#{M+]1.CI*[M+2.0) ) *A%CxDELTA/ (12.0%U*{{M+1.0)
X#B+1.03)1 ¥ ({A-1.0)/(B-1.C)1%*M)

%% START FIRST INTERPOLATION RCUTINEX®*&E¥x
p=C

C=A+DELTA

IF(ABSIQ-B).LT.0.00001) GC TO 2&¢2

=1

IF{ABSI(P-STOP({I})}.LT.0.CCCO01) GC TC 201
I=1¢1

GC 1C 20¢

RINTPL=STORI(I)

GG TC 203

RINTPL=0.0

#+¥FEND FIRST INTERPOLATICN ROUTINE##k¥kiokdkx

E3=RINTPL
E4=C+E3*E]
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215
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217

220

240

13

250

*%%% START SECOND INTERPCLATICN ROUTINE*®#x%x
P=E4

C=A+CELTA

IF(ABS{Q-B).LT.0.00001) GC TO 220
IF{{P-1.0}.LT.0.0) GO TO 215

I=11

Ii=1C
RINTPL=STOR(UIIH{STORI{I}I-STORIII}I*{P-STOPI)}
X/(STCP{I)}~-STOP(II))}

GC TC 225

I=1

IF{P.LT.STOP(1)} GG TC 217

[=1+1

GC TC 216

II=1-1
RINTPL=STOR(ILI+{(P-STOPLII M) *{STCRLI)-STOR{II) ]}
XZ{STCPLL)-STGPLILI )

GO TC 225

RINTPL=0.0

*%¥%END SECOND INTERPOLATION RCUTINE#&*&¥&dk

E€=RINTPL
R=fe-£2
STCREI{K}=R

*%*xALL THE INTERMEDIATE VALUES CF THE MISSING INITIAL
=xx%LONDITION ARE STCREC IN THE ARRAY STCRE{(I) AND
Faxx] ATER TRANSFERRED TC THE STCRUI) ARRAY, TO BE USED
*¥*%x%x [N THE INTERPCLATICN ROUTINES.

C=C+CEL

K=K+l

IF{C.GT.1.8) GO TO 240
GO TC 180

DO 15 I=1,11

STCRIT }=STOREIL 1)
CCRTINLE

A=A-CELTA

**%%¥*%THE VALUE GF A IS CECREMENTED TILL A=1.0

IFlA.LT.1.0) GD TO 250
GG TC 170

CONT INUE

X{2)=5TORI{11}

#%2%STCOR{11) IS TFE MISSING INITIAL CONDITIUN WE ARE
*x%%% INTERESTED IN. IT IS5 THE SLCPE OF THE TEMPERATURE
*¢¥%xPRCFILE AT THE BASE CF THE FIN.

V5Q={B=1.0)#{{1.0~-LAMDA)*(B+2,0)+3,. 0% L AMCA%(B+1.,01})
X/{6.0%U)
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V1=SQRTIVSQ)

#xxxVY] CORARESPUONDS TC THE DIMENSICNLESS wWIDTH AT THE
¥¥%%kFIN BASE.

QH1=-X12}/VSQ
WRITE(€5304) A,X(2)
WRITE(&,305) vSQ.V1,QHL

IFIGHL .LT.QKH) GO TO 260
*%%%¥THE ABOVE *IF"' STATEMENT IS THE CPTIFISING CCNDITION.

DIFF1=CH1=-QH

CI1FF2=CIFF1l

CH=QF1

B1=8

V=Vl

GC TC 160
260 CONTINLUE

WRITE{£€,306) Bl,V.QH
#2%2PR INTS OUT THE OPTIMUM CONDITICNS.

sT1CP
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ABSTRACT

This study presents a numerical solution for the problem
of a circular fin, whose thermal conductivity is a linear
function of a temperature. The heat transfer coefficient
is variable, and different types of variations are considered.
The governing differential equation is nonlinear, with one
initial and one final condition known.

Part I of this study deals with obtaining the temperature
profile along the length of the fin, and qualitatively study-
ing the effects of the conductivity parameter =, the geometric
parameter d, the fin parameter N and the type of the heat
transfer coefficient variation on the heat transfer rate and
the efficiency of the fin. Quasilinearization has been used
in this part.

Part II of the study deals with the optimization of the
circular fin with variable thermal parameters. The effects
of «, the index of the heat transfer coefficient variation m,
and the slope parameter A on the optimum dimensions have been
studied. Invariant imbedding has been used in Part II of the

study.



