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1. GENERAL INTRODUCTION

The objective of this report is to present the study made by

Zangwill (8, 9) dealing vith a deterministic multiproduct multifacility

production planning and inventory model and that by Nelson (7) concerned

with labour assignment as a dynamic control problem. The optimization

technique employed by Zangwill in arriving at an optimal production

schedule is the well known dynamic programming. In this report, the same

solution has been obtained more simply by a discrete version of the maximum

principle. Nelson has optimized the labour assignment in a labor and

machine limited production system by the continuous maximum principle. In

this report the same problem for discrete time intervals is studied by the

discrete maximum principle.

The deterministic multiproduct, multifacility, multiperiod production

planning model developed by Zangwill is essentially a linking together

of several single facility models; the linking is arranged to form a

multifacility acyclic network. This type of linking preserves many of

the interdependences in both production and cost that are inherent in

multiproduct, multifacility production systems. An example of such

interdependence is a situation in which a facility cannot produce before

it receives inputs from another facility. In addition, the acyclic network

also implies many multiproduct and subassembly situations.

The model considers concave production cost functions which may depend

on production in several different facilities and piecewise concave inventory

cost functions. The optimization problem consists in determining an optimal

production schedule that specifies how much each facility in the network

should produce in each period for the next n periods so that the total

production and inventory cost is minimized.



First some basic definitions are given and the problem is stated

clearly with respect to the cost structure of the acyclic network. Next

the parallel facility case is discussed in detail. An algorithm based on

the dynamic programming employed by Zangwill is presented and applied in

the solution of Example 1. The same example is then solved by the discrete

maximum principle. This is followed by Example 2 in which the parallel

facility case with a nonlinear cost function is discussed. This is treated

as a multi-dimensional process and solved by the discrete maximum principle.

The series facility case and the dynamic programming algorithm for obtaining

the optimal solution are then presented. Example 3 which deals with 3

facilities in series is then solved by both dynamic programming and the

discrete maximum principle. In Example H, four facilities in series are

considered. Example 5 is a mere extension of Example It with one additional

facility which yields entirely different results from those of Example It.

Both Example h and Example 5 are solved by dynamic programming.

Next a multiperiod production planning model with a concave cost

function and a backlog of- demand is presented. Here again the technique

of dynamic programming employed by Zangwill is presented first. Example 6,

which illustrates the usefulness of this type of problem is solved by both

techniques, namely, dynamic programming and the discrete maximum principle.

In each of the above examples an attempt has been made to compare the ef-

ficiencies of the two techniques.

The last section of the report is devoted to the discussion of labour

assignment as a dynamic control problem in a multifacility network. The

system considered has L labourers and m machine centres. There are f.
i

identical machines in machine centre i, i = 1, 2, , m. The total number

of labourers available is less than total number of machines. Thus labour



is a limited resource. The work pieces which arrive at the machine centre

are processed on different machines in a definite order. The work piece

which arrives at a particular machine centre in which all the machines or

all those machines which have lahoures assigned to them are already

engaged in processing the work pieces which arrived before is forced to

wait in a queue. This incurs a cost that is known as the in-process

inventory cost. The problem at hand consists in seeking an optimal way in

which labour is assigned to different machine centres so as to minimize the

total in-process inventory cost during a given time period.

In the original model analyzed by Melson (T), the work pieces are

assumed to arrive at the machine centres at a continuous rate and hence the

continuous maximum principle is employed in optimizing labour assignment.

The model considered in this report assumes that the work pieces arrive

at discrete time intervals and is solved by the discrete maximum principle.

Example 7 is a simple numerical example which illustrates the applicability

of the algorithm.



2. DEFINITIONS AND STATEMENT OF THE PROBLEM (8, 9)

2.1 BASIC FACILITY

The rudimentary building block in the acyclic network is the basic

facility, or simply, facility. Each facility is as shown in Fig. 1 and

consists of a production line and an inventory for the product.

The facility receives inputs from raw materials and one or more

facilities and then in each period manufactures a specific product on its

own production line. This product is then stored in inventory until needed

either to satisfy market requirements for the product or to supply input

to other facilities.

Let r., r. > o be the market requirements for facility j '

s

(J = 1, 2, ..., N) product in period i (i = 1, 2, . . . , n) , where n is the

number of periods under consideration and there are N facilities. It is

assumed that all requirements r. are fixed and known in advance. Let x . ,

x. > be the production completed in period i by facility J and I.

be the inventory at the end of period i , in facility J

.

2.2 ACYCLIC NETWORK

The individual facilities are linked together to form an acyclic network

as shown in Fig. 2. Each facility can receive inputs from either raw

materials or from lower numbered facilities. Similarly each facility can

supply only higher numbered facilities or market requirements for its own

pr '.

.

-he inventory equations for the network express the condition that the

inventory level in period i of facility J is the total amount of pro-

duction completed in the facility through period i less the amount desired

to satisfy market requirements and inputs to other facilities through
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period i. Let a? (a1
' >_ 0) be the number of units of facility J*s product

required to produce one unit of facility h's product, a 1'
11

= for h <_ j,

since facility J supplies only higher numbered facilities. However, for

any J < h, aJ could be zero, if facility J does not supply inputs to

facility h. It is assumed that there is no time loss in transmission of

goods from one facility to another. However, facility J can have time

lag in production. Let L be a non negative integer that represents the

number of periods lag from the start of production in facility J until

the completion of production. Production started in period i at facility

j is thereby completed in period i + L . The amount desired out of

facility j in period i as inputs to other facilities is therefore

h=N .. .

h=A 1+\

The total demand on facility J in period i denoted by y^ is

y
3
.
= r? ? a

Jh
x* . (l)

1 1
h-jil

1+L
h

Hote that production can be started in each period so that at any

instant of time there may be several batches of production started in a

particular facility but not yet completed.

Production lags introduce a difficulty in that it might be impossible

for certain facilities to complete production in time to satisfy some

initial market requirements. This is an artificial difficulty imposed by

considering a time horizon of n periods. There is no loss of generality

in assuming that market requirements are zero in any period that cannot be

supplied because of the production lags

.

From the above discussion the inventory level equation becomes:



ij = T (^ -
»J)

(2)
1

h=l
n

for all i and j.

2.3 BACKLOGGING

It is assumed that each facility can backlog total demand for its

product for a certain integral number of periods. Let o be a non negative

integer denoting the number of periods of backlog permitted for facility J

.

Each facility can have a different a but for a particular facility a is

fixed. For any given facility a backlog of up to a periods of total

demand is permitted; but no more than a periods, a is called the backlog

limit for facility J. If a, = no backlogging is permitted in facility J.

The inventory with backlogging is

, h=i .

ij»- I yn • (3)
1

h=i-o +1

Consider a situation in vhich facility J-l supplies facility J so

that b~ ,J > 0. If o . > 1 equation (3) would permit production in

facility J without receiving goods from facility J-l. The backlogging

allows this to occur. In many production problems the above situation is

meaningless because facility j could not produce without the inputs from

the facility J-l. In such cases a . must be zero. However, if there is

a large buffer stock of facility J-l's product at facility J, then

a.
1 >_ 1 might be permissible.

The market requirements are known in advance.

2.U THE KULTIPRODUCT MULTIFACILITY SYSTEM

The acyclic network can be used to model a wide variety of production

and inventory systems as will be illustrated.



Fig. 3a depicts a multi-product system in vhich facility 1 produces

a subassembly that is used to make one final product in facility 2 and a

different final product in facility 3.

This system is modelled by using an acyclic network with 3 facilities,

letting a
12

> 0, a
13

> and setting a
23

= 0.

Figure 3b exhibits another structure. Two different sub-assemblies;

one produced in facility 1 and the other in facility 2 are required to

make the final product in facility 3. This system can be modelled by

12 13 23
using a 3 facility acyclic network with a = 0, a > and a > 0.

The acyclic network can clearly be applied to many other complex

multi-product multi-facility systems, an example of which is given in

Fig. h.

NOTATION: Now let us define certain vectors. Let xJ = (x,,x,, ...,xJ )
1 n

be the production schedule or vector for facility J. The vector k is

given by

k = 7 1 2
(x , x ,

1 2
*2 » xo

»

1 2
x , x ,n' n

N>1
., X )

., x.

., x„

N

where k is the schedule for the entire network. Often it is necessary to

consider the production in facilities J through N.

Let k = (x , x , . . . , x ) be defined as a partial production vector.

The vectors y
J = (y^, y^, . . . , y

J
) and r J = (rj[, r^, .... r^) represent
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respectively the total demand and market requirements for facility j.

2.5 THE COST STRUCTURE OF THE ACYCLIC NETWORK

For the N stage network the total cost F(k) is given by

j=N i=n
F(k) = p(k) +

I I y^Aih (k)

1=1 i=i
x x

where

P(k) = concave cost function of production schedule vector k,

J=N i=n

I £ Mr ( I
.

) = sum of the inventory costs

.

1=1 i=l
1 L

Here P(k) represents the Joint costs among facilities and can include

production and set up costs that are concave functions of k. Each

M^ (I.) is concave on the interval (-», 0) and on the interval (0, +")

but need not be concave on the interval (-», +») . A function of this form

is called piecewise concave. An example of such a function is given in

Fig. 5.

Since I is actually a function of production vector k, it is often

.convenient to denote this relationship explicitly as I (k), so that

l{ = if (k) .

The inventory cost functions can be expressed in terms of k. Let

M^ (k) =
MJ> {lf(k) } .

Total cost function is thus

J=N i=n
,

F(k) = P(k) + [ I M?(k) .

- J=l i=l 1
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F(k) is also piecevise concave.

2.6 PROBLEM STATEMENT

The problem can be stated as follows:

Given certain fixed non negative market requirements for each of the

H facilities over the next n periods, find an optimal production schedule

k, vhich minimizes the piecevise concave function

J=N i=n
F(k) = P(k) +11 »ff(k) (Ua)

J=l i=l

subject to

h=l

y^ = total demand in period i for facility j

<
h=N

<>, k

, h=i ,

h=i-o +1

where the minus sign indicates that negative inventory or backlog is

permitted,

ijj = 0, (8)

XJ>0, (9)

for all i = 1, 2, . . . , n and J = 1, 2, ..., K.

Let x be the set of all production vectors that satisfy the equations

(5), (6), (7), (8), and (9); x being a bounded polyhedral set is convex and

compact. Any k in x is called feasible. A partial production vector k

is said to be feasible if equations (5) through (9) hold for J >_ h and all i.
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If k is feasible, x is said to supply k feasibly if the production

vector k
h

= (x
h

, k
h+1

) is feasible.

Optimization problems have been solved for mainly two cases.

1) Parallel Facility Case,

2) Series Facility Case.

2.7 PARALLEL FACILITY CASE

Here there are H different facilities, producing N different

products for vhich the demand is knovn exactly for n periods. The oroblem

is to plan an optimal production schedule as to how much each facility

should produce in each period in order to minimize total costs. On the

surface this might look like a direct generalization of production schedule

of N single facilities. But one important difference here is that the

fixed cost has been considered as a Joint cost for all the K facilities.

Production and inventory costs may vary for each facility. The

parallel facility case looks as shown in Fig. 6.

r

2.8 SERIES FACILITY CASE

In series case, there are N facilities connected in series and only

one final product is produced to supply the market requirement.

Product produced in facility J goes to facility (j+1). The final

product comes out of facility N. In order that facility (j+1) produces one

unit, it may be necessary that facility J should produce 1, 2, or 3 or even

more products. But in any case, each facility in the link should produce

at least one product. The inventory costs may vary from facility to facility,

but the production cost may be expressed as a total cost for all the facilities

in a given period.
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3. CASE STUDY OF PARALLEL FACILITY

3.1 A DYNAMIC PROGRAMMING ALGORITHM FOR PARALLEL FACILITY CASE

As described earlier, a parallel facility case consists of N facil-

ities, each of which supplies only market requirements and no other

facilities, so that a =0 for all J and h.

The form of the parallel facility case is depicted in Fig. 6. In the

parallel facility case the inventory equation (5) reduces to:

h=i

I3 - I (x? - r° ), i = 1, 2, .... n,
1

h=l
n

J = 1, 2 N.

One of the interesting aspects of the parallel model is its cost

structure. It is assumed that there are Joint costs among facilities in

each period so that the cost in period i depends upon the production

completed and inventories in all N facilities in period i. This as-

sumption permits, for example, inclusion of a cost on the total production

completed in all facilities in period i,

h=N

h=l
1

To express these costs mathematically, let

,12 3 N .

x
±

= (x^ x
±

, Kj, ..., Xj )

and

I = ( I
1

I
2

I
N

)h V i* ' i ' '

where x is a vector representing the production completed in all N

facilities in period i, while I. is a vector representing the inventories

in all H facilities in period i. - The concave cost term P(k) is expressed
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P(k) = I P*(x I )

i=l

where P. (x. , I.) is the cost in period i of having the entire network

complete x. and finish the period with inventories I.

.

To formulate the algorithm consider first the inventory structure of

the model. Let us define D as a dominant set which represents all the

feasible production vectors. Following a schedule in D the inventory in

facility j in period i can he specified by an integer u as follows

, h=uJ ,

i " I r£ . (10)

h=i+l

The integer uJ indicates that in period i facility j has a stock

on hand to satisfy requirements through period u . When the j facility's

inventory level in period i can be expressed as in equation (10), the

inventory horizon is said to be u .

Let u=(u,u,...,u)be the vector of u . The inventory horizon

in the entire network in period i, is said to be u if facility J's inventory

horizon in the period i is u for all J. Let

U = {u|n >_ u >_ max (0, i - a ) } .

For any schedule in D the network inventory horizon in period i must

be u for some u in U. to maintain feasibility.

The production vectors x. have an analogous characterization for a

schedule in D. If the level of I, . is u, then

h=vJ

xJ = y rJ
1 hW h

for some integer v"5 where
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vJ > uJ

Let us define a vector

,12 H.
V = (v , V , . . . , V )

and a set

V
1
(u)

If tf > i then V3 = uJ

if uJ < i then n >_ v^ >_ max (u^, i - a)

The network production completed in period i, x. , is said to supply

h=vJ

u+1 to v if x? = I , rl for all J

.

1 h
h=l+uJ

For a schedule in D if the level of I. is u and x supplies

from period u+1 to v then v must he in V (u). Furthermore the horizon

of I. must he v.
i

It is also necessary to consider the cost functions. Let

« 1
N

i i

P^u.v) = P^(x., I
1

) +
I M^ (pJ)

, (11)

if the horizon of I. is u and x. supplies from period u+1 to v.

P.(u, v) is then the total cost for the network in period i.

The dynamic programming (l) recursion relationship can now he formulated.

Let F.(u) he the minimum cost in all N facilities from period i to n

following an optimal production policy given that the horizon of I. is u.

The recursion is

F^u) = min v e V^u) {P*(u, v) + F
i+1

(v)} (12)
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where u is in the set U .

The recursion states that following a schedule in dominant set D at

the end of period i-1, the network inventory level will he u for some u

in U. ... The network production completed will then supply from u+1 to v

where v is in V.(u). P.(u, v) is the total network production and

inventory charges in period i. Since at the end of period i, the inventory

horizon is v, the cost from the beginning of period i+1 to the end of

period n is F. +.(u), i = 1, 2, ..., n-1.

Equation (12) can be used recursively until we get F.(u) which gives

the total cost of all the N facilities in n periods.

Let us illustrate the parallel facility case by a numerical example.

3.2 EXAMPLE 1. PARALLEL FACILITY WITH LINEAR COST FUNCTION

Consider the following 3 facility 3 period situation. Let the demand

of the product of each facility be as follows:

DEMAMD IN PERIOD

FACILITY 12 3

1 2 3 It units

2 12 1 units

3 3 1 * units

No production lag or backlog is permitted in any facility. The pro-

duction costs for each facility are as follows:

FACILITY PRODUCTION COST

1 $ h/ unit

2 $ h/ unit

3 '.; 1 unit
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The holding cost in each of the three facilities is $2/ unit/period. The

Joint fixed cost for all the three facilities is

<5. (0) = 0, i = 1, 2, 3,

s
l

(x) = 2, x > 0,

«2 (x) = 3, x > 0,

S (x) = 2, x > 0,

vhere x is any production level. This means that the fixed cost in any-

given period is zero only if none of the three facilities produces. If

any one facility produces, the fixed cost is $2 in period 1, $3 in period

2 and $2 in period h. Plan an optimal production schedule to minimize the

overall cost.

3.3 SOLUTION BY THE DYNAMIC PROGRAMMING

By looking at the problem ve note that production cost in each period

depends upon the sum of the productions in each facility and is characterized

by a set up cost plus a linear cost term. The inventory cost is a function

of the sum of the three inventories and is linear.

To determine the optimal schedule note that the linear portion of the

production cost can he neglected since each facility by the end of period 3

must satisfy all of its market requirements.

The equations employed to calculate the cost are, as derived before

P* (u, v) = P* { (u
1

, u
2

, u
3
), (v

1
, v

2
, v3 ) }

h=v h=v h=v ,

«i< Jl/ + I
2+1 Vj3/hh=u +1 h=u +1 h=u +1

v 1 u 2 ,3
h=v . h=v „ h=v ,

k( y r
1

+ y r + y r
3

)

\ L 1., h J 2.,
r
h J- 3^, h '

+

h=u
x
+l " h=u""+l " h=u

J+l
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1 2
v3

2< I rj +
I r

2
+ J r

3
),

h=i+l h-i+1 h=i+l

i = 1, 2, 3.

As mentioned earlier, to simplify the calculations, we shall neglect

the linear portion of the production cost which is

v
1

. v
2

2 v
3

,

k ( I 1
r
h

+
I 2 ^ +

I 3
r
h >

•

h=u +1 h=u +1 h=uJ+l

The other equation employed recursively is

and obviously

Mtt) = Bin v in V (u) {P (u, v) + F
i+1

(v)}

F,(u) = P
3
(u, v) .

The calculations are shown below. When there is more than one possible

decision at any step of the calculation, the optimal decision is listed:

F,(3, 3, 3) = P* { (3, 3, 3), (3, 3, 3) } = $0 .

Note that P* { (3, 3, 3), (3, 3, 3) } is the cost of period 3. The u"
5 are

(3, 3, 3) for J = 1, 2, 3 which means that in the beginning of period 3,

the inventory horizons of all the three facilities are (3, 3, 3), with the

result that no facility need produce anything and hence the cost is zero.

Now consider

F
3
(2, 3, 3) = P

3
{ (2, 3, 3), (3, 3, 3) } .

1 ? 1 12 3
Here u = 2, u = 3, uJ =3,. v = 3, v = 3, vJ = 3 .
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This means that in the beginning of period 3, the inventory horizon of

facility 1 (u =2) is such that it can satisfy the demand of up to and

including period 2. Obviously it must produce in the third period in order

to satisfy the demand of third period hence giving rise to production cost.

2 3
Since u = 3 and u =3, the inventory horizons of facilities 2 and 3 are

enough to satisfy their respective demands in period 3. Hence, F (2,3,3)=$2.

This is the set up portion of the production cost since d (x)=2 for x > 0.

Similarly we can calculate the relevant costs for other production

vectors.

F
3

( 2, 2, 3) = $2,

F
3

( 2, 3, 2) = $2,

F
3

( 3, 3, 2) = $2.,

F
3

( 3, 2, 3) = $2,

F
3

( 3, 2, 2) = $2,

F
3

( 2, 2, 2) = $2 .

This completes the calculation of the cost for the third period. Nov

we will go on to calculate the total cost for third and second periods.

From equation (12) we have

F
2
(u) = min v in Vg(u) {P (u, v) + F (v)) ,

Pg(3, 3, 3) = P* { (3, 3, 3), (3, 3, 3)) + F
3
(3, 3, 3)

= $18.12 3
Here u =3,u =3,u =3. This shows that inventory levels of all the

three facilities are enough to satisfy the demand up to and including the
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third period. Hence there is no production. The only cost incurred is

the holding cost of the demand for the third period. In the third period,

facility 1 has a demand of h units , facility 2 has a demand of 1 unit and

facility 3 has a demand of k units. Hence the holding cost = $(U + 1 +k) x 2

= $18, that is

F
2
(3, 3, 3) = $18.

F
2
(2, 3, 3) = min of

'P, {(2, 3, 3), (2, 3, 3)} + F,(2, 3, 3)'

P
2

{(2, 3, 3), (3, 3, 3)} + F
3
(3, 3, 3)

P
2 {(2, 3, 3) (2, 3, 3)} = (1 + It) 2 = $10, only inventory cost,

P* {(2, 3, 3) (2, 3, 3)} + F
3
(2, 3, 3) = $10 + 2 = $12 .

Similarly

P* {(2, 3, 3) (3, 3, 3)} + F
3
(3, 3, 3) = (U + l + h) 2 + 3 + = $21.

Hence the first one of the two plans should he adopted.

F
2
(2, 3, 3) = P* {(2, 3, 3) (2, 3, 3)} + 7^2, 3, 3)

= $12 decision (2, 3, 3) .

F
2
(2, 2, 3) = Minimum of the following:

P
2

{(2, 2, 3) (2, 2, 3)} + F
3

(2, 2, 3) or

P
2

{(2, 2, 3) (2, 3, 3)} + F
3

(2, 3, 3) or

P
2

{(2, 2, 3) (3, 3, 3)} + F
3

(3, 3, 3)

= $10 decision (2, 2, 3) .
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Similarly

F
2

(3, 3, 2) = $12 decision (3, 3, 2),

F
2

(3, 2, 3) = $18 decision (3, 2, 3),

F
2

(3, 2, 2) = $10 decision (3, 2, 2),

F„ (2, 2, 2) = $2 decision (2, 2, 2),

F
2

(2, 3, 2) = $U decision (2, 3, 2) .

F. (3, 3, 1) = Minimum of the following:

P*
|

(3, 3, 1), (3, 3, 2) |
+ F

3
(3, 3, 2)

;

P* [(3, 3, 1), (3, 3, 3)$ + F
3

(3, 3, 3)}

= $13 decision (3, 3, 2),

F
g

(3, 2, 1) = $11 decision (3, 2, 2),

F
2

(3, 1, 1) = $11 decision (3, 2, 2),

F
2

(2, 3, 1) = $5 decision (2, 3, 2),

F
g

(2, 2, 1) = $5 decision (2, 2, 2),

F
2

(2, 1, 1) = $5 decision (2, 2, 2),

F
2

(1, 3, 1) = $5 decision (2, 3, 2),

F
2

(1, 2, 1) = $5 decision (2, 2, 2),

F
2

(1, 1, 1) = $3 decision (2, 2, 2),
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F
2

(3, 1, 2) = $11

F
2

(2, 1, 2) = $5

F
2

(1, 3, 2) = $5

F
2

(1, 2, 2) = $5

F
2

(1, 1, 2) = $5

decision (3, 2, 2),

decision (2, 2, 2),

decision (2, 3, 2),

decision (2, 2, 2),

decision (2, 2, 2) .

This completes the calculation of the total costs for the second and

third periods. We vill now calculate total costs for the first, second12 3
and third periods. In this case u =0,u =0,u =0. Since there is

no production before period 1, therefore,

F. (0, 0, 0) = minimum of the following:

P
1

{(0, 0, 0)

P ((0, 0, 0)

P* 1(0, 0, 0)

P* {(0, 0, 0)

P* {(0, 0, 0)

?
x

{(0, o, 0)

p
1

{(0, 0, 0)

P* {(0, 0, 0)

P. { (0, 0, 0)

p
x

{(0, 0, 0)

P* {(0, 0, 0)

1, 1, 1)} + F
2

(1, 1, 1),

1, 1, 2)} + F
2

(1, 1, 2),

1, 1, 3)) + F
2

(1, 1, 3),

1, 2, 1)} + F
2

(1, 2, 1),

1, 2, 2)} + F
2

(1, 2, 2),

1, 2, 3)} + F
g

(1, 2, 3),

1, 3, 1)} + F
2

(1, 3, 1),

1, 3, 2)} + F
2

(1, 3, 2),

1, 3, 3)} + F
2

(1, 3, 3),

2, 1, 1)} + F
2

(2, 1, 1),

2, 1, 2)} + F
2

(2, 1, 2),
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(0, 0, 0) (2, 1, 3)

(0, 0, 0) (2, 2, 1)

(0, 0, 0) (2, 2, 2)

(0, 0, 0) (2, 2, 3)

(0, 0, 0) (2, 3, 1)

(0, 0, 0) (2, 3, 2)

(0, 0, 0) (2, 3, 3)

(0, 0, 0) (3, 1, 1)

(0, 0, 0) (3, 1, 2)

(0, 0, 0) (3, 1, 3)

(0, 0, 0) (3, 2, 1)

(0, 0, 0) (3, 2, 2)

(0, 0, 0) (3, 2, 3)

(0, 0, 0) (3, 3, 3)

+ F
2

(2, 1, 3),

+ F
2

(2, 2, 1),

+ F
2

(2, 2, 2),

+ F
2

(2, 2, 3),

+ F„ (2, 3, 1),

+ F
2

(2, 3, 2),

+ F
2

(2, 3, 3),

+ F
2

(3, 1, 1),

+ F
2

(3, 1, 2),

+ F
2

(3, 1, 3),

+ F
2

(3, 2, 1),

+ F (3, 2, 2),

+ F
2

(3, 2, 3),

+ F
2

(3, 3, 3),

= $7 decision (1, 1, 1) .

This means that in the first period the optimal schedule is to produce

as much as needed for the first period only. Corresponding to this optimal

schedule for the second period is (2, 2, 2) which means to produce as much

as needed for the second period only.

Hence the optimal schedule is as follows:
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Production level in period

FACILITY 12 3

1 2 3 It units

2 12 1 units

3 3 1 fc units

Nov we have to calculate the total cost corresponding to the optimal

schedule.

F (0, 0, 0) $7 does not include the linear part of the production

costs.

Total cost = $7 + Production cost x Total units

= $7 + 21 x U = $91-

3. It SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

The discrete maximum principle (2, 5) is a powerful tool in handling

multistage optimization problems. The above problem which has been solved

by dynamic programming can be solved in more elegant and efficient manner

with the discrete maximum principle.

Let us define the 3 periods as 3 stages as represented in Fig. 7.

Thus n = 1, 2, 3 and N represents the final stage. Hence N = 3.

Let

x = Production level of the first facility in the n period,

x„ = Production level of the second facility in the n period,

x, = Production level of the third facility in the n period,

6 = Change in production level from (n-l) period (stage) to n

period at the first facility,
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6g = Change in production level from (n-l) stage to n stage at
the second facility,

9 Change in production level from (n-l) stage to n stage at
the third facility,

Q. = Sales forecast for the product of i facility in the n period,

i = 1, 2, 3 .

The transformation of the process stream at the n stage, described

by a set of performance equations , is as follows

«* = Ttx^1 , ej) = x^"
1

ej, n = 1, 2, 3, (13)

x° = and x" > Q°, (lU)

x
a

2
= T^"1

, 6^) = x^"
1

»", n = 1, 2, 3, (15)

x° = and x£ > Q*. (l6)

x^ = K^"1
, e°) = x^"

1
+ 9°. n = 1, 2, 3, (17)

x° = and x" > Qj, (18)

F = Fixed cost at the n period . (19)

Let us introduce a new state variable x, to represent cost such as

x. = The sum of the costs up to and including the n
stage (period),

G(x
n_1

,9
n

) = The cost at the n
th

stage.

Thus
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n n-1 . _, n-1 n,
x, - x, + G(x , 6 )

n-1 , , n n n,
= x^ + l*(x

1
+ x

2
+ x

3
)

. „, Tn-l Tn-1 _n-l n . n . n
+ 2(I

1
+ Ig + I

3
+ x

x
+ x

2
+ x

3

-«£-<£- Q3) F" (20)

n_l j. <:/ n ^ n j_ n \j_ „( Tn-l . xn-l , Tn-1+ 6( X^ x^ + xp + a(i;-
1 + I^"

1
+ I

3
'

- 2(Q° + 0% + Q°) F
n

, (20a)

x° = . (20b)

where I. Is the inventory level of the i facility in the n period.

We shall define the cost function in terras of state variables of the

final stage. Thus

i=U
S =

I ex = x
k

. (21)
i=l

Hence

c, =0, i = 1, 2, 3,

B
k
- J. .

The function S which is to be minimized is the objective function

of the process.

The procedure for solving such an optimization problem by the discrete

maximum principle is to introduce a four dimensional adjoint vector z

and a Hamiltonian function H which satisfies the folio-.: • relationship
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1*

T,n van
H = I z x

i=l

Substituting for x", x°, x" and x" from equation (13), (15), (17) and (20a)

respectively, we get

H
n = z^"1

ej) * z^x^"
1

+ e°) + 8°(^"1 + e°)

+ .» ( xj"
1 «J[ + 4 x") *

+ 2(I^
1

+ If
1

+ I*"
1

X> ^ + ^

. <£ _ ^ . <Q + F" } .

Rearranging the terms, we obtain

„n n n-1 . n n-1 . n n-1 n n n n n n
8° = Wft + z

2
x
2

+ z
3
x
3

+ z^ + z
2
9
2

+ z
3
e
3

z£ { x^"
1

+ 6UI'
1

+ x^"
1

x^"
1

) + 6(tJ + e^ * e°)

2d;"
1

l^"
1

+ I^1
) -8(95 + Q2

+ Q3>
+ Fn

} •
C22)

The adjoint variable z.
-

is defined as

(23)

and

Hence

**- 3H"

l

1 = 1, 2, 3, 1*

n = 1, 2, 3,

z
3 = c, , i = 1, 2, 3, U .

(2U)
l i
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2
1

" =
7n=T

_ z
l

+ 6z
k ' (25)

8x?
1

n-1 _ 3H n ,- n , ,,2
2 " 71^1 " Z

2
+ S ' (26)

3x
2

n-1 = _j£_ m n + g
n

3
ax^"

1 3 U

and

n_l n „ -
z
4

= z
u

= 1, n = 1, 2, 3 .

Substituting this in equation (22) yields

„n n n-1 n n-1 n n-1 , n„n , n„nH = Z
1
X
1

+ Z
2
X
2

+ Z
3
X
3

+ Z
1
6
1

+ Z
2
S
2

(27)

n-1 3H n , „,Z
h "T^l mz

U (28)

But from equations (2U ) and (28), we have

3

*J» % 1 '

zy
3

x^1
+ 6{^x

+ x^"
1

x^"
1

) + 6(e^ e^ e^) -

2(I^1 I^1
+ I-1

) -2«£ + (£ + Q») F
n

. (29)

Noting that in equation (29) x?"
1

,
1°

,
q" and s" for i = 1, 2, 3, U

are considered to he constants, H
n

can he written as
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c v

where H is the constant part of H , and H is the variable part of H .

h° = e£(*£ + 6) + e^ 6) e°(^ + 6) + F
n

. (30)

The objective function, S, of equation (21) is a minimum where the

Hamiltonian function H is a minimum. Since the performance equations (lH),

(15), and (l6) are linear in their arguments,

H = Minimum,

is a necessary as well as sufficient condition for objective function S

to be a minimum (h) . Obviously H is a minimum when H , which is linear

in 9., is a minimum for n = 1, 2, 3. The optimal value of the decision

variable 6. is that value of 6. which makes H a minimum.
1 IV

Now let us evaluate the values of z at each stage. From equation (2b)

z^ = c
±

= 0, i = 1, 2, 3. (31)

and from equations (25), (26), (27), and (28), we find,

n-1 n . c.
n

z. = z. + oz,
1 1 4

= z. + 6, since z, = 1, i = 1, 2, 3.

Hence

z
2

= z? + 6
i i

=0+6=6, i = 1, 2, 3, (32)
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1 2 ^ c
z. = z. + 6
l l

= 6 + 6 = 12, i = 1, 2, 3 . (33)

Now ve will find those values of 8. which will make Er a minimum
l v

for n = 1, 2, 3.

Stage 1.

Substituting the values of z. given by equation (33) into equation (30),

we obtain

H* = 9* (12 + 6) + 8* (12 + 6) + 6^ (12 + 6) + F
n

= 18 (e^ + a* + e^) + F
n

. (3U)

Obviously H is a minimum when (6 + 9 + 9 ) is a minimum. But from

equations (13), (lU), (15) and (l6)

1 .1
x. = x. +6.
l i l

+ 9^

B, . i = 1, 2, 3,
l

and

It follows that

Hence

x
i - Q

i ' i = 1, 2, 3

x. =9. = Q. makes H a minimum .

i l i v
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x
l

= e
i

= Q
l

= 2 '

-1 - -1 - <£ - 1.2 2 ^2

x
3

= e
3

= q
3

= 3 .

Stage 2.

H
y

= 6
1
U

l
+ 6) + 9

2
U

2
+ 6) + 6

3
(Z

3
+ 6) + ^ (35)

p
Substituting the values of z. given by equation (32), we have

H
2

= e
2

(6 + 6) + e
2 (6*6) + e

2
(6 + 6) + F

2

= 12 (e
2

+ 8
2

+ 8|) + F
2

.

2 2 2
This is a minimum when (6 + 6„ + 8,) is a minimum subject to the constant

2 2
x^ > 0.^, i = 1, 2, 3 .

Hence

that is

,

2 12 2

h = *1 + 8
1 i Ql

? 2
xj = 2 + ej i 3

2 2
Minimum 6, = 1 and x. = 3.

2 1 2 2
x
2

= x
2

+ e
2

> q
2

that is
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2 2
X.* = 1 + 9g > 2

2 2
Minimum 8=1 and x„ = 2 .

that is

2 1 „2 .2
x
3

= x
3
+ 8

3
> Q

3

2 2
x3 = 3 + e

3
> 1

2 2
Minimum 8 = -2 and x = 1

Stage 3.

H
v

= 6
1

(z
l

+ 6) + 9
2

(Z
2
+ 6) + 6

3
(Z

3
+ 6) + ?2

3
Substituting z. = into the equation yields

H3 = 6(8
3 + 8

3
+ 9?) + F

3
.

3 o 3 3
H is a minimum when (8:: + 8^ + 8,) is a minimum, subject to satisfy the

constraintx? 1 QT, i = 1, 2, 3.

That is

x
3 = x

2
+ 8

3
> Q

3
x
l 1 1 - T.

3 + e
3

> it .

Minimum 8
3 = 1 and x

3 = It
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Minimum 6^ = 1 and x^ U.

3 2 3 3

4 = 4 + 4 i 4

2 * sp - 1

3 3
Minimum 6 = -1 and x = 1 .

3 2 . .3 , „3
x
3

= x
3

e
3

» q
3

l + e
3

> it .

Minimum 8- = 3 and x = h.

The optimum production schedule can he tabulated as follows:

PRODUCTION LEVEL IK PERIOD

FACILITY 1 2 3

1 2 3 1* units

2 1 2 1 units

3 3 1 It units

The decision vectors are as follows

:

n °1 *2 °3

1 2 1 3

2

3

1

1

1

-1

-2

3

Nov we will calculate the total cost, xP, corresponding to the optimal

schedule. We have seen from equations (20a) and (20t>) that
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and

x* = x^1
ecx^"

1
xlT

1
x^"

1
) 6 (e^ + e^ o°)

+ 2 (l
n-l

+ jn-1 + jn-3)

- 2 (qj + flg + qg) F
n

. (36)

But we also note that inventory at each stage is zero, since the production

level at each stage does not exceed demand. Hence ve can rewrite ecmation

( 36 ) as follows

:

4 = x""
1

6 (xj"
1

x^"
1

x*"
1

) 6 (ej + e| + 0»)

- 2 (Q
n

+ q". + Q^) + F
n

,

xj = x° 6 (x° x° x°) + 6 (ej; + 9* + 8*) - 2 CO* <£ +
fy F

1

=0+6 (0+0+0) +6 (2 +1+3) -2 (2 +1+3) +2

= 26 > (3T)

4 " X
U
+ 6

<*i
+ x

2
+ X

3
J + 6 (9

1
+ S

2
+ 9 3' " 2 (Q1

+
°l

+ Q3> + F
*

=26 +6 (2 +1+3) +6 (1+1- 2) -2 (3 +2+1) +3

= 53, (38)
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*l
= xjj + 6 (x* + x

2

2
* k\) 6 (9^ + 9^ + 8|) _ 2 ((J

3 + Q3 + Q3, + p
3

= 53 + 6(3 + 2 + l) + 6(l-l + 3)-2(U + l + l»)+2

= $91 . (39)

Hence minimum cost corresponding to optimal schedule = $91 •

It may be noted that in the above problem the cost function involved

is linear. But problems involving concave cost functions also can be

worked out in the same manner. In the above problem, it is found that

carrying inventory is not profitable and hence production in each period

is just sufficient to satisfy the demand. But this is not true always.

In some problems it may be found profitable to carry inventory, depending

upon the cost structure.

3.5 C&MPARISON OF THE METHODS

Having worked out the parallel facility case with both methods namely

dynamic programming and the discrete maximum principle, we are ready to

draw some conclusions regarding relative merit of each method. One of the

obvious conclusions is that the discrete maximum principle and dynamic

programming give the same results. However, the discrete maximum principle

appears to be a little more powerful in the type of problem discussed above.

Dynamic programming will start the investigation by searching the entire

grid of n variables at one stage, store this grid of values and proceed

stage by stage, while the discrete maximum principle will start the investi-

gation by computing one optimum path along each stage and then proceed to

improve this optimum path based on the values obtained from the preceeding

computation. It could also be noted that in the solution of the above

problem dynamic programming started from the final stage and went backwards

whereas the discrete maximum principle proceeded from the first stage.
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3.6 EXAMPLE 2. PARALLEL FACILITY CASE WITH NON-LINEAP COST FUNCTION

Consider the following It facility, 1* period situations, each pro-

ducing a perishable commodity. Let the known market requirements of the

products of the four facilities he as follows:

FACILITY
Initial
Production Level 1

Demand
2

in

3

Peri od
It

1 »* 10 6 7 6 units

2 16 7 6 li

1

2 3| units

3 ** 8 6 5 It units

k 17 12 8 5
1

2
It units

The excess production over the sales forecast is wasted at the rate

of $5/unit in each facility. The cost of changing the production level

is 2 times the square of the difference "between two successive production

levels in each facility. Plan an optimal schedule to minimize the cost.

3.7 SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

Let us define each period as a stage.

Let

x. = Production level at the n stage of the i facility, i=l,2,3,!t,

9. = Change in production level of the i facility from (n-l) ' stage

to n stage (period), i = 1, 2, 3, It,

Q. = Demand for the product of the first facility in the n period,

i = 1, 2, 3, It.

We can write the performance equations as follows:
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x^ = t(x^\ e») = x^1
+ e^ , xj = 18 | , (i,o)

x^ = t(x^-
1

> e°) = x^1
+ *

n

2
, x° = 16 , . (ia)

x^ = T<*f\ e°) = x^"
1

+ 6^ , x° = 16 \ ,
(U2 )

n m / n-l «n \ n-1 „n ...
X
U

= T(x
U V " x

k
+ \ '

x
l»
= 1T (*3)

Let us introduce a new state variable x_ to represent cost such as

x = Total cost up to and includling n stage

= x^"
1
+ G (x^V) (MO

= x""
1

+ 2 *J (e")
2

+ 5 "f <x" - tf) , (1,5)
7 1=1 i=l

x x

x° = . (1,6)

Substituting equations (1,0) to (1,3) in equation (1,5) we get:

n n-l
, „ , ,„n

v 2 ,
,„n x 2 .

,„n,2 ,„n v 2

5
"

5

- 2 { (ej)- + (e^ + (e?)
e (e^ }

5 { (x^-
1

+ e^ - q£) + (x^1
+ e^ - qg)

+ (X
3

_1
+ S

3
" Q

3
) + (x

U

-1
+

°U " «U> >
• l*T>

The objective function to be minimized is

v U It

S = I e.X, = x . (1,8)

1=1 1 x 5
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Fron this it follows

c. = 0, i = 1,2,3,>», and e « 1 . (1.9)
i 5

Now the Hamiltonian and adjoint variables are given as

„n c n n
H = ) z.x.

ii 1 1
i=l

1,

r n , n-1 . „n, , n . n-1 . „,„n>2 , „, an>S= } z. (x. + 9.

)

+ z { x + 2(6) + 2(9 )

,
u
. ii i 5 5 1 2

i=l

+ (e^)
2 0«

k
f + 5 (x?-

1
+ ^ - Q

n

±
) * 5 Un

2

-1
9^ - p

* 5 (x^
1

+ 9^ - q°) + 5 (x^
1

e£ - o
n

k
) } , (50)

n = 1, 2, 3, It,

n-1 = _3II = z
n

+ 523 U ( 51a )

i , n-1 l
3x.

l

i = 1, 2, 3, 1»,

n-1 = _3H!L = n
n = 2 3 h ( 51b )

3x
5

z = c. , i 1, 2, 3, It, 5 .ii
From equation (1*9) it follows,

2L - e. 0, i - 1, 2, 3, 1»,

It

z
5

= c
5
= 1 .
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Substituting in the recursion equations (51a) and (51b) for n - 2, 3, h,

ve obtain

z? = 5 , z
2

= 10 , z] = 15 , i = 1, 2, 3, It,

i ' * i i

and z" = 1, n = 1, 2, 3, U .

S is minimum vhen H
n

is minimum. Differentiating IT with respect

to 6
n

and equating to zero, we get the optimal values of 6. for

i = 1, 2, 3, It,and n = 1, 2, 3, k. That is,

-2^ = z
n UeV +5 = 0,

ae
n 1 1 5

5+z^ 5+z
11

-
, i = 1, 2, 3, 1*

Values of 9? are accepted only if admissible, i.e., we accept the

values only if x" > q", i = 1, 2, 3, U; n = 1, 2, 3, U .

5+Z
i 5+15.

,

2
?+z

i 5+10 , 3

9
3_ !^i_.5+i-. 2 I

9
1 C U " 2

2
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for i = 1, 2, 3, 1».

Now we will determine the values of x°, i = 1, 2, 3, h; n = l, 2, 3, 1*

such that

1
x = max

x° e£ = 18 f
- 5 = 13

Q* = 10

19 3
13

TT >

2
x = max

= 10,

3
x = max

12 3 3
*£ + ef - 13 £ - 3 £ - 10

.0? = 6

"T|.

x = max

2 3 11
h e

3
= 10 - 2 | = 7 I

3^ = 7

r x3 + fl

14 - 7 I ,1 S Jx
i
+ 9

i " T
2 " x

-IT
" 6

IT

L<4 = 6

5" '
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1
x„ = max

= 11,

'*

x„ = max

= a

x
?

J
2

.

Tc° + 6^ = 16 - 5 = 11

-Q2 = 7

'** 9* = 11 - 3
3 . 7

1

4

| + el
= T ^ - , | = u

3
X

, Q
3

= 1* 1iy2 * it

3 . > _ u
3 . 1 , 1

X
2

+ 9
2 " k

k ' 1 U " 3
2

,Q
U

= 3 i



k-I

1

*3

9* = 16 | - 5 = 11
|

11 | ,

7^

3
X
3

>i

14

X
3

* ,

-x
1

+ e
2

- 11 i ? I - 7 3x, + e
3

- 11
2

- 3 ¥ - 7 £

2 3 3 11
X
3

+ 6
3

= 7 t - 2 I " 5 f

3 Jt _ 1 1
X
3
+ 9

3
5 TT- 1 ¥

«!
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1
x, = max

12,

2
x. = max

i*t

. % = 12

xj 6* = 12 - 3 J
= 8 J

»*.

x. = max

2 + 93 = 8 f - 2 i = 5 fU It It 2 U

«r 5
s

>*

^•{>*-i*->*

.< = "

4
Thus the optimal schedule is as follows:



PRODUCTION LEVEL IN PERIOD

k9

FACILITY

n 3
13 ¥ 10 T* 6i

11

-I

13

T ¥ "!

P
2

3|

units

It

units

units

Now we shall calculate the total cost corresponding to the optimal

schedule. From equation (hT) total cost up to and including the n stage

is

x^ = x^"
1

2 { (e*)
2

+ (e^)
2

(9^)
2

+ (6^)
n

}

5 < (x^1
+ 9^ - <£) + (x^1 + 6^ - qIJ)

+ (x
3

+ B
3

- Q
3

) + U
k

- % - „ (52)

n = 1, 2, 3, h.

4"
The total minimum cost given by x is $H37.50
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COMMENT Going through the above procedure, we notice that the calculated

value of production level x. is always greater than the demand Q. . In fact,

as backlog is not permitted, we assume that x. >_ Q. . If this is not the

case, this method does not yield the optimal solution. This example can

also be worked with the dynamic programming method with a very similar

procedure (3, ^).

The above problem was treated as a multi-dimensional problem and

solved by the discrete maximum principle. But since cost structure for

each facility is independent, as a matter of fact, the production schedule

for each facility can be worked out individually. In either case we arrive

at the same result.
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It. CASE STUDY OF SERIES FACILITY

k.l A DYNAMIC PROGRAMMING ALGORITHM FOR SERIES FACILITY CASE (8)

A schematical representation of a series facility case is shown in

Fig. 8. The series structure of the model means that facility j(j < N)

supplies facility J+l only, and does not supply market requirements or

any other facility. Let us define a as the number of units produced

by facility J to supply input to facility J+l, so that facility J+l might

produce one unit. The following relations hold good for the series

facility case

1) aJ,,i+1 > for J < N,

2) aJ 'h = for h > J+l or h < J

,

3) r^ = Demand for the product of J
th

facility in the i
th

period,

= for J < N,

It) Only facility N supplies the market.

The series case involves the following two assumptions.

1) The concave cost term P(k) can be expressed as

P(k) =
I p (xJ )

J=l J

where p (x ) is the n period cost if facility J follows the

production schedule x'' = (x, , x^, ..., x'' ) .

1 d. n

2) The backlog limit for facility j < N is zero, so that a = for

J < N. Facility N, however, can backlog.

The inventory equations can be written as
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J
i

"
J.

(x
h " r

h )

h=l

and

where

h=l J+l

L = Production lag period of J facility.

The folloving two transformations will simplify the inventory equations.

First let

=J . _i

I. -r for all i and J
i J

where

and

aJ = n a
h,h+1

for J < S

a = 1 .

This transformation redefines the units in each facility. The second

transformation eliminates the effect of production lags.

Let

;.
J = *»
l i+A



5*

where

J h=2
n

y-iJ

and

i+A '

J

1 1+A
N

Because of the production lags, to insure that there is no production

before a facility can receive initial input it is required that xr =

N
for h <_ A and r = for h <_ A^ . Then the inventory equations can be

written as

h ' I (x
h - r

h>
' (53)

h=l

l[ =
I (x£ - ^

+1
) for J < N . (5M

The above considerations permit the facility productions

in a dominant schedule to be specified. First consider facility N and a

dominant partial production vector,

k = x

Since x must satisfy exact requirements there must exist a vector of

integers
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w= (w , »
1§

v
2

, ..., » J

such that

and

= v < v < v < . . . < v =n
u j. — d — — n

*i- z: v i-i.z. .... •

h=l+w. ,
l-l

Furthermore since facility N has a backlog limit c^, to prevent

excess backlogging and satisfy equation

I^-T A. (55)
h=i-a +1

it is sufficient that

Let

(56)

W = (v |0 = v. < w, < ... < v = n) .
u j. — — n

Given any x in the partial dominant set D , there is a v in W such

that

-»t h=w.

?- I* r», 1-1.2.......
h=i+Wi_x

It is obvious that the production level of facility N in the i
th

period

is the demand of facility N in the same period. This can be represented

as follows
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"N-l »H

- I
1

«J

for some v in W.

Assume now that a vector w in W is given. Let facility N-l

face demand y . Let us express the demand in the i period for facility

N-l as follows

"H-l
h
?
v
i -N

y
i

" I i
r i = 1, 2, ..., n

, (57)
h=l+w.

i-1

for some w in W.

~N-1 , *N-1
For ax in D (y ) there are integers = s„ < s. < . . . < s =n— 1 — — n

such that

;h-i _ *Vi ;n-ih-j. p
y.

j-i
i

. 1
h=w.

1=1+S
J-1

h=1+V
i-l

I
S
J X

r
h . J = 1, 2, ..., n . (58)

h=l+w
S
J-1

Let

1
v. = w



5T

so that

^ I
J r». (59)

h=1+vl
Total production completed by facility H-l up to period i is £ x .

J=l J

From equation (59)

j=l J
J=l te-l+w.,!

h=w. „,
- I

1 ^ • (60)
h=l

Total demand for facility N-l up to period i is

Jy1 "N-l

J=l
J

From equation (57),

1

h=l

It is obvious that

f^ > ? yf
1

j=i J j=i J

or from equations (60) and (6l)
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h=w. •„ h=w. „
Y i N 7 i "N ,,, .

I r„> I r . (6la)
h=l

n
h=l

n

To ensure that equation (6la) holds, it is sufficient to have v. > v. .l—i
But by equation (56), from the same reasoning,

"i
> * - •, . (62)

We have seen

= s„ < s, < , , , < s =n- 1 - - n

Similarly

= w_<v_<..._<w=n. (63)

By equations (62) and (63) if w in W, then w is also in W. It immediately

"N-l
follows, for any dominant x ,

h=w
-N-l ? 1 "B . , -
X. -

I
r , i = 1, 2, .... n

h=l+w.
,i-1

for some w in W.

Clearly the above argument can he extended by induction to show that

for any dominant x
,

h—

w

x^ =
I

J r? , i = 1, 2, .... n (6U)
1 h=l n

for some w in W.

The simple structure of the dominant production vectors x for the

series case is now clear. Once W is specified x has the form described

in equation (6k) for some w in W. Correspondingly since y = yr the
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the dominant y
J ~ also have a simple form.

Using these results the set D(yJ
) can be briefly described. For

any w in W let

5 (w
1

) = {w|xJ is in D(y J
) where

„, h=w . h=w.

X
i
=

I r
h

and y
i

=
I 1

r
h } '

h=l+w. ,

x
h=l+v ,

n

l-l l-l

i = 1, 2, ..., n .

Given

. 1

*l" J'l V i = 1 > 2
>
-.

h=l+w. ,l-l

for some w in W, then a vector w is in 5 (v ), if and only if the

production vector

h=w.

A - I
1

h=l+v
1_1

y- vi :»

is in Dty''). From the previous discussion it is clear that 5 (w ) is

contained in W for all w in W.

The cost structure can also be expressed using the vectors in W.

Let

*(«> w ) = Total production and inventory cost in facility j

over all periods.

If
. h=w.

1 v. i^h=l+v
i_1

h

and
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Then

, h=w. „

y
i T i

r
h •

i = 1
>

2 n
h=l+w . ,

W)-p <P
«J.

..., I %)

i=n . h=w,

1=1 h=l+w

.

The dynamic programming recursion relation can now be developed.

Let

F (w ) = Minimum cost in facilities 1 through j,

if

. 1
n=w.

yi
=

I
i

1 V i = 1. 2, ..., n
h=l+w. ,

n

l-l

for v in W. Then for 1 <_ J <_ H,

F (v
1

) = Min (p?(v, w
1

) + F (w)} (66)

for all w
1

in W if J < N. If J = H,

v
1

= (0, 1, 2, 3, .... 0-1, n)

Also

for all v
1

.

FqU1
) =

Following a dominant schedule a dominant y"' will have the form
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. 1
h=w

% =
I

1
1 rj, i-1. 2, ...,n

h=l+w'. ,l-l

1 • ,,for some w in W.

Given this y
J a dominant x"' will have the form

n—w

XJ = 2 r
h • 1 = 1, 2, .... n

h=l+w. ,l-l

for some w in 5 (w ) .

To illustrate the usefulness of this discussion, let us work out a

numerical example.

k.2 EXAMPLE 3. THREE FACILITY CASE

Assume there are 3 facilities, so that H = 3.

Let

a">'
J+1 = l, J -1,2.

Hence each facility must produce one unit for each unit withdrawn from

stock. It is also assumed that o = 0, which means that facility H cannot

backlog. Sales forecast for the product is

Period 12 3

Demand 9 l6 9 units

The holding cost is $l/unit/period, for each facility. The production

cost is given by

1 1 1 1
1/2

Pj (x
J

) = x£ + 8 ( XJ + x^) , J = 1, 2, 3.

Plan an optimal schedule to minimize the cost.
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U.3 SOLUTION BY DYNAMIC PROGRAMMING

By equation (65), the total production and inventory cost is

1/2

p.v ^ . T1
rj 8 , T r» , +

1 Y 7*
l
J

,
J h=i

h
h-l+v.

h
hSl lW h

x n

J = 1, 2, 3.

The set W is given by

u r I
x 1 ^ r 1 1 1, , 1 1 l w 1 1 l w 1 1 1.,W = { (vr Wg, w

3
), (vr w

2
, v

3
) (w

1
, Wg, V

3
)(w£, w

2
, v

3
)(w

1
, w

2
, v

3
)}

= { (1, 2, 3), (1, 3, 3), (2, 2, 3), (2, 3, 3), (3,3,3)} .

To each w in W corresponds a B. (w) as follows.

Sj (vj, if*, v*) = 5^ (1, 2, 3)

= { (1, 2, 3), (1, 3, 3), (2, 2, 3), (2, 3, 3), (3, 3, 3)}.

Similarly

T>

i
(1, 3, 3) = { (1, 3, 3), (2, 3, 3), (3, 3, 3)} ,

Dj (2, 2, 3) = { (2, 2, 3), (2, 3, 3), (3, 3, 3)} ,

5j (2, 3, 3) = { (2, 3, 3), (3, 3, 3) } ,

5j (3, 3, 3) = { (3, 3, 3)} ,

for all j
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* l l
Nov let us calculate p (w, v ) for all values w in W and v in

D (w ) and all values of j . We vill present here sample calculations
J

* 1
and then summarize the values of p.(w, v ) in the form of a table.

For example consider

p* {(2, 3, 3), (2, 2, 3) }

the sum of production cost and inventory cost of j facility for all the

3 periods.

Here

W
l = 2 > v

2
= 3, "

3
= 3,

«1 = 2, «2 = 2, v
X

= 3 .

3
3

v = 2 means that the assumed demand in the first period is equal to the

total market requirement up to and including second period. Therefore,

assumed demand in the first period is 9 + 16 = 25 units. Since

v„ = 2 = v , the assumed demand in the second period is 0. v = 3 implies

that assumed demand in the third period is market requirement of the third

period which is equal to 9 units.

w = 2 means that production in the first period is sufficient to

satisfy the market requirement up to and including second period and is

equal to 25 units, w = 3 means that production in the second period is

sufficient to satisfy the market requirement of third period and is equal

to 9 units. Since w = 3 = w , it means that there is no production in

the third period. We can now interpret the assumed demand and production

as follows
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Assumed Production
Period demand level

1 25 units 25 units

2 units 9 units

3 9 units units

Now ve are in a position to calculate the production and inventory costs.

h=W
l N

h=w =n
N

1/2

Production cost = £ r, + 8 { J r>,J
h=l h=l+v

1

h=2 , h=3 ,
1/2

= I 4 8 { [ rl }

h=l h=l+2

= (r| + r|) + 8 (r|)

1/2
= (9 + 16) + 8 (9)

= 25 + 2 1*

= U9 .

Alternatively, production cost can be calculated by making use of the

preceding table. Going through the column under "Production level" ve

note

x^ = 25 x^ = 9 x^ = .

Hence

1 1 1 1

1/2
Production cost p.U ) = x^ + 8 (x^ + xr.)

= 25 + 8 (9 + 0)
1/2

= ks .
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, , h=3 i=w
Inventory cost wi{l.) = I £ r

1 1
h=l i-l+vr

a

•4

Alternatively, by looking at the preceding table, we find that 9 units

are carried in the second period which incur a cost of $9.

Kence

p*
{ (2, 3, 3), (2, 2, 3) } = 1*9 + 9

= 58 .

* 1
By the same reasoning p (w, w ) can be calculated for other sets

of (v, w ), The results are summarized as follows:
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(1, 2, 3)

(1, 3, 3)

(2, 2, 3)

(3, 3, 3)

(2, 3, 3)

(1, 3, 3)

(2, 3, 3)

(3, 3, 3)

(2, 2, 3)

(2, 3, 3)

(3, 3, 3)

(2, 3, 3)

(3, 3, 3)

(3, 3, 3)

w

(1. 2, 3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

(1, 3, 3)

(1, 3, 3)

(1, 3, 3)

(2, 2, 3)

(2, 2, 3)

(2, 2, 3)

(2, 3, 3)

(2, 3, 3)

(3, 3, 3)

P, (w , w )

1»9

58

65

H9

65

59

1*9

58

52

1»9

1.3

31*

The recursive calculations are summarized below:

F
1

(1, 2, 3) = min / p*
{ (1, 2, 3) (l, 2, 3)}

s

p*
{ (1, 3, 3) (1, 2, 3)}

\ p*
{ (2, 2, 3) (1, 2, 3)}

p*
{ (2, 3, 3) (1, 2, 3)}

\ P1
{ (3, 3, 3) (1, 2, 3)} J

= min (1<9, 58, 65, 7 1*, 68)

= 1(9 with optimal decision (l, 2, 3).
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Similarly

F, (1, 3, 3) = !»9 with decision (l, 3, 3) ,

F (2, 2, 3) = i*9 with decision (2, 2, 3) ,

F (2, 3, 3) = l»3 with decision (3, 3, 3) ,

F (3, 3, 3) = 3U with decision (3, 3, 3) ,

FQ (1, 2, 3) = min (
p* {(l, 2, 3) (l, 2, 3)} + Fj (1, 2, 3)"

p* {(1, 3, 3) (1, 2, 3)} + T
x

(1, 3, 3)

P
2

{(2, 2, 3) (1, 2, 3)} + P (2, 2, 3)

p2
{(2, 3, 3) (1, 2, 3)} + F

x
(2, 3, 3)

\ p* {(3, 3, 3) (1, 2, 3)} + F
a

(3, 3, 3)

= 98 with decision (1, 2, 3) .

Similarly

F
2

(1, 3, 3) = 93 with decision (3, 3, 3) ,

F
2

(2, 2, 3) = 86 with decision (3, 3, 3) ,

F
2

(3, 3, 3) = 63 with decision (3, 3, 3) ,

F, (1, 2, 3) = 136 with decision (3, 3, 3) .

The optimal schedule is thus

x
1

= (3k, 0, 0) ,

x
2

= (3 1*, 0, 0) ,

x
3

= (3 1*, 0, 0) .
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That neans the entire production takes place in the first period for all

facilities. The cost corresponding to the optimal schedule is $136.00

h.k SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

Let us define each facility as a stage. Hence n = 1, 2, 3 and N = 3.

Let

x. = Number of units remaining to be produced by n

facility, at the end of first period, n = 1, 2, 3,

x„ = Number of units remaining to be produced by n

facility at the end of second period, n = 1, 2, 3.

Obviously, number of units remaining to be produced at the end of the

third period is zero.

8^ = Number of units produced by the n facility in the first

period,

6„ = Number of units produced by the n facility in the

second period.

It may be noted that the number of units produced in the third period

equals 3^ minus number of units produced in the first two periods. Hence

we will not give it a special nomenclature.

We can write the performance equations as follows

:

n n-1 n
x = x ~ 8 i> n = 1.2,3,

x° = 2k and <_ x^ < 25, (6?)

n n-1 n _
X
2

= X
2 2'

n =
* ' '

x° = 25 and <_ x;j <_ 9 . (68)
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Let us define a new state variable x to represent cost.

x = Total cost up to and including n facility, for all the three

periods.

x^ = x^1 + e^ + 8 ( 3 u - e^)

1/2
+ i° * (e!J

- (j£) + xj + (eg - qg) (69)

1/2
= x^"

1
e^ + 8 ( 3u - ej) + 2 (e° - qj) + (ag - og) (6 9a)

where

and

Q. = Demand for the product of the n facility in the i period,

Tn T 1 « "th _ . ,. A ,th . ,
I. = Inventory level of n facility in the i period

" £a + < 9
i

" <#

iS = 0, 1° = .

The Hamiltonian Function is

H
n

= I z
n
x
n

i=l
1 1

n, n-1 n, n, n-1 _n,
= z

x
U
x

- h ) z
2
(x

2
- e

2
) +

1/2
z^ { x^"

1
+ e

n

x
+ 8 ( 3u - <£) + 2 ( 9; - <%) + (eg - qg) } . (70)

The objective function to be minimized is

S = I c. x
3 = x

3
.
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Hence

e
x

, c
2

0, e_ - X.

3 3
Since x and x are fixed

3 3 3
Z
l * C

l'
Z
2 ^ C

2'
tUt Z

3
= C

3
= 1

The adjoint variables are

1 . n-1
3x

l

1 '

n-1
'2

3H
n

. n-1
8X

2

= n
Z
2 '

n-1
'3 "

3H
n

3X-1
=

n

Since

We have

4-i.

Zg » 1, n = 1, 2, 3

Substituting this in H of equation (70), we obtain

„n n , n-1 „n, , n , n-1 „n, x , n-1 n
H = z

1
(x

1
- dj) + z

2
(x

2
- .9

2
) + { Xj + B

1

1/2
+ 8 (3U - 9°) + 2 (9^ - Q^) + (6° - Q^)} . (7l)

Since z , x , x
p , x

? , Q. , and Q in equation 171) are constants,
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we write the variable portion of IT as

H
v = - Z

1
6
1 " Z

2
9
2

+ 6
1

+ 8 (3U - 6
1

)1/2
+ 2 e

i
+ 6

2

-
«J

(3 - £) 8 (3U - 8^)
1/2

+ 6° (1 - 4) . (72)

Again H can be represented as

(Hv\ + <V.
2

where

and

1/2
(Hpg = 6^ C3 - zp + 8 (3d - <£) (73)

(H
v'e

2
" 9

2
(1 " Z2> • (TU)

S is a minimum when H is a minimum that is when

K\ + (10e

is a minimum. We will evaluate the condition for H to be a minimum by
v J

trial and error, since we do not know whether z and z. are positive or

negative. But we do know that z , and z are not equal to zero.

Looking at equation (7 1*) we find that (H )„ is a minimum on the
v e

2

boundary of 8_ . 6„ can take 3 values namely 25, 16, 0. (We assume that

production takes place in batches). So, when (H ) is a minimum, 6
?

can be
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two values, 25 or 0, depending on whether (1 - z„) is negative or positive.

Corresponding to the values of 8 and depending on the value of (3 - z . )

,

we have to choose the values of 6 by trial and error which minimize (H")_ .

Consequently our search has been narrowed down to 3 cases

case 1: e£ = 0, 9? - 3k ,

case 2: 8° = 25, 8° = 9 ,

case 3: s" = 0, 6° = 25 , n = 1,2,3 .

The easiest way of optimum seeking is to substitute the 3 cases in the

cost equation and adopt that case which gives minimum cost. Care should be

taken while substituting in the cost equation. Since third facility sup-

plies the market, Q. is actual demand for n = 3, and Q. is production level

of (n + 1) facility that equals 6. , n = 1, 2 .

3k, 8° = 0, for n = 1, 2, 3.Case 1:
*l

= 3k,

Hence Q = e* = 3k,

i = e^ = 3^,

3
2 = Actual demand = 9 .

Substituting in equation (69a) yields

1/2
+ 3h + 8 (3k - 3>0 +2 {3k - 3k) + (0 - 0)

3

= 31*.
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2
1/2

x^ = 3h + 3I4 + 8 (3U - 8) (3I1 - 3U) + 2 (3I1 - 3 1*) + (0 - 0)

3
1/2

x^ = 68 + 3k + 8 (3U - 3U) +2 (3U - 9) + (0 - 16) (75)

136

Case 2: 6^ = 9, 9^ = 25, n = 1, 2, 3.

Here Q^ = 8
2

= 9, Q^ = e
2

= 25,

2 3 2 3

^ = 9^ = 9, «2
= 8

2 25 '

Q^ =9, Qg
= l6 •

substituting in equation (69a), ve obtain

1
1/2

x
3

= + 9 + 8 (3U - 9) + 2 (9 - 9) + (25 - 25)

= 1*9,

P .
1/2

x^ = >*9 + 9 + 8 (31* - 9) + 2 (9 - 9) + (25 - 25)

- 98,

1/2
Xj = 98 + 9 + 8 (3>» - 9) + 2 (9 - 9) + (25 - 16)

= 98 + 9 + 1*0 + 9

= 156. (76)



Tfc

Case 3: Similarly we can calculate the cost in this case = 163. (77)

Comparing equations (75), (76) and (77), case 1 is cheapest.

Hence

9* = 34, 9^ = 0,

that is, the optimal production schedule for the 3 facilities is

Production level in period

Facility 1 23
1 3 1* units

2 34 units

3 3 1* units

total minimum cost = $136.00 .

COMMENT: Comparing the two methods namely dynamic programming and the

discrete maximum principle to solve the series facility case, we observe

that the area of search is quite wide for dynamic programming, whereas, for

the discrete maximum principle it is narrowed down to only three cases.

U.5 EXAMPLE k. FOUR FACILITY CASE

Assume that there are four facilities connected in series, so that

N = 4. Let a ' = 1, J = 1, 2 hence each facility must produce one

unit for each unit withdrawn from stock. It is assumed that a, = 0. which
4

means facility l* cannot backlog. Facility 4 must satisfy the following

demand

period 12 3

demand 9 16 9 units

over three periods.
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The cost of producing and holding stock is the same in each facility

and is as follows:

Production cost

Holding cost

p*(xJ ) = x{ + 8 (x£ + x^) , j = 1, 2, 3, 1* .

M^ {Ip = 2I£, J 1, 2, 3, U{ i = 1, 2, 3M^ (1^) = 21^11 i

Plan an optimum production schedule

U.6 SOLUTION BY DYNAMIC PROGRAMMING

The set W = {(l, 2, 3), (l, 3, 3), (2, 2, 3) (2, 3, 3), (3, 3, 3)} .

To each w in W corresponds a D (w) as follows:

5 (1, 2, 3) = { (1, 2, 3), (1, 3, 3), (2, 2, 3)

(2, 3, 3), (3, 3, 3) },

5 (1, 3, 3) = { (1, 3, 3), (3, 3, 3) },

5 (2, 2, 3) = { (2, 2, 3), (2, 3, 3), (3, 3, 3)} ,

Dj (2, 3, 3) = { (2, 3, 3), (3, 3, 3)} ,

Bj (3, 3, 3) = { (3, 3, 3) } ,

for all j.

Now let us calculate p (w, w ) for all values of w in W and w in

U (w ) and for all J. We will present here sample calculations and
J
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* 1
summarize the values of p (w, v ) in a table. For example, consider

* 1 * 111
p. (w, w ) = p { (v

x>
w
2

, Wj) (w
1

, w
2

, w
3
)}

= p { (2, 3, 3), (2, 2, 3) } .

w = 2 means that the assumed demand in the first period is equal to the

total market requirement up to and including the second period, v = 2

means that assumed demand in the second period is equal to zero. Since

v = 2, v = 3 means that assumed demand in the third period is equal to

the actual demand of the third period, w = 2 means that the production

that takes place in the first period is sufficient to satisfy demand up

to and including the second period, v = 3 means that production in

the second period is sufficient to satisfy the demand of the third period,

so that there is no production in the third period. Hence

* 1/2

P { (2, 3, 3), (2, 2, 3) } = 1 (9 + 16) + 8 (9) + 2 x 9 = 67

* 1 1
Similarly we can calculate p (w, w ) for other values of w and w and

tabulate the results as follows:
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(1, 2, 3)

(1. 3, 3)

(2, 2, 3)

(2, 3, 3)

(3, 3, 3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

(v, V )

1.9

67

81

99

102

(1, 3, 3)

(3, 3, 3)

(1, 3, 3)

(1, 3, 3)

1*9

Qk

(2, 2, 3)

(2, 3, 3)

(3, 3, 3)

(2, 2, 3)

(2, 2, 3)

(2, 2, 3)

U9

67

HO

(2, 3, 3)

(3, 3, 3)

(2, 3, 3)

(2, 3, 3)

1*9

67

(3, 3, 3) (3, 3, 3) 31*
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The recursion calculations are summarized below.

?
x

(1, 2, 3) - min {
p* {(l, 2, 3) (l, 2, 3)} ,

p* {(1, 3, 3) (1, 2, 3)} ,

p* {(2, 2, 3) (1, 2, 3)} ,

1

p* {(2, 3, 3) (1, 2, 3)} ,

p* {(3, 3, 3) (1, 2, 3)}}

= min { 1*9, 67, 81, 99, 102 }

= k9 with decision (l, 2, 3) .

Similarly,

F
1

(1, 3, 3) = 1*9 with decision (l, 3, 3),

F (2, 2, 3) = 1*9 with decision (2, 2, 3),

F (2, 3, 3) = 1*9 with decision (2, 3, 3),

F (3, 3, 3) = 31* with decision (3, 3, 3) .

F
2

(1, 2, 3) = min { ?2 {(1, 2, 3), (l, 2, 3)} + F
;L

(1, 2, 3) ,

p* {(1, 3, 3), (1, 2, 3)} + F
1

(1, 3, 3) ,

p* {(2, 2, 3), (1, 2, 3)} + F
1

(2, 2, 3) ,

p* {(3, 3, 3), (1, 2, 3)} + F- (3, 3, 3) }

= 98 with decision (l, 2, 3) .
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Similarly,

F
2

(1, 3, 3) = 98 with decision (l, 3, 3) ,

F
£

(2, 2, 3) = 98 with decision (2, 2, 3) ,

F
2

(2, 3, 3) = 98 with decision (2, 3, 3) ,

F
2

(3, 3, 3) = 68 with decision (3, 3, 3) ,

F
3

(1, 2, 3) = min { p
3

{(1, 2, 3), (l, 2, 3)} + F
2

(l, 2, 3),

p* {(1, 3, 3), (1, 2, 3)} + F
2

(1, 3, 3),

p* {(2, 2, 3), (1, 2, 3)} + F
g

(2, 2, 3),

p* {(2, 3, 3), (1, 2, 3)} + F
2

(2, 3, 3),

p* {(3, 3, 3), (1, 2, 3)} + F
2

(3, 3, 3)j

= 11*7 with decision (1, 2, 3) .

Similarly

,

F
3

(1, 3, 3) = 1>*7 with decision (l, 3, 3),

F, (2, 2, 3) = Ihl with decision (2, 2, 3),

F, (2, 3, 3) = lVf with decision (2, 3, 3),

F
3

(3, 3, 3) = 102 with decision (3, 3, 3) .

For the last facility, that is, facility U, the actual demand is w =

(l, 2, 3), therefore, we obtain the total minimum cost from F, (1, 2, 3)

as follows
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F
k

(1, 2, 3) = min { pu {(1, 2, 3) (1, 2, 3)} + F
3

(l, 2, 3) ,

p* {(1, 3, 3) (1, 2, 3)} + F (1, 3, 3.) ,

p*
{(2, 2, 3) (1, 2, 3)} + F

3
(2, 2, 3) ,

p*
{(2, 3, 3) (1, 2, 3)} + F

3
(2, 3, 3) ,

p*
{(3, 3, 3) (1, 2, 3)} + F

3
(3, 3, 3)>

= min {196, 21U, 2lU , 2lU, 20U}

= 196 with decision (l, 2, 3) .

The optimal schedule is thus

x
1

= (9, 16, 9) ,

x
2

= (9, 16, 9),

x
3

= (9, 16, 9),

x
U

= (9, 16, 9) .

Total cost = $196 .

k.1 EXAMPLE 5- FIVE FACILITY CASE AND SOLUTION BY DYNAMIC PROGRAMMING

Work out the above problem assuming that there are five facilities

and compare the results.

For the 5 facility situation, the computational procedure up to and

including facility 3 is the same as for It facility situation. For the

fourth facility we have to calculate F^ (l, 2, 3), F^ (l, 3, 3), F^ (2, 2, 3),

F, (2, 3, 3) and F. (3, 3, 3). We have seen in the previous example that

F^ (1, 2, 3) = 196 with decision (1, 2, 3).

Similarly
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F^ (1, 3, 3) = 186 with decision (3, 3, 3) ,

F
k

(2, 2, 3) = 182 with decision (3, 3, 3),

F
k

(2, 3, 3) = 169 with decision (3, 3, 3),

F
u

(3, 3, 3) = 136 with decision (3, 3, 3) .

For the last facility, that is facility 5, the actual demand is given

by

w = (1, 2, 3) .

Therefore, we obtain the total minimum cost from F (1, 2, 3).

F
5

(1, 2, 3) = min of {
p* {(l, 2, 3), (l, 2, 3)} + F

u
(l, 2, 3),

p* {(1, 3, 3), (1, 2, 3)} + F
u

(1, 3, 3),

p* {(2, 2, 3), (1, 2, 3)} + F
u

(2, 2, 3),

p* {(2, 3, 3), (1, 2, 3)} + F
u

(3, 3, 3),

p* {(3, 3, 3), (1, 2, 3)} + F
u

(3, 3, 3)}

= min { 2U5, 253, 263, 268, 238}

= 238 with decision (3, 3, 3) .

Hence the optimal schedule is

x
1

= (3>», 0, 0),

x
2

= (3lt, 0, 0),

x
3 = (3U, 0, 0),

y
k

= {3h, 0, 0),

x
5

» (3 1*, 0, 0) .

Total cost = $238 .
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Comments - Comparing the results of the above two examples , ve find that

if the number of facilities is equal to or less than four, then it is

not profitable to carry inventory. If the number of facilities exceeds

U, it is profitable to produce in the first period only and carry inventory.

This is because, for the 5-facility case, the inventory cost is counter-

balanced by production costs. We find that the reduction in production

costs is more than increase in inventory cost, when N increases from

It to 5.
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5. A DETERMINISTIC MULTIPERIOD PRODUCTION
SCHEDULING MODEL WITH BACKLOGGING

As before, a deterministic multi-period production and inventory

model that has concave production costs and piecewise concave inventory-

costs is analyzed. An essential feature of this model is that it permits

backlogging of unsatisfied demand, otherwise the model is similar to one

discussed before. Permitting backlogging, mathematically means to permit

negative inventories for which penalty has to be paid. The cost function

is piecewise concave.

5.1 PROBLEM STATEMENT (9)

The problem can be stated as follows: Given certain fixed non-

negative market requirements r, find a production schedule k that minimizes

the piecewise concave function

h=n
F(k) = p(k) + I M^k) (78)

subject to

h=l

h=i

*« " I l\- r ), i = 1, 2, ..., n , (79)
h=l

n

h=i
rii- I r

h . i = 1, 2, ..., n , (80)
h=i-o+l

n

and

1=0,

x. = , for i _<

r
i

= 0, for i <_

(81)

i = 1, 2, ..., n
, (82)
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Let x be the set of all vectors k that satisfy the constraint

system given by equations (79), (80), (8l) and (82). Any k in x is

called a feasible production vector. A k in x that minimizes F(k) on

x is called optimal production vector. It should he noted that x is

closed, hounded polyhedral and thus is a compact convex set.

A production schedule k is said to satisfy exact requirements if

there are integers = s_ £ s < . . . _ s = n such that

h=s.

x,= I
x

r . i = 1, 2, .... n . (83)
1 h-l+i,^

n

All vectors in the dominant set and hence an optimal production schedule

must satisfy exact requirements. In an exact requirement schedule, the

production completed in period 1 satisfies market requirements exactly

through s . If s. = then x = and zero periods are exactly satisfied.

By the beginning of period i production has been completed to exactly

satisfy requirements through period s. « • The production completed in

period i will satisfy market requirements through period s. .

The hacklogging assumption is satisfied if s. >_ i - o . This requirement

insures that by the end of period i production must have been completed

to satisfy requirements through period i-o . Equivalently the requirements

on s. insure that equation (80) is satisfied.

5.2 AH ALGORITHM BASED ON DYNAMIC PROGRAMMING (9)

Having defined the dominant set and the integer, we will go on to

derive an algorithm to solve this problem. There are a large number of

vectors in the dominant set. The type of algorithm that should be employed

is heavily dependent upon the cost structure. In this section an algorithm
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for a commonly found cost structure will be developed. It is assumed that

the concave cost term p(k) can he expressed as

i=n
p(k) = I p. (x )

i=l
x x

Where p (x.) is the cost of completing production x. in period i. The

total cost of producing schedule k is then

i=n
F(k) = I {p (x ) + M (I )}

i=l
1 x

where M.(I.) is the cost of inventory. More meaning will be given to

this, as the discussion proceeds. A dynamic programming algorithm will be

used to find the optimal schedule for the above cost function. The algorithm

makes use of the structure of the dominant schedules. Since the dominant

schedules satisfy exact requirements the inventory in period i can be

expressed in terms of an integer s as follows:

h = ? ^ • «*>
h=i+l

The integer s specifies that a stock on hand is sufficient to

satisfy requirements through period s. When the inventory equation can

be expressed as in equation ( 8U ) the inventory horizon is said to be s.

The inventory charges, M.(I ), can also be expressed as a function of s.

Let

h=s „

H I r - M (s) .

h=i+l
x

In a schedule following exact requirements, the production amounts

satisfy exact requirements also.
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If

then

h=s

h-i
=

I r
h

h=i

h=t
X
i

=
J .,

F
h

h=s+l

for some integer t j^ s and the production completed in period i satisfies

requirements from periods s + 1 to t. The integers s and t specify the

production completed in period i.

Let

h=t

Pi I r
h

=
?l

(s. t)

h=s+l

which specifies the production charges in terms of s and t. It may be noted

that if the inventory level in period i - 1, is s and the production

completed in period i satisfies requirements from periods s + 1 to t then

the inventory horizon at the end of period i is t.

With the above notation, it is possible to develop the dynamic pro-

gramming recursive equation. Let F, (s) be the minimum cost from period i

through n when following an optimal production schedule in period i through

n, given that the inventory horizon at the end of period i - 1 is s.

The recursive relationship for 1 < i < n is

F^s) = pi
(s, s) + M* (s) + F

i+1
(s) if s >. i

= Min { p (s, t) + M. (t) + F. (t)
|
n >_ t >_ max

(s, i-a ) } if s < i
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for all s such that max (0, i-l-o) <. s <_ n .

For periods i, 1 < i < n, if the inventory in period i-1 is s then the

relation n > s > max (0, i-l-ct) should he satisfied to insure feasibility

and prevent excess backlogging. If s > i, then there is positive inventory

and following a dominant schedule x. must be zero. x. then actually

supplies requirements from period i + 1 to s. The production charge in period

i is p. (s, s) and the inventory charge is M. (s). Since the inventory-

horizon in period i is s, the minimum cost from period i + 1 to the end is

F,.,<s).

If s < i then x. > is permissible following a dominant schedule.

If the production completed in period i supplies requirements from periods

s + 1 to t, then in order to maintain feasibility and prevent excess

backlogging, we must have n >^ t >_ max (s, i-a).

The charges in period i are p. (s, t) + M. (t) because the production

completed in period i satisfies requirements from periods s + 1 to t and in

the period i the inventory horizon is t.

For period i = 1 and i = n the recursive equations require the fol-

lowing modifications to insure the initial and final inventories are zero.

F
x
(0) = min {

p* (0, t) + M* (t) + F
g
(t)} ,

n >_ t >_ max (i-a, 0)

and

F (s) = p (s, n) + M (n) .

n n n

5.3 EXAMPLE 6. SINGLE FACILITY CASE WITH BACKLOGGING

To illustrate the use of the algorithm consider the following example.

Assume that it is necessary to -supply market requirements over the next three
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periods of r = 3, r = h and r, = 2. A one period backlog is permitted

and all requirements must be satisfied by the end of period 3, so that

a = 1 and I = 0.

The cost p.(x. ) of producing x. units in period i is

p
i
(x

i'
= 6

i
(x

i'
+ 3x

i'
1 " 1

»
2

'
3 '

where

6.(0) for all i,

«
1
(x

1
) = 7 if x

1
> 0,

5
2
(x

2
) = l» if x

2
> 0,

6
3
(x ) =3 if x

3
> .

The production cost in each period is characterized by a set up charge

6.(x. ) plus a linear production cost. The inventory cost M. (I.) is $1 per

unit per period and shortage cost is $2 per unit per period.

Find an optimum schedule that minimizes cost.

5.U SOLUTION BY DYNAMIC PROGRAMMING

We notice that the holding cost for positive inventory is linear at

one dollar per unit per period while the shortage cost is also linear but

at $2.00 per unit backlogged per period.

The problem is to find the production schedule, k = (x x x ), that

minimizes cost. The dominant set for these requirements consist of
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2=8 schedules as follows

:

D = {(3, U, 2), (7, 0, 2), (3, 6, 0), (9, 0, 0), (0, 3, 6),

(0, 9, 0), (0, T, 2), (3, 0, 6) }.

It may be noted that while calculating the cost corresponding to each

schedule, for convenience, we could ignore the linear portion of the pro-

duction costs, since it is identical in each period. Only the set up

charges and the holding cost will be considered.

We have proved

F (s) = p* (s, n) + M (n),

F
3
(l) = p

3
(1, 3) + M

3
(3)

= 3 + = 3.

Similarly

F
3

(2) = 3,

F
3

(3) = 0.

F (0) = Minimum of the following:

p2
(0, 1) + M

g
(1) + F

3
(1) = U + 8 + 3 = 15,

p2
(0, 2) + M

2
(2) + F

3
(2) = U + + 3 = T,

P2
(0, 3) + M

g
(3) + F

3
(3) = h + 2 + = 6,



90

F„(0) = 6 with decision (3) .

F (l) = min of the following

:

p2
(1, 1) + M

2
(1) + F

3
(1) = 8 + 3 = 11,

p* (1, 2) + M* (2) + F (2) = It + + 3 = 7,

P
2

(1, 3) + M
£

(3) + F
3

(3) = U + 2 + = 6.

Hence F (1) = 6 with decision (3).

Hence

F (2) = Minimum of the following:

p2
(2, 2) + Mg (2) + F

3
(2) = 3,

p (2, 3) + M (3) + F, (3) = 6 .

2
J

F
?
(2) = 3 with decision (2)

F
2
(3) = p2 (3, 3) + H

2
(3) + F.

3
(3)

=0+2+0=2 decision (3) .

F CO) = Minimum of the following:

Px
(0, 0) + M* (0) + F

2
(0) = + 6 + 6 = 12,

p* (0, 1) + M* (1) + F
2
(l) =7+0+6+13,

p* (0, 2) + M* (2) + F
£
(2) = 7 + It + 3 = lit,

Pl (0, 3) + M
2

(3) + F
2
(3) =7+6+0= 13
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Hence

F (0) = 12 with decision (0) .

This means that the entire production takes place in the second period.

Hence the optimal production schedule is (0, 9, 0). Minimum cost cor-

responding to this schedule = 12 + 3 x 9 = $39.00.

5-5 SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

Let us define each period as a stage.

Let

x = Total number of units produced up to and including

n period, n = 1, 2, 3.

9 = Numher of units produced in the n period only.

F = Fixed cost in the n period.

x„ = Total cost up to and including n period, n = 1, 2, 3.

G(x"~ ,8
n

) = Cost for n period only.

0, = Demand in the n period.

We can write the performance equations as follows

x
l

= x
l

_1
+ 9"

'
n " X

'
2

'
3 ' (72)

x° = and x
3

= 9,

x£ = x^"
1 G^"1

, e
n

)

J/
1

+ F
n

+ 36
n

+ P (x° - f Q
1
), n = 1, 2, 3, (73)

i=l



92

x° = 0.

Where

i=n

P(x. - 1 Q ) represents either inventory cost or shortage cost (that is

i=l

penalty for backlogging) depending on whether stock oa hand is more than

or less than the demand.

i=n . i=n
If (x" -

I Q
1

) > then P = 1 = inventory cost. If (x" -
J Q

1
) <

i=l i=l

i=n

then P = -2 = shortage cost. In both cases, the product P(x - £ Q ]

i=l

is positive. The objective function to be minimized is

S = clX
3 + c

2
x3 = 4

Hence

c = and c
p

= 1.

The Hamiltonian and adjoint variables are

, Tn n n ,
n n

H = Vl + z
2
x
z

(x""
1

+ 8
n

) + zl { x""
1

+ F
n

+ 36
n

P(x" -
I Q

1
) } ,1 d d x

i=l

n = 1, 2, 3, (7 1*)

n-1 3H n . „ n

\ " TnTT " z
l

+ Pz
2 •

3x
l
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and

Since

we have

Then

2
3X-1 2

z
2

= 1, n = 1, 2, 3

\ =Z
1
+P

'

and the Hamiltonian becomes

,

H
n

= z^"1
+ e

n
) * x^"

1
+ F

n
+ 36

n
P(x^ - Y «*> (T5)

i=l

Objective function S is a minimum when H is a minimum. We note that

n n-l , n-l . „n
z , x , ana x„ in H are constants and

PCx? - T Q
1

)

1-1

is always positive. Therefore the variable portion of the Hamiltonian,

n
H , to be minimized can be written as

H
n

= zV + F° + 38
n

V J.

= e
n
(z" + 3) + F

n
. (76)

It may be noted that F is zero if 9 is 0, and is positive constant if
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9
n

is positive.

Since H
n

is a linear in e
n

, it is a minimum on the boundary of admis-
v

sible values of g
11

. We do not know whether (z + 3) is negative or positive.

If (z +3) is negative e should take the maximum value and if (z + 3)

is positive, 6° should take the minimum value namely zero, in order to

n
minimize H

v

Stage 1:

Substituting n = 1 in equation (76) yields

H
v

= ^ (z
l

+ 3) + ^ -

8 can take one of the two values to minimize H

3
1

= or 9 .

Stage 2:

Substituting n = 2 in equation (76) yields

H
2

= 6
2

(z
2

+ 3) + F
2

v 1

B
2

= or 9.

Stage 3:

Substituting n = 3 in equation (76) yields

1 r> r> -3

H
J = e-

3
(zf + 3) + F

J

v ' 1

3
3

= or 6
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12 3
3y looking at H , H and H , we find that our search is narrowed down to

2 cases

Case 1: 12 36=0, 6=9, 8 = .

Case 2: 12 36=9, 6=0, 6
J = .

The easiest way of optimum seeking is to calculate the total costs

corresponding to these two cases and adopt that case which gives the

minimum cost.

Case 1: 12 38=0, 8=9, 6=0.

Substituting n = 1 in equation (73) yields

i=l .

1
x = x + F

1-1

11
+ 36

1
+ P (x

1
-

I Q
1

)

i=l

+ + 3x0 + (-2) (0-3)

6,

2 "2

= 6

= 39

Similarly

2 1 „2 „„2 „, 2
x„ = x + "F + 36^ + P(x^ -

I Q
1

)

1-1

+ h + 3x9 + 1 { 9- (3 + lt)}
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Xg = 39 + + 3x0 +

39 .

Total cost = Xg = $39.

Case 2:

12 3
.e
1

= 9, e =o, e=o.

xj = x° + f
1

+ se
1

+ P (j£ -
J Q

1
)

* 1-1

=0+7+3x9+1 (9-3)

= UO,

x^ = 'tO + + + 1 (2)

= ^2,

Xg=U2 +0+0+0

= i»2.

Total cost = Xg = $U2 .

Comparing case 1 and case 2 we find that case 1 is cheaper. Hence the

optimal production schedule is as follows:

Period 12 3

Production
level 9 units

Total cost = $39.

The same result is obtained "by the use of dynamic programming method.
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6. APPLICATION OF THE DISCRETE MAXIMUM PRINCIPLE
TO LABOUR ASSIGNMENT AS A DYNAMIC CONTROL PROBLEM

In this section, we discuss the near optimal labour assignment vith

a restriction on the availability of labour and number of machines. The

process of labour assignment is formulated as a dynamic control problem.

The criterion function employed here is to minimize the total in-process

inventory cost over a given time-span. This problem vas first solved to

obtain necessary and sufficient conditions for the optimal control by the

continuous maximum principle by Nelson (7). In this section, an attempt

has been made to reassign the labour at discrete time intervals by

employing a discrete version of the maximum principle.

The problem in the nutshell, can be stated as follows:

There are L laborers and m machine centers. Each machine center

i = 1, 2, ..., m consists of f. identical machines. We assume,

i=m
L < T f.

1=1 a

so that labour is a limiting resource.

Let

A = Rate of arrival of work to machine center in work units

per period.

u. = Service rate in work units per period for each machine

in machine center i when there is a labourer assigned to

the machine i, i = 1, 2, ..., m.

x. = Queue length at machine center i at the n period measured

in work units, i = 1, 2,
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k. Inventory cost per work unit per period at machine

center i, i = 1, 2, . . . , m.

A job lot is a block of successively arriving work characterized by

identical processing requirements. Each Job lot requires processing at a

completely ordered sequence of machine centers. Both the job routings

and service time requirements are known in advance.

The work force is completely homogeneous and flexible, i.e., every

labourer is equally efficient at any given machine center. Only one

labourer can work on a machine at one time.

Work is processed at each machine center at discrete time intervals.

The service rate of the machine center in any period is proportional to

the number of labourers assigned to the machine center in that period. The

queue discipline is arbitrary except that only one job lot can be processed

in any machine center at one time. The portion of a job lot that has been

processed instantaneously enters the appropriate queue for its succeeding

operation.

As stated before, the problem is to find a labour assignment procedure

that minimizes total in-process inventory costs over the n time periods.

Let us denote the system state vector of queue lengths in the n
th

periods by

x = (x , X , ..., X ) .12 m

We will introduce a decision vector = (of, 6° ...,
n

) where e" is the12 m x

number of labourers assigned to machine center i in the n
th

period. We shall

say that decision vector 6 which satisfies the following constraints (a)

through (e) belongs to the set U of admissible decision vectors.
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m
a) If I 0. < L then there cannot exist an i such that 8. < f.

i=l
x 1 i

and x. > for < n _< N where N is total number of periods.

b) 6° = whenever x" = for i = 1, 2, . .., m; < n 5 N.

an integer for i = 1, 2, ..., m and < n < N.

d) <_ e
n

< f , i = 1, 2, ..., m and < n < N.

e) J 9? < L for < n < N.

i=l
X -

The meaning of constraint (a) is that as many as possible of the

labourers will be used in any given period. Constraint (b) states that

labourers are to be assigned only to machine centers that have work to be

performed in any given period. Constraint (e) is an indication of indi-

visibility of a single labourer. Constraint (d) signifies the limitations

of the machine centers to absorb labour productivity. Constraint (e) assures

that the total size of the labour force is not exceeded.

The main objective of the problem is to minimize

n=N i=m

n=l i=l
x

6.1 AH ALGORITHM BASED ON THE DISCRETE MAXIMUM PRINCIPLE

The performance equations are given by

< -^ pJi * TpM -V?' i- I.*. ...«. C7T)
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vhere

Similarly

n = represents the transition of work units from machine
ij

center i to j in the n period. This is equal to

one if work is transferred and zero otherwise.

pn . = represents the transition of work units from outside to

machine center i in the n period. This is equal to

one if work is transferred and zero otherwise.

The second, third and the fourth terms on right hand side of equation

(77) represent charges in queue length caused by work units arriving

from outside the system, work units arriving from other machine centers and

work units completed and departing for subsequent processing. Now let us

define a new state variable x . to represent cost.

m+1
Total cost up to and including n period

n-1
X
m+1 I k.x

n

i=l
i£

The objective function to be minimized is

(78)

V N UN
/ ex. + C A1 X ., = X

,£- 11 m+1 m+1 m+1
(79)

So that

c.=0,

1 .

1. 2,

m+1
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The Hamiltonian function and adjoint variables are written as follows.

„n r n n
,H = ) z.x. + z x ..

.

L
. 11 m+1 m+1

1=m
n , n-1 ^ n , ^ ^ n-1 n-1 „n,

so that

V n i n-i . n , . r n-i „n-i „n,
> z. (x. +p..x+ > p.. u.e, -w.e.)

±t±
i i Oi *

Fji J J "l i'
i*

+ z\, (x
11

;^ + i k. x
n
), (so)

m+1 m+1 .
L

, l l
1=1

n-1 3H n . n ,

z. r- = z. + z ., k. ,
l . n-1 i m+1 l

3x.

i = 1,2, ..., m,

n = 1,2, ..., N,

z' = 0, i = 1, 2, ..., m,
l

n-1 _ 3H _ n
Z
m+1 , n-1

= Z
m+1 '

3x
.

,

m+1

n = 1, 2, .... N,

H
Z
m+1 ~ °n+l -

1 '

vr 1
-

n = 1
<

2
>

•••• H -

Substituting z + . = 1 in H and rearranging the terms , we obtain
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„n r n n-1 r n n n-1
H = > z.x. + ) z.d„.X + x +

.

L
. l l ,**, l Oi m+1

1=1 1=1

i=m - i=m m , , i=m

I k x + I (z ) £ p v e - I z.v.e +

i=l
1 x i=l

x
j=l J1 J J i=l

x x x

i=m i=m j=m , , i=m

I k.p".X+ I k, [ p^yfl"-1 -
J k.p.e

n
. (81)

i=l
1 0l 1=1 x j=l ^ J J 1=1 1 ^ x

S is a minimum when H is a minimum. From equation (8l), we find

that H is a linear with respect to 6. . Hence 6. which makes H a* i l

minimum lies on the boundary of set U of decision vectors. In equation

(8l) z., x. , x , , p„. , p.. , k. , X , u. and u, are constants. Therefore
l 1 m+1. Oi ji l 1 i

the variable portion of H , H , can be written as

H
n

= - I zVen
- I k,w.9

n

i=l
x x x

i-1
x x x

I HI + *iV"

i=l

i=l
x

Obviously S is a minimum when H is a minimum. From equation (82),

it can be seen that K is a minimum when 0. is a maximum. Physical
v 1

interpretation of maximizing G. is to allot as much of the labor force as

possible to fill machine center for which x. > 0. In doing so, we should
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evolve some criteria based on vhich the labour force is divided among the

facilities for vhich ::'.' > 0. For this purpose, ve will define two more

terms . Let

u. = service rate in work units per period for the machine

centre to which work being processed at machine centre

i in the n period is flowing for its next process.

Similarly

k. = Inventory changes per unit per period for the next

machine centre line.

f. = Number of machines in the next machine centre in line.

We know

so that

z . z . + k . ,i i i

N-l N .
,z. = z. + k.

l li
= + k. ,

:!-2
z. k. + k, = 2k.
i i i i

ana so on.

In general

^
-1

= R\ (83)

where

S = A non-negative constant quantity.

Substituting equation (33) in H"-, we have
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l=m

In order to minimize H
v , allot maximum 8? to the machine centre for

which

^ n
a) x. > 0,

b) k.y. is a maximum .

But there is one danger, namely that if for the next machine in the

line, the service rate is low (in other words u" is low) and k" is high,

this decision will not constitute an optimum policy. In order to avoid

this undesirable situation, let us calculate a time dependent priority

H. given by

1- = (ijvjtj - fjVjkJ) , 1-1, 2 m.

Optimum policy is to allot in any period n, as many of L labourers as

possible to fill machine centres for which x° > in order of decreasing

values of n. .

l

6.2 EXAMPLE 7. A SIMPLE NUMERICAL EXAMPLE

Let us consider three machine centres, so that m = 3. Work pieces

are processed first on machine centre 1, then on 2 and finally on 3. There

are 7 identical machines in machine centre 1, 16 machines in machine

centre 2 and 7 machines in machine centre 3.

Work pieces arrive at the rate of 60 units/hour. Service rate for each

machine for machine centre 1 is 10 unitr per hour, for centre 2, 5 units
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per hour and for centre 3, 12 units per hour. A tote t>ox is used to carry

the completed work pieces every hour and has a capacity of 90 units.

The inventory charges are $l/unit/hour for machine centre 1, $0.50/

unit/hour for machine centre 2 and $0. 75 /unit /hour for machine centre 3.

A maximum of 20 labourers are available. Each labourer is assumed to be

equally competent to work on any machine centre. Assuming that there is

no initial in-process inventory, determine how many labourers should be

assigned to each machine centre every hour, to minimize the in-process

inventory cost for a time-span of 5 hours, assuming that the inventory

cost for the finished products is $0.60 per unit per hour.

6.3 SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

The following values are given,

n = 3, N = 5, L = 20,

X - 60 units/hour, u.. = 10 units/hour,

V - 5 units/hour, u, = 12 units/hour,

t
x

= 7, f
2
- 16, f

3
- 7,

k
x

= $1, k
2

= $0.50, k
3

= $0.75, k^ = $0.60 .

Let us denote the capacity of the tote box by f . u, , then f . u. = 90 .

Let us first calculate the tine dependent priority for each machine centre.

In this case it may be noted

k
i

= k
i+i

and u
i

= Vi> n = 1> 2
'

3
>

h
'

5 '

1, 2, 3,

„n „n n, _ , n
n
i

f
i^i

k
i - Wi
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= (16 x 5 x 1 - 7 x 10 x 0.5) = 1*5,

::' = (7 x 12 x c. - 16 x 5 x 0.75) = -

n = (90 x 0.75 - 7 x 12 x O.S) = 17.1,

for n = 1, 2, 3, 1*, 5

Hence we note

n? » S > "£

Therefore, if there Is queue length of work pieces at all the three machine

centres, the maximum number of labour :rs is assigned to machine centre 1,

then to 3 and to 2.

The assignment is shown in the following table.



No. of centre
hour
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Queue length Cunulative
No. of Labourers in units Inventory Inventory-
assigned to m/c. at m/c centre Cost $ Cost $

12 3 12 3

6 60

6 12 60 60

6 9 5 60 60 60 7.50 7.50

10 It 60 75 ^5 12.50 20.00

10 h 60 85 50 19.0 39.00

Hence total minimum in-process inventory

cost during the time span of 5-hours = $39.00
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ABSTRACT

The objective of this report is to present the study made by Zangvill

dealing with a deterministic multiproduct, multifacility production planning

and inventory model and that by Kelson concerned with labour assignment as

a dynamic control problem. The optimization technique employed by Zangwill

in arriving at an optimal production schedule is the well known dynamic

programming. In this report, the same solution has been obtained by a

discrete version of the maximum principle. Helson has optimized the labour

assignment in a labour and machine limited production system by the con-

tinuous maximum principle. In this report, the same problem for discrete

time intervals is studied by the discrete maximum principle.

The deterministic multiproduct, multifacility, multiperiod production

planning and inventory model developed by Zangwill is essentially a linking

together of several single facility models. The model considers concave

production costs which can depend upon production in several different

facilities and piecewise concave inventory costs. The optimization problem

consists in determining how much each facility in the network should produce

in each period for the multiperiods so that the total production and inventory

cost is minimized.

The production scheduling discussed in this report essentially refers

to the parallel facility case, series facility case and multiperiod pro-

duction planning model with backlog of demand. In the parallel facility

situation, there are more than one facility in parallel. Each facility

produces one product for which the demand for the next n periods is known.

In the series facility case there are more than one facility connected in

series. Each facility supplies input to the next facility in the line.

The last facility in the line supplies the market. Next the multiperiod



production planning model vith backlog of demand is presented. For all

these three cases, dynamic programming algorithms are presented. Examples

1, 3, '», 5 and 6 demonstrate the usefulness of these algorithms. These

examples are also solved by the discrete maximum principle. Example 2

involves the parallel facility case with non-linear cost function and is

solved by the discrete maximum principle.

The last section of this report is devoted to the discussion of a

labour assignment as a dynamic control problem. The criterion employed

here is to minimize the in-process inventory cost of the work pieces

which are processed on different machines in a definite order. The

original model developed by Nelson assumes continuous arrival of work

pieces at the machine centre and hence the continuous maximum principle

is employed in optimizing the labour assignment. The model considered

in this report assumes the arrival of work pieces at discrete time

intervals. Hence the discrete maximum principle is employed in optimizing

the labour assignment. A simple numerical example is developed to

demonstrate the applicability of the algorithm.


