
 
 

SYNTHESIS AND BIOEVALUATION OF LACCASE SUBSTRATES AND SUBSTITUTED 

QUINOLINES  

 

by 

 

KESHAR PRASAIN 

 

M.Sc., Tribhuvan University, Nepal, 2001 

 

AN ABSTRACT OF A DISSERTATION 

submitted in partial fulfillment of the requirements for the degree 

 

 

DOCTOR OF PHILOSOPHY 

 

Department of Chemistry 

College of Arts and Sciences 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

2013 



 
 

Abstract 

Our research work is divided into three chapters. In the first chapter, synthesis of 

substituted phenolic compounds including halogenated di- and trihydroxybenzenes, 

aminophenols, and substituted di-tert-butylphenols, their redox potential, laccase oxidation, and 

mosquito anti-larval activities are discussed. The synthesized substituted phenols were found to 

be the substrates but not the inhibitors of laccase.  An inverse correlation between the oxidation 

potential and the laccase oxidation efficiency of halogenated hydroxybenzenes and 

aminophenols was established. However, substituted di-tert-butylphenols were found to have 

anti-larval activities in mosquitoes resulting in the death of the larvae just before reaching 

pupation. Among the di-tert-butyl phenols studied, water insoluble, 2,4-di-tert-butyl-6-(3-

methyl-2-butenyl)phenol (16), 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime 

(14), and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (17) caused the mortility of 

98%, 93%, and 92% of Anopheles gambiae larvae in the concentration of 182 nM, 3.4 µM, and 

3.7 µM, respectively. In particular, compound 16 had similar anti-larval activities as compared to 

MON-0585, an anti-larval agent reported by Monsanto in the 70’s.  

In the second chapter, inhibition of protein kinase C (PKC) phosphorylation by 

substituted quinolines (PQs) is inverstigated. PQ compounds such as N-(3-aminopropyl)-6-

methoxy-4-methyl-5-(3-(trifluormethyl)phenoxy)quinolin-8-amine (PQ1), N-(furan-2-ylmethyl)-

6-methoxy-4-methyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ11), and 6-methoxy-

4-methyl-N-(quinolin-4-ylmethyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ15) were 

found to inhibit PKC phosphorylation with IC50 values of 35 nM, 42.3 nM, and 216.3 nM 

respectively, among which PQ1 and PQ11 were found to be potent PKC inhibitors as 

comparable to that of staurosporine (IC50 = 33 nM).  



 
 

In chapter three,  the tissue distribution of PQ1 and PQ11 in normal C57BL/6J mice and 

the effect of PQ1 on the normal tissues of mice were investigated. Substituted quinolines, PQ1 

and PQ11 were distributed in the tissues in concentrations that were more than 40 folds of their 

effective dose. PQ1 and PQ11 were also found to penetrate the blood brain barrier and collect in 

the tissue in significant amounts. The administration of PQ1 and PQ11 had no effect in the 

normal behavior of the animals indicating no short term adverse effects. PQ1 was found to 

increase the expression of survivin, an anti-apoptotic factor and decrease the expression of 

cleaved caspase-3 and caspase-8, pro-apoptotic proteins. These studies suggests that PQ1 might 

have anti-apoptotic activities in normal cells, in contrast to the role of PQ1 in cancer cells where 

it has demonstrated to induce apoptosis. The study also indicated that PQ11 was better 

metabolized from the tissues over time as compared to PQ1.  
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Abstract 

Our research work is divided into three chapters. In the first chapter, synthesis of 

substituted phenolic compounds including halogenated di- and trihydroxybenzenes, 

aminophenols, and substituted di-tert-butylphenols, their redox potential, laccase oxidation, and 

mosquito anti-larval activities are discussed. The synthesized substituted phenols were found to 

be the substrates but not the inhibitors of laccase.  An inverse correlation between the oxidation 

potential and the laccase oxidation efficiency of halogenated hydroxybenzenes and 

aminophenols was established. However, substituted di-tert-butylphenols were found to have 

anti-larval activities in mosquitoes resulting in the death of the larvae just before reaching 

pupation. Among the di-tert-butyl phenols studied, water insoluble, 2,4-di-tert-butyl-6-(3-

methyl-2-butenyl)phenol (16), 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime 

(14), and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (17) caused the mortility of 

98%, 93%, and 92% of Anopheles gambiae larvae in the concentration of 182 nM, 3.4 µM, and 

3.7 µM, respectively. In particular, compound 16 had similar anti-larval activities as compared to 

MON-0585, an anti-larval agent reported by Monsanto in the 70’s.  

In the second chapter, inhibition of protein kinase C (PKC) phosphorylation by 

substituted quinolines (PQs) is inverstigated. PQ compounds such as N-(3-aminopropyl)-6-

methoxy-4-methyl-5-(3-(trifluormethyl)phenoxy)quinolin-8-amine (PQ1), N-(furan-2-ylmethyl)-

6-methoxy-4-methyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ11), and 6-methoxy-

4-methyl-N-(quinolin-4-ylmethyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ15) were 

found to inhibit PKC phosphorylation with IC50 values of 35 nM, 42.3 nM, and 216.3 nM 



 
 

respectively, among which PQ1 and PQ11 were found to be potent PKC inhibitors as 

comparable to that of staurosporine (IC50 = 33 nM).  

In chapter three,  the tissue distribution of PQ1 and PQ11 in normal C57BL/6J mice and 

the effect of PQ1 on the normal tissues of mice were investigated. Substituted quinolines, PQ1 

and PQ11 were distributed in the tissues in concentrations that were more than 40 folds of their 

effective dose. PQ1 and PQ11 were also found to penetrate the blood brain barrier and collect in 

the tissue in significant amounts. The administration of PQ1 and PQ11 had no effect in the 

normal behavior of the animals indicating no short term adverse effects. PQ1 was found to 

increase the expression of survivin, an anti-apoptotic factor and decrease the expression of 

cleaved caspase-3 and caspase-8, pro-apoptotic proteins. These studies suggests that PQ1 might 

have anti-apoptotic activities in normal cells, in contrast to the role of PQ1 in cancer cells where 

it has demonstrated to induce apoptosis. The study also indicated that PQ11 was better 

metabolized from the tissues over time as compared to PQ1.  
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Chapter 1. Synthesis, redox potential, laccase substrate activity, and 

antilarval activity of substituted phenols 
 

1.1 Introduction 

Laccases (E.C 1.10.3.2) belong to the family of multi copper oxidases along with 

ceruloplasmin (E.C 1.16.3.1) and ascorbate oxidase (E.C 1.10.3.3).
1
 Laccase was first reported 

from the sap of Rhus vernicifera, a Japanese lacquer tree by Yoshida in 1883.
2
 Laccases are 

widely distributed among fungi, higher plants, insects, and bacteria and are known to catalyze 

one electron oxidation of four substrate molecules including substituted o-, m-, and p-phenols, 

polyphenols,  methoxy-phenols, and aromatic amines with subsequent four-electron reduction of 

molecular oxygen to water.
3-7

   

Laccases are known to have diverse physiological functions depending on the organism 

where they are found. Fungi are the largest source of laccases. In fungi, laccases are found to 

play important roles in activities including lignin biodegradation of wood, pigmentation, 

morphogenesis, and plant pathogenesis.
1,8

 In plants, laccases are involved in the synthesis of 

lignin, a component of the plant cell wall and in wound healing.
4,9

 Laccases in bacteria and 

insects are less studied. In bacteria, laccases are believed to participate in the endospore coat 

formation, melanin production, morphogenesis, and detoxification.
10

 In insects, laccases are 

believed to participate in sclerotization and tanning of the new exoskeleton.
11-13

 These diverse 

activities of laccases have attracted attention of a large number of researchers. Since only 

molecular oxygen is required for the catalysis, laccases are useful in many biotechnological 

applications. Presently, laccases find wide range of applications such as wood pulp bleaching 

and delignification in paper industries; detoxification and decontamination of industrial wastes, 
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pesticides, and herbicides; decolorization of dyes in textile industries; color alternation in food 

and wine industries; medicinal application; and biosensors for phenol or oxygen.
3,14

 

Mosquitoes are the most important vector of human diseases like malaria, dengue, 

encephalitis, etc.
15

 In 2010, about 216 million cases of malaria were estimated with an expected 

deaths of 655,000 worldwide (World Malarial Report, 2011, WHO). Since laccases have not 

been reported in vertebrates but are predicted to play important role in insects’ cuticle 

sclerotization,
11-13

 a vital process in the growth and survival of the insects including mosquitoes,  

insecticides selectively inhibiting laccase would have no adverse effect on vertebrates including 

humans. If laccase substrates upon laccase oxidation produced compound toxic to the mosquito 

larvae either by covalently bonding to the laccase or by targeting other molecular target within 

the insect, they could be developed as a potent pro-insecticides to kill mosquito larvae and help 

in the prevention of mosquito borne diseases like malaria, dengue, etc. Therefore, it is 

noteworthy to synthesize compounds that disrupt cuticle development in insects by selectively 

targeting laccase.   

Since phenolic compounds like catechols are oxidized by laccase during cuticle 

sclerotization or tanning in insects,
16,17

 several halogen substituted phenols and polyphenols, 

amino phenols, and substituted di-tert-butyl phenols were synthesized and their redox potential, 

laccase oxidation activity, and mosquito anti-larval activities were investigated. The synthesized 

substituted phenols are highlighted in Figure 4.  

The redox potentials of these compounds were measured by Thi Nguyen, a graduate 

student in Dr. Hua’s group using the facilities in Dr. Jun Li’s laboratory. The laccase substrate 

activities were measured by Dr. Maureen Gorman and Zeyu Peng in Dr. Michael Kanost 
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laboratory and the anti-mosquito larval activities were studied in Dr. Kun Yan Zhu’s laboratory. 

All of the above mentioned laboratories are located at Kansas State University. 

  

1.2 Background 

1.2.1 Molecular structure of laccase 

Laccases, blue multi-copper oxidases, in general are extracellular globular glycoproteins 

with molar mass of 60-80 kD and isoelectric point ranging from pH 3.0 to 9.0.
1,18

  In laccase, the 

extent of glycosylation usually ranges between 15 - 20% of the total weight of the protein and is 

related to secretion, activity, copper retention, and thermal stability of the enzyme.
1,19

 The 

protein mainly consists of three domains (D1, D2, and D3) with similar β-barrel type architecture 

as shown in Figure 1.
20,21

  

 

Figure 1: Crystal structure of laccase from Trametes versicolor, elaborated with PyMol from 

crystallographic structure, PDB code 1GYC. 
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Laccases are commonly found to contain four copper atoms per monomer that include 

one type I, one type II, and two type III coppers bonded to three redox sites designated as T1, T2 

and T3 respectively.
1
 These coppers can be differentiated by UV/Vis and electronic 

paramagnetic resonance (EPR) spectroscopy. In fungal laccase, T1 copper exhibits a planar 

trigonal geometry by coordinating with one cysteine and two histidines residues through sulfur 

and nitrogen atoms respectively.
4
 T1 copper is EPR active and the charge transfer transition from 

the sulfur of cysteine to the T1 copper results in an intense absorbance at around 600 nm giving 

characteristic deep blue color to the enzyme.
4
 T2 copper is also EPR active but does not show 

absorbance in the UV/Vis region, whereas two T3 coppers absorb weakly at 330 nm but are EPR 

silent due to strong antiferromagnetic coupling by a bridging ligand.
4
 One T2 and two T3 copper 

atoms are arranged in a trinuclear cluster and coordinated  to two and six histidines residues, 

respectively (Figure 2).
22

 The T1 copper is the primary electron acceptor site in laccase catalyzed 

reaction, where a single-electron oxidation of a substrate occurs.
22,23

 The electrons from the T1 

copper site are transferred through the highly conserved His-Cys-His tripeptide to the T2/T3 

copper trinuclear cluster, where four-electron reduction of molecular oxygen to water takes 

place.
22,23

 The schematic representation of the oxidation of phenolic substrates and the reduction 

of molecular oxygen to water is highlighted in Figure 2.
6
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Figure 2: Schematic representation of oxidation of phenolic substrates and reduction of 

molecular oxygen to water by laccase.
6
 Figure adapted from P. Baldrian, FEMS Microbiol. Rev. 

2006, 30, 215-242 with permission from John Wiley and Sons (copyright © 2005).  

 

1.2.2 Insect laccase in cuticle sclerotization 

Insect cuticles or exoskeleton are extremely diverse materials differing in both physical 

and chemical properties, and play important roles in several activities including protection 

against the environment, excretion, locomotion, and respiration.
24

 In cuticular sclerotization, N-

acylcatecholamines in the procuticle are oxidized to o-quinones or p-quinone methides by 

laccase and/or tyrosinase followed by the Michael addition of nucleophilic side chain function of 

histidines and other amino acids of cuticular proteins to form covalently bonded cross-linked 

adduct as shown in Figure 3.
12
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Figure 3: Proposed protein cross-linking during cuticle sclerotization in pupa of Manduca 

sexta.
12

 Figure adapted Karmer et al. Tetrahedron 2001, 57, 385-392 with permission from 

Elsevier (copyright © 2001). 

  

Tyrosinase, a monophenol monooxygenase, is able to hydroxylase monophenols to o-

diphenols and further oxidize them to its corresponding o-quinones but is unable to oxidize p-

dihydroquinones.
25

 Whereas, laccase cannot hydroxylase monophenols to diphenols but can 

oxidize both o-diphenols and p-dihydroquinones to their corresponding quinones.
25

 Among 

tyrosinase and laccase which enzyme plays a vital role in cuticle sclerotization was a matter of 

debate until 2005, when Arakane et al. demonstrated that laccase 2 but not tyrosinase was 

important in the cuticle sclerotization and pigmentation in red flour beetle, Tribolium 

castaneum.
13

 For this, RNA interference experiments were carried out to lower the levels of 

laccase or tyrosinase in the insects. Insects injected with dsRNA for laccase 2 gene (decreases 

the level of laccase 2) failed to tan normally and died subsequently, whereas insects injected with 
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dsRNAs for tyrosinsase gene had no effect on cuticle tanning.
13

 The leading role of laccase in 

cuticle sclerotization as compared to tyrosinase was further supported by the design of an in vitro 

sclerotization reaction, in which N-acylcatecholamines, compounds known to take part in cuticle 

sclerotization, were incubated with recombinant cuticular proteins MsCP36 derived from the 

tobacco hornworm, Manduca sexta in the presence of laccase and tyrosinase separately.
26

 

Reaction of MsCP36 with N-β-alanyldopamine (NABD) and laccase produced cross-linked 

oligomers and polymers immediately, whereas such cross-linking was not observed in the 

absence of either NABD or laccase. Substituting laccase with tyrosinase and performing reaction 

under similar conditions also gave cross-linked products but in lesser extent and the cross-linked 

product consisted largely of oligomers; no polymers formation was detected.
26

  

 

1.2.3 Laccase inhibitors 

Laccase inhibitors are rare and limited to few inorganic and organic compounds.
27,28

 

Small inorganic anions such as the azide, halides, cyanide, and hydroxide have shown to inhibit 

laccase activity by binding to the T2 and T3 copper atoms disrupting the electron transfer 

process.
29,30

 Some other laccase inhibitors include sulfhydryl compounds, hydroxyglycine, kojic 

acid, and cationic quaternary ammonium detergents.
18,27,31

  

 

1.3 Synthesis  

With an objective to synthesize laccase inhibitors several halogen substituted phenols and 

polyphenols, methoxy-phenols, amino phenols, and substituted di-tert-butyl phenols were 

synthesized (Figure 4).  



8 

 

The synthesis of halogenated phenols (compound 1 – 6) was based on the idea that: upon 

laccase oxidation the halogenated phenol would produce reactive cyclic haloenone, which might 

undergo substitution of halogen moiety by the nucleophilic function such as amino group of 

lysine or hydroxyl group of serine or tyrosine of laccase resulting in the formation of covalently 

linked adduct. This covalent linkage might lead to the irreversible inhibition of laccase and 

disrupt the cuticle sclerotization process in mosquitoes causing their death.  

 

Scheme 1: a) Proposed laccase oxidation of p-dihydroquinone 2 to p-quinone 19 and b) Reaction 

of p-quinone 19 with L-alanine benzyl ester 20 to form a covalently linked adduct 21 

 

 

 

As expected, p-quinone 19, compound that would form by the laccase oxidation of p-

hydroquinone 2, was found to undergo nucleophilic addition-elimination reaction to produce 

substituted product 21 on treatment with L-alanine benzyl ester p-toluenesulfonic acid salt 20 

and two equivalents of triethylamine in dichloromethane at 25
o
C (Scheme 1). The amino 

function of L-alanine benzyl ester 20 mimics the amino function of lysine residue of laccase. 
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Synthesized diphenols: 2, 4, and 5 are positional isomers having the hydroxyl groups oriented 

towards para, ortho, and meta positions, respectively. Since the ease of oxidation of diphenols is 

para (dihydroquinone) > ortho (catechol) > meta (resorcinol),
32,33

 compound 4 (o-diol) would 

show lesser activity than compound 2 (p-diol) towards laccase oxidation and produce o-quinone. 

Compound 3 (o-diol) also would produce o-quinone upon laccase oxidation and is expected to 

have similar laccase activity as compared to compound 4. Among the diphenols, compound 5 

(m-diol) would show lower laccase oxidation activity as compared to its ortho and meta isomers. 

Compound 1, on laccase oxidation would produce hydroxymethine quinone and should possess 

similar laccase oxidation activity as compared to compound 2. Compound 6 (triol) having both 

ortho and para oriented hydroxyl groups would have the highest laccase activity among the 

synthesized halogen substituted phenols. The introduction of methoxy group in phenolic 

compounds has been found to increase their laccase oxidation activity;
34

 therefore, the presence 

of methoxy group in compounds 1, 2, 4, and 5 should enhance their laccase oxidation activity.  

Moreover, the amino function of synthesized o-aminophenols 7
35

 and 8
36

 might strongly 

bind to the T1 copper of laccase and upon laccase oxidation would produce more reactive 

iminoquinone. The nucleophilic moieties like amino or hydroxyl function present in the laccase 

protein close to the T1 copper site might add irreversibly to the iminoquinone producing a 

covalently linked adduct and inhibit laccase activity.
37,38

  

 MON-0585, 2,6-di-tert-butyl-4-(α,α-dimethylbenzyl)phenol), developed by Monsanto 

Co. in the 70’s, is a juvenile hormone mimic and found to inhibit cuticle sclerotization in 

mosquitoes.
39

 Moreover, 2,6-di-tert-butyl phenols are oxidized by Co(II)-Schiff base complex 

and oxygen to give 4-substituted 2,6-di-tert-butyl-6-hydroperoxy-2,4-cyclohexadienones.
40,41

 

Therefore, various substituted di-tert-butyl phenols 10 – 16 were synthesized as shown in Figure 
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4. Compound 17 was derived as a byproduct during the synthesis of compound 16. These 4-

substituted di-tert-butyl phenols may undergo oxidation in the presence of copper and oxygen in 

the active site of laccase resulting in the formation of phenoxy radicals or corresponding 

cyclohexadienone disrupting cuticle sclerotization in mosquitoes. As compared to MON-0585, 

2,6-di-tert-butyl-4-(1-hydroxy-2-methylpropan-2-yl)phenol 11 has an additional primary alcohol 

group which might lead to its binding with laccase. Furthermore, the alcohol function in 

compound 11 could be transformed to various functional groups such as aldehyde in compound 

12, carboxylic acid in compound 13, oxime in compound 14, and amine in compound 15.  The 

presence of additional functional group such as  -OH, -CHO, -COOH, -N=OH, and -NHR  in 

compounds 11 - 15 as compared to MON-0585 might increase their binding with laccase 

resulting in the effective disruption of cuticle sclerotization in mosquitoes.  

Hence, in this chapter, various halogen substituted phenols and polyphenols, 

aminophenols, and di-tert-butyl phenols were synthesized and their redox potentials, laccase 

substrate activities, and mosquito anti-larval activities were studied. Synthesis of compound 1 

has been previously reported by Dr. Hua’s laboratory,
42

 and Compound 13 and 21 were 

synthesized by Thi Nguyen, a graduate student in Dr. Hua’s laboratory.
43
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Figure 4: Synthesized halogen substituted phenols and polyphenols, aminophenols, and di-tert-

butyl substituted phenols. 
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1.3.1 Synthesis of halogen substituted phenols and polyphenols 

1.3.1.1 Synthesis of compound 2   

2-Bromo-3-chloro-5-methoxy-1,4-dihydroxybenzene (compound 2) was synthesized 

from its precursor 3-chloro-4-hydroxy-5-methoxybenzaldehyde (1), an intermediate previously 

reported by Hua’s lab in the synthesis of (+)-chloropuupehenone,
42

 following a sequence of 

reactions as outlined in Scheme 2.  

 

Scheme 2: Synthesis of compound 2 
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The free hydroxyl function of 3-chloro-4-hydroxy-5-methoxybenzaldehyde (1) was 

protected as silyl ether by the use of tert-butyldimethylsilyl chloride in the presence of 

triethylamine and 4-dimethylaminopyridine (DMAP) in dichloromethane at 25
o
C for 12 hours to 

give 4-(tert-butyldimethylsilyloxy)-3-chloro-5-methoxybenzaldehyde (22) in 85% yield. Baeyer-

Villiger oxidation of compound 22 with the use of m-chloroperbenzoic acid (MCPBA) in 

dichloromethane under reflux for 8 hours gave 4-(tert-butyldimethylsilyloxy-3-chloro-5-

methoxyphenyl formate (23) along with the hydrolyzed product 4-(tert-butyldimethylsilyloxy)-3-

chloro-5-methoxyphenol (24) in the yield of 63% and 27%, respectively. The formate function of 

compound 23 was hydrolyzed to the phenolic function by basic methanolysis using potassium 

carbonate (K2CO3) in methanol at 25
o
C for 4 hours to give phenol 24 in 90% yield. The less 

hindered C-2 position in compound 24 was regioselectively brominated by the use of N-

bromosuccinimide (NBS) in dimethylformamide (DMF) at room temperature for 12 hours 

following the literature published by Hua’s group in the total synthesis of (+)-

chloropuupehenone.
42

 However, bromination of compound 24 under NBS condition gave 2-

bromo-3-chloro-5-methoxy-1,4-benzoquinone (19) along with the desilylated product 2-bromo-

4-(tert-butyldimethylsilyloxy)-3-chloro-5-methoxyphenol (25) in 48% and 31% yield, 

respectively.  Compound 19 might have formed by the hydrolytic cleavage of silyl ether 25 by 

the HBr generated from the action of NBS and trace amount of water in the reaction mixture 

followed by the oxidation to the quinone. NBS oxidation of dihydroquinone to benzoquinone has 

been previously reported by Barakat et al.
44

 Interestingly, disilylation of compound 25 by the use 

of tetra-n-butylammonium fluoride (TBAF) in THF at 0
o
C for 30 minutes gave quinone 19 in 

81% yield.  Reduction of compound 19 in presence of 10% palladium/carbon in ethanol under 

hydrogen (1 atm.) at 25
o
C for 15 minutes afforded the desired compound 2-bromo-3-chloro-5-
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methoxy-1,4-dihydroxybenzene (2) in 100% yield. Infrared spectra of compound 19 does not 

shown a characteristic hydroxyl stretch but shows a quinone stretch at 1683 cm
-1

, whereas 

compound 2 shows hydroxyl absorption at 3303 cm
-1

 implying compounds 19 and 2 are quinone 

and dihydroquinone, respectively.  

  

1.3.1.2 Synthesis of compound 3 and 4   

 The synthetic route of 3-chloro-4,5-dihydroxybenzaldehyde (3) and 4-bromo-3-chloro-5-

methoxybenzene-1,2-diol (4) is outlined in Scheme 3. Compound 3, and 26 – 29 were 

synthesized from 3-chlorovanillin (1) following the literature previously reported by Hua’s lab.
42

  

 

Scheme 3: Synthesis of compound 3 and 4 
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  Compound 3 was obtained in 86% yield by demethylation of 3-chlorovanillin (1) with 

boron tribromide (BBr3) in CH2Cl2 at 0
o
C for 30 minutes and 25

o
C for 12 hours. The two 

hydroxyl functions on C-4 and C-5 position of compound 3 were then protected by the use of 

tert-butyldimethylsilyl chloride, triethylamine, and 4-dimethylaminopyridinene (DMAP) in 

CH2Cl2 at 0
o
C for 1 hour and 25

o
C for 3 hours to give 3,4-bis(tert-butyldimethylsilyloxy)-5-

chlorobenzaldehyde (26) in 79% yield. Compound 26 on Baeyer-Villiger oxidation using 

MCPBA (70% pure) in CH2Cl2 under reflux for 10 hours afforded 3,4-bis(tert-

butyldimethylsilyloxy)-5-chlorophenyl formate (27) in 79% yield. Basic methanolysis of formate 

27 was carried out with K2CO3 in methanol at 25
o
C for 12 hours to give 3,4-bis(tert-

butyldimethylsilyloxy)-5-chlorophenol (28) in 87% yield. The less hindered C-2 position of 

compound 28 was regioselectively brominated by the use of NBS in DMF for 22 hours to give  

2-bromo-4,5-bis(tert-butyldimethylsilyloxy)-3-chlorophenol (29) in 63% yield; based on the 

recovery of the starting material. Methylation of the phenolic hydroxyl moiety in compound 29 

was achieved by the use of trimethyloxonium tetrafluoroborate (Me3O•BF4) in the presence of 

proton sponge in CH2Cl2 at 0
o
C for 8 hours to give 2-bromo-4,5-bis-(tert-butyldimethylsilyloxy)-

3-chloro-1-methoxybenzene (30) in 95% yield. Finally, the desired compound, 4-bromo-3-

chloro-5-methoxybenzene-1,2-diol  (4) was obtained by the desilylation of compound 30 with  

TBAF in THF at 0
o
C for 30 minutes in 71% yield.  

 Under TBAF reaction conditions compound 4 does not undergo oxidation to give the 

corresponding o-quinone as that of p-dihydroxybenzene 2 which is evident from IR spectrum 

showing strong hydroxyl absorptions at 3436 cm
-1

 and 3219 cm
-1

. 
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1.3.1.3 Synthesis of compound 5 

 The synthesis of 4-bromo-5-chloro-6-methoxybenzene-1,3-diol (5) is outlined in Scheme 

4. Selective protection of hydroxyl moiety on C-5 position of compound 3 was achieved by the 

use of equivalent amount of tert-butyldimethylsilyl chloride in the presence of triethylamine and 

4-dimethylaminopyridine (DMAP) in dichloromethane at 25
o
C for 8 h to give 3-(tert-

butyldimethylsilyloxy)-5-chloro-4-hydroxybenzaldehyde (31) and compound 26 (with both 

protected hydroxyl groups) in 70% and 11% yield, respectively. The structure of compound 31 

was confirmed by single-crystal X-ray analysis as shown in Figure 5. The less hindered C-5 

hydroxyl moiety in compound 3 is likely to react faster with tert-butyldimethylsilyl chloride than 

the more hindered C-4 hydroxyl moiety giving compound 31 predominantly. Methylation of the 

phenolic hydroxyl moiety in compound 31 was achieved by the treatment with trimethyloxonium 

tetrafluoroborate and proton sponge in dichloromethane at 0
o
C for 8 hours to give 3-(tert-

butyldimethylsilyloxy)-5-chloro-4-methoxybenzaldehyde (32) in 78% yield; based on the 

recovery of starting material 31. Compound 32 on Baeyer-Villiger oxidation by the use of 

MCPBA (70% pure) in CH2Cl2 under reflux for 12 hours afforded 3,4-bis(tert-

butyldimethylsilyloxy)-5-chloro-4-methoxyphenyl formate (33) along with the hydrolyzed 

product 3-(tert-butyldimethylsilyloxy)-5-chloro-4-methoxyphenol (34)  in 42%  and 44% yield, 

respectively. Basic methanolysis of the formate function in compound 33 with potassium 

carbonate (K2CO3) in methanol at 25
o
C for 12 hours afforded phenol 34 in quantitative yield. 

Regioselective bromination on the less hindered C-2 position of compound 34 was achieved by 

the use of NBS in DMF for 12 hours giving 2-bromo-5-(tert-butyldimethylsilyloxy)-3-chloro-4-

methoxyphenol (35) in 67% yield. Finally, desilylation of compound 35 by treating with TBAF 
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in THF at 0
o
C for 30 minutes led to the formation of desired product 4-bromo-5-chloro-6-

methoxybenzene-1,3-diol (5) in 60% yield. 

 

Scheme 4: Synthesis of compound 5 

 

   



18 

 

 

Figure 5: Crystal structure of compound 31. 

  

1.3.1.4 Synthesis of compound 6 

5-Bromo-6-chlorobenzene-1,2,4-triol (6) was synthesized from 4-bromo-3-chloro-1,2-

dibenzyloxy-5-(tert-butyldimethylsiloxy)benzene (36), an intermediate previously reported by 

Hua’s lab in the synthesis of (+)-chloropuupehenone,
42

 in two steps as outlined in Scheme 5.  

 

Scheme 5: Synthesis of compound 6 

 

 

Desilylation of 4-bromo-3-chloro-1,2-dibenzyloxy-5-(tert-butyldimethylsiloxy) benzene 

(36) by the use of TBAF in THF at 0
o
C for 1 hour afforded 2-bromo-3-chloro-4,5-

dibenzyloxyphenol (37) in 74% yield. Finally, removal of two benzyl groups in compound 37 by 
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catalytic hydrogenation (H2, 1 atm.) in the presence of 10% palladium/carbon in ethanol at 25
o
C 

for 3 hours gave 5-bromo-6-chlorobenzene-1,2,4-triol (6) as the desired product in 93 % yield. 

The infrared spectrum of triol 6 shows strong hydroxyl absorption at 3382 cm
-1

. Triol 6 on 

standing in air produced a black solid which might have resulted from its air oxidation to 

quinone followed by decomposition.  Hence, triol 6 was immediately stored in a dry box under 

nitrogen atmosphere. 

  

 1.3.2 Synthesis of aminophenols 7 and 8 

 A reaction for the selective reduction of the nitro function in 4-hydroxy-3-

nitrobenzaldehyde (38) by the use of iron in the presence of acetic acid led to the formation of 

mixture of several compounds, as indicated by TLC analysis, which could not be separated and 

analyzed. However, catalytic hydrogenation of 4-hydroxy-3-nitrobenzaldehyde by the use of 

catalytic amount of palladium/carbon under 30 psi of hydrogen in ethanol for 4 hours gave 2-

amino-4-(hydroxymethyl)phenol (7)
35

 and 2-amino-4-methylphenol (8)
36

 each with 41% yield as 

shown in Scheme 6.  The products were formed by the reduction of both nitro and aldehyde 

functions of 4-hydroxy-3-nitrobenzaldehyde. Compound 8 is formed by the further reduction of 

benzylic hydroxyl function in compound 7 under hydrogenation condition. No reaction was 

observed when the catalytic hydrogenation was carried out in the presence of Raney Nickel 

under similar reaction conditions. On reducing the pressure of hydrogen to 1 atmosphere and 

time to one hour, compound 7 and 8 were obtained in 24% and 61% yield, respectively.  
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Scheme 6: Synthesis of compound 7 and 8 

 

 

 

1.3.3 Synthesis of di-tert-butyl phenols 

 1.3.3.1 Synthesis of compounds 9 - 15 

MON-0585 (18) is a juvenile hormone mimic and implicated as insect growth 

regulators.
45

 MON-0585 is also known to affect cuticle sclerotization in mosquitoes.
39

 In search 

of new anti-larval agents, several 2,6-di-tert-butyl phenols 9 – 15 were synthesized mimicking 

the structure of  MON-0585 as outlined in Scheme 7.  
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Scheme 7: Synthesis of compound 9 - 15 

 

 

Following the reported procedure,
46

 Friedel-Craft acylation of 2,6-di-tert-butylphenol 

(39) with isobutyryl chloride (40) in the presence anhydrous aluminum chloride (AlCl3) at -10
o
C 

for 15 minutes gave compound 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropan-1-one (9) 

in 90% yield. Bromination of compound 9 with cupric bromide in a solvent mixture of 

dichloromethane and ethyl acetate for 3 h afforded 2-bromo-1-(3,5-di-tert-butyl-4-

hydroxyphenyl)-2-methylpropan-1-one (10) in 96% yield which on further treatment with excess 

of lithium aluminum hydride (LiAlH4) in dry diethyl ether under reflux for 3 h gave 2,6-di-tert-
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butyl-4-(1-hydroxy-2-methylpropan-2-yl)phenol (11)
47

 in 100% yield.
47

 Compound 11 is likely 

formed by the hydride attack on the carbonyl carbon followed by aryl group rearrangement.
47

 

Compound 11 on oxidation with o-iodoxybenzoic acid (IBX) in dimethyl sulfoxide (DMSO) for 

12 hours furnished 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal (12) in 99% yield. 

Aldehyde 12 was further oxidized to 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanoic 

acid (13)
41

 in 82% yield by treating with silver oxide, prepared in situ by reacting silver nitrate 

(AgNO3) and sodium hydroxide (NaOH) in the solvent mixture of water and 1,4-dioxane at 25
o
C 

for 12 hours. Treatment of aldehyde 12 with hydroxylamine hydrochloride and sodium acetate in 

a solvent mixture of acetonitrile and water (2:1) for 1.5 hour gave (E)-2-(3,5-di-tert-butyl-4-

hydroxyphenyl)-2-methylpropanal oxime (14) in 97% yield. The oxime 14 could not be reduced 

to its corresponding amine on catalytic hydrogenation by the use of 10 % palladium/carbon in 

ethanol under 30 psi of hydrogen for 16 hours. Reductive amination of aldehyde 12 by the use of 

benzylamine in toluene under reflux condition for 12 hours followed by the removal of toluene 

under rotovapor and addition of methanol and sodium cyanoborohydride (NaBH3CN) gave 4-(1-

(benzylamino)-2-methylpropan-2-yl)-2,6-di-tert-butylphenol (15) in 97% yield. The removal of 

benzyl group in compound 15 to give its corresponding amine was not achieved under catalytic 

hydrogenation condition by the use of hydrogen (30 psi) in the presence of 10% 

palladium/carbon in ethanol for 12 hours. Moreover, increasing the temperature to 50
o
C had no 

effect on the reaction and resulted in the recovery of the starting material. Changing the catalyst 

to platinum oxide (PtO2) also failed in the removal of benzyl group.  The reaction might have 

failed due to the poisoning of the catalyst by the trace amount of the product formed.  
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1.3.3.2 Synthesis of compound 16, 17 and MON-0585 (18) 

In addition to the 2,6-di-tert-butyl phenolic compounds as highlighted in Scheme 7, 

synthesis of 2,4-di-tert-butyl-6-(2-methylbut-3-en-2-yl)phenol (43) was envisioned by following 

Friedel-Crafts alkylation of 2,4-di-tert-butyl phenol (41) and 2-methyl-3-buten-2-ol (42) as 

highlighted in Scheme 8. Compound 43 would have all the major structural features of MON-

0585; moreover, would have an additional side chain with a terminal double bond that could be 

manipulated into different functional groups as required. However, instead of giving  compound 

43, treatment of 2,4-di-tert-butyl phenol with 2-methyl-3-buten-2-ol in the presence of 

borontrifluoro etherate (BF3•O(Et)2) in dichloromethane at 25
o
C for 1 hour afforded 2,4-di-tert-

butyl-6-(3-methyl-2-butenyl)phenol (16) and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-

chromene (17) in 46% and 10% yield respectively (Scheme 8a). Benzopyran 17 appears to be 

derived from an acid-catalyzed ring closing reaction of compound 16 as highlighted in Scheme 

8b. 
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Scheme 8: a) Synthesis of compound 16 and 17 and b) proposed mechanism for the formation of 

16 and 17 

 

 

 

Similarly, 2,6-di-tert-butyl-4-cumylphenol (18) was prepared by a Friedel-Crafts 

alkylation reaction of 4-cumylphenol (44) and isobutylene (45) in the presence of catalytic 

amount of sulfuric acid in dichloroethane in a sealed tube at 80
o
C for 6 h as shown in Scheme 9.  
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Scheme 9: Synthesis of MON-0585 

 

 

1.4 Results and discussions 

Laccases are predicted to be vital in the cuticle tanning or sclerotization in insects.
13

 The 

redox potential of the T1 copper is found to vary from 430 mV to 780 mV depending on the type 

of laccases.
48

 Moreover, the oxidation of phenols by laccases depends on the redox potential 

difference between the phenolic compound and the T1 copper, and in many cases the higher the 

redox potential of T1 copper (or lower the redox potential of the substrates) the higher is the 

catalytic efficiency of laccases towards the substrates.
30

 In other words, the laccase catalytic 

efficiency is inversely correlated with the oxidation potential of substrates.
18

 To determine the 

activity of the synthesized compounds towards laccase, redox potential and laccase substrate 

activities of these compounds were determined. Inverse correlations between the oxidation 

potentials and the laccase oxidation efficiency of these compounds was also established.
43

   

The redox potentials of these compounds were measured by Thi Nguyen, a graduate 

student in Dr. Hua’s group using the facilities in Dr. Jun Li’s laboratory. The laccase activities 

were measured by Dr. Maureen Gorman and Zeyu Peng in Dr. Michael Kanost laboratory and 

the mosquito anti-larval activities were studied in Dr. Kun Yan Zhu’s laboratory. 
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Synthesized compounds 1 – 8 along with two commercially available compounds 3-

amino-4-hydroxybenzoic acid (46) and 4-amino-3-hydroxybenzoic acid (47) were tested for 

irreversible inhibition of fungal laccase in Dr. Michael Kanost laboratory by Dr. Maureen 

Gorman and were found to be the substrates but not the inhibitors of laccase. 

 

1.4.1 Redox potentials and laccase substrate oxidation studies 

Cyclic voltammetry (CV) experiments were carried out to study the redox properties of 

compounds 1 - 8, 10 - 17, MON-0585 (18), 46, 47 including other known laccase substrates like 

hydroquinone, catechol, 2-aminophenol, 1,2-phenylenediamine,  and 2,2’-azino-bis-(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS).  The known laccase substrates were used as 

positive control in the experiment. The CV measurements were obtained by Thi Nguyen, a 

graduate student in Dr. Hua’s lab and has been published;
43

 therefore, only the summary of the 

result will be highlighted here.  

Most of the compounds with the exception to compounds 11 - 13, 16, 17 and 21 showed 

redox properties (redox potential values) as indicated by the presence of both oxidation and 

reduction peaks in their cyclic voltammogram. Interestingly, the redox potentials for the 

synthesized compounds were found in the range of 10 mV to 340 mV; generally lower than the 

redox potential of T1 copper site in laccases.
48

 Under identical condition, the redox potential of 

the known laccase substrates like hydroquinone, catechol, 2-aminophenol, 1,2-

phenylenediamine, and ABTS were measured as 198 mV, 310 mV, 245 mV, 225mV, and 570 

mV, respectively. Therefore, the synthesized compounds having lower or similar redox 

potentials as that of the known laccase substrates could be easily oxidized by laccase. As 

expected, p-diphenols 2 and 6 (triol) had lower redox potential of 95 mV and 45 mV respectively 
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as compared to the o-diphenols 3 and 4 with 265 mV and 185 mV respectively. Furthermore, the 

m-diphenol 5 was found to have the highest redox potential of 340 mV among the polyphenols. 

These results are in agreement with the oxidation order of p-diphenols> o-diphenols> m-

diphenols.
32

 Comparing the redox potentials of hydroquinone (198 mV) to compound 1 (95 mV) 

and catechol (310 mV) to compound 4 (185 mV), it is found that the introduction of electron 

donating methoxy group in phenolic compound increase their oxidation tendency; which is 

consistent to previous study.
34

 Aminophenols 7 and 8 were found to have redox potential of 165 

mV and 210 mV respectively and also would be easily oxidized by laccase.  However, 

substituted di-tert-butyl phenolic compound 10 - 16, benzopyran 17, and MON-0585 (18) caused 

unreliable CV measurements due to their lower solubility in the aqueous PBS buffer solution 

containing 20% of ethanol. These compounds either showed higher redox potentials (> 530 mV) 

or failed to show oxidation or reduction wave within the experimental range of + 0.8 to 1.2 V.  

Since the redox potential values of water soluble compounds 1 – 8 indicated that they 

could be easily oxidized by laccase, the laccase oxidation activity of these compounds along with 

known laccase substrates such as hydroquinone, catechol, 2-aminophenol, 1,2-

diphenyleneaminem and ABTS were studied with fungal laccase Trametes versicolor.
49

 The 

known laccase substrates were used as positive control and for comparison. Due to the water 

insolubility of substituted di-tert-butyl phenolic compounds 10 - 16, benzopyran 17, and MON-

0585 (18), they were not oxidized by laccase. Laccase oxidation studies of these compounds 

were carried by Dr. Maureen Gorman and Zeyu Peng in Dr. Michael Kanost laboratory and the 

result has been published;
43

 therefore, only the summary of the result is highlighted here.  

The laccase oxidation efficiency (kcat/Km) for the known laccase substrates: 

hydroquinone, catechol, 2-aminophenol, 1-2-phenylenediamine, and ABTS against fungal 
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laccase, Trametes versicolor were measured as 35650, 3350, 11840, 2420, and 92890 min
-1

mM
-1

 

respectively. Compound 6, a triol having both ortho- and para-substituted phenolic moieties had 

the highest laccase oxidation efficiency of 173600 min
-1

mM
-1

. Though, compound 1, a p-

diphenol had lower laccase oxidation efficiency (15710 min
-1

mM
-1

) than p-hydroquinone, but 

still was a better laccase substrate as compared to catechol (o-diphenol) and 2-aminophenol.   

Moreover, the o-diphenol 4 was found to be better laccase substrate than m-diphenol 5 as 

indicated by their kcat/Km values of 134500 and 82290 min
-1

mM
-1

, respectively. Comparing the 

laccase oxidation efficiency of compound 1 (2-methoxy substituted phenol; kcat/Km = 2870 min
-

1
mM

-1
) with compound 3 (1,2-diol; kcat/Km = 47500 min

-1
mM

-1
) and compound 4 (4-methoxy 

substituted 1,2-diol; kcat/Km = 134500 min
-1

mM
-1

) with compound 6 (1,2,4-triol; kcat/Km = 

173600 min
-1

mM
-1

), indicated that the substitution of methoxy group by hydroxyl group in the 

phenolic compound increases the laccase oxidation efficiency of the compound. The result also 

indicated that; higher the number of hydroxyl group in the substrate, greater is the laccase 

oxidation efficiency of the compound. Moreover, the laccase oxidation efficiency of compound 4 

was greater than that of compound 5 indicating that o-diphenols are better laccase substrates than 

m-diphenols. Aminophenols 7 and 8 had kcat/Km values of 71550 and 47250 min
-1

mM
-1

 

respectively indicating that they are better oxidized by laccase than 2-aminophenol, a known 

laccase substrate. However, among the known laccase substrates studied, ABTS was only found 

to have comparable laccase oxidation efficiency as that of the synthesized polyphenols and 

aminophenols. In summary, the laccase oxidation efficiency of most of the synthesized 

polyphenols and aminophenos were found to be higher than that of the known laccase substrates 

including hydroquinone, catechol, 2-aminophenol, and 1,2-phenylenediamine indicating their 

role as better laccase substrates.  
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The redox potential and laccase oxidation efficiency of the compound studied could not 

be correlated; however, the inverse correlation between the oxidation potential and the laccase 

oxidation efficiency of the studied compounds including hydroquinone, catechol, 2-

aminophenols, 1,2-phenylenediamine, ABTS, compounds 1 - 8, 34, and 35 was established and 

is highlighted in Figure 6. For example, compound 6 with the lowest oxidation potential (80 mV) 

was found to have the highest laccase oxidation efficiency. On other hand, compound 1 with the 

highest oxidation potential (670 mV) was found to have the lowest laccase oxidation efficiency.  

 

 

Figure 6: Inverse correlation between the laccase oxidation efficiency and oxidation potential of 

Compounds 1 – 8, 46, 47, ABTS, 2-aminophenol, catechol, hydroquinone, and 1,2-

phenylenediamine.
43

 Figure adapted from Prasain et al. Bioorganic & Medicinal Chemistry 2012, 

20, 1679-1689 with permission from Elsevier (copyright © 2012). 
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1.4.2 Anti-mosquito larval activities 

The phenolic substrates oxidized by laccase are used as the building blocks in the insect 

cuticle sclerotization,
16,17

 and MON0585, a substituted di-tert-butyl phenolic compound is 

known to disrupt the cuticle sclerotization in insects.
39

 Therefore, mosquito anti-larval activities 

of laccase substrates such as triol 6 and dihydroquinone, and various di-tert-butyl phenolic 

compounds including compound 10 - 16, MON-0585 (18), and di-tert-butyl substituted 

benzopyran 17 were investigated in the third-instar larvae of Anopheles gambiae in a three-day 

bioassay. MON-0585 was used as control and for comparison. This study was performed in Dr. 

Kun Yan Zhu laboratory and the result has been published;
43

 therefore, only the results are 

summarized here.  

For the anti-larval assay, water soluble compounds like hydroquinone and triol 6 were 

dissolved in water and used; whereas di-tert-butyl phenol derivatives 10 - 16 and benzopyran 17 

were first dissolved in acetone and used for the assay in aqueous solution. The toxicity studies 

were investigated for two concentrations for each compound; 50 and 1000 µg/mL.  

Compound 6 and dihydroquinone, water soluble laccase substrates, were not toxic to the 

larvae at the studied concentrations. Moreover, compound 13 and 15 (used as a sodium salt and 

trifluoroacetic acid salt, respectively), were also water soluble and also did not produce any 

toxicity at the studied concentrations. On the other hand, all the water insoluble di-tert-butyl 

phenolic compounds (10 - 12, 14, and 16) and benzopyran 17 showed more that 46% mortality 

of larvae at 1000 µg/mL concentration. Interestingly, 2,4-di-tert-butyl-6-(3-methylbut-2-en-1-

yl)phenol 16 was found to have similar toxicity towards the larvae as compared to MON-0585 at 

both studied concentrations. Compound 14 and benzopyran 17 also produced significant toxicity 

to the mosquito larvae with mortality of 93% and 91% at the concentration of 1000 µg/mL. In a 
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similar study by Spafford et al., it was found that methoprene, an insect growth regulator and 

commonly used insecticides caused about 60% mortality at 100 μg/L in 3 days bioassay against 

the third-instar larvae of Culex molestus.
30

 Therefore, compound 16 appears to have higher 

toxicity than methoprene towards mosquito larvae. In comparison to the water soluble di-tert-

butyl phenolic compounds (sodium salt of 13 and trifluoroacetic acid salt of amine 15), 

dihydroquinone, and compound 4; water insoluble di-tert-butyl phenolic compounds including 

10 – 12, 14, 16, and benzopyran 17 were found to be toxic to the larvae. This suggests that the 

water insoluble compounds, but not the water soluble compounds, may be absorbed through the 

body of the larvae resulting in its death.  

The larvae treated with di-tert-butyl phenolic compounds died over the course of 3 days 

indicating a target different from the neurological system, a common target in case of most 

insecticides. The treated larvae died before pupation.  

To better understand the effect of compound 16 on the larvae, the microscopic sections of 

the larvae killed by compound 16 were compared with that of untreated larvae as shown Figure 

7. The larvae treated with compound 16 had thin cuticle and appeared to start molting; however, 

failed to remove the old cuticle. Moreover, the larvae treated with compound 16 showed very 

little synthesis of new pupal cuticle as compared to the untreated larvae. This phenomenon was 

observed in all the three parts of the insect studied that is head, thorax, and abdomen. This 

indicated that the compound 16, other toxic di-tert-butyl phenolic derivative and compound 17 

might attack the target related to the insect cuticle formation. However, the target and 

mechanism of action of these water insoluble di-tert-butyl phenolic compounds and benzopyran 

17 needs to be investigated. 
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Figure 7: Microscopic slides of larvae of Anopheles gambiae both treated and untreated with 

compound 16.
43

 Figure reprinted from Prasain et al. Bioorganic & Medicinal Chemistry. 2012, 

20, 1679-1689 with permission from Elsevier (copyright © 2012).  

  

 1.5 Conclusions 

Since laccase are known to oxidize phenolic compounds during cuticle sclerotization or 

tanning, various phenolic compounds containing halide, hydroxyl, aldehyde, methoxy, amino, 

and di-tert-butyl functions were synthesized and their redox potential, laccase oxidation, and 

mosquito anti-larval activities were examined. Synthesized phenolic compounds 1 - 8 were 

found to be laccase substrates but not the inhibitors of laccase. An inverse correlation between 

the oxidation potentials and the laccase oxidation activities of these compounds including some 

known laccase substrates such as dihydroquinone, catechol, 2-aminophenol, 1-2-
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phenylenediamine, and ABTS was established indicating that the compounds with lower 

oxidation potential had higher laccase activities.  

   Mosquito anti-larval activity studies showed that water insoluble di-tert-butyl substitited 

compound 14, 16, and 17 were found to have potent anti-larval activity. Moreover, compound 16 

had similar anti-larval activity as compared to that of MON-0585. The mode of action of 

compound 16 and its target in the disruption of the cuticle formation in mosquito larvae needs 

further investigation.  

 

1.6 Experimental Section 

General Methods 

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian Unity plus 400 

MHz or 200 MHz spectrometer for 
1
H and 

13
C in deuteriochloroform (CDCl3), unless otherwise 

indicated. Tetramethylsilane was used as the internal reference and the data reported in ppm. 

Infrared (IR) spectra were recorded on a Nicolet 380 FT-IR and are reported in wavenumbers 

(cm
-1

).  High-resolution Mass spectra were recorded on LCT Premier (Waters corp., Milford 

MA), a time of flight mass analyzer with an electrospray ion source.  Column chromatography 

was carried out on silica gel (200 – 400 mesh) from Natland International Corporation. 

Tetrahydrofuran (THF) and diethyl ether were dried and distilled over sodium and 

benzophenone, methylene chloride was dried and distilled over calcium hydride (CaH), and 

toluene was dried and distilled over LiAlH4.  The purity of compounds, 1 - 17 and MON 0585 

were found to be ~ 98% as indicated by HPLC analysis carried on Varian Prostar 210 with a UV-
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Vis detector and a reverse phase column from Phonomenex (250 x 21.20 mm, 10 micron, S. No: 

552581-1).  

 

Experimental section for synthesis 

4-(tert-Butyldimethylsilyloxy)-3-chloro-5-methoxybenzaldehyde (22) 

 

  To a solution of 400 mg (2.15 mmol) of 3-chloro-4-hydroxy-5-methoxybenzaldehyde 

(1)
42

 in 5 mL of dichloromethane at 0
o
C under argon, were added 0.6 mL (4.3 mmol) of 

triethylamine, 40 mg (0.33 mmol) of 4-dimethylaminopyridine (DMAP), and 648 mg (4.3 mmol) 

of tert-butyldimethylsilyl chloride and the solution was stirred at 25
o
C for 12 hours. The reaction 

was diluted with 100 mL of diethyl ether and washed with 20 mL of saturated aqueous NH4Cl 

solution, 20 mL of water, and 20 mL of brine. The organic layer was dried over anhydrous 

MgSO4, solvent evaporated, and the crude was column chromatographed on silica gel using a 

mixture of hexane and diethyl ether (4:1) as eluent to give 550 mg of 4-(tert-

butyldimethylsilyloxy)-3-chloro-5-methoxybenzaldehyde (22) in 85% yield. 
1
H NMR δ 9.76 (s, 

1 H), 7.45 (d, J = 2.0 Hz, 1 H), 7.27 (d, J = 2.0 Hz, 1 H), 3.85 (s, 3 H), 1.01 (s, 9 H), 0.21 (s, 6 

H); 
13

C NMR δ 190.0, 151.9, 147.7, 130.0, 126.6, 126.3, 108.4, 55.6, 25.8 (3 C), 19.0, -3.8 (2 C); 

HRMS calcd for C14H22ClO3Si (M+H
+
) 301.1021, found 301.1028. 
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4-(tert-Butyldimethylsilyloxy)-3-chloro-5-methoxyphenyl formate (23) & 4-(tert-

butyldimethylsilyloxy)-3-chloro-5-methoxyphenol (24)  

 

 

  To a solution of 600 mg (2 mmol) of 4-(tert-butyldimethylsilyloxy)-3-chloro-5-

methoxybenzaldehyde (22) in 5 mL of dichloromethane at 0
o
C under argon, was added 750 mg  

(3 mmol) of m-chloroperbenzoic acid (70% pure) and heated to reflux for 8 hours. The reaction 

was cooled to room temperature and 5 mL of aqueous sodium thiosulfate and 200 mL of diethyl 

ether were added to it. The solution was washed with 20 mL of saturated aqueous NaHCO3, 20 

mL of water, and 20 mL of brine. The organic layer was dried over anhydrous MgSO4, solvent 

evaporated, and the crude was column chromatographed on silica gel using a mixture of hexane 

and diethyl ether (5:1) as eluent to give 400 mg of 4-(tert-butyldimethylsilyloxy)-3-chloro-5-

methoxyphenyl formate (23) and 150 mg of 4-(tert-butyldimethylsilyloxy)-3-chloro-5-

methoxyphenol (24) in 63% and 27% yield, respectively. Formate 23:  
1
H NMR δ 8.26 (s, 1H, 

OCHO), 6.78 (d, J = 2.9 Hz, 1 H), 6.58 (d, J = 2.9 Hz, 1 H), 3.80 (s, 3 H), 1.03 (s, 9 H), 0.20 (s, 

6 H); 
13

C NMR δ 159.3, 151.8, 143.2, 140.4, 125.9, 114.4, 104.1, 55.7, 26.0, 19.0, -3.9; HRMS 

calcd for C14H22ClO4Si (M+H
+
) 317.0976, found 317.0968.  Phenol 24: 

 1
H NMR δ 6.43 (d, J = 

2.9 Hz, 1 H), 6.32 (d, J = 2.9 Hz, 1 H), 3.78 (s, 3 H), 1.02 (s, 9 H), 0.17 (s, 6 H); 
13

C NMR δ 

152.2, 149.8, 135.8, 125.7, 108.2, 99.2, 55.5, 26.1 (3 C), 19.0, -4.0 (2 C); HRMS calcd for 

C13H22ClO3Si (M+H
+
) 289.1027, found 289.1000. 
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Conversion of formate 23 to phenol 24  

To a solution of 45 mg (0.142 mmol) of 4-(tert-butyldimethylsilyloxy)-3-chloro-5-

methoxyphenyl formate (23) in 2 mL of methanol, was added 98 mg (0.71 mmol) of K2CO3 and 

stirred at 25
o
C for 4 hours. The reaction was diluted with 100 mL of diethyl ether and washed 

with 10 mL of aqueous NH4Cl, 10 mL of water, and 10 mL of brine. The organic layer was  

dried over anhydrous MgSO4, solvent evaporated, and the crude was column chromatographed 

on silica gel using a mixture of hexane and diethyl ether (2:1) as eluent to give 37 mg of phenol 

24 in 90% yield, which 
1
H NMR spectrum is identical to that described above.  

 

2-Bromo-4-(tert-butyldimethylsilyloxy)-3-chloro-5-methoxyphenol (25) & 2-bromo-3-

chloro-5-methoxy-1,4-benzoquinone (19) 

 

 

To a solution of 84 mg (0.29 mmol) of 4-(tert-butyldimethylsilyloxy)-3-chloro-5-

methoxyphenol (24) in 2 mL of DMF under argon, was added 57 mg (0.32 mmol) of NBS and 

was stirred at 25
o
C for 12 h.  The reaction solution was diluted with 100 mL of diethyl ether and 

washed with 10 mL of water followed by 10 mL of brine. The organic layer was dried over 

anhydrous MgSO4, solvent evaporated, and the crude was column chromatographed on silica gel 

using a gradient mixture of hexane and diethyl ether as eluent to give 27 mg of 2-bromo-4-(tert-

butyldimethylsilyloxy)-3-chloro-5-methoxyphenol (25) and 35 mg of 2-bromo-3-chloro-5-

methoxy-1,4-benzoquinone (19) in 31% and 48% yield, respectively.  Bromophenol 25:  
1
H 

NMR δ 6.56 (s, 1 H), 5.33 (s, 1 H, OH), 3.78 (s, 3 H), 1.03 (s, 9 H), 0.18 (s, 6 H); 
13

CNMR δ 
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151.5, 147.4, 136.8, 125.8, 101.5, 98.4, 55.6, 26.1, 19.0, -3.9; HRMS calcd for C13H19BrClO3Si 

(M-H) 364.9975, found 365.0076; C13H20BrClO3SiNa (M+Na
+
) 388.9951, found 388.9934.  p-

Benzoquinone 16 (light yellow solid): Mp. 167 – 170
o
C; IR (neat) υ 2953, 2913, 2839, 1683, 

1638, 1613, 1556, 1454, 1229, 1168 cm
-1

; 
1
H NMR δ 6.16 (s, 1 H), 3.89 (s, 3 H); 

13
C NMR δ 

177.5, 172.4, 158.9, 137.4, 107.9, 107.2, 57.3; HRMS calcd for C7H5BrClO3 (M+1
+
) 250.9105, 

found 251.0593. 

Conversion of silyl ether 25 to p-benzoquinone 19 

To a solution of 25 mg (0.068 mmol) of silyl ether 25 in 2 mL of THF was added 68 µL 

(0.068 mmol) of n-Bu4NF (1 M in THF) and stirred under argon from 0
o
C for 30 minutes. The 

reaction was diluted with 50 mL of diethyl ether and washed with 10 mL of aqueous NH4Cl, 10 

mL of water, and 10 mL of brine. The organic layer was dried over anhydrous MgSO4, solvent 

evaporated, and the crude was column chromatographed on silica gel using a mixture of hexane 

and diethyl ether (1:1) as eluent to give 14 mg of p-benzoquinone 19 in 81% yield, which 
1
H 

NMR spectrum is identical to that described above.   

 

2-Bromo-3-chloro-5-methoxy-1,4-dihydroxybenzene (2) 

 

  A mixture of 10 mg (0.040 mmol) of 2-bromo-3-chloro-5-methoxy-1,4-benzoquinone 

(19) and 2 mg of 10% palladium over carbon in 1 mL of ethanol under 1 atm. of hydrogen (a 

balloon filled with hydrogen connected to the round bottom flask) was stirred at 25
o
C for 15 

minutes, filtered through Celite, and rinsed with 10 mL of ethanol.  The filtrate was concentrated 
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to give 10 mg of 2-bromo-3-chloro-5-methoxy-1,4-dihydroxybenzene (2) in quantitative yield: 

IR (neat) υ 3303, (s), 2935, 2851, 1601, 1497, 1441, 1210, 1071, 1046, 994, 864, 842, 825 cm
-1

; 

1
H NMR δ 6.60 (s, 1 H), 5.50 (bs, 1 H, OH), 5.30 (bs, 1 H, OH), 3.89 (s, 3 H, OMe); 

13
C NMR δ 

148.2, 147.7, 136.7, 121.1, 100.2, 99.4, 56.0; HRMS calcd for C7H6BrClO3 (M
+
) 251.9189, 

found 252.0427. 

 

3-Chloro-4,5-dihydroxybenzaldehyde (3)
42

 

 

To a solution of 10.14 g (5.43 mmol) of 3-chloro-4-hydroxy-5-methoxybenzaldehyde 

(1)
42

 in 40 mL of dry CH2Cl2 at 0
o
C, was added 564 µL (6 mmol) of boron tribromide (BBr3)  

drop wise and the mixture was stirred under argon at 0
o
C for 30 minutes and then at 25

o
C for 12 

hours. The reaction was quenched with the slow addition of 50 mL of methanol followed by the 

solvent evaporation under rotavap. The addition and evaporation of methanol were repeated 3 

times (50 mL each time) to remove excess BBr3. The crude was then treated with 30 mL of 1:1 

hexane and diethyl ether solution,  filtered and washed with small amount of 1:1 hexane and 

diethyl ether solution to get 8.8 g (93.9%) of 3-chloro-4,5-dihydroxybenzaldehyde (3)
42

 as pure 

green solid. 
1
H NMR (Acetone-d6) δ  9.78 (s, 1H), 7.47 (d, J = 2.0 Hz), 7.34 (d, J = 2.0 Hz); 

13
C 

NMR (Acetone-d6) δ 190.6, 148.8, 147.4, 130.8, 125.2, 121.5, 113.8. 
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3,4-Bis(tert-butyldimethylsilyoxy)-5-chlorobenzaldehyde (26)
42

 

 

To a solution of 800 mg (4.64 mmol) of 3-chloro-4,5-dihydroxybenzaldehyde (3)
42

 and 

170 mg (1.39 mmol) of 4-dimethylaminopyridine (DMAP) in 10 mL of dry CH2Cl2 at 0
o
C under 

argon, were added 2.6 mL (18.56 mmol) of triethyl amine and 2.8 g (18.56 mmol) of tert-

butyldimethylsilyl chloride and stirred at 0
o
C for 1 hour and then at 25

o
C for 3 hours. The 

reaction was diluted with 100 mL of diethyl ether, washed with 20 mL of NH4Cl (aq.) followed 

by 20 mL of brine, dried over anhydrous MgSO4, and the solvent evaporated. The crude was 

column chromatographed on silica gel using a 10:1 mixture of hexane and diethyl ether as eluent 

to give 1.46 g of desired 3,4-bis(tert-butyldimethylsilyoxy)-5-chlorobenzaldehyde (26)
42

 in 79% 

yield.
 1

H NMR δ 9.78 (s, 1 H), 7.50 (d, J = 2 Hz, 1 H), 7.29 (d, J = 2 Hz, 1 H), 1.05 (s, 9 H), 0.99 

(s, 9 H), 0.27 (s, 6 H), 0.24 (s, 6 H); 
13

C NMR δ 190.1, 149.9, 149.4, 130.3, 128.0, 126.0, 119.0, 

26.3 (3 C), 26.2 (3 C), 19.0, -3.2, -3.4; HRMS calcd for C19H34ClO3Si2 (M+H
+
) 401.1735, found 

401.1747. 

 

3,4-Bis(tert-butyldimethylsilyloxy)-5-chlorophenyl formate (27)
42

 

 

To a solution of 1.014 g (5.43 mmol) of the 3,4-bis(tert-butyldimethylsilyoxy)-5-

chlorobenzaldehyde (26) in 20 mL of dry CH2Cl2 was added 1.6 g (6.45 mmol) of m-

chloroperoxybenzoic acid (70% pure) and refluxed at 50
o
C for 10 hours. The reaction was 
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diluted with 500 mL of diethyl ether, washed with 100 mL of NaHCO3 (aq.), 100 mL of water 

and 100 mL of brine. The organic layer was dried over anhydrous MgSO4, solvent evaporated, 

and the crude was column chromatographed on silica gel using a mixture of diethyl ether and 

hexane (10:1) as eluent to give 1.42 g  of 3,4-bis(tert-butyldimethylsilyloxy)-5-chlorophenyl 

formate (27)
42

 in 79% yield . 
1
H NMR δ 8.22 (s, 1 H, OCHO), 6.79 (d, J = 3.2 Hz, 1 H), 6.58 (d, 

J = 3.2 Hz, 1 H), 1.03 (s, 9 H, t-Bu), 0.96 (s, 9 H, t-Bu), 0.22 (s, 6 H, Me), 0.19 (s, 6 H, Me); 
13

C 

NMR δ 159.0 (CHO), 148.8, 143.0, 142.4, 127.1, 115.5, 113.1, 26.2 (6 C, t-Bu), 18.8 (2 C, t-Bu), 

-3.3 (2 C, Me), -3.6 (2 C, Me). 

 

3,4-Bis(tert-butyldimethylsilyloxy)-5-chlorophenol (28)
42

 

 

To a solution of 1.24 g (3 mmol) of 3,4-bis(tert-butyldimethylsilyloxy)-5-chlorophenyl 

formate (27) in 30 mL of methanol, was added 2.21 g (15 mmol) of K2CO3 and stirred at room 

temperature for overnight. The reaction was diluted with 70 mL ethyl acetate and washed with 

20 mL of NH4Cl (aq.) followed by 20 mL of brine. The organic layer was dried over anhydrous 

MgSO4 and solvent evaporated to give 0.6 g of 3,4-bis(tert-butyldimethylsilyloxy)-5-

chlorophenol (28)
42

 which was used in the next step without further purification. 
1
H NMR δ 6.47 

(d, J = 2.9 Hz, 1 H), 6.30 (d, J = 2.9 Hz, 1 H), 1.02 (s, 9 H, t-Bu), 0.97 (s, 9 H, t-Bu), 0.22 (s, 6 

H, Me), 0.17 (s, 6 H, Me); 
13

C NMR δ 149.7, 148.9, 137.7, 126.9, 109.8, 107.8, 26.3 (3 C), 26.2 

(3 C), -3.6 (2C, Me), -3.4 (2 C, Me). 
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2-Bromo-4,5-bis(tert-butyldimethylsilyloxy)-3-chlorophenol (29)
42

 

 

To a solution of 420 mg (1.08 mmol) of 3,4-bis(tert-butyldimethylsilyloxy)-5-

chlorophenol (28) in 8 mL of dry DMF under argon at 25
o
C, was added 191.2 mg (1.08 mmol) 

of N-bromosuccinimide and stirred for 22 hours. The reaction was diluted with 50 mL of ethyl 

acetate and washed twice with 15 mL of water followed by 15 mL of brine. The organic layer 

was dried over anhydrous MgSO4, solvent evaporated, and the crude was column 

chromatographed using a gradient mixture of hexane and diethyl ether as eluent to give 182 mg 

of 2-bromo-4,5-bis(tert-butyldimethylsilyloxy)-3-chlorophenol (29)
42

 in 63% yield; based on the 

recovery of 178 mg of starting material 28. 
1
H NMR δ 6.65 (s, Ar, 1 H), 5.27 (s, OH), 1.03 (s, t-

Bu,  9 H), 0.97 (s, t-Bu,  9 H), 0.23 (s, CH3, 6 H), 0.17 (s, CH3, 6 H); 
13

C NMR δ 148.3, 147.4, 

138.8, 127.0, 106.9, 102.9, 26.2 (t-Bu), 18.8, -3.3 (Me), -3.5 (Me). 

 

2-Bromo-4,5-bis-(tert-butyldimethylsilyloxy)-3-chloro-1-methoxybenzene (30) 

 

   To a solution of 100 mg (0.21 mmol) of 2-bromo-4,5-bis(tert-butyldimethylsilyloxy)-3-

chlorophenol (29)
 
in 2 mL of dichloromethane at 0

o
C and  under argon, were added 55 mg (0.26 

mmol) of proton sponge and 38 mg (0.26 mmol) of trimethyloxonium tetrafluoroborate, and the 

mixture was stirred at 0
o
C for 8 h.  The reaction was diluted with 15 mL of water and extracted 

twice with 50 mL of diethyl ether. The organic layer was washed with 10 mL of water followed 
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by 10 mL of brine, dried over anhydrous MgSO4, solvent evaporated, and the crude was column 

chromatographed on silica gel using a mixture of hexane and diethyl ether (10:1) as eluent to 

give 67 mg of 2-bromo-4,5-bis-(tert-butyldimethylsilyloxy)-3-chloro-1-methoxybenzene (30) in 

95% yield; based on the recovery of 31 mg of compound 29.  
1
H NMR δ 6.43 (s, 1 H), 3.80 (s, 3 

H), 1.03 (s, 9 H), 0.98 (s, 9 H), 0.23 (s, 6 H), 0.17 (s, 6 H); 
13

C NMR δ 151.0, 147.5, 138.9, 

128.9, 104.7, 104.5, 56.9, 26.3 (6 C), 18.9, 18.8, -3.3 (2 C), -3.5 (2 C); HRMS calcd for 

C19H35BrClO3Si2 (M+H
+
) 481.0996, found 481.0951. 

 

4-Bromo-3-chloro-5-methoxybenzene-1,2-diol (4) 

 

  To a solution of 51 mg (0.10 mmol) of 2-bromo-4,5-bis-(tert-butyldimethylsilyloxy)-3-

chloro-1-methoxybenzene (30) in 2 mL of THF at 0
o
C under argon, was added 0.20 mL (0.20 

mmol) of n-Bu4NF, and the solution was stirred for 30 min.  The reaction was diluted with 100 

mL of diethyl ether, washed with 10 mL of water followed by 10 mL of brine, dried over 

anhydrous MgSO4, solvent evaporated, and the crude column chromatographed on silica gel 

using a gradient mixture of dichloromethane and methanol as eluent to give 19 mg of 4-bromo-3-

chloro-5-methoxybenzene-1,2-diol (4) in 71% yield.  IR (neat) υ 3436, 3219 (broad & s), 2917, 

2851, 1580, 1462, 1417, 1315, 1188, 1070, 984, 820 cm
-1

; 
1
H NMR δ 6.59 (s, 1 H), 5.60 (bs, 1 

H, OH), 5.24 (bs, 1 H, OH), 3.83 (s, 3 H); 
13

C NMR δ 151.4, 144.4, 134.2, 121.8, 101.7, 99.7, 

57.1; HRMS calcd. for C7H7BrClO3 C7H7BrClO3 (M+H
+
) 252.9267, found 252.9254.  
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3-(tert-Butyldimethylsilyloxy)-5-chloro-4-hydroxybenzaldehyde (31) 

 

   To a solution of 3.2 g (19 mmol) of 3-chloro-4,5-dihydroxybenzaldehyde (3) in 60 mL of 

CH2Cl2 at 0
o
C under argon, were added 2.9 mL (22 mmol) of triethylamine, 0.45 g (3.7 mmol) of 

4-dimethylaminopyridine, and 3.4 g (22 mmol) of tert-butyldimethylsilyl chloride and the 

solution was stirred at 25
o
C for 8 h.  The reaction was diluted with 500 mL of diethyl ether and 

washed with 50 mL water and 50 mL of brine. The organic layer was dried over anhydrous 

MgSO4, solvent evaporated, and the crude was column chromatographed on silica gel using 

hexane and dichloromethane (1:1) as eluent to give 3.7 g of 3-(tert-butyldimethylsilyloxy)-5-

chloro-4-hydroxybenzaldehyde (31) and 0.84 g of 5-chloro-3,4-bis-(tert-butyldimethylsilyloxy) 

benzaldehyde (26) in 70% and 11% yield, respectively.  Compound 31 was crystallized from 

diethyl ether to provide single crystals and its structure was unequivocally identified by a single-

crystal X-ray analysis (Figure 5). Compound 31: 
1
H NMR δ 9.76 (s, 1H, CHO), 7.51 (d, J = 2.8 

Hz, 1 H), 7.27 (d, J = 2.8 Hz, 1 H), 6.24 (s, 1 H, OH), 1.03 (s, 9 H), 0.32 (s, 6 H); 
13

C NMR δ 

189.9, 149.9, 144.2, 129.4, 126.8, 120.7, 115.9, 25.8, 18.4, -4.2; HRMS calcd for C13H20ClO3Si  

(M+H
+
) 287.0870, found 287.0858. Compound 26: 

1
H NMR δ 9.78 (s, 1 H), 7.50 (d, J = 2 Hz, 

1 H), 7.29 (d, J = 2 Hz, 1 H), 1.05 (s, 9 H), 0.99 (s, 9 H), 0.27 (s, 6 H), 0.24 (s, 6 H); 
13

C NMR δ 

190.1, 149.9, 149.4, 130.3, 128.0, 126.0, 119.0, 26.3 (3 C), 26.2 (3 C), 19.0, -3.2, -3.4; HRMS 

calcd for C19H34ClO3Si2 (M+H
+
) 401.1735, found 401.1747. 
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3-(tert-Butyldimethylsilyloxy)-5-chloro-4-methoxybenzaldehyde (32) 

 

To a solution of 450 mg (1.57 mmol) of 3-(tert-butyldimethylsilyloxy)-5-chloro-4-

hydroxybenzaldehyde (31) in 10 mL of dichloromethane at 0
o
C under argon, were added 673 mg 

(3.14 mmol) of proton sponge and 465 mg (3.14 mmol) of trimethyloxonium tetrafluoroborate, 

and stirred at 0
o
C for 12 hours.  The reaction mixture was diluted with 200 mL of diethyl ether 

and washed with 30 mL of aqueous NH4Cl solution, 30 mL of water, and 30 mL of brine. The 

organic layer was dried over anhydrous MgSO4, solvent evaporated, and the crude was column 

chromatographed on silica gel using a mixture of hexane and diethyl ether (10:1) as eluent to 

give 200 mg of  3-(tert-butyldimethylsilyloxy)-5-chloro-4-methoxybenzaldehyde (32) in 78% 

yield; based on the recovery of 206 mg of 31 : 
1
H NMR δ 9.83 (s, 1H, CHO), 7.54 (d, J = 1.8 Hz, 

1 H), 7.28 (d, J = 1.8 Hz, 1 H), 3.91 (s, 3 H), 1.03 (s, 9 H), 0.23 (s, 6 H); 
13

C NMR δ 190.1, 

153.4, 150.9, 132.8, 129.8, 125.5, 119.9, 60.7, 25.8, 18.4, -4.4; HRMS calcd for C14H22ClO3Si 

(M+H
+
) 301.1027, found 301.1421; negative ion detection mode: C14H20ClO3Si (M-H) 

299.0870, found 298.9978. 

 

3-(tert-Butyldimethylsilyloxy)-5-chloro-4-methoxyphenyl formate (33) & 3-(tert-

butyldimethylsilyloxy)-5-chloro-4-methoxyphenol (34) 
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To a solution of 130 mg (0.432 mmol) of 3-(tert-butyldimethylsilyloxy)-5-chloro-4-

methoxybenzaldehyde (32) in 2 mL of dichloromethane at 0
o
C and under argon, was added 160 

mg (70% pure; 0.648 mmol) of  m-chloroperbenzoic acid, and the solution was refluxed for 12 

hours.  The reaction solution was diluted with 5 mL of aqueous sodium thiosulfate and 200 mL 

of diethyl ether. The solution was washed with 20 mL water followed by 20 mL of brine. The 

organic layer was dried over anhydrous MgSO4, solvent evaporated, and the crude was column 

chromatographed on silica gel using a mixture of hexane and diethyl ether (10:1) as eluent to 

give 58 mg of 3-(tert-butyldimethylsilyloxy)-5-chloro-4-methoxyphenyl formate (33) and 55 mg 

of hydrolyzed product, 3-(tert-butyldimethylsilyloxy)-5-chloro-4-methoxyphenol (34) in 42% 

and 44% yield, respectively. Compound 33:
1
H NMR δ 8.23 (s, 1 H, OCHO), 6.83 (d, J = 2.6 

Hz, 1 H), 6.59 (d, J = 2.6 Hz, 1 H), 3.81 (s, 3 H), 1.01 (s, 9 H), 0.21 (s, 6 H); 
13

C NMR δ 158.9, 

150.7, 146.6, 145.4, 129.1, 115.8, 113.6, 60.7, 25.8 (3 C), 18.4, -4.5; HRMS calcd for 

C14H22ClO4Si (M+H
+
) 317.0976, found 317.1355. Compound 34:

 1
H NMR δ 6.48 (d, J = 2.6 

Hz, 1 H), 6.29 (d, J = 2.6 Hz, 1 H), 3.75 (s, 3 H), 1.01 (s, 9 H), 0.20 (s, 6 H); 
13

C NMR δ 152.0, 

150.7, 142.6, 128.1, 110.8, 108.6, 60.7, 25.8 (3 C), 18.4, -4.5; HRMS calcd for C13H22ClO3Si 

(M+H
+
) 289.1027, found 289.1041. 

Conversion of formate 33 to phenol 34 

A solution of 55 mg (0.182 mmol) of compound 33 and 126 mg (0.914 mmol) of K2CO3 

in 1 mL of methanol was stirred at 25
o
C for 12 h. The reaction was diluted with 10 mL of water 

and 30 mL of ethyl acetate and the solution washed with 5 mL of aqueous NH4Cl solution, 5 mL 

of water, and 5 mL of brine. The organic layer was dried over anhydrous MgSO4, solvent 

evaporated, and the crude was column chromatographed on silica gel using a mixture of hexane 
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and diethyl ether (10: 1) as eluent to give 50 mg of compound 34 in quantitative yield, which 
1
H 

NMR spectrum is identical to that described above. 

 

2-Bromo-5-(tert-butyldimethylsilyloxy)-3-chloro-4-methoxyphenol (35) 

 

   To a solution of 75 mg (0.26 mmol) of 3-(tert-butyldimethylsilyloxy)-5-chloro-4-

methoxyphenol (34) in 2 mL of dimethylformamide (DMF) under argon, was added 51 mg (0.28 

mmol) of N-bromosuccinimide and the solution was stirred at 25
o
C for 12 h.  The reaction was 

diluted with 100 mL of diethyl ether, washed with 10 mL of water followed by 10 mL of brine, 

and the organic layer was dried over anhydrous MgSO4. The solvent was evaporated and the 

crude was column chromatographed on silica gel using a mixture of hexane and diethyl ether 

(10:1) as eluent to give 64 mg of 2-bromo-5-(tert-butyldimethylsilyloxy)-3-chloro-4-

methoxyphenol (35) in 67% yield:  Mp. 44 – 45
o
C; 

1
H NMR δ 6.55 (s, 1 H), 5.42 (s, 1 H, OH), 

3.77 (s, 3 H), 1.01 (s, 9 H), 0.20 (s, 6 H); 
13

C NMR δ 150.2, 149.6, 143.1, 124.2, 107.2, 103.0, 

60.8, 25.8 (3 C), 18.5, -4.5; HRMS calcd for C13H21BrClO3Si (M+H
+
) 367.0132, found 

367.0142. 

 

4-Bromo-5-chloro-6-methoxybenzene-1,3-diol (5) 
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  To a solution of 40 mg (0.108 mmol) of 2-bromo-5-(tert-butyldimethylsilyloxy)-3-

chloro-4-methoxyphenol (35) in 2 mL of dry THF under argon at 0
o
C, was added 120 µL (0.12 

mmol) of n-Bu4NF (1 M solution in THF) and the solution was stirred at 0
o
C for 30 min.  The 

reaction was diluted with 70 mL of diethyl ether, washed with 10 mL of water followed by 10 

mL of brine, and the organic layer was dried over anhydrous MgSO4. The solvent was 

evaporated and the crude was column chromatographed on silica gel using a mixture of ethyl 

acetate and hexane (2:1) as eluent to give 15 mg of 4-bromo-5-chloro-6-methoxybenzene-1,3-

diol (5) in 60% yield.  IR (neat) υ 3321 (bs), 3260, 2917, 1589, 1421, 1241, 984, 800; 
1
H NMR δ 

6.65 (s, 1 H), 3.87 (s, 3 H); 
13

C NMR δ 150.5, 150.0, 138.7, 127.5, 101.8, 101.7, 61.5; HRMS 

calcd for C7H7BrClO3 (M+H
+
) 252.9267, found 252.9279. 

 

2-Bromo-3-chloro-4,5-dibenzyloxyphenol (37) 

 

   To a solution of 100 mg (0.188 mmol) of (4,5-bis(benzyloxy)-2-bromo-3-

chlorophenoxy)(tert-butyl)dimethylsilane (36)
42

 in 3 mL of tetrahydrofuran (THF) at 0
o
C, was 

added 210 µL of n-Bu4NF (1 M in THF) and stirred under argon at 0
o
C for 30 minutes.  The 

solution was diluted with 100 mL of diethyl ether, washed with 10 mL of water followed by 10 

mL of brine, and the organic layer was dried over anhydrous MgSO4. The dry organic layer was 

concentrated and the crude was column chromatographed on silica gel using a mixture of hexane 

and diethyl ether (10:1) as eluent to give 56 mg of 2-bromo-3-chloro-4,5-dibenzyloxyphenol (37) 

as white solids in 74% yield. Mp.= 108 – 110
o
C; 

1
H NMR δ  7.40 - 7.20 (m, 10 H), 6.66 (s, 1 H), 
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5.07 (s, 2 H), 4.96 (s, 2 H);  
13

C NMR δ 153.1, 149.9, 139.8, 137.0, 136.1, 129.2, 128.8, 128.5, 

128.44, 128.40, 127.6, 102, 100.6, 75.4, 71.3; HRMS calcd for C20H17BrClO3 (M+H
+
) 419.0044, 

found 419.0051. 

 

5-Bromo-6-chlorobenzene-1,2,4-triol (6) 

 

To a solution of 25 mg (0.06 mmol) of 2-bromo-3-chloro-4,5-dibenzyloxyphenol (37) in 

1 mL of ethanol, was added 2.5 mg of 10% palladium/carbon and was stirred under 1 atmosphere 

of hydrogen (a balloon filled with hydrogen was connected to the round bottom flask) at 25
o
C for 

3 h. The reaction mixture was filtered through Celite and concentrated to dryness to give 13 mg 

of 5-bromo-6-chlorobenzene-1,2,4-triol (6) in 93% yield. The triol 6 was stored in a dry box 

under nitrogen atmosphere:  Mp. >350
o
C; IR (neat) υ 3382 (bs, OH stretch), 2932, 2843, 1614, 

1437, 1285, 1170, 1070 cm
-1

; UV (in methanol)  209.6 (εmax = 30300), 291.8 (1250; likely 

derived from a partial oxidation of the polyphenol functions), 332.5 (4640), 397.1 (1785) nm;  

1
H NMR (CD3OD) δ 6.66 (s, 1 H, Ar), 5.58 (bs, 1 H, OH), 5.27 (bs, 1 H, OH), 5.21 (bs, 1 H, 

OH); 
13

C NMR (CD3OD) δ 149.4, 147.6, 137.4, 123.1, 103.2, 100.6; HRMS calcd for 

C6H5BrClO3 (M+H
+
) 238.9105, found 238.9111.  
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2-Amino-4-(hydroxymethyl)phenol (7)
35

 &  2-amino-4-methylphenol (8)
36

  

 

   To a solution of 300 mg (1.8 mmol) of 4-hydroxy-3-nitrobenzaldehyde (38)  in 30 mL of 

ethanol was added 150 mg of 10% palladium over carbon and shaken on a hydrogenator under 

30 psi atmosphere of hydrogen for 4 h.  The reaction was filtered through Celite, and the Celite 

was carefully rinsed with 30 mL ethyl acetate. The filtrate was concentrated and the crude was 

column chromatographed on silica gel using a mixture of dichloromethane and methanol (9:1) as 

eluent to give 104 mg of 2-amino-4-(hydroxymethyl)phenol (7)
35

 and 91 mg of 2-amino-4-

methylphenol (8)
36

, both in 41% yield. Compound 7: IR (neat) υ 3387 (sharp, m), 3313 (sharp, 

m), 3047 (broad), 2802, 1605, 1515, 1454, 1364, 1286, 1221, 1155, 1008, 816 cm
-1

;  
1
H NMR 

(D2O) δ 6.88 (d, J = 1.2 Hz, 1 H), 6.85 (d, J = 8 Hz, 1 H), 6.77 (dd, J = 8, 1.2 Hz, 1 H), 4.49 (s, 2 

H); 
13

C NMR (DMSO-d6) δ 144.9, 136.1, 133.4, 114.9, 113.8, 113.4, 63.3.Compound 8: IR 

(neat) υ 3370 (sharp, m), 3301 (sharp, m), 2921, 1601, 1519, 1458, 1388, 1286, 878, 800 cm
-1

; 

1
H NMR δ 6.62 (d, J = 7.6 Hz, 1 H), 6.58 (d, J = 1.6 Hz, 1 H), 6.48 (dd, J = 7.6, 1.6 Hz, 1 H), 

2.21 (s, 3 H); 
13

C NMR δ 141.9, 134.4, 131.2, 120.0, 118.1, 115.4, 20.9.   
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1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-methylpropan-1-one (9)
46

 

 

 

To 1 g (7.5 mmol) of anhydrous AlCl3 under argon was added 1mL (9.5 mmol) of 

isobutyryl chloride (40) at -10
o
C followed by 1.2 g (5.8 mmol) of 2,6-di-tert-butylphenol (39). 

To the reaction mixture, 1 mL (9.5 mmol) of isobutyryl chloride was again added and shaken 

vigorously for 15 minutes till light pink paste was formed. The reaction was quenched with 50 

mL of ice cold water and extracted thrice with 50 mL of ethyl ether. The combined organic 

layers were washed with 20 mL brine, dried over anhydrous MgSO4 and solvent evaporated to 

give 1.4208 g of 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropan-1-one (9)
46

 in 90% 

yield. Thin layer chromatography (TLC) and NMR analysis indicated that the compound was 

pure and was used in the next step without further purification.
1
H NMR δ 7.89 (S, Ar, 2 H), 5.71 

(s, OH, 1 H), 3.55 (m, 1 H), 1.48 (s, t-Bu, 18 H), 1.25 (d, J = 6.6 Hz, CH3, 6 H); 
13

C NMR δ 

204.1, 158.4, 135.9, 127.9, 126.2, 34.91, 34.6, 30.3, 19.7. 

 

2-Bromo-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropan-1-one (10)
47
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To a solution of 190 mg (0.69 mmol) of 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-

methylpropan-1-one (9) in a mixture of 0.5 mL of dry CH2Cl2 and 1 mL of dry ethyl acetate 

under argon, was added 375 mg (1.68 mmol) of cupric bromide and heated to reflux for 3 hours 

at 70
o
C. The reaction was filtered and solvent evaporated to give 234 mg of 2-bromo-1-(3,5-di-

tert-butyl-4-hydroxyphenyl)-2-methylpropan-1-one (10)
47

 as yellow colored solid in 96% yield. 

Thin layer chromatography (TLC) and NMR analysis indicated that the compound was pure and 

was used in the next step without further purification. 
1
H NMR δ 8.17 (s, Ar, 2 H), 5.75 (s, OH, 1 

H), 2.06 (s, CH3, 6 H), 1.48 (s, t-Bu, 18 H); 
13

C NMR δ 195.7 (C=O), 158.2, 135.6, 128.8, 125.6, 

60.6, 34.7, 32.4, 30.4. 

 

2,6-Di-tert-butyl-4-(1-hydroxy-2-methylpropan-2-yl)phenol (11)
47

 

 

To a solution of 230 mg (0.65 mmol) of 2-bromo-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-

2-methylpropan-1-one (10) in 3 mL of dry ethyl ether at 0
o
C under argon, was added 55 mg 

(1.46 mmol) of LiAlH4 on vigorous stirring and refluxed at 55
o
C for 3 hours. The reaction was 

carefully quenched by the addition of 20 mL of water followed by the addition of 2 mL of 1M 

H2SO4. The reaction was then extracted with 100 mL of diethyl ether. The organic layer was 

washed with 20 mL of brine, dried over anhydrous MgSO4, and solvent evaporated to give 180 

mg of 2,6-di-tert-butyl-4-(1-hydroxy-2-methylpropan-2-yl)phenol (11)
47

 as white solid in 

quantitative yield. Thin layer chromatography (TLC) and NMR analysis indicated that the 
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compound was pure and was used in the next step without further purification.
1
H NMR δ 7.19 (s, 

Ar, 2 H), 5.13 (s, Ar-OH, 1 H), 3.57 (d, J = 6.6 Hz, 2 H), 1.45 (s, t-Bu, 18 H), 1.33 (s, CH3, 6H); 

13
C NMR δ 152.2, 136.4, 135.6, 123.0, 73.6, 40.1, 34.8, 30.5, 25.7.  

 

2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal (12) 

 

 

To a solution of 170 mg (0.61 mmol) of 2,6-di-tert-butyl-4-(1-hydroxy-2-methylpropan-

2-yl)phenol (11) in 3 mL of dimethyl sulfoxide (DMSO), was added 0.21 g (0.73 mmol) of o-

iodoxybenzoic acid (IBX) and stirred under argon at 25
o
C for 12 h. The reaction was diluted 

with 200 mL of CH2Cl2, washed with 30 mL of water followed by 30 mL of brine, dried over 

anhydrous MgSO4, and the solvent evaporated to give 170 mg of 2-(3,5-di-tert-butyl-4-

hydroxyphenyl)-2-methylpropanal (12) in quantitative yield. Thin layer chromatography (TLC) 

and NMR analysis indicated that the compound was pure and was used in the next step without 

further purification.  IR (neat) υ 3603 (OH), 2952, 2900, 2700 (C-H aldehyde), 1714 (C=O 

aldehyde), 1435, 1360, 1230, 1141, 1120, 903, 826, 744;  
1
H NMR δ 9.45 (s, 1 H, CHO), 7.06 (s, 

2 H, Ar), 5.22 (s, 1 H, OH), 1.44 (s, 24 H, Me); 
13

C NMR δ 202.8 (C=O), 153.1, 136.2 (2 C), 

131.4, 123.6 (2 C), 50.4, 34.8, 30.4 (t-Bu), 22.7; MS negative mode: m/z 275.6 (M-1); positive 

mode: m/z 299.4 (M+Na
+
). 
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2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime (14) 

 

   To a solution of 40 mg (0.14 mmol) of 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-

methylpropanal (12) in 3 mL of acetonitrile and water (2:1), were added 25 mg (0.35 mmol) of 

NH2OH•HCl and 60 mg (0.43 mmol) of sodium acetate, and the solution was stirred at 25
o
C for 

1.5 h. The reaction was rotovaporated to remove acetonitrile, diluted with 20 mL of water, and 

extracted three times with diethyl ether (60 mL total). The combined extract was concentrated to 

give 41 mg of 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime (14) in 97% yield. 

Thin layer chromatography (TLC) and NMR analysis indicated that the compound was pure. 
1
H 

NMR δ 7.49 (s, 1 H, CH=N), 7.12 (s, 2 H, Ar), 1.47 (s, 6 H, Me), 1.44 (s, 18 H, t-Bu); 
13

C NMR 

δ 158.7 (C=N), 152.5, 135.9, 135.7, 122.9 (2 C), 41.0, 34.7, 30.5 (6 C), 26.9; MS m/z 314 

(M+Na
+
). 

 

4-[(2-Benzylamino)-1,1-dimethylethyl]-2,6-di-tert-butylphenol (15) 

 

   To a solution of 50 mg (0.18 mmol) of 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-

methylpropanal (12) in 3 mL of toluene was added 19 µL (0.18 mmol) of benzylamine and 
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heated to reflux using a Diel’s Stark apparatus for 12 h. Toluene was evaporated under 

rotovapor, the crude was dissolved in 2 mL of methanol, and 18 mg (0.29 mmol) of NaCNBH3 

was added. The resulting solution was stirred for 2 h, diluted with 20 mL of water, and extracted 

twice with ethyl acetate (100 mL total).  The combined extract was washed with 10 mL of water 

and 10 mL of brine, dried over anhydrous MgSO4, and solvent evaporated to give 68 mg of 4-

((2-benzylamino)-1,1-dimethylethyl)-2,6-di-tert-butylphenol (15) in 98% yield. Thin layer 

chromatography (TLC) and NMR analysis indicated that the compound was pure. 
1
H NMR δ 

7.35 – 7.18 (m, 5 H, Ph), 7.13 (s, 2 H, Ar), 5.08 (broad s, 1 H), 3.72 (s, 2 H, CH2N), 2.68 (s, 2 H, 

CH2N), 1.43 (s, 18 H, t-Bu), 1.33 (s, 6 H, Me); 
13

C NMR δ 151.92, 140.4, 137.8, 135.4, 128.5, 

128.1, 127.0, 122.7, 61.5, 54.2, 38.6, 34.7, 30.6, 27.9; MS m/z 368.5 (M+1). 

 

 

2,4-Di-tert-butyl-6-(3-methyl-2-butenyl)phenol (16) and 6,8-di-tert-butyl-2,2-dimethyl-3,4-

dihydro-2H-chromene (17) 

 

  To a solution of 200 mg (1.44 mmol) of 2-methyl-3-buten-2-ol (42) in 3 mL of 

dichloromethane at -78
o
C under argon, were added 180 µL (1.44 mmol) of BF3•ether followed 

by 205 mg (0.96 mmol) of 2,4-di-tert-butylphenol (41).  The solution was warmed to 25
o
C and 

stirred for 1 h. The reaction was diluted with 200 mL of diethyl ether, washed with 20 mL of 

aqueous NaHCO3 followed by 20 mL of brine, the organic layer was dried over anhydrous 

Na2SO4, solvent evaporated, and the crude was column chromatographed on silica gel using 1% 
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diethyl ether in hexane as eluent to give 120 mg of 2,4-di-tert-butyl-6-(3-methyl-2-

butenyl)phenol (16)  and 26 mg of 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (17) 

in 46% and 10% yield, respectively.  Compound 16:  
1
H NMR δ 7.22 (d, J = 3 Hz, 1 H, Ar), 

6.99 (d, J = 3 Hz, 1 H, Ar), 5.34 (t,hept, J = 7, 1 Hz, 1 H, =CH), 3.37 (d, J = 7 Hz, 2 H, CH2), 

1.85 (s, 3 H, Me), 1.80 (s, 3 H, Me), 1.43 (s, 9 H, t-Bu), 1.31 (s, 9 H, t-Bu); 
13

C NMR δ 151.5, 

142.3, 135.9, 135.7, 126.0, 125.0, 122.6, 122.3, 35.1, 34.4, 31.9 (3 C), 31.7, 30.0 (3C), 26.0, 

18.2; MS negative mode: m/z 273.8 (M-1). Compound 17:  
1
H NMR δ 7.14 (d, J = 3 Hz, 1 H, 

Ar), 6.93 (d, J = 3 Hz, 1 H, Ar), 2.79 (t, J = 7 Hz, 2 H, CH2), 1.79 (t, J = 7 Hz, 2 H, CH2), 1.39 

(s, 9 H, t-Bu), 1.36 (s, 6 H, Me), 1.30 (s, 9 H, t-Bu); 
13

C NMR δ 150.3, 141.0, 136.9, 124.2, 

121.8, 119.9, 73.9, 35.2, 34.3, 33.0, 31.9, 30.0, 27.3, 23.5; MS positive mode: m/z 275.2 (M+1). 
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Chapter 2. Inhibition of PKC phosphorylation by substituted 

quinolines (PQs)  
  

2.1 Introduction 

Protein kinases are enzymes that catalyze the transfer of a -phosphate group from 

adenosine triphosphate (ATP) to serine, threonine, or tyrosine residue of other proteins resulting 

in their phosphorylation and affecting their activities, cellular location, and protein-protein 

interaction.
1,2

 Protein kinase C (PKC) belongs to the family of serine/threonine protein kinases 

and was first reported by Yasutomi Nishizuka and his coworkers in several mammalian tissues in 

1977.
3,4

 Few years later, PKC was found to be activated by diacylglycerol (DAG) in cyclic 

adenosine monophosphate (cAMP) independent  but calcium and phospholipids dependent 

pathways and plays crucial role in signal transduction in several processes including cell 

proliferation, differentiation, migration, and apoptosis.
2,5,6

  

Activation of PKC by phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate 

(TPA), a well known tumor-promoting agent, has established the potential role of PKC in tumor 

promotion and progression and heightened PKC as potential target in anticancer therapy.
7
 

Phorbol esters are known to substitute diacylglycerol (DAG) with higher binding affinity 

towards PKC.
7
 Recognition of several isozymes of PKC with different mode of activation and 

tissue distribution has opened a door towards the development and use of isozymes-specific 

inhibitors targeting specific intracellular pathways and leading to the possible cure of cancer. 

Several broad spectrum and isozymes specific PKC inhibitors including staurosporine and its 

derivatives like 7-hydroxystaurosporine (UCN01) and N-benzoyl staurosporine (PKC412), 

tamoxifen, and ISIS3521 (an antisense phorothionate oligonucleotide) are known and found to 
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have anticancer properties but with low clinical efficiency that could be due to their poor 

specificity/selectivity towards PKC and its specific isozymes or poor bioavailability.
8,9

 

 Previously, polysubstituted quinolines (abbreviated as PQs) were synthesized in Hua’s 

laboratory by derivatizing the C-8 amino function of 6-methoxy-4-methyl-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-amine,
10

 to study their anticancer activities.
11

 Among the 

synthesized PQs: N-(3-aminopropyl)-6-methoxy-4-methyl-5-(3-(trifluormethyl)phenoxy) 

quinolin-8-amine (PQ1), N-(furan-2-ylmethyl)-6-methoxy-4-methyl)-5-(3-(trifluoromethyl) 

phenoxy)quinolin-8-amine (PQ11), and 6-methoxy-4-methyl-N-(quinolin-4-ylmethyl)-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-amine (PQ15) were found to have anti-breast cancer 

activities.
11,12

 For example, PQ1 and PQ11 were found to attenuate xenograft breast cancer 

tumor growth.
13,14

 Combinational treatment of PQ1 and tamoxifen, an antiestrogen compound 

used for the prevention of some types of breast cancer in humans, was found to lower the 

effective dose of tamoxifen in T47D cells.
13

 Moreover, PQ11, an analog of PQ1, was found to 

have improved anti-breast cancer activity as compared to PQ1.
14

 The anti-cancer activities of 

PQs have been related to the enhancement of gap junction intercellular communication (GJIC) 

by restoring gap junctions and inducing apoptosis.
12-15

 

With known anticancer activities and structures closely resembling to that of several 

known PKC inhibitors including MT477, dequalinium, and chelerythrine chloride; PQs could 

also function as PKC inhibitors.  Therefore, in this chapter the inhibition of PKC 

phosphorylation by PQ1, PQ11, and PQ15 was evaluated. In this study, staurosporine,
16

 a known 

potent PKC inhibitor and 6-methoxy-4-methyl-N-(thiophen-2-ylmethyl)-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-amine (PQ10) were used as positive and negative 
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compound, respectively. The structures of PQ1, PQ10, PQ11, PQ15, and staurosporine are 

highlighted in Figure 8. 

 

 

Figure 8: Structure of PQ1, PQ10, PQ11, PQ15, and staurosporine. 

  

2.2 Background 

PKCs are known to have at least twelve isozymes and on the basis of their mode of 

activation and similarities in amino acid sequences are grouped under three subfamilies: classical 

PKCs (cPKC: PKCα, PKCβI, PKCβII, and  PKC) are activated by calcium, diacylglycerol 

(DAG) and phosphatidylserine (PS); novel PKCs (nPKC: PKCδ, PKCε, PKCη, PKCθ and 

PKCµ) are activated by DAG and PS but are insensitive towards calcium; and atypical PKCs 
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(aPKC; PKCζ and PK) are insensitive towards both calcium and DAG but can be activated by 

3-phosphoinositides (PIP3).
9,17,18

  

The single polypeptide chain of PKC is composed of an N-terminal regulatory domain (~ 

20 - 40 kDa) linked to a highly conserved C-terminal catalytic domain (~ 45 kDa) by a 

proteolytically labile hinge region (V3) as shown in Figure 9.
19

 The regulatory domain in PKCs, 

consisting of C1 and C2 regions is diverse and on the basis of this domain PKC isozymes are 

classified into three subfamilies as mentioned above. The catalytic domain, consisting of C3 and 

C4 regions is highly conserved among the isozymes. In classical PKCs (cPKCs), C1 region 

contains two duplicated cysteine rich zinc finger motifs located towards the N-terminal and 

functions as a DAG or PS binding site, C2 region contains the recognition site for acidic lipids 

and calcium binding, and C3 and C4 regions are the ATP and substrate binding sites, 

respectively.
19-21

 Novel PKCs (nPKCs) also have similar C1, C2, C3 and C4 regions; however, 

the C2 region lacks calcium binding sites and is located towards the N-terminal as shown in 

Figure 9.
19,20

 Atypical PKCs (aPKCs) differ from the classical and novel PKCs by having 

structurally different C1 region as well as lacking functional C2 region.
19,20

 The C1 region in all 

the isozymes is preceded by a pseudosubstrate that resembles a PKC substrate but contains 

alanine and not serine or threonine in the phosphoacceptor site.
22

 In the absence of activators, the 

pseudosubstrate binds to the substrate binding site of C4 region and keeps the enzyme in 

autoinhibitory (inactive) state.
23
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Figure 9: Schematic representation showing the conserved regions (C1 - C4) and variable 

regions (V1 - V5) in all three classes of PKC ioszymes.
19

  

 

2.2.1 PKC as a target in cancer therapy 

There is a plethora of literatures in which PKCs have been related to cancer. The first 

ground breaking evidence was published in the early 1980s that identified PKC as a receptor for 

phorbol esters, natural tumor-promoting compounds, and highlighted PKC as one of the most 

intensively studied enzyme in anticancer research.
7,24

 Phorbol esters have been previously linked 

to promote the formation of skin tumors on mice treated with mutagenic agent.   

PKCs have wide range of downstream signaling pathways and many of them are 

unknown. The most important downstream signaling pathway activated by PKC is the MEK-

ERK, and the other probable cancer related downstream targets are glycogen syntheses kinase-3 

beta (GSK-3β), nuclear factor kappa beta (NfκB), P-glycoprotein, etc.
8,9

  PKCα is known to 

activate mitogen activated protein kinase kinase kinase (MAP-KKK or Raf1), a serine/threonine 
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kinase by phosphorylation which in turn activates mitogen activated protein kinase kinase 

(MAP-KK; MEK1 and 2). The activated MEK1/2 further activates mitogen activated protein 

kinase (MAP-K; ERK 1 and 2) by phosphorylation. Finally, ERK phosphorylates several 

downstream proteins resulting in the transcription of genes involved in cell proliferation.
8
  

The expression level and function of various PKC isozymes during cancer progression 

are found to vary depending on the cell and cancer type; furthermore, the PKC isozymes 

substrate-overlapping specificities have made it difficult to pin point functions of individual 

isozymes. For example, PKCα may act as tumor promoter or as a tumor suppressor: down-

regulation of PKCα has been demonstrated in basal cell carcinoma and colon cancers,
25,26

 up- or 

down-regulation of PKCα has been described in hematological malignancies,
27

 and up-regulation 

of PKCα has been found in prostate,
28

 endometrial, and high-grade urinary cancer.
29

 Similarly, 

PKCβ expression is found to be upregulated in prostrate
28

 and colon cancers
30

 and 

downregulated in bladder cancers.
31

 However, PKCδ activity in many cases is linked to induce 

apoptosis, probably through the release of mitochondrial cytochrome c and increase in the 

expression and stability of p53 (tumor suppressor), pro-apoptotic signals as a result of PKC δ 

activation.
32-34

 In general, majority of the studies have demonstrated that increased PKCα/β 

expressions is associated with increased motility, invasion, anti-apoptotic activity, and drug 

resistance in cancer cells; the effect is reversed by inhibiting PKCs activities.
9
 Importantly, only 

few cases of mutations have been reported in PKC which might aid in the designing of 

nonresistant anticancer drugs by targeting a specific isozyme culprit in the process.
18

 Since many 

studies have linked PKC during cancer progression, therapies targeting PKC or specific PKC 

isozyme could be effective in the cure of cancers.
8,9,35
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2.2.2 PKC and breast cancer 

Breast cancer, a heterogeneous disease, is one of the most common cancers in women. 

Breast cancer comprises of about 22.9% of all cancers diagnosed in women and is a leading 

cause of women deaths worldwide.
36

 Less than 10% of the breast cancers have been related to be 

hereditary and are linked with mutation of tumor suppressor genes such as BRCA1 and BRCA2, 

whereas majority of breast cancers develop sporadically with the risk factors that include age, 

lifestyle, hormonal exposure, and environmental factors like pollution.
37

 Estrogen is a major 

steroid hormone in female endocrine system and is required for the normal growth and 

development of the body. In addition, estrogen is vital for the development of secondary sexual 

character as well as in reproduction; however, high level of estrogen in the body has been linked 

to rapid cell proliferation in breast tissues leading to breast cancer.
38

  

Increase in the PKC level is correlated to the increased resistance and metastatic potential 

of human breast cancer cells.
39

 In a study conducted among nine patients having breast cancer, 

the PKC expression was found to be significantly higher in the human breast cancer tumor cells 

as compared to the normal breast tissues of the same patients.
40

 PKC expression was found to be 

significantly higher in several estrogen receptor negative (ER
-
) human breast cancer cells as 

compared to estrogen receptor positive (ER
+
) human breast cancer cells which inversely 

correlates between the expression of PKC and estrogen receptors in the cancer cells.
41

 In vitro 

studies,  human breast cancer cells treated with phorbol ester downregulated PKC expression and 

inhibited cell growth; whereas, removal of phorbol ester from the medium upregulated PKC 

expression and resumed cell growth, suggesting that PKC is necessary for cell growth.
42,43

 These 

studies suggest the role of PKC as a potential targets in breast cancer therapy. 
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 2.2.3 Gap junction and cancer 

Gap junctions are transmembrane hydrophilic channels that connect the cytoplasm of 

adjacent cells and allow the passage of molecules such as water, cAMP, inositol triphosphate 

(IP3), glucose, and calcium that are smaller than 1200 Daltons.
44

  In normal cells gap junctions 

are present in very high-density clusters known as gap junctional plaques and are the only 

specializations in cell membranes for intercellular communication between adjacent cells.
45

 

Unlike normal cells that can communicate intercellularly through the gap junction, cancer cells 

lack or have defective gap junctions,
46

 and are unable to receive intercellular signals such as 

required for apoptosis thus preventing cell death.  

Gap junctions are formed when connexon of one cell docks with a connexon of the 

adjacent cell and each connexon is composed of six proteins of connexin family such as Cx43 

and Cx32.
47,48

 Most of the connexins with the exception of Cx26 are phosphoproteins and are 

phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein 

kinase C (PKC), and protein kinase A (PKA).
47

  

  

2.2.4 Inhibition of gap junction intercellular communication by PKC 

PKCs have been related in the inhibition of gap junctional intercellular communication 

(GJIC) by inhibiting gap junctional channels.
49,50

 The inhibition of gap junctional channel is  

either induced by cell trauma such as sudden drop in pH and increase in Ca
2+

 level or 

physiological regulators like connexin phosphorylation.
51

 The higher the expression of 

phosphorylated form of connexin, the lower is gap junctional intercellular communication 

(GJIC). Phosphorylation of connexin mostly occurs on the serine residues of the C-terminal.
52

 

Many studies suggest the phosphorylation of Cx43 through PKC dependent pathways. Mutation 
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of Ser-368 in Cx43 partially prevented the decrease in intercellular gap junctional 

communication (CJIC) when treated with PKC in the presence of phorbol ester, a known 

activator of PKC, indicating Ser-368 as a major site for PKC phosphorylation.
53,54

  

Restoration of gap junction in cancer cells can allow the access of small anticancer drugs 

as well as apoptosis signals deep into the cancer tissues causing cells death. Inhibition of PKC 

might be crucial in restoring gap junctions, enhancing gap junctional intercellular 

communication and inducing apoptosis, leading to the possible treatment of cancer. Substituted 

quinolines (PQs) are known to inhibit PKC phosphorylation of Cx43 by disrupting the 

interactions between Cx43 and Nedd4, an E3 ubiquitin ligase, resulting in the maintenance of 

gap junctions.
12

 The structural similarities between PQs and several known PKC inhibitors like 

MT477, chelerythrine chloride, and dequalinium in having common quinoline moiety and H7 in 

having closely related isoquinoline moiety might be linked to the PKC inhibition properties of 

PQs. The structures of MT477, dequalinium, H7, chelerythrine chloride, and other known PKC 

inhibitors are highlighted in Figure 10. 

 

2.2.5 PKC inhibitors and cancer 

The role of PKC in cancer supports the notion that it could be potential therapeutic target 

in treating cancers. Several PKC inhibitors are known and some are currently employed in 

human clinical trials either as a single agent or in combination with other anti-cancer drugs. 

Approaches to inhibit PKC by small molecules are based on their binding to catalytic domain 

(ATP binding site) or regulatory domain (diacylglycerol or calcium binding site) of PKC. Known 

PKC inhibitors including safingol, calphostin C, miltefosine, bryostatin 1, curcumin, 

staurosporine and its synthetic analogs (midostaurin (PKC412), Go6850, Ro318220, Ro320432, 
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enzastaurin (LY317615), sotrastaurin (AEBO71), ruboxistaurin (LY333531), and UCN-01 (7-

hydroxystaurosporine)), tamoxifen, dequalinium, MT477, H7, chelerythrine chloride, ingenol-3-

angelate, and sangivamycin are highlighted in Figure 10. 

Sphingosine, a sphingolipid, is a potent and selective inhibitor of PKC and acts on the 

regulatory domain of PKC.
55

 Safingol, a saturated homologue of sphingosine, was the first PKC 

inhibitor to enter clinical trial in combination with doxorubicin.
56

 It has entered phase I clinical 

trial in combination with cisplatin for the treatment of advanced solid tumors.
57

  

Calphostin C, a perylenequinone, is a natural product derived from fungus Cladosporium 

cladosporioides and is a potent and highly selective inhibitor of PKC showing preference over 

cAMP-dependent protein kinase and tyrosine-specific protein kinase.
58

  Calphostin C has been 

found to induce apoptosis in broad spectrum of cancer cell lines;
59

 however, its use has been 

limited to preclinical studies only.  

Miltefosine, an alkylphosphocholine, has shown antitumor activities that might be due to 

its ability to inhibit PKC. Phase II clinical study of miltefosine in topical treatment to cutaneous 

breast cancer metastases has showed some activity with little systemic toxicity.
60

  

Bryostatin 1 is a macrocyclic lactone isolated from Bugula neritina, a marine 

bryozoans.
61

 The short-term exposure to bryostatin 1 is found to activate cPKC and nPKC, 

whereas the long-term exposure inhibits PKC activity.
62

 Phase II studies of bryostatin 1 in 

combination with paclitaxel has shown enhanced response of paclitaxel in advanced esophageal 

and gastroesophageal junction adenocarcinoma and in advanced esophageal as gastroesophageal 

junction cancer.
63,64

 Moreover, combination of bryostatin 1 with vincristine in phase II studies 

was effective in patients with aggressive B-cell non-Hodgkin lymphoma.
65
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Figure 10: Structures of known PKC inhibitors. 
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Curcumin, commonly known as turmeric and used for yellow coloration in curry, is a 

natural polyphenol derived from the plant Curcuma longa and a potent inhibitor of PKC.
66

 Anti-

tumor activities of curcumin against a broad spectrum of cancers have been investigated in 

number of preclinical studies.
35

 Phase I and phase II clinical studies has highlighted curcumin as 

a safe compound with possible therapeutic efficacy.
35

  

Chelerythrine chloride, a benzophenanthridine alkaloid derived from the plant 

Chelidonium majus, is a cell-permeable inhibitor of protein kinase C and do not inhibit protein 

tyrosine kinase, cAMP-dependent protein kinase, or calcium/calmodulin-dependent protein 

kinase.
67

 Chelerythine chloride is also known to activate MAPK pathways, independent of PKC 

inhibition and inhibit binding of BclXL to Bak or Bad proteins stimulating apoptosis.
68

 

Ingenol-3-angelate (Ing3A), extracted from Euphorbia peplus, is currently in phase III 

clinical trials for treating actinic keratosis and phase II for non-melanoma skin cancer.
69,70

 H7, an 

isoquinoline sulphonamide, is one of the early used ATP site binding inhibitor of PKC and also 

inhibits cAMP- and cGMP-dependent protein kinases.
71,72

 Rottlerin, a natural product derived 

from Mallotus philippinensis, is a selective inhibitor of PKCδ showing preference over other 

cPKCs and nPKCs; however, it is also known to inhibit PKA and calmodulin kinase III.
73,74

 

MT477, a novel thiopyranol[2,3-c]quinoline, is known to have activity against PKC isozymes 

and found to preferentially inhibit the proliferation of K-ras-mutated carcinoma as compared to 

non-Ras-mutated carcinoma.
75

  In non-Ras- mutated cancer, MT477 is found to be a selective  

inhibitor of PKCα showing preference over PKCβI, PKCβII, and PKCγ isozymes.
76

 

Staurosporine, a natural product isolated from bacterium Streptomyces staurosporeus  is a 

potent PKC inhibitor consisting of a sugar residue linked to a planar bis-indole carbazole.
77

 It is 

the first reported PKC inhibitor that acts on the ATP binding site of the catalytic domain of PKC. 
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Lack of specificity of staurosporine towards kinases makes it highly toxic and has precluded it 

from clinical use. However, analogs of staurosporine including, midostaurin (PKC412) and 

UCN01 are more potent and specific inhibitors of PKC.  

Midostaurin, an N-benzoylated staurosporine analog, was the first PKC inhibitor to be 

used in oncology clinical trials and known to be more selective than staurosporine towards PKCs 

inhibitions; however it also inhibits other kinases like inert domain receptor KDR, VEGF-R2, 

PDGF, and c-kit.
78

 Phase I studies of midostaurin in combinations with 5-fluorouracil, paclitaxel 

and carboplatin, and gemcitabine and cisplatin has highlighted that midostaurin can be safely 

used for treating certain cancers.
79,80

 However, midostaurin failed to demonstrate significant 

clinical activities in phase II trials. 

UCN01, an analog of staurosporine preferably suppresses the activities of cPKCs as 

compared to other PKC isozymes.
81

 UCN01 is in clinical trials for leukemia, non-small cell lung 

cancer (NSCLC) and lymphoma.
35

   

Enzastaurin (LY317615) is a potent inhibitor of PKCβ.
82

 Enzastaurin was found to be 

effective in phase I and II trials in the patient with recurrent high-grade gliomas.
83

 Phase III 

study conducted to compare the efficacy of enzastaurin with lomustine in the treatment of patient 

with recurrent glioblastoma showed its better efficacy towards hematological profile; however, 

was less effective than lomustine.
84

  

Sotrastaurin (AEB071) is a potent and selective inhibitor of cPKCs and nPKCs and has 

found to have high immunodilatory effect via inhibition of early T cell activation.
85

 It is currently 

in phase II clinical trial for the prevention of solid organ allograft rejection.
85
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Since PQs are known to have anticancer activities with their structures closely resembling 

to that of several PKC inhibitors including MT477, dequalinium, chelerythrine chloride, and H7; 

therefore, PQs might also function as PKC inhibitors.  

 

2.3 PKC inhibition by substituted quinolines (PQs) 

 2.3.1 Methods and materials 

The PepTag® non-radioactive PKC assay kit (catalog # V5330) was purchased from 

Promega and PKC inhibition studies were carried out following the protocol published by 

Promega (technical bulletin #132) with minor modifications.  

Protein Kinase C phosphorylation is determined by the use of fluorescent PepTag “C1 

peptide” substrate consisting of eleven amino acids residues (amino acids sequence of C1 

peptide; proline – leucine – serine – arganine – threonine – leucine – serine – valine – alanine – 

alanine – lysine). A dye molecule attached to the C1 peptide substrate imparts bright pink 

fluorescence to the peptide. At pH = 7.4, pH of the reaction, the C1 peptide in the 

nonphosphorylated state has a net +1 charge which changes to net -1 charge on PKC 

phosphorylation as illustrated in Figure 11.
86

 In spite of having two serines (Ser-3, and Ser-7) 

and one threonine (Thr-9) residues in the amino acid sequence of C1 peptide only Ser-7 is 

phosphorylated; Ser-3, and Thr-9 are not typically phosphorylated due to steric hindrance.
87

  The 

phosphorylated and nonphosphorylated C1 peptides can be separated by agarose gel 

electrophoresis, a method used to separate oppositely charged peptides or proteins (Figure 12). 

The use of non-radioactive assay is more rapid and convenient than the one that determines PKC 

activity by measuring the transfer of radioactive phosphate (
32

PO4
2-

) group from the enzyme to 



76 

 

the substrate peptides or proteins.
88

 During electrophoresis the nonphosphorylated peptide (+Ve 

charged) moves towards the negatively charged anode whereas the phosphorylated peptide (-Ve 

charged) moves toward the positively charged cathode and get separated as shown in Figure 12.  

 

 

 

Figure 11: Amino acid sequence of C1 peptide and the change in net charge (+1) of 

nonphosphorylated peptide to the net charge of (-1) of phosphorylated peptide at pH = 7.4. 

 

The phosphorylated and nonphosphorylated bands were visualized under UV light and 

the fluorescence intensities (pixel intensities) of the bands were quantified using Kodak Gel 

Logic 1500 Digital Imaging System and Imagequant 5.2 software; facilities provided by Dr. 
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Govindsamy Vediyappan laboratory, in the Division of Biology, Kansas State University. The 

ratio of the phosphorylated band intensity to the sum of the phosphorylated and 

nonphosphorylated band intensities was used as a measure of percentage phosphorylation of C1 

peptide.
89

  

 PepTag® assay kit for non-radioactive detection of protein kinase C consists of the 

following: PepTag® C1 peptide (0.4µg/µL in water), conjugated to a fluorescent molecule; 

PepTag® PKC reaction buffer having 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), pH 7.4, 6.5 mM CaCl2, 5 mM dithiothreitol (DTT), 50 mM MgCl2, and 5mM 

adenosine triphosphate (ATP); PKC (25 µg/mL) having 20 mM 

tris(hydroxymethyl)aminomethane hydrochloride (C(CH2OH)3NH2. HCl; Tris-HCl), pH 7.4, 2 

mM ethylenediaminetetraacetic acid (EDTA), 1mM DTT, 10 mM K3PO4, 0.05% Triton® X-100 

and 50% glycerol; gel solubilization solution (composition not supplied); and PKC activator 

solution having 1 mg/mL of phosphatidylserine (PS) in water; and peptide protection solution. 
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Figure 12: Schematic diagram showing the phosphorylation of C1 peptide by PKC and the 

separation of phosphorylated and nonphosphorylated C1 peptide by agarose gel electrophoresis. 

In the above figure, P = proline, L = leucine, S = serine, R = arganine, T = threonine, V = valine, 

A = alanine, and K = lysine.  
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2.3.2 Experimental  

 2.3.2.1 PKC inhibition studies 

The inhibition of PKC phosphorylation was carried out following the protocol supplied 

by Promega (technical bulletin #132) with minor modifications. The negative control in the 

experiment consisted of C1peptide but without PKC and PKC inhibitor (staurosporine or PQs); 

the positive control consisted of both C1 peptide and PKC but without PKC inhibitor; and the 

other experiments consisted of C1 peptide, PKC, and PKC inhibitor in varying concentrations. 

The inhibition of PKC phosphorylation by staurosporine or PQs in various concentrations was 

demonstrated by the decrease in the intensities of their respective phosphorylated bands as 

compared to the phosphorylated band of the positive control.  

 

2.3.2.2 Preparation of agarose gel 

 To a solution of 50 mL of 50 mM Tris-HCl (pH 8.0) buffer was added 0.4 g of agarose,  

heated to boiling in a microwave till all of the agarose dissolved, cooled to about 60
o
C, and 

slowly added into a gel tray having required number of comb(s) placed in a mini horizontal 

electrophoresis apparatus.
90

 Any bubbles formed in the solution were carefully removed with a 

pipette tip. On standing for 20 minutes the agarose solution solidified to a gel. Careful removal 

of the comb(s) gave desired number of wells for sample loading. The gel was covered with 50 

mM Tris-HCl solution (pH 8.0) as a running buffer.  

  

 

 



80 

 

2.3.2.3 Preparation of reaction solutions 

Each experiment (PKC inhibition studies) generally comprised of 7 reactions; one 

negative control, one positive control, and the remaining five with PKC inhibitor (staurosporine 

or PQs) in different concentrations. The procedure was based on Promega technical bulletin 

(#132) and is mentioned below: 

1. Eight 1-mL microcentrifuge tubes were taken and labeled as mixture, negative control, 

positive control, and the remaining five as required PKC inhibitor concentrations. 

2. In negative control, 6 µL of deionized water was added, whereas in positive control 3 µL 

(15 ng) of diluted PKC (PKC dilution solution comprises of 100 µg/mL of bovine serum 

albumin (BSA) and 0.05% of Triton® X-100) and 3 µL of deionized water or 1:2 mixture of 

DMSO and deionized water (based on the solvent used for dissolving PKC inhibitors) was 

added.  

3. In other five reactions, 3 µL (15 ng) of diluted PKC and 3 µL of drug solution of required 

concentration (each tube had different concentration of drug) in deionized water or 1:2 

mixture of DMSO and deionized water were added. The reactions mentioned in points 2 and 

3 of this section were then incubated at room temperature for 5 minutes. 

4. In a tube labeled as mixture, 17.5 µL of PKC reaction buffer, 17.5 µL of PKC activator 

solution, 3.5 µL peptide protection solution, and 14 µL (5.6 µg) of C1 peptide were added at 

0
o
C and incubated for 2 minutes in water bath maintained at 30

o
C. From the tube 7.5 µL of 

the solution were added to each tube labeled as negative control, positive control, and five 

reactions with varying drug concentrations. Each tube had 0.8 µg of C1 peptide in the total 

volume of 13.5 µL.  
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5. Negative control, positive control, and other five reactions with drug were incubated for 45 

minutes in water bath maintained at 30
o
C.   

6. The reaction was stopped by deactivating PKC enzyme by placing the tubes in boiling water 

for 10 minutes. 

7. The tubes were then allowed to cool at room temperature and 0.5 µL of 80% glycerol was 

added to each tubes. The samples were now ready to be loaded into the agarose gel for the 

separation of phosphorylated and nonphosphorylated peptides by horizontal gel 

electrophoresis. 

  

2.3.2.4 Separation of phosphorylated and nonphosphorylated peptides by electrophoresis 

  Electrophoresis is a process of separation of molecules having different charge or size by 

the application of electric field. The samples from each tube (as described in section 2.3.2.3) 

were loaded in separate wells in the agarose gel placed in a horizontal gel electrophoresis 

chamber and electrophoresis was carried for 30 minutes at 100 V. As the net +1 charge in a 

nonphosphorylated C1 peptide is changed to a net -1 charge after phosphorylation,
86

 on 

electrophoresis the nonphosphorylated peptides (+Ve charged) move towards the negatively 

charged electrode (anode) and the phosphorylated peptides (-Ve charged) move towards the 

positively charged electrode (cathode) and separate from each other.  

 

2.3.2.5 Quantification of phosphorylated and nonphosphorylated bands 

The gel after electrophoresis was removed from the electrophoresis chamber, 

photographed under UV by Kodak Gel Logic 1500 Digital Imaging System,
91

 and quantification 

of both phosphorylated and nonphosphorylated bands were carried out by Imagequant 5.2 
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software (Molecular Dynamics/Amersham Biosciences),
92

 using the facilities in Dr. 

Govindasamy Vediyappan laboratory, in the Division of Biology, Kansas State University. 

Quantification of the bands by the use of Imagequant 5.2 software is referred as photoimaging 

analysis in this chapter. For the quantification, the tiff image file of the gel was inverted (bands 

are black and background is white, opposite to the normal picture) and background correction 

was done to minimize noise. The obtained volumes of the bands (pixel intensities) were then 

used to determine the amounts of phosphorylated and non phosphorylated C1 peptide which is 

discussed in details in the following section. The accuracy of photoimaging analysis was tested 

by comparing the results with that of spectrofluorometric analysis, and was found to be similar. 

Thus the more convenient photoimaging analysis was carried out for the quantification of 

phosphorylated and nonphosphorylated C1 peptides in all performed experiments. 

For spectrofluorometric analysis the bands were carefully incised with a clean and sharp 

razor and placed in a separate (labeled) 1 mL graduated micro centrifuge tubes. The gels in the 

tubes were heated on boiling water until they melted. After adjusting the volume in each tube to 

250 µL by the addition of deionized water (wherever necessary), 175 µL of each solutions were 

transferred to different tubes containing 75 µL of gel solubilization solution, 50 µL of glacial 

acetic acid, and 400 µL of deionized water, and vortexed. The solutions were then ready for 

spectrofluorometric analysis. The maximum intensities of the phosphorylated bands of positive 

control and reactions with different PKC inhibitor (PQs or staurosporine) concentration were 

compared from their respective emission spectra (max = 592 nm; obtained with the excitation 

wavelength of 568 nm). The difference in the phosphorylation of peptide in the absence and 

presence of PKC inhibitors was calculated and inhibitions of PKC phosphorylation by the 

inhibitors were determined.  
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To minimize the effect of diffusion and overflowing of the lanes during the sample 

loading during gel electrophoresis, the sum of intensities or volumes of both phosphorylated and 

nonphosphorylated bands of each reaction were taken and considered to be the contribution of 

0.8 µg of peptide that was initially added in each reaction. From this value the corrected amount 

of peptide phosphorylation and percentage of peptide phosphorylation were determined as 

mentioned in the second last and last columns of Tables 1, 2, and 3.  

The correlation studies between the peptide phosphorylation and (a) the concentration of 

PKC (0 - 40 ng) and (b) time (15 to 60 minutes) were carried out before preceding the 

phosphorylation inhibition studies. 

  

2.4 Results and discussions 

 2.4.1 Studies of the correlation between peptide phosphorylation verse                        

(1) concentrations of PKC, and (2) time 
 

Correlations between peptide phosphorylation verse (a) concentration of PKC, and (b) 

time were established before setting parameters for the experiments. 

  

 2.4.1.1 Correlation between peptide phosphorylation verses concentrations of PKC 

The phosphorylation of the substrate peptide (C1 peptide) increased linearly with the 

increase in the amount of PKC (0 - 40 ng) as determined by both spectrofluorometric (bottom 

left of Figure 13) and photoimaging analysis (bottom right of Figure 13). The percentage of C1 

peptide phosphorylation with varying concentrations of PKC, as measured by both 

spectrofluorometric and photoimaging methods, are highlighted in Table 1 and 2, respectively. 

The amounts of PKC required to phosphorylate 50 % of the C1 peptide were found to be 29 ng 
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and 30 ng from spectrofluorometric and photoimaging analysis, respectively. Results obtained 

from both methods were similar with an average difference of 4%. The use of 15 ng of PKC 

produced about 30% of C1 peptide phosphorylation; therefore, 15 ng of PKC was used in the 

following experiments to study the inhibition of PKC phosphorylation by staurosporine and PQs.  

 

Table 1: Percentage phosphorylation of C1 peptide with varying amounts of PKC (0, 5, 15, 20, 

30, and 40 ng) as determined by spectrofluorometric analysis 

 

Amount of 

PKC (ng) 

Maximum Intensity 
A+B 

(Intensity due 

to 0.8 µg of 

C1 peptide) 

Corrected 

amount of 

peptide 

phosphorylated  

(A’, µg) 

(0.8× A/(A+B) 

% Peptide 

phosphorylation 

(A’ × 100/ 0.8) 

% 

Phosphorylated 

peptide (A) 

Non 

phosphorylated 

peptide (B) 

0 0 3014204 3014204 0 0 

5 207960 2719242 2927202 0.057 7.1 

15 978600 2508340 3486940 0.225 28.1 

20 1199304 1960410 3159714 0.304 38 

30 1937402 1725586 3662988 0.423 52.9 

40 2246314 1444880 3491194 0.514 64.3 

 

Table 2: Percentage phosphorylation of C1 peptide with varying amounts of PKC (0, 5, 15, 20, 

30, and 40 ng) as determined by photoimaging analysis 

 

Amount of 

PKC (ng) 

Volume (Pixel Intensity) 
A+B 

(Intensity due 

to 0.8 µg of 

C1 peptide) 

Corrected 

amount of 

peptide 

phosphorylated  

(A’, µg) 

(0.8× A/(A+B) 

% Peptide 

phosphorylation 

(A’ × 100/ 0.8) 

% 

Phosphorylated 

peptide (A) 

Non 

phosphorylated 

peptide (B) 

0 0 129513 129513 0 0 

5 17595 133628 151223 0.093 11.63 

15 80358 148940 229298 0.280 35 

20 91876 134506 226382 0.325 40.58 

30 110573 104745 215318 0.411 51.35 

40 140443 94755 235198 0.478 60 
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Figure 13: Gel image and graphs of C1 peptide phosphorylation with the amount of PKC. The 

amount of PKC used ranged from 0 - 40 ng (top). The negative control refers to no PKC (0 

ng).The linear correlation of peptide phosphorylation vs. amount of PKC in nanograms (ng) was 

established by the spectrofluorometric (bottom left) and photoimaging (bottom right) methods. 

The results obtained in both cases were similar with an average difference of ~ 4%.  
 

 

2.4.1.2 Correlation between the changes in peptide phosphorylation over time (15 - 60 min)  

 The percentage of peptide phosphorylation with respect to time was studied to find out 

the appropriate reaction time for the preceding experiments. For this 15 ng of PKC and 0.8 µg of 

C1 peptide were used in each reaction (four reactions) and the first, second, third, and fourth 

reaction were stopped at 15, 30, 45, and 60 minutes respectively by deactivating PKC enzyme by 

placing the reaction on boiling water for 10 minutes. The reactions were then loaded into the 

sample loading wells in agarose gel for the separation of both phosphorylated and non 

phosphorylated peptides by horizontal gel electrophoresis. Percentage of C1 peptide 
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phosphorylation over time is summarized in Table 3, whereas the gel image and the 

corresponding graph are highlighted in Figure 14.  

 

Table 3: Percentage phosphorylation of C1 peptide with varying time (15 - 60 minutes) 

Time 

(minutes) 

Volume (Pixel Intensity) 
A+B 

(Intensity due 

to 0.8 µg of 

C1 peptide) 

Corrected 

amount of 

peptide 

phosphorylated  

(A’, µg) 

(0.8× A/(A+B) 

% Peptide 

phosphorylation 

(A’ × 100/ 0.8) 

% 

Phosphorylated 

peptide (A) 

Non 

phosphorylated 

peptide (B) 

0 0 452529 452529 0 0 

15 212081 430388 642469 0.264 33 

30 182748 321058 503806 0.290 36.3 

45 265429 412429 677858 0.313 39.2 

60 281580 360734 642314 0.350 43.8 
 

 

Figure 14: Gel image and linear correlation between percentage phosphorylation of C1 peptide 

catalyzed by PKC (15 ng) over time (15 - 60 min). Diffusion on loading 30 min reaction caused 

the decrease in the pixel intensities of both phosphorylated and nonphosphorylated bands which 

was corrected as shown in Table 3. 
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Percentage phosphorylation of C1 peptide with PKC showed a linear correlation with 

time within the experimental range from 15 to 60 minutes as shown in Figure 14. For each 

reaction the incubation time could be chosen between 15 to 60 minutes; however, 45 minutes 

incubation time was chosen for the phosphorylation experiments. Longer incubation time (> 

hour) was avoided since PKC is labile at room temperature. 

 

2.4.2 Inhibition of PKC phosphorylation by staurosporine 

Staurosporine is a natural product isolated from bacterium Streptomyces staurosporeus 

by Omura et al in 1977.
77

 Staurosporine molecule consists of a sugar residue, with a unique 

stereochemical arrangement, linked to a planar bis-indole carbazole unit.  

Initially, staurosporine was found to have biological activities ranging from anti-fungal to 

anti-hypertensive; however, elaborated studies highlighted staurosporine as a potent, but not 

selective inhibitor of various protein kinases including PKC with IC50 values in nanomolar 

range.
93,94

 The higher affinity of staurosporine towards the adenosine triphosphate (ATP) binding 

site on the catalytic domain of PKC prevents the binding of ATP to the PKC, thus inhibiting 

PKC.
94

 Lack of specificity of staurosporine towards kinases makes it highly toxic and has 

precluded it from clinical use. Staurosporine has an ability to drive virtually all mammalian cells 

to apoptosis; therefore, the role of staurosporine is virtually restricted in research to induce 

apoptosis.  

Staurosporine was used as a positive compound to study the inhibition of PKC 

phosphorylation. The inhibition of PKC phosphorylation was carried out as per the protocol 

supplied by Promega and as explained in section 2.3 of this chapter. The gel image, percentage 

of C1 peptide phosphorylation catalyzed by PKC, and the percentage of PKC inhibition in the 
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absence and presence of various concentrations of staurosporine is highlighted in Figure 15. IC50 

value of staurosporine towards the inhibition of PKC phosphorylation was found to be 33 nM 

(Figure 20); however, IC50 value of 22 nM has been previously reported by Wilkinson et al.
95

 

 

 

Figure 15: Gel image, percentage of C1 peptide phosphorylation catalyzed by PKC, and 

percentage inhibition of PKC phosphorylation in the presence and absence of staurosporine. All 

the reactions have 0.8 µg of C1 peptide and 15 ng of PKC. In the negative and positive control 

there is no staurosporine whereas other reactions have different concentrations of staurosporine 

as mentioned in the graphs. The graphs are provided with (±) standard error obtained from three 

separate experiments.    

 

2.4.3 Inhibition of PKC phosphorylation by PQs (PQ1, PQ10, PQ11, and PQ15) 

 Polysubstituted quinolines, abbreviated as PQ’s, were synthesized by Jianyu Lu, in Hua’s 

laboratory, following the literature procedure previously reported.
11

 Structures of PQ compounds 

examined for  the inhibition of PKC phosphorylation, in this chapter, are listed in previous 
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Figure 8. These PQ compounds are known to have anti-breast cancer activities. Among the PQ 

compounds, PQ1 and PQ11 have IC50 values of 119 nM and 15.6 nM in T47D cancer cells and 

are potential compounds for developing anticancer drugs.
11

 PQ10 was less active against T47D 

cell line with IC50 value of 3.7 µM.
11

  

 N-(3-Aminopropyl)-6-methoxy-4-methyl-5-(3-(trifluormethyl)phenoxy)quinolin-8-amine 

(PQ1), a potent anticancer drug was found to induce apoptosis in cancer cells by enhancing or 

restoring gap junction intercellular communication (GJIC); moreover, PQ1 had no effect on gap 

junction intercellular communication (GJIC) in normal cells.
13

 PQ1 was found to inhibit the 

phosphorylation of Cx43, gap junction protein and increased the expression of active caspase-3, 

suggesting its role as apoptosis inducing agent.
13

 In vivo studies indicated that PQ1 suppressed 

the xenograft tumor growth of T47D cells in nude mice.
13

 Combinational treatment of PQ1 and 

tamoxifen lowered the effective dose of tamoxifen in T47D cells.
13

 

 Since PKC is linked in the catalysis of phosphorylation of gap junction protein Cx43, the 

effect of PQ1 on PKC phosphorylation was studied. The PKC phosphorylation inhibition studies 

highlighted PQ1 as a potent PKC inhibitor with IC50 value of 35 nM (Figure 20), and its activity 

was comparable to that of staurosporine (IC50 value of 33 nM) as measured in the previous 

section.  The gel image, percentage of C1 peptide phosphorylation catalyzed by PKC, and 

percentage inhibition of PKC in the presence and absence of PQ1 is highlighted in Figure 16. 
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Figure 16: Gel image, percentage of C1 peptide phosphorylation catalyzed by PKC, and 

percentage inhibition of PKC phosphorylation in the absence and presence of PQ1. All the 

reactions have 0.8 µg of C1 peptide and 15 ng of PKC. In negative and positive control there is 

no PQ1 and others have varying concentrations of PQ1 as indicated in the graphs. The graphs are 

provided with (±) standard error obtained from three separate experiments.  

  

 N-(Furan-2-ylmethyl)-6-methoxy-4-methyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-

amine (PQ11) was found to have much improved anticancer activities than PQ1.
14

 PQ11 was 

found to increase the expression of Cx43, a gap junctional protein, in T47D cells enhancing 

GJIC in the cells.
14

 PQ11 at 500 nM was known to enhance the GJIC by 1.7 and 16 folds as 

compared to PQ1 treated (under identical conditions) and nontreated T47D cells, respectively.
14

 

Similarly, 100 nM of PQ11 and PQ1 inhibited the colony growth  of T47D by 66% and 50 % 

respectively.
14

 In vivo studies showed that PQ11 treated nude mice grafted with T47D tumor had 

no tumor left after 7 injections of  1 µM PQ11 in 14 days.
14

  The increase in expression of 
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caspase-9 on cancer cells treated with PQ11 was linked to the role of PQ11 in the induction of 

apoptosis.
14

 These results demonstrate the potency of PQ11 in the development of potential  

anticancer drug.
14

 The inhibition of PKC phosphorylation by PQ11 was therefore studied and the 

corresponding IC50 value was obtained as 42.3 nM, which is slightly higher than that of PQ1 as 

shown in Figure 20. The higher IC50 value of PQ11, towards PKC inhibition, as compared to 

PQ1 is surprising but may be related to the difference in their cellular targets other than PKC. 

The gel image, percentage of C1 peptide phosphorylation catalyzed by PKC, and percentage 

inhibition of PKC phosphorylation in the absence (positive control) and presence of PQ11 is 

highlighted in Figure 17. 
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Figure 17: Gel image, percentage of C1 peptide phosphorylation catalyzed by PKC, and 

inhibition of PKC phosphorylation in the presence and absence of PQ11. All the reactions have 

0.8 µg of C1 peptide and 15 ng of PKC. In the negative and positive control there is no PQ11 

and others have varying concentrations of PQ11 as indicated in the graphs. The graphs are 

provided with (±) standard error obtained from three separate experiments. 

  

 Another analog of PQ1, 6-methoxy-4-methyl-N-(quinolin-4-ylmethyl)-5-(3-

trifluoromethyl)phenoxy)quinolin-8-amine (PQ15), was also found to have anticancer activities, 

but less potent than PQ1 and PQ11.
12

 PQ15 was found to enhance gap junctional intercellular 

communication (GJIC) by inhibiting the PKC phosphorylation of Cx43, resulting in the decrease 

of cell proliferation and viability in T47D cells.
12

 Moreover, PQ15 was found to downregulate 

the expression of α-survivin, a member of the inhibitor of apoptosis (IAP) family, increasing 

apoptosis and decreasing chemoresistance in T47D cells.
12

 Alpha-survivin is overexpressed in 
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human cancer and might be associated to the prolonged life of cancer cells by increasing 

resistance to chemotherapy.
96

 The inhibition of PKC phosphorylation by PQ15 was therefore 

studied and the corresponding IC50 value of 216.3 nM was obtained, which was significantly 

higher than that of PQ1 and PQ11 as shown in Figure 20. The gel image, percentage of C1 

peptide phosphorylation catalyzed by PKC, and inhibition of PKC phosphorylation in the 

absence (positive control) and presence of PQ15 is highlighted in Figure 18.  

 

 

Figure 18: Gel image, percentage of C1 peptide phosphorylation catalyzed by PKC, and 

percentage inhibition of PKC in the absence and presence of PQ15. In the negative and positive 

control there is no PQ15 and others reactions have varying concentrations of PQ15 as indicated 

in the graphs. The graphs are provided with (±) standard error obtained from three separate 

experiments. 

 

Among the compounds examined, 6-methoxy-4-methyl-N-(thiophen-2-ylmethyl)-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-amine (PQ10) did not show inhibition of PKC 
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phosphorylation within the studied concentration range of 1-20 µM. The gel image and 

percentage of C1 peptide phosphorylation by PKC in the absence (positive control) and presence 

of PQ10 in highlighted in Figure 19. 

 

Figure 19: Gel image and percentage of C1 peptide phosphorylation by PKC in the absence and 

presence of PQ10. All the reactions have 0.8 µg of C1 peptide and 15 ng of PKC. In positive 

control there is no PQ10 and others have varying concentrations of PQ10 as indicated in the bar 

graphs. PQ10 shows no inhibition of PKC phosphorylation in the range of 1-20 µM. Only one 

experiment was carried out for PQ10. 

  

The IC50 values of staurosporine, PQ1, PQ11, and PQ15 determined from PKC inhibition 

studies are summarized in Figure 20. A close structural resemblance of polysubstituted 
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quinolines (PQs) with that of several PKC inhibitors, including MT477, dequalinium, 

chelerythrine chloride, and M7 in having quinolines or isoquinoline moieties and with 

staurosporine and its analogs having closely related indole moiety might contribute to the PKC 

inhibition properties of PQs. However, the specificity of PQs towards PKC isozymes and other 

kinases has to be investigated. 

 

 

Figure 20: IC50 values of staurosporine (ST), PQ1, PQ11, and PQ15. The values have been 

derived from three separate experiments for each compound and the bars are provided with (±) 

standard error. 

 

2.5 Conclusions 

 Polysubstituted quinolines (PQs); PQ1, PQ11, and PQ15 known to have anti-breast 

cancer activities were evaluated for their role in the inhibition of PKC phosphorylation. The 

study indicated that PQ1, PQ11, and PQ15 were found to inhibit PKC phosphorylation with IC50 

values of 35, 42.3, and 216.3 nM, respectively. Moreover, PQ1 and PQ11 were found to be 

potent PKC inhibitor as comparable to staurosporine with IC50 value of 33 nM. These results 
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indicate the possibility of developing PQ1 and PQ11 as possible anticancer drugs targeting PKC. 

However, it is still not known whether PQs are isozymes specific inhibitors of PKC or may even 

target other kinases.    
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Chapter 3. Distribution of PQ1 and PQ11 in tissues of mice and 

effect of PQ1 in normal tissues 
 

3.1 Introduction 

Cancer, a broad group of more than 100 diseases characterized by the unregulated growth 

and spread of abnormal cells in the body, has been listed as one of the most important public 

health problems in today’s world. In 2008, an approximate of 12.6 million new cases of cancer 

were reported worldwide causing 7.6 million lives in the same year.
1
  In 2011, about 1.6 million 

new cases of cancer were reported in the United States resulting in 0.6 million deaths in the same 

year.
2
 In general, about 25% of all deaths in the United States is associated with cancer.

2
  In the 

United States, breast cancer is the most common cancer in women and one in every eight women 

has a chance of getting breast cancer in her life time.
2
 

Quinolines are known to have wide range of biological activities including antifungal,
3
 

antibacterial,
4
 and antimalarial.

5
 Quinolines are also found to have anticancer activities such as 

by targeting tumor hypoxia,
6,7

 inhibiting topoisomerase,
8
 inhibiting tyrosine kinase,

9
 and 

reversing multidrug resistance.
10

 For example: irinotecan and topotecan, derivatives of 

camptothecin are used in the treatment of colorectal and ovarian cancer, respectively.
11

 

Amsacrine, another anticancer drug having a quinoline motif is used in the treatment leukemia 

and lymphomas in many countries.
12

 The structures of camptothecin, irinotecan, topotecan, and 

amsacrine are highlighted in Figure 21.   

Substituted quinolines (PQs), N-(3-aminopropyl)-6-methoxy-4-methyl-5-(3-

(trifluormethyl) phenoxy)quinolin-8-amine (PQ1) and N-(furan-2-ylmethyl)-6-methoxy-4-

methyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ11) are potential anticancer drugs 
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with respective IC50 value of 119 and 15.6 nM in T47D cells.
13,14

 PQ1 and PQ11 are known to 

enhance gap junctional intercellular communication (GJIC) resulting in the decrease in cell 

viability and proliferation in cancer cells.
13,15

 The enhancement in GJIC in T47D cells by PQ1 

and PQ11 is linked to the inhibition of PKC phosphorylation of Cx43, a gap junctional 

protein.
13,15,16

 The increase in gap junction activities is positively related to the increase in 

apoptosis and drug sensitivity in cancer cells.
17

 In vivo studies, PQ1 and PQ11 have 

demonstrated the attenuation of  T47D xenograft tumors in nude mice up to 100%.
13,15

 As 

discussed in chapter two of this thesis, PQ1 and PQ11 are found to be potent inhibitors of PKC 

with IC50 values of 35 and 42.3 nM, respectively.  

 

Figure 21: Structures of quinoline motif bearing anticancer drugs: camptothecin, topotecan, 

irinotecan, and amsacrine. 
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However, for a cancer drugs to be effective, they must reach the targeted tissues in the 

body in concentrations sufficient to kill the cancer cells without producing cytotoxic or adverse 

effects in normal cells. In this chapter, the time dependent distribution of PQ1 and PQ11 in 

different organs of normal C57BL/6J mice and the effect of PQ1 on the normal organs are 

discussed. These studies are essential to establish PQ1 and PQ11 as potential candidates in the 

development of gap junctional or PKC targeting anticancer drugs by finding their possible 

toxicity and locating their presence in various tissues.  

Oral gavage of PQ1 was conducted by Dr. Thu Annelise Nguyen and me, Intraperitoneal 

(IP) injection of PQ11 was done by Stephanie Shishido, and the effect of PQ1 in the normal 

tissues was studied by Ying Ding. Stephanie Shishido and Ying Ding are graduate students in 

Dr. Thu Annelise Nguyen group, College of Veterinary Medicine, Department of Diagnostic 

Medicine Pathobiology, Kansas State University. 

 

3.2 Background 

 The mode of treatment of cancer is diverse including surgery, radiation, chemotherapy, 

hormone therapy, and targeted therapy. Surgery is carried out to remove the tumor from the body 

and is very effective for curing cancer that has not spread to other parts of the body. Radiation 

therapy uses high energy radiations to kill cancer cells by damaging their DNA. Cancer cells are 

known to grow and divide rapidly and chemotherapy is the most commonly used method to treat 

cancers by using chemicals capable of killing rapidly dividing cells in the body. In hormone 

therapy, a patient is treated with drugs that either prevent the cancer cell to come in contact with 

hormones that help the cancer cells to grow or activate the production of hormones that kill 

cancer cells. Finally, in targeted therapy drugs that block the growth and spread of cancer cells 
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by targeting specific culprit molecules in tumor growth and progression are used. In general the 

combination of different methods is used for the effective treatment of cancer. 

Understanding how drugs behave in a biological system is a subject of prime importance 

in the treatment of various diseases. The circulatory system which comprises of blood and blood 

vessels is generally used to distribute drugs in several tissues in the body.  

For systemic drug administration in research, the drugs are generally administered in the 

mice through three main routes that include oral gavage, intravenous injection, and 

intraperitoneal injection. In oral gavage, the drug in the form of solution is administered directly 

into the lower esophagus or stomach by the use of feeding needle. The feeding needle has a bulb 

tip which prevents the rupture of delicate tissues during the drug administration. The maximum 

volume that can be feed by oral gavage is 10 mL/Kg body weight of the mice. 

Intraperitoneal (IP) injection of drug is one of the most frequently performed drug 

administration methods in mice. In this method the drug in the form of the solution is injected 

into the peritoneal cavity, a space that surrounds the abdominal organs. A small and thin needle 

is inserted into the abdominal cavity in the lower right quadrant to avoid the puncture of cecum 

and urinary bladder with the needle. For IP injection the volume of drug solution should not 

exceed 2 mL in an adult mouse. 

Intravenous (IV) injection is used to administer the drug solution directly in the blood 

through veins. The vein in the tail of a mouse functions in thermoregulation and dilates on the 

rise in body temperature.  Thus application of heat to the tail of the mouse causes venodilation 

making the veins easily accessible for IV administration. The maximum volume of drugs 

administration through IV should not exceed 0.5 mL in an adult mouse.  
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 The drugs administered through oral gavage and IP injections must first diffuse into the 

blood stream. The blood then transports and distributes the drugs in various tissues in the body as 

shown in Figure 22.  

 

Figure 22: Schematic representation of blood circulation in mammals. 

 

3.3 Experimental 

Substituted quinolines, PQ1 and PQ11, were obtained as described by Shi et al.
14

  Oral 

gavage of PQ1, intraperitoneal (IP) injection of PQ11, and the effect of PQ1 in the mice tissues 

were studied in Dr. Annelise Nguyen laboratory. For PQ1 studies, each group consisted of four 
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female C57BL/6J mice and the distribution of PQ1 and its effect in normal tissues were studied 

at 1 hour, 12 hours, and 24 hours after the dosage of PQ1 by oral gavage. For PQ11, each group 

consisted of six female C57BL/6J mice and the tissue distribution of PQ11 was studied at 6 

hours, 12 hours, 24 hours, and 36 hours after the dosage of PQ11 by intraperitoneal injection.     

 

3.3.1 PQ1 and PQ11 administration and tissue collection  

A dose of 25 mg/Kg (mice body weight) of PQ1 or PQ11 as their succinic acid salt 

dissolved in DMSO was administered to the mice. PQ1 was administered by oral gavage, 

whereas PQ11 was administered by IP injection. The distribution of PQ1 in the organs was 

analyzed in 1, 12, and 24 hour times from the exposure of PQ1. The animals were euthanized 

with CO2 and sacrificed by cervical dislocation. The blood was immediately collected in a 

heparin-coated 1mL syringe by cardiac puncture. Various tissues including brain, heart, liver, 

lungs, uterus, and kidneys were obtained after immediate dissection of the animal and kept in 

vials over dry ice. The blood was centrifuged to collect plasma. All the tissues and plasma 

collected were stored at -78
o
C until further analysis was carried. 

In case of PQ11, distribution of drug to the various tissues and plasma was evaluated in 6, 

12, 24, and 36 hour times of the drug exposure. Similar method as applied for PQ1 was followed 

to collect plasma and tissue samples (liver, lungs, kidney, heart, spleen, uterus, gastro intestinal 

tract, and brain) from the mice.  
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3.3.2 Extraction of PQ1 and PQ11 from organs and plasma 

Organs were weighed and cut into small pieces followed by the addition of 4 mL of 

deionized water and 10 mL of 9:1 mixture of ethyl acetate and 1-propanol.  Known volume of 

plasma samples were directly mixed with 4 mL of deionized water and 10 mL of a 9:1 mixture of 

ethyl acetate and 1-propanol.  Sodium bicarbonate (10 mg) was added to the tissue or plasma 

solutions and were sonicated for 40 minutes and 10 minutes, respectively. The organic layer was 

separated from a separatory funnel.  The aqueous layer was extracted twice with 10 mL of a 9:1 

mixture of ethyl acetate and 1-propanol.  The organic layers were combined, washed with 5 mL 

of brine, dried over anhydrous MgSO4, and concentrated to dryness on a rotary evaporator.  The 

residue was diluted with 1 mL of 1-propanol and filtered through a 0.2 µm filter disc (PTFE 0.2 

µm, Fisherbrand) and analyzed using HPLC and mass spectrometry as described below. 

 

3.3.3 Quantification of PQ1 and PQ11 using HPLC   

HPLC analysis of PQ1 and PQ11 was carried out on a Varian Prostar 210 with a UV-Vis 

detector. A reverse phase column from Phonomenex (250 x 21.20 mm, 10 micron, S. No: 

552581-1) was used for PQ1 analysis, whereas a C18 reverse phase column from Xper-chrom 

Aegis (S. No: 104117, 250 x 10 mm, 10 micron) was used for PQ11. For both PQ1 and PQ11, a 

flow rate of 5 mL/min and detection wavelength of 254 nm were used.  A gradient elution of 

solvent A, containing deionized water and 0.01% of trifluoroacetic acid, and solvent B, 

containing acetonitrile and 0.01% of trifluoroacetic acid, was applied for the analysis. 
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Scheme 10: Schematic representation of the regeneration of BTA from the salt of BTA with PQ 

compounds 

 

 

 

1,2,4,5-Benzenetetracarboxylic acid (BTA) was used as an internal standard to quantify 

the amount of PQ1 or PQ11 in the samples.  BTA does not undergo amide formation reaction 

with PQ compounds (amine) at ambient temperature because (i) –OH group in carboxylic acid is 

a poor leaving group and (ii) BTA has a pKa ~ 3 that is lower as compared to the pKa of the 

aminium ions of aliphatic primary amine (pKa ~ 10) and aniline (pKa ~ 4.5) resulting in a very 

small amount of free amine (nucleophile) in the equilibrium as shown in Scheme 10. Moreover, 

the presence of 0.01% of trifluoroacetic acid (pKa = 0.52) in the solvents for HPLC regenerates 

BTA from its salt as shown in Scheme 10. Solutions of 100 µL of various mixtures of authentic 

PQ1 or PQ11 and BTA were injected into an HPLC instrument, the peak areas corresponding to 

PQ1 or PQ11 and BTA were integrated from the HPLC chromatogram, and the ratios of the 

peaks were obtained. The results of the ratios of HPLC peak areas and the ratios from PQ1 or 

PQ11 and BTA concentrations were plotted, and a linear correlation line was obtained from the 

graph. Hence, using this correlation diagram, the ratio of HPLC peak areas of PQ1 or PQ11 and 

BTA from tissue extract, and the added known amount of BTA to the tissue extract, the amount 
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of PQ1 or PQ11 in the tissue or plasma extract was determined. The eluant corresponding to the 

peak that had the same retention time as that of PQ1 or PQ11 from the injection of the tissue 

extract was collected, and its mass was determined using mass spectrometer. The mass spectrum 

acquired from the collected peak of PQ1 or PQ11 from the plasma or tissue extract was identical 

to that of the authentic PQ1 or PQ11 mass spectrum. Hence, the molecular identity of PQ1 and 

PQ11 in the tissue extract was verified by mass spectrometry. An Applied Biosystem API 2000 

LS/MS/MS mass spectrometer was used in the analysis.  The eluent corresponding to PQ1 or 

PQ11 peak from the HPLC was collected and injected into the mass spectrometer.  A mass of 

406 corresponding to M+1 of PQ1 or 429 corresponding to M+1 of PQ11 was found in their 

mass spectra and the fragmentation pattern of this M+1 mass is similar to that of the authentic 

PQ1 or PQ11 verifying the identity of PQ1 and PQ11. 

The percentage distribution of PQ1 and PQ11 in the tissues was determined from the 

amount of PQ1 or PQ11 obtained in the organs compared to the total amount of the drugs 

administered to each mice. Similarly, the concentration of the drugs in the tissues was obtained 

by finding the number of moles of PQ1 or PQ11 in the given volume of the organs (mass of 

organs = volume of organs, density ~1).  

 

3.4 Results and discussions 

PQ1 and PQ11 are known to have anti-breast cancer activities in T47D cells by 

enhancing GJIC and inducing apoptosis; however, have no effect on normal human mammary 

epithelial cells (HMEC).
13,15

 It is therefore important to determine the distribution of these drugs 

in different tissues and study the toxicity of these compounds in the normal tissues. Since, the 
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studies on the effects of PQ11 on the normal tissues is ongoing, this chapter highlights the 

distribution of PQ1 and PQ11 in different tissues of normal mice and also discusses the effect of 

PQ1 in the normal tissues. Distribution of PQ1 in the mice tissues and its effect on the normal 

cells has been published recently and the results are summarized in this chapter.
18

 The effect of 

PQ1 on normal tissues was studied by Ying Ding in Dr. Annelise Nguyen laboratory.   

 

3.4.1 Tissue distribution of PQ1 

To examine the tissue distribution of PQ1 in different organs, a dose of 25mg/Kg of PQ1, 

was administered to C57BL/6J mice by oral gavage, a desirable and safe method for drugs 

administration. The main purpose of administrating higher dose of PQ1 was to evaluate the 

toxicities of PQ1 in normal tissues.   

PQ1 in the tissues was determined by plotting a calibration graph with the ratios of peak 

areas of PQ1 to BTA vs. molar ratios of PQ1 to BTA as mentioned in the experimental section of 

this chapter. The calibration graph for PQ1 is shown in Figure 23.  
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Figure 23: Correlation of ratios of peak areas of authentic BTA and PQ1 from HPLC 

chromatogram and molar ratios of PQ1 and BTA injected. Solutions of 100 µL of various 

mixtures of authentic PQ1 and BTA were injected into an HPLC, the peak areas corresponding 

to PQ1 and BTA were integrated from the HPLC chromatogram, and the ratios of the peaks were 

obtained. The results of the ratios of HPLC peak areas and the ratios from PQ1 and BTA 

concentrations were plotted, and a linear correlation line was obtained from the graph. 
 

 

The amount of PQ1 in the tissues extract was calculated by determining the peak areas 

ratio of PQ1 to BTA and determining the number of moles of PQ1 from the correlation graphs, 

as the number of moles of BTA added to the tissue extract was known. HPLC chromatograms of 

the tissues extract injected with a known amount of BTA showed a peak at 28.8 minutes which 

had the same retention time compared to the authentic PQ1 as shown in Figure 24. The 

representative mass spectrum of eluant corresponding to the peak at 28.8 min is highlighted in 

Figure 31. 
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Figure 24: Representative HPLC chromatograms of PQ1 and BTA. 24A is the HPLC 

chromatogram of 1:1 mol ratio of BTA and authentic PQ1. 24B is the HPLC chromatogram of 

the tissue extract. 24C is the HPLC chromatogram of the tissue extract with known amount of 

BTA. The peak at 28.8 min retention time in 24C had the same mass as authentic PQ1 which was 

confirmed by mass spectrometry. 
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The percentage of PQ1 distribution to the organs was calculated by defining the amount 

of PQ1 administered as 100%, and the values are highlighted in Figure 25.  

 

 

Figure 25: Percentage distribution of PQ1 in various tissues in female C57BL/6J mice in 1, 12, 

and 24 hours of PQ1 exposure. Each mouse was administered with 25 mg/Kg of PQ1 and the 

amount of PQ1 administered to each animal is defined as 100%. Data of each experiment was 

obtained from at least 3 mice and the bars are provided with (±) standard error.   

 

In one hour from the oral administration of the drug, PQ1 was detected in the major 

organs including brain, heart, lungs, liver, kidneys, and uterus. Liver and brain had the highest 

distribution of PQ1 with the respective percentage distribution of 9.2% and 4.8% of the total 

PQ1 administered to the mice. The distribution of PQ1 in the brain suggests its efficacy to 

penetrate the blood brain barrier, which is generally difficult in cases of many drugs. Uterus, 
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heart, lungs, and kidneys were found to have 2.5%, 1.2%, 1.4%, and 1 % of the total PQ1 

administered to the mice, respectively. In 12 hour time of the drug administration, the percentage 

of PQ1 distribution decreased in liver to 4.3%, brain to 2.4 %, and heart to 0.7% but increased in 

kidneys to 2.8%. This indicates the shift of drug to the kidney from where it is excreted. 

However, the amount of PQ1 in lungs and uterus remained consistent. Finally, in 24 hour time of 

the drug administration, the amount of PQ1 decreased to 3.7% in liver, 0.9% in kidney, whereas 

brain and heart had no detectable amount of PQ1 in 24 hours. The PQ1 distribution in uterus was 

found to remain consistent even in 24 hours; moreover, there was an increase of PQ1 in the lungs 

to 3% in 24 hours. These results show that PQ1 can be absorbed, distributed to major tissues, and 

metabolized in various tissues or excreted out from the body of mice.  

 For a cancer drugs to be effective, they must reach the targeted tissues in the body in 

concentrations sufficient to kill the cancer cells. Therefore, concentrations of PQ1 in the organs 

were also evaluated at 1, 12, and 24 hour times of the drug administration (Figure 26). Since the 

concentration of drugs depends on the volume of the organs, the organs having higher percentage 

of drug distribution but greater volume such as liver may have lower drug concentration 

compared to the organs which have smaller volume. PQ1 is reported to have IC50 value of 119 

nM in T47D breast cancer cells, and has shown to suppress the xenograft tumor growth of T47D 

cells in nude mice by 70% in six days with one injection of 1 µM.
13
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Figure 26: Concentration of PQ1 (µM) in various tissues in 1, 12, and 24 hours of the drug 

exposure. The concentration of PQ1 was calculated by determining the number of mmol of PQ1 

per unit volume of the organs (density of organ = 1). Each bar represents the average 

concentration of PQ1 measured in at least three mice and is provided with (±) SE. 

 

In one hour, the concentrations of PQ1 in the organs analyzed were higher than 100 µM 

with the exception of kidney which had 52 µM, values more than 50 times higher than the 

effective dosage. The highest concentration of PQ1 in the organs evaluated was 248 µM in 

uterus, followed by 217 µM in brain, 154 µM in lungs, 118 µM in heart, and 115 µM in liver. 

The concentration of PQ1 in the uterus remained consistent even after 12 and 24 hours of the 

drugs administration. In brain and heart, the concentration of PQ1 decreased to 89 µM and 68 

µM respectively in 12 hours; however, no detectable amount of PQ1 was observed in these 

organs in 24 hours. In liver, 12 hours from the drug administration, the concentration of PQ1 was 
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reduced to 54 µM and remained almost consistent till 24 hours (46 µM). The concentration of 

PQ1 in lungs and kidney was found to increase to 182 µM and 141 µM respectively in 12 hours. 

The concentration of PQ1 was found to further increase to 200 µM in the lungs in 24 hours but 

decrease in kidney to 37 µM. 

 

3.4.2 Effect of PQ1 in normal tissues 

PQ1 is known to have anti-breast cancer activity by enhancing gap junctional 

intercellular communications (GJIC) and probably inducing apoptosis.
13

 PQ1 was reported to 

inhibit 66% of T47D cells colony growth at 100 nM concentration; however, the same 

concentration had no effect on the normal human mammalian epithelial cells (HMEC), 

indicating its specificity towards cancer cells and producing no cytotoxic effect to normal cells.
13

 

Although several molecules have been reported to modulate different levels of gap junctional 

proteins and GJIC, none of these molecules have been examined in clinical trials for the 

treatment of cancers. It is therefore important to study the effect of PQ1 in normal tissues to 

evaluate its potential towards the development of anti-breast cancer drugs targeting GJIC.  

 

3.4.2.1 Effect of PQ1 on apoptosis in normal tissues 

Apoptosis is a process of programmed cell death and is important in maintaining 

homeostasis in normal cells and tissues. The balance between both pro- and anti-apoptotic 

factors is crucial in maintaining normal cell cycle in an organism. Anticancer drugs that induce 

apoptosis in healthy cells may have several adverse effects.
19

 Therefore, to understand the effect 

of PQ1 on apoptosis in normal tissues, the expressions of survivin, an anti-apoptotic protein, and 

caspases, proapoptotic proteins were evaluated in both PQ1 treated and nontreated normal 
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tissues. The expressions of caspase-8 and cleaved caspase-3 expression were evaluated for 

proapoptotic proteins. Caspase-8 is linked to have a lead role in extrinsic apoptotic pathway, 

whereas cleaved caspase-3 is a common indicator of both extrinsic and intrinsic apoptotic 

pathways.
20

 

Survivin, a member of inhibitor of apoptosis (IAP) family is linked to inhibit caspase 

activation. In one hour from the administration of PQ1, the expression of survivin was found to 

increase in all the organs, except uterus, as compared to the normal organs from the nontreated 

mice. The level of survivin increased to 14% in liver, 28% in heart, and 44% in the lungs, which 

was consistent to the concentration of PQ1 found in these organs. Survivin expression was found 

to decrease by more than 25% in the uterus. The level of survivin in brain and kidney was found 

to be consistent as compared to the control (nontreated tissues) in the first hour but increased to 

20% and 15% in 12 hours time, respectively. The expression level of survivin in nearly all 

organs was found to decrease to the same level as that of controls in 24 hours.  

Since the cleaved caspase-3 was only detected in the uterus, liver, and lungs of PQ1 

untreated animals, the expression of cleaved caspase-3 was only evaluated in these organs. In 12 

hours from the administration of PQ1, the expression level of cleaved caspase-3 significantly 

decreased by 45% in uterus, 37% in liver, and 43% in lungs. The decrease in the expression of 

cleaved caspase-3 in these organs was consistent to the concentration of PQ1 found in these 

organs. Similarly, the expression of caspase-8, a key marker of extrinsic apoptotic pathway, was 

also evaluated. In 1 hour of the PQ1 administration, all the organs showed a decrease in the 

expression of caspase-8 ranging from 12% to 37% compared to untreated organs. In 24 hours 

from the drug administration, the expression of caspase-8 was found to decrease significantly in 

the organs like heart, lungs, liver, and uterus, by 40%, 43%, 43% and 55% respectively.  
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  The increase in the expression of survivin and decrease in the expression of caspase-8 

and cleaved caspase-3 in the normal tissues suggests the role of PQ1 as the suppresser of 

apoptosis, which is in contrary to the cancer cells, where it is found to induces apoptosis. 

Therefore, PQ1 as an anticancer drug might have double advantage, one by killing cancer cells 

inducing apoptosis, and the other by suppressing apoptosis in normal cells by inhibiting pro-

apoptotic factor and activating anti-apoptotic proteins.  

 

3.4.2.2 Effect of PQ1 on connexin in normal tissues 

Connexin are gap junctional proteins. PQ1 was found to enhance GJIC by inhibiting the 

phosphorylation of Cx43.
13

 Therefore the expressions of Cx43 in the PQ1 treated and nontreated 

normal tissues were evaluated. Since Cx43 was detected in the heart, brain, and the lungs of the 

PQ1 non treated animals, the expressions of Cx43 was only studied in these organs. 

Interestingly, the expression of Cx43 was found to decrease in these organs. The expression of 

connexin was significantly lower at 24 hour time period, decreasing to 27% in brain, 69% heart, 

and 50% in lungs as compared to the controls from the PQ1 untreated animals. These studies 

indicated PQ1 to have an opposite role in normal cells as compared to the cancer cells and 

suggested that the function of PQ1 in normal cells may involve different mode of action 

compared to the previously studied in T47D cancer cells.  

 

3.4.2.3 Histological analysis of normal tissues 

The organs of PQ1 treated mice were accessed microscopically for observing histological 

changes if any had occurred to the organs. PQ1-treated liver of normal mice remained unchanged 

at 1, 12, and 24 hour times as compared to the control, indicating PQ1 produced no observable 
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toxicity to the mice. Similarly the tissues of heart, adrenal glands, kidney, and reproductive tract 

also did not show any changes as compared to the controls. Moreover, all the mice treated with 

PQ1 showed no evidence of hemorrhage or inflammatory cells.  

 

3.4.3. Tissue distribution of PQ11 

Since, the oral gavage method used to administer PQ1 in the mice had fluctuating results 

giving larger values of standard error; therefore, intraperitoneal injection of PQ11 was carried 

out to evaluate the distribution of PQ11 in different organs. A dose of 25mg/Kg (mice body 

weight) of PQ11 succinic acid salt in 100 µL of DMSO was injected to C57BL/6J mice in the 

intraperitoneal cavity. The quantification of PQ11 in the tissues was carried out as mentioned in 

the experimental section of this chapter. The ratios of HPLC peak areas of PQ11 to BTA were 

plotted vs. the ratios of number of moles of PQ11 to BTA which produced a linear correlation 

calibration plot as shown in Figure 27. Since the amount of BTA injected with the tissue extract 

is known, the calibration graph was used to determine the amount of PQ11 in the tissues. 
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Figure 27: Correlation of ratios of peak areas of authentic BTA and PQ11 from HPLC 

chromatogram and molar ratios of PQ11 and BTA injected. Solutions of 100 µL of various 

mixtures of authentic PQ11 and BTA were injected into an HPLC, the peak areas corresponding 

to PQ11 and BTA were integrated from the HPLC chromatogram, and the ratios of the peaks 

were obtained. The results of the ratios of HPLC peak areas and the ratios from PQ11 and BTA 

concentrations were plotted, and a linear correlation line was obtained from the graph. 

 

The HPLC chromatogram of the tissues extract with a known amount of BTA showed a 

peak at 9.5 minute which had the same retention time compared to the authentic PQ11 as shown 

in Figure 28. The eluant corresponding to the peak at 9.5 minute in Figure 28C had the same 

mass compared to the authentic PQ11, as confirmed by mass spectrometry. The amount of PQ11 

in the tissues extract was then calculated by determining the peak areas ratio of PQ11 to BTA 

and determining the number of moles of PQ1 from the correlation graphs, as the number of 

moles of BTA added to the tissue extract was known. The representative mass spectrum of eluant 

corresponding to the peak at 9.5 min is highlighted in Figure 32.  
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Figure 28: Representative HPLC chromatograms of PQ11 and BTA. 28A is the HPLC 

chromatogram of 1:1 mol ratio of BTA and authentic PQ11. 28B is the HPLC chromatogram of 

the tissue extract. 28C is the HPLC chromatogram of the tissue extract with known amount of 

BTA. The peak at 9.5 min retention time in 28C had the same mass as authentic PQ11 which was 

confirmed by mass spectrometry. 

 

The percentage distribution of PQ11 in plasma and various organs in the body like liver, 

brain, kidney, gastro intestine (GI), spleen, uterus, and heart was evaluated at 6, 12, 24, and 36 

hours after the administration of the compound. The percentage of PQ11 distribution in the 

organs was calculated by defining the amount of PQ11 administered as 100%. The percentage 

distribution of PQ11 in plasma and various organs in 6, 12, 24, and 36 hours are highlighted in 
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Figure 29.  Since the volume of blood recovered from the PQ11 treated varied from animal to 

animal, the percentage of drugs distribution in plasma refers to that found in 200 µL of the 

plasma analyzed. Interestingly, PQ11 was detected in all of the organs analyzed in 6 hours of the 

drug exposure. In 6 hour from the drug exposure, the percentage of drug recovered in the organs 

and plasma was 23% of the total PQ11 administrated. The highest percentage of PQ11 was found 

in liver (8.5%), followed by brain (3.3%), gastro intestinal tract (GI, 3.1%), lungs (2.2%), kidney 

(2%), uterus (1.27%), and heart (1.1%). In 200 µL of the plasma analyzed, the percentage 

distribution of PQ11 was 1.1%. From the percentage distribution of drugs in the brain, PQ11 is 

also found to penetrate the blood brain barrier and accumulate in the brain as observed in PQ1. 

Unlike PQ1, PQ11 showed better drug clearance from the organs as indicated by the 

gradual decrease of percentage drug distribution in 12, 24, and 36 hours of the drug 

administration.  In 12 hour time of the drug administration, there was no detectable amount of 

PQ11 in the spleen, and the amount of PQ11 in other organs with the exception of gastro 

intestinal tract decreased rapidly ranging from 28% to 63%. The percentage distribution of PQ11 

in gastro intestinal tract (GI) remained consistent at 6, 12, and 24 hours of the drugs 

administration but decreased significantly to 1.7 % at 36 hour time. 



132 

 

Figure 29: Percentage distribution of PQ11 in various tissues in female C57BL/6J mice in 6, 12, 

24, and 36 hours of PQ11 exposure.  Each mouse was administered with 25 mg/Kg of PQ11 and 

the amount of PQ1 administered to each animal is defined as 100%. The percentage distribution 

of PQ11 in plasma refers to that found in 200 µL of the plasma analyzed. Data of each 

experiment was obtained from 6 mice and the bars are shown with (±) standard error.   

 

The analysis showed that at 24 hours of the drugs administration, PQ11 could not be 

detected in the uterus and the heart indicating the rapid absorbance and clearance of PQ11 in 

these organs. At 24 hours from the drugs administration, GI and liver had 2.9% and 1.2% 

distribution of the drugs, whereas the percentage distributions of PQ11 in other organs were less 

than 1%. In 36 hours from the drugs administration, PQ11 was only found in GI (1.7%) and in 

liver (0.5%). The analysis showed PQ11 to have better pharmacokinetics as compared to PQ1. 

PQ11 was better absorbed, distributed, metabolized, and cleared from the body. The animals 

after 6, 12, 24, and 36 hours from the drugs administration were as active as before the 
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administration of PQ11, which indicated PQ11 to have no adverse effect to these animals. 

However, the effect of PQ11 in the normal tissues is being studied by Dr. Thu Annelise Nguyen 

and Stephanie Shishido. The preliminary studies, till to date has not indicate any toxicity effect 

to the normal cells. These data will be published in the near future. 

 PQ11 is reported to have IC50 value of 16 nM in T47D breast cancer cell, and has shown 

to suppress the xenograft tumor growth of T47D cells in nude mice by 100% in 14 days  with 

one injection of  1 µM (as per the volume of tumor) in every 2 days, in total seven injections.
13

 

In 6 hours of the drugs administration, the concentrations of PQ11 in the organs analyzed were 

more than 40 times higher than its effective dose. The highest concentration of PQ11 was found 

in heart (107 µM), followed by liver (98 µM), lungs (91µM), uterus (82 µM), brain (71 µM), 

kidneys (70%). The concentration of PQ11 in the gastro intestinal tract and spleen was 36 µM 

and 35 µM, respectively. The concentration of PQ11 decreased gradually in all the organs, with 

the exception of GI tract, with time as shown in Figure 30. The concentration of the drugs in the 

GI tract remained consistent at 6, 12, and 24 hours from the PQ11 administration, however 

decreased to 15 µM at 36 hours.  The concentration of PQ11 in the organs was greatly reduced or 

even was zeroed at 24 hours of drugs administration. And finally at 36 hours the drugs was only 

detected in liver (5.2 µM) and GI (15 µM).  
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Figure 30: Concentration of PQ11 (µM) in various tissues in 6, 12, 24, and 36 hours of the drug 

exposure. The concentration of PQ11 was calculated by determining the number of mmol of 

PQ11 per unit volume of the organs (density of organ = 1). Each bar represents the average 

concentration of PQ11 measured from 6 mice and is provided with (±) SE.  
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Figure 31: Mass spectrum of the eluant corresponding to the peak at 28.8 minutes (Figure 24C) 

which is identical to the authentic PQ1. 
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Figure 32: Mass spectrum of the eluant corresponding to the peak at 9.5 minutes (Figure 28C) 

which is identical to the authentic PQ11. 
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3.5 Conclusions 

 Substituted quinolines, PQ1 and PQ11 were distributed in the tissues following oral 

gavage and intraperitoneal injection, respectively. Both PQ1 and PQ11 were found to penetrate 

the blood brain barrier and collect in the tissues in significant amounts. These compounds were 

distributed in the tissues in the concentration that was more than 40 folds higher than their 

effective dose. The administration of PQ1 and PQ11 had no effect in the normal behavior of the 

animals indicating no short term adverse effects. PQ1 was found to increase the expression of 

survivin, an anti-apoptotic factor and decrease the expression of cleaved caspase-3 and caspase-

8, pro-apoptotic proteins. These studies indicate that PQ1 had anti-apoptotic activities in normal 

cells, in contrast to the role of PQ1 in cancer cells, where it was known to induce apoptosis. PQ1 

in normal T47D cells were found to decrease the expression of phosphorylated form of connexin 

43 (Cx43) and increase the expression of Cx43 indicating its role as GJIC enhancing agent; 

however in normal tissue PQ1 was found to have opposite role and decreased the expression of 

Cx43. This concludes that PQ1 has opposing roles in cancer and normal cells. This property 

might add advantage to PQ1 which could be used to treat cancer cells by inducing apoptosis as 

well as prevents the adverse affect of apoptosis in the normal cells. The distribution of PQ11 in 

different normal tissues indicated that it was better cleared from the tissues as compared to PQ1; 

however, its effect on normal tissues is under investigation and will be published in the near 

future.  
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Appendix A: 
1
H NMR, 

13
C NMR, and IR spectra 

Compound 22 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date May 14 2009

Date Stamp May 14 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 4\KP-4-91-DPPURE.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 36 Original Points Count 5984
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Compound 22 
13

C NMR 

6/27/2012 3:30:36 PM

Acquisition Time (sec) 1.3005 Comment Std proton Date Jul 13 2009 Date Stamp Jul 13 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\OTHERS\KP-4-78-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 188 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent acetone Spectrum Offset (Hz) 11069.2324

Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 23 
1
H NMR 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Acquisition Time (sec) 2.0487 Comment Std proton Date Aug 15 2009 Date Stamp Aug 15 2009

File Name C:\USERS\KESHAR\KP-4-115-FR-1-Proton

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 36 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 44.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2403.9280 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 23 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Jul 16 2009 Date Stamp Jul 16 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\OTHERS\KP-4-115-FR1-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 88 Original Points Count 31375 Points Count 32768
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Compound 24 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Aug 16 2009

Date Stamp Aug 16 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 4\KP-4-117-DP.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 36 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d
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Compound 24 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Sep 12 2009 Date Stamp Sep 12 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-80-FR2-C13\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 4016 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d
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Compound 19 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Sep 17 2009

Date Stamp Sep 17 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-31-QUINONE.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 56 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d
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Compound 19 
13

C NMR  

 

6/27/2012 1:52:28 PM

Acquisition Time (sec) 1.3005 Comment Std proton Date Oct  7 2009 Date Stamp Oct  7 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-119-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 9152 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d
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Compound 19 IR 
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Compound 25 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Aug 15 2009 Date Stamp Aug 15 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 4\KP-4-82-FRAC1.FID\FID Frequency (MHz) 399.75

Nucleus 1H Number of Transients 24 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 54.00 Solvent CHLOROFORM-d
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Compound 25 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Oct  7 2009 Date Stamp Oct  7 2009

File Name C:\USERS\KESHAR\KP-4-115-FR2-Carbon Frequency (MHz) 100.53

Nucleus 13C Number of Transients 2112 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10554.9160 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 2 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Oct  1 2009

Date Stamp Oct  1 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-PARADIPHENOL.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 16 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d
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Compound 2 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Oct  8 2009 Date Stamp Oct  8 2009

File Name C:\USERS\BOOK 6\KP-LI6-C13-DIPHENOL.FID\FID

Frequency (MHz) 50.29 Nucleus 13C Number of Transients 3680 Original Points Count 18720

Points Count 32768 Pulse Sequence s2pul Receiver Gain 40.00 Solvent DMSO-d6

Spectrum Offset (Hz) 4915.7617 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT 
TEMPERATURE
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Compound 2 IR 

 



155 

 

Compound 3 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Jul 19 2007

Date Stamp Jul 19 2007 File Name C:\USERS\KESHAR\KP-4-22-Proton

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 64 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 28.00 Solvent Acetone
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Compound 3 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Aug  1 2007 Date Stamp Aug  1 2007

File Name C:\USERS\KESHAR\KP-4-22-Carbon Frequency (MHz) 50.29

Nucleus 13C Number of Transients 11897 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent Acetone Spectrum Offset (Hz) 4962.9824

Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 26 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Jul 20 2007

Date Stamp Jul 20 2007 File Name C:\USERS\KESHAR\DESKTOP\NMR\HUIPING\HZ-9-82-AC.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 32 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 28.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.0226 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE

CHOO

O

Cl

Si

Si

KP-4-25-PROTON.ESP
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6.006.0010.2410.340.880.820.88
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Compound 26 
13

C NMR 

Acquisition Time (sec) 1.2800 Comment 13C OBSERVE Date Aug  2 09

Date Stamp Aug  2 09 File Name C:\USERS\KESHAR\DESKTOP\KP-4-25-FRAC2\FID Frequency (MHz) 100.56

Nucleus 13C Number of Transients 96 Original Points Count 32000 Points Count 32768

Pulse Sequence s2pul Receiver Gain 60.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 9502.9023 Spectrum Type STANDARD Sweep Width (Hz) 25000.00 Temperature (degree C) 27.000
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Compound 27 
1
H NMR 

Acquisition Time (sec) 2.0486 Comment Std proton Date Jul 21 2007 Date Stamp Jul 21 2007

File Name C:\USERS\KESHAR\KP-5-Formate Frequency (MHz) 399.78

Nucleus 1H Number of Transients 4 Original Points Count 17199 Points Count 32768

Pulse Sequence s2pul Receiver Gain 44.00 Solvent DEUTERIUM OXIDE

Spectrum Offset (Hz) 3241.8862 Spectrum Type STANDARD Sweep Width (Hz) 8395.42 Temperature (degree C) 25.000

OCHOO

O

Cl
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Si

KP-5-FORMATE.ESP
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7.347.0812.1312.481.100.951.00
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Compound 27 
13

C NMR 

Acquisition Time (sec) 1.2800 Comment 13C OBSERVE Date Aug  4 09

Date Stamp Aug  4 09 File Name C:\USERS\KESHAR\DESKTOP\KP-4-FORMATE\FID Frequency (MHz) 199.9

Nucleus 13C Number of Transients 128 Original Points Count 32000 Points Count 32768

Pulse Sequence s2pul Receiver Gain 60.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 9512.8496 Spectrum Type STANDARD Sweep Width (Hz) 25000.00 Temperature (degree C) 25
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Compound 28 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Aug  2 2008

Date Stamp Aug  2 2008 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 1\KP-1-86-DP.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 32 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 34.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1001.2900 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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7.217.2513.5413.371.100.98
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Compound 28 
13

C NMR  

Acquisition Time (sec) 1.2800 Comment 13C OBSERVE Date Jan  7 2009

Date Stamp Jan  7 2009 File Name C:\USERS\KESHAR\DESKTOP\KP-4-76-SM-C13\FID Frequency (MHz) 199.9

Nucleus 13C Number of Transients 128 Original Points Count 32000 Points Count 32768

Pulse Sequence s2pul Receiver Gain 60.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 9513.0752 Spectrum Type STANDARD Sweep Width (Hz) 25000.00 Temperature (degree C) 25
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Compound 29 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Aug  6 2008

Date Stamp Aug  6 2008 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 1\KP-1-86-DPCOLUMN.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 64 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 39.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1001.6563 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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6.927.0812.3911.850.851.00
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Compound 29 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Sep  6 200 Date Stamp Sep  6 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-76-SM-BR\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 320 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 4880.4648 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 30 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Apr 21 2009

Date Stamp Apr 21 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 4\KP-4-76-CRUDE.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 100 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.3816 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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6.506.549.639.483.290.97
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Compound 30 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Oct  8 2009 Date Stamp Oct  8 2009

File Name C:\USERS\KESHAR\KP-4-76-C13 Frequency (MHz) 100.53

Nucleus 13C Number of Transients 1408 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10554.9160 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 4 
1
H NMR 

 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date May 14 2009

Date Stamp May 14 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 4\KP-4-91-DPPURE.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 36 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.0226 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE

OH

OH

Cl

Br

OMe

KP-4-91-DPPURE

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 In
te

ns
ity
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Compound 4 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Oct 22 2009 Date Stamp Oct 22 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-91-C13\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 17867 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 4880.8467 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 4 IR 
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Compound 31 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Aug  4 2009

Date Stamp Aug  4 2009 File Name C:\USERS\KESHAR\DOCUMENTS\PHD THESIS  SUPPORT JUNE 28\NMR\LACCASE\KP-4-97-SM\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 64 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 18.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1003.0914 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE

O
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Si

KP-4-97-SM
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7.0013.231.051.090.951.00
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Compound 31 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Aug 17 2009 Date Stamp Aug 17 2009

File Name C:\USERS\KESHAR\DOCUMENTS\PHD THESIS  SUPPORT JUNE 28\NMR\LACCASE\KP-4-97-SM-C13\FID

Frequency (MHz) 100.53 Nucleus 13C Number of Transients 640 Original Points Count 31375

Points Count 32768 Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10554.5117 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 32 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Sep 18 2009

Date Stamp Sep 18 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-32-DP.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 44 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.3889 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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6.1912.473.310.961.060.94
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Compound 32 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Aug 17 2009 Date Stamp Aug 17 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-97-SM-C13P\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 752 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 4880.0840 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 33 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Aug 27 2007

Date Stamp Aug 27 2007 File Name C:\USERS\KESHAR\KP-4-97-Fr1-Proton

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 64 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 28.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.3890 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE

O
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6.1610.813.331.090.991.08
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Compound 33 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Sep  1 2009 Date Stamp Sep  1 2009

File Name C:\USERS\KESHAR\DOCUMENTS\PHD THESIS  SUPPORT JUNE 28\NMR\LACCASE\KP-4-97-FR-1-C13\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 12208 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d Spectrum Offset (Hz) 4881.2285

Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 34 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Aug 27 2009

Date Stamp Aug 27 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-97-FR2\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 64 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 34.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1001.6563 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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5.9811.513.410.850.870.81
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Compound 34 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Aug 29 2009 Date Stamp Aug 29 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-4-97-FRAC2-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 1856 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10557.2520 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 35 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Aug 26 2009 Date Stamp Aug 26 2009

File Name C:\USERS\KESHAR\KP-5-11-FR1-Proton

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 44 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 60.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2403.9280 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 35 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Sep  4 2009 Date Stamp Sep  4 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-5-19-SM-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 15226 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10555.8564 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 5 
1
H NMR  

Acquisition Time (sec) 2.0487 Comment Std proton Date Aug 27 2009 Date Stamp Aug 27 2009

File Name C:\USERS\KESHAR\KP-5-19-Proton

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 20 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 42.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2403.5376 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 5 
13

C NMR  

Acquisition Time (sec) 1.3005 Comment Std proton Date Oct 23 2009 Date Stamp Oct 23 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\LACCASE\KP-5-19-DP-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 5696 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10554.3848 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 5 IR 
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Compound 37 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date May 19 2009

Date Stamp May 19 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 4\KP-4-95-CRUDE.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 64 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.3890 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 37 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Jul  8 2009

Date Stamp Jul  8 2009 File Name E:\KESHAR NMR REMAIN\SR-10-96-PURE-13C.FID\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 1872 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 4878.5532 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE

O

O

OH

Br

Cl

SR-10-96-PURE-13C

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 In
te

ns
ity

 



185 

 

Compound 6 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Jul  7 2009 Date Stamp Jul  7 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\OTHERS\KP-5-13-CRUDE\FID Frequency (MHz) 399.75

Nucleus 1H Number of Transients 4 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 46.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2403.9280 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 6 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Jul 22 2009 Date Stamp Jul 22 2009

File Name E:\KESHAR NMR REMAIN\SR-10-97-REPEAT-C13-METHANOL-D4.FID\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 7048 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent METHANOL-d4 Spectrum Offset (Hz) 4978.7695

Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 6 IR 
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Compound 7 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Jun  2 2008 Date Stamp Jun  2 2008

File Name C:\USERS\KESHAR\DESKTOP\NMR\OTHERS\KP-1-16-FRAC-13-29.FID\FID Frequency (MHz) 399.76

Nucleus 1H Number of Transients 32 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 50.00 Solvent DEUTERIUM OXIDE

Spectrum Offset (Hz) 2455.7793 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000

CH2OH
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Acquisition Time (sec) 1.3005 Comment Std proton Date Jul 17 2009 Date Stamp Jul 17 2009

File Name C:\USERS\KESHAR\KP-1-16-FR2-C13\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 26396 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent DMSO-d6 Spectrum Offset (Hz) 10486.7480

Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000

CH2OH
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Compound 7 IR 
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Compound 8 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Jun  2 2008 Date Stamp Jun  2 2008

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 1\KP-1-16-FRAC-4-9.FID\FID Frequency (MHz) 399.76

Nucleus 1H Number of Transients 32 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 56.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2418.0771 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000

CH3 NH2
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KP-1-16-FRAC-4-9
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Compound 8 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std Carbon experiment Date Jun 28 2012

Date Stamp Jun 28 2012 File Name C:\USERS\KESHAR\DESKTOP\KP-1-16-FRAC1-C13.FID\FID

Frequency (MHz) 100.58 Nucleus 13C Number of Transients 1664 Original Points Count 31413

Points Count 32768 Pulse Sequence s2pul Receiver Gain 20.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10556.1475 Spectrum Type STANDARD Sweep Width (Hz) 24154.59 Temperature (degree C) 25.000

CH3
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Compound 8 IR 
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Compound 9 
1
H NMR  

 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Nov 16 2009

Date Stamp Nov 16 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-72-DP.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 32 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 34.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.0226 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE

OH

O

KP-5-72-PROTON.ESP
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Compound 9 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE
KP-5-72-Dp-C13 Date Nov 18 2009

Date Stamp Nov 18 2009 File Name C:\USERS\KESHAR\KP-5-72-Carbon

Frequency (MHz) 50.29 Nucleus 13C Number of Transients 384 Original Points Count 18720

Points Count 32768 Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 4878.5537 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 10 
1
H NMR 

Acquisition Time (sec) 1.9945 Comment STANDARD 1H OBSERVE Date Nov 17 2009

Date Stamp Nov 17 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-73-DP.FID\FID

Frequency (MHz) 199.98 Nucleus 1H Number of Transients 96 Original Points Count 5984

Points Count 8192 Pulse Sequence s2pul Receiver Gain 18.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 1002.7551 Spectrum Type STANDARD Sweep Width (Hz) 3000.30 Temperature (degree C) AMBIENT TEMPERATURE
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Compound 10 
13

C NMR 

Acquisition Time (sec) 1.4976 Comment 13C OBSERVE Date Nov 18 2009 Date Stamp Nov 18 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-73-DP-C13.FID\FID Frequency (MHz) 50.29

Nucleus 13C Number of Transients 416 Original Points Count 18720 Points Count 32768

Pulse Sequence s2pul Receiver Gain 40.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 4879.3164 Spectrum Type STANDARD Sweep Width (Hz) 12500.00 Temperature (degree C) AMBIENT TEMPERATURE

OH
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Compound 11 
1
H NMR  

Acquisition Time (sec) 2.0487 Comment Std proton Date Nov 23 2009 Date Stamp Nov 23 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-77-CRUDE.FID\FID Frequency (MHz) 399.75

Nucleus 1H Number of Transients 8 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 48.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2404.7087 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000

OH
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Compound 11 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Nov 23 2009 Date Stamp Nov 23 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-77-C13.FID\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 512 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10550.8555 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 12 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Nov 24 2009 Date Stamp Nov 24 2009

File Name C:\USERS\KESHAR\DESKTOP\KESHAR NEW NMR BACKUP 2011\NMR BACK UP 4 AND 5\KP-5-78-DP.FID\FID

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 4 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 36.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2405.0991 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 12 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Nov 24 2009 Date Stamp Nov 24 2009

File Name C:\USERS\KESHAR\DOCUMENTS\KESHAR NMR\KESHAR\COPY OF KESHAR NOVA 3-16-2011\KESHAR\KP-5-78-C13.FID\FID

Frequency (MHz) 100.53 Nucleus 13C Number of Transients 448 Original Points Count 31375

Points Count 32768 Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10551.5918 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 12 IR 
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Compound 14 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Nov 25 2009 Date Stamp Nov 25 2009

File Name C:\USERS\KESHAR\KP-5-69-Proton

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 16 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 32.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2405.0991 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 14 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Nov 25 2009 Date Stamp Nov 25 2009

File Name C:\USERS\KESHAR\KP-5-69-Carbon

Frequency (MHz) 100.53 Nucleus 13C Number of Transients 544 Original Points Count 31375

Points Count 32768 Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10551.5918 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 14 IR 
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Compound 15 
1
H NMR  

Acquisition Time (sec) 2.0487 Comment Std proton Date Nov 29 2009 Date Stamp Nov 29 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-81-FRAC2.FID\FID Frequency (MHz) 399.75

Nucleus 1H Number of Transients 20 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 32.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2454.6799 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Compound 15 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Nov 29 2009 Date Stamp Nov 29 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-81-C13.FID\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 1000 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10550.1191 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000

OH
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Compound 16 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment Std proton Date Nov 23 2009 Date Stamp Nov 23 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-42-FRAC2-PURE.FID\FID Frequency (MHz) 399.75

Nucleus 1H Number of Transients 16 Original Points Count 13103 Points Count 16384

Pulse Sequence s2pul Receiver Gain 32.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2403.5376 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000

OH

KP-5-42-FRAC2-PURE
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Compound 16 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Nov 23 2009 Date Stamp Nov 23 2009

File Name E:\KESHAR NMR REMAIN\KP-5-42-FRAC2.FID\FID Frequency (MHz) 100.53 Nucleus 13C

Number of Transients 512 Original Points Count 31375 Points Count 32768 Pulse Sequence s2pul

Receiver Gain 30.00 Solvent CHLOROFORM-d Spectrum Offset (Hz) 10550.8555

Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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Compound 17 
1
H NMR 

Acquisition Time (sec) 2.0487 Comment KP-5-85-frac19 Date Dec  3 2009

Date Stamp Dec  3 2009 File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-85-FRAC19.FID\FID

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 28 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 42.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2404.7219 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000

O

KP-5-85-FRAC19

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 In
te

ns
ity

9.006.089.122.032.030.910.97
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Compound 17 
13

C NMR 

Acquisition Time (sec) 1.3005 Comment Std proton Date Nov 25 2009 Date Stamp Nov 25 2009

File Name C:\USERS\KESHAR\DESKTOP\NMR\BOOK 5\KP-5-76-FRAC7-C13.FID\FID Frequency (MHz) 100.53

Nucleus 13C Number of Transients 512 Original Points Count 31375 Points Count 32768

Pulse Sequence s2pul Receiver Gain 30.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 10551.5918 Spectrum Type STANDARD Sweep Width (Hz) 24125.45 Temperature (degree C) 25.000
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MON-0585 (compound 18) 
1
H NMR  

Acquisition Time (sec) 2.0487 Comment Std proton Date Aug 24 2009 Date Stamp Aug 24 2009

File Name C:\USERS\KESHAR\KP-5-15-Proton

Frequency (MHz) 399.75 Nucleus 1H Number of Transients 40 Original Points Count 13103

Points Count 16384 Pulse Sequence s2pul Receiver Gain 36.00 Solvent CHLOROFORM-d

Spectrum Offset (Hz) 2397.2451 Spectrum Type STANDARD Sweep Width (Hz) 6395.91 Temperature (degree C) 25.000
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Appendix B: Permission for figures 

1. Permission for Figure 2 
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2. Permission for Figure 3 
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3. Permission for Figure 6 and 7 

 

 


