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Abstract 

The high-quality climate data and high-resolution soil property data in Kansas and 

adjacent states were used to develop drought datasets for the monthly Palmer Drought Severity 

Index (PDSI), Standardized Precipitation Index (SPI), and the Standardized Precipitation-

Evapotranspiration Index (SPEI) over 1900 to 2014. The statistical analysis of these multiple 

drought indices were conducted to assess drought occurrence, duration, severity, intensity, and 

return period. Results indicated that the PDSI exhibited a higher frequency for every category of 

drought in central and western Kansas than the SPEI by up to 10%. Severe and extreme drought 

frequency was the highest in southwest Kansas around the Arkansas River lowlands and lowest 

in the southeast. The mean total drought frequency for eastern, central, and western Kansas was 

36%, 39%, and 44%, respectively. The regional mean correlations between the SPI and SPEI 

were greater than or equal to 0.95 for all regions, but due to statistically significant increases in 

potential evaporation in western Kansas, the PDSI and SPEI are recommended over the SPI for 

meteorological and hydrological drought analysis.  

Drought variability of the last 115 years was analyzed through the Empirical Orthogonal 

Functions (EOFs) techniques and their Varimax rotations from 1900 to 2014 in Kansas. Large-

scale synoptic patterns primarily dominated the Kansas spatial drought structures, especially 

during long-duration events. The EOFs indicated that the first principal components of drought 

explained approximately 70% of the drought variability across the state and demonstrated a 

statistically significant wetting trend over the last 115 years, oscillating at a period of about 14 

years for all drought indices. The 99° W meridian line acted as the dominant transitional line 

demarcating the areas of Kansas’ climate and vegetation  relationship as spatial drought 

presented. The Multivariate El Nino Index (MEI) signal , which modulates global and regional 



 

 

climate variabilities, provided a low-frequency indicator to couple with Kansas drought’s leading 

modes by varying leads of 3 to 7 months depending on the use of drought index and time steps 

selected.  

Large-scale predictors of surface temperature and precipitation are evaluated from the 

monthly forecasts in Climate Forecast System version 2.0 (CFSv2) from North Dakota down 

through central Texas (32.6 - 47.7°N and 92.8 - 104.1°W). By using singular value 

decomposition (SVD), the CFSv2 monthly forecasts of precipitation and 2-m temperature were 

statistically downscaled using ensemble mean predictions of reforecasts from 1982-2010. 

Precipitation skill was considerably less than temperature, and the highest skill occurred during 

the wintertime for 1-month lead time. Only the central and northern plains had statistically 

significant correlations between observed and modeled precipitation for 1-month lead time. 

Beyond a 1-month lead time, prediction skill was regionally and seasonally dependent. For the 3-

month lead time, only the central plains demonstrated statistically significant mean anomaly 

correlation. After three-month lead times, the ensemble means of forecasts have shown limited 

reliable predictions which could make the forecast skill too low to be useful in practice for 

precipitation. However, temperature forecasts at lead times greater than five months showed 

some skill in predicting wintertime temperatures.  
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Chapter 1 - Spatiotemporal Characteristics of Drought Occurrence 

by Multiple Indices over 1900 to 2014 in Kansas 

 

Abstract 

High-quality climate data and high-resolution soil property data in Kansas and adjacent 

states were used to develop drought datasets for the monthly Palmer Drought Severity Index 

(PDSI), Standardized Precipitation Index (SPI), and Standardized Precipitation-

Evapotranspiration Index (SPEI) over 1900 to 2014. Statistical analysis of these multiple drought 

indices were conducted to assess drought occurrence, duration, severity, intensity, and return 

period. Results indicated that the PDSI exhibited a higher frequency for every category of 

drought in central and western Kansas than the SPEI by up to 10%. Severe and extreme drought 

frequency was the highest in southwest Kansas around the Arkansas River lowlands and lowest 

in the southeast portion of the state and throughout the Flint Hills. The mean total drought 

frequency for eastern, central, and western Kansas was 36%, 39%, and 44%, respectively. Five-

year return drought severity magnitudes were largest for northeast and western Kansas. Ten year 

returns were greatest for portions of central Kansas, while central and southwest Kansas have the 

largest magnitude droughts expected to return on the order of every 20 to 50 years. The regional 

mean correlations between the SPI and SPEI were greater than or equal to 0.95 for all regions, 

but due to statistically significant increases in potential evaporation in western Kansas, the PDSI 

and SPEI are recommended over the SPI for meteorological and hydrological drought analysis.  
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 1. Introduction 

 Drought is a multi-faceted and complex climate-related issue, affecting more people than 

any other natural hazard (Sönmez et al. 2005). Definitions of drought vary depending on which 

activity related to water use is being studied. A general definition of drought is a condition of 

moisture deficit sufficient to have an adverse effect on vegetation, animals, and man over a 

sizeable area (Warwick 1975). These impacts can be partitioned into their own category: 

meteorological drought is usually defined as the degree of dryness relative to some “normal” or 

average of amount of precipitation and duration of the dry period; agricultural drought is closely 

associated with vegetation productivity; hydrological drought is related to the shortfalls on 

streamflow and surface and underground water supplies; and social-economic drought 

emphasizes impacts on communities and businesses (Heim 2002). Because drought generally has 

a slow onset and temperamental duration (McKee et al. 1993), it is difficult to quantify as it 

relates to these four impacts (Svoboda et al. 2002).  

Drought in Kansas is one of the most costly natural disasters. Kansas has been ravaged by 

persistent, widespread severe droughts during the 1930s and 1950s, causing major economic 

damage and social disturbance (Clement 1989). From 2000 to 2006, stream flows in some parts 

of Kansas were recorded at their lowest levels, surpassing even the most devastating twentieth 

century droughts due to land use changes (Putnam et al. 2008). The Kansas Department of 

Agriculture estimated the cost of the 2012 drought at more than $3 billion in crop losses 

(Metzger 2013). Farmers and decision makers that have a better understanding of drought can 

opt to purchase the most appropriate insurance plan to protect against these serious losses. 

Continued food and water security requires identification of effective adaption practices to 

address the dual climate constraints of drought and excessive temperatures (Zhang et al. 2015). 
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Structured analysis of drought using historical climate data can provide tools that support a real-

time drought assessment and forecasting system that can contribute to the Kansas Water Plan’s 

goal of “…reducing our vulnerability to extreme events…” (Metzger 2013). 

 There are several drought indices available that have been developed in the last sixty 

years. These drought indices provide a means for quantifying the extent of dryness an area 

undergoes for a particular time scale. The best measures of drought are those related to drought 

impacts such as reduced water resources, economic losses, environmental damage and crop 

failures (Vicente-Serrano et al. 2011). Drought metrics can also explain the intrinsic nature of the 

process, which can have important implications for understanding the structure of drought.  No 

single drought index has been able to adequately capture the intensity and severity of drought 

and its impacts on diverse group of users (Heim 2002). Wayne Palmer developed the Palmer 

Drought Severity index (PDSI) (Palmer 1965), a landmark of drought indices, which has long 

been widely used in drought monitoring and assessment in the United States and elsewhere. The 

PDSI was originally developed using western Kansas climate data with an extension to verify 

this index within nine climatic divisions in seven states in the United States. Due to PDSI’s 

limitation of spatial comparison and autoregressive characteristic (conditioned up to four 

previous years in the drought index computation) (Guttman 1998), the Standardized Precipitation 

Index (SPI) was introduced, which considers statistical departures from climate normal using 

only a precipitation data but with a specific time scale (McKee et al. 1993). However, the SPI 

calculation doesn’t consider air temperature, wind speed, soil moisture, and evapotranspiration 

(vegetation and soil) that could affect droughts. Therefore, the Standardized Precipitation-

Evapotranspiration Index (SPEI) was developed by using precipitation and temperature to 
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calculate a statistical departure from normal conditions under different time scales (Vicente-

Serrano et al. 2010). 

 Since these multiple drought indices have been widely used from years to decades, 

understanding spatiotemporal patterns of drought statistics in a specific region, like Kansas, is 

particularly important as it affects water resource management, crop yields, and energy 

consumption. In addition, each drought index might provide a somewhat different measure of 

drought, therefore, a statistical comparison of multiple drought indices could provide a more 

comprehensive assessment of drought in Kansas. In this study, our objectives are to i) construct 

complete drought index datasets that include the PDSI, SPI, and SPEI for Kansas from 1900 to 

2014; and ii) perform statistical analysis on these multiple drought indices to assess drought 

occurrence, duration, severity, intensity, and return period in Kansas.  

 

 2. Data and methods 

 2.1 Climate and soil property data 

 Kansas is located in the interior Central Plains of the United States between 37° and 40° 

N and 94° 30’ and 102° W. In order to robustly interpolate temperature and precipitation the 

bounds of climate station selection were extended to neighboring states including Oklahoma, 

Missouri, Nebraska, and Colorado (Fig. 1). Data from climate stations selected in this study were 

obtained from the monthly United States Historical Climatology Network (USHCN), which is a 

long-term high-quality data set commonly used for climate change detection and attribution 

(Menne et al. 2009). Sixty-three USHCN stations were selected in this study including 29 Kansas 

USHCN stations and 34 stations in surrounding states for monthly temperature and precipitation.  
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Figure 1. Kansas climate stations (red stars) and surrounding climate stations (black 

squares). Station names are shown near to station sites. Background color was coded by 

available water capacity from 15.6 to 244 mm obtained from the 10m x 10m gSSURGO 

dataset for Kansas. The embedded histogram showed the frequency distribution of 

available water capacity in Kansas. Black vertical lines separate Kansas into eastern, 

central, and western regions.  

 

Available water capacity (AWC) in Kansas and surrounding states were obtained from 

the Gridded Soil Survey Geographic Database (gSSURGO) (Soil Survey Staff 2014). Unlike 

PDSI currently reported from the National Centers of Environmental Information (NCEI), the 

PDSI calculation in this study introduced soil AWC from the gSSURGO. A major source of 

criticism of the PDSI has been the lack of data on the complex field capacity variable (Ward 

2013). The NCEI computes the PDSI for nine climate divisions across the state of Kansas and 
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assumes a discrete range of total available water capacities between 150 and 250 mm, but 

approximately 32% of the state has a lower AWC. The gSSURGO provided AWC at multiple 

soil levels at a resolution of 10m x 10m. Each station’s geographic coordinates were used to 

obtain the corresponding grid values of AWC in the defined surface and underlying soil layers.  

The variables used in gSSURGO were AWC in the 0 to 25 cm layer and AWC 0 to 100 cm 

layer. Water is assumed to be evenly distributed in these layers.  

 

 2.2 Drought indices and their algorithms 

 2.2.1 Palmer Drought Severity Index (PDSI) 

 Palmer (1965) developed the PDSI to quantify the extent and severity of meteorological 

drought based on a soil-water balance model pertinent to agriculture. To compute the PDSI,  

monthly average temperature, monthly precipitation (P), and available water capacity (AWC) are 

required. The soil moisture storage is processed by dividing the soil into the surface (0-20 cm) 

and underlying (20-100 cm) layers. The underlying layer has an available capacity depending 

upon the soil characteristics of the site being taken. Soil moisture in the surface layer cannot be 

used to recharge the underlying layer until the surface layer has been completely replenished. 

Inside the PDSI, potential evapotranspiration (PE), a measure of water transfer to the atmosphere 

from a homogeneous parcel of vegetated land with saturated soils, is calculated using the 

original, empirical equation by Thornthwaite (1948). Evapotranspiration losses from the soil 

occur when the PE is larger than precipitation. The PE, monthly precipitation, and soil property 

data together are used to calculate the hydrologic budget, including total soil moisture, recharge, 

evapotranspiration, and runoff. The hydrologic parameters are calculated as follows: 
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If precipitation (P) is less than PE, evapotranspiration loss at a potential rate from the surface 

layer (Ls) is assumed to be: 

 Ls= min (Ss’, PE-P) (1) 

where Ss’ is the amount of available moisture stored in the surface layer at the beginning of the 

month, and 

 
Lu=(PE-P-Ls)∙ 

 S'u

AWC
 

(2) 

 

where Lu is the evapotranspiration (ET) loss from the underlying layer, S’u is the storage of the 

underlying soil layer at the beginning of the month, and AWC is the total available water 

capacity of both soil layers; and, 

 ET= min (Ls + Lu + P,  PE) (3) 

When precipitation exceeds PE, loss equals zero, and recharge occurs. If both soil 

layers are at their AWC, remaining moisture is lost as runoff. Loss and recharge must deplete 

or refill completely the surface layer before the parameters can be calculated for the 

underlying soil layer. 

 Each component in the water balance has an associated potential value, that is, potential 

loss (PL), potential recharge (PR), and potential runoff (PRO) that represent the maximum 

conditions that could exist. Potential loss is the maximum loss of moisture that a soil layer could 

experience for one given month. Potential losses are calculated as: 

 PLs= min (Ss’, PE)  (4) 

and 

 PLu= (PE-PLs) ∙
S'u

AWC
  (5) 

 



8 

 

Potential recharge (PR) is the amount of moisture required to bring both layers to the AWC.  

 PR=AWC- S’  (6) 

where S’ is the total soil moisture in both layers at the beginning of the month. Potential runoff 

(PRO) is defined as: 

 PRO=AWC-PR  (7) 

 Thus, water balance coefficients for four potential values including potential 

evapotranspiration (PE) are then computed individually for each month’s (i from 1 to 12):  

αi= 
ETi

PEi
 (PE)   δi= 

Li

PLi
  (Loss)  γi =

ROi

PROi
 (Runoff)     βi= 

Ri

PRi
 (Recharge)     (8) 

These coefficients, dependent on the climate of the area being addressed, are used to find the 

hydroclimatological reference value, which Palmer designates as the precipitation Climatically 

Appropriate For Existing Conditions (CAFEC). The CAFEC is computed for a calibration 

period by multiplying each month’s potential hydrologic parameter by its corresponding water 

balance coefficient: 

 CAFECi= αi PEi+ βi PRi+ γi PROi – δi PLi  (9) 

The CAFEC values represent the precipitation expected to meet the hydrologic demands 

on average for that particular month. The departure (d) from normal conditions is the 

precipitation minus the CAFEC: 

 d=Pi-CAFECi  (10) 

The NCEI calibration period for calculating the CAFEC coefficients is 1931-1990. 

Published literature supports longer calibration periods (50 or more years) when calculating the 

PDSI (Karl, 1986). Jacobi et al. (2013) reexamined two calibration periods: the NCEI calibration 

period and full record calibration period for datasets of varying lengths and found that results 
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from 1931-1990 calibration period were well consistent with full calibration. Therefore, the 

calibration period 1931-1990 was used in this study. 

The departure (d) is multiplied by the climatic characteristic (Ki) to find the monthly 

weighted moisture anomaly index (z) for the month: 

 zi=Ki di  (11) 

where 

 Ki= 
17.67 ki

∑ Di ∙ki
12
i=1

 
 (12) 

 

ki=1.5 log
10

(
⌈ 

PEi+Ri+ROi

Pi+Li
 ⌉+2.8

Di
)+0.5, (13) 

where Di= the mean of the absolute values of d for month i. The 
PEi+Ri+ROi

Pi+Li
 is a measure of the 

ratio of “moisture demand” to “moisture supply” for a specific month (i) at a specific region.  

The PDSI is a drought index designed for climatological evaluation, since it relies upon a 

complete time series being available with both “past” and future” values of the water-budget 

terms for each month in the time series (Ward 2013). Starting value transience can give 

unreliable values in the first 3 years of PDSI data given that the PDSI has long-term memory 

(Guttman 1991) and thus depends on previous soil conditions (Cook et al. 1999). The value for 

the PDSI (here it is Xi) is calculated using a first-autoregressive process (i.e., the previous 

month’s PDSI (Xi-1) (excluding the first month) and the weighted moisture anomaly index: 

 
Xi=0.897∙Xi-1+ 

1

3
z i  

(14) 

If a drought is occurring (Xi≤ -1), the probability that the dry spell has ended is: 

 

Pe=
∑ Uw,i-j

j=j
*

j=0

Ze+ ∑ [Uw,i-j-Uw,i]
j=j

*

j=0

 

(15) 
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Where, 

Ze= -2.691Xi-1-1.5, is a z-value to indicate the end of the drought in a single month,  

j* = the first month in the dry spell, and  

Uw= zi+0.15 is the effective wetness during the month i. If a wet spell is occurring (Xi≥1), the 

probability equation is the same, but Ze and Uw are replaced by, respectively: 

Ze= -2.691Xi-1+1.5 that indicates a z-value to end the wet spell in a single month and  

Ud= zi-0.15 which is the effective dryness during the month i. 

The probability that the dry spell has ended is calculated for every month afterwards until 

 Pe= 0 or Pe= 100% . If the probability becomes 100% or greater, dry-spell termination protocols 

are enacted, and the PDSI is retroactively changed for the previous months in which the 

probability was not equal to 0. The selection of appropriate value of X is not obvious and Palmer 

designed a set of operating rules that depend upon computation over several months and then 

backtracking based on the direction in which weather conditions appeared to be going (see 

details in Palmer, 1965). Alley (1984); Karl (1986), and Guttman (1991) described the rules 

thoroughly that can be referenced to replicate the procedure. The drought categories for the PDSI 

established by Palmer are presented in Table 1. 
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Table 1. PDSI Drought Categories 

PDSI  Drought Categories 

.49 to .-49 Near normal 

-.50 to -.99 Incipient Drought 

-1.00 to -1.99 Mild Drought 

-2.00 to -2.99 Moderate Drought 

-3.00 to -3.99 Severe Drought 

≤-4.00 Extreme Drought 

 

2.2.2 Standardized Precipitation Index (SPI) and Standardized Precipitation 

Evapotranspiration Index (SPEI) 

McKee et al. (1993) developed the Standardized Precipitation Index (SPI) to analyze 

precipitation departures from the normal precipitation for a particular month or determined time 

scale. These time scales reflect the impact of drought on the availability of different water 

resources (Yang, 2010). To compute the SPI, precipitation is first aggregated according to the 

time scale chosen (m). The SPI-m is a multi-scalar index and is usually aggregated for 3, 6, 12, 

24, and 36 months. If the time scale chosen is m months, the monthly aggregated time series will 

be: 

 

xi= ∑  Pi

i+m-1

i

 
 (16) 

Each month’s precipitation in the aggregated time series (xi) depends on itself and the previous 

m-1 months. Shorter time scales (3 and 6 months) are used to detect agricultural drought while 

longer time scales determine hydrologic drought such as underground waters, river flows, and 
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dam levels (Batisani 2011). The time steps used in this study were 3, 6, 12, 18, and 24 months. 

Secondly, a two-parameter gamma probability density function is fitted to the aggregated 

precipitation data for each month of the year for obtaining a total of 12 distributions: 

 
g(x)=

1

β
α
Γ(α)

xα-1e-x/β 
 (17) 

where: 

α >0  α is a shape parameter. 

β >0  β is a scale parameter. 

x >0 x is the accumulated precipitation total for the time scale. 

 Γ(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡
∞

0
 and Γ(𝛼) is the gamma function of α. Letting t= x/β, for each xi the 

cumulative density probability is calculated: 

 
G(x)=

1

Γ(α)
∫ tα-1e

t
dt

x

0

. 
(18) 

Because the gamma function is undefined for x = 0, the cumulative probability becomes: 

 H(x)=q + (1-q)G(x) (19) 

Where q is the probability of a zero (Thom 1966). If m represents the number of zeros in 

the time series and n is the length of the time series, q can be estimated by m/n. H(x) is 

transformed to a standard normal random variable with mean zero and variance of one. This 

standardized variable is the value of the SPI. A length of monthly time series  at least thirty years 

is recommended for the SPI (McKee et al. 1993). Drought categories for the SPI are given in 

Table 2. 

 

 

 



13 

 

Table 2. SPI Drought Categories 

SPI Values Drought Categories Time in Category 

0 to -0.99 Mild Drought ~24 % 

-1.00 to -1.49 Moderate Drought ~9.2 % 

-1.50 to -1.99 Severe Drought ~4.4 % 

≤ -2.00 Extreme Drought ~2.3 % 

 

The Standardized Precipitation-Evapotranspiration Index (SPEI) is a combined index 

recently developed as a drought measure with the capability of including the effects of 

temperature variability that the SPI lacks (Vincente-Serrano et al., 2010). Mathematically, the 

calculation procedure is similar to the SPI. Potential evapotranspiration (PE) is estimated based 

on the Thornthwaite procedure. The departures (d-series) are calculated as the precipitation for 

the month minus the PE, aggregated similarly to the SPI based on the time scale chosen (m): 

 

di= ∑  (P
i

i+m-1

i

-PEi) 
 (20) 

The aggregated departures, di, are fitted to a three-parameter log-logistic probability 

distribution for each month. The log-logistic probability distribution shows a gradual decrease in 

the probability curve towards low values of di, corresponding to more coherent probabilities than 

other candidate distributions tested in the development of the index (Vicente-Serrano et al. 

2010). Probability weighted moments (w0, w1, and w2) are calculated for each month of the year 

by ordering all of the departures for a particular month (N) from least to greatest: 

    

w0=
1

N
∑ di,sort

N

i=1

 

(21) 
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 w1=
N-1

N
[∑ di,sort

N

i=1

∙(N-i)] 

(22) 

 

 

 w2=
(N-1)(N-2)

N
[∑ di,sort

N

i=1

∙(N-i)∙(N-i-1)] 

(23) 

 

The probability weighted moments are used to calculate the shape (𝛽), scale (𝛼), and 

origin parameters (𝛾) for the log-logistic distributions for each month: 

 β=
2w1-w0

6w1-w0-6w2

 (24) 

 

 
α=

(w0-2w1)(β)

Γ(1+
1
β

)Γ(1-
1
β

)

 
(25) 

   

 

γ=w0- [α Γ (1+
1

β
) Γ (1-

1

β
)] (26) 

The cumulative density function 𝐹(𝑑) for the d series is used to find standardized values 

of the SPEI: 

 
F(d)= (1+ [

α

d-γ
]

β

)

-1

 
 (27) 

Following the Abramowitz and Stegun (1964) classic approximation for finding the 

standardized values of a log-logistic distribution, 

 SPEI=W-
C0+ C1W+ C2W2

1+d1W+d2W2+d3W3
 (28) 

where 

Px=1-F(d);  
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W=√-2∙ ln Px for Px≤0.5 ; for Px >0.5, Px is replaced by 1-Px and the sign of resulting 

SPEI is reversed; and 

C0=2.515517, C1=0.802853, C2=0.010328, d1=1.432788, d2=0.189269, and d3=0.001308.  

The mean SPEI is 0 with a standard deviation of one because of its standardized property. 

Similar to the SPI, the time steps used in this study were 3, 6, 12, 18, and 24 months for the 

SPEI-m (for example, SPEI-12 represents SPEI calculated by a 12-month scale). 

The tools for calculating the indices were developed based on available literature and 

original methods in Python, which is a free and open-source programming language. These tools 

are available through the agronomy department at Kansas State University. Agreement between 

the Kansas State tools and other available tools is extremely high (see Appendix B).  

 

 2.3 Statistical measures of drought characteristics  

 Statistical methods used for this work have been adopted from Saravi et al. (2009), 

Sönmez et al. (2005), and Yang (2010). The time series data for the PDSI, SPI, and SPEI are 

analyzed at each station. Six statistical drought characteristics in this study are described as: 

I. Empirical Cumulative Frequency (FN(t)) 

 FN(t)=
1

N
∑ 1(xi ≤ t)

N

i=1

 (29) 

where N is the number of months in observations and (xi ≤ t) is the number of drought index 

values less than the value t (that is, if drought index is less than t the summation adds one, 

otherwise zero until the total length of monthly time series).  

II. Relative Frequency (RF) 
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The number of months (n) that an index value meets a set drought criterion divided by the 

number months in the entire series (N) is the relative frequency (Saravi et al. 2009): 

 RF=
n

N
∙100%  (30) 

Spatial relative frequency maps can be derived for each drought category for the PDSI. 

Relative frequency is less meaningful for the SPI and SPEI since the time each index spends in 

each drought category remains relatively constant because both are derived as standardized 

variables (see table 2) (McKee et al. 1993). 

III. Duration (L) 

The length of time (months) that the drought index is consecutively at or below a 

truncation level is the drought duration (Fig. 2). The total duration of the drought is considered 

one event. In this study, the threshold used for the PDSI was -1.0 and 0 for the SPEI and SPI, 

respectively.  
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Figure 2. An illustration of drought duration, severity, and interarrival time by using a 

PDSI time series observed for Manhattan, Kansas from 1950 to 1960. 

 

IV. Severity (S)  

The severity is the cumulative sum of the index value based on the duration extent (Yang 

2010): 

 S= ∑ Index

Duration

i=1

 

   (31) 

 

V. Intensity (I) 

The intensity of a drought is the severity divided by the duration. Droughts that have shorter 

durations and higher severities will have larger intensities:  
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 I=
Severity

Duration
 (32) 

VI. Return Period of a Drought Event 

Drought events are stochastic in nature and usually assumed to independent and 

identically distributed (iid), therefore, the frequency analysis of the recurrence interval or return 

period of drought events shown in Fig. 2 is an attractive measure for drought and water resource 

assessments.  The interarrival time (T) is the time between the start of one drought (T1) at a pre-

set truncation level and the beginning of the next drought event with the same index threshold 

(T2) (Bonaccorso et al. 2003) (Fig. 2). In drought studies, the return period of a drought event is 

then defined as the mean interarrival time of droughts with a certain severity level or greater 

(Haan 1977; Shiau and Shen 2001). The severity return period was calculated from Shiau and 

Shen (2001): 

 Ts=
E(L)

1-Fs(s)
 (33) 

where Ts is the return period in years, E (L) is the expected (or mean) interarrival time, and Fs(s) 

is the cumulative probability density function at severity s. The expected interarrival time is 

calculated by fitting geometric distributions (Bonaccorso et al. 2003) to the drought and non-

drought durations to find pdrought and pnon-drought, the probability of drought and non-drought 

occurrence, respectively. Then from Shiau and Shen (2001), 

 E(L) =
1

p
drought

+
1

p
non-drought

 (34) 

The density function at specific severity (s) chosen was obtained from a candidate list of 

distributions using the Kolmogorov-Smirnov test, which uses a null hypothesis that the index 

data is a good fit for the candidate distribution. The same density function was utilized across all 

stations for uniformity given that it was included as a good candidate at the 0.05 significance 
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level. All stations identified the two-parameter gamma function as a good fit for dry events. The 

scale and shape parameters for the distribution were fitted using the SCIPY statistical library 

(Jones et al. 2001). 

 

 2.4 Spatial interpolation  

 Spatial maps were generated using ArcGIS 10.1 software by the Environmental Systems 

Research Institute (ESRI). An interpolation approach was used to estimate the value of the 

indices and statistical measures at locations where no observed data exists. The interpolation 

method chosen was Inverse Distance Weighting (IDW) because it is not computationally 

intensive and has been used extensively in drought mapping (Saravi et al. 2009). During the 

spatial interpolation, the search radius is 150 km (Cook et al. 1999) with a total of five stations 

needed to interpolate at a single point, and the distance power was 4 to lessen the influence of 

distant points given the spatially sensitive nature of precipitation (Cook et al. 1999). The output 

grid size was 500m.  

 

 3. Results  

 3.1 Empirical cumulative frequency distributions 

 Figure 3 shows the cumulative frequency distribution for all regions for both PDSI and 

SPEI. Results for the SPI are not included in Figure 3 because the SPI cumulative frequency 

distributions are similar to those for the SPEI. Figure 1 shows that the distributions have a non-

zero mean and gradually decrease in frequency towards the tails. It is difficult to differentiate 

between time steps of the SPEI except in western Kansas where the SPEI-12 has higher 

frequency of mild drought and lower frequencies for mild wet spells. 
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Figure 3. The empirical cumulative frequency of the monthly PDSI and SPEI for western 

(top panel), central (middle panel), and eastern (bottom panel) Kansas. Vertical lines 

represent dry spell (red) and wet spell (green) thresholds classified in drought indices. 

 

In eastern Kansas the PDSI cumulative frequency ranges between 3-5% higher than the 

SPEI in moderate to extreme drought categories. In addition, the indices share similar 

frequencies of mild drought and moderate to extreme wet spells (Fig. 3). This results show that 

the bimodal distribution of the PDSI is evident with the decreasing slope at 0, which supports 

findings by Alley (1984). There is a higher frequency of incipient drought and wet spell values (-

0.5 to -1.0 and 0.5 to 1.0) than purely neutral PDSI values (-0.5 to 0.5). This characteristic is 
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more pronounced in central and western Kansas (Fig. 3) where established drought or wet spells 

are more persistent, which enhances the bimodal structure of the PDSI distribution at more 

intense drought or wet spell categories. 

Central and western Kansas have notably higher frequency of all drought categories by 

PDSI than the SPEI by up to 10% (Fig. 3). The extreme, severe, and moderate drought 

departures from the SPEI are similar for these two regions, but western Kansas experiences a 

higher frequency of incipient and mild drought. Conversely, there is a lower frequency of severe 

and extreme wet spells when using the PDSI in central and western Kansas than in eastern 

Kansas, which could indicate bias in the index due to a shift in the mean from 0 for all regions. 

 

 3.2 PDSI relative frequency 

 The empirical cumulative frequency distribution of the PDSI can be analyzed in a higher 

spatial resolution by examining the relative frequency for each drought category across Kansas. 

For the mild drought frequency, it was observed more frequently in the western and southeastern 

regions of Kansas (Fig. 4a). The global maximum (19%) occurred around Sedan and remains 

above 15% throughout the Flint Hills region of Kansas for mild droughts. South central and 

western Kansas experienced relative frequencies between 15 and 18%. Central and north central 

Kansas experienced the lowest frequency of mild drought (9 -15%). However, moderate drought 

frequency increased from east to west across the state (Fig. 4b). The frequency of moderate 

drought in eastern Kansas was about 10% and peaks to 22% along the southwestern Kansas-

Colorado border (Fig. 4).  
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Figure 4. PDSI relative frequency of mild (a), moderate (b), severe (c), and extreme (d) 

drought over 1900 to 2014 in Kansas 

 

Compared to mild and moderate drought frequencies, the southeast areas showed the 

lowest frequency across the state for both severe and extreme droughts. Severe drought 

frequency is less than 6 % in the southeast areas. It may be worthwhile to note that the highest 

frequency of severe drought (20%) occurs in southwest Kansas around the Arkansas River 

lowlands and extreme drought occurrence ranged from 1% near Sedan to 12% at the western 

Kansas border near Holly, Colorado. The Flint Hills in eastern Kansas typically experienced the 

least occurrence of extreme drought (3-6%) while extreme drought occurrence was between 6 

and 10% in southwest Kansas and along the Nebraska border.  

 The average total drought frequencies in eastern, central, and western Kansas was 36%, 

39%, and 44%, respectively. Areas in southeast Kansas with a relatively low AWC should 

expect to oscillate between wet and dry spells more frequently than the surrounding areas given 
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it receives more rainfall than the rest of the state. This lower AWC allows single precipitation 

events to have a major influence on PDSI, for example, flash drought (Mo and Lettenmaier 

2016). Lakin, possessing a drought frequency of 64%, was the only station to deviate more than 

12% above the mean total drought frequency, indicative of its likelihood to be experiencing 

drought conditions. Lakin has an AWC less than 110 mm from the gSSURGO. When the PDSI 

was manually calculated for a set range of AWCs (50 to 305mm) at each station, drought 

characteristics of stations in far western Kansas were different from those in the rest of the state 

(details in Appendix A). Locations at risk of higher frequency of severe and extreme drought 

occur along the Arkansas and Cimarron Rivers in southwest Kansas. 

 

 3.3 Station and regional drought characteristics 

 Stations located within central Kansas had the longest PDSI drought duration during the 

1930s. McPherson and Ellsworth had droughts during the 1930s that lasted longer than 100 

months (Table 1). The dry period during the 1930s was typically the longest duration drought 

during the last century using the PDSI as the drought indicator (Table 1). Two sample t-tests 

between the 1930s and 1950s drought events demonstrated statistical differences for drought 

duration but not severity or intensity at the 0.05 significance level.   Atchison in eastern Kansas 

had the least number of consecutive drought months (27), occurring between 1936 and 1938. The 

average drought length of Kansas’ longest duration droughts is 6 years (Table 1).  

Severe drought occurrence (PDSI < -3) has an expected interarrival time of 5.57 years in 

western Kansas and 5.68 years in eastern Kansas (Fig. 5). The average accumulated severity for 

each decade between 1900 and 2010 shows that the 1930s and 1950s were the anomalies of the 

twentieth century for all regions (Fig. 6). Only in eastern Kansas was the 1950s drought on 
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average just as severe as the 1930s drought due to precipitation distribution between 1934 and 

1936 isolated to eastern Kansas (Fig. 6). The frequency or number of drought events per decade 

ranged between 3 and 9. The 1930s droughts in eastern Kansas had an overall high severity 

accumulation and large number of events, indicating that it experienced a recurrence of intense 

droughts. The most recent drought to affect Kansas occurred between 2011 and 2014. The peak 

of the drought occurred in November 2012 when 68% of the state was experiencing severe or 

extreme drought. The median rank in severity for this drought event was 7th, 10th, and 3rd over 

1900 to 2014 in eastern, central, and western Kansas, respectively. It ranked in the top 3 of most 

intense droughts for 35% of Kansas stations, underscoring the severity of the drought reached in 

a short amount of time.  
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Table 3. Station PDSI drought characteristics, including available water capacity, 

minimum peak PDSI, and station’s longest drought. 

 

 

 Station 

AWC 

(mm) Peak PDSI Intensity Longest Duration (PDSI≤-1) 

     PDSI Year  Mo 

Duration 

 (mo) Years Severity Intensity 

E
as

te
rn

 K
an

sa
s 

Atchison 198.5 -6.78 1956 6 27 1936-1938 -63.67 2.36 

Columbus 161.6 -6.35 1902 3 57 1952-1957 -201.30 3.53 

Council Grove 103.9 -5.93 1934 8 57 1936-1940 -198.14 3.48 

El Dorado 195.7 -7.17 1956 9 57 1952-1957 -242.27 4.25 

Ft Scott 210.0 -7.75 2012 7 45 1929-1933 -121.62 2.70 

Horton 176.1 -7.67 1934 8 67 1936-1941 -196.96 2.93 

Independence 140.4 -5.37 1956 10 62 1962-1967 -206.25 3.33 

Lawrence 132.4 -6.06 1956 10 57 1952-1957 -214.66 3.75 

Leavenworth 198.4 -5.87 1902 4 54 1952-1957 -190.62 3.53 

Manhattan 200.8 -8.67 1934 8 63 1936-1941 -190.58 3.02 

Olathe 3E 208.8 -7.11 1934 8 63 1952-1957 -249.36 3.96 

Ottawa 132.4 -5.75 1940 2 44 1911-1914 -133.70 3.04 

Sedan 88.4 -5.06 1911 1 56 1953-1956 -164.04 2.53 

C
en

tr
al

 K
an

sa
s 

Anthony 200.0 -6.67 1954 9 64 1932-1938 -198.21 3.09 

Coldwater 177.5 -6.92 1956 10 64 1932-1938 -228.57 3.57 

Ellsworth 180.0 -6.95 1939 10 110 1931-1940 -429.32 3.90 

Hays 1 S 222.2 -5.62 1956 10 58 1933-1938 -179.74 3.10 

Larned 202.8 -6.23 1956 9 64 1932-1938 -215.72 3.37 

McPherson 171.8 -8.08 1956 9 132 1930-1941 -427.38 3.24 

Minneapolis 171.8 -7.60 1934 8 95 1932-1940 -397.93 4.19 

Smith Center 192.7 -6.85 1940 7 89 1933-1940 -381.21 4.28 

W
es

te
rn

 K
an

sa
s 

Ashland 167.5 -7.21 1934 8 65 1932-1938 -243.51 3.75 

Lakin 106.4 -6.98 1939 10 103 1960-1969 -379.47 3.68 

Liberal 178.9 -5.45 1956 9 58 1952-1957 -206.00 3.55 

Norton 9SSE 203.2 -6.60 2002 9 102 1932-1940 -436.28 4.28 

Oberlin 220.0 -7.06 1936 8 100 1932-1940 -447.50 4.46 

Saint Francis 180.0 -6.23 1911 7 106 1996-2005 -285.11 2.70 

Scott City 191.9 -5.71 1956 10 77 1952-1957 -247.94 3.22 

Wakeeney 191.5 -6.38 2012 9 92 1933-1940 -327.04 3.55 
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Figure 5. The expected or mean interarrival time of (a) mild and (b) severe droughts in 

Kansas based on the PDSI. The average of expected interarrival time for each third of 

Kansas is shown at the bottom (y refers to the year).  

 

Years

1 2 3 4 5 6 7

Severe Drought

Mild Drought

(a)

(b)

5.68 y5.99 y5.57 y

1.65 y2.05 y1.94 y
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Figure 6. The mean aggregated drought severities (histogram by left Y axis) and drought 

frequency (black dots by right Y axis) by decade for the PDSI (left panels) and SPEI-12 

(right panels) for western (in red), central (blue), and eastern (green) KS.  

 

 Both SPI and SPEI allow drought to be assessed at multiple time steps. For this study, the 

3, 6, 12, 18, and 24 months of SPI and SPEI were used for individual stations. Detailed 

individual station SPI and SPEI results can be found in Appendix C. Proceeding from short-term 

to long-term drought, the SPI-3 and SPEI-3 both had the highest frequencies between droughts 

and wet spells as expected. The mean interarrival time for three-month drought across Kansas 

was 8 months. The highest intensity drought occurred in 1910 for the SPEI-3 and 2012 for the 

SPEI-6 in western Kansas (Fig. 7). The maximum durations at a single station for the SPEI-3 and 
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SPI-3 were 37 and 31 months, respectively (see Appendix C). Most stations did not have SPEI-3 

droughts lasting longer than two years. Less than 7% of agricultural droughts at the 3-month time 

step lasted longer than one year across all regions of the state (Fig. 7). Notice that the peak 

intensity of Kansas’s most recent hydrologic drought occurred in 2014 in western Kansas by 

SPEI-24, which was two years (24 months) later than the peaks of the SPEI-3 and SPEI-6 (i.e., 

2012 drought) (Fig. 7).  

 

Figure 7. Drought intensity time series over January 1900 to December 2014 for the SPEI- 

and SPI -3 (a), -6 (b), -12 (c), -24 (d) for western Kansas 

 

The SPI-12 and SPEI-12 showed a large increase in the maximum drought duration 

across all stations (appendix C). Both the SPEI-12 and SPI-12 had a maximum drought duration 
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of 128 months at Ashland. Categorized as an intermediate to long-term drought indicator, the 

SPEI-12 produced mean maximum durations of 58, 74, and 83 months across eastern, central, 

and western Kansas, respectively (Fig. 8). Between 25 - 30% of all droughts at this time step last 

longer than one year, and less than 5% persist longer than 3 years. Only eastern Kansas SPEI-18 

had statistically lower drought durations and severities than the rest of the state (Fig. 8). It should 

be noted that the SPEI at different time steps could result in different drought statistical 

characteristics in Kansas especially when the drought duration and severity were evaluated (Fig. 

8).  

 

Figure 8. Regional SPEI drought characteristics of (a) duration, |(b) severity|, and (c) 

intensity by SPEI-3, -6, -12, -18, and -24 for western (red), central (blue), and eastern 

(green) Kansas. 
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Figure 9. The regional mean relative frequency of droughts by indices persisting one or 

more years for (a) western, (b) central, and (c) eastern Kansas. For example, 

approximately 5% of all SPEI-3 droughts lasted between one and three years in eastern 

Kansas. 

 

The longest SPEI-24 drought that occurred persisted approximately 12 years during the 

1930s and early 1940s at Horton, KS (see Appendix C). These long-term droughts in Kansas can 

persist between 5 and 12 years across the state, underscoring the devastating hydrologic effects 

on the state’s rivers and reservoirs. Maximum drought durations, severities, and intensities for all 

three regions in Kansas were not statistically different by SPEI-24 using multiple tests and 

bonferroni procedures; thus, eastern Kansas is equally as vulnerable to extreme hydrologic 

drought as western Kansas (Figs. 8 and 9). In eastern Kansas, SPEI-24 drought intensity during 
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the 1950s was far greater than any other drought events in the record (see Appendix C). The 

2011-2014 SPEI-12 drought is ranked as the 5th, 3rd, and 3rd most severe drought in recent history 

for eastern, central, and western Kansas, respectively. Both SPEI-6 and SPEI-12 drought 

intensities rivaled that of the 1930s and 1950s for western Kansas (Fig. 7) but were less in 

eastern Kansas (shown in Appendix C). Using the SPEI-24 as the drought indicator, it was on 

average the most intense hydrologic drought on record in western Kansas (Figs. 7 to 9).  

 

3.4 PDSI severity return periods 

 PDSI drought severities ranged from -6 to -53 for five year returns and -18 to -70 for ten 

year returns (Figs. 10a and 10b). These are the magnitudes of the drought severities expected to 

occur on average for a five and ten year period, respectively.  In northeast Kansas and western 

Kansas, there was the highest risk of more severe five year droughts. On a ten year return cycle, 

a region from Hays extending to the Oklahoma border has the highest risk of drought with 

accumulated severities greater than -47. Stations such as McPherson, Oberlin, and Minneapolis 

with extreme outlying severities from the 1930s drought tended to produce isolated “bulls-eye” 

spatial return patterns at twenty and fifty year return periods (Figs. 10c and 10d). The twenty 

year and fifty year return severities were less in eastern and south central Kansas. Severities 

greater than -125 at the twenty year return period occurred from Manhattan all the way into 

southwest Kansas. Fifty-year return severities showed the same spatial structure as the twenty-

year returns but demonstrated drought severities approaching the magnitude of the 1930s and 

1950s drought. 

 The most recent drought event between 2011 and 2014 ranged from a small to relatively 

severe drought in the context of Kansas’s recent drought history. Eastern Kansas had the smallest 
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return periods between 3 and 16 years, excluding a region in northeast Kansas which 

experienced higher drought severities (Fig. 10e). A drought event of this nature would likely 

occur once every decade. Northwestern and parts of southwestern Kansas were the hardest hit in 

Kansas with return periods ranging from 33 to 95 years, indicating this event would return on a 

half to almost full century cycle.  

 



33 

 

Figure 10. PDSI drought severity returns for 5, 10, 20, and 50 years (a, b, c, d). The return 

periods (years) of the 2010-2014 drought are shown (e) to provide context to a recent event 

within the scope of Kansas’s recent drought history.  

 

 4. Discussion 

Palmer briefly addresses the effects of available water on the PDSI (Palmer 1965). Low 

values of AWC limit the method’s ability to show large departures from normal in humid 

climates. Estimates of the amount of rain needed to recharge the soil lie close to monthly normal 

precipitation amounts, regardless of the previous wetness or dryness (Palmer 1965). This 

eliminates large departures from normal and extreme values of the PDSI. Karl (1983) found that 

larger AWCs tended to increase the duration of the most severe droughts in the interior United 

States and that higher values of AWC in similar climates result in more extreme drought. Sandy 

soils with low AWC that lie in far western Kansas experience the highest frequency of severe 

and extreme soil moisture drought based on the PDSI.  

Mean durations for each region between the SPEI and SPI of Kansas exhibited 

statistically significant different results only for western Kansas for the SPI (SPEI)-3 and central 

Kansas for the SPI (SPEI)-6. More variation between the two indices is exhibited in the drought 

onset and termination of 3 and 6-month droughts outside of eastern Kansas. No significant 

differences in severities were found at any time interval, and the maximum drought durations 

and severities were not statistically different in any region. The additional role of temperature 

introduced in the SPEI calculation does not appear to change the duration and severities of the 

most severe droughts in Kansas as compared to the SPI. The PDSI had the strongest correlation 

(r = 0.83) with the SPEI-12 in central Kansas. The lowest correlation (r= 0.62) with the PDSI 

occurred for the SPEI-24 in eastern Kansas. Maximum drought durations for all regions between 
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the PDSI and SPEI (SPI)-12 were not statistically significant, further underscoring the similarity 

between the two drought indices.  

The regional mean r-Pearson correlation coefficients for all time steps between the SPI 

and SPEI were 0.98, 0.97, and 0.95 for eastern, central, and western Kansas, respectively. The 

PE term in SPEI plays a slightly more influential role in the drought calculations for western 

Kansas. All stations in western KS (excluding Ashland and Saint Francis) and Hays and Larned 

in central Kansas had statistically significant increases (α=0.05) in annual sum of PE (Fig. 11). 

Given that no station displayed a temporal trend with PE in eastern KS, either index is 

appropriate for future drought analysis for this region. Climates with low interannual variability 

of temperature respond mainly to variability in precipitation (Vicente-Serrano et al. 2010), which 

has been the case for eastern Kansas. However, the SPEI has an advantage over the SPI in 

western and central Kansas due to the significant increases in PE. Although the drought 

characteristics (severity, duration, and intensity) between the two indices were similar across 

Kansas, continued increases in temperature suggest that this might not hold true through the end 

of the 21st century (Rosenberg et al. 1999).  
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Figure 11. Annual PE (mm) for Lakin, KS between 1900 and 2014.  

 

In order to examine the difference between SPEI and SPI, the correlation coefficients by 

each decade for each region were analyzed and they showed their consistency among time steps 

in eastern Kansas but relatively more variations observed in central and western Kansas (Fig. 

12). The 3-month time step produced the most drastic departures from the other time steps in 

central and western Kansas as it was expected. The minimum correlation coefficient is 0.93 for 

the 24-month time step in the 1960s for western Kansas. This feature was caused by a spike in 

PE in 1963 (Fig. 11), followed by relatively steady PE for the remaining years in the decade. The 

shorter time steps were less consistent in the 1930s, 1940s, and 1950s, which contained the 

longest duration and most severe droughts in the period of record.  
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Figure 12. The r-Pearson correlations for each decade between the SPEI and SPI at four 

time steps for (a) western, (b) central, and (c) eastern Kansas. 

 

 5. Conclusion 

 In this study, drought assessment was conducted for Kansas through the use of three 

indices: the PDSI, SPI, and SPEI. The PDSI exhibited a higher frequency for every category of 

drought in central and western Kansas than the SPEI by up to 10%. Severe and extreme drought 

frequency was the highest in southwest Kansas around the Arkansas River lowlands and lowest 

in the southeast portion of the state and throughout the Flint Hills. The mean total drought 

frequency for eastern, central, and western Kansas was 36%, 39%, and 44%, respectively.  
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 The drought of the 1930s had the longest duration for all of central Kansas. The 1952-

1957 drought had overall severities less than the 1930s but a faster onset given its fast ascent to 

intensity levels that rivaled the 1930s drought. The accumulated severity of all 1930s and 1950s 

droughts showed that these decades were the anomalies of the twentieth century for the state. 

The average drought length of the longest duration droughts in the state is 6 years, and the 

number of drought events per decade ranged from 3 to 9. Severe drought occurrence can be 

expected to occur on average of 5.57 years in western Kansas and 5.68 years in eastern Kansas. 

Hydrologic drought across Kansas can persist between 5 and 12 years across the state, 

underscoring the devastating hydrologic effects on the state’s rivers and reservoirs. The most 

recent drought between 2011 and 2014 peaked in coverage in November 2012 and reached 

intensity levels that rivaled the droughts that occurred in the 1930s and 1950s in western Kansas.  

Five-year return drought severity magnitudes were the largest for northeast and western 

Kansas. Ten-year severity returns were the greatest for portions of central Kansas, while central 

and southwest Kansas have the largest magnitude droughts expected to return on the order of 

every 20 to 50 years. The regional mean correlations between the SPI and SPEI were greater 

than or equal to 0.95 for all regions, but due to statistically significant increases in potential 

evaporation in western Kansas, the SPEI is recommended over the SPI for meteorological and 

hydrological drought analysis in this region. Land use changes in the last thirty years towards a 

reliance on surface water reservoirs and ground water irrigation will diminish stream flow in 

moderate to severe drought, particularly if PE continues to increase in western Kansas. It is 

prudent for planners to have conservation strategies than can keep irrigation and municipal water 

supplies adequate for an increase growth in population. Knowledge of the specific 
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spatiotemporal characteristics of drought occurrence provides the foundation for the 

development of forecast products particular to Kansas’s drought history.  
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Chapter 2 - Space-Time Variability of Decadal Drought in Kansas 

 

Abstract 

Drought variability of the last 115 years was analyzed through the Empirical Orthogonal 

Functions (EOFs) techniques and their Varimax rotations from 1900 to 2014 in Kansas. Large-

scale synoptic patterns primarily dominated the Kansas spatial drought structures, especially 

during long-term wet and drought conditions in central and eastern Kansas. The EOFs analysis 

indicated that the first principal components of drought explained approximately 70% of the 

drought variability across the state and demonstrated a statistically significant wetting trend for 

the state over the last 115 years, oscillating at a dominant period of about 14 years for all drought 

indices used in the study. The 99° W meridian line acted as the dominant transitional line 

demarcating the areas of Kansas’ climate and vegetation (crop and grassland) relationship as 

spatial drought presented. The Multivariate El Nino Index (MEI) signal as it modulates global 

and regional climate variabilities provided a low-frequency indicator to couple with Kansas 

drought’s leading modes by varying leads of 3 to 7 months depending on the use of drought 

index and time steps selected.  
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1. Introduction  

Drought is a complex and natural phenomenon of climate that costs the state of Kansas 

billions of dollars during its most extreme events (Metzger 2013). Reducing Kansas’ 

vulnerability to extreme drought and flooding events is an essential goal to mitigating economic, 

social, and environmental impacts. Hayes et al. (2004) describe a risk-based approach that 

includes assessment of drought risk and risk management. As drought develops from a slow 

onset, its characteristics such as inception, termination, frequency, and severity are difficult to 

assess, which makes it a hazardous phenomenon to most socioeconomic systems in any region of 

the world. Drought can be driven by major meteorological processes and soil properties, and it is 

assumed that this structure can be decomposed into orthogonal sub-climate regimes through 

Empirical Orthogonal Functions (EOFs). These functions were first used for applications in 

meteorology and climatology by Lorenz and Project (1956) as tools for examining the spatial and 

temporal patterns of variability of a single variable (Bjornsson and Venegas 1997). The goal of 

EOFs analysis is to seek field structures that explain the maximum amount of variance in a two 

dimensional dataset. One dimension represents the dimension that the analyst is examining for 

structure, and the other dimension represents the sample realizations of this structure (Hartmann 

2014). In the atmospheric sciences, the structure dimension is generally space (points or grids), 

and the sampling dimension is time.  

Large and small-scale studies of drought EOFs have been conducted across the globe in 

regions including China (Cai et al. 2015), Romania(Cheval et al. 2014), Croatia (Bojariu et al. 

2012), Portugal (Martins et al. 2012), Turkey (Tatli and Türkeş 2011), and Sicily (Bonaccorso et 

al. 2003). For example, Raziei et al. (2010) regionalized drought across Iran into four sub regions 

based on the variability of the Standardized Precipitation Index (SPI-24) at a scale of 24 months. 
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Applications of EOFs in these studies included but were not limited to: assessment of the 

similarities and differences amongst drought indices, identification of strong and weak temporal 

signals in the drought index time series, and the separation of a region into sub-climate regimes. 

Studies on drought variability are valuable for the design and management of water resource 

systems (Bonaccorso et al. 2003). 

Drought variability studies that focus on areas in the central plains emphasize the 

paleoclimatic record over instrumental (1900-present) records. Early studies documented that the 

1930s drought had significant impacts on the true prairies in Nebraska, Kansas, and western 

Iowa, where the death of prairie plants due to droughts ranged from 20 to 50% in the eastern 

portions and 80-95% in the western portions (Weaver and Albertson 1936). Native American 

annual pictographic accounts have been used to corroborate extended periods of drought in the 

Great Plains between 1777 and 1869 (Gallo and Wood 2015). Woodhouse and Overpeck (1998) 

used tree rings, lake sediments, geomorphic data, and historical documents to demonstrate that 

multidecadal, severe droughts occurred in the central Plains before 1600. Layzell (2012) 

performed a similar analysis specifically for the state of Kansas. He determined through tree ring 

records (Cook et al. 1999) that drought variability of the instrumental record (1900-present) is 

just a subset of the potential variability in the context of the last thousand years. Droughts in the 

last millennium have surpassed the severity and duration of the 1930s and 1950s droughts in the 

Great Plains region and Kansas (Cook et al. 2007). It is important to note that water systems are 

commonly designed to handle the “drought of record,” identified as the most severe hydrological 

event from the instrumental record. In Kansas the 1950s drought (1952-57) remains the planning 

benchmark and is used to calculate reservoir yield through droughts with a 2% chance of 

occurrence in any one year (K.A.R. 98-5-8).  
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 Logan et al. (2010) conducted a study on the spatiotemporal variability of drought in the 

Kansas River basin using the slope of the SPI-6,-12, and -24 over the instrumental records. They 

showed an increase in SPI over time for most of central and eastern Kansas, excluding portions 

of far western Kansas and eastern Colorado. Broader studies of drought trends using the different 

forms of the Palmer Drought Severity Index (PDSI) over the contiguous United States have 

shown an increase in precipitation during the latter half of the 20th century with an increase in the 

percentage of wet area and decrease in dry area from the 1950s to 1990s (Dai 2011); thereafter, 

the United States has been experiencing fairly dry conditions. Studies on the state level have the 

advantage of greater applicability to agricultural and municipal managements that require local-

scale information to effectively implement mitigation strategies. An increase in the 

understanding and prediction of climatic variability based on the El Nino Southern Oscillation 

has added substantial value to the United States agricultural industry (Solow et al. 1998). 

The objectives of this study were to i) investigate the spatial and temporal variability of 

drought and wetting episodes in Kansas during the instrumental period 1900-2014 by application 

of EOFs and Varimax rotation and ii) examine drought variability’s relationship to the El Nino 

Southern Oscillation (ENSO). Multiple drought indices (PDSI, SPI, and Standardized 

Precipitation Evapotranspiration Index (SPEI)) were used to distinguish changes in drought type 

such as agricultural (vegetation productivity), meteorological (precipitation deficits), and 

hydrologic (streamflow and surface and underground water supplies) drought (Heim 2002).  
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2. Data and Methods 

2.1 Data sources 

  Monthly precipitation and average temperature were obtained from Oregon State’s 

Parameter-elevation Regressions on Independent Slopes Model (Prism 2016). These datasets at 

an original 4 kilometer resolution were re-gridded by zonal averaging to 0.5° latitude by 0.5° 

longitude for a total of 90 grids across the state of Kansas (Fig. 1). High-resolution (10 m) 

Gridded Soil Survey data (Soil Survey Staff 2014) was utilized to calculate available water 

capacity for the PDSI calculation. The PDSI, SPI, and SPEI were calculated at each grid point 

from 1900-2014 using tools developed at Kansas State University. Time steps chosen for the SPI 

and SPEI were 3, 6, 12, and 24 months. Each drought dataset was converted into n x p matrices 

for EOF analysis: 

 

[

x11 x12
… x1p

x21 x22
… x2p

⋮
xn1

⋮
xn2

⋮
…

⋮
xnp

] 

(1) 

 

where each row represents a map (or field) of drought index at time t = 1…n and each column 

represents a time series of drought index at given locations (or measurements) from 1 to p.  
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Figure 1. Map of Kansas and 0.5° resolution grids used for temperature, precipitation, soil 

available water capacity, and drought data. 

 

The Multivariate El Nino Index (MEI) retains the most important coupled ocean-

atmosphere phenomenon to cause global climate variability on seasonal to inter-annual time 

series. There is a long-term time series of MEI starting from 1871 (Wolter and Timlin 2011) but 

when considering the data quality issues, the latest available data from 1950 to 2014 was utilized 

in this study from the Earth System Research Laboratory as a metric of the strength of the El 

Nino Southern Oscillation (Wolter and Timlin 1998). Large positive MEI values indicate the 

occurrence of El Nino conditions, while large negative MEI values indicate the occurrence of La 

Nino conditions.  



49 

 

    

2.2 Empirical Orthogonal Functions (EOFs) 

The anomaly of drought index time series was calculated by subtracting the mean of each 

column in Eq. (1). These anomalies were weighted by the cosine of each grid’s latitude 

(Bjornsson and Venegas 1997). These weighted anomalies were standardized to form a new data 

matrix F in Eq. (2). Then the covariance matrix (p x p) is defined by: 

  C = FTF  (2) 

 

which contains the covariances between the time series of the field at any pair of grid points. The 

covariance matrix C is symmetric, and positive semi-definite, which means all eigenvalues of C 

are greater than or equal to zero. The goal of EOFs analysis is to detect uncorrelated linear 

combinations of the different spatial variables that explain the maximum variance. The EOFs are 

obtained as the solution to the eigenvalue problem: 

 CU = U𝚲.  (3) 

The n x n diagonal matrix 𝚲 contains the eigenvalues λi of C. The columns (ci) of U (p x 

p) are the eigenvectors of C corresponding to the eigenvalues λi (Bjornsson and Venegas 1997). 

These eigenvectors are commonly referred to as the EOFs. Eigenvectors, properly normalized 

(i.e., divided by their Euclidean norm and multiplied by the square root of their corresponding 

eigenvalue), represent the correlation between the original data and the corresponding principal 

component time series. The kth principal component (time series; expansion coefficients, 

commonly named as PCk) are obtained by projecting the Ek eigenvector onto the original 

standardized data whose elements ajk, t = 1, … n, are given by: 
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atk= ∑ xtjUkj

p

j=1

. 

(4) 

There are p principal components of length n. The first principal component (PC1) is the time 

series corresponding to the spatial pattern of eigenvectors (EOF1), the PC2 is corresponding to 

EOF2, and etc. 

The  percentage of the total variance explained by each eigenvector (loading) can be 

obtained by dividing each individual eigenvalue by the sum of all eigenvalues λi 

λi

∑ λi
p

i

∙100% 
(5) 

Generally, the first few leading modes should be able to explain most of the variance 

exhibited by the drought’s spatial and temporal variations. The remaining modes do not 

significantly contribute to the overall variance. In order to assess how many modes are adequate, 

it is helpful to use North’s Rule of Thumb (North et al. 1982) to determine the sampling error 

(σλ) of a particular eigenvalue 𝜆𝑖 as, 

σλi~𝜆𝑖 (√
2

N
) 

(6) 

If its value is comparable or larger than the spacing between the eigenvalue and the 

nearest eigenvalue, then the sampling error of the associated EOF is comparable to its closest 

neighboring EOFs, where the N is the number of realizations. Pearson’s correlation and cross-

correlation measures were used for evaluating correlations at the 95% confidence level. Trend 

analysis was based the least-square linear regression at the 95% confidence level with its p 

values.  
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2.3 Varimax Rotation 

Unrotated EOFs often exhibit some characteristics which hamper their utility to isolate 

individual modes of variation. These characteristics are: domain shape dependence, subdomain 

instability, sampling problems, and inaccurate portrayal of the physical relationships in the data 

(Richman 1986). These issues can sometimes be resolved through the rotation of eigenvectors. 

The main objective of rotation is to alleviate the orthogonality/uncorrelation of EOFs and 

domain dependence of EOF patterns, obtain simple structures, and ease the interpretation of 

obtained patterns (Hannachi et al. 2007). It allows the corresponding retained modes to be more 

spatially localized (the rotated loadings have high correlation with a smaller set of spatial 

variables). The number of leading EOFs and principal components to retain for rotation (m) was 

evaluated using the North’s rule of thumb. EOFs were weighted (multiplied) by the square root 

of their corresponding eigenvalue, Um, before applying rotation. Expansion coefficients were 

normalized by dividing by the square root of their associated eigenvalue. The rotation is formally 

achieved by obtaining an m x m rotation matrix R to construct the rotated EOFs, B, according to: 

 B=UmR (7) 

where R is the rotation matrix and Um are the weighted EOFs assuming m leading EOFs are 

selected. 

The goal of rotation is expressed as the maximization problem: 

max f (Um R ) (8) 

The functional f () represents the rotation criterion chosen. Varimax orthogonal rotation (Kaiser 

1958) was applied to identify and interpret the physical modes of spatial variability 

(Preisendorfer and Mobley 1988) of drought in Kansas. Because Varimax rotation is orthogonal, 

R is subject to the constraint: 
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 RRT=RTR=Im (9) 

where Im is the identity matrix. It seeks to maximize (5) according to the simplicity criterion: 

 

max (f(Um𝑅)= ∑ [p ∑ bjk
4

- (∑ bjk
2

p

j=1

)

2p

j=1

]

m

k=1

) 

(10) 

where m is the number of EOFs retained, p the number of observations (rows), and bjk, j = 1,…p, 

and k = 1,…m, the elements of the B in Eq. (7) (Hannachi et al. 2007). It attempts to simplify the 

structure of the patterns by pushing loading coefficients toward zero or ±1. 

  

3. Results 

3.1 Space-time variability of PDSI 

 Figure 2 shows the variance explained by each principal component for the PDSI. Three 

components (m) were retained for analysis as indicated by the error bars from the North’s rule of 

thumb. These three leading eigenvalues were nondegenerate and separated from the rest of 

eigenvalues (Fig. 2). The spatial and temporal patterns for the first three PDSI EOFs are shown 

in Figure 3. The percentage of variance explained by the first three EOFs are 69.01%, 9.73%, 

5.45%, respectively for a total of 84.19% (Fig. 2). The spatial extent of the first EOF, a mono-

pole pattern, demonstrates that the climate across most of Kansas explains most of the variation 

in drought across the state. Central Kansas is strongly correlated (r > 0.9) with the first primary 

component while the four corners of the state are moderately correlated (0.75) (Fig. 3a). The 

overall high correlation across the state demonstrates that large-scale weather patterns typically 

dominate Kansas climate. The fraction of local variance explained decreases towards the eastern 

and western Kansas (Fig. 3a). Areas that behave the most climatically independent are in the 

southwest, northwest, northeast, and southeast corners. The 1930s and 1950s droughts from PC1 
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are the most easily identifiable, indicating that the severity, duration, and extent across the state 

was appreciable compared to the other intermittent droughts (Fig. 3d). The trend of PC1 (PC2) is 

increasing (decreasing) and they are statistically significant at the alpha level 0.05. No linear 

trend was found for PC3.  Based on the high spatial correlation of the EOF1 with the PC1, 

Kansas as a whole showed a slight increase towards wetter PDSI in PC1 between 1900 and 2014 

(Fig. 3d). 

 

Figure 2. Spectrum of the variance explained by each eigenvalue (%) for first 10 principal 

components for the PDSI data set. 
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Figure 3. First three EOFs (a-c) and normalized PCs (d-f) of the PDSI. Contours of each 

EOF mode represent correlation with their corresponding PCs. There are statistically 

significant positive and negative trends for the PC1 and PC2 (p < 0.001), respectively. 

 

  

Figure 4. Power spectral density of the PCs for the PDSI. Maximum peaks occur at periods 

of 14.22, 42.67, and 14.22 years for the PC1, 2, 3, respectively.  
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The 2nd EOF was meridional in the direction of Kansas’s average precipitation gradient 

(Fig. 3b). Precipitation decreases dramatically from southeastern to western Kansas, which is a 

synoptic result of the flow of moisture north and east from the Gulf of Mexico across eastern 

Kansas. Because the indices in this study are considered to be their normalization for both 

regionality and seasonality (a particular area’s climate), it is not surprising that the stronger 

gradient in precipitation is only secondarily influential with a 9.73% variance explained (Fig. 3b 

and 3e). Western Kansas is moderately positively correlated (0.5) while eastern Kansas is 

negatively correlated (-0.4). The PC2 time series trend is decreasing and statistically significant. 

Although the amount of variance explained by this component is small (9.73%), it does reveal a 

drying trend of a much weaker signal in western Kansas (R2 = 0.008) (Figs. 3b and 3e).  

 The 3rd principal component (EOF3) explains the least of the 3 retained principal 

components (5.47%) and does not show any statistically significant linear trend (Figs.3c and 3f). 

However, it does exhibit a heteroscedastic shape with an increase in variance after 1980 if we set 

1980 as a change point, which may indicate its lack of stationarity due to non-constant variance 

over time. The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity demonstrated 

that the principle component is not stationary at the 0.1 significance level. The minimum peak in 

1989 and the maximum peaks in 1993 and 2011 correspond to relatively higher intensity drought 

and flooding events, respectively, observed in Kansas. As the intensity of a drought event 

represents its severity divided by its duration, the higher intensity droughts and floods have 

larger severities and shorter durations. Although weaker than the previous two components, this 

EOF3 signal indicates an increase in short-term but severe extreme precipitation and drought 

events in the last three decades for areas in northeast and southwest Kansas (Figs. 3c and 3f). 



56 

 

To further examine drought patterns in a temporal domain of each principal component, 

three previous PC time series were decomposed into the time-frequency space (Torrence and 

Webster 1998). The power spectral density function using a Fourier transform with a Hamming 

window showed the frequencies of drought and wetting that contribute substantially to the 

overall variance of time series (Fig. 4). The fundamental harmonic frequency occurred 0.0059 

cycles per month or a period of 14.22 years in PC1 time series (Fig. 4). Most of the power 

intensity of the PC1 signal occurred between one and two decades, underscoring the region’s 

natural oscillation cycle between significant wet and dry periods (Fig. 4). These are the higher 

intensity and longer duration droughts that can create significant impacts on the Kansas 

economy. The next strongest period occurred at 3.28 years, which are the small scale, high-

frequency fluctuations between wet and dry periods that are short duration and lower severity. 

The dominant oscillation cycle or period in the PC2 signal was 42.67 years, and it is interesting 

to note that the amplitude of the signal was decayed after 1980. The overall wetting trend as 

demonstrated by PC1 is thus underlined by subtle drying in western Kansas.  

Rotation of the first three modes resulted in changes of the variance explained by each 

mode to 22.81%, 30.88%, and 30.51%, respectively (Table 1). The spatial distribution of the first 

rotated component (REOF1) identified two sub regions: one dominant in the northeast and a 

smaller zone in southwest Kansas (Fig. 5a), which is similar to the spatial pattern of the third 

unrotated EOF3 (Fig. 3c). The correlation between RPC1 and unrotated PC1 is 0.90. Thus, 

rotation of PDSI only subtly changed the temporal drought signal component to correspond with 

the drought characteristics of northeast and southwest Kansas. The 2nd rotated pattern (REOF2) 

demonstrated the same structure as the unrotated component (EOF2) and explained a higher 

proportion of variance than the 1st rotated score (Fig. 5b). The RPC2 was also identical to PC2 
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with a correlation of 0.91, suggesting only subtle distinctions in western and eastern Kansas 

drought variability of the dominant drought signal. The main differences were seen in the 

increase in intensity and duration of the 1988-1989 drought in northeast Kansas, drought relief in 

eastern and southwest Kansas during the 1930s drought, and an increase in intensity of flooding 

episodes in western Kansas between 1900 and 1930. 

The third rotated pattern showed a dipole between southwest and southeast Kansas and 

underscores a strong wetting trend in southeast Kansas. The north-south asymptotic behavior of 

the spatial patterns of REOF1 and REOF3 occurs approximately at 99°W, passing near the 

population centers of Great Bend and Hays. The 99°W meridian and four quadrants of similar 

drought variability in Kansas are consistent with the transitional boundary of Kansas shortgrass 

prairie (to the west) and tallgrass prairie (to the east) as well as agricultural activities between 

sub humid (rainfed crops) and semiarid (cattle, irrigated, and dryland crops) areas (Tomanek 

1995).  

Table 1. Percentage of total variance explained for each rotated component. A dash 

indicates that the PC was not significant (evaluated by North’s Rule of Thumb). 

Varimax (%) 

n.PCs PDSI SPEI-3 SPEI-6 SPEI-12 SPEI-24 

1 22.81 14.12 13.25 26.73 26.82 

2 30.88 32.41 32.93 34.08 30.79 

3 30.51 22.21 3.70 28.87 32.78 

4 - 18.89 19.51 - - 

5 - 5.13 23.40 - - 

6 - 1.64 1.62 - - 
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Figure 5. Three Varimax REOFs (a-c) and RPCs (d-f) of the PDSI. RPC1 and RPC2 

showed statistically significant positive trends, and RPC3 had a negative trend but negative 

REOF3. 

  

3.2 Space-time variability of SPEI-n 

Results of the SPI are not shown given they are nearly identical to the SPEI. Differences 

will be discussed in Section 4. The number of significant components to retain for analysis based 

on North’s rule of thumb for the SPEI-3 and -6 was six, and the number to retain for the SPEI-12 

and -24 were three (see Appendix D). The total variance (%) explained by the unrotated modes 

four through six for the SPEI-3, -6 were 6.16% and 5.71%, respectively. These lower modes will 

only be analyzed after Varimax rotation for SPEI. The structure of the normalized eigenvectors 

is remarkably similar to the PDSI for the first three modes (see Appendix D). With each increase 

in time step, higher correlation (r > 0.9) in the EOF1 was moved towards central and eastern 

Kansas. At the longer time steps, southwest and northwest Kansas retained some climatic 

variability different from the rest of the state. The proportion of variance explained by PC1 

increased from 72.35% for the SPEI-3 to 77.38% for the SPEI-24 (Appendix D). Thus, 
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hydrologic drought (SPEI-24) has higher spatial and temporal coherence than meteorological 

(SPEI-6, 12) and agricultural drought (SPEI-3) given its long-term memory. 

 PC1 of all SPEI time steps had their dominant period at 14.22 years, which is the same 

as the PDSI (see Appendix D). PC2 had a dominant period of one year for the SPEI-3 and eight 

years for longer time steps, oscillating at much high frequencies than the PC2 of the PDSI. The 

SPEI-24 shows the strongest linear relationships among all drought indices in PC1 and PC2 

(increase and decrease, respectively) based on R2. This statistically significant decrease in the 

PC2 was the strongest in western Kansas (R2 = 0.028), confirming the subtle long-term drying in 

the region that was also shown by the PDSI. The linear relationships of shorter time steps were 

also decreasing but weaker. The long-term effects of drought on ground recharge and water 

levels will be more noticeable than short term impacts in the future in western Kansas.  

The spatial patterns of the first three rotated modes were similar to the rotated patterns of 

the PDSI for the SPEI-12, 24 but different from the SPEI-3, 6. The retained six modes of the 

SPEI-3, 6 are distinctly different, excluding mode 2 (see Appendix D for rotated SPEI EOFs). 

Analysis of time steps less than 12 months were included for rotated EOFs that each explained 

more than 15% of the total variance. The second rotated EOF for the SPEI-3 and -6 was similar 

to the rotated and unrotated second EOFs and explained the largest percentage of variance 

(32%). All three EOFs showed weak linear trends towards wetter conditions. EOFs three and 

four (four and five) isolate regions of maximize correlation to southeast and northeast Kansas for 

the SPEI-3 (-6).  

All three rotated PCs of the SPEI-12 showed statistically significant increases over the 

instrumental records. The strongest increases were in eastern Kansas (RPC1 and RPC3), and the 

weakest increase was in western Kansas (RPC2). The rotated SPEI-24 patterns were similar to 
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the SPEI-12; however, the 3rd REOF exhibited the largest explained variance of the three modes 

(32.78%) and had the strongest linear relationship among all drought index primary component 

series in this study (R2 = 0.044). As an index for identifying long term hydrologic drought as it 

relates to underground water, river flow, and dam levels (Batisani 2011), the third rotated 

component of the SPEI-24 indicates a strong increase in long term wetting covering a broad area 

of southeast Kansas. In addition, although the first REOFs explained a smaller proportion of the 

variance (26.82%), it showed a similar wetting trend for northeast Kansas and a small area along 

the 99°W meridian line close to the Oklahoma border (R2 = 0.040). 

 

3.3 El Nino Southern Oscillation (ENSO) and Drought in Kansas 

 The Multivariate El Nino Index (MEI) takes into account six important fields (sea level 

pressure, zonal and meridional surface wind components, sea-surface temperature, near-surface 

temperature, and total cloudiness) across the tropical Pacific and is the first unrotated principal 

component of all six observed fields (Wolter and Timlin 2011). A low-pass (24 months) filter 

was applied to the MEI and each of the drought index time series to observe low-frequency 

relationships between the MEI and drought indices in Kansas. The PC1 has the highest cross-

correlation with the MEI of all unrotated drought indices (Fig. 6). Among the drought indices, 

the PDSI has a maximum cross-correlation coefficient (0.367) with the MEI at a lag of six 

months (i.e. MEI arrives 6-month earlier than PDSI, hereafter, a positive lag means the drought 

index is behind the MEI), which indicates that there is a semi-annual delay in response to 

drought and wet episodes in Kansas (Fig. 6). On the other hand, from first three leading RPCs, 

the cross-correlation of the RPC2 for all drought indices were increased (r > 0.4), highlighting a 

stronger regional correlation in western Kansas given the EOFs pattern (Figs. 7, 5b and 5e). The 
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result indicated that decadal variability of agricultural drought (SPEI-3) shows a distinctly strong 

relationship with ENSO in western Kansas (r = 0.5) (Fig 7b and Fig. D12b in Appendix D). All 

correlations were statistically significant at the 0.05 level.  

 

 

 Figure 6. Temporal patterns of the first leading components of monthly PC1 (black) from 

(a) PDSI, (b) SPEI-3, (c) SPEI-6, and (d) SPEI-12 and Multivariate El Nino Index (MEI) 

(red). The time series were filtered by a 24-month low-pass filter. The drought index time 

series was shifted to correspond to the maximum cross-correlation with the MEI.  
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Figure 7. The same as Figure 6 but for monthly RPC2. 

 

4. Discussion 

 Differences of EOFs spatial and temporal patterns between the PDSI, SPEI, and the SPI 

are relatively small. The leading principal component of PDSI exhibits higher spatial and 

temporal variability than all SPEI time steps with the greatest difference of 9% between the 

PDSI and SPEI-24, which most likely results from the additional complexity of the soil 

budgeting procedures in the PDSI computation and long-term average of the 24-month time step. 

The potential effects of climate change are subtle in this analysis. The overall trend for 

most of Kansas is towards wetting, especially in the eastern portion of the state. This supports 



63 

 

findings by Logan et al. (2010). The PC3 demonstrates increasing intensity of drought and 

flooding in parts of northeast and southwest Kansas with the strongest signals in the PDSI and 

SPEI-24. Drying trends were found in the second principal components of the PDSI and longer 

time steps of SPEI or SPI although it is overshadowed by a stronger wetting signal in the first 

component. The strongest, unrotated pattern of drying was exhibited by the SPEI-24.  

The Ogallala aquifer in the central high plains of the United States is an important 

irrigation source for farmers in western Kansas, which receives less than 20 inches of rainfall 

annually. Changes in aquifer levels are heavily impacted by changes in climate and local 

irrigation use (Rosenberg et al. 1999). Most of the recharge occurs during the non-growing 

season (winter) when evapotranspiration is minimal and water can accumulate into the root zone 

and move downward into the water table. The underlying frequency of hydrologic drought 

(SPEI-24) is subtly increasing in the southwest Kansas at an approximately half-century cycle, 

which could slowly diminish the ability of the Ogallala aquifer to effectively recharge over in the 

21st and 22nd centuries.  

Rotation of EOFs, however, did not emphasize this drying in western Kansas by any 

drought index. The rotation pushed EOF3 very close to zero correlations in southwest Kansas for 

the PDSI and SPEI-12 as well as SPEI-24, indicating a weaker correlation to RPC3. The wetting 

signal for hydrologic drought (longer SPEI time steps) was stronger in southeast Kansas than the 

drying signal in agricultural drought for southwest Kansas.  

The rotated leading components with wetting trends were slightly stronger for the SPI 

than the SPEI at the 24-month time step (see Appendix D). Although the SPI and SPEI are 

fundamentally similar drought indices, the SPI only includes precipitation as its primary variable 

while the SPEI additionally includes potential evapotranspiration. An increase in temperature 
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over time results in an increase in potential evapotranspiration and larger differences between 

indices (Vicente-Serrano et al. 2010). Although precipitation is the dominant driver of most 

drought indices (Ward 2013), an increase in monthly average temperature would dampen the 

effects of an increase in precipitation due to losses from evapotranspiration. This effect is most 

notable at longer time steps.  

 The fundamental period of the strongest signal for all types of drought (agricultural, 

meteorological, and hydrologic) in the leading mode of EOFs is 14 years. Underlying signals 

oscillated at periods greater than forty years for the second leading mode (PC2) of drought, and 

one and eight years for meteorological (SPEI-3) and hydrologic drought (SPEI-24), representing 

higher frequency but lower energy drought fluctuations.  

Positive cycles of El Nino are associated with wetting across the state. The second rotated 

components for all drought indices showed the highest cross-correlation with El Nino in western 

Kansas. When the eastern equatorial Pacific Ocean warms, wetter conditions generally dominate 

the Kansas climate with its strongest relationship between 3 and 7months lag (see Figs. 6 and 7) 

according to EOF1 and REOF2 temporal and spatial patterns. Thus, strong El Nino winters 

generally correspond to a wet spring and vice versa for La Nina. During La Nina the subtropical 

jets weaken and move poleward, altering the meridional and vertical propagation of transient 

eddies and resulting in an anomalous eddy-driven mean meridional (MMC) circulation that 

causes descent and drying at mid latitudes (Seager et al. 2005). Previous literature showed 

inconclusive evidence of an ENSO relationship with precipitation and temperature in the high 

plains (Ropelewski and Halpert 1986), which would include western Kansas. EOF methods are 

able to demonstrate the multidecadal relationship of drought and ENSO in the state. 
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5. Conclusion 

In this study, decadal drought variability was investigated in Kansas using the 

instrumental records from 1900-2014. The drought indices used were the PDSI, SPEI, and SPI, 

and the -3,-6,-12, and -24 month time steps were individually assessed. Empirical Orthogonal 

Functions (EOFs) techniques and Varimax rotation were applied to the drought datasets. 

Differences between drought types were relatively small for both unrotated and rotated spatial 

and temporal patterns. Large-scale synoptic patterns primarily dominate the Kansas drought 

structures, especially during long-term wet and drought periods in central and eastern Kansas. 

The first principal components explained approximately 70% of the drought variability across 

the state and demonstrated a statistically significant wetting trend for the state over the last 

century, oscillating at a dominant period of about 14 years for all drought indices in this study.   

The strongest evidence of drying was shown in the second unrotated principal 

components for western Kansas especially for long-term hydrologic droughts. This underlying 

drying signal dampens the dominant wet signals in western Kansas, which might put the Ogallala 

aquifer at risk of losing its ability to recharge in the long-term in Kansas. An increase in 

temperature will increase evapotranspiration and exacerbate the water scarcity in western 

Kansas. The third principal component, which explains less than 10% drought variability, shows 

increasing intensity of drought and flooding after 1980. Rotation applied to the EOFs 

emphasized strong wetting patterns in southeast, northeast, and a small subsection of southwest 

Kansas. The 99° W meridian acted as the dominant transitional line demarcating the areas of 

Kansas’ climate and vegetation (crop, grassland) relationship. The MEI signal as it modulates 

global and regional climate variabilities provided a potential tool to couple Kansas drought’s 
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leading modes by varying lags of 3 to 7 months depending on the use of drought index and time 

steps selected.  
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Chapter 3 - Seasonal Climate Prediction Downscaled in the U.S. 

Central Plains 

 

Abstract 

Large-scale predictors of surface temperature and precipitation are evaluated from the 

monthly forecasts in Climate Forecast System version 2.0 (CFSv2) over the states from North 

Dakota down through central Texas (32.6 - 47.7°N and 92.8 - 104.1°W). By using singular value 

decomposition (SVD), the CFSv2 monthly forecasts of precipitation and 2-m temperature were 

statistically downscaled using ensemble mean predictions of reforecasts from 1982-2010. 

Precipitation skill was considerably less than temperature, and the highest skill occurred during 

the wintertime for 1-month lead time. Only the central and northern plains had statistically 

significant correlations between observed and modeled precipitation for 1-month lead time. 

Beyond a 1-month lead time, prediction skill was regionally and seasonally dependent. For the 3-

month lead time, only central plains demonstrated statistically significant mean anomaly 

correlation. After three-month lead times, the ensemble means of forecasts have shown limited 

reliable predictions which could make the forecast skill too low to be useful in practice for 

precipitation. However, temperature forecasts at lead times greater than five months showed 

some skill in predicting wintertime temperatures.  
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 1. Introduction 

Drought results in billions of dollars of agricultural losses in the central United States 

(Svoboda et al. 2002). Agriculture is highly dependent on climate, and crop yield variability is 

affected by year-to-year climatic variability with regards to extreme events and changes in 

historical regional climate (Hoogenboom 2000). Drought warning systems can be utilized to help 

local, state, and federal governments relocate resources to mitigate impacts (Hayes et al. 2004). 

Monthly to seasonal climate prediction offers considerable opportunities for decision makers to 

improve the drought, reservoir, urban power management systems (Anderson et al. 2000; 

Bracken et al. 2010; Chiew et al. 2000; Hammer et al. 2001). Climate forecasts for the central 

United States, three to six months ahead of harvest, could enable farmers to take decisions to 

decrease unwanted impacts and to take advantage of favorable conditions (Cantelaube and Terres 

2005). Solow et al. (1998) found that an increase in forecast accuracy based on El Nino Southern 

Oscillation (ENSO) has substantial value to the United States agriculture through the use of more 

advanced computer models. Since last decade the seasonal climate forecasts has been developed 

(Luo and Wood 2006) and dynamical atmosphere-ocean coupled global circulation models 

(AOGCMs) have been successfully used for seasonal climate prediction (Feddersen and 

Andersen 2005; Saha et al. 2006).  These dynamical AOGCMs are able to predict to some degree 

the chaotic internal components that have slow variations on time scales from months to seasons 

(Kim et al. 2012). Unlike pure atmospheric models, which have errors that grow quickly with 

lead time on the order of days to weeks, coupled models add skills for several months (Song and 

Mapes 2012). 

 The Climate Forecast System version 2.0 (CFSv2) was developed as a daily real-time 

seasonal forecast system by the Environmental Modeling Center at the National Centers for 
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Environmental Prediction (NCEP) and became operational in March 2011. It is an extension to 

NCEP’s first model, CFSv1, developed in 2004 and has improvements that include but are not 

limited to: upgraded four-layer soil model, interactive three layer sea-ice model, and improved 

consistency between the model and initial states produced by the data assimilation system (Saha 

et al. 2012). On average for a global scale, the CFSv2 increased the predictive skill for month-1 

land surface air temperature and precipitation by 37% and 29%, respectively, compared to 

predictions from CFSv1 (Yuan et al. 2015; Yuan et al. 2013). It is an AOGCM that incorporates 

several new physical packages for cloud-aerosol-radiation, land surface, ocean and sea ice 

processes, as well as a new atmosphere-ocean-land data assimilation system (Regonda et al. 

2016; Saha et al. 2012).   

Saha et al. (2012) discussed the poor global skill for raw precipitation forecasts (1982-

2010). This skill for precipitation rate over the Northern Hemispheric land is low for CFSv1, 

CFSv2, GCM models from National Aeronautics and Space Administration (NASA) and the 

Geophysical Fluid Dynamics Laboratory (GFDL), climate models at National Center for 

Atmospheric Research (NCAR), and two International Research Institute climate models with 

anomaly correlations between 0.04 and 0.12, highlighting consistent poor precipitation predictions 

from models (Saha et al. 2012). Yuan et al. (2011) found in a separate study that the global mean 

correlation between the observed and forecast ensemble mean series at a 1-month lead time for 

four months is 0.27. Only 9% of global grid cells had statistically significant correlation for the 

month-2 precipitation (a lead time of 2 months) forecast, and most of them were located within 

the Amazon basin. One drawback of CFSv2 as compared with other models is that it under-predicts 

the interannual variability of precipitation by about 30% globally (Yuan et al. 2011). During 

evaluating reforecast skill, one of critical issues is the choice of the observation datasets or 
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reanalysis datasets as validation datasets, which can contribute to uncertainty in skill prediction 

due to inconsistencies between them (Kim et al. 2012).  

 Recent applications of drought prediction using the CFSv2 have met with some success, 

especially over tropical regions due to higher skills over tropics compared to extra tropics. The 

CFSv2 successfully identified severe drought using the soil moisture parameter during the 

1982/1983 El Nino event in Western Australia up to 7 months lead time using retrospective 

forecasts due to stronger El Nino’s teleconnections (Yuan et al. 2011). However, it had 

difficulties predicting the 1988 drought across the United States beyond a 1-month lead time 

(Yuan et al. 2011). Yoon et al. (2012) found that seasonal prediction of the Standardized 

Precipitation Index (SPIs) over the contiguous United States using multiple statistical 

downscaling techniques resulted in reasonable skill for month-3 or 4for the SPI-6 and 1- and 2-

month lead forecasts for the SPI-3. Beyond these leads, drought prediction became unskillful for 

all statistical downscale techniques applied. Improvements of downscaled precipitation 

prediction skill in CFSv2 over CFSv1 were limited to the first lead month due to the 

improvement in the initial conditions in CFSv2 (Yoon et al. 2012). Mean anomaly correlations 

greater than 0.1 across the contiguous United States occurred only at a 1-month lead time for 

four months (Nov, Feb, May, and Aug) (Yoon et al. 2012). Prediction skill for temperature has 

produced much better results than precipitation at lead times longer than one month (Feddersen 

and Andersen 2005; Kim et al. 2012).  

The ability of CFS to reproduce the local observed climate across the Great Plains is one 

of the most important indicators of its utility for seasonal prediction applications (Wilson et al., 

1987). Due to the coarse grid size in raw CFS forecasts, Feddersen and Andersen (2005) examined 

that downscaling raw multi-model ensemble mean predictions generally adds more skill for 
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precipitation than temperature but these precipitation and temperature prediction skills were 

spatially varied across the contiguous U.S.(Yuan et al. 2015) Therefore, in this study the objectives 

are to 1) downscale the CFSv2 forecasts for surface temperature (2-m temperature) and 

precipitation, and 2) to assess surface temperature and precipitation skill across the U.S. Central 

Plains. In following sections, the data sources used and downscaling techniques as well as 

forecasting evaluation metrics are described in section 2. The evaluation results of downscaled 

seasonal precipitation and temperature are presented and cross-validated in section 3. Discussion 

and conclusions are given in section 4. 

  

 2. Data and Methods  

 2.1 Study Area 

The area coverage in this study is bounded by 32.598 - 47.716°N and 92.812 - 104.062°W, 

which includes a total of 234 CFSv2 grid points (18 in latitude by 13 in longitude) in a T126 

projection (384 × 190 Gaussian, 0.9375° × 0.9449°, roughly about 100 km × 100 km) (Fig. 1). 

This region encompasses most of the US Great Plains from North Dakota down through North 

Central Texas and is the highest agriculturally productive region in the United States. The study 

region was vertically and equally divided into three distinct regions (northern, central, and 

southern plains) to capture the regional variations and facilitate the regional analysis in AOGCM 

simulations (Fig. 1).  
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Figure 1. Resolution of CFSv2 (square) and the downscaling grid (triangle) used in this 

study.  

 

 2.2 Forecasted data from NCEP CFSv2 

The monthly flux variables pertinent to this study are precipitation rate [kg m-2 s-1] and 

average temperature at 2 meters [K]. Precipitation rate [kg m-2 s-1 or mm s-1] was converted to 

obtain inches per month. The retrospective forecasts have initial conditions for the 0, 6, 12, and 

18Z cycles for every 5th day, starting January 1 0Z every year for the period 1982-2010 (Fig. 2). 
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For each model run, there are forecasts for leads from 1 to 9 months. The monthly ensemble 

mean includes all the members from each month. 

     

 

Figure 2. (a) CFSv2 reforecast model run configuration and (b) reforecast climatology 

configuration. 

 

The initial state conditions for retrospective forecasts were obtained from the NCEP 

Reanalysis (R2) dataset. Calibration model’s climatologies for this reforecast dataset are 

provided by the National Center of Environmental Information (NCEI) for each forecast lead 

time (1-9 months). Thus, for each model run at the four six-hourly cycles, there is a 

corresponding calibration climatology file at one to nine months lead time that must be accessed 

(Saha et al., 2011) (Fig. 2). For example, there are 1464 (total model runs per year, including 

leap year runs) calibration climatologies for each lead time (i.e., the first being a climatology of 
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all January 1st 00Z model runs). CFSv2 anomalies were defined as the departure from the model 

climatology for the same lead time from the training period (Yoon et al. 2012).   

 

 2.3 Observed data from PRISM 

Observed precipitation and temperature datasets from the Parameter-elevation 

Regressions on Independent Slopes Model (Prism 2016) developed at Oregon State University 

were used as a surrogate for long-term observations for forecast verification and downscaling. 

Monthly total precipitation (P) and surface average temperature (T) from PRISM (original 

resolution of 4 km) were aggregated to 40 km resolution for a total of 348 observations (12 

months per year and 29 years) at 1200 grid points (Fig. 1).  

Monthly precipitation climatology files for 30 year normals (1981-2010) were also 

obtained from PRISM and re-gridded similarly. Monthly observed precipitation and temperature 

were transformed into anomalies by subtracting the climatological value from the monthly 

observation (Maraun et al. 2010; Tian et al. 2014; Yoon et al. 2012). Precipitation from the 

CFSv2 reforecast files between 1982 and 2010 was evaluated deterministically against the 

PRISM verification datasets.  

 

 2.4 Statistical Downscaling by Singular Value Decomposition (SVD) 

A variable that is often predicted on a local scale by dynamic seasonal climate prediction 

models is precipitation. Statistical downscaling is one methodology for improving predictions by 

specifying a local field (predictand) from a large scale field (predictor), which is accurately 

predicted by the dynamic model (Eden and Widmann 2014; Maraun et al. 2010). Statistical 

downscaling is an important procedure to be conducted before data from GCMs can be 
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pragmatically applied to regional impact studies across the Great Plains (Yoon et al. 2012). Raw 

GCM data might lead to erroneous conclusions due to its poor performance (Saha et al., 2012). 

Downscaling techniques are based on the assumption that atmospheric variability on small 

spatial scales is conditioned, though not determined, by larger scales in atmospheric general 

circulation models (Starr 1942; Storch et al. 1995; Wilks 2011). The major theoretical weakness 

of statistical downscaling is that the basic assumption is not verifiable, i.e., that the statistical 

relationships developed for the present day climate also hold under the different forcing 

conditions of possible future climates (Wilby et al. 2004). One generalized technique, Model 

Output Statistics (MOS), chooses the model field as the training predictor to account for model 

systematic errors in the predictions (Feddersen and Andersen 2005). MOS techniques apply a 

correction and a downscaling step and can only be applied to the model for which it was 

developed. A major drawback of MOS is the need for long series of hindcasts. Most MOS 

approaches are not designed for corrections in spatial correlations since the predictand inherits 

much of the spatial correlation structure of the simulated precipitation (Boé et al. 2007; 

Feddersen and Andersen 2005). 

Singular value decomposition (SVD) is an MOS downscaling approach, and it 

decomposes the cross-covariance matrix between observed (predictand) and reforecast 

(predictor) precipitation anomalies, which can be used to find coupled regional patterns between 

the predictand and predictors (Widmann et al. 2003) (Fig. 3). SVD identifies linear 

transformations of the cross-covariance matrix that concentrate as much of the mean-squared 

temporal variance into a smaller number of variables (Bretherton et al. 1992). The observed field 

anomalies are linearly regressed on the leading SVD modes derived from the ensemble mean of 

the model predictions (Fig. 3). The choice for the predictor region should not only include the 
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corresponding observations but also be large enough to resolve relevant large scale patterns. The 

purpose of SVD is to capture the spatial correlation structure of the predictor (forecasted) and 

predictand (observed). 

The predictor (X) and predictand (Y) are both standardized by removing grid point means 

and dividing by their standard deviations for a specific month and a specific lead time (for 

example, all Januaries; a lead of 1 month). The two original data matrices (e.g., temperature 

fields from observation and modeling over 29 years at a different domain) are permuted and 

reshaped into a matrix for X (29x234) and Y (29x1200). The SVD is performed on the cross-

covariance matrix (C),  

 C=X'Y  (1) 

 [U, L, V] = SVD(C) (2) 

 

where U are the patterns (eigenvectors) associated with X (left field), V are the patterns 

associated with Y (right field), and L are the eigenvalues used to explain the variance of each 

mode.  

The time series or expansion coefficients are given by the projection of the standardized 

fields on their respective patterns, 

 Am=X∙U (29 x 234) (3) 

 Bm=Y∙V (29 x 1200) (4) 

Because U and V are singular vectors of the cross-covariance matrix of X and Y, the 

covariance between A1 and B1 to Am and Bm are maximized under the condition that each mode 

is orthogonal to the mode proceeding it.  
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Multiple regression is performed on the leading modes (x = A1, A2, … Am) and the 

observed anomalies (Y) at each downscaled grid point.  

 Ŷ= β
0
 + β

1
A1+β

2
A2+β

3
A3…β

m
Am (5) 

The beta coefficients for each associated mode are calculated to minimize the expected 

root-mean-square difference between modeled Ŷ and observed Y. North’s rule of thumb was 

used to determine which leading modes (Am) were significant (North et al. 1982). These 

significant modes were the modes included in equation (5). Cross-validation was conducted by 

dividing the reforecast period 1982 to 2010 into training and validation sets. The training period 

was 28 years and one year, a validation set, was withheld from the predictor dataset, and a 

prediction is made for the withheld year. For example, SVD procedures are applied to a training 

dataset of predictors and predictands, and the observed field is linearly regressed on the leading 

SVD modes. Then the leading modes are projected onto the validation year, and the regression 

equation (5) is used to produce a prediction. This is repeated for every year resulting in 29 years 

predictions (Feddersen and Andersen 2005). Leave-one-out cross-validation procedures are 

sufficient given that over the United States precipitation lag correlation is non-significant at 1-

month lag (Yoon et al. 2012). Feddersen and Andersen (2005) found statistically significant 

mean precipitation anomaly correlations (0.23) for the contiguous United States only during the 

January, February, and March season at a 2-month lead time for a multi-model ensemble (Meteo-

France, ECMWF, UK Office) using the SVD methodology.  
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Figure 3. Flow chart outlining the downscale procedures used in this study. Dashed line 

represents repeated cycles. 

 

 2.5 Forecast Skill  

Three measures of forecast skill were used in this study: anomaly correlation, root-mean-

square error (RMSE), and skill score. Anomaly correlation is the correlation between the 

observed anomaly and the downscaled anomaly. The anomaly correlation depends on the 

climatology used and is not sensitive to the magnitude of the hindcast anomalies; thus, higher 

correlated anomalies could potentially have larger errors. Given that there are 29 years (N) or 27 

degrees of freedom (N-2), correlations have to be greater than 0.367 at the 95% confidence level 

(Yoon et al. 2012). The skill score (SS) was defined as 

 
SS=1-

MSEforecast

MSEclimatology

 
(6) 

Equation (6) was used to assess if forecast error (MSEforecast) is smaller or larger than the error 

predicted by climatology (MSEclimatology) (Wilks 2006). Positive SS values indicate that the 
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model predicts better than climatology, which suggests the forecasts add valuable information to 

users. Climatology anomalies in this study are zeros for temperature and precipitation.  

 

 3. Results 

 3.1 Precipitation 

The statistical downscaling procedure was applied to model hindcasts for the entire study 

area. Figure 4 shows the cross-validated anomaly correlation for precipitation of 1-month lead 

for all calendar months. Each plot is for the month when the forecasts were initialized, e.g., the 

January plot is the forecast for February. The predictive skill varied both spatially and 

temporally. The highest geographically uniform anomaly correlations occur for forecasts 

initialized in June for July. Seasonally, cross-validated anomaly correlations through time for 

December, January, and February (DFJ) and June, July, and August (JJA) lead-one forecasts are 

shown in Figure 5. Both seasons showed large variability. During the summer the dominant 

amount of rainfall occurs from convective processes over the central United States. These 

mesoscale processes are difficult to be modeled accurately (Yoon et al. 2012). At longer lead 

times, high positive anomaly correlations were found in fewer months and isolated to particular 

regions. For example, at a lead time of 3 months, only September forecasts for December in 

western Kansas, the Oklahoma panhandle, and eastern Colorado are robust with a mean skill 

score 0.23, respectively (not shown). Regionally, the entire study area had statistically significant 

correlations between observed and modeled precipitation anomalies at a lead time of one month 

(Table 1). As the lead time increased, the correlations became less significant as expected. 

However, for three- and four-month lead times, the mean anomaly correlations were statistically 

significant in the central plains and southern plains, respectively (Table 1).   
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 Figure 4. Cross-validated precipitation anomaly correlations 1-month lead across the 

study area for Jan-Dec (a-l).  
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Figure 5. Cross-validated mean anomaly correlation for precipitation predictions for north 

(a), central (b), and southern (c) plains in DJF (-) and JJA (--) between 1982 and 2010. 

Lead time is one month.  

 

November initialized forecasts for month-4 lead times are promising for the southern 

plains (Fig. 6 and Table 1). Spring precipitation anomalies can be reasonably forecasted during 

by early fall.  June forecasts for western Kansas in the central plains are also skillful. Early fall is 

an important time for farmers in these regions who begin to sow winter crops such as red winter 

wheat, one of the most lucrative crops in the United States. The results for precipitation forecasts 

with lead times greater than six months are qualitatively more difficult to describe with some 

skill occurring in isolated locations throughout the study area.  
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Table 1. Mean precipitation anomaly correlations for northern, central, and southern 

plains by lead time (***, **, * significant at the 0.01, 0.05, and 0.10 levels, respectively). 

 

 1-month lead 2-month lead 3-month lead 4-month lead 

North 0.14*** 0.09* -0.06 -0.01 

Central 0.24*** 0.01 0.09* 0.07 

South 0.10* 0.01 -0.02 0.13*** 

 

The mean anomaly correlation for the northern, central, and southern Plains for June 

initialized forecasts was 0.25, 0.38, and -0.09, respectively (Fig. 6). January forecasts for the 

northern and southern plains were also high (r > 0.2) (Figs. 4 and 6). There were grid points that 

had statistically significant correlations (r > 0.37) in all months, and the lowest percentage of 

statistically significant correlations occurred in the central Plains in November (5.1%). It is 

important to note that there were statistically significant negative correlations, indicating that 

climate behaved in direct contrast to CFSv2 forecasts, which is not ideal because this is not a 

systematic feature of forecasts (Yoon et al. 2012).  
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Figure 6. Precipitation anomaly correlations by lead time for Jan-Dec (a-l). Each line 

represents one of three regions in the study area. 
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Figure 7. Skill scores for 1-month lead precipitation anomalies.  

 

The utility of these forecasts for practical application can be tested using the skill score, 

which assesses whether the CFSv2 prediction is more robust than predicting climatology based 

on the mean square error between observed and forecast variables. The spatial patterns of lead 1-



89 

 

month skill score closely resemble the patterns of the anomaly correlations (Fig. 7). Thirty-one 

percent of all grid points in the study area have positive skill score in January, 44% in June, 30 % 

in September, and the remaining had less than 25%.   

 

 3.2 Two-Meter Temperature 

Predictive skill for 2-m air temperature was much higher than surface precipitation at 

both short and long lead times. The months with the highest mean anomaly correlations at a 1- 

month lead time across the entire region were August (0.46), January (0.41), and October (0.41) 

(Fig. 8). The worst predictive months were December, June, September with mean anomaly 

correlations of -0.08, 0.001, and 0.03, respectively (Fig. 8). Eighty-two percent of grid points in 

August had positive skill score, and nine months had over 35% of downscaled grid points with 

positive skill score (Figs. 8 and 11). Mean monthly anomaly time series for a 1-month lead time 

were statistically correlated for all three regions at 99% confidence levels (Table 2). Only the 

northern plains at the 2-month lead time had a statistically significant correlation between 

observed and modeled temperature anomalies (Table 2). For the 3-month lead time, every region 

in the study area had statistically significant positive correlations, followed directly by 

statistically negative correlations at a 4-month lead time, which is not ideal behavior for CFSv2 

temperature forecasts (Yoon et al. 2012) (Table 2).  

The 1-month seasonal winter (DJF) temperature skill showed higher variability between 

positive and negative correlations through time than summer (JJA) temperature skill, particularly 

for the central and southern plains (Fig. 9). The southern plains winter forecasts displayed both 

the highest and lowest mean anomaly correlations through time across the study area, occurring 

in 2003 and 2005, respectively (Fig. 9).  The average anomaly correlation for July forecasts at 2-

month lead time in the northern Plains was 0.33 (Fig. 10). April 3-month lead time forecast skill 
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was greater than April 1- or 2- month lead time prediction skill, demonstrating a mean anomaly 

correlation of 0.53 as compared to 0.31 and -0.18 for 1- and 2- month lead times, respectively. At 

a 4-month lead time, July showed the highest skill among all months for the northern plains (Fig. 

10).  

The northern plains had the highest overall skill through time during the winter and 

summer.  Higher summertime prediction reliability is favorable for management systems 

sensitive to heat stress and extreme temperature. August in particular showed high skill across 

the entire region; however, skill was isolated towards the central and northern plains in June and 

July (Fig. 11).By a lead of two months, skillful forecasts were limited to one or two months out 

of the year. July forecasts for September in Nebraska and South Dakota had modest predictive 

skills (not shown).  

At longer lead times, forecast skill generally degraded (Fig. 10). However, forecasts 

initialized in the springtime for winter exhibited moderate to strong skill. For example, June 6-

month lead time predictions for December had statistically significant skill for the central and 

northern plains (Fig. 10). The mean anomaly correlation for June 6-mo lead time predictions in 

the northern, central, and southern plains were 0.54, 0.45, and 0.33, respectively. The correlation 

for the northern plains is only slightly less than the highest correlation in the entire study, which 

was the 1-month lead time correlation in January (0.57) (Fig. 10). In addition, May initialized 

forecasts for 7- and 8- month lead times demonstrated high anomaly correlations (r > 0.35) 

exclusively for the northern and central plains (Fig. 10). These long-term predictions of seasonal 

wintertime temperatures can be utilized by agricultural, municipal, and energy sectors for many 

applications, including but not limited to food production, early freeze detection, and energy 

consumption. By a lead time of nine months, April, May, and June initialized forecasts displayed 
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mean anomaly correlations between 0.25 and 0.30 (averaged across the study area) with 43% of 

downscaled grid points in April demonstrating skill better than climatology (not shown). 

Southern plains forecast skill at a 9-month lead time was higher than the other regions, excluding 

June which showed the largest skill (r > 0.50) in southwest North Dakota (not shown). 

November temperature forecast skill in the southern plains was also unusually high 

(r ̅= 0.32) with a bulls-eye of anomaly correlations greater than 0.50 in north central Texas (not 

shown). While wintertime temperatures can be predicted with some skill at lead times greater 

than six months (depending on the lead time and month chosen), summer temperature 

predictions displayed consistently reliable skill at lead times of three months or less.  
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Figure 8. Two-meter temperature anomaly correlations Jan-Dec (a-l) for a lead time of one 

month.  

 

 



93 

 

 

Figure 9. Cross-validated mean anomaly correlation between observed and predicted 

temperatures for north (a), central (b), and southern (c) plains in DJF(-) and JJA (--) 

between 1982-2010. Lead time is one month. 

 

 

 

 

 Table 2. Mean temperature anomaly correlations for northern, central, and southern 

plains by lead time (***, **, * significant at the 0.01, 0.05, and 0.10 levels, respectively). 

 

 1-month lead 2-month lead 3-month lead 4-month lead 

North 0.34*** 0.13** 0.16*** -0.09* 

Central 0.28*** 0.04 0.11* -0.09* 

South 0.19*** -0.04 0.13** 0.02 
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Figure 10. Two-meter temperature anomaly correlations by lead time for Jan-Dec (a-l). 

Each line represents one of three regions in the study area. 
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Figure 11. Skill scores for 1-month lead temperature anomalies. 

 

 4. Conclusions 

CFSv2 monthly forecasts of precipitation and 2-m temperature have been statistically 

downscaled using ensemble mean predictions and reforecasts between 1982 and 2010. The 
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motivation of this work was to utilize climatic variables for drought and flooding applications in 

the central plains of the United States, a highly productive agricultural region.  

The results indicated that overall from 1982 to 2010 the downscaled predictions of 

precipitation and temperature were more skillful in month-1 and some of month-2.  Temperature 

prediction skill was better than precipitation at both short and long lead times. Only month-1 

predictions for both precipitation and temperatures showed statistically significant correlations 

for northern, central, and southern plains. As the lead time increased, the predictions became 

unskillful especially for southern plains. For example, seasonal predictions showed some skill for 

specific months for specific locations but not statistically significant for all month-3 forecasts. 

Regionally, the northern plains had better prediction scores than southern plains for both 

precipitation and temperature. Central plains’ prediction performance was better than southern 

plains, which is critical for agricultural producers in Kansas, Nebraska, and northern Oklahoma. 

After three-month lead times, the ensemble mean of forecasts showed limited reliable 

predictions, which could make forecast skill too low to be useful in practice.  Although efforts 

have been made in realistically initializing land surface conditions and hydrological ensemble 

predictions, further improvements in CFSv2 need to be completed to be useful for long term 

forecasting applications in the central United States. 

Operational seasonal precipitation and temperature forecasts using the downscaling 

procedures can be provided to farmers and decision makers for a variety of applications. Masks 

for each month and lead time can be applied to operational forecasts to only show forecasts for 

grids that had statistically significant positive anomaly correlations during the training period. 

Each month and lead time will differ on the forecast coverage for the study area. Thus, some lead 

times and months will have more utility than others, which should be effectively communicated 
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to those who wish to use CFsv2 downscaled forecasts.   
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Appendices 

Appendix A - Available Water Capacity in Kansas Soils 

Strong associations between total available water capacity (AWC) and mild, moderate, 

and severe drought frequency were present in the original Kansas data (Fig. A1). Increasing 

water capacities resulted in lower mild, moderate, and severe drought frequencies. PDSI was 

recalculated for a manually set range of AWCs (76 to 305 mm) for each station to assess changes 

in drought characteristics. Total drought frequency decreased and stabilized after 150 mm of 

AWC for stations in western Kansas (Fig. A2). Total drought frequency in western Kansas by 

using AWC from 76 and 150 mm is 15-20% higher in western Kansas than eastern Kansas, 

which does not get above 45% for any station (not shown). When AWC was increased, the peak 

drought index decreased for stations in eastern and central Kansas but increased for stations in 

western Kansas. For most of the state, extreme relative frequency of drought increases with 

higher AWC with changes most notable when the available water is higher than 150 mm. 

However, stations in far western Kansas (Saint Francis, Lakin, and Liberal) saw a peak in 

extreme drought relative frequency at 76 mm and a minimum at approximately 150 mm of water 

(Fig. A3). The farther east stations are in western KS (Norton or Ashland), the more steadily the 

extreme drought relative frequency rises until AWC reaches 150 mm when it begins to resemble 

the rest of the state (Fig. A4). Areas at the largest risk of severe and extreme drought based on 

low available water capacity (less than 150 mm) are dominantly in southwest Kansas near the 

Arkansas and Cimarron Rivers (Fig. A5). 
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Figure A1 PDSI relative frequencies of mild, moderate, severe, and extreme drought (top to 

bottom) for all stations and their available water capacity.  
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Figure A2. Relationship between total drought relative frequency (RF) (PDSI) and 

available water capacity (AWC) in western Kansas.  
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Figure A3. The same as Figure B2 except for extreme drought relative frequency.  
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Figure A4. Relationship between extreme drought relative frequency (RF) (PDSI) and 

available water capacity (AWC) for selected stations in eastern Kansas. 
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Figure A5. Available water capacity (AWC) less than 150 mm in Kansas (in purple). 
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Appendix B - Drought Tool Verification 

The python tools developed at Kansas State University had excellent agreement with 

available drought tools in other programming languages. To compare our PDSI results against 

other methods, we used the MATLAB tool developed by Jacobi et al. (2013) at Vanderbilt 

University (Fig. B1) using the full record calibration setting. Here we compared Manhattan PDSI 

time series from 1900 to 2014 between two tools. The correlation coefficient is greater than 

0.999. There are minor differences between two tools, which are caused by computation 

rounding and different AWC assumption used. The difference between two tools is the 

assumption of AWC in the surface layer of soil. In our code it is not equal to 1 inch but the 

amount of water in the top 15 cm of soil obtained from the 10m x 10m gSSURGO dataset. The 

effects of this change are relatively negligible in Manhattan time series.  
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Figure B1.One-to-one plot of Manhattan, KS PDSI calculated using Jacobi’s tool and the 

tool developed at Kansas State University (Zambreski). 

 

The tools for calculating SPI and SPEI were compared to results from the National 

Drought Mitigation Center’s Drought Atlas. Agreement for both tools was also extremely high 

(r>0.999). 
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Appendix C - Drought Characteristics by SPEI and SPI 

The 29 station’s SPEI- and SPI-3, -12, and -24 drought characteristics are summarized in 

Tables C1 to C4. The Figure C1 shows the drought intensity time series for eastern Kansas by 

SPEI- and SPI-3, -12, and -24.  
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Table C1. Station SPEI-3 drought characteristics, including minimum peak SPEI-3 and 

station’s longest drought. 

 

  

Station

Duration

 (mo)

Atchison -2.44 1910 4 20 1955-1956 -24.06 -1.2

Columbus -2.78 1956 4 26 1900-1902 -32.57 -1.25

Council Grove -3.01 1910 4 23 1955-1957 -21.39 -0.93

El Dorado -2.43 1936 8 26 1932-1934 -24.08 -0.93

Ft Scott -2.32 2012 7 26 2010-2013 -36.69 -1.41

Horton -2.83 1910 4 23 1932-1934 -16.94 -0.74

Independence -2.26 1980 7 23 1938-1940 -16.25 -0.71

Lawrence -2.66 1930 4 24 1955-1957 -26.24 -1.09

Leavenworth -2.64 1953 10 15 1937-1938 -12.95 -0.86

Manhattan -2.87 1910 4 20 1953-1955 -15.98 -0.8

Olathe 3E -2.59 1936 4 22 1955-1957 -22.46 -1.02

Ottawa -3.51 1910 4 20 1938-1940 -21.7 -1.08

Sedan -2.44 1939 11 22 1962-1964 -21.42 -0.97

Anthony -2.43 1947 10 37 1952-1955 -38.84 -1.05

Coldwater -2.46 1956 10 24 1932-1934 -26.59 -1.11

Ellsworth -2.51 1936 8 20 1987-1989 -18.11 -0.91

Hays 1 S -2.58 2012 7 17 1988-1989 -16.96 -1

Larned -2.55 1983 9 21 1987-1989 -20.19 -0.96

McPherson -2.53 1910 4 24 1955-1957 -29.69 -1.24

Minneapolis -2.82 1947 10 26 1916-1918 -22.65 -0.87

Smith Center -2.64 2012 7 18 1939-1940 -23.98 -1.33

Ashland -2.65 2011 7 19 1955-1957 -19.36 -1.02

Lakin -2.57 1963 4 26 1962-1964 -27.21 -1.05

Liberal -2.83 2012 8 23 2012-2014 -17.58 -0.76

Norton 9SSE -2.71 1910 4 21 1939-1940 -24.2 -1.15

Oberlin -3.63 1937 2 24 1955-1957 -20.36 -0.85

Saint Francis -3 1910 4 14 1934-1935 -16.37 -1.17

Scott City -3.82 2012 7 18 1952-1953 -13.65 -0.76

Wakeeney -3.62 2012 6 18 2010-2011 -12.03 -0.67

Peak SPEI- 3 Intensity Longest Duration (SPEI-3≤0)

SPEI-3 Year Mo Years Severity Intensity
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Table C2. Station SPEI-12 drought characteristics, including minimum peak SPEI-12 and 

station’s longest drought. 

 

  

Station

Duration

 (mo)

Atchison -2.56 1988 12 33 1935-1938 -32.92 -1

Columbus -2.58 1902 4 37 1952-1955 -57.61 -1.56

Council Grove -2.16 1988 12 63 1936-1941 -84.4 -1.34

El Dorado -2.16 1956 10 66 1929-1935 -62.99 -0.95

Ft Scott -2.71 2012 6 46 1929-1933 -48.97 -1.06

Horton -2.55 1934 8 69 1919-1925 -53.14 -0.77

Independence -2.26 1956 10 64 1962-1967 -73.72 -1.15

Lawrence -2.37 1934 8 63 1952-1957 -88.74 -1.41

Leavenworth -2.51 1902 4 61 1952-1957 -75 -1.23

Manhattan -2.74 1934 8 64 1936-1941 -68.78 -1.07

Olathe 3E -2.31 1936 11 68 1952-1958 -81.31 -1.2

Ottawa -2.17 2012 7 50 2000-2004 -45.24 -0.9

Sedan -2.28 1911 6 60 1952-1957 -73.74 -1.23

Anthony -2.21 1954 12 68 1932-1938 -74.49 -1.1

Coldwater -2.38 1956 6 59 1952-1957 -76.68 -1.3

Ellsworth -2.58 1935 3 59 1952-1957 -61.01 -1.03

Hays 1 S -2.52 1957 2 44 2010-2014 -50.13 -1.14

Larned -2.18 2012 6 57 1952-1957 -68.22 -1.2

McPherson -2.37 1955 6 118 1930-1940 -127.19 -1.08

Minneapolis -2.6 1934 8 87 1931-1938 -102.15 -1.17

Smith Center -2.36 1935 3 103 1932-1941 -143 -1.39

Ashland -2.44 1935 3 128 1930-1941 -126.99 -0.99

Lakin -2.45 1935 4 89 1933-1940 -113.36 -1.27

Liberal -2.37 2011 8 60 1952-1957 -77.36 -1.29

Norton 9SSE -2.4 2002 9 116 1931-1941 -154.72 -1.33

Oberlin -2.47 1940 4 79 1931-1938 -89.66 -1.13

Saint Francis -2.47 1935 3 57 1952-1957 -90.13 -1.58

Scott City -2.53 1956 6 83 1934-1941 -97.16 -1.17

Wakeeney -2.6 2012 12 53 2010-2014 -71.55 -1.35

Peak SPEI- 12 Intensity Longest Duration (SPEI-12≤0)

SPEI-12 Year Mo Years Severity Intensity
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Table C3. Station SPEI-24 drought characteristics, including minimum peak SPEI-24 and 

station’s longest drought. 

 

 

  

Station

Duration

 (mo)

Atchison -2.36 1957 2 96 1933-1941 -113.68 -1.18

Columbus -2.58 1902 5 88 1931-1938 -72.8 -0.83

Council Grove -2.22 1940 7 99 1933-1942 -135.81 -1.37

El Dorado -2.1 1955 5 135 1930-1941 -145.64 -1.08

Ft Scott -2.82 2012 12 64 1930-1935 -70.29 -1.1

Horton -2.44 1934 8 146 1930-1942 -171.19 -1.17

Independence -2.15 1954 4 86 1931-1938 -81.11 -0.94

Lawrence -2.26 1937 11 139 1930-1941 -147.68 -1.06

Leavenworth -2.21 1954 7 97 1933-1941 -116.64 -1.2

Manhattan -2.49 1934 10 122 1932-1942 -154.97 -1.27

Olathe 3E -2.38 1937 11 127 1930-1940 -147.99 -1.17

Ottawa -2.28 1937 11 135 1930-1941 -141.7 -1.05

Sedan -2.52 1911 6 71 1963-1969 -82.51 -1.16

Anthony -2.3 1955 4 74 1932-1938 -93.17 -1.26

Coldwater -2.4 1934 8 103 1933-1941 -137.6 -1.34

Ellsworth -2.57 1940 6 120 1931-1941 -181.33 -1.51

Hays 1 S -2.52 1940 6 90 1934-1941 -126.16 -1.4

Larned -2.43 2012 7 120 1931-1941 -129.31 -1.08

McPherson -2.44 1956 6 132 1931-1942 -167.52 -1.27

Minneapolis -2.57 1935 4 127 1931-1941 -172.94 -1.36

Smith Center -2.62 1940 7 103 1933-1941 -171.77 -1.67

Ashland -2.37 1934 8 133 1930-1941 -156.18 -1.17

Lakin -2.01 1964 7 104 1932-1941 -140.09 -1.35

Liberal -2.44 2012 8 121 1931-1941 -137.77 -1.14

Norton 9SSE -2.17 1940 6 119 1932-1942 -179.08 -1.5

Oberlin -2.38 1940 6 111 1932-1941 -167.98 -1.51

Saint Francis -2.32 1956 6 117 1997-2007 -101.11 -0.86

Scott City -2.27 2012 7 88 1934-1941 -120.65 -1.37

Wakeeney -2.35 2013 8 99 1933-1941 -130.48 -1.32

Peak SPEI- 24 Intensity Longest Duration (SPEI-24≤0)

SPEI-24 Year Mo Years Severity Intensity
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Figure C1. Drought intensity across time for the SPEI and SPI -3,-6,-12,-24 (top to bottom) 

for eastern Kansas 
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Appendix D - SPEI-n EOF, REOF, and Spectral Analysis of PCs  

 

 

Figure D1. Spectrum of the variance explained by each eigenvalue (%) of the first 10 

principal components for the SPEI-3. 
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Figure D2. The same as Fig. D1 but for the SPEI-6. 
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Figure D3. The same as Fig. D1 but for the SPEI-12. 
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Figure D4. The same as Fig. D1 but for the SPEI-24. 

 

 

Figure D5. EOFs and PCs by using SPEI-3. 
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Figure D6. EOFs and PCs by using SPEI-6. 

 

 

 

Figure D7. EOFs and PCs by using SPEI-12. 
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Figure D8. EOFs and PCs by using SPEI-24. 

 

 

Figure D9. Power spectral density of the PCs for the SPEI-3. Maximum peaks occur at 

periods of 14.22, 1.29, and 21.33 years for the PC1, 2, 3, respectively.  
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Figure D10. Power spectral density of the unrotated PCs for the SPEI-6. Maximum peaks 

occur at periods of 14.22, 8.53, and 14.22 years for the PC1, 2, 3, respectively. 
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Figure D11. Power spectral density of the unrotated PCs for the SPEI-12. Maximum peaks 

occur at periods of 14.22, 8.53, and 14.22 years for the PC1, 2, 3, respectively. 
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Figure D12. Six REOFs of the SPEI-3. 

 

 

Figure D13. Six RPCs of the SPEI-3. 
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Figure D14. The same as Fig. D12 but for the SPEI-6.  

 

 

 

Figure D15. The same as Fig. D13 but for SPEI-6. 
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Figure D16. Three Varimax REOFs and RPCs of the SPEI-12. All rotated components 

have statistically significant positive trends. 

  

Figure D17. The same as Fig D16 but for the SPEI-24. All rotated components have 

statistically significant positive trends. 
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Figure D18. The same as Fig. D16 but for the SPI-24. All rotated components have 

statistically significant positive trends.  

 

 


