AN INVESTIGATION OF THE MOVEMENT OF PARTICLESINFLUIDIZED BEDS
by
JERRY LEEE RATHBUN
B. S., Kansas State University, 1962
A MASIER'S THESIS
submitted in partial fulfillment of therequirements for the degreeMASTER OF SCIENCE
Department of Nuclear Engineering
KANSAS STATE UNIVERSITYManhattan, Kansas1965
Approved by:
Major Professor
2668

TABLE OF CONTENTS

1.0 INTRODUCTION- 1
1.1 Background 1
1.1.1 Advantages- 2
1.1.2 Disadvantages- 3
1.2 Application to Nuclear Reactors 3
1.3 Purpose 4
1.4 Scope- 5
2.0 EXPERINENTAL 6
2.1 Experimental Apparatus 6
2.1.1 The Column and its Accessories- 6
2.1.2 The Gamma-Ray Detecticn Equipment 11
2.1.3 The Measuring and Recording Equipment 14
2.2 Materials 19
2.3 Calibrations 21
2.3.1 Half-life Determination 21
2.3.2 Calibration of the Orifice Meter- 23
2.3.3 Radial Effects 23
2.3.4 Gap Width and Shield Thickness 27
2.3.5 Calibration of the Electronic System- 27
2.3.6 Time Constants of the Ratemeters- 39
2.3.7 Pressure Drop Data 42
2.4 Procedure 45
3.0 ANALYSIS OF SINGLE PARTICLE EXPERIMENTS 48
3.1 Experiment Arrangement 48
3.2 Quantities Extracted From Data 48
3.3 Determination of Fundamental Quantities From Experimental Data- 49
4.0 DATA ANALYSIS 52
4.1 General Consideration 52
4.2 Statistical Analysis of Data 55
4.3 Analysis of the Residence Times Distribution- 60
4.4 Analysis of the Particle Traffic 102
4.5 Analysis of the Reflectivity Data 102
4.6 Analysis of the Particle Concentrations- 114
4.6.1 Theoretical Development 114
4.6.2 Analysis of Experimental Results- 126
5.0 DISCUSSION OF RESULTS- 144
5.1 Residence Times- $1 \div$
5.2 Particle Traffic 145
5.3 Reflectivity 146
5.4 Particle Concentrations 146
6.0 CONCLUSIONS 153
7.0 ACKNOWLEDGMENT 156
8.0 IITERATURE CITED 157
9.0 APPENDICES 158
APPENDIX A: Description and Explanation of the IMM 1620 Computer FORTRAN Program No. 1 for Correcting the Time Increment Data 159
APPENDIX B: Description and Explanation of the IBM 1620 Computer FORTRAN Program No. 2 for Computing the Average Number of Tines a Particle Passed a Detector Level per Unit Tine- 170
APPENDIX C: Description and Explanation of the IBM. 1620 Computer FORTRAN Program No. 3 for Performing the Fluidization Statistical Analysis 176
APPENDIX D: Description and Explanation of the IBM 1620 Computer FORTRAN Program No. 4 for Detemaining the Concentration of Tagged Particles from Individual Particle Data 193
APPENDIX E: Description and Explanation of the IBM 1620 Computer FORTRAN Progran NTO. 5 for Calculating the Average Residence Rimes as a Function of the Number of Data Values---- 200
APPENDIX F: Description and Explanation of the IBM 1620 Computer FORTRAN Program No. 7 for Computing the Average Time, the Most Probable Time, the Variance, and the Gamma Distribution Parameters p and V of the Residence Times Data- 208
APPENDIX G: Description and Explanation of the IBM
1620 Computer FORTRAN Program No. 9 for Calculating the T Statistic for Given Gamma Distribution Parameters p and V 216
APPENDIX H: Discussion of the Gaussian Quadrature Approximation of the Gamma Distribution- 222

Symbol
$\Delta Z \quad$ Distance between the two detector levels, in.

Vertical position of the lower detector level, in.

Vertical position of the upper detector level, in.

Ratio of experimental time to true time
Pressure drop across the fluidized bed, in. Hg .

Residence time, sec.
Particle traffic, no. sec ${ }^{-1}$.
Reflectivity
Transmissivity
Experimental particle concentration, no. in-2. $\sec ^{-1}$.

Number of times a particle passes Z_{i} before reaching Z_{j}.

Detector level indices
Time increment, sec.
Time, sec.
Water flow rate through fluidized bed, gal. min-l or ft. sec-1.

Water flow rate index
Frequency function of residence times

$f\left(P_{r}\right)$	Frequency function of reflectivities
$I(t)$	Frequency function of particle concentrations
T	T Statistic, sec.
p	Gamma distribution parameter
τ	Gamma distribution parameter, sec.
$\Gamma(\mathrm{p})$	Gamma function
\bar{t}	Average residence time, sec.
02	Variance of residence times, $\sec ^{2}$.
s^{2}	Unbiased estimate of variance, $\sec ^{2}$.
n	Number of data values
t_{p}	Most probable residence time, sec.
$\bar{\nabla}$	Average speed of particles, in. sec^{-1}.
$v\left(t_{p}\right)$	Speed of particles corresponding to the most probable residence time, in. sec^{-1}.
$\nabla(\bar{t})$	Speed of particles corresponding to the average residence time. in.sec ${ }^{-1}$.
β	Reflection coefficient, in ${ }^{-1}$.
C	Theoretical particle concentration, no. $\mathrm{in}^{-3} . \mathrm{sec}^{-1}$.
E_{z}	Dispersion coefficient, in ${ }^{2}$. $\sec ^{-1}$.
Q	Source of particles, no. in ${ }^{-2} . \mathrm{sec}^{-1}$.
I	Height of fluidized bed, in.
W	Total time span used to obtain particle concentration data, sec.
JTAX	Number of data values in a data set.

τ
x
a(k)
$x(k)$
$t E_{z} I^{-2}$
Z/L
Christoffel numbers
Zeros of the Legendre polynomial of given degree

1.0 INTRODUCTION

1.1 Background

The term "fluidized bed", as it is now used, relates to a technique initiated more than twenty years ago to find a better catalytic-cracking process than the fixed bed method (14).

A fluidized bed is a collection of solid particles which circulate in an enclosed region as the result of the upward flow of fluid, either liquid or gas, past the particles. A fluidized state occurs over a finite range of filuid velocities. At zero fluid velocity, all of the particles are in a static state resting on the bottom of the containment vessel. As the fluid velocity is increased, there is a certain rate of fluid flow at which the bed will be expanded to such a point that the particles will begin to move. The static bed is characterized by a pressure drop across the bed that increases with increased fluid velocity. When a fluid velocity is reached that causes particle movement, only a slight change in the pressure drop occurs across the bed as the fluid velocity is increased. Further increases in the velocity cause the volume of the bed to increase.

At high fluid velocities, a bed fluidized with gas usually remains largely in a compact state. A bed fluidized with a liquid expands steadily with increasing fluid velocity until a state of complete particle isolation is reached. Maximum expanded bed heights for gases rarely exceed twice the static bed height.

At low fluid velocities slightly above those for minimum fluidization, the whole bed is macroscopically homogeneous. This state is sometimes referred to as the state of incipient fluidization. In describing the physical appearance of the bed, this form of flow has been referred to as particulate fluidization.

At higher fluid velocities, a second phase, commonly known as the boiling bed state, often occurs. Bubble formation and slugging take place in the fluidized solids. The physical appearance of the bed is then referred to as aggregative fluidization.

Whether particulate or aggreçative fluidization occurs at high fluid velocities relative to the minimum fluidization velocity depends upon the particle size and the ratio of solid to fluid density (7). In general, the particulate form occurs in liquid fluidized systems, and aggregative fluidization occurs in gas fluidized systems.

Particle mobility is the primary difference between a fluidized bed and a fixed bed. Many of the advantages and disadvantages of the fluidized bed technique have been enumerated in the literature ($7,9,10,14$).

1.1.1 Advantages

The following items are some of the major advantages of applications of the fluidized bed technique.

1. Turbulence within the fluidized system agitates and diffuses any cold or hot spots, providing an approach to isothermal operating conditions.
2. Turbulence provides a more uniform solids distribution.
3. A fluidized bed's ability to handle solids as if they were a liquid enables continuous operations, such as addition and withdrawl of solids from the bed, to occur.
4. High volumetric heat transfer rates can be conveniently accomplished due to the large surface area available for heat transfer.
5. High heat transfer coefficients from the bed to the walls of the containing vessel are possible due to the presence of the fluidized solids.
6. At the same fluid flow rate, smaller pressure drops usually occur in a fluidized bed with no restraints than in a packed bed.

1.1.2 Disadvantages

The following items are some of the disadvantages of fluidized beds.

1. Only solids which flow freely and do not tend to agglomerate may be used.
2. For certain processes a temperature gradient may be desirable, and this cannot be accomplished utilizing the fluidized bed technique unless staging, partitions, or internal heat exchangers are incorporated.
3. Erosion of the containing vessel and internal solids may occur.
4. Bubble formations rising through fluidized solids may reduce the available contact surfaces, reducing the efficiency of the process.

1.2 Application to Nuclear Reactors

Fluidized bed techniques have been applied with considerable success to many processes where heat removal and temperature control are required. These factors are important in a nuclear reactor, and several proposals of the application of fluidized bed techniques to nuclear reactors have been submitted $(8,9,10,14)$. Advantages of a fluidized bed nuclear reactor design include uniform temperature distribution, uniform burnup independent of power distribution, ease of fission product removal, ease of fuel fabrication and reprocessing, and low fuel holdup ($7,10,14$).

Neutron moderation and heat removal could be accomplished by the fluid in a liquid fluidized bed nuclear reactor. Heat removal would be limited by the fluid velocity required to maintain fluidization under this arrangement.

Ordinary control rods could be inserted directly into the fissionable fluidized solids, or the control could be self-regulating. For self-regulation the bed could be designed so that the critical mass would be independent of reasonable fluctuations in the bed height, but a scram could be accomplished by shuttine off the fluid flow (10). Proposals for fluidized bed nuclear reactors should meet the following requirements (9):

1. The fluid must have enoưh velocity to support the bea.
2. Heat must be removed.
3. A knowledge of the expansions and contractions of the bed and concentrations of the solids is necessary.
4. Pressure drops across the bed will have to be considered.
5. Erosion due to particle mobility must be considered.

1.3 Purpose

Although fluidized bed techniques have been applied with great success in many industrial processes, little knowledge has been gathered of the actual movement of particles in fluidized beds. Before it is possible to obtain a basic understanding of heat and mass transfer within a fluidized bed reactor, it will be necessary to have a fundamental understanding of the motion of the particles in the fluidized bed. Knowledge of the degree of backmixing and relative velocities of the particles and fluid, along with other characteristics of the fluidized bed, are fundamental requirements to an understanding of the mechanisms of heat and mass transfer.

The literature reveals hundreds of articles pertaining to fluidized beds, but only Gordon (4) and Wilde (13) have provided information on the statistical behavior of individual particles within the bed. It would seem appropriate
that experimental research work be carried out to further study individual particle mobility. Thus, it has been the purpose of this thesis to study experimentally the movement of individual particles in a fluidized bed.

The solids and fluid used in the study were stainless steel ball bearings and water.

$$
1.4 \text { Scope }
$$

Water velocities ranging from minimum fluidization velocity to the velocity required to expand the fluidized bed to twice its static height were used. One ball bearing size and one static bed height of ball bearings were utilized in the experimental study. Particle concentrations and mean vertical speeds were obtained. The development and construction of the experimental apparatus, the method of obtaining the experimental data, and a statistical analysis approach of evaluating the experimental data are included in this thesis. Tracing the movement of a radioactive ball bearing in the fluidized bed was used as the method of studying individual particle mobility.

2.0 EXPERINENTATION

2.1 Experimental Apparatus

A photograph of the experimental apparatus is shown in Fig. 1, and a schematic diagram is presented in Fig. 2.

The apparatus may be divided into the following categories: (1) the column and its accessories, (2) the gamma ray detection equipment, and (3) the measuring and recording equipment.

2.1.1 The Column and Its Accessories

A 48-inch-high, 3.0-inch-inside diameter, and 3.5-inch-outside diameter cast acrylic resin tube was used as the fluidizing colurnn. It was fitted with a flange on each end. Figure 3 provides a close-up view of the column and bed of solids. The outlet of the column was fitted with a wire screen to prevent any of the fluidized solids from accidentally escaping the column. The two flanges were fitted with pressure taps for measuring the oressure drop over the bed of solids. The lower flange was bolted to the distributor assembly.

The distributor assembly, show in Fig. 4, consisted of a calming section of $3 / 8$-inch ceramic balls, housed in a container eight inches high and three inches in diameter. A brass sieve separated the calming section from the fluidized particles. The holes in the brass plate were 3/32-inch diameter, and the ratio of hole area to total area of the sieve was 0.343 .

As shown in Fig. 2, a 30-inch mercury manometer was used to measure the pressure difference over the orifice meter.

The water flow through the fluidized bed was provided by a closed system. A 55-gallon drum coated with chromate primer to prevent corrosion served as the water reservoir.

Figure 1. The Column and its Accessories.

Figure 3. Solids Within the Fluidizing Column.

Figure 4. Distributor Assembly.

A Type S.C., U.S. Motor, rated at 5 horsepower, 220 volts, three-phase, 60 cycles, and 1800 revolutions per minute, powered the pump. The pump was a centrifugal type, with a $2 \cdot 5$-inch inlet and a 2.0-inch outlet. It was built by Fairbanks-Morse.

The structure used to support the column and its accessories was constructed from Unistrut.

The water piping system was constructed of standard schedule $401 \frac{1}{2}$-inch diameter galvanized pipe.

2.1.2 The Gamma-Ray Detection Equipment

Four scintillation probes were used to detect the radioactive stainless steel ball in the fluidized bed. Two probes were used at each of two horizontal planes. The horizontal planes were constructed in the following manner: Lead bricks of $2 \times 4 \times 8$-inch size were stacked around the column, with $1 / 8$-inch lead shims placed between the layers of bricks at each of the two horizontal planes studied. The increased output from the scintillation probes behind each slit provided a means of detecting the movement of the particle each time the radioisotope passed one of the horizontal window slits in the shielding.

Figure 5 is a photograph of the scintillation probes positioned behind the lead shielding. Part of the lead bricks are removed from the top of the shield.

Figure 6 illustrates the vertical position of each scintillation detector level and the distance between the two detector levels, $\Delta \mathrm{Z}$.

The four scintillation probes used were B.J. Electronics of Borg-Warner Corporation, Type 7D4 Sodium Iodide (Thallium) crystal, Model DP3, serial number B-168, and NE numbers 287, 288, 314, and 353.

Figure 6. Schematic of Scintillation Probes and Shielding.

2.1.3 The Measuring and Recording Equipment

Figure 7 is a schematic diagram of the detection and recording equipment. High voltage power supplies. The photomultipliers of the two scintillation probes at each of the two detector levels were supplied with high voltage from B.J. Electronics, Borg-Wamer Corporation, Model DVI, Detectolab, NE 262 and NE 275 variable high voltage power supplies. NE 275, operated at about 1050 volts, supplied high voltage to the upper detector level, and NE 262 , operated at about 1100 volts, supplied high voltage to the lower detector level. The two power supplies are located at the top of the instrument rack in Fig. 8. Ratemeters. The output from each detector level was fed to a ratemeter, as shown in Fig. 7. The two ratemeters are shown side-by-side directly below the high voltage power supplies in Fig. 8. The ratemeters used were built similar to the Baird-Atomic, Inc., Model 432 A, Research Ratemeter. NE 901, the left-hand ratemeter in Fig. 8, was used for the lower detector level, and NE 902 was used for the upper detector level. The time constants were determined experimentally by a step input to each ratemeter.

When the d-c output of the integrator circuit in a ratemeter exceeded a given value, firing of a neon bulb caused the current to flow in the final stage of the ratemeter. Two outputs were provided from each ratemeter. One output from each ratemeter was sent to a two-channel high-speed recorder, and the other output from each ratemeter served as the input to a Time Interval Meter.

Two-channel recorder. The counting rate at each detector level was monitored by one channel of a dual channel recorder. The recorder, pictured on the stool in Fig. 8, was an Offner Type RS Dynograph, NE 733. The output from the lower detector level ratemeter was the input to the left-hand channel of the

Figure 7. Schematic Diagram of the Detection and Recording Equipment.

Figure 8. The Experimental Apparatus.
recorder. The output from the upper detector level was the input to the rigithand channel of the dual-channel recorder.

Time Interval Meter. The Time Interval Meter, shown below the ratemeters in Fig. 8, was a Beckman/Berkeley Model 7250R, NE 763. The counting rates from the ratemeters were fed to the input channel amplifiers of the Time Interval Meter for pulse shaping and amplification. Whenever a sharp change in the counting rate occurred, a positive pulse was generated at the output of the Time Interval Meter. The positive pulse output of each input channel of the Time Interval Meter was fed to a single, specially designed, transistorized, monostable multivibrator circuit, KSU-NE No. 009. The multivibrator circuit is shown in Fig. 9. The output from this circuit drove the external delta-t circuit of the Technical Measurements Corporation Multi-Channel Analyzer Multi-Scaler Logic Unit. All other outputs from the input channel circuits of the Time Interval Meter were disconnected. The gate times were stopped by the rapid change in the counting rate. To restart, the oscillator circuit in the Time Interval Meter was utilized. To provide the restart pulse, the following modifications were made to the Time Interval Meter. The output of pin 1 of V402 in the oscillator and shaper circuit in the Time Interval Meter was disconnected and reconnected to the top of R206 through a 470 mmfd capacitor. The circuit previously feeding R206 was disconnected by removing C201. These modifications can be seen by observing the schematic diagrams in the instruction manual for the Time Interval Meter. The Oscillator and Shaper Schematic Diagram and the Master Schematic Diagram are Beckman/Berkeley Division Drawing Numbers 7000 C 419 and 7250 D 21, respectively.

The oscillator in the Time Interval Meter also served as a fixed frequency pulse which acted as a time base generator and was fed into the amplifier input of the Multi-Channel Analyzer Multi-Scaler Logic Unit. A four-decade circuit

$\left.\begin{array}{l}v_{1} \\ v_{2}\end{array}\right\} 2 N 414$

* C_{3} ls chosen for pulse width desired

Figure 9. Wiring Diagram for KSU-NE 009 Multivibrator Circuit.
with an output jack for each decade was added to the output of the oscillator and shaper circuit so that a variable selection of frequencies could be used. Only one pulse frequency was used to obtain the experimental data.

Multi-Channel Analyzer. The Technical Measurements Corporation 256channel Model CN-110 Analyzer, NE 630, utilizing the Multi-Scaler Logic Unit, served as a counter of the number of pulses from the Time Interval Meter oscillator over a period of time. The analyzer is shown in Fig. 10. The Pulse Height Logic Unit, NE 633, as shown in Fig. 10, was not used. Instead, as noted above, the Multi-Scaler Logic Unit, Model 214, NE 633, was used.

The output pulse from the mono-stable multivibrator circuit was connected to the external delta-t circuit of the Multi-Scaler Logic Unit and served as a trigger to switch channels in the multi-channel analyzer. Each channel, one-by-one, would accumulate and store the number of oscillator pulses counted before another rapid rise in counting rate from one of the ratemeters would cause storage to be transferred to the next channel. Therefore, the number of pulses counted from the Time Interval Meter oscillator was a measure of the time between rapid change in the output of the ratemeters, resulting from the radioactive saurce passing one of the detector level slits.

Digital Print Out. A Hewlet Packard, Model 561 B, NE 632, recorded the information stored in each of the 256 channels of the Multi-Channel Analyzer. The printer is shown directly above the Multi-Channel Analyzer in Fig. 10

2.2 Materials

Type 440-C stainless steel ball bearings of reject quality obtained from the Hartford Steel Ball Company were used exclusively for the solids in the fluidized bed. The balls had a sample mean diameter of 0.1876 inch, with a variance of 0.0003 (inch) $)^{2}$, based on a random sample of 30 stainless steel

Figure 10. Multi-Channel Analyzer and Digital Printout Units.
balls removed from the fluidized bed. The mean sample weight of the balls was 0.4304 gram .

The radiation source was a type 316 stainless steel ball bearing irradiated at a flux of 10^{12} neutrons $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ in the lazy susan irradiation facility of the Kansas State University Triga Mark II nuclear reactor. Irradiation for $1 \frac{1}{2}$ hours produced a Manganese-56 source strength of 12 to 14 millicuries.

A Type 316 stainless steel ball bearing was used because of the 2% manganese content by weight in Type 316 stainless steel. The diameter of the isotope was 0.1875 inch, and its weight was 0.450 gram. Industrial Tectonics, Inc. supplied the Type 316 stainless steel ball bearings. A different ball bearing was used as the radioactive source each day data were obtained. No detectable variations were found in the size and weight of the individual ball bearings.

Figure 3 is a photograph showing the stainless steel ball bearings inside the fluidizing column. The total weight of ball bearings in the column was 24.125 pounds, and the static bed height was 19.5 inches.

2.3 Calibrations

2.3.1 Half-life Determination

The half-life of the radioisotope produced upon neutron irradiation in the Kansas State University Triga Mark II nuclear reactor was determined by measuring the activity one yard from the source with a dose-fate meter, at various times after removal of the stainless steel ball bearing from the nuclear reactor. Figure 11 is a plot of the log of the dose rate at one yard from the source versus the time after removal of the ball bearing from the reactor. The halflife determined from this figure was found to be 2.5 hours. Manganese- 56 has

Figure II. Stainless Steel Ball Bearing Activity as a Function of Time After Removal From Reactor.
a gemma-ray half-life of 2.58 hours; therefore, the activity produced was primarily Manganese-56.

2.3.2 Calibration of the Orifice Meter

A length of $1 \frac{1}{2}$-inch-inside diameter hose was connected to the outlet of the column, and the other end of the hose was placed in a 55-gallon barrel. Water was pumped from the supply tank, through the fluidizing column, and into the 55-gallon barrel. Two levels were marked off in the barrel. The water flow was adjusted. The height of the mercury in the manometer across the orifice meter and the time taken for the water level in the barrel to pass from the first mark to the second mark were recorded. Figure 12 shows a plot of gallons per minute versus the manometer reading. Figure 13 converts the manometer reading to superficial fluid velocity in the column.

2.3.3 Radial Effects

The scintillation detectors were paired off according to their operating voltage. It was found that of the scintillation probes available, NE 287 and NE 314, and NE 288 and NE 353 formed the best pairs.

The radioactive source, in its vertical movements, would rarely be moving in the center of the column during a data run. It was, therefore, necessary to determine the effect of radial position on the counting rates from each pair of detectors when the particle passed through the plane of each detector level.

The source was placed in each of the radial positions in the fluidizing column as shown in Fig. 14. For each radial position, counting rates were obtained at different vertical positions with respect to the detector level. Counting rate versus vertical position curves were plotted for each radial

Figure 12. Colibration of the Orifice Moter.

Figure 13. Superficial Fluid Valocity in Fluidizing Column.

Flgure 14. Arrongement of Probes and Shielding Around Fluidizing Column.
position and each pair of detectors. These curves are shown in Figs. 15, 16, 17, and 18. These figures show that, with the arrangement of detectors used, the radial position of the radioactive source had little effect on the output received from the scintillation probes. Detectors 288 and 353 gave a lower counting rate than detectors 287 and 314 at the same high voltage setting; therefore, during the data runs the high voltage to detectors 288 and 353 was adjusted to a higher value to equalize the sensitivity.

2.3.4 Gap Width and Thickness of Shield Determination

It was necessary to determine the optimum gap width and shielding thickness to provide a high counting rate when the source was in front of the gap and a low counting rate when the source was not in front of the gap. The gap width and shielding thickness were determined experimentally by measuring the counting rate at different vertical distances with respect to the detector level for different gap widths and shielding thicknesses.

The source was placed in a plastic container and suspended into the waterfilled column. It was moved vertically with a nylon cord. A graduated scale was placed alongside the column and the radioactive source was held at constant vertical positions while one-minute counts were obtained. Figures 19, 20, 21, 22 , and 23 show the counting rates versus vertical position for different gap widths and shield thicknesses. The gap width and shield thickness selected are those shown in Fig. 23.

2.3.5 Calibration of the Electronic System

As the source passed from one detector level to the other, the outputs from the ratemeters were recorded as a pulse on the dual-channel recorder. The right-hand channel of the recorder would map the output from the upper

Figure 16. Counting Rate as a Function of Vertical Position

Figure 18. Counting Raic as a Function of Vertical Position of Radioactive Source, Radial Position 4.

Figure 19. Counting Rote as a Function of Vertical Position of Radioactive Source, 2 in . Shield, $3 / 16 \mathrm{in}$. Gap.

Figure 20. Counting Rote as a Function of Vertical Position of Radioactive Source, 2 in. Shield, $1 / 16 \mathrm{in}$., Gcp.

Figure 21. Counting Rote as a Function of Vertical Position of Radioactive Source, 4 in. Shleld, $1 / 32$ in. Gap.

Figure 22. Counting Rote as a Function of Vertical Position of Radioactive Source, 4 in. Shield, $/ / 16$ in. Gap.

Figure 23. Counting Rate as a Function of Vertical! Position of Radioactive Source, 4 in. Shield, 1/8 in. Gap.
detector level, and the left-hand channel would map the output from the lower detector level. Knowing the speed of the recorder, the distance between pulses was used to determine the elapsed time between the pulses. If the right-hand channel recorded a pulse, and the next pulse recorded was by the left-hand channel, the particle had passed from the upper to the lower detector level. By measuring the distance between the two pulses, the time to travel from upper to lower level was obtained.

The known fixed-frequency input to the Multi-Scaler Logic Unit of the Technical Measurements Corporation Multi-Channel Analyzer acted as a timer. When a pulse was recorded on either of the two recorder channels, the same pulse provided a trigger to switch channels in the multi-scaler. The number of counts stored in each channel of the multi-scaler was converted to elapsed time by dividing by the oscillator frequency.

The reliability of the measurement of elapsed time was determined experimentally. This was done by moving the source past the two detector levels at precisely known time increments and comparing this to the time increments obtained from the two methods outlined above. The experimental time was determined by finding the pulses on the chart recording and correlating these pulses to the correct channel locations given by the printout of the multi-scaler memory unit. Once the channel number of the printout tape was correlated to a pulse on the chart recording, the number of counts stored in that channel was divided by the frequency of the oscillator to obtain the time increment. This gave the experimentally measured times for the particle to pass from the lower-to-upper and upper-to-lower detector levels.

A Zero-Max motor and gearhead unit was used to move the source up and down in the column. The unit was capable of variable speeds from 0 to 400 revolutions per minute. A pulley was mounted at the top of the column, and a nylon cord was
passed over the pulley into the column. The source was suspended on the end of the cord. The other end of the cord was attached to the shaft of the gearhead. By winding the cord around the shaft until the source was at the top of the column and turming on the motor, the source would be lowered to the bottom of the column and returned to the top again. By this technique the source was lowered and raised at a constant speed past the two detector levels. A 30-inch section of the column was marked off, and the time for the source to be lowered through this section was taken as the best estimate of the time increment and was taken to be the true time.

Experimental runs were made at several gearhead speeds, and the time increments required to pass between the two levels obtained by the combination of the two methods discussed previously were compared to the visual observations.

Several sources of error were found. The multi-scaler occasionally skipped channels, thereby reducing the number of data values obtained from each data run. Due to mechanical malfunctions of the rotary printing head, the digital printer often printed incorrect numbers. For time increments of less than about one second required for the radioactive source to pass between the two detector levels, the time increments obtained from the experimental apparatus deviated largely from the actual time increments. To minimize the latter error, the following technique was used.

The times for the source to move from level Z_{1} to level Z_{2} and from level Z_{2} to level Z_{1} for a given source speed measured experimentally were averaged and plotted versus the true time for different true times. The results are show in Fig. 24. At short time intervals the deviation from a one-to-one relationship is seen clearly in this figure. Figure 25 gives the same information, plotted as the ratio of the average experimental time to the true time versus the average experimental time. A significant deviation for time

[^0]
increments of less than one second is shown to be the case.
Figure 26 gives the ratio of experimental time to true time as a function of the experimental time before averaging the time increments obtained experimentally for the radioactive source to pass upward and downward between the two detector levels at a given source speed. The triangles represent the experimental time increments obtained for a given source speed when the source was moving downward between Z_{2} and Z_{1}, and the circles represent the experimental time increments obtained for a given source speed when the source was moving upward between Z_{1} and Z_{2}.

The time increment data obtained when the source was moving downward were fitted with three straight-line segments. A linear regression analysis was utilized to obtain the equation for each straight-line segment. A similar procedure was used to fit straight-line segments to the time increment data obtained when the source was moving upward. The equations resulting from the linear regression analysis of each straight-line segment are given in Table 1.

An IBM 1620 computer program in FORTRAN was developed to treat all of the lower-to-upper level and upper-to-lower level time increment data obtained from the experimental apparatus. For a given experimental time, the ratio of experimental time to true time was obtained from the appropriate equation shown in Table l. To obtain the true time, the given experimental time increment was divided by that ratio.

The computer program developed to correct the experimental data is located in Appendix A.

2.3.6 Time Constants of the Ratemeters

The time constants for the ratemeters were determined by feeding a step input to each ratemeter and using a strip chart recorder to map the output of

Figure 26. Ratio of Experimental Time to True Time as a Function of the Experimental
Time for the Radioactive Source to Pass Between Two Detector Levels.

Table 1. Equations resulting from the linear regression analysis of the data from the calibration of the electronic system.

Detector level 1 to detector level 2

Experimental time
(seconds)
0.00 to 0.12
0.12 to 1.50
1.50 to infinity

Equation

$$
\begin{aligned}
\ln (R) & =1.006273+0.7186 \ln (t) \\
\ln (R) & =-0.21715+0.13258 \ln (t) \\
R & =0.85
\end{aligned}
$$

Detector level 2 to detector level 1
0.00 to 0.14
0.14 to infinity
$\ln (R)=1.33479+0.65478 \ln (t)$
$R=1.1734$

$$
R=\text { Experimental time/True time }
$$

each ratemeter. The procedure was as follows: a square-wave input was fed to each ratemeter, the sensitivities being so adjusted at first that the input would not be accepted; the sensitivity of each ratemeter was then increased to accept the squarewave input; the resulting output of each ratemeter, mapped by a strip chart recorder, was allowed to reach steady state; the sensitivity was then decreased so as not to accept the input, and the output was allowed to return to the original no-input value.

The time required to reach (l-l/e) of the steady state value is equal to the $R C$ time constant for the rise in the output, and the time required to reach ($1 / \mathrm{e}$) of the steady state value is equal to the $R C$ time constant for the decay of the output. Figures 27 and 28 illustrate the method of obtaining these time constants.

The time constants obtained for the two ratemeters in the experimental apparatus are given in Table 2.

Table 2. Time constants of the ratemeters.

Ratemeter	RC rise time	RC decay time
NE 901	0.492 second	0.300 second
NE 902	0.500 second	0.336 second

2.3.7 Pressure Drop Data

The pressure drop across the fluidized bed was determined by recording the pressure difference in inches of mercury across the column for different flow rates of water. Readings were taken arbitrarily as the flow rate was cither increased or decreased. Figure 29 gives the pressure drop in inches of mercury as a function of the water flow rate in gallons per minute.

Figure 27. Metnod of Determining Rise Time of Roterneters.

Figure 28. Method of Defermining Decay Time of Ratemeters.

2.4 Procedure

To determine if the equipment was operating properly, the nuclear instrumentation equipment was checked out prior to a day's run. The check-out procedure consisted of allowing the electronic apparatus to warm up and counting the puises from a fixed-frequency input to the multi-scaler for one second in each channel of the multi-scaler. The digital printer was then used to print out the information in the memory of the multi-scaler. If the number stored in each channel was equal to the frequency input in cycles per second, the equipment was assumed to be operating properly. The high voltage to the photomultipliers of the scintillation probes was then adjusted, and a radioactive source was passed in front of the scintillation detectors to check proper operation of the dual-channel recorder used to measure the output of the two ratemeters. Next, another check of the multi-scaler was made by observing the cathode ray tube to determine if the source passing in front of the scintillation probes was triggering the unit properly. If the system was operating properly, a Type 316 stainless steel ball bearing was introduced into the Kansas State University Triga Mark II nuclear reactor and was irradiated at 100 kw for one and one-half hours. A surface dose rate of about $2 \mathrm{r} / \mathrm{hr}$ of gamma radiation was produced. The source was then inserted into the fluidizing column, and the pump was turned on to allow the water to circulate through the system.

The high voltage to the photomultipliers at each of the detector levels was adjusted until well-defined pulses with minimum background noise were obtained on each channel of the chart recorder.

The distance between the detector levels was set for the particular data run, and the water flow rate for the run was properly adjusted by setting to
the desired value the mercury height in the manometer across the orifice in the inlet line to the fluidizing column.

The chart recorder was then started. The multi-scaler was started, and the exact position of the pens on the chart recorder at the time of starting was noted.

During the data run, the water flow rate was maintained constant by making the necessary inlet valve adjustments to maintain the proper height of mercury in the manometer.

Observation of the cathode ray tube of the multi-channel analyzer provided a munning check on the approximate amount of time left on a particular run. An illuminated dot on the face of the tube monitored the channel currently being used to store the frequency count. As soon as the source passed one of the detector levels, storage was transferred to the next channel. This could be visually observed by watching the dot jump to the right on the screen. When the 256 channels were filled, the dot would then move to an arbitrary position to the left on the screen. This indicated the end of the data run, and the position of the pens on the chart recorder was again noted.

The manometer reading, the distance between detector levels, the run number, and the data were then recorded on both the chart recording and the memory information of the multi-scaler printed out by the digital printer.

The detectors were positioned at different levels. Because of the strong gama-ray source in the fluidized bed, changes were made as quickly as possible. The flow rate of the water was adjusted to a new value, and a new run was begun.

The length of time available for obtaining the data for each day's run was determined by the half-life of the radioactive source. As time passed, in order to maintain well-defined pulses on the dual-channel chart recorder,
the high voltage to the photomultipliers was increased to increase detector sensitivity, which compensated for the decreased activity of the source. When the high voltage was increased too high, the background noise would increase, resulting in difficulty in distinguishing between pulses that actually occurred when the source passed a detector level and background noise. This limited the time for taking data to about seven or eight hours after removal of the ball bearing from the reactor. The source would have decayed through about three half-lives by that time and was roughly $1 / 8$ of its activity at the time of removal from the nuclear reactor.

3.0 ANALYSIS OF SINGLE PARTICLE EXPERIMENTS

3.1 Experiment Arrangement

Figure 30 is an illustration of the fluidized column with specific vertical positions, Z_{i}, noted. Utilizing the experimental apparatus, the time a radioactive particle passed level Z_{i} was recorded. Only two levels of Z_{i} could be investigated at a time. The distance between the two Z_{i} levels was the distance between the two detector levels, $\Delta \mathrm{Z}$.

The controlled variables were the fluidized bed height, determined by the water flow rate, the quantity of particles in the bed, and the distance between the two detector levels.

3.2 Quantities Extracted from Data

The quantities obtainable from a single particle experiment are given below:

$t\left(Z_{i}, Z_{j}\right) \quad$	Residence time, defined as the time required for a
	particle, after passing level Z_{i} and moving into the
	region between Z_{i} and Z_{j} and not returning to Z_{i}, to
	to pass out of the region at Z_{j}.
	Particle traffic, defined as the number of times a
	particle passes level Z_{i} per unit time.
$\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{i}\right) \quad$ Reflectivity, defined as the probability of a particle	
	passing level Z_{i} and not reaching level Z_{j} before re-
	turning to level Z_{i}.
	Particle concentration, defined as the number of

Δt at the time t per unit time, initially passing
$m\left(Z_{i}\right) \quad$ level Z_{i}.
The number of times a particle passes level Z_{i} be-
fore reaching level Z_{j}.

3.3 Determination of Fundamental Quantities from Experimental Data

Figure 31 is a simplified illustration of a data trace, showing the times at which a particle passed levels Z_{i} and Z_{j}. The fundamental quantities are determined from Fig. 31 as follows:

$$
\begin{aligned}
& t\left(z_{i}, z_{j}\right)=0.175 ; 0.175 ; 0.20 \\
& t\left(z_{j}, z_{i}\right)=0.19 ; 0.125 ; 0.125 ; 0.18 \\
& r\left(z_{i}\right)=16 / 4=4.0 \\
& r\left(z_{j}\right)=18 / 4=4.5
\end{aligned}
$$

Obtaining the reflectivity and particle concentration data requires some explanation. To obtain the reflectivity data $\operatorname{Pr}, \mathrm{m}(\mathrm{Z})$ must be considered. For m particles passing level Z_{i}, in general, one half of them are headed toward Z_{j}, and one eventually reaches Z_{j}. Therefore, the probability of that particle reaching Z_{j} in $m / 2$ tries is $1 /(m / 2)$ or $2 / m$. The probability of not reaching Z_{j} but returning to Z_{i} is, therefore, $l-(2 / m)$ or $(m-2) / m$.

From Fig. 3l, the probability of reflection of particles starting at level Z_{i} is, in the first instance, (4-2)/4, since the radioactive source passed the detector level Z_{i} four times before reaching level Z_{j}. The next time the source was detected at level Z_{i}, having been detected at level Z_{j} just prior to detection at level Z_{i}, it passed level Z_{i} six times before it

Figure 30. Vertical Arrangement of Detectors Adjacent to Fluidizing Column.

Figure 31. Simplified Data Trace.
reached Z_{j}, giving $(6-2) / 6$. The third time the source was detected at level Z_{i}, having been detected at level Z_{j} just prior to detection at level Z_{i}, it passed level Z_{i} twice before being detected at level Z_{j}. The same analysis is used to determine the probability of reflection of particles starting at level Z_{j}.

$$
\begin{aligned}
\operatorname{Pr}\left(z_{i}, z_{j} ; z_{i}\right)= & (4-2) / 4=0.5 ;(6-2) / 6=0.667 ;(2-2) / 2=0 \\
\operatorname{Pr}\left(z_{j}, z_{i} ; z_{j}\right)= & (6-2) / 6=0.667 ;(2-2) / 2=0 ;(8-2) / 8=0.75 \\
& (2-2) / 2=0
\end{aligned}
$$

To obtain the particle concentration data, the number of times a particle passes a level per unit time within a time increment Δt is considered. Also considered is the level, Z_{i} or Z_{j}, at which the particle originated. As an example, $I\left(Z_{i}, Z_{j}, t\right)$ and $I\left(Z_{i}, Z_{i}, t\right)$ will be obtained step-by-step. For convenience, Δt will be set equal to 1 . Since the second pulse at level Z_{i} shown in Fig. 31 occurs at the beginning of the second time increment, it will be used for the initial pulse. Considering $I\left(Z_{i}, Z_{j}, t\right)$, the number of pulses occurring at level Z_{j} within each time increment Δt with the time scale beginning at the initial pulse is

$$
I\left(z_{i}, Z_{j}, t_{1}\right)=2, I\left(Z_{i}, Z_{j}, t_{2}\right)=7, \text { and } I\left(z_{i}, z_{j}, t_{3}\right)=3
$$

Considering the number of pulses occurring at level Z_{i} in the same manner beginning with the initial pulse,

$$
I\left(Z_{i}, Z_{i}, t_{1}\right)=7, I\left(Z_{i}, Z_{i}, t_{2}\right)=2, \text { and } I\left(Z_{i}, z_{i}, t_{3}\right)=6
$$

4.0 DATA ANALYSIS
 4.1 General Consideration

Figure 32 shows an example of a typical recorder trace, with arrows acided to illustrate the upward or downward movement of the particle as it passed the two detector levels. Figure 32 also illustrates a typical digital printer recording of the first fifty channels of the multi-channel analyzer. The left-hand column of numbers indicates the channel number, and the righthand column lists the number of pulses from the Time Interval Meter oscillator stored in each channel.

For each given flow rate and distance between detector levels, the recorder trace and the corresponding digital printer recording were correlated. This was done by using the recorder trace to determine when the particle passed either the bottom or the top detector level and by matching the time between pulses on the recorder trace to the numbers recorded by the digital printer. The dual channel recorder was always operated at 5 millimeters per second, so the graduations on the recorder trace were one second apart. The pulses from the Time Interval Meter to the Multiscaler Logic Unit amplitude input were always adjusted to 666 per second; therefore, one graduation on the recorder trace corresponded to the number 666 on the digital printer recording.

The channel number on the digital print-out recording was always equated to the pulse on the recorder trace that stopped the accumulation of Time Interval Meter pulses in that channel and transferred the storage to the next channel. Each pulse on the recorder trace that caused transfer of storage from one channel to the next, therefore, was identified by numbering it with the proper channel number.

Figure 32. Output of Recorder and Digital Printer.

The left-hand, or bottom detector level trace, was denoted by a minus sign, so that the number on the digital print-out recording corresponding to a pulse that occurred when the source passed the bottom detector level was identified by placing a minus sign beside it. The number on the digital printout recording corresponding to a pulse that occurred when the source passed the top detector level was identified by placing a plus sign beside it. The digital print-out recording with a plus or minus sign beside the number stored in each channel in the multi-channel analyzer, therefore, contained all of the information obtained from the recorder trace and the digital printer recording. By observing the plus and minus signs, it was easy to determine when the source passed from one detector level to the other. For instance, when the isotope passed from lower to upper detector level, the sign would change from minus to plus. The time required to pass from lower to upper detector level was found by dividing by 666 the number of pulses counted and stored in the channel denoted by the plus sign. The resulting time would be in seconds.

The number in each channel location of the digital printer recording, along with its corresponding plus or minus sign, was then transferred to an IBM data card. To reduce the amount of data cards used, eight of the positive or negative numbers were typed per card.

Not all of the sets of data obtained from the experimental apparatus contained 256 data values, principally because the multi-channel analyzer would sometimes skip channels, causing no numbers to be recorded in the skipped channels. Therefore, each set of data was accompanied by the number of data values in the set. This value, denoted by JMAX, preceded the set of data on an IBM data card by itself.

Utilizing five water flow rates through the column and five distances between detector levels, seventy-six sets of data were obtained from the experiments.

Table 3 is a listing of the number of data runs obtained for each given water flow rate and distance between detector levels. B_{k} is the water flow rate corresponding to the height of mercury in the manometer that measured the pressure drop through the orifice meter, and ΔZ is the distance between the two detector levels.

Table 4 is a listing of the data set numbers for given distances between detector levels and water flow rates.

4.2 Statistical Analysis of Data

Sample variation was found to be useful in describing the frequency distribution of residence times obtained from the experimental data. Before any test of variance can be used on a sample taken from a population, however, the distribution upon which the test of variance is based must first be determined.

The simplest distribution for continuous data is the normal distribution, where the mean and median are the same and the distribution is symmetric with respect to the mean. The arithmetic mean is defined as $\left(\sum f_{i} x_{i} / \sum f_{i}\right)$, and the median is defined as the value equaled or exceeded by exactly half of the values x_{i} in the given list. An unbiased estimator of the population variance σ^{2} is

$$
\begin{equation*}
s^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1} \tag{I}
\end{equation*}
$$

Where x_{i} is the variable of which n observations are made, and \bar{x} is the average or mean of the n observations.

A measure of the skewness is given by

$$
\begin{equation*}
s^{3}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{3}}{n-1} \tag{2}
\end{equation*}
$$

Table 3. Number of data sets obtained for each $B_{1}, \Delta Z$.

$\Delta Z($ inches $)$	$\frac{1}{2}$	1	2	4	6
$B_{1}(2.50$ in. Hg$)$	2	3	4	4	2
$\mathrm{~B}_{2}(4.00 \mathrm{in} . \mathrm{Hg})$	2	4	4	3	2
$\mathrm{~B}_{3}(4.85 \mathrm{in} . \mathrm{Hg})$	2	4	4	4	2
$\mathrm{~B}_{4}(7.00 \mathrm{in} . \mathrm{Hg})$	2	4	4	4	2
$\mathrm{~B}_{5}(8.50 \mathrm{in} . \mathrm{Hg})$	2	4	4	2	2

Table 4. Data set numbers for given distances between detector levels ΔZ and water flow rates B_{k}.

$\Delta \mathrm{Z}$	$\frac{1}{2}$	1	2	4	6
B_{1}	12	345	$6 \quad 788$	10111213	1415
B_{2}	1617	18192021	$22 \quad 23 \quad 2425$	262728	2930
B_{3}	3132	$\begin{array}{llll}33 & 34 & 35 & 36\end{array}$	$\begin{array}{llll}37 & 38 & 39 & 40\end{array}$	$\begin{array}{llll}41 & 42 & 43 & 44\end{array}$	4546
B_{4}	4748	49505152	$\begin{array}{lllll}53 & 54 & 55 & 56\end{array}$	57585960	6162
B_{5}	6364	$65,66 \quad 67 \quad 68$	6970.7172	7374	7576

The average fluid velocities for the given water flow rates through the fluidized bed are given below.

B_{1}	$10.4 \mathrm{in} . / \mathrm{sec}$.
B_{2}	$12.1 \mathrm{in} . / \mathrm{sec}$.
B_{3}	$12.8 \mathrm{in} . / \mathrm{sec}$.
B_{4}	$14.1 \mathrm{in} . / \mathrm{sec}$.
B_{5}	$14.8 \mathrm{in} . / \mathrm{sec}$.

A positive value of S^{3} indicates that the mean is greater than the median, and a negative value of S^{3} indicates that the median is greater than the mean.

Figure 33 shows an example of a skewed distribution where the mean is greater than the median.

The function,

$$
\begin{equation*}
f(t)=\frac{t^{p-1} e^{-t / v}}{\Gamma(p) v^{p}} \tag{3}
\end{equation*}
$$

is an example of an analytical function that is skewed with a mean greater than the median for different values of the two parameters p and $v(5)$. It is easy to observe that when $V=2$, the above gamma distribution reduces to the well-known χ^{2} frequency function with $2 p$ degrees of freedom. For the number of observations, n, greater than 5 , this continuous distribution closely approximates the discrete frequency distribution,

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{k} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}} \tag{4}
\end{equation*}
$$

where k is the number of pairs of frequencies to be compared, ρ_{i} and e_{i} denote the i th pair of observed and expected frequencies, and $\sum o_{i}=\sum e_{i}=n$. The number of degrees of freedom is $k-1.0$ (5).

The χ^{2} statistic is a test to determine how well certain data fit a known or given hypothesis (11). K. Pearson established the distribution of χ^{2} for any number of degrees of freedom, making it possible to test whether a sample came from an assumed distribution or not. This made it possible to calculate the probability, P, that a particular value of χ^{2} would be exceeded,
by

$$
\begin{equation*}
\int_{0}^{x_{0}^{2}} \frac{\left(x^{2}\right)^{p-1} e^{-x^{2} / 2}}{\Gamma(p) 2^{p}} d x^{2}=1-p \tag{5}
\end{equation*}
$$

The commonly accepted value for P is 0.05 , or the five percent level of acceptability. If the observed value of χ^{2} is less than the value from the distribution for the given degrees of freedom and P, the observed value is not suspected of not representing a sample from the distribution hypothesized. If, however, the observed value is greater than or equal to the χ_{0}^{2} value from the distribution, the probability of this occurring is less than 0.05 , and the hypothesis being tested is rejected, or, if the hypothesis is known to be correct, then the observed data is judged to be nonrepresentative of the known hypothesis.

4.3 Analysis of the Residence Times Distribution

A frequency distribution of the residence times in a typical data set gave the frequency function $f(t)$ versus the time t illustrated in Fig. 33. The two-parameter gamma distribution was used to develop the T statistic, analogous to the X^{2} statistic, to determine the data that were not representative of the $f(t)$ distribution. It was concluded that the experimental times obtained at the right-hand end of the distribution in Fig. 33 were not representative of the residence times. This was primarily due to errors in correlating the recorder trace to the digital printer output. When the radioactive source passed the two detector levels at high speed, one of the resulting pulses may not have been strong enough to trigger the multi-scaler. The counts accumulated until the multi-scaler was again triggered would not be representative of the residence times distribution but would be far greater.

The data points that fell within the last five percent of the area under the $f(t)$ distribution were rejected on the basis of the criteria mentioned above. The area under the total gamma distribution integrated from zero to infinity is 1.0. The area under the last five percent of the distribution is 0.05 and is equal to the probability P. The T statistic was determined by

$$
\begin{equation*}
\int_{0}^{T} \frac{t^{p-1} e^{-t / v} d t}{\Gamma(p) v^{p}}=I-P \tag{6}
\end{equation*}
$$

In each data set, all of the residence times that were greater than the T statistic were rejected.

An IBM-1620 FORTRAN computer program was developed to determine, for various values of the distribution parameters p and v, the area under the gama distribution integrated from 0 to T. The computer program is discussed in Appendix G. A Gaussian quadrature numerical integration technique, discussed in Appendix H, was utilized to determine the area under the distribution for combinations of p, τ, and T. The Gaussian quadrature approximation of $\int_{-1}^{1} f(x) d x$ is

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{k=1}^{N} a_{k} f\left(x_{k}\right) \tag{7}
\end{equation*}
$$

A transformation of variables from $\int_{0}^{T} f(t) d t$ to $\int_{-1}^{1} f(x) d x$, where $f(t)$ represents the gamma distribution, gives

$$
\int_{0}^{T} f(t) d t=\frac{(T / 2)^{p}}{\Gamma(p) v^{p}} \sum_{k=1}^{N} a_{k}\left(x_{k}-1\right)^{p-1} e^{-\frac{T}{2 v}\left(x_{k}-1\right)}
$$

The computer program gave the value of A for various values of p, U, and T. Interpolation of the answers obtained from constant values of p and u gave the time T required for the area A to equal 0.95 .

Figure 34 gives the results of the T statistic corresponding to an area (A) under the curve $\int f(t) d t$ equal to 0.95 , for given gamme distribution parameters p and U.

The parameters p and v can be determined from the experimental data by utilizing the average, \bar{t}, and variance, σ^{2}, of the residence times.

$$
\begin{align*}
\bar{t} & =\frac{\int_{0}^{\infty} t f(t) d t}{\int_{0}^{\infty} f(t) d t}=\frac{-\left.v^{p} e^{-t / v}\right|_{0} ^{\infty}+p v \int_{0}^{p} t^{p-1} e^{-t / v} d t}{\int_{0}^{\infty} t^{p-1} e^{-t / v} d t} \tag{9}\\
\bar{t} & =p v-\frac{v t^{p} e^{-t / v}}{\int_{0}^{\infty} t^{p-1} e^{-t / v} d t}=p v \tag{10}\\
\sigma^{\pi} & =\frac{\int_{0}^{\infty}(t-\bar{t})^{2} f(t) d t}{\int_{0}^{\infty} f(t) d t}=\frac{\int_{0}^{\infty}\left(t^{2}-2 t t_{t} t^{2}\right) f(t) d t}{\int_{0}^{\infty} f(t) d t} \tag{11}
\end{align*}
$$

From the definition of $\overline{\bar{t}}$, and since \bar{Z} is a constant,

$$
\begin{equation*}
\sigma^{2}=\frac{\int_{0}^{\infty} t^{2} f(t) d t}{\int_{0}^{\infty} f(t) d t}-(\bar{t})^{2} \tag{12}
\end{equation*}
$$

or,

$$
\sigma^{2}=\frac{\int_{0}^{\infty} t^{p+1} e^{-t / v} d t}{\int_{0}^{\infty} t^{p-1} e^{-t / v} d t}-(p v)^{2}
$$

Integrating by parts gives,

$$
\begin{aligned}
& \sigma^{2}=\frac{-\left.v t^{p+1} e^{-t / v}\right|_{0} ^{\infty}+(p+1) v \int_{0}^{\infty} e^{p} e^{-t / v} d t}{\int_{0}^{\infty} t^{p-1} e^{-t / v} d t}-(p v)^{2} \\
& \sigma^{2}=\frac{(p+1) v\left[-\left.v t^{p} e^{-t / v}\right|_{0} ^{\infty}+p v \int_{0}^{\infty} t^{p-1} e^{-t / v} d t\right]}{\int_{0}^{\infty} t^{p-1} e^{-t / v} d t}-(p v)^{2}
\end{aligned}
$$

$$
\begin{equation*}
\sigma^{2}=(p+1) v(p v)-(p v)^{2}=p v^{2} \tag{13}
\end{equation*}
$$

The average residence time obtained from the data is

$$
\begin{equation*}
\bar{t}=\sum_{i=1}^{n} \frac{t_{i}}{n} \tag{14}
\end{equation*}
$$

The corresponding unbiased estimate of the variance is

$$
\begin{equation*}
s^{2}=\sum_{i=1}^{n} \frac{\left(t_{i}-\bar{t}\right)^{2}}{n-1}, \tag{15}
\end{equation*}
$$

Where t_{i} is the i th residence time and n is the number of residence times in each set of data.

The most probable residence time is determined when

$$
\begin{equation*}
\frac{d f(t)}{d t}=0 \tag{16}
\end{equation*}
$$

This is equivalent to

$$
\frac{1}{\Gamma(p) v^{p}} \frac{d}{d t}\left(t^{p-1} e^{-t / v}\right)=0
$$

or,

$$
\begin{aligned}
& \frac{d}{d t} f(t)=e^{-t / v}(p-1) t^{p-2}-\frac{t^{p-1}}{v} e^{-t / v}=0 \\
& e^{-t / v} t^{p}\left[(p-1) t^{-2}-t^{-1} v^{-1}\right]=0
\end{aligned}
$$

Solving for the most probable residence time, denoted by t_{p}, one has

$$
\begin{equation*}
t_{p}=(p-1) v \tag{17}
\end{equation*}
$$

An IBM-1620 FORTRAN computer program was developed to determine the average residence time, \bar{t}, the most probable residence time, t_{p}, and the variance of the residence time data for each water flow rate and distance between detector levels. The program also calculated the gamma distribution parameters p and v, determined from the average time and the variance. Once the gamma distribution parameters p and v were known, Fig. 34 was utilized to obtain the T statistic for the data set. All of the time increments in the data
set that were greater than T were discarded, and the data were rerun through the computer. A new pair of gamma distribution parameters was obtained, and a. new T statistic was determined from Fig. 34. The procedure was repeated until none of the residence time data were greater than the T statistic. The average time, the most probable time, the variance, p, and v, computed by the final pass through the computer, were tabulated for each set of residence time distribution data.

The larger the number of data taken, the closer the sample mean value will be to the population mean. By observing a plot of the average sample mean versus the number of data taken, one can estimate the minimum amount of data needed to give a sample mean representative of the population mean.

Figures 35 and 36 give representations of the average residence time as a function of the number of data values used to compute the average. Appendix E gives a discussion of Computer Program No. 5 used to calculate the average residence time as a function of the number of data values used.

Figures 37 and 38 give sample representations of the variance of the residence time as a function of the number of data values used to compute the variance. Appendix E gives a discussion of Computer Program No. 6 used to calculate the variance as a function of the number of ata values used.

Figures 39 through 46 give sample representations of the residence times data superimposed upon the computed gamma distribution using the parameters p and v determined from the experimental data.

Figures 47 through 56 give the gamma distribution parameters p and v as functions of the distance between detector levels.

The residence time data used in the final pass through the computer were also used for a FORTRAN program (Computer Program No. 8) to compute the average

Figure 35. Average Residence Time as a Function of the Number of Data Values, Data Set No. 2.

Figure 36. Average Residence Time as a Function of the Number of Data Values, Data' Set.. No. 37.

Figure 37. Variance of the Residence Times Data as a Function of the Number of Data Values, Data Set No. 16.

Figure 38. Variance of the Residence Times Data as a Function of the Number of Data Values, Data Set No. 42.

Figure 39. Frequency Distribution of the Residence Time Data and Theoretical Gamma Distribution, Data Set No. 8.

Figure 40. Frequency Distribution of the Residence Time Data and Theoretical Gamma Distribution, Data Set No. 22.

Figure 41. Frequency Distribution of the Residence Time Data and Theoretical Gamma Distribution, Data Set No. 27.

Figure 42. Frequency Distribution of the Residence Time Data and Theoretical Gamma Distribution, Data Sef No. 44.

Figure 43. Frequency Distribution of the Residence Time Dato and Theoretical Gamma Distribution, Data Set No. 59.

Figure 4.4. Frequency Distribution of Residence Time Data and Theoretical Gamma Distribution, Data Set No. 28.

Figure 45. Frequency Distribution of the Residence Time Data and Theoretical Gamma Disiribution, Data Set No. 53.

Figure 46. Frequency Distribution of the Residence Time Data and Theoretical Gamma Distribution, Data Set No. 58 ,

Figure 47. The Gamma Distribution Parameter ν, at Flow Rate B_{1}.

Figure 48. The Gamma Distribution Parameters P, at Flow Rate B_{1}.

Figure 49. The Gamma Distribution Parameter ν, of Flow Rate B_{2}.

Figure 50. The Gamma Distribution Parameter P, of Flow Rate. B_{2}.

Figure 51. The Gamma Distribution Parameter ν, at Flow Rate B_{3}.

Figure 52. The Gamma Distribution Parameter P, at Flow Rata B_{3}.

Figure 53. The Gamma Distribution Parameter ν, at Flow Rate 84 .

Figure 54. The Gamma Distribution Parametor P, of Flow Rate B4.

Figure 55. The Gamma Distribution Parameter ν, at Flow Rate E_{5}.

Figure 56. The Gamma Distribution Parameter P, at Flow Rate B_{5}.
speed of the tagged particle for each set of data in the following manner:

$$
\begin{equation*}
\bar{\nabla}=\sum_{i=1}^{n} \frac{\Delta z}{t_{i} n}=\frac{\Delta z}{n} \sum_{i=1}^{n} \frac{1}{t_{i}} . \tag{18}
\end{equation*}
$$

The output of Computer Program No. 8 is given in Appendix F.
The speed of the tagged particle for each distance between detector levels and water flow rate was determined by the following three methods:

$$
\begin{align*}
& \nabla\left(t_{p}\right)=\frac{\Delta z}{t_{p}}=\frac{\Delta z}{(p-1) v} \tag{19}\\
& \nabla(\bar{t})=\frac{\Delta z}{\bar{t}}=\frac{\Delta z n}{\sum_{i=1}^{n} t_{i}} \tag{20}\\
& \vec{\nabla}=\frac{\Delta z}{n} \sum_{i=1}^{n} \frac{1}{t_{i}} \tag{18}
\end{align*}
$$

The quantity $v\left(t_{p}\right)$ is the speed of the tagged particle corresponding to the most probable residence time, $v(t)$ is the speed of the tagged particle corresponding to the average residence time, and \bar{v} is the average speed of of the tagged particle.

Figures 57 through 71 give the results of $v\left(t_{p}\right), v(\bar{t})$, and \bar{v} as functions of the distance between detector levels.

Figures 72,73 , and 74 give straight-line extrapolations to $\Delta \mathrm{Z}=0$ values (obtained from Figs. 57 through 71) for the speed of the tagged particle as a function of the mean fluid velocity through the fluidized bed.

Figure 57. Particle Speed Corresponding to the Average Residence Time, at Flow Rate B_{1}.

Figure 58. Particle Speed Corresponding to the Most Probable Residence Time, of Flow Rate B_{1}.

Figure 59. Average Particle Speed, at Flow Rate B_{1}.

Figure 60. Average Particle Speed, at Flow Rate B_{2}.

Figure 61. Particle Speed Corresponding to the Average Residence Time, of Flow Rate B_{2}.

Figure 62. Particle Speed Corresponding io the Most Probable Residence Time, of Flow Rate B_{2}.

Figure 63. Particle Speed Corresponding to the Average Residence Time, at Flow Rate E3.

Figure 64. Particle Speed Corresponding to the Most Probabl Residence Time, at Flow Rate B_{3}.

Figure 65. Average Particle Speed, of Flow Rate B_{3}.

Figure 66. Particle Speed Corresponding to the Average Residence Time, at Flow Rote B_{4}.

Figure 67. Particle Speed Corresponding to the Most Probable Residence Time, at Flow Rate B_{4}.

Figure 68. Average Particle Speed, of Flow Rate E4.

Figure 69. Particle Speed Corresponding to the Average Residence Time, at Flow Rate B_{5}.

Figure 70. Particle Speed Corresponding to the Most Probable Residence Time at Flow Rate B_{5}.

Figure 71. Average Particle Speed, at Flow Rate B_{5}.

Figure 72. Particle Speed Corresponding to the Average Residence Time as a Function of the Mean Fluid Velocity:-

Figure 73. Porticle Speed Corresponding to the Most Probable Residence Time as a Function of the Mean Fluid Velocity.

Figure 74. Average Paricle Speed as a Function of the Mean Fluid Velocity.

4.4 Analysis of the Particle Traffic

The number of times a particle passes a level Z_{i} per unit time is defined as the particle traffic, $r(Z$.$) , and was determined by counting the$ number of times the tagged particle passed each detector level in each data set and dividing by the total time required to obtain the data as described previously.

An IBM-1620 FORTRAN computer program was developed to determine the particle traffic, and it is discussed in Appendix B.

Figure 75 is a plot of the particle traffic data obtained from each detector level as a function of the mean fluid velocity through the fluidizing column.

4.5 Analysis of the Reflectivity Data

The reflectivity, Pr, was previously defined as the probability of a particle passing level Z_{i} and failing to reach a different level $\left(Z_{j}\right)$ a given distance (ΔZ) away from Z_{i} before returning to Z_{i}. This probability is represented by $\operatorname{Pr}\left(Z_{i}, z_{j} ; Z_{i}\right)$ and is equal to $(m-2) / m$, where m is the number of times the particle passed Z_{i} before reaching Z_{j}. The reflectivity is equivalent to the reflection coefficient or albedo used by some authors (3).

The transmissivity is the probability of a particle passing level Z_{i} and reaching a different level $\left(Z_{j}\right)$ a given distance (ΔZ) away from Z_{i} before returning to Z_{i}. This probability is represented by $\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{j}\right)$. The sum of the reflectivity and transmissivity probabilities must equal 1.0; therefore,

$$
\begin{equation*}
\operatorname{Pr}\left(z_{i}, z_{j} ; z_{i}\right)=I-\operatorname{Pr}\left(z_{i}, z_{j} ; Z_{j}\right) \tag{2I}
\end{equation*}
$$

Figure 75. Particle Traffic as a Function of the Mean Fluid Velocity.

The reflectivity and transmissivity probabilities are easily derived by noting that for m particles passing $Z_{i}, m / 2$ of the particles are moving in the direction toward Z_{j}, and one particle eventually reaches Z_{j}. The probability of transmission to Z_{j} is $1 /(\mathrm{m} / 2)$ or $2 / \mathrm{m}$. The probability of reflection is $1-(2 / m)$ or $(m-2) / m$.

The following analysis was used to attempt to express analytically the reflectivity as a function of the distance between detector levels (ΔZ) and the position of the lower detector level (Z_{i}).

The probability of a particle passing Z_{i} and reaching Z_{j} before returning to Z_{i} has been represented by

$$
\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{j}\right)
$$

Generalizing, the probability of a particle passing Z_{i} and reaching Z before returning to Z_{i} is

$$
\operatorname{Pr}\left(z_{i}, z ; z\right) .
$$

The probability of a particle passing Z and reaching $Z+\Delta Z$ before returning to Z is

$$
\operatorname{Pr}(Z, Z+\Delta Z ; Z+\Delta Z),
$$

and the probability of a particle passing Z_{i} and reaching $Z+\Delta Z$ before returning to Z_{i} is

$$
\operatorname{Pr}\left(Z_{i}, Z+\Delta Z ; Z+\Delta Z\right)
$$

These two probabilities are related by

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{i}, Z+\Delta Z ; Z+\Delta Z\right)=\operatorname{Pr}\left(Z_{i}, Z ; Z\right) \operatorname{Pr}(Z, Z+\Delta Z ; Z+\Delta Z) \tag{22}
\end{equation*}
$$

The probability of a particle passing Z_{i} and reaching Z but not $Z+\Delta Z$ before returning to Z_{i} is

$$
\operatorname{Pr}\left(Z_{i}, Z ; Z\right)[I-\operatorname{Pr}(Z, Z+\Delta Z ; Z+\Delta Z)]
$$

Assuming the relationship

$$
\begin{equation*}
I-\operatorname{Pr}(Z, Z+\Delta Z ; Z+\Delta Z)=\beta \Delta Z \tag{23}
\end{equation*}
$$

where β is defined as the reflection coefficient, and substituting it into Equation 22 gives

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{i}, Z+\Delta Z ; Z+\Delta Z\right)=\operatorname{Pr}\left(Z_{i}, Z ; Z\right)(I-\beta \Delta Z) \tag{24}
\end{equation*}
$$

Rearranging gives

$$
\frac{\operatorname{Pr}\left(Z_{i}, Z+\Delta Z ; Z+\Delta Z\right)-\operatorname{Pr}\left(Z_{i}, Z ; Z\right)}{\Delta Z}=-\beta \operatorname{Pr}\left(Z_{i}, Z ; Z\right)
$$

Taking the limit as $\Delta Z \longrightarrow 0$,

$$
\frac{d \operatorname{Pr}\left(Z_{i}, Z ; Z\right)}{d Z}=-\beta \operatorname{Pr}\left(Z_{i}, Z ; Z\right)
$$

Integrating gives

$$
\begin{align*}
& \int \frac{d \operatorname{Pr}\left(Z_{i}, Z ; Z\right)}{\operatorname{Pr}\left(Z_{i}, Z ; Z\right)}=-\beta \int_{Z_{i}}^{Z} d Z
\end{align*},
$$

or,

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{i}, Z ; Z\right)=K e^{-\beta\left(Z-Z_{i}\right)} \tag{26}
\end{equation*}
$$

When $z=z_{i}, \operatorname{Pr}\left(z_{i}, z ; z\right)=1.0$. Therefore,

$$
K=1
$$

Z is limited to the height of the fluidized bed, L. The probability of transmission from Z_{i} to L,

$$
\operatorname{Pr}\left(Z_{i}, I ; I\right)=e^{-\beta\left(I-Z_{i}\right)}
$$

is never zero for the range of experiments; therefore, $\operatorname{Pr}\left(Z_{i}, Z ; Z\right)$ ranges from $e^{-\beta\left(L-Z_{i}\right)}$ to 1 . The probability of reflection, therefore, ranges from zero to $1-e^{-\beta\left(L-Z_{i}\right)}$.

Figures 76, 77, and 78 give illustrations of the frequency distribution of $\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{i}\right)$ for different data sets, where $f(\operatorname{Pr})$ is the number of occurrences of each value of $\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{i}\right)$. Only discrete values of the reflectivity occur, since the reflectivity is defined as $(m-2) / m$, where m represents integers $2,3, \ldots$, etc. Note that the frequency distributions of $\operatorname{Pr}\left(Z_{i}, z_{j} ; z_{i}\right)$ compare very closely for Z_{i} being either the upper or lower detector level.

The average m for each set of data was determined, and the average $\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{i}\right)$ for each set of data was defined as

$$
\begin{equation*}
\overline{\operatorname{Pr}}\left(z_{i}, z_{j} ; z_{i}\right)=(\bar{m}-2) / \sqrt{m} \tag{27}
\end{equation*}
$$

A least squares analysis was used to fit the analytical expression $\operatorname{Pr}\left(Z_{i}, Z_{j} ; Z_{i}\right)$ $=1-e^{-\beta\left(z_{j}-z_{i}\right)}$ to the experimental data, $\operatorname{Pr}\left(z_{i}, z_{j} ; z_{i}\right)$. The following method was used.

Since the probability of transmission is given by

$$
\operatorname{Pr}\left(Z_{i}, z_{j} ; z_{j}\right)=e^{-\beta\left(z_{j}-Z_{i}\right)}
$$

Figure 76. Frequency Distribution of the Reflectivity Data, Data Set No. 4 .

Figure 77. Frequency Distribution of the Reflectivity Data, Data Set No. 23.

Figure 76. Frequency Distribution of the Reflectivity Data, Data Set No. 48.
the average probability of transmission determined from the experimental data is

$$
\begin{equation*}
\overline{\operatorname{Pr}}\left(z_{i}, z_{j} ; z_{j}\right)=1-\overline{\operatorname{Pr}}\left(z_{i}, z_{j} ; Z_{i}\right) \tag{28}
\end{equation*}
$$

To simplify the nomenclature, let

$$
\begin{equation*}
\overline{P r}\left(Z_{i}, Z_{j} ; Z_{j}\right) \equiv \overline{P r} \tag{29}
\end{equation*}
$$

For each water flow rate, the difference between experiment and correlation for each data value was computed. Forming the sum of the squares of the deviations gives a measure of how well data values fit an analytical expression as a whole. Therefore, the sum of the squares of the deviations of the experiment from correlation for each water flow rate is

$$
\sum_{k=1}^{a l l}\left[e^{-\beta\left(z_{k}-Z_{i}\right)}-{\overline{P r_{k}}}^{2}\right]^{2}
$$

or

$$
\begin{equation*}
\sum_{k}\left[-\beta \Delta z_{k}-\ln \overline{P r}_{k}\right]^{2} \tag{31}
\end{equation*}
$$

The parameter β should be chosen so as to minimize the sum of the squares of the deviations. To do this,

$$
\begin{equation*}
\frac{d}{d \beta}\left[\sum_{k}\left(-\beta \Delta z_{k}-\ln \overline{P r}_{k}\right)^{2}\right]=0 \tag{32}
\end{equation*}
$$

Solving for the best estimate of β gives

$$
\begin{align*}
& \beta \sum_{k} \Delta z_{k}^{2}+\sum_{k} \Delta z_{k} \ln \overline{\mathrm{Pr}}_{\mathrm{r}_{k}}=0, \\
& \beta=\frac{-\sum_{k} \Delta z_{k} \ln \overline{\mathrm{P} \bar{r}_{k}}}{\sum_{k} \Delta z_{k}^{2}} . \tag{33}
\end{align*}
$$

Figure 79 presents the average reflectivity data as a function of the distance between detector levels and water flow rate, along with the theoretical curves determined from the least squares analysis of the data to determine the best estimate of β. The lower detector level was Z_{i}.

Figure 80 presents the theoretical reflectivity curves normalized to the reflectivity at the top of the fluidized bed as a function of the distance from the bottom of the fluidized bed for a particle initially passing the lower detector level.

Table 5 presents the values of β determined from the least squares analysis of the reflectivity data for the water flow rates studied.

Table 5. Reflection Coefficient determined from the least squares analysis of the reflectivity data.

WATER FLOW RATE	β
$\mathrm{B}_{1}(13.5 \mathrm{gal} / \mathrm{min})$.	$0.300 / \mathrm{in}$.
$\mathrm{B}_{2}(17.0 \mathrm{gal} / \mathrm{min})$.	$0.125 / \mathrm{in}$.
$\mathrm{B}_{3}(18.8 \mathrm{gal} / \mathrm{min})$.	$0.087 / \mathrm{in}$.
$\mathrm{B}_{4}(22.3 \mathrm{gal} / \mathrm{min})$.	$0.088 / \mathrm{in}$.
$\mathrm{B}_{5}(24.0 \mathrm{gal} / \mathrm{min})$.	$0.100 / \mathrm{in}$.

4.6 Analysis of the Particle Concentrations

4.6.1 Theoretical Development

A knowledge of the concentration of particles with respect to time and position for the given source condition and boundary conditions is of particular interest in the study of fluidized beds. If the assumption is made that the concentration of particles can be represented by a solution of the diffusion equation applying the source and boundary conditions of the fluidized bed, a dispersion coefficient based upon the experimental data can be obtained. The diffusion equation for no absorption may be written

$$
\begin{aligned}
& \pm \nabla^{2} C+Q=\partial C / \partial t, \\
& \quad(\text { - Leakage }+ \text { Source }=\underset{\text { Time rate of change of })}{\text { Particle Density }}
\end{aligned}
$$

where E is the diffusion coefficient. When the diffusion is one-dimensional this reduces to

$$
\begin{equation*}
E_{z} \frac{\partial^{2} C}{\partial z^{2}}+Q=\partial C / \partial t \tag{35}
\end{equation*}
$$

where E_{z} is defined as the dispersion coefficient. The Z-dependent diffusion equation must be solved subject to the following boundary conditions and source:

$$
\begin{equation*}
\left.\frac{\partial C}{\partial z}\right|_{z=I}=0 \tag{36}
\end{equation*}
$$

$$
\begin{align*}
& \left.\frac{\partial c}{\partial z}\right|_{z=0}=0 \tag{37}\\
& c_{t=0}=0, \tag{38}
\end{align*}
$$

$$
\text { at } t=0, Q \text { particles per } \text { in }^{2} \text { are injected at }
$$

$$
z=z_{0},=Q \delta\left(z-z_{0}\right) \delta(t)
$$

The method used to solve the diffusion equation for the given source and boundary conditions is outlined as follows:

Taking the Laplace transform with respect to time, Equation 35 gives

$$
\begin{equation*}
I_{z} \frac{d^{2} \bar{C}}{d Z^{2}}-s \bar{C}=-Q \delta\left(z-z_{0}\right) \tag{39}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\frac{s}{E_{z}}=\lambda^{2} \tag{40}
\end{equation*}
$$

and substituting Equation 40 into Equation 39 gives

$$
\begin{equation*}
\frac{d^{2} \bar{c}}{d z^{2}}-\lambda^{2} \bar{c}=-\frac{Q}{E_{z}} \delta\left(z-z_{0}\right) \tag{41}
\end{equation*}
$$

Takins the Laplace transform of Equation 41 with respect to Z yields

$$
\begin{equation*}
p^{2} \overline{\bar{c}}-p \bar{c}(0)-\bar{c}^{\cdot}(0)-\lambda^{2} \overline{\bar{c}}=-\frac{Q}{E_{z}} e^{-p Z} . \tag{42}
\end{equation*}
$$

Applying Equation 36 , and solving $\overline{\bar{C}}$ gives Equation 43.

$$
\begin{equation*}
\stackrel{m}{C}=\frac{p \vec{C}(0)}{p^{2}-\lambda^{2}}-\frac{Q e^{-p Z_{0}}}{E_{z}\left(p^{2}-\lambda^{2}\right)} \tag{43}
\end{equation*}
$$

The first term on the right-hand side of Equation 43 represents the homogeneous or steady-state term. The homogeneous solution of Equation 43 is given by Equation 44.

$$
\begin{equation*}
\bar{C}=A e^{\lambda Z}+B e^{-\lambda Z} \tag{44}
\end{equation*}
$$

The inverse Laplace transform of the second term on the right-hand side of Equation 43 is determined by utilizing the Second Shifting Theorem (12). Any function $f(x-a)$ multiplied by $H(x-a)$ has the value of zero for $x<a$ and $f(x-a)$ for $x>a$. The Second Shifting Theorem is

$$
\begin{equation*}
\mathcal{L}^{-1}\left[e^{-a s} \bar{f}(s)\right]=f(x-a) H(x-a) \tag{45}
\end{equation*}
$$

where $H(x-a)$ is the unit step function defined above. Applying this theorem, one has

$$
\begin{equation*}
\mathcal{L}^{-1}\left[\frac{Q e^{-p z_{0}}}{E_{z}\left(p^{2}-\lambda^{2}\right)}\right]=\frac{Q}{E_{z}} \mathcal{L}^{-1}\left[\frac{I}{p^{2}-\lambda^{2}}\right] H\left(z-z_{0}\right) . \tag{46}
\end{equation*}
$$

The inverse Laplace transform of $1 /\left(p^{2}-\lambda^{2}\right)$ with the argument $\left(Z-Z_{0}\right)$ is given by Equation 47 .

$$
\begin{equation*}
\alpha^{-1}\left[\frac{1}{p^{2}-\lambda^{2}}\right]=\frac{\sinh \lambda\left(z-z_{0}\right)}{\lambda} \tag{47}
\end{equation*}
$$

Substituting Equation 47 into Equation 46 gives

$$
\begin{equation*}
\mathcal{L}^{-1}\left[\frac{Q e^{-p Z_{0}}}{E_{z}\left(p^{2}-\lambda^{2}\right)}\right]=\frac{Q}{\lambda E_{z}} \sinh \lambda\left(z-Z_{0}\right) H\left(z-Z_{0}\right) \tag{48}
\end{equation*}
$$

Noting the identity

$$
\sinh \lambda\left(z-z_{0}\right)=\frac{e^{\lambda\left(z-z_{0}\right)}-e^{-\lambda\left(z-Z_{0}\right)}}{2}
$$

and substituting into Equation 48 one can obtain

$$
\mathcal{L}^{-1}\left[\frac{\theta_{0} e^{-p Z_{0}}}{E_{z}\left(p^{2}-\lambda^{2}\right)}\right]=\frac{Q}{2 \lambda E_{z}}\left[e^{\lambda\left(z-Z_{0}\right)}-e^{-\lambda\left(z-Z_{0}\right)}\right] H\left(z-Z_{0}\right) \cdot(\Delta 9)
$$

For $Z>Z_{0}$, only the second term of Equation 49 is applicable, since the concentration of particles beyond the fluidized bed height (L) is zero. Equation 50 below represents the solution of the second term in Equation 43 for $Z>Z_{0}$.

$$
\begin{equation*}
\mathcal{L}-1\left[\frac{Q e^{-p Z_{0}}}{E_{z}\left(p^{2}-\lambda^{2}\right)}\right]=-\frac{Q}{2 \lambda E_{z}} e^{-\lambda\left(z-Z_{0}\right)} H\left(z-Z_{0}\right) \tag{50}
\end{equation*}
$$

Since the particles injected at Z_{o} will also move downward, the solution of the second term of Equation 43 must also account for the downward movement. The solution is the same as for $Z>Z_{0}$. The equation applicable is, therefore, Equation 50, except the Z_{0} and Z are interchanged in the exponential function, and the unit step function $H\left(Z-Z_{0}\right)$ is changed to $H\left(Z_{0}-Z\right)$ for its proper overation when $Z<Z_{0}$. Equation 51 below is the result.

$$
\begin{equation*}
\mathcal{L}^{-I}\left[\frac{q e^{-p z_{0}}}{E_{z}\left(p^{2}-\lambda^{2}\right)}\right]=-\frac{Q}{2 \lambda E_{z}} e^{-\lambda\left(z_{0}-z\right)} H\left(z_{0}-z\right) . \tag{51}
\end{equation*}
$$

The general solution for \bar{C} is the sum of Equations 44, 50, and 51.

$$
\begin{equation*}
\bar{C}=A e^{\lambda Z}+B e^{-\lambda Z}+\frac{Q}{2 \lambda E_{z}}\left[e^{-\lambda\left(Z-Z_{0}\right)} H\left(Z-Z_{0}\right)+e^{-\lambda\left(Z_{0}-Z\right)} H\left(Z_{0}-Z\right)\right] . \tag{52}
\end{equation*}
$$

If $\left(Z-Z_{0}\right)$ is changed to the magnitude of $Z-Z_{0}$ in Equation 52 , the operators $H\left(Z-Z_{0}\right)$ and $H\left(Z_{0}-Z\right)$ may be removed, giving Equation 53.

$$
\begin{equation*}
\bar{C}=A e^{\lambda z}+B e^{-\lambda z}+\frac{Q}{2 \lambda E_{z}} e^{-\lambda\left|z-Z_{0}\right|} . \tag{53}
\end{equation*}
$$

The constants, A and B, are determined by applying the boundary conditions given in Equations 36 and 37 as follows:

$$
\begin{align*}
& {\left[\frac{d \bar{C}}{d Z}\right]_{I}=A \lambda e^{\lambda I}-B \lambda e^{-\lambda I}-\frac{Q}{2 E_{z}} e^{-\lambda\left|I-Z_{0}\right|}=0 .} \tag{54}\\
& {\left[\frac{d \bar{C}}{d Z}\right]_{0}=A \lambda-B \lambda+\frac{Q}{2 E_{z}} e^{-\lambda Z_{0}}=0 .} \tag{55}
\end{align*}
$$

Solving Equations 54 and 55 for A and B, one obtains

$$
A=\frac{\left|\begin{array}{cc}
\frac{\varepsilon}{2 E_{Z}} e^{-\lambda\left(I-Z_{0}\right)} & -\lambda e^{-\lambda I} \tag{56}\\
-\frac{e}{2 E_{Z}} e^{-\lambda Z_{0}} & -\lambda \\
\lambda e^{\lambda I} & -\lambda e^{-\lambda I} \\
\lambda & -\lambda
\end{array}\right|}{\mid}
$$

Expanding the determinants in Equation 56 gives

$$
\begin{equation*}
A=\frac{\frac{\lambda Q}{2 E_{z}}\left[e^{-\lambda\left(I-Z_{0}\right)}+e^{-\lambda!\left(L+Z_{0}\right)}\right]}{\lambda^{2}\left(e^{\lambda I}-e^{-\lambda L}\right)} \tag{57}
\end{equation*}
$$

Factoring $e^{-\lambda L}$ in the numerator of Equation 57, and applying the following identities,

$$
\begin{align*}
& \cosh \lambda z_{0}=\frac{e^{\lambda Z_{0}}+e^{-\lambda Z_{0}}}{2} \tag{58}\\
& \sinh \lambda I=\frac{e^{\lambda L}-e^{-\lambda L}}{2},
\end{align*}
$$

one obtains

$$
\begin{equation*}
A=\frac{Q e^{-\lambda L} \cosh \lambda z_{0}}{2 E_{z} \lambda \sinh \lambda I} \tag{59}
\end{equation*}
$$

$$
B=\frac{\left|\begin{array}{cc}
\lambda e^{\lambda I} & -\frac{Q}{2 E_{z}} e^{-\lambda\left(I-Z_{0}\right)} \tag{60}\\
\lambda & \frac{\theta}{2 E_{z}} e^{-\lambda Z_{0}}
\end{array}\right|}{2 \lambda^{2} \sinh \lambda I}
$$

Expanding the determinant in Equation 60, and applying Equation 58 give

$$
\begin{equation*}
B=\frac{Q \cosh \lambda\left(I-Z_{0}\right)}{2 E_{z} \lambda \sinh \lambda I} \tag{GI}
\end{equation*}
$$

To obtain the final solution for the particle concentrations, C, the inverse Laplace transformation of Equation 53 must be performed. To do this, Equation 53 is separated into the sum of the complementary and particular parts as,

$$
\begin{equation*}
\bar{c}=\bar{c}_{c o m p}+\bar{c}_{p}, \tag{62}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{c}_{c o m p}=\frac{e}{2 I_{z}}\left[\frac{e^{-\lambda(I-Z)} \cosh \lambda Z_{0}+e^{-\lambda Z^{c o s h} \lambda\left(I-Z_{0}\right)}}{\lambda \sinh \lambda I}\right], \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{c}_{p}=\frac{\Omega}{2 \lambda E_{z}} e^{-\lambda\left(Z-Z_{0}\right)} \tag{64}
\end{equation*}
$$

For the complementary part, note that there are poles at $\lambda=0$ and $\frac{n \pi i}{I}$. The inverse laplace transform for the case of simple poles is given by the sum of the residues (12). Thus,

$$
\begin{equation*}
f(t)=\sum_{k=1}^{n} \lim _{s \rightarrow a_{k}}\left(s-a_{k}\right) \overline{\mathrm{s}}(\mathrm{~s}) e^{s t} \tag{65}
\end{equation*}
$$

The relation of (s) to λ is given by Equation 40, but, for simplicity, λ will still be used in the equations. Operating on Equation 63 as indicated in Equation 65 produces the indeterminate form $0 / 0$ for $\lambda=0$ and $\frac{n \pi i}{I}$, where

$$
\begin{equation*}
\bar{f}(s)=\frac{e^{-\lambda(I-Z)} \cosh \lambda Z_{0}+e^{-\lambda Z_{2}} \cosh \lambda\left(I-Z_{0}\right)}{\lambda \sinh \lambda I} \tag{66}
\end{equation*}
$$

The application of L'Hospital's rule will produce a solution. Let

$$
\begin{equation*}
\overline{\mathrm{F}}(\mathrm{~s})=\frac{N(s)}{D(s)}, \tag{67}
\end{equation*}
$$

where

$$
\begin{equation*}
N(s)=e^{-\lambda(I-Z)} \cosh \lambda Z_{0}+e^{-\lambda Z} \cosh \lambda\left(I-Z_{0}\right), \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
D(s)=\lambda \sinh \lambda L . \tag{69}
\end{equation*}
$$

Equation 65 becomes

$$
\begin{equation*}
f(t)=\sum_{K=1}^{n} \lim _{s \rightarrow a_{k}}\left(s-a_{k}\right) \frac{N(s)}{D(s)} e^{s t} . \tag{70}
\end{equation*}
$$

Differentiating the numerator and denominator of $\left(s-a_{k}\right) \frac{I T(s)}{D(s)}$ with respect to s gives

$$
\begin{equation*}
\frac{d}{d s}\left(s-a_{K}\right) N(s) / \frac{d}{d s} D(s)=\frac{M(s)+\left(s-a_{k}\right) M^{\prime}(s)}{D^{\prime}(s)} \tag{71}
\end{equation*}
$$

Therefore, Equation 70 becomes

$$
\begin{equation*}
f(t)=\sum_{K=1}^{n} \lim _{s \rightarrow a_{k}}\left[\frac{N(s)+(s-2 . k) N^{n}(s)}{D^{\prime}(s)}\right] e^{s t} \tag{72}
\end{equation*}
$$

where

$$
\begin{equation*}
D^{\prime}(s)=\frac{d \lambda}{d s} \frac{d}{d \lambda}(\lambda \sinh \lambda I) \tag{73}
\end{equation*}
$$

From Equation 40,

$$
\begin{equation*}
\frac{d \lambda}{d s}=\frac{1}{2 \lambda E_{z}} \tag{74}
\end{equation*}
$$

Therefore, Equation 73 becomes

$$
\begin{equation*}
D^{\prime}(s)=\frac{I}{2 \lambda E_{Z}}(\sinh \lambda I+\lambda I \cosh \lambda I) . \tag{75}
\end{equation*}
$$

The residues at $\lambda=0$ and $\frac{n \not t i}{I}$ are given by utilizing Equations 63,68 , and 75 in Equation 72.

At $\lambda=0$,

$$
\begin{equation*}
\left.C_{c o m p}\right|_{\lambda=0}=\frac{Q}{E_{z}}\left[\frac{2 E_{Z}}{\frac{\sin \eta}{\lambda}+I \cosh \lambda I}\right]=\frac{Q}{I}, \tag{76}
\end{equation*}
$$

where

$$
\left.\frac{\sinh \lambda I}{\lambda}\right|_{\lambda=0}=\frac{\frac{d}{d \lambda} \sinh \lambda I}{\frac{d}{d \lambda} \lambda}=I \cosh \lambda I=I .
$$

At $\lambda=\frac{\mathrm{n} \pi i}{\mathrm{I}}$,

$$
\begin{align*}
\left.C_{c o m p}\right|_{\lambda=}=\frac{n \pi i}{L} & \frac{Q}{2 E_{z}} \sum_{n=1}^{\infty}\left[\frac{e^{-\frac{n \pi i}{I}(I-Z)} \cos \frac{n \pi z_{0}}{I}}{\frac{I}{2 \Sigma_{z}}\left[\frac{\sinh n \pi i}{n \pi i}+I \cos n \pi\right.}\right] \\
& +\frac{e^{-\frac{n \pi i}{I} z} \cos n \pi\left(I-\frac{z_{0}}{L}\right)}{2 E_{z}}\left[\frac{\sinh n \pi i}{n \pi i}+I \cos n \pi\right] \tag{77}
\end{align*} e^{-\frac{n^{2} \pi^{2} t}{I^{2}} \Phi_{z}},
$$

where

$$
\cosh \frac{n \pi i}{I}=\cos \frac{n \pi}{I}
$$

Noting that

$$
\sinh n \pi i=i \sin n \pi=0
$$

Equation 77 becomes

$$
\begin{aligned}
&\left.C_{c o m p}\right|_{\lambda=} \frac{n \pi i}{I}=\frac{Q}{I} \sum_{n=1}^{\infty}\left[\frac{e^{-\frac{n \pi i(I-Z)}{L} \cos \frac{n \pi Z_{0}}{L}}}{\cos n \pi}\right. \\
&\left.+\frac{e^{-\frac{n \pi i}{I} Z} \cos n \pi\left(I-\frac{Z_{0}}{I}\right)}{\cos n \pi}\right] e^{-\frac{n^{2} \pi^{2} t}{I^{2}} E_{z}}
\end{aligned}
$$

Substituting the identities

$$
\begin{equation*}
\cos n \pi(1-x)=\cos n \pi \cos n \pi x \tag{79}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{80}
\end{equation*}
$$

into Equation 78 gives

$$
\begin{equation*}
\left.c_{\text {comp }}\right|_{\lambda=\frac{n \pi i}{I}}=\frac{2 \pi}{I} \sum_{n=1}^{\infty} \cos \frac{n \pi z}{I} 0 \cos \frac{n \pi z}{I} e^{-\frac{n^{2} \pi^{2} t}{I^{2}} \Phi_{z}} . \tag{BI}
\end{equation*}
$$

The inverse Laplace transform of the particular part, Equation 64, obtained from a table of Laplace transforms, is given in the following equation:

$$
\begin{equation*}
c_{p}=\frac{Q}{2\left(E_{z} \pi t\right)^{\frac{1}{2}}} e^{-\frac{(z-\pi)^{2}}{4}} \tag{82}
\end{equation*}
$$

The complete solution for C becomes

$$
\begin{equation*}
c=\sum c_{c o m p}+c_{p} \tag{83}
\end{equation*}
$$

Defining the following dimensionless variables,

$$
\begin{align*}
& x=\frac{Z}{I}, \\
& x_{0}=\frac{Z_{0}}{L}, \tag{84}\\
& \tau=\frac{t I_{Z}}{L^{2}},
\end{align*}
$$

and substituting them into Equations $76,81,82$, and 83 , and rearranging, one obtains

$$
\begin{equation*}
\frac{C I}{Q}=1+2 \sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} \tau} \cos (n \pi x) \cos \left(n \pi x_{0}\right)+\frac{e^{-\frac{\left(x-x_{0}\right)^{2}}{4 \tau}}}{2(\pi \tau)^{\frac{1}{2}}} \tag{85}
\end{equation*}
$$

The equilibrium concentration obtained a long period of time after introduction of the quantity of tracer Q is

$$
\begin{equation*}
\frac{Q}{I}=c_{\infty} \text {, } \tag{86}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{C}{C_{\infty}}=\frac{C I}{Q} \tag{87}
\end{equation*}
$$

4.6.2 Analysis of Experimental Results

The concentration of tagged particles, C, is assumed to be proportional to the number of times that a tagged particle passes a horizontal plane per unit time, I, after it has been introduced into the fluidized bed. Since.C is assumed proportional to I,

$$
\begin{equation*}
\frac{C}{C_{\infty}}=\frac{I}{I_{\infty}} \tag{88}
\end{equation*}
$$

The data obtained from a single radioactive particle were used to determine the concentration due to Q particles being injected at one time. A tagged particle is considered to be injected into the fluidized bed at a detector level every time the tagged particle is detected at that detector level. Each time a tagged particle passed one detector level a
time scale was started, and, every time it piissed the other detector level, the time was recorded. This was done for a finite length of time. These data were used to obtain the number of times a particle passed a detector level per unit time as a function of tae time since it was first detected at a detector level. Summing Q such occurrences in the set of data will result in the same distribution as injecting Q particles at a detector level at the same instant.

Figure 81 illustrates a modificd dual channel recorder trace for a typical set of data. The minus sign represents the pulses obtained from the lower detector level, and the plus sign represents the pulses from the upper detector level. The particle concentration data, I, is obtained as described previously. The time span, W, in Fig. 8l, is chosen of great enough length to obtain the equilibrium concentration, I_{∞}. The time span, W, is then divided into q increments of time Δt, giving

$$
\sum_{i=1}^{q} \Delta t_{i}=W
$$

The time increments do not necessarily have to be equal.
The time span, W, is begun initially with the first pulse in the data set, which nay be either positive or negative. The number of positive or negative pulses within each time increment Δt are recorded until the time W is reached. At this point the time span W is then initialized at the next pulse in the data set, which may be either positive or negative, and the number of positive or negative pulses within each time increment Δt are recorded until the time W is reached. This stepping-ahead from pulse-to-pulse procedure in initializing the time span W is continued until the last data pulse in the data set falls within the last time increment Δt at the time W from the initialized pulse.

Figure 81. Modified Two-Channel Recorder Output Trace.

By this method, four sets of frequency distributions are obtained. The number of occurrences of the radioactive source being detected at the upper (or lower) detector level per unit time at the time t, initially being detected at the lower (or upper) detector level yield the frequency distributions $I\left(Z_{1}, Z_{2}, t\right)$ and $I\left(Z_{2}, Z_{1}, t\right)$. Also, the number of occurrences of the radioactive source being detected at the upper (or lower) detector level per unit time at the time t, initially being detected at the upper (or lower) detector level yield the frequency distributions $I\left(Z_{2}, Z_{2}, t\right)$ and $I\left(Z_{1}, Z_{1}, t\right)$.

Figures 82 through 85 represent examples of the particle concentration frequency distributions obtained from the experimental data. Computer Program No. 4, explained in Appendix D, was used to obtain the experimental particle concentrations.

An attempt was made to determine the diffusion coefficient, E_{z}, for each water flow rate by two methods of applying a least squares analysis to the experimental particle concentration data. The first method produced dispersion coefficients for each water flow rate, but the second method was unsuccessful. An attempt to explain the reason for lack of success in determining dispersion coefficients by the second method will be given in Section 5.4. An explanation of each method will first be given.

Method 1. The first method minimized the surn of the squares of the errors in the time corresponding to the maximum experimental I / I_{∞} for five distances between detector levels for a given water flow rate.

The maximum value for the correlated C / C_{∞} occurs at the time corresponding to

$$
\begin{equation*}
\frac{\partial\left(c / C_{\infty}\right)}{\partial t}=0 \tag{89}
\end{equation*}
$$

Figure 82. Particle Concentration Data, at Flow Rate B_{1}, Particles Initially at Lower Defector Level.

Figure 83. Particle Concentration Data, at Flow Rate B_{1}, Particles Initially at Upper Detector Level.

Figure 84. Particle Concentration Data, at: Flow 'Fate' B_{5}^{\prime}, Particles Initially of Lower Detector Level.

Figure 85. Particle Concentration Data, at Flow Rate B5, Particles Initially at Upper. Detector Level.

Therefore, from Equation 85, one has

$$
\begin{align*}
\frac{\left(C / C_{c}\right)-1}{2}=\sum_{n=1}^{c} & e^{-n^{2} \pi^{2} \tau} \cos (n \pi x) \cos \left(n \pi x_{0}\right) \\
& +\frac{1}{4(\pi \tau)^{\frac{1}{2}}} e^{-\left(x-x_{0}\right)^{2} / 4 \tau} \tag{90}
\end{align*}
$$

Differentiating with respect to time gives

$$
\begin{gather*}
\frac{\partial\left[\frac{(c / C \infty)-1}{2}\right]}{\partial t}=0=\sum_{n=1}^{\infty}\left[\frac{-n^{2} \pi^{2} E_{z}}{I^{2}}\right] \cos (n \pi x) \cos \left(n \pi x_{0}\right) e^{-n^{2} \pi^{2} \tau} \\
-\frac{I e^{-\left(x-x_{0}\right)^{2} / 4 \tau}}{8 \pi^{\frac{1}{2}} E_{z}^{\frac{1}{2}} \tau^{3 / 2}}+\frac{I^{3}\left(x-x_{0}\right)^{2} e^{-\left(x-x_{0}\right)^{2} / 4 \tau}}{I 6 \pi^{\frac{1}{2}} E_{z}^{3 / 2} t^{5 / 2}} . \tag{91}
\end{gather*}
$$

Solving for the time corresponding to $\left(\mathrm{c} / \mathrm{C}_{\infty}\right)_{\max }$, one obtains

$$
\begin{equation*}
t=\frac{\left(2 E_{z}\right)^{-1}(\Delta Z)^{2}}{\left[\frac{8 \pi^{5 / 2} e^{(\Delta Z)^{2 / 4} E_{z} t}}{I^{3}\left(E_{z} t\right)^{-3 / 2}}\right] \sum_{n=1}^{\infty} n^{2} \cos (n \pi x) \cos \left(n \pi x_{0}\right) e^{-n^{2} \pi^{2} \tau}+1}, \tag{92}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta z=\left(x-x_{0}\right) L \tag{93}
\end{equation*}
$$

For a given flow rate of water and five distances between detector levels,
ΔZ, one hat

$$
\begin{equation*}
\sum_{m=1}^{5} \frac{\partial \tau_{m}}{\partial E_{z}} \frac{\partial\left[t_{m}-\left(t_{e z c o}\right)_{m}\right]^{z}}{\partial \tau_{m}}=0 \tag{94}
\end{equation*}
$$

where $\left(t_{\text {exp }}\right)_{m}$ is the time correspondin: to $\left(I / I_{\infty}\right)_{\max }$.
The particle concentration frequency distributions obtained from considering the source plane at the lower detector level, $I\left(Z_{1}, Z_{2}, t\right)$, for all data sets were normalized and combined for each distance between detector levels and water flow rate, and are shown in Figs. 86 through 90. The experimental values, $\left(t_{\exp }\right)_{m}$ were obtained from these figures. Thus,
where

$$
\begin{equation*}
\frac{\partial}{\partial \tau_{m}}\left[t_{m}-\left(t_{e x p}\right)_{m}\right]^{2}=2\left[t_{m}-\left(t_{e x p}\right)_{m}\right] \frac{\partial t_{m}}{\partial \tau_{m}} \tag{95}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\partial t_{m}}{\partial \tau_{m}}=\frac{(\Delta Z)_{m}^{2}}{2 \Phi_{z}}\left[\frac{2 e^{\left(x-x_{0}\right)_{m}^{2} / \Delta \tau_{n}}}{\pi^{-5 / 2} \tau_{2 n}^{\frac{1}{2}}\left(x-x_{0}\right)_{m}^{2}} \sum_{n=1}^{\infty} n^{2} \cos \left(n \pi x_{m}\right) \cos \left(n \pi x_{0}\right) e^{-n^{2} \pi^{2} \tau_{m}}\right. \\
& +\frac{8 e^{\left(x-x_{0} L_{n}^{2} / 4 \tau_{n}\right.}}{\pi^{-9 / 2} \tau_{n}^{-3 / 2}} \sum_{n=1}^{\infty} n^{4} \cos \left(n \pi_{n}\right) \cos \left(n \pi x_{0}\right) e^{-n^{2} \pi^{2} \tau_{m}} \\
& \left.-\frac{12 e^{\left(x-x_{0}\right)_{n}^{2} / \Delta \tau_{m}}}{\pi^{-5 / 2} \tau_{m}^{-\frac{1}{2}}} \sum_{n=1}^{\infty} n^{2} \cos \left(n \pi x_{m}\right) \cos \left(n \pi x_{0}\right) e^{-n^{2} \pi^{2} \tau_{m}}\right] \\
& {\left[\frac{8 e^{\left(x-x_{0}\right)_{m}^{2} / 4 \tau_{m}}}{\pi^{-5 / 2} \tau_{m}^{-3 / 2}} \sum_{n=1}^{\infty} n^{2} \cos \left(n \pi x_{m}\right) \cos \left(n \pi x_{0}\right) e^{-n^{2} \pi^{2} \tau_{m}}+I\right]^{-2} .}
\end{aligned}
$$

inaccuracy was the fact that the time constants of the ratemeters were greater than one-third of a second. Observing Figs. 57 through 71 , except in the cases of high fluid velocity and a small distance between detector levels where the residence times were very short, an exponential relationship is seen to exist between particle speed and the distance between detector levels. Because of errors in measurement of short residence times, only the data obtained when the distance between detector levels was greater than one inch were used for an extrapolation to zero distance between detector levels to produce the results show in Figs. 72, 73, and 74.

Figures 72,73 , and 74 clearly illustrate that the speed of the particles within the fluidized bed is greater for upward movement (z_{1} to z_{2}) than for downward movement (z_{2} to z_{1}). Since, on the average, the same number of particles move upward as downward, this means that greater than fifty percent of the cross-sectional area of the fluidized bed must be utilized for downward particle movement.

5.2 Particle Traffic

Figure 75 presents the particle traffic data as a function of the average fluid velocity. The data $r\left(Z_{1}\right)$ were obtained at one vertical height for all of the data, but the data $r\left(Z_{2}\right)$ were actually obtained at five different vertical heights. No trend dependent upon vertical height was obtained, so all of the data at Z_{2} were combined and are shown in Fig. 75 as a single data value at each water flow rate studied. It was concluded that $r(Z)$ had no dependence on Z over the range of vertical heights studied. However, the particle traffic was measured only in the middle sections of the fluidized bed, and thus, no data were available to determine the effect on particle traffic measurements close to the top or bottom of the fluidized bed.

5．3 Reflectiv゙ty Data

Figure 79 presents the experimente ごeflectivity data based on an average $m\left(Z_{i}\right)$ for each data set．Also show \therefore the correlated probability of re－ flection curves（l－e $-\beta \Delta z$ ）detemin from th data by least squares analyses， limited to the height of the fluidized bed for each water flow rate．Since no data were obtained for ΔZ greater than six inches，no compirison is avail－ able between experiment and theory for large ΔZ ．For the lowest water flow studied，B_{η} ，data were obtained over a larger percentage of the distance from Z_{1} to L than for the other flow rates studied，and the data appear to support the theory，as shown in Fig． 79.

5．4 Particle Concentrations

Two methods of determining the dispersion coefficient，E_{Z} ，were given in Section 4．6，based upon a diffusion theory model．The first method pro－ duced results reported in this section．The second method gave no results． Before attempting to detemine the reason for this，the correlated distribution $\left(\mathrm{C} / \mathrm{C}_{\infty}\right)$ was calculated for the five water flow rates studied by assuming differ－ ent values of the dispersion coefficient and comparing the resulting distribu－ tions for each dispersion coefficient with the experimental data（ I / I_{∞} ）deter－ mined from Figs． 86 through 90．The effect on the correlated distributions as a result of varying E_{z} for each water flow rate was as follows．As E_{z} was increased，the maximum value of C / C_{∞} was decreased for each distance between detector levels，and the maximum values occurred at lesser time incre－ ments．The dispersion coefficients that produced the correlated distributions that came closest to representing the experimental distributions for each water flow rate were then tabulated．

It was noted that for time increments less than about 0.3 second, the correlated $\left(C / C_{\infty}\right)$ distribution did not compare very closely with the experimental (I / I_{∞}) distribution, even though the distribution for time increments greater than 0.3 second were closely matched. This would indicate that the data for short time increments (less than 0.3 second) were incompatible with the rest of the data in each experiment, and, in attempting to determine a dispersion coefficient by Method 2 using all of the data in each experiment, results, if any could be obtained, would be highly questionable.

Figure 91 presents the experimental $\left(I / I_{\infty}\right)$ data for the lowest water flow rate studied, with the correlated $\left(C / C_{\infty}\right)$ distribution for a dispersion coefficient of $1 \mathrm{in}^{2} / \mathrm{sec}$ superimposed. The data below about 0.3 second are not compatible with the correlated distribution. Figure 92 presents the correlated $\left(\mathrm{C} / \mathrm{C}_{\infty}\right)$ distribution for a water flow rate of $18.8 \mathrm{gal} / \mathrm{min}$., using a dispersion coefficient of $10 \mathrm{in}^{2} / \mathrm{sec}$. Comparison of this figure with Figure 88 illustrates the marked difference below a 0.3 second time increment, although the dispersion coefficient used gave the best representation at greater time increments.

Table 6 gives the dispersion coefficients determined as outlined above. Table 6 also gives values of dispersion coefficients determined from a microscopic viewpoint, as discussed below.

In a medium where only scattering reactions occur, expressions for particle current density have been developed (3). Assuming only Z-dependence and that the particles move with average speed \bar{v}, the following current densities result.

$$
\begin{equation*}
J_{+}=\frac{C \bar{\nabla}}{4}-\frac{\bar{\nabla}}{6 \Sigma}\left[\frac{\partial C}{\partial Z}\right]_{0} \tag{101}
\end{equation*}
$$

∞ っ／っ

Table 6. Dispersion Coefficient E_{7} as Determined by Single and Multi-Particle Experiments.

and

$$
\begin{equation*}
J_{-}=\frac{C \bar{\nabla}}{4}+\frac{\bar{\nabla}}{6 \Sigma}\left[-\frac{1}{Z}\right] 0 \tag{102}
\end{equation*}
$$

where \sum is the probability of i.scraction. ipplying Equations 101 and 102 to fluidized beds, Σ is equivalent to the reflection coefficient (β), for β is an interaction probability, as implied in Equation 26, and is determined from single particle experiments.

In experiments with more than one particle, determination of J_{+}and J. cannot be made; only the net movement of particles through the area studied can be made. The net movement is given by

$$
\begin{equation*}
J_{\text {net }}=J_{+}-J_{-} \tag{103}
\end{equation*}
$$

Substituting Equations 101 and 102 into Equation 103 give

$$
\begin{equation*}
J_{\text {net }}=-\frac{\bar{\nabla}}{3 \beta}\left[\frac{\partial C}{\partial Z}\right]_{0} \tag{104}
\end{equation*}
$$

In diffusion theory, Equation 104 is Fick's law of diffusion,

$$
\begin{equation*}
J_{\text {net }}=-د_{z} \text { grad } C \tag{105}
\end{equation*}
$$

where E_{z} is the diffusion coefficient. From Equations 104 and 105,

$$
\begin{equation*}
E_{z}=\frac{\bar{\nabla}}{3 \beta} \tag{106}
\end{equation*}
$$

Thus, we have a means of comparing results based on single particle experiments with multi-particle experimer \quad results. The qui...tities \bar{v} and β were detemined from microscopic invest: ions (Sections 4. and 4.5), and E_{2} has been determined from macrosc \quad nvestigations.

6.0 CONCLUSIONS

The results of this investigation have led to the following conclusions about fluid-solids fluidized beds.

Frequency distributions of residence times agree very well with gama distribution correlations based on the parameters p and v determined from the experimental data. The gamma distribution parameter V increases with increasing distance between detector levels, while the parameter p tends to have a minimum value at about three inches distance between detector levels for all water flow rates studied, as illustrated in Figs. 47 through 56.

The logarithm of the vertical speed of the particles tends to increase linearly with decreasing distance between detector levels for all water flow rates studied, as illustrated in Figs. 57 through 71.

The vertical speed of the particles increases with increasing fluid velocity, as illustrated in Figs. 72, 73, and 74.

More than fifty percent of the cross-sectional area of the fluidized bed is used for downward particle movement.

About fifty residence times per data set are sufficient to study particle speeds.

In the middle sections of the fluidized bed, the particle traffic increases with increased fluid velocity, as illustrated in Fig. 75.

A frequency distribution of the probability of reflection for downward particle movement is the same as for upward particle movement, as illustrated in Figs. 76, 77, and 78. The probability of reflection increases with increased distance between detector levels for all water flow rates studied, as illustrated in Fig. 79.

The analytical model developed to determine the concentration of particles with respect to time and distance from the source plane gives distributions
that are in good agreement with the experimental \vec{i} ?cuency distributions of particle concentrations for distances between det = or levels greater than one inch, as illustrated in Fig. 91.

The determination of particle cin ersion properties by microscopic and macroscopic investigations has given particle diupersion coefficients with differences of less than an order of magnitude for all water flow rates studied.

The study of individual particle mobility by the method developed in this thesis, utilizing the apparatus used in this thesis to obtain the experimental data, led to the following conclusions.

Residence times obtained from the experimental apparatus which were less than 0.2 second were not reliable.

Measurements at the top and bottom of the fluidized bed should be made to determine how end effects affect the particle traffic.

For low water flow rates, a data correlation was obtained to enable a prediction of particle reflection characteristics.

Experimental measurements with greater distances between detector levels and higher water flow rates are needed to produce more particle reflection data to compare with the analytical expression for particle reflectivity developed in this thesis.

Analyses of the residence time, reflectivity, and particle concentration data led to the conclusion that the data obtained for distances between detector levels of less than one inch were not representative of the rest of the data, and this was attributed to the limitations of the ratemeters used in the experinental study. Better instrumentation sensitivity and recovery times are needed to obtain data at high water flow rates and small distances between detector levels.
hinitionil experiments with different fixed bed heiع\%.ts and different particle sizes and densities using t radioactive trac \because 'echnique should prove worthwhile.

A large amount of labor was exp cied in reducing ar.u correlating the raw data from the dual-channel reus ar trace and digital printout, and transferring the data to IBM cards. It is suggested that should further experiments occur, a method should be developed that will enable more data collection at reduced labor by automatically recording the raw data in a form suitable for digital computation.

The preliminary data obtained in this thesis indicate that the use of the methods of data collection and analysis developed and presented, is feasible in assisting in the determination of the behavior of individual particles in fluidized beds.

7.0 ACKNONLEDGIENT

'The author wishes to express his sincere appreciation to the following pcrsons: Professor Richarả C. Bailie, under whose direction and counsel this study has been accomplished; Dr. Liang-tseng Fan, for his advice and guidance throughout this investigation; Dr. William R. Kimel, Head of the Kansas State University Department of Nuclear Engineering, for his help and encouragement; Mr. Ray E. Hightower, for his assistance in the development of the electronic systems; Mr. Eldon J. Linnebur, undergraduate student in the Department of Nuclear Engineering, for his assistance in the use of the IBM 1620 Computer for data evaluation; and the staffs and students of both the Nuclear Engineering and Chemical Engineering Departments for their assistance when called upon.

8.0 LIIERATURE CITED

1. Bellman, R. E., and Dreyfus, S. E. Applied Dynamic Programming. Princeton University Press, Princeton, New Jersey (1962).
2. Bellman, R. E., Kalaba, R. E. and Prestrud, M. C. Invariant Imoedding and Radiation Transfer in Slabs of Finite Trnickness. The Rand Corporation R-388-ARPA (February, 1962).
3. Glasstone, W., and M. E. Edlund.

The Elements of Nuclear Reactor Theory. Princeton: Van Nostrand (1952).
4. Gordon, I. Unpublished Ph. D. Thesis, University of Washington (1964).
5. Hoel, P. G.

Introduction to Mathematical Statistics. John Wiley and Sons, Inc., New York (1954).
6. Lapidus, L.

Digital Computation for Chemical Engineers. NaGraw-Hill Book Company, Inc., New York (1962).
7. Leva, M. Fluidization. McGraw-Hill Book Company, Inc., New York (1959).
8. Martin Nuclear

Fluidized Bed Reactor Study. Phase I - Feasibility. MND-FBR-1696 (February, 1959).
9. Morris, J. B., Nicholls, C. M., and Feninng, F. W. The Application of Fluidisation Techniques to Nuclear Reactors - A Preliminary Assessment. Transactions of the Institution of Chemical Engineers. The Institution of Chemical Engineers. 56 Victoria Street, Westminster, London SWI, Volume 34, Number 2 (1956).
10. Silverstein, C. C.

Nucleonics. Volume 15, Number 3, March (1957).
11. Snedecor, G. W.

Statistical Methods. Fifth Edition. Iowa State University Press, Ames, Iowa (1956).
12. Thomson, W. T.

Laplace Transformation. Second Edition. Prentice-Fall, Inc., Englewood Cliffs, New Jersey (1960).
13. Wilde, D. J. Unpublished Master's Thesis. University of Washington (1956).
14. Zenz, F. A., and Othmer, D. F. Fluidization and Fluid-Particle Systems. Reinhold, New York (1956).

9.0 APPENDICES

APPENDIX A

Description and Explanation of the IBM 1620 Computer FORTRAN Program No. 1 for Correcting the Time Increment Data

Tinis computer program was written to correct the experimental time increments obtained when the tagged particle passed from the upper-to-lower and lower-to-upper detector levels. The corrections were applied on the basis of Table l. Table 7 defines the various symbols utilized in this computer code.

Table 7. Input data and variables required for the IBM 1620 Computer Program No. 1.
SYMBOL EXPIAITATION

JIAX
$D(J)$
$P(J)$
I

Number of time increment data for given set Individual time increment data in given set, $J=1$ to JMAX, in pulses per channel $\times 10^{-3}$ Individual time increment data converted to time in seconds Time increment data set in the process of correction

First the program reads the experimental data $D(J)$ and the number of individual data values JMAX in the Set I. The program then converts the data to time in seconds $P(J)$.

The program determines which data represents upper-to-lower and lower-to-upper detector level time increments. By applying the equation necessary from Table l, each time increment for both the upper-to-lower ana lower-toupper detector level is then corrected to tmue time.

After each time increment in the set has been so treated, the program punches IBM cards containing the data set I, the number of data values in
the set JMAX, and the individual values of corrected time increments.

Input to Computer Program No. I

The data obtained from the fluidized bed apoaratus was transferred to IEM cards and served as the input to Computer Program ivo. 2. Eight individual time increments were typed per card. A plus or minus sign preceded each time increment to designate detection of the targed particle at either the upper or lower detector level rospectively.

Seventy-six sets of data, with water flow rates and distances between detector levels for each data set, are given in Table 4. Table 8 gives the inout data to Computer Program No. l. Each data set is inaicated by Data Set I. The first number shown in each data set is the number of time increments in the set (JMAX). Each data card is read into the computer as FORMAT (I4, I4, 3E7.3). The first four columns give the card number. The next four column give the subscript J of the first time increment $D(J)$ on each data card. $J=1,2, \ldots, J N A X$. The individual time increments are recorded as the number of pulses from the Time Interval Meter $\times 10^{-3}$ stored in each channel of the multi-channel analyzer before rapid change in the counting rate caused transfer of storage to the next channel.

Output of Computer Program NTo. I

The output of Computer Program No. 1 is given in Table 9. The output Was punched as FORMAT (I4, I4, 8F8.3). Each data set is given as Data Set I. The first number show in each data set is the number of time increments in the set (JMAX). The first four columns per card indicate

Table 8．Input to Computer Program No． 1.

Data Set 6

232								
0001	＋00．001	＋00491	＋01371	＋00356	－00209	＋00077	27	7
20009	－00168	－00170	－00300	－00113	－00648	－00576	－07350	○1この
30017	－06000	－00312	＋00280	－00961	－00700	－cclec	－00140	－00594
40025	－00656	－00431	－00200	－00233	＋03330	＋04332	＋00812	－00こを6
50033	＋00278	－00212	－00358	－00579	－05909	－00934	－03928	－00507
60041	－00253	－00220	－00409	－00152	－00185	－00407	－00121	0.0750
70049	－00134	－00300	－00811	＋00150	＋00363	＋00559	＋00606	＋0．2263
80057	＋00333	＋00672	＋00124	＋00061	＋00239	＋00257	＋00152	＋0．0224
90065	＋00147	＋00585	＋00389	－00207	－00400	－00375	－00300	－つを7ER
100073	＋00300	－00400	－00579	－00192	－0040，	－00200	－00200	22
110081	－00259	－00747	＋00200	＋00300	＋00233	＋00141	－00426	－00113
120089	－00190	－00279	－00067	－16147	＋00300	＋99999	＋00156	＋0．211
130097	＋00486	＋00593	－00158	－00400	－0：300	－00172	－03370	！
140105	＋00150	＋00700	＋00152	＋00299	＋0u508	－00322	＋00608	＋0．0636
150113	＋00625	＋00571	＋00724	＋00395	＋0ט184	－00157	＋00195	1
160121	＋01152	＋01204	－00174	－00676	－00519	－000348	－02068	－005う2
29	－00132	－00215	－00889	＋0．0529	＋00561	＋00414	40	56
180137	－00077	－00274	－00107	－00135	－00003	－00136	－21451	－001
190145	－00398	－00300	－00490	＋00200	－00602	－00240	－00347	－03126
200153	＋00900	＋00079	＋00835	－00311	－0．0938	＋0C037	＋00168	＋00148
210161	－07183	－00334	－00332	－00971	－04928	－00425	－00195	＋00376
220169	＋00232	＋18067	＋00299	＋00120	＋00558	－01010	－00097	＋0．427
220177	＋00269	＋00329	＋00136	＋00278	＋ 00885	＋00452	＋07963	＋01218
240185	＋00524	－00497	－00421	－04827	－0U141	－00288	－00244	＋01054
250193	＋04504	＋C0514	－00572	－00684	－01793	－00313	－00021	－07406
250201	－00752	－00240	－00109	－00320	－00386	＋00080	＋00125	＋10097
270209	＋01200	＋00560	＋00444	＋00490	＋00597	＋01188	＋15486	＋00310
280217	＋0118\％	＋02718	＋00989	＋00099	－00644	－00171	＋00730	－00384
0225	－00062	－00252	－00188	－02753	＋00128	＋00559	＋00187	＋0

Data Set 7

232								
00				-005		0338	357	
20009	-00522	-01229	-00572	-00499	-01043	-00260	-00599	-00122
30017	-20055	-00440	-00469	-00277	-00131	-00431	-00389	1
40025	-00074	-01183	-00616	-00601	-00761	-00148	74	6
33	+00220	+00372	+00232	+00687	-00355	-00354	00085	+00423
60041	+00344	+00586	-00300	-00100	-01394	-01103	1778	-04202
70049	-00871	-1.0370	-00359	-08466	+00439	+97715	+00487	69
80057	+00531	+00352	+00091	+00717	+00151	+00140	+00474	
90065	+00700	+00968	+00200	-02027	-00600	-00200	-00090	0
00073	-00086	-00642	-00183	+00346	-00595	-14012	72	4
110081	+01200	+00529	+28747	+0065	+01399	-00751	+00373	
120089	+C.7244	+ 00188	+00712	+00123	+00367	+01336	+00311	5
130097	+0.0481	-00645	+00392	-00300	-00188	-00146	-00200	-38400
140105	-0061j0	-00300	-01293	-01507	-00120	-00807	-02559	2
150113	+01499	+00830	+00157	+00860	+00247	+00253	+06908	+00546
160121	+01124	00292	00315	+00191	+00526	+00786	+00826	37
170129	-00270	-00210	-00392	-00246	-00213	-00368	-00090	+00448
180137	-00141	+.00281	+00655	-00831	+00839	+00285	+00097	$+0.0457$
190145	+00545	+00205	+16883	+00220	+02912	+00331	+00502	+00068
5	-00962	-00214	-085i2	+00387	+00644	+00243	+20454	
210161	+00869	+00451	-00184	-00274	-0¢519	-01339	-04105	-00424
220169	-00544	-00098	+00443	+J0313	+00144	+00114	+01232	+00.447
230177	+00689	+00315	+00124	+00372	+00251	+00455	-00267	+0.576
240185	-07247	+00560	+01171	+00520	+00177	+00376	+00434	-00145
250193	+00094	+00526	+00067	+00535	+C0684	+00470	+00513	+00673
260201	+00172	-00072	-00285	-00200	-01060	-00093	-00422	-0,547
270209	-00118	-00931	+00873	-00114	-00315	-00315	-00077	-01381
280217	+00065	-00494	-00662	-00381	-00146	-00351	00813	00056
290225	-00892	-00074	-06216	-00368	-07730	-00244	0016	17

Table 9．Output of Computer Program IVo． 1.

Data SC： 6

32									
6	1	． 001	． 736	2.056	． 534	－． 267	． 199	－． 251	15
6	9	－． 252	－． 255	－． 450	－． 169	－． 972	－．864	－11．025	－． 20 \％
6	17	－9．000	－． 468	． 585	－1．226	－1．050	－． 150	－． 21.0	
6	25	－． 984	－． 646	－． 300	－．34．	5.876	6.498	1．218	－ 79
6	33	． 417	－． 271	－． 537	－．863	－8．863	－1．40］	－5．892	－． 71 ¢
6	41	－． 379	－． 330	－． 613	－． 243	－． 277	－．610	－． 181	－1．1方
6	49	－．201	－． 450	－1．261	－ 346	． 544	．838	． 900	394
6	57	． 499	1.008	． 186	． 091	． 448	． 400	． 228	ここも
6	65	． 220	． 877	． 583	－． 264	－． 600	－． 562	－．4．50	－1き・こも2
6	73	． 621	－． 511	－． 868	－． 288	－． 600	－． 300	－． 300	6こ？
6	81	－． 388	－1．120	.4 .37	． 450	． 349	． 211	－． 544	－15
6	89	－． 285	－． 418	－． 100	－24．22u	． 521	149.998	－ $2 ⿰ 氵 ⿱ 亠 䒑 ⿱ 山 夕 4$	－3iも
6	97	－ 729	． 889	－． 201	－． 600.	－． 450	－． 258	－5．0ミ5	－引も．71ヶ
6	105	． 360	1.050	． 228	． 448	． 762	－． 411	1.147	－ちシ4
6	113	． 937	． 856	1.086	． 592	． 276	－． 213	． 427	6． Ca ¢
6	121	1.728	1.806	－． 222	－1．014	－． 778	－． 522	－3．1c2	－．2えき
6	129	－． 198	－． 322	－1．333	1.016	． 841	． 621	－． 562	－21．ç
6	127	－． 115	－． 431	－． 360	－． 202	－．004	－． 204	－32．191	．22へ
6	14，5	－． 507	－． 450	－． 735	． 437	－． 767	－． 360	－． 520	－4．500
6	153	1.611	． 118	1.25%	－． 397	－1．4C7	1．660	． 252	． 222
6	161	-3.182	－． 501	－． 490	－1．456	－7．392	－．637．	－． 292	． 756
6	159	－ 343	27.100	． 448	． 180	． 852	－1．291	－．145	－¢ ¢－
6	177	． 403	． 493	． 204	.417	1.327	． 678	11.944	1．227
6	185	． 786	－． 635	－．631	－7．240	－． 211	－． 432	－． 356	1．87？
6	193	6．15ら	． 771	－． 731	－1．026	－2．689	－． 469	－． 031	－12．109
6	201	－1．128	－． 360	－． 163	－． 480	－． 579	.197	.187	$15 \cdot 145$
6	209	1.800	． 840	． 666	． 735	． 895	1.782	＜4．720	45
6	217	1.776	4.077	1.483	． 148	－． 823	－． 255	2.344	－． 400
6	2.25	－． 103	－． 378	－． 282	－4．129	． 296	． 838	． 280	－453

232									
$7{ }^{\prime}$	1	－． 001	－． 156	－． 708	－． 892	－． 372	－． 507	－． 535	－．079
7	9	－． 783	－1．843	－． 858	－． 748	－1．554	－． 390	－．398	－．283
7	17	-30.082	－． 660	－． 703	－． 415	－． 196	－． 646	－．583	－？．035
7	25	－． 111	－1．774	－．924	－．001	－1．141	－． 222	－2．521	1．285
7	33	． 330	． 558	． 348	1.030	－． 453	－． 531	－． 127	？ 7
7	41	． 516	． 379	－． 383	－． 150	－2．091	－1．554	－2．667	－ 6 －3つ引
7	49	－1．306	－． 555	－． 538	－12．693	． 864	145.572	． 730	－．8三5
7	57	1.020	． 528	． 136	1.075	． 226	． 210	．71i	2．5シ？
7	65	1.050	1.452	． 300	－2．591	－． 900	－．300	－．13う	－．135
7	73	－． 129	－． 963	－． 274	－70シ	－． 760	－21．018	．195	－785
7	81	1.800	． 793	43.120	－90と	2.098	－． 960	． 750	370
7	89	－ 355	． 282	1.068	． 184	． 550	2.004	． 466	－ 367
7	97	． 721	－． 824	． 783	－． 383	－． 282	－． 219	－． 300	－57．600
7	105	－． 900	－． 450	－1．939	－2．260	－． 180	－1．210	－3．83を	－．ミきき
7	113	2.645	1.245	． 235	1.29 u	.370	． 379	10.362	－ 319
7	121	1.636	． 438	． 472	． 266	． 789	1.179	1.230	－．430
7	129	－． 435	－． 315	－． 588	－． 369	－． 319	－． 552	－． 135	－80？
7	137	－． 180	． 587	． 982	－1．062	1.516	． 427	． 145	こ～5
7	145	． 817	． 307	25.324	． 230	4.368	． 4.96	－753	－in 2
7	153	－1．229	－． 321	－12．858	． 775	． 966	． 364	－681	1．37］
7	161	1.303	． 676	－． 235	－． 411	－． 778	－2．008	－6．157	－．635
7	169	－． 816	－． 147	． 871	． 469	． 216	． 171	1． 848	－670
7	177	1.033	． 472	． 186	． 558	． 376	． 582	－． 341	1.094
7	185	－9．264	1.068	1.756	． 780	． 265	． 564	－ヒシコ	：7
7	193	． 141	． 789	． 100	． 802	1.026	． 705	． 769	1.009
7	201	． 258	－． 122	－． 427	－． 300	－1．590	－． 139	－． 633	－． 820
7	209	－． 177	－1．396	1.569	－． 145	－． 472	－． 472	－．11 1 －	－2．071
7	217	． 189	－． 631	－． 093	－． 571	－． 219	－． 526	－1．219	－．©® \rightarrow
7	225	－1．338	－． 111	－9．324	－． 552	－11．505	－． 356	－． 252	－25．701

the data set. The next four columns indicate the subscript J of the first time increment $D(J)$ on each data card. The individual time increments are given in seconds, with eight time increments per card. A plus or minus sign preceded each time increment to designate detection of the tagged particle at either the upper or lower detector level respectively.

Infic Dincram Ior Computer Prograra iNo. I

DIMENSIEN D（300）：P（300）
101 FこRMAT（I4，I4，E7．3，E7．3，E7．こ，E7．3，E7．3，E7．3，E7．3，E7．3）
103 FORNAT（I5）
105 FERMAT（I4，I4，F8．3，F8．3，F8．3，F8．3，F3．3，F8．3，F8．3，F8．3）
READ $103, K$
$I=1$
200 READ 1U3，JMAX
PUNCH 103，JMAX
$201 \mathrm{~J}=1$
202 READ 1O2，M，N，D（J），D（J＋1），D（J＋2），D（J＋3），D（J＋4），D（J＋5），D（J＋6），D（J＋7）
$J=J+S$
IF（JMAX－J）I，1，202
$1 \mathrm{~J}=1$
$P(J)=1 \cdot 5 \approx D(J)$
IF（P（J））3，2，2
$2 J=J+1$
IF（JMAX－J）203，4，4
4 P（J）＝I．5＊D（J）
IF（P（J））5，2，2
$5 P(J)=-P(J)$
$\operatorname{IF}(P(J)-0.14) 7,6,6$
$6 P(J)=-P(J) / 1.1734$
Gこ TO 3
7 X＝LこGF（P（J））
$Y=1.33479+(0.65478) * X$
$R=E X P F(Y)$
$P(J)=-P(J) / R$
GOTO 3
$3 \mathrm{~J}=\mathrm{J}+1$
IF（JMAX－J）203，8，8
$8 P(J)=1 \cdot 5 * D(J)$
IF（P（J））3，9，9
9 1F（P（J）－1．5）11，10，10
10 P（J）＝P（J）／0．85
GOTに 2
11 IF $(P(J)-0.12) 12,13,13$

```
\(13 x=\operatorname{LCGF}(P(J))\)
    \(Y=-0.21715+(0.13263) * X\)
    \(R=E X P F(Y)\)
    \(P(J)=P(J) / R\)
    GO Tこ 2
    \(12 x=\operatorname{LOGF}(P(J))\)
    \(Y=1.006273+(0.7186) * X\)
    \(R=E X P F(Y)\)
    \(P(J)=P(J) / R\)
    Gこ Tへ 2
\(203 \mathrm{~J}=1\)
204 PUNCH1O5,K,J,P(J),P(J+1),P(J+2),P(J+3),P(J+4),P(J+5),P(J+6),P(J+7)
    \(J=J+8\)
    IF (JMAX-J) \(300,204,204\)
    \(300 K=K+1\)
    Gこ TO 200
    END
```


APPENDIX B

> Description and Explanation of the IBM
> l620 Computer FORTRAN Progran No. 2 for Computing the Average Number of Times a Particle Passed a Detector Level per Unit Time

This computer code was written to determine the average number of times per unit time a tagced particle in the fluidized bed passed a given horizontal plane. This calculation was done by counting the number of times the tacged particle passed each of the two detector levels in a given set of data and dividing each number by the total time required to obtain the data. Figure 75 illustrates the results obtained from this program. Table 10 defines the various symbols utilized in this computer code.

Table 10. Input data and variables required for the IBM 1620 Computer Program No. 2.

SIIBOL	EXPLANATION
JMAX	Nurnber of time increment data for given set
$D(J)$	Individual time increment data in given set, $J=1$ to JiLAX, in seconds
M	Data set
SUMT	Total time required to obtain data set
ZT	Number of times particle passed upper level
ZB	Number of times particle passed lower level
RT	Average number of times particle passed upper level
RB	Average number of times particle passed lover level

Input to Computer Program No. ?

The input to Computer Program No. 2 is the output of Computer Program No. 1. The input is read into the computer as FORMAT (I4, I4, 8F8.3).

Tablc 11 gives the output of Computer Program No. 2. The left-hand column designates the data set number. $R B$ is the average number of times the tacged particle passed the lower detector level per second, and RT is the average number of times the tagged particle passed the upper detector level per second. SUNT is the sum in seconds of the absolute values of the individual time increments for the given data set and is, therefore, the time required to obtain the data set.

Table Il. Output of Comp..er Program lio. 2.

SET NO RS

1	.16672560
2	.09450548
3	.11695540
4	.13426900
5	.05934301
6	.21515310
7	.20535470
8	.08815150
9	.08581589
10	.09155243
11	.08233181
12	.14307640
13	.17278970
14	.11348069
15	.12455340
16	.14613030
17	.22857180
18	.18476280
19	.24350410
20	.11517251
21	.11542609
22	.16808850
23	.15844310
24	.18090110
25	.11236883
26	.20963420
27	.19083230
28	.11988491
29	.17872270
30	.14200264
31	.14953520
32	.23925280
33	.14225290
34	.16932390
35	.11938770
36	.15294970
37	.16924440
38	.13034090

RT
.15737650
.09093924
.13592120
.15090410
.10981867
.17178890
.18515580
.08956486
. 09765256
.08176820
.10328900
.09745790
.08228082
.17369490
.14173320
.13569240
. 21664630
-16501710
. 19590180
. 13469327
. 18275790
.21087470

- 17740220
.18374990
-13349801
. 22038460
.18122050
.11403686
- 14808460
.08520158
.12059290
.21947990
.15554760
-15485180
. 16259470
.17008000
.20117730
.13491430

SUMT
641.77300000
1121.62800000
949.07900000
841.59400000
1466.05300000 599.57300000 594.09400000
1395.32500000
1351.73100000
1430.87400000
1336.05700000
964.51900000
972.28000000
853.58300000
931.32700000
766.43900000
503.12400000
709.01700000 546.19200000
1024.55000000
831.70100000
654.41700000
738.43500000
702.04100000
1041.21400000 558.11500000 623.58400000 1025.98400000 783.33600000
1091.52900000 829.23600000 505.74100000 752.18100000 690.98300000
879.48700000 817.26200000 626.31300000 874.62900000
"inhle 12 (cont.)

SET NO
RB
.18596680
37
.16316460
41
.22216290
42
.16976470
43
.17520630
44
.15603420
45
.15801098
.14800190
46
.16941140
48
. 12674220
49
.22402360
50
. 18539720
51
.21051470
-13754290
$\begin{array}{ll}53 & .20392410 \\ 54 & .22753960 \\ 55 & .20490950 \\ 56 & .13238130 \\ 57 & .17511360 \\ 58 & .17245750\end{array}$
$\begin{array}{ll}53 & .20392410 \\ 54 & .22753960 \\ 55 & .20490950 \\ 56 & .13238130 \\ 57 & .17511360 \\ 58 & .17245750\end{array}$
$\begin{array}{ll}53 & .20392410 \\ 54 & .22753960 \\ 55 & .20490950 \\ 56 & .13238130 \\ 57 & .17511360 \\ 58 & .17245750\end{array}$
$\begin{array}{ll}53 & .20392410 \\ 54 & .22753960 \\ 55 & .20490950 \\ 56 & .13238130 \\ 57 & .17511360 \\ 58 & .17245750\end{array}$
$\begin{array}{ll}53 & .20392410 \\ 54 & .22753960 \\ 55 & .20490950 \\ 56 & .13238130 \\ 57 & .17511360 \\ 58 & .17245750\end{array}$
RT
SUMT
.17155080
693.67200000
. 18204320
741.58200000
.18700040 625.66700000
.14678900 783.43700000
-18650990 707.73700000
$.18248070 \quad 756.24400000$
.26793160582 .23800000
.18873630736 .47700000
.16941140637 .50100000
$.13371890 \quad 860.01300000$
.20124160526 .73000000
$.13161786 \quad 706.59100000$
.20383170598 .53300000
.16810810735 .20900000
$59 \quad .17930070$
$60 \quad .17708730$
61
. 21499230
. 16000200 637.49200000
.20653590571 .32900000
$.23590420 \quad 580.74400000$
. 22510120608.061500000
$.15210600 \quad 782.34900000$
.13303860811 .79400000
.13517940680 .42100000
.20710210
. 20514530
62
.21355070
. 21355070
.18948990
.24352770
. 21453770
.13959330
.12324560
. 18792190
. 18647360
.18397660
.20104940
.17725230
.16830670
.17090860
.17403010
.16855840
609.32400000 599.38900000 664.94300000 553.45800000 605.95400000 795.16700000 836.40800000 595.99200000 616.70900000 722.91800000 502.36400000 637.50900000 701.10100000 667.02300000
746.99700000
700.05400000

Locic Liasram for Computer Program No. 2

FORTRAN Source Program for Computer Program 1io． 2

```
    PROGRAM FOR DETERMINING THE NUMBER OF TIMES A FARTICLE PASSES
    THE TOP AND BOTTOM LEVEL ANS IN SECONDS
    DIMENSION D(300)
    101 FCRNAT(14, I4,F8.3,F8.3,F8.3,F8.3,F8.3,F8.3,F8.3,F8.3)
    102 FERMAT(I5)
    103 FこRMAT(I4,F15.8,F15.8,F15.8,F15.8)
    \(I=1\)
    200 READ 102, JMAX
    \(J=1\)
    201 READ 101, \(M, N, D(J), D(J+1), D(J+2), D(J+3), D(J+4), D(J+5), D(J+6), D(J+7)\)
    \(J=J+8\)
    IF (JMI X-J) 202,202,201
\(202 \mathrm{~J}=1\)
    SUMT \(=0.0\)
    \(Z E=0.0\)
    \(Z T=0.0\)
    \(x=0.0\)
    \(1 x=D(J)\)
        IF \((X) 203,203,204\)
    \(203 Z B=1.0+Z B\)
        \(x=-X\)
        Gこ Tた 205
    204 ZT=1.0+ZT
    205 SUMT \(=X+\) SUMT
        \(J=J+1\)
        IF (JMAX-J)2,1,1
    2 RT=ZT/SUMT
        \(R B=Z B / S U M T\)
        IF(SENSE SWITCH 3)10.11
        10 PRINT \(103, M, R B, R T, S U M T\)
        GO Tこ 12
        11 PUNCH \(103, \mathrm{M}, \mathrm{RB}, R \mathrm{~T}\), SUMT
        \(12 \mathrm{I}=\mathrm{I} \div 1\)
        GO TO 200
        END
```


APPENDIX C

Description anc Exmlanation of the ITS. 1620 Computer FORTRAIV Program No. 3 for Performing the Fluidization Statistical Analysis

This program was written to determine the individual and average times, variances, and skemess of the experimental data obtained from the fluidized bed apparatus.

Figure 93 is an illustration of the different time increments that can be obtained from a set of experimental data.

The average, variance, and skewness of a given time increment are:

$$
\begin{align*}
& \bar{t}=\sum_{i=1}^{N} t_{i} / N \tag{IC}\\
& s^{2}=\sum_{i=1}^{N}\left(t_{i}-\bar{t}\right)^{2} /(N-I) \tag{20}\\
& s^{3}=\sum_{i=1}^{N}\left(t_{i}-\bar{t}\right)^{3} /(N T-I) \tag{3C}
\end{align*}
$$

By utilizing this program, individual values, averages, variances, and skemess of the time increments $t(B B), t(B T), t(B I I), t(T T), t(T B)$, and $t(T B L)$ can be determined from the experimental data. The other time increments show in Fig. 93 can be determined by combining the output of this code in the following manner:

$$
\begin{aligned}
& t(T T B B)=t(T Y)+t(T B)+t(B B) \\
& t(B B I T)=t(B B)+t(B T)+t(T T) \\
& t(T B P)=t(T B)+t(B B)+t(B T) \\
& t(B T M)=t(B T)+t(T T)+t(T B) \\
& t(B I T)=t(B T)+t(M I) \\
& t(T B B)=t(T B)+t(B B)
\end{aligned}
$$

Figure 93. Time Increments Avcilable From a Set of Experimental Data.

Sense switches on the IEM control console route the computer through the program to yield the output desired．Sense Switch 3 Oif Gives console typerriter output and Sense Switch 3 OFF gives punched card output．Sense Sritches 1 and 2 give the following output：

Sense Switch 1	Sense Switch 2	Output
OFF	OPF	$\begin{aligned} & \text { Individual values, } t(B B) \text {, } \\ & t(B T), t(B I L), t(T M) \text {, } \\ & t(T B) \text {, and } t(T B L) \end{aligned}$
ON	OFF	$\begin{aligned} & \text { Individual values, } t(B T) \\ & \text { and } t(T B) \end{aligned}$
ON	ONT	Individual values，$t(B B)$ ， $t(B T), t(I P)$ ，and $t(T B)$ ； average values，variances， and skemess of t（BB）， $t(B I), \tau(B I T), t(T I), t(T B)$ ， and t（TBL）
OFP	ON	Individual values，average values，variances，and sleemess of $亡(B B)$ ，$亡(B T)$ ， $t(B I L), t(T M), t(T B)$ ，and亡（TBL）

Table 12 defines the various symbols utilized in this computer code.

Table 12. Input data and variobles required for the IBM 1620 Computer Proeran No. 3.

SYMBOL	EMPLATATION
JMAX	Number of time increment data for siven set
$D(J)$	Individual time increment data in given set, $J=1$ to $J M A X$, in seconds
I	Data set
IN	Number of $t(B T$ or $t(T B)$ in data set
$B B, B T, B T L$	$t(B B), t(B T), t(B I L)$
TT, TB, TBL	$t(T \mathbb{P}), \mathrm{t}(\mathrm{TB}), \mathrm{t}(\mathrm{TBL})$
BBA, BTA, BTIA	Average values of $t(B B), t(B T)$, and $t(B T L)$
TTA, TBA, IBLA	Average values of t(TM), $t(T B)$, and $t(T M L)$
BBXR, BIXR	Variances of $t(B B)$ and $t(B T)$
TITXR, TBXR	Variances of $t(T T)$ and $t(T B)$
BTLXR, TBLXR	Variances of t(BIL) and t(TBL)
BEYR, BITR	Skermess of $t(B B)$ and $t(B T)$
TITY, TBYR	Skewness of $t(T \mathrm{P})$ and $t(T B)$
BILYR, TBLYR	Skewness of t(BIL) and t(TBL)

Input to Computer Program No. 3

The input to Computer Program No. 3 is the output of Computer Program No. 1. The input is read into the computer as FORNAT (I4, I4, 8F8.3).

Output of Computer Progran IVo. 3

Tables 13 and 14 give the output of Computer Program No. 3. The output given in Table 13 was obtained by setting Sense Switch 1 ON and Sense Switch 2 OFF. The results were the residence times $t(B T)$ and $t(T B)$ of the tagged particle as it passed from one detector level to the other.

Table 14 gives the output of the program when Sense Switch 1 was ON and Sense Sritch 2 was ON. The results give the individual time increments of $t(B B), t(B I), t(T B)$, and $t(T M P)$ and the average values, variances, and

Table 13. Output of Co"puter Procram Iro. 3.

Table 14. Output of Computcr Progran No. 3.

Data Set	$t(i i)$
31	3.28701920
31	15.38825900
31	135.90179000
32	8.05963460
32	136.96316000
32	3198.29050000

\[

\]

$$
\begin{array}{rr}
2.73101660 & 3.886133 \equiv 0 \\
30.41322800 & 38.37274400 \\
512.40540000 & 763.84357000
\end{array}
$$

1.02400000
18.66181200
$538 \cdot 8125300.0$
4.25988130
55.45750200 1239.27460000

$$
\begin{array}{rr}
6.31608950 & 3.35834320 \\
146.51537000 & 33.68341000 \\
4793.33400000 & 807.80359000
\end{array}
$$

$36 \quad 4.18843930$

$$
83.69991500
$$ 2816.15760000

$37 \quad 6.20802040$

$$
\begin{array}{rr}
.31922727 & 4.33853030 \\
.22380333 & 85.39653300 \\
.63194858 & 2863.51490000
\end{array}
$$

.44144897
6.60051220
$37 \quad 45.24609100$
37555.72408000
9.45933330 174.97080000 3877.21040000
.07653613
.01793786
45.49188100
566.78697000

$$
.30862500 \quad 9.74420830
$$

$$
.02258699 \quad 175 \cdot 37152000
$$

$$
.002576113898 .11080000
$$

.295173914 .77421730
.0209248128 .15774400
.00365211285 .51908000
$.41760000 \quad 8.53124440$
$.65326877 \quad 106.66721000$
$3.09779020 \quad 3379.24220000$
$.65652777 \quad 5.75194440$
$.07792275 \quad 47.69543100$
$41 \quad 47.04307400$
41908.10965000
$\begin{array}{rr}42 & 8.71800000 \\ 42 & 103.18281000\end{array}$
$42 \quad 1583.16050000$
skemess of $t(B B), t(B T), t(B T L), t(T T), t(T B)$, and $t(T B L)$.
152 residence times sets were obtained from the 76 Data Scts of input.
The second column in each set of columns in Table 13 sives the subscript assigned to each individual residence time in cach given residence times set. The third column in each set of columns gives, in seconds, each individual residence time in each given residence times sct.

The first row of an even-numbered output set in Table 14 gives, in seconds, the average values of $t(T P), t(T B)$, and $t(T B L)$, respectively. The second row gives, in (seconds) ${ }^{2}$, the variances of $t(T M)$, $t(T B)$, and $\tau(T B L)$, respectively. The third row gives, in $(s c c o n d s)^{3}$, the skewness of $t(T Y)$, $t(T B)$, and $\tau(T B L)$, respectively.

Tre Iirst row of an odd-numbered output set in Table 14 gives, in seconds, the average values of $t(B B), t(B T)$, and $t(B \pi I \pi)$, respectively. The second row gives, in (seconds) ${ }^{2}$, the variances of $t(B B), t(B T)$, and $t(B I L)$, respectively. The third row gives, in $(\text { seconds })^{3}$, the skewness of $t(B B), t(B T)$, and $t(B T L)$, respectively.

Logic Diafram for Computer Progran İo. 3


```
FORRRAN Source Program for Computer Prozrarn ivo． 3
```

```
    DIMENSION D(300)
101 FOR:VAT(I4,I4,F8.3,F8.3,F8.3,F8.3,F8.3,F8.3,F8.3,58.3)
102 FこR险T(I4, F15.8, F15.8, F15.8, Fl5.8)
103 FこRMAT(I5)
104 FこRMAT(I4, I4, F7.3)
    I=1
200 READ 103, JMAX
201 J=1
202 READ 101,M,N,D(J),D(J+1),D(J+2),D(J+3),D(J+4),D(J+5),D(J+6),D(J+7)
J=J\div8
IF(JMAX-J)1,1,202
    1 J=1
    2N=1
    3 P=1.0
    Q=0.0
    4 EBS=Q
    STS=Q
    STLS=Q
    5 BB=Q
        BT=Q
        BTL=Q
    6 ~ P O I N T = D ( J )
        IF(POINT)1U,10,7
        7 J=J+1
            IF(JMAX-J)19,6,6
        10 J=J+1
        IF(JMAX-J)11,13,13
    11 IF(SENSE SWITCH 1)I9,203
203 IF(SENSE SWITCH 3)800.801
800 PRINT 1O?,I,BB,BT,BTL
    GO TO 19
801 PUNCH 102,I,BB,BT,STL
    Gこ Tこ 19
    13 TERM=D(J)
    IF(TERM)14.15,15
    14 BB=BB-TERM
        Gこ TO lO
    15 BT = TERM
        IF(BB)16,17.16
    16 BTL=BB+BT
    17 IF(SENSE SWITCH 2)18,204
204 PUNCH 104, I. N. BT
    N=N+1
    Gこ Tこ 5
```

```
    18 S5S=58S+85
    STS=STSTET
    STLS=STLS+BTL
    P=P+1.0
    IF ( SENSE SWITCH 3 ) 205, 2:7
205 PRINT 102,I,BB,BT
    OC TO 5
217 PUNCH 102, I, BS, 3T
    GO TO 5
    19 IF(SENSE SWITCH 2)20,37
    20 IF(P-1.0)22,21,22
    21 IF ( SENSE SWITCH 3 ) 206, 218
206 PRINT 102, I, BBS, BTS, BTLS
    GO TC 24
218 PUNCH 102. I, SBS, BTS, BTLS
    Gこ Tこ 24
    22 P=P-1.0
    23 SBA=(3BS/P)
    BTA=(BTS/P)
    BTLA=(BTLS/P)
    IF ( SENSE SHITCH 3 ) 207, 219
207 PRINT 102,I,BBA,BTA,BTLA
    Gこ Tこ 24
219 PUNCH 102, I, BBA, BTA, BTLA
    24 J=1
        R=1.0
        B3X=Q
        BTX=Q
        STLX=Q
        BBY=Q
        BTY=Q
        BTLY=Q
    25BSD=Q
        BTD=Q
        BTLD=Q
        BSV=Q
        BTV=Q
        ETLV=Q
        BB=Q
        8T=Q
        BTL=Q
    26 POINT=D(J)
        IF(POINT)28,28,27
    27 J=J+1
        IF(JNiAX-J) 34,26,26
    28 J=J+1
    IF(JMAX-J) 34,29,29
    29 TERM=D(J)
```

```
    IF(TERM)30,31,31
30 83=BS-TERM
    GO TO 28
    31 ST=TERM
    IF (SB) \(32,33,32\)
\(32 \mathrm{BTL}=8.3+3 \mathrm{~T}\)
    \(B B D=(B B-B B A) \% 2\)
    \(B B V=(B B-B B A) * * 3\)
    \(B T L D=(B T L-B T L A) * 2\)
    UTLV = (BTL-BTLA;**シ
\(3303 X=3 B D+33 X\)
    \(B T D=(B T-B T A) * * 2\)
    \(3 T L X=B T L D+B T L X\)
    \(R=R+1 \cdot 1\)
    \(B T V=(B T-B T A) * * 3\)
    E \(3 T X=B T D+B T X\)
    \(B B Y=R B V+B B Y\)
    \(B T Y=B T V+B T Y\)
    \(B T L Y=B T L V+B T: Y\)
    Gこ Tに 25
    34 IF \((R-2,0) 36,35,36\)
    35 IF ( SENSE SWITCH 3 ) 208, 220
208 PRINTIU2,I,BBX,BTX,3TLX
    PRINT 1U2,i,BBY,BTY,BTLY
    Gこ Tこ 37
220 PUNCH 102, I, BBX, BTX, BTLX
    PUNCH 102, I, BBY, BTY, BTLY
    Gこ Tこ 37
    \(36 R=R-2.0\)
    \(B B \times R=B B X / R\)
    \(B T X R=B T X / R\)
    \(B T L X R=B T L X / R\)
    \(B B Y R=B B Y / R\)
    \(B T Y R=B T Y / R\)
    BTLYR=BTLY/R
    IF ( SENSE SWITCH 3 ) 209, 221
209 PRINT 102.I,BBXR,BTXR,BTLXR
    PRIN: 102,I,BBYR,BTYR,BTLYR
    GO Tに 45
2.21 PUNCH 102, I, BSXR, BTXR, BTLXR
    PUNCH 102, I, BBYR, BTYR, ETLYR
    37 Gこ Tへ 45
\(45 \mathrm{~J}=1\)
    \(\mathrm{I}=\mathrm{I}+1\)
    \(N=1\)
    \(P=1.0\)
    \(T T S=Q\)
    \(T B S=Q\)
    \(T B L S=0\)
```

```
    46 TT =0 
    TSL=Q
47 POINT=D(J)
    IF(POINT)48,48,49
    4S J=Jって
        IF(J,^AX-J)58,47,47
    49 J=J+1
        IF(JNAX-J)50,52,52
    50 IF(SENSE SWITCH 1)51,210
210 PUNCH 102,I,TT,TB,TBL
    51 Gこ Tこ 58
    52 TERM=D(J)
    IF (TERM) 54,53,53
    53 TT=TT+TERM
    GO Tこ 49
    54 TERM=-TERM
        TS=TERM
        IF(TT)55,56,55
    55 TBL=TT+TB
    56 IF(SENSE SWITCH 2)57,211
211 PUNCH 104,I,N,TB
    N=N+1
    Gへ Tこ 46
    57 TTS=TTS+TT
    TBS=TB:+TB
    TBLS = TBLS + TBL
    P=P\div1.0
    IF ( SENSE SUITCH 3 ; 212, 222
212 PRINT 102, Iq TT, TB
    GO TO 46
222 PUNCH 102, I, TT, TB
    GO TO 46
    58 IF(SENSE SWITCH 2)59,75
    59 IF(P-1,0)61,60,61
    60 IF ( SENSE SWITCH 3 ) 213, 223
213 PRINT 102, I, TTS, TBS, TBLS
    GO TO 62
223 PUNCH 102, I, TTS, TBS, TBLS
    GO T^ 62
    6 1 P = P - 1 . 0
    TTA=TTS/P
    TBA=TBS/P
    TBLA=TBLS/P
    IF ( SENSE SWITCH 3 ) 214, 224
    214 PRINT 102,I,TTA,TBA,TBLA
    GO Tこ 62
224 PUNCH 102, I, TTA, TBA, TBLA
```

```
\(62 \mathrm{~J}=1\)
    \(R=1.0\)
    \(T T X=0\)
    THX \(=0\)
    THLX=0
    TTY=0
    \(T B Y=0\)
    THLY=0
63 TTD=0
    \(T B 0=0\)
    TBLD=0
    TTV=0
    \(T B V=0\)
    \(T B L V=O\)
    \(T T=Q\)
    \(T B=0\)
    \(T B L=0\)
64 POINT=O(J)
    IF(PCINT)65,65,66
    \(65 \mathrm{~J}=\mathrm{J}+1\)
    IF (JMAX-J) \(72,64,64\)
\(66 \mathrm{~J}=\mathrm{J}+\mathrm{J}\)
    IF (JMAX-J) 72,67,67
67 TERM=D(J)
    IF(1ERM)69,68,68
\(68 \mathrm{TT}=\mathrm{T} T+T E R M\)
    GO TO 66
69 TERM \(=-\) TERM
    \(T B=T E R M\)
    IF (TT) 70,71,70
\(70 T B L=T T+T B\)
    \(T S L D=(T B L-T B L A) * * 2\)
    TBLV \(=(T B L-T B L A) * * 3\)
    \(T T D=(T T-T T A) * * 2\)
    \(T T V=(T T-T T A) * * 3\)
    \(71 R=R+1.0\)
    \(T B D=(T B-T B A) * 2\)
    \(T T X=T T D \div T T X\)
    \(T B X=T B D+T B X\)
    \(T B L X=T B L D+T B L X\)
    \(T B V=(T B-T B A) * * 3\)
    \(T T Y=T T V \div T T Y\)
    \(T B Y=T B V+T B Y\)
    TBLY=TBLV \(\div T B L Y\)
    GO TO 63
    72. IF \((R-2.0) 74,73,74\)
```

```
    73 IF (SENSE SNITCH 3) 215, 225
215 PRINT 1O2,I,TTX,TBX,TBLX
    PNINT 1U2,I,TTY,TBY,TBLY
    GS TS 76
225 PUNCH 102, I, TTX, TBX, TBLX
    PUNCH 102, I, TTY, TBY, TELY
    GC TO 75
    74R=R-2.0
        TTXR=TTX/R
        TSXR=TBX/R
        TSLXXR=TBLX/R
        TTYR=TTY/R
        TBYR=TSY/R
        TELYR=TBLY/R
        IF (SENSE SWITCH 3 ) 216, 226
216 PRINT IO2,I TTXR,TGXR,TBLXR
    PRINT IO2,I,TTYR,TBYR,TBLYR
    G\ TO 76
226 PUNCH 102, I, TTXR, TBXR, TBLXR
    PUNCH 1O2, I, TTYR, TBYR, TBLYR
76 TTA=Q
    TBA=Q
    TBLA=Q
    TTXR=Q
    TEXR=Q
    TBLXR=Q
    TTYR=Q
    TSYR=Q
    TBLYR=Q
    BBA=Q
    BTA=Q
    BTLA=Q
    BBXR=Q
    - 3TXR=Q
    BTLXR=Q
    SBYR=Q
    BTYR=Q
    ETLYR=Q
        I =I+1
        G0 T0 200
    75 END
```


APPENDIX D

Description and Explanation of the IIN: 1620 Computer FORTRAN Program No. 4 for Detemmining the Concentration of Taged Particles from Individual Particle Data

This computer program determines the values of $\mathbb{I N}$, ITP, $\mathbb{P} P$, and IPM from the experimental data. Figures 82 through 85 illustrate results obtained from this program. Table 15 defines the various symbols utilizen in this computer code.

Table 15. Input data and variables required for the IENI 1620 Computer Program ITo. 4.
$\therefore Y \mathrm{YBOL}$
IIMX
$T(I)$
Jinx
D(J)
POIIT
Tif()
ITP(I)
$\operatorname{IPP}(I)$
$\operatorname{IPM}(I)$

EHPLATHATION

Number of time increments Δt
Ith time increment, in seconds
IVumber of time increment data for given set Individual time increment data in given set, $J=1$ to JNAX, in seconds
Initial data pulse
Number of negative pulses within time increment $T(I)$, starting with an initial necative pulse Number of positive pulses within time increment $T(I)$, starting with an initial negative pulse Number of positive pulses within time increment $T(I)$, starting with an initial positive pulse ITumber of negative pulses within time increment $T(I)$, starting with an initial positive pulse

Input to Computer Program No. 4

The data input to Computer Program No. 4 is the output of Computer Program No. I, along with the time increments $T(I)$. The data input is read into the computer as FORNAT (I4, I4, 8F8.3). The time increments $T(I)$ are read into the computer as FORPIAT (I4, I4, 5E7.3).

The total number of time incroments IrAX is read into the computcr as FORIAT (I5). Table 16 gives the time increments $T(I)$ and the number of time incroments IMAX used in evaluating the data sets for each distance between detector levels ΔZ.

The first number in each set of time incromenter $T(I)$ for given distancos between detector levels ΔZ is the total number of time increments IUWX for the data set. The first column below IVAX gives the IBM card number, and the second column gives the subscript I for the first time increment $T(I)$ on the IBM cara. The remaining colums give in seconds, $T(I), T(I+I), T(I+2)$, $T(I+3)$, and $T(I+4)$, respectively.

Output of Computer Program INo. L

Table l'T gives the output obtained from Computer Program No. 4. The method of tabulating IMM, IP, IPP, and IPM Ior $\triangle Z=1 / 2$ inch is indicatec in Set 1.

Each row of the tabulated concentrations (IMI, IP, PP, and IPM) gives the number of data pulses counted in the time increments $T(I), T(I+I), T(I+2)$, $T(I+3)$, and $T(I+4)$, beginning with $I=I$. Blank spaces in the blocktabulations of the output of each data set indicate zeros.

Table 16. Input to Computer Program No. 4.

IMAX

10

Carà	I	$T(I)$	$T(I+I)$	$T(I+2)$	$I(I+3)$	$I(I+4)$
I	I	0.020	0.040	0.060	0.080	0.100
2	6	0.300	0.500	1.000	2.000	3.000

Table 17 ．Output of Computer Program No．A．

$$
\Delta Z=\frac{1}{2} \text { inch }
$$

Loric Diacram Ior Computer Procram ITo. A

DORTRAK Source Prognam for Computer Progrom ilc．As

```
        PROGRAM FOR INCREMENTAL SUNMATION
        DIMENSION T(50),D(500),IMM(50),IN2(50),IPM(50),IFP(50)
    101 FERMAT(14,14,F8.3,F8.3,F8.3,F゙3.3,F8.3,F8.3,F8.3,F8.3)
    l02 FERNAT(I4,I4,I4,I4,I4)
    103 FORMAT(15)
    104 「こんMA「(I4,I4,E7.3,E7.3,E7.3,E゙7.3,E7.3,E7.3,E7.3,E7.3)
    200 R[AD 2U3,IMAX
    I=1
200 READ IU4,K,L,T(I),T(I+1),T(I+2),T(I+3),T(I+4)
    I= I +5
    IF(IMAX-I)210,210,200
210 READ IU3. JMAX
201 J=1
202 READIOI,M,N,D(J),D(J+1),D(J+2),D(J+3),D(J+4),D(J+5),D(J+6),D(J+7)
    I=J+8
    IF(JMAX-J)203,203,202
203 1 = 1
    II=1
    J=1
20 IM=U
    IP=0
    Suif=U.U
    1 FOINT=O(J)
    2J=J+1
    IF(JMAX-J) 3,3,4
    4 TERM=D(J)
    IF(TERM)5,5,7
    5 SUM=SUM-TERM
    6 IM=I+IN
        Gこ Tこ 9
    7 SUM=SUM+TERM
    8:P=I+IP
    9 DELTA=T(I)
    IF(DELTA-SUM)10,2,2
    10 IF(TER1.)11,11,12
    11 IM=IM-1
    IF(POINT)I3,13,14
    12 IP=IP-1
    IF(POINT)15,15,16
    13IMM(I)=IM+IMM(I)
    IMP(I)=IP+IMP(I)
    Gこ Tこ 17
    14 !PM(I)=IM +IPM(I)
    IPP(I)=IP + IPP(I)
    GO TO 17
```

```
25 IMP(I) =IP +IMP(I)
    \(I \operatorname{Cibi}(I)=I M+I M_{M}(I)\)
    Gこ TO 17
    16 IPP(I) \(=I P+I P P(I)\)
        \(I P M(I)=I M+I P M(I)\)
    Gこ T气 17
\(27 I=I \div 1\)
    IF (IMA:-I) 18,19,19
    \(18 \quad I I=I I+1\)
        \(I=1\)
    \(J=I I\)
    GC TC 20
    19 IM=0
    \(I P=0\)
    IF (TERM) \(6,6,8\)
    \(3 I=1\)
400 IF (SENSE SWITCH 31206,300
```



```
    PRINTIO2, IMP(I), IMP \((I+1), \operatorname{IMP}(I+2), I M P(I+3), I M P(I+4)\)
    \(P\) RINTIO2, IPP(I), IPP(I+1),IPP(I+2),IPP(I+3),IPP(I+4)
    PRINTIO2,IPM(I),IPM(I+1),IPM(I+2),IPM(I+3),IPM(I*4)
    GC TC 500
300 PUNCHIO2, IMM(I), IMM(It1), IMM(I+2), IMM(It3), IMM(I+4)
    PUNCHIC2, IMP(I) \(\operatorname{IM} \operatorname{IM}(I+1)\) gIMP \((I+2), I M P(I+3), I M P(I \div 4)\)
    \(P \cup N C H I O 2, I P P(I), I P P(I+1)\), IPP(I+2)=IPP(I+3),IPP(I+4)
    PUNCHIO2,IPM(I),IPM(I+1),IPM(I+2),IPM(I+3),IPM(I+4)
\(500 I=I \div 5\)
    IF (IMAX-I) 205,400,400
205 IF (SENSE SWITCH 1) 207. 211
\(207 I=1\)
208 IMM(I) = 0
    \(I M P(I)=0\)
    \(I P P(I)=0\)
    \(I P M(I)=0\)
    \(I=I+I\)
    IF(IMAX-I) \(310,203,208\)
310 IF (SENSE SWITCH 2)209,210
211 END
```


APPENDIX E

> Description and Explanation of the IBiA 1620 Computer FORTMAN Procrann INo. 5 for Calculating the Average Residence Times as a Function of the Number of Data Values

Tnis computer program detemines the average time for a particle to pass from upper-to-lower and lower-to-upper detector level, as a function of the number of data values obtained.

Figures 35 and 36 are illustrations of the results obtained from this computer code. Table 18 defines the various symbols utilized in this code.

Table 18. Input data and variables required for the IBM 1620 Computer Program No. 5.

SYMBOL	EXPLANATION
JMAX	IVumber of time increment data for given set
$D(J)$	Individual time increment data in given set,
M	$J=1$ to JMAX, in seconds
M	Data set
SUNA	Number of data values used to calculate average
	time
	Average time increment for given number of data
	values

After the data in each sct is read into the comouter, the average time increment is computed for the first five time increments, and this time is punched as output along with the data set IN. Then the number of data values \mathbb{N} is increased by five, and the process is repeated. IN is continously increased by increments of five until all of the data in the set has been lised. The program then continues to the next set of data.

A similar code, Computer Program No. 6, comoutes, as a Iunction of the number of data values, the variance in the time to pass from one detector level to the other. The input and output of Computer Program No. 6 is included in this appendix.

Inout to Computer Program Iiv. 5

The input to Computer Program No. 5 is the output of Computer Program No. 3, obtained with Sense Switch I ON and Sense Switch 2 OFF. The input is read into the computer as FORMAT ($I^{\left.l_{r}, ~ I 4, ~ E 7.4\right) . ~}$

Outout of Computer Program No. 5

The output of Computer Procram No. 5 is given in Table 19. M is the residence times set, where odd-numbered values of M give the residence times between the two detector levels when the tagged particle passed from the lower to the upper detector level, and even-numbered values of M give the residence times between the two detector levels when the tasged particle. passed from the upper to the lower detector level. IN sives the number of residence time values, in order of appearance in the residence times set, that were used to compute the average residence time SUMA.

Inout to Comouter Program No. 6

The input to Computer Program No. 6 is the output of Computer Program No. 3, obtained with Sense Switch 1 ON and Sense Switch 2 OFF. The input is read into the computer as FORNAT (I4, I4, E7.4).

Mrole I9．Outnut of Computer prorrorn I：o． 5

\because	IT	AVaratas	II	i	
1	5	． 14640000	6	\cdots	． 47620000
2	10	.12710000	6	，	． 44430000
1	15	． 13056666	6	． 5	－410゙ころぎ
1	20	． 12895000	6	？	042895000
1	25	． 22576000	6	35	－ 40332000
1	30	．13123333	6	30	． 38133330
－	35	． 13054235	6	35	． 40297140
1	40	． 13067500	6	36	． 40300000
1	45	． 12664444			
1	50	． 12712000	7	5	． 14900000
1	52	.12617307	7	10	.18540000
			7	15	． 17100000
2	5	． 24080000	7	20	． 18820000
2	10	.19550000	7	25	． 19048000
2	15	． 19240000	7	30	． 19356666
2	20	.20505000	7	33	． 19090909
2	25	． 20260000			
2	30	.20460000	8	5	． 38880000
2	35	． 21314285	8	10	． 37430000
2	40	． 21632500	8	15	． 32866666
2	45	.21602222	8	20	． 30215000
2	50	． 21616000	8	25	． 30568000
2	53	． 21469810	8	30	． 31150000
			8	34	． 32000000
3	5	． 10320000			
3	10	.10950000	9	5	． 27100000
3	15	.09900000	9	10	． 35760000
3	20	． 10100000	9	15	． 33400000
3	25	． 10308000	9	20	． 36295000
3	30	． 10353333	9	25	． 35332000
3	35	.10348571	9	30	． 37343330
3	36	． 10219444			
			10	5	．61640000
4	5	． 26920000	10	10	． 60630000
4	10	． 25860000	10	15	．65160000
4	15	． 23886666	10	20	． 71570000
4	20	． 24155000	10	25	． 70312000
4	25	． 23120000	10	30	.70056660
4	30	． 22920000	10	33	－6́9724240
4	35	． 23600000			
4	40	． 23900000	11	5	． 31280000
4	42	． 23950000	11	10	． 31550000
			11	15	－ 416450606
5	5	． 31620000	11	17	． 44470588
5	10	． 25930000			
5	15	． 26113333			
5	20	． 24760000			
5	25	． 23996000			
5	30	． 24480000			
5	35	． 23648571			
5	38	． 23676315			

Output of Computer Prorgram No. 6

The output of Computer Prosrom No. 6 is given in Table 20, where \because and \mathbb{N} are defined as given in the output of Computer Progran No. 5. The variance SICSQ for the number of residence time values \mathbb{N} is tabulated.

Figures 37 and 38 give illustrations of the variance of the residence times as a function of the number of residence time values if used to calculate the variance.

Frobie 20. Output of Comnutor Programino. 6

\because	NT	VAFINTCE	\because	I!	VERIENCE
1	5	. 00497780	6	5	-02674370
1	10	. 00506743	6	10	.02183445
1	15	. 00383783	6	15	. 02643670
1	20	. 00355268	6	20	.02732668
1	25	. 00285785	i	25	.02697500
1	30	. 00387735	6	30	.02514.506
1	35	. 00403537	6	35	. 02945702
1	40	. 00423863	6	36	. 02861545
1	45	. 00451023	7	. 5	. 00185050
1	50	. 00460018	7	10	.00706648
1	52	. 00444430	7	15	. 00657771
2	5	.00883770	7	20	.00656922
2	10	.00664961	7	25	.00584151
2	15	. 00457854	7	30	. 00593418
2	20	. 00574773	7	33	. 00578783
2	25	. 00569958	8	5	. 01336320
2	30	. 00630873	8	10	. 01079690
2	35	.00682906	8	15	. 01204910
2	40	. 00734109	8	20	.01170592
2	45	.00691202	8	25	.01198522
2	50	. 00731528	8	30	. 01035315
2	53	. 00699130	8	34	. 00985727
3	5	. 00099970	9	5	. 01566250
3	10	. 00093561	9	10	.02385093
3	15	.00192171	9	15	. 02241500
3	20	.00146221	9	20	. 02592131
3	25	.00122699	9	25	. 02347464
3	30	.00139274	9	30	. 02610034
3	35	. 00132149	10	5	. 03795480
3	36	. 00134376	10	10	. 05159001
4	5	. 01185770	10	15	. 09939740
4	10	. 00799137	10	20	. 11630368
4	15	. 00731055	10	25	. 10579545
4	20	. 00883668	10	30	. 10401558
4	25	. 00876775	10	33	. 09838428
4	30	. 00896375	11	5	.01233220
4	35	. 00892323	11	10	. 01589516
4	40	. 00886307	11	15	.03829427
4	42	. 00863880	11	17	. 04332747
5	5	. 03651370	12	5	. 03045280
5	10	. 02399801	12	10	. 08997445
5	15	. 01810298	12	15	. 20039526
5	20	.01614593	12	18	. 21487758
5	25	. 01448070	13	5	. 06378475
. 5	30	. 01779409	13	10	. 08850244
5	35	. 01688796	13	15	.09570440
5	38	.01787921	14	5	. 05018050
			14	10	. 08023684
			14	15	. 09274085
			14	17	. 14066187

LoGic Diasram for Computer Prograin lis． 5

ORTRAT Source Program for Computer Progran ITo. 5

```
C PROGRAM FOR COMPUTING THE ANERAGE TIME AS A FUNCTION OF THE
    NUMBER OF DATA POINTS FOR TH.. BOTTOM TO TOP AND TOP TO EOTTOLA DATH
    DIMENSION D(300)
101 FORMAT(14,I4,E7.4)
102 FORMAT(I5)
103 FVRMAT(15,15.F15.8)
    I=1
    200 READ 102,JMAX
    J=1
    201 READ 101,M,N,D(J)
    J=J+1
    IF(JM^X-J)1,201,201
    1 J=1
    SUM=0.U
    SUIMA= .0
    N=5
    2P=0(J)
    SUM=P+SUM
    J=J+1
    IF(JMAX-J)5,3,3
    3 IF(N-J)4,2,2
    4 Y=N
    SUIMA=SUM/Y
    PUNCH 103,M,N,SUMA
    N=N+5
    GOTO2
    5 J=J-1
    x=J
    SUMA=SUM/X
    PUNCH 103,M,J,SUMA
    I=I+1
    GO TO 200
    END
```

MORMRAN Source Program for Comuter Proçram 2To． 6

```
C PROGRAM FOR COMPUTING THE VARIANCE IN THE
C
    AVERAGE TIME AS A FUNCTION OF THE NUMBER
    こF DATA POINTS FOR THE BOTTOM TO TOP AND
    TこP Tこ BこTTこM DATA
    DIMENSION D(300)
101 FこR畆(I[4,I4,E7.4)
IO2 FこRMAT(I5)
103 FこRMAT(I5,I5,F15.8)
200 READ IC2,JMAX
    Dこ 2OI J=I,JMAX
201 READ 1OI,M,N,D(J)
    1 J=1
    SUM=0.0
    SU:MSQ=0.0
    SIGSQ=0.0
    N=5
    2 P=D(J)
    Q=(D(J)**2)
    SUN=?+SUIM
    SUMSQ=Q+SUIMSQ
    J=J+1
    IF(JMAX-J)5,3,3
    3 IF(N-J)4,2,2
    4 Y=N
    SIGSQ=(SUMSQ-((SUM**2)/Y))/(Y-1.0)
    PUNCH IO3,M,N,SIGSQ
    N=N\div5
    Gこ Tこ 2
    5 J=J-1
    x=J
    SIGSQ=(SUNSQ-((SUM位*2)/X))/(X-1.0)
    PUNCH 103,M,J,SIGSQ
    GO TO 200
    END
```


APPEIDIX F

> Description and Explanation of the IBM lóo Computer FORTRAN Program No. 7 for Computing the Average Time, the Most Probable Time, the Variance, and the Gama Distribution Parameters p and v of the Residence Times Data

This computer program was written to determine the average time, the most probable time, the variance, and the gamma distribution parameters p and v for the experimental times obtained when the tagged particle passed from one detector level to the other, moving both upward and dowward. Table 21 defines the various symbols utilized in this computer code.

Table 2l. Input data and variables required for the IBM 1620 Computer Program No. 7.

SYMBOL

EXPLANATION

JMAX
$D(J)$

M, P
BA
$P R$ and V
$T P$
P

Number of time increment data for given set Indivicual time increment data in given set, $J=1$ to JMAX, in seconds
Data set, Number of data in set Average time for data set
Gamma distribution parameters p and u Most probable time
Number of time increment data for given set

A similar code, Computer Program No. 8, computes the average speed, the variance of the average speed, and the gamma distribution parameters p and v, based upon the Residence Times data. The input and output of Computer Program No. 8 is included in this appendix.

Tre input to Computer Program No is the output of Computer Program No. 3, obtained with Sense Switch 1 C . A Sense Switch 2 OFF. The input is read into the computer as FORMAT (-4 , I4, E7.4. $)$.

Output of Computer Program No. 7

The output of Computer Program No. 7 is given in Table 22. Input data information tabulated in Table 22 are as follows. The set number M, as explained in the output section of Computer Program No. 5 in Appendix E, is given for each Residence Times set, 1 to 152. The distance between the detector levels (WIDTM) and the water flow rate (INCHES MERCURY) are also given.

```
Tabulated outputs for each Residence Times set are as follows.
Average residence time (AVERAGE TIME)
Most probable residence time (MOST PROBABLE TIME)
Gamma distribution parameters \(p\) and \(u(P R \& V)\)
Variance of the residence times (SIGMA SQ)
Speed of the tagged particle based upon the average
residence tine (VELOCITY BASED ON T AVG)
Speed of the tagged particle based upon the most probable
residence time (VELOCITY BASED ON T PROB)
```

Input to Computer Program No. 8

The input to Computer Program No. 8 is the output of Computer Program No. 3, obtained with Sense Switch 1 ON and Sense Switch 2 OFF. The input is read into the computer as FORMAT (I4, I4, F7.3).

Trole 22．Output of Computer Prosfon ITo．＇7
SET NO 1 52．DATA POINTS

WIDTH＝．50000000 I．IS MERCURY＝ SIGMA SQ＝ IVERAGE TIME＝ VELOCITY UASED ON T AVG＝ VFLOCITY WASED ON T PROS＝
$.00444430 \quad V=\quad \sim 22383 \quad P R=$ ． 12617307 VOST PROבABLE TINE $=$
－ 7628 2\％\％STJ DEV $=$ 2.49757300 STU DEV $=$

2．50000000

． 09094222
2．0ラ3を15：0
4.02970900

2．50000000
6.59324400
． 18213472
． 90695240
1．26026850
SFT NO 36．DATA POINTS
WIDTH $=\quad .50000000$
． $00134376 \quad \mathrm{~V}=$
INCHES MERCURY＝
SIGHA SO＝
AVERACE TIME＝
.10219444 MOST PROBABLE TIME＝
VFI．OCITY BASED ON T AVG＝
VFLOCITY BASED SN T PROB＝
4.89263400 STD DEV＝ 5.61511500 STD DEV＝

INCHES MERCURY＝ .03256334 PR＝ MOST PROBABLE TIME＝ 2.32835150 STD DEV $=$ 2.74522060 STD DEV $=$

SET NO 4
WIOTH＝
SIGMA SQ $=\quad .00863879 \quad V=$
AVERAGE TIME＝
VELこCITY BASED ON T AVG＝
VELOCITY BASED $こ N$ T PROB＝

INCHES VERCURY＝ $.03607011 \mathrm{PR}=$ そこST PRCEASLE TIVE＝ 2.08768260 STD DEV $=$ 2.45784930 STD DEV $=$

SET NO 5 38．DATA POINTS
WIDTH＝ 1.00000000 INCHES MERCURY＝ SIGMA SQ＝．01787920 V＝．07551516 PR＝ AVERAGE TIME＝ VELSCITY BASED ON T AVG＝ VELこCITY BASED ON T PROB＝

MOST PROBABLE TIME＝ 4.22363000 STD DEV＝ 6.20162800 STD DEV $=$

SET NO 6 36．DATA POINTS
WIDTH $=\quad 1.00000000$
SIGMA SQ＝．02861542 V＝
AVERAGE TIME＝
.40300000
VELOCITY BASED ON T AVG＝
VELCCITY BASED SN T PROE＝

INCHES MERCURY＝
$.07100500 \quad P R=$ MOST PROBALLE TIME＝ 2.48138900 STD DEV $=$ 3.01210300 STD DEV＝

SET N二 7 33．DATA POINTS
WIOTH＝$\quad 1.00000000$
SIGMA SQ $=\quad .00578783 \mathrm{~V}=$
AVERAGE TIME＝
VELOCITY BASED ON T AVG＝
VELCCITY BASED ON T PROB＝

INCHES MERCURY＝ .03031721 PR＝ MOST PROBABLE TIME＝ 5.23809500 STD DEV $=$ 6.22696500 STD DEV $=$
2.50000000
3.13530500
． 16124797
2．38531500
5.14253300
2.50000000
5.67557600
－3319939う
1．0 $0 \div 57350$
1．53475730
2.50000000
6.29705200
－16059180
2．08739540
2．94992450

Output of Computer Program No. 8

The output of Computer Program No 3 is given in Table 23.
Tabulated outputs for each residence times set are as follows.
Average residence time (AVERACE ITME)
Average particle speed (AVERAGE VEL)
Gamma distribution parameters p and $v(P R \& V)$

Fable 23．Output of Cc ntor Progran ǐo．\＆

SET NO＝ 1 52．DATR INTS \because IDTH $=.50 \quad$ INCHES MERCURY $=$ ？． 50 $V=\quad 6.08539890 \quad P R=\quad 1.835 \% .000$ AVERAGE TINE＝ 11.1687090 C AVERAGE VE＝ 5.5843545 U
SET NO＝ 2 5ミ．DA．A．．I．．S WIDTH $=.50 \quad$ INCHES MERCURY $=2.50$ $V=\quad .53094580 \quad P R=\quad 8.42353800$ AVERAGE TIME＝ 5.31795200
AVERAGE VEL＝ 2.65897600
SET N゙こ＝3 36．DATA POINTS WIDTH $=.50$ INCHES MERCURY $=2.50$ $V=\quad 4.25123330 \quad P R=\quad 2.83539000$ AVERAGE TIME＝ 11.77036700
AVERAGE VEL＝ 5.83518350
SET NO＝4 42．DATA POINTS WIDTH $=.50$ INCHES MERCURY $=2.50$ $V=\quad .91904040 \quad P R=\quad 5.34654300$ AVERAGE TIVE＝ 4.91369000
AVERAGE VEL $=\quad 2.45684500$
SET NO＝5 38．DATA POINTS \because IDTH $=1.00$ INCHES MERCURY $=2.50$ $V=\quad 1.32273230 \quad P R=\quad 4.21963300$ AVERAGE TIME $=\quad 5.58144600$ AVERAGE VEL $=\quad 5.58144600$
SET NO＝ 6 36．DATA POINTS WIDTH $=1.00$ INCHES NERCURY $=2.50$ $V=\quad .56442770 \quad P R=\quad 5.24892170$
AVERAGE TIME $=\quad 2.96263700$
AVERAGE VEL＝ 2.96263700
SET NO＝ 7 33．DATA POINTS WIDTH $=1.00$ INCHES MERCURY $=2.50$ $V=1.29299850 \quad P R=\quad 4.82538400$ AVERAGE TIME＝ 6.23921500
AVERAGE VE $=\quad 6.23921500$
SET NO＝ 8 34．DATA POIN－S
WIDTH $=1.00$ INCHES MERCURY $=2.50$
$V=\quad .39266850 \quad P R=\quad 8.79659700$
AVERAGE TIME $=3.45414700$
AVERAGE VEL＝
SET NO＝9 30．DATA POINTS
WIDTH $=1.00$ INCHES MERCURY $=2.50$ $V=\quad .88564100 \quad P R=\quad 3.76749400$
AVERAGE TIME＝ 3.33664800
AVERAGE VEL $=3.33664800$
SET NO＝ 20
WIDTH $=1.00$ INCHES MERCURY $=2.50$ $V=\quad .49079219 \quad P R=\quad 3.55043500$
AVERAGE TIME＝ 1.79160530
AVERAGE VEL＝
1.79260530

SGIIAA SO＝
STD DEV＝ S．O DEV＝

SGIMA SO＝
STD DEV＝ STD DEV＝

SGINA SQ＝
STD DEV＝ STD DEV＝

SGIMA SQ＝
STD DEV＝ STD DEV＝

SGIMA SQ＝
STD DEV＝ STD DEV＝

SGIMA SQ＝
STO DEV＝ STD DEV＝

SGIMA SQ＝
STD DEV＝ STU DEV＝

SGIMA SQ＝
STつ DEV＝
SiD DEV＝

SGIMA SQ＝
STD DEV＝ STD DEV＝
$67.96=05000$
8．24ムこと2：0
も．729もくここし

3．3ミ5シム000
1．83175870
－32901216
48.26154000
6.99010300
5.24007100
4.51582000

2。ここ505990
－49269549
7.38275900

2．71712320
1．21371800
1.67219450

1．293133ミ0
． 28265245
8.06729600

2．84029850
1.42610990

1．35533480
1．164517E0
． 23610753

2．95507240
1．71903240
－ 548743 16
． 87930590
－93771312
－15544078

Lơic Diagram for Computer Proşon ato．7


```
    ON:Nun Source Prownam for Comyuter Procram lio. 7
C
    PROGRAM FOR MU,SIGMA SQUARED,P,NU,AND TP
    DIMENSION D(300)
    101 FERMAT (I4, I4, E7.4)
    \02 FORMAT (I5)
    103 FこNMAT(I4,F15.8,F15.8)
    Y = 1
    200 READ 102, JMAX
    J= l
    201 READ 101, M, N, D(J)
    J = J + 1
    IF (JMAX-J) 202, 201, 201
    202 J = 1
    P = 1.0
    B = D(J)
    I J = J + 1
    IF (JMANO-J) 3, 2, 2
    2P=P + 1.0
    B=E\divD(J)
    Gこ Tこ1
    3 BA=B/P
    IF (SENSE SWITCH 3) 4,5
    4 PRINT 1O3,M,P,BA
    Gこ TO 6
    5 PUNCH 1O3,M,PっBA
    6 J=1
    P=1.0
    SAD=0.0
    7 B=D(J)
    SAD=(B-BA)**2+BAD
    J=j+1
    IF (JNAK-J) 9, 8, 8
    8 P=P+1.0
    Gこ Tこ 7
    9 BDS=EAD/(P-1.0)
    IF (SENSE SWITCH 3) 10, 11
    10 PRINT 1O3,M,P,BDS
    GO TO 12
    11 PUNCH 103,M,P,BDS
    12 PR=(BA)**2/(BDS)
    V=(BDS)/(BA)
    IF (SENSE SWITCH 3) 13, 14
    13 PRINT 103,M,PR,V
    Gこ TO 15
    14 PUNCH 103,MっPR,V
    15 TP=(PR-1.0)}\because
    IF (SENSE SWITCH 3) 16, 17
    16 PRINT 103,MgP,TP
    GO Tこ 18
    17 PUNCH 103,M%P,TP
    18 I=I\divI
        Gへ Tこ 200
    END
```

20RTRMN Source Program for Comuter Procram 2To． 8

```
        D!MENS!ON D(150)
201 FORMAT(I4,I4,F7.3)
102 FORMAT(I5)
103 FORMAT(E1O.4,EIO.4)
    1 FORMA:(7HSET NO=I5,10XF4.0,11HDATA POINTS)
    2 FORMAT(7HWIDTH =F5.2.4X15HINCHES MERCURY=F6.2)
    3 FORNAT(2HV=F15.3.5H PR=F15.8.11H SGIMA SQ=F15.2)
    4 FORNAT(13HAVERAGE TIME=F15.8,14X8HSTD DEV=F15.8)
    5 FOR:NAT(13HAVERAGE VEL=F15.8,14K8HSTD DEV=F15.8)
    READ IO2,K
105 F.EAD I03,CL,VELW
    REAJ 102:JMAX
    Dこ 700 J=1,vMAX
700 READ 101,M,N,D(J)
    SUN:1=0.0
    SUN=0.0
    Dこ 800 J=1:JMMAX
    D(J)=1.0/D(J)
    SUM=SUN+D(J)
800 SUMI=SUM1\divD(J)**2
    CN: JMAX
    SGSQ=(SUMI-(SUM**2)/CN)/(CN-1.0)
    STDDI=SQRT(SGSQ)
    AVG=SUM/CN
    PR=(~VG**2)/SGSQ
    V=SGSQ/AVG
    VEL=CL%AVG
    STDD2=SQRT(CL*iSSSQ**2)/(CN-1.0))
    PUNCH I&K,CN
    PUNCH 2,CL,VELW
    PUNCH 3,V,PR,SGSQ
    PUNCH &sAVG,STDDI
    PUNCH 5,VEL,STDO2
    K=K+1
    GO Tへ 105
    END
```


APPENDIX G

Description and Explanation of the IBM lóz Computer FORTRAN Procran No. 9 for Calculating the T Statistic for Given Gemma Distribution Parameters p and v

This program determines T, the upper limit in the integral

$$
\int_{0}^{T} f(t) d t=A
$$

where A is the area under the distribution $f(t)$ integrated from 0 to T. Table 24 defines the various symbols utilized in this computer code.

Table 24. Input data and variables required for the IBM 1620 Computer Program No. 9.

SYMBOL

EXPIATIATION

KMAX	Order of Gaussian quadrature used in the
A(K)	program
$X(K)$	Christoffel Numbers for the order of Gaussian
V	quadrature used in the program
N	Zeros of the Legendre polynomial of degree KVAX
T	Parameter v of the gamma distribution
GAMAP	Parameter p of the gamma distribution
Y	Upper time limit of the integral
	Tne gama function $\Gamma(p)$
	The value of the integral for given V, N, and T

Input to Computer Program No. 9

The input to Computer Program No. 9 is given in Table 25. The order of Gaussian quadrature KMAX is read into the computer as PORNAT (I5). The Christoffel numbers $A(K)$ are read in as FORMAT (E15.8). The zeros of the Legendre polynomial of degree KMAX is read in as FORMAT (E15.8). The

Mable 25. Input to Cor: wer Proçram Mo. 9

5

$$
\therefore(I)
$$

.+7562857
.23692688
. 56888889
.23692688
.47552857

$$
X(X)
$$

. 53346931
.90617935
.00000000
. 90617985
.53846931

V	$I T$	T	$G A I I D$
.01	1	0.01	1.0
.01	1	0.02	1.0
.01	1	0.03	1.0
.05	1	0.05	1.0
.05	1	0.10	1.0
.05	1	0.20	1.0
.10	1	0.10	1.0
.10	1	0.20	1.0
.10	1	0.30	1.0
.20	1	0.40	1.0
.20	1	0.50	1.0
.20	1	0.60	1.0
.30	1	0.60	1.0
.30	1	0.70	1.0
.30	1	0.80	1.0
.40	1	0.80	1.0
.40	1	0.90	1.0
.40	1	1.10	1.0
.50	1	1.00	1.0

parameter \mathcal{V} of the gama distribution (V), the parameter p of the gamna distribution (\mathbb{N}), the T statistic, and the çama function GAMAP are read into the computer as FORMAT (E1O.4, I5, ElO.4, E15.8).

Output of Computer Program No. 9

The output of Computer Progran No. 9 is given in Table 26, where Y is the value of the integral

$$
\int_{0}^{T} f(t) d t=Y
$$

for given V, N, and T.

Trible 20．Output of Computer Progran ivo． 3
$.1000 E-01$
$.1000 E-01$
$.1000 E-01$
.5000 －01
$.5000 E-01$
．5000E－01
$.1000 E-00$
$.1000 E-00$
$.1000 E-00$
．2000E－00
$.2000 E-00$
．2000E－00
.3000 E－C0
$.3000=-00$
$.3000 E-00$
$.4000 E-00$
$.4000 E-00$
$.4000 E-00$
$.5000 E-00$
$.5000 \equiv-00$
.5000 －00
$.6000 E-00$
． 6000 こー00
$.6000 E-00$
$.700 \cup E-00$
$.7000 E-00$
$.7000 E-00$
－8000E－00
$.8000 E-00$
$.8000 E-00$
．9000E－CO
－90COE－00
$.9000 E-00$
$.1000 E+01$
$.1000 E+01$
$.1000 E+01$
.1000 E－01
．1000E－01
$.1000 E-01$
$.5000 E-02$
．5000E－01
$.5000 E-C 1$
．1000E－00
$.1000 E-00$
.100 UE－00
2000E－00

N
$1.1000 E-01$
$.2000 E-0$.
？OLSE－OO
－ 36.465400 －0U
$.95021280 E-00$
$.63212045 E-00$
． $85456460 E-00$
$.08168336 E-00$
$.53212045 E-00$
－ 85465450 E－00
． 95021280 －00
$.86466460 E-00$
－91791491E－00
－95021220E－0U
$.86466460 E-00$
． $90302786 E-00$
． $93051638 \mathrm{E}-00$
$.85466460 E-00$
$.89460063 E-00$
$.93607194 E-00$
$.85466460 E-00$
－ $88919567 E-00$
－92572625E－0U
－ $85466460 E-00$
－88544102E－Cu
． $95021280 \mathrm{E}-00$
$.86456460 E-00$
.88268068 E－0U
． $94256695 E-00$
－ 85466460 E－C0
－88056690E－00
$.95506291 E-00$
$.86466460 E-00$
$.87889649 E-C O$
－ $96432545 E-00$
$.36466460 E-00$
－91791491E－00
． $95021280 E-00$
$.80085175 E-00$
－ $90842348 \mathrm{E}-00$
． 95958613 E－00
． $59399403 E-00$
－ $90342348 E-00$
$.98271180 E-00$
－80085175E－00
－ 90842343 ミ－00
．95858613E－00
－ 90842348 E－00

Logic Diagram for Computer procicom Nio. O

EORTRAN Source Program ict Computer Prozran iro． 9
C PROGRAM FOR GAUSSIAN QL i ．RATURE
DIMENSION A（O）oX（ σ ）
101 FERMAT（E：5．8）
103 FこR说：（I5）
104 FORHAT（EIO．42I5，E10．4，E15．8）
105 FERMAT（EIO．4．E1O．4，E1O．4，E1O．4，EIO．4，E1O．4）
200 READ IU3，KMAX
PRINT 203, KMAX
$K=1$
201 READ 101：A（K）
PRINT IOIのA（K）
$K=K+1$
IF（KMAX－K）202，201，201
$202 \mathrm{~K}=1$
203 READIOI，X（K）
PRINT 1OI，X（K）
$K=K+1$
IF（KMAX－K）204，203，203
204 READ 1042 V ，N，T，GAMAP
$C A=0.0$
PRE $=((T / 2.0) * \approx N) /(($ GAMAP $) *(V) * * N)$
$1 K=1$
$2 X I=-(T /(2.0 * V)) *(X(K) \div I .0)$
EX＝EXP $(X I)$
$C A=(A(K) *((X(K)+1.0) * \%(N-1)) * E X)+C A$
$K=K \div 1$
IF（KNAX－K）3，2，2
$3 Y=P R E * C A$
IE（SENSE SWITCH 3）4．5
4 PRIN＂： 104 ，V，NoTgY
GO TO． 204
j PUNCH IO4，VoNoToY
GO Tこ 204
END

APPENDIX H

> Discussion of the Cuussian Quadrature Approximation of the Gomma Distribution

Certain required integrations arc of such complexity that direct integrations are not feasible. It is, therefore, necessary to fit the data with empirical expressions and solve them by formal analytical metiods. Such a technique is commonly known as nunerical integration. The general procedure tabulates values of the ordinate y at n predetermined values of x. The integral over the region is then the sum of the products of the ordinate y multiplied by the difference in the integration limits of x,

$$
\begin{equation*}
\int_{b}^{a} f(x) d x=a_{1} y\left(x_{1}\right)+a_{2} y\left(x_{2}\right)+\ldots+a_{n} y\left(x_{n}\right)+y(x) \tag{15}
\end{equation*}
$$

where $E(x)$ is the error resulting from the replacement of x with a polynomial approximation.

Gauss utilized unequal spaci.gs of specific values of x_{i} to use in equation (1H). The technique developed is simple to use, is more accurate than the well-known equal-interval numerical integration formulas, and is well-suited for digital computation. The method is generally known as Gaussian quadrature. $(1,2)$.

Lapidus (6) presents an excellent discussion of tine derivation of the technique of Gaussian quadrature numerical integration. Highlights of his discussion are as follows:

Certain properties of orthogonal functions should first be presented. A pair of real functions is said to be orthogonal over a region with respect
to a weighting function $w(x)$ if

$$
\begin{align*}
\int_{a}^{b} w(x) c_{n}(x) c_{m}(x) d x & =0, \quad n, i n \tag{2H}\\
& =c_{n}, \quad n=m
\end{align*}
$$

By proper choice of constants involvea in $E_{n}(x)$ and $w(x)$,

$$
\begin{equation*}
C_{n}=1.0 \tag{3H}
\end{equation*}
$$

Functions of the first kind and degree n which are solutions of Legendre's equation

$$
\left(1-x^{2}\right) y^{: 1}-2 x y^{i}+n(n+I) y=0
$$

are know as the Legendre polynomials, indicated symbolically as $P_{n}(x)$. The Legendre polynomials are orthogonal in the interval ($-1,1$) when $w(x)=1.0$.

$$
\begin{align*}
\int_{-1}^{1} P_{n}(x) P_{n 1}(x) d x & =0, \tag{5F}\\
& n \neq m ; \\
& =2 /(2 n+1), n=m ; n, m=0,1,2, \ldots
\end{align*}
$$

$P_{n}(x)$ is orthogonal to any polynomial of degree less than n, since $P_{n}(x)$ is a polynomial.

$$
\begin{equation*}
\int_{-1}^{1} P_{n}(x) x^{m} d x=0, \quad m=0,1,2, \ldots, n-1 . \tag{6H}
\end{equation*}
$$

Going back to Equation 1H, $\int_{Q}^{b} f(x) d x$ will be exact if $f(x)$ is a degree of $2 n-1$ or less. This is because there are $2 n$ coefficients, a_{k} and x_{k}, to be determined.

Choosing $f(x)$ to have the form

$$
\begin{equation*}
f(x)=x^{I} P_{I T}(x), \quad r=0, I, \ldots, I T-I, \tag{7E}
\end{equation*}
$$

$P_{i N}(x)$ is the Legendre polynomial of degree N.

If $P_{N}\left(x_{k}\right)=0$ for $k=1,2, \ldots, N$; x_{k} must be the roots of the Legendre polynomial of degree N.

Choose the polynomial $f(x)$ to bc v ut $x=x_{1}, x_{2}, \ldots, x_{\mathbb{N}}$; except at x_{k} where it has the value 1.0 .

One polynomial of degree N-1 which fits the N points is

$$
f(x)=\sum_{k=1}^{N} \frac{P_{1 T}(x) y\left(x_{k}\right)}{\left(x-x_{k}\right) P_{N T}\left(x_{k}\right)}
$$

If, however, $f(x)$ is a polynomial of degree $2 \mathbb{N}-1$ or less, it is possible to write

$$
\begin{equation*}
f(x)=\sum_{k=1}^{N} \frac{P_{j I}(x) y\left(x_{k}\right)}{\left(x-x_{1_{k}}\right) p_{I V}\left(x_{k}\right)}+P_{-N}(x) x^{m} \tag{9H}
\end{equation*}
$$

Integrating both sides between a and b,

$$
\int_{a}^{b} f(x) d x=\sum_{k=1}^{N} a_{k_{k}} y\left(x_{k}\right)+E(x)
$$

Thus;

$$
\begin{align*}
& a_{K}=\int_{a}^{b} P_{I N}(x) d x /\left(x-x_{k}\right) P_{I N}^{\prime}\left(x_{k}\right) \tag{IIE}\\
& I(x)=\int_{a}^{b} P_{N}(x) x^{m} d x
\end{align*}
$$

If $E(x)=0$, then this representation will be exact for $f(x)$ being a polynomial of degree $2 N-1$ or less. Recalling that if $(a, b)=(-1,1)$,

$$
E(x)=\int_{-1}^{1} P_{N}(x) x^{m} d x=0, \quad m=1,2,3, \ldots, I-1
$$

Therefore

$$
\begin{equation*}
\int_{-1}^{1} I(x) d x=\sum_{k=1}^{N} a_{k} y\left(x_{k}\right) \tag{23Y}
\end{equation*}
$$

This also implies that the x_{12}^{\prime} 's in Equation 10 H are the roots of the Legendre polynomial of degree N. Choice of a value in automatically determines $x_{1}, x_{2}, \ldots, x_{1 N}$, and the $a_{\mathbb{K}}$'s are given uniquely by Equation 11 H . While only N ordinate values are used, the representation behaves as if 2π ordinate values are used as long as the x_{k} 's are the roots of the Legendre polymomial.

Any finite interval of integration (a, b) may be changed to ($-1,1$) by means of the transformation

$$
\begin{align*}
& x=\frac{2 u-(a+b)}{b-a} \\
& \int_{a}^{b} f(u) d u=\frac{b-a}{2} \int_{-1}^{1} f(x) d x
\end{align*}
$$

Table 27 gives x_{k} and a_{k} values for values of n up through $n=6$ (2).
Since $x_{z}=-x_{n-k+1}$ and $a_{k}=a_{n-k+1}$, only helf of the values are tabulated.

Table 27. Parameters utilized in Gauss' mechanical quadrature formula (2).

n	k	x_{k}	a_{k}
2	1	0.577350269189626	1.00000000000000
	1	0.774596669241483	0. 55555555555556
3	2	0.000000000000000	0.88888888888889
4	1	0.33998104 .3584856	0.65214515486255
	2	0.861136311594053	0.34785484513745
5	1	0.538469310105683	0.47862867049937
	2	0.906179845938664	0.23692682505519
	3	0.000000000000000	0.56888888888889
6	1	0.238619186083197	0.46791393457269
	2	0.360761573048139	0.36076157304814
	3	0.932469514203152	0.17132449237917

AN INVESTIGATION OF THE MOVEMENT OF PARTICLES
 IN
 FLUIDIZED BEDS

by
JERRY LEF RATHBUN
B. S., Kansas State University, 1962

AN ABSTRACT OF
A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
196.5

ABSTRACT

The movement of a single particle in a liquid fluidized bed was followed using a radioactive tracer technique. The fluidized bed was made up of precision ground stainless steel balls fluidized with water. A single ball bearing was made radioactive by irradiation in the Kansas State University TRIGA Mark II Nuclear Reactor, and introduced into the bed. The axial motion of this particle was followed by measuring the passage of the particle past two horizontal planes in the bed.

The construction of the fluidized bed and the detection system that was developed are described in detail.

Preliminary data consisting of over 20,000 data values were obtained for a single sized particle and single packed bed height. The data were analyzed to give several parameters that can be used to characterize a fluidized bed. These parameters include the average particle velocity, particle velocity distribution, reflection coefficient, particle traffic, residence time distribution, dispersion coefficient, reflectivity and transmissivity. The mathematical analyses necessary to describe these parameters are presented. IBM-1620 computer programs in FORTRAN used to reduce the data to obtain these parameters are given.

and

$$
\begin{equation*}
\frac{\partial \tau_{m}}{\partial \Psi_{z}}=\frac{t_{m}}{L^{2}} \tag{97}
\end{equation*}
$$

An iterative procedure used to solve for E_{z} was as follows:
The quantities $\left(t_{\exp }\right)_{m}, L$, and $\left(x-x_{0}\right)_{m}$ were extracted from the data first. A value of E_{z} was then assumed. The quantities τ_{m} and t_{m} were calculated, where

$$
\tau_{m}=\frac{\left(t_{e x p}\right)_{m} e_{z}}{I^{2}}
$$

and

$$
t_{I n}=\text { time correspondine to }\left(C / C_{\infty}\right)_{\max }
$$

The left-hand side of Equation 94 was calculated after inserting the quantities into Equations 95, 96, and 97. The value of the left-hand side of Equation 94 was plotted versus E_{z}, and the E_{z} corresponding to the value of the left-hand side of Equation 94 being equal to zero was the least squares analysis solution for the dispersion coefficient for the given water flow rate, based upon minimizing the sum of the squares of the deviations of the times corresponding to the correlated $\left(C / C_{\infty}\right)_{\max }$ and the experimental $\left(I / I_{\infty}\right)_{\max }$ with respect to E_{z}.

Method 2. The second method minimized the sum of the squares of the errors of the experimental values of I / I_{∞} for five distances between detector levels with respect to E_{z} for each water flow rate studied. The least squares analysis equation used for the second method was

$$
\sum_{m=1}^{5} \sum_{j=1}^{5} \frac{\partial \tau_{j n}}{\partial E_{z}} \frac{\partial}{\partial \tau_{j m}}\left[\left(c / C_{\infty}\right)_{j m}-\left(I / I_{\infty}\right)_{j m}\right]^{2}=0
$$

where m is the subscript for the distance between detector levels, ΔZ, and j is the subscript for the correlated, C / C_{∞}, and experimental, I / I_{∞}, particle concentrations as functions of time for each distance between detector levels. The values of $I / I_{c o}$ were obtained from Figs. 86 through 90 . From Equation 97,

$$
\frac{\partial \tau_{j m}}{\partial E_{z}}=\frac{t_{j m}}{I^{2}}
$$

Differentiating $\left[\left(c / C_{\infty}\right)_{j m}-\left(I / I_{\infty}\right)_{j m}\right]^{2}$ with respect to $\tau_{j m}$ gives

$$
\begin{equation*}
\frac{\partial}{\partial \tau_{j m}}\left[\left(C / C_{\infty}\right)_{j m}-\left(I / I_{\infty}\right)_{j m}\right]^{2}=2\left[\left(C / C_{\infty}\right)_{j m}-\left(I / I_{\infty}\right)_{j m}\right] \frac{\partial\left(C / C_{\infty}\right)}{\partial \tau_{j m}} \tag{90}
\end{equation*}
$$

where $\frac{\partial\left(C / \mathcal{S}_{\infty}\right)_{j m}}{\partial \tau_{j \text { In }}}$ is obtained by differentiating Equation 85 with respect to $\tau_{j m}$. Thus,

$$
\begin{align*}
\frac{\partial\left(c / C_{\infty}\right)_{j m}}{\partial \tau_{j m}} & =2 \sum_{n=1}^{\infty}\left(-n^{2} \pi^{2}\right) e^{-n^{2} \pi^{2} \tau_{j m}} \cos \left(n \pi x_{m}\right) \cos \left(n \pi x_{0}\right) \\
& +\frac{e^{-\left(x-x_{0}\right)_{m}^{2} / 4 \tau_{j m}}}{4 \pi^{2} \tau_{j m}^{3 / 2}}\left[\frac{\left(x-x_{0}\right)_{m}^{2}}{2 \tau_{j n}}-1\right] \tag{100}
\end{align*}
$$

An iterative procedure was used to attempt to obtain a solution for E_{Z}. The procedure was as follows:

The quantities $\left(I / I_{\infty}\right)_{j m}, L, t_{j m}, x_{m}$, and x_{o} were extracted from the data first. A value of E_{z} was then assumed. The quantities $\tau_{j m}$ and $\left(c / C_{\infty}\right)_{j m}$ were then calculated from Equations 83 and 85 . The numerical value of the
left-hand side of Equation 98 was calculated, utilizing Equations 97, 99, and 100. The value of the left-hand side 0^{\curvearrowleft} Equation 98 was then plotted versus E_{z}, and the E_{z} corresponding to the value of the left-hand side of Equation 98 being equal to zero was to be the dispersion coefficient based upon minimizing the sum of the squares of the deviations of (C / C_{∞}) $-\left(I / I_{\infty}\right)$ with respect to E_{z}. However, a plot of E_{z} versus the left-hand side of Equation 98 gave curves asymptotically approaching zero with increasing E_{Z} for all water flow rates studied.

5.0 DISCUSION OF RESULTS

This section has been divided i, so fou wrts. Each part contains a discussion of one of the four quantiticu extr sted from the experimental data.

Almost 20,000 individual data values were obtained in this investigation, and these are recorded on IBM cards. Since it is impractical to present all of the data and results, only representative samples have been shown in Section 4.0 and in the appendices. A complete listing of the data and results, in the form of computer input and output, is available in Project 2324, Supplement Number One, which may be obtained from the Kansas State University Engineering Experiment Station.

5.1 Residence Times

Figures 35 through 38 illustrate that about 50 individual data values per data set were sufficient to study the characteristics of the residence time distribution, with adequate assurance that the samples taken represented the population distribution.

Figures 39 through 46 show that the residence time data can be represented by a gamma distribution in practically all of the data sets obtained.

Figures 47 through 56 give, as functions of the distance between detector levels, the trends of the gamma distribution parameters p and V for each water flow rate studied. Knowledge of their trends enables prediction of the characteristics of the fluidized bed, as discussed in Section 4.3.

The residence time results were corrected for instrument characteristics error. Experimental residence times of less than 0.2 second were subject to a major correction, and, therefore, the data, in cases where very short residence times were obtained, were least reliable. The major source of this

[^0]: Figure 24. True Time Versus Average Experimental Time for the Radioactive

