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CHAPTER 1
INTRODUCTION

1.1 Review:

This report is primarily concerned with the Bayesian approach to various
aspects of quality control. By way of introduction, we will briefly disucss
both quality control and Bayesian theory.

First, acceptance sampling plans will be discussed. Inspection is done
at various steps in manufacturing. It can be carried out for the raw
material or at various stages while manufacturing, as well as for the final
product. The final product may be inspected by the manufacturer himself or
the customer may inspect the produ;t at the time of purchase. This inspection
is generally carried out on the sampling basis. Sampling inspection is done
for various reasons. A product may be destroyed while testing or the cost
of 100% inspection may be excessive. Hence all acceptance tests are done
on sampling basis. Due to modern acceptance sampling methods, it is possible
to carry out better quality improvement than that which might be possible by
100% inspection. If a large percentage of defective items are found in a
batch, it is proper to reject the whole batch instead of rejecting individual
items. By this method striking quality improvement can be carried out
[Grant & Leavenworth].

The following symbols are generally used in relation with sampling

acceptance plans -

N = number of items in a given lot.

n = number of items in a sample.

M = number of defective items in a given lot of size N.

m = number of defective items in a given sample of size n.



-

¢ = acceptance number, the maximum allowable number of defective
items in a sample of size n.
p = sample fraction defective = m/n.
p' = frue process average fraction defective = M/N.
p = average fraction defective for several observed samples.
Pa = probability 6f acceptance of a lot.
B = consumer's risk, the probability of accepting a bad product.

o = producer's risk, the probability of rejecting a good product.
Theracceptance sampling plan iscalled a single sémpling plan when the
decision is based on the basis of one sample only. For all single sampling
plans these three numbers shoﬁi&'be specified; the number of items N in

the lot from which the sahpIe is to be drawn, the number of items n in the
random sample drawn from the Tot and thé acceptance number c.

In judging various acceptance sampling plans it is desirable to compare
their performance over a range of‘bossib1e quality levels of submitted
product. A true pictufe of this can be given by operating characteristic
(0C) curve. For any given fraction defective p' in a submitted lot, the OC
curve shows the probability Pa that such a lot will be agcepted by the given
sampling plan. In many acceptance sampling procedures at least one defective
item is permitted in the sample. It-ﬁés been found that the operating
characteristics of plans with acceptance number greater than zerc are better
than those having acceptance number equal to zero. Large acceptance numbers
invariably involve large sample sizes when the accepting lots are stated
to have a fixed percentage of defective items. One major advantage of
having large sample size is that they have greater ability to distinguish

between acceptable and unacceptable lots. Since a large sample size may



involve higher inspection costs, there should be some compromise between
acceptance number and the sample size.

A double sampling plan involves the possibility of postponing the
decision until a second sample is taken. In the single sampling plan the
decision is based on one sample only. But in the double sampling plan, if
the first sample is neither good nor bad, the decision is made on the basis
of first and second samples combined. Double sampling plans generally in-
volve less total inspection than the single sampling plan. They also have
the advantage that a second chance is given to doubtful lots.

The additional symbols generally used in connection with double
sampling are as follows:

ny = number of items in the first sample.

¢y = acceptance number for first sample.
= number of items in the second sample.
nytn, = combined number of items in the two samples,
= acceptance number for the two samples combined.
The term multiple sampling is used when three or more samples are inspected
to decide whether to accept or reject the given lot. The decision on
acceptance or rejection must be reached after a stated number of samples.
The term sequential sampling is used when a decision can be made after
each item has been inspected and when there is no restriction on the
total number of items to be inspected. -

The point 100 Po.10 is defined as the Lot Tolerance Per Cent Defective
(LTPD), the percent defective that has the probability of acceptance of
10%.
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A1l sampling plans in the Dodge-Romig tables have the main purpose of
minimizing the Average Total inspection (ATI) by taking into account sampling
inspection and screening inspection of rejected lots. The average outgoing
quality limit, AOQL is defined as the maximum possible value of the average
per cent defective in the outgoing product assuming that rejected lots are
inspected 100%.

In many private industries, an AQL (acceptable quality level) system
is widely used. The AQL is defined as the percent defective that is con-

sidered acceptable as a process average.

1.2 Defects:

Defects can be divided into 3 major groups; critical, major and minor
(Grant and Leavenworth). They are defined as follows:

Critical defect: A critical defect is defined as a defect that judge-
ment and experience indicate is iikely to result in hazardous or unsafe
conditions for individuals depending on the product.

Major defect: A major defect is a defect that is likely to result in
failure, or to reduce the usability of the unit of product for its intended
purpose.

Minor defect: A minor defect is a defect which is not likely to re-
duce the usability of the unit of product for its intended purpose nor it

has any direct bearing on the effective use or operation of the unit.

1.3 Bayesian theory:

A large part of the work of an industrial engineer is concerned either
with making decision under the conditions of uncertainty and partial ignor-
ance that necessarily exist in many of his activities or with collecting

and processing information that will be helpful in making such decisions.



The modern theory of Bayesian statistical inference and decisions deals
with the development of technigques that are appropriate for making
inferences and decisions in situations 1ike this. The basis of the
decision theory approach is Bayes' theorem which can be stated as
follows:

Suppose that A],Az, e Ak are k mutually exclusive and exhaustive’
events, and suppose that B is any other event. Suppose that P(Ai) >0
for i = 1,2, ..., k and P(B) > 0. The following relation is-known as

Bayes' theorem:

P(BA)P(A)

P(A;|B) = (1.3.1)

551 P(BIAj)P(Aj)

This relation provides a rule for computing the conditional probabilities
P(AilB) for i = 1,2, ..., k from the conditional probabilities P(B|Ai)
and the probabilities P(Ai] fori=1, ..., k. The values P(Ai) for
i=1, ..., k are often called the "prior probabilities” of the évents
Ai’ because they are the probabilities before it is known whether the
event B has occured. The values P(AiIB) for i =1, ..., k are then called
the 'posterior probabilities', because they are the relevant values after
it is learned that B has occured.
Bayes' theorem for a series of experiments can be developed as follows:
Let x be a random variable with conditional probability f(x]e). Let
6 be the parameter with discrete prior probability function g(e). After
a single observation X1, we can form the posterior probability of & by the

usual relationship: posterior = joint/marginal
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(X, le)ale) (X, [e)g(e)
E(B|X]) = —k(Y)——— = W (1.3.2)

After a second observation x2 (assumed independent of the first), we can
form a new posterior, using as 'prior' the first stage posterior probability
given by 1.3.2

f(x1,X2|e)g(e)
W

The general formula for a series of observations X1,X2, p— Xn is

F(X;5Xp5 «ovs X [0)g(e)
g(e[x],xz, cens xn) = E fTX],xz, ...,nxn{NTg(W)- (1.3.4)

1.4 Bayes' theorem for the posterior density function of a parameter:

Let the parameter W can take any value w in some interval a < w < b-
and let the prior distr%bution of w be specified in terms of a density
function g(w) for a < w < b. We will assume that a discrete or a con-
tinuous observation X can be taken. For any given value w of W, f(x|w)
will denote either the probability function or the density function of
X when W = w. In this case, the posterior density function g(w|x) of W,
after the value X = x has been observed, is specified by the following

equation:

g(w|x) = 5 f(x|w)g(w) s, a<wW<b (1.4.1).
J flx|w')g(w')aw'
a

This is Bayes' theorem for densities.
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1.5 Bayes' estimates:

Let x be considered the basic random variable under consideration.
A sample is drawn yielding observations XqsXps +ees X We will use these
observations to construct a statistic y which will be useful for giving

information about 8 in the density function f(x|e).

Let & = the true value of the parameter.

6 = w(y) = the estimator based on sample data.

If 8 # 0, a loss is incurred. It seems reasonable to assume that
the loss ‘function is a monotone increasing function of e-6.

We will say that L(e,8) = L(e,w(y)) is the loss incurred when 6 is the
true value of the parameter and we estimate it as 6 = w(y).

We define risk as average loss or expected loss.

Risk = R(e,w) = fm L(e,w(y))h(y|e)dy (1.5.1)

where h(y|e) is the conditional probability.

Qur main purpose here is to minimize the risk R(e.,w) expressed by
equation 1.5.1. But we can not minimize this risk as it is expressed
in terms of 6. Hence we have to express it in terms of average risk
p(g.w). This risk R(9,w) depends explicitly on the true value of @
and implicitly on the structural form of 8 = w(y). Now we can find the
average risk over all possible values of 8. Designating this average

risk as p(g,w), we have

olg) = [ R(am)g(e)de (1.5.2)
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By expanding the right hand side, we get

slgiah = [ [ L(oww) e(oly)do] k(y)ay (1.5.3)

where £(o|y) is the posterior probability of o.
Now we want to choose a w(y) which minimizes p(g,w) for all experimental
outcomes y, so we should minimize the inner integral. We chpose w(y) to

minimize

o(w) f L(e,w) £(o}y)ds

ELL(o,w(y)) |y] (1.5.4)

The estimator w(y) so chosen is called the Bayes estimator of & for the
loss function L(e,w). The corresponding average risk is Bayes risk.
Here‘is a Iist of commonly used loss functions and the corresponding
Bayes estimators. [Refer Table I on the next page]

In many cases, it is often required to choose a prior. Let the prior
be chosen from a family with two characteristics [54].
(1) The family should be ana]ytica]ly'tractab]e in three respects:

(a) It should be reasonably easy to determine the posterior distri-
butiqn resulting from a given prior distribution and a given
sample,

(b) It should be possible to express in convenient form the
expgcta;ions of some simple utility functions with respect to
any mgmber of family,

(c) The family should be closed in the sense that if a prior is a
member of the family, the posterior will also be a member of

the family.
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Table I

L{e,w) Bayes estimator of 8
_ 2
= ¢(0-w) E(ely)
= m|e-w| w should divide the posterior distri-
bution of 8 into two equal parts '
_ a2 _ Efaf(o0)o
= a(9){6-w) W = Elalo)ly

C foroa#w
0 for s

1]
L

m{6-w), w < 8
0 s W >8

w should divide the posterior distribution
of 6 into ratio P1: P2 where

m
P] “m Em
172
M
and P, =
2 m]+m2

w should be the posterior mode.
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(2) The family should be rich, so that there will exist a member of the-

family capable of expressing the decision maker's prior information

and beliefs. A prior distribution chosen according to these

criteria is said to be conjugate to the conditional distribution.

1.6 The Binomial Case:

Let x be the random variable with probability function

f(x|n,0) = (§) oX(1-0)"™, x=0,1,2, ..., n.

(1.6.1)

Let 8 be a realization of a random variable 8 whose prior density can be

represented by the beta density

a-1 b-1
a(e) = EgH=— | 0<o <1

The joint distribution of x and e is given by

(e (1-6)"* 62 (1-)""]
f(x|n,8)g(e) = B{a,b)

where x = 0,1, ..., nand 0 <9 <1

The marginal distribution of x is given by
k(X) = J‘](n) 1 ex+a-'i(]_e)n-x+b—] de
g X B(a,b) '

" : :
- - axbf_ B(x+a,n-x+b), x = 0,1, ..., n.

This is called beta-binomial or hyperbinomial distribution.

(1.6.2)

(1.6.3)

(1.6.4)
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The posterior distribution of 8 is given by

X

B(a,b) ®

g(a|x) = ] ,0<0<1

(2) B(a.b) B{a+x,b+n-x)

a+x-1(]_6)b+n-x-1
B(a+x,b+n-x)

8

(1.6.5)

Thus the Bayesian estimator of o for squared error loss function is given

by

a _ atx __atx
This is in comparison with classical estimator

p X
5 =
n

1.7 Advantages and disadvantages of Bayesian Analysis:

Advantages:

(1) It enables us to combine current experimental data with past infor-
mation.

(2) It sometime gives useful estimatgs of & when the classical estimator
is useless.

(3) Bayesian estimators often have smaller variance than classical
estimators. ‘

(4) In the Bayesian analysis, if the hypothesis is "certain", then no

matter what the experimental outcome is, the posterior hypothesis
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is also ?certain“; and if thg hypothesis is untenable, then no
matter what the experimental outcome is, the posterior hypothesis
is also untenable. ‘
i.e. P(H) = 0 implies  P(H|X) = 0
and P(H) = 1 implies P(H[X) =1
Disadvantages:
(1) Bayesian estimates are often biased.
(2) The prior may be difficult to determine in Bayesian analysis.

(3) Bayesian analysis is hard to explain to the layman.
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A brief review of report

The main purpose of this report is to see how Bayesian analysis is
applicable in Quality Control. In all, this report contains 8 articles
dealing with various aspects of Quality Control such as optimum sample
size, acceptance number, costs for accepted or rejected lots, subclasses
in stratified sampling, population size assumption, single sample inspection
schemes etc. To quote a few results, it has been found out that optimum
sample size is directly proportional to the square root of the lot size;
it is also shown that for the prediction problem, the population may be
assumed to be infinite or finite.

The report also gives a short summary of articles published by
various authors in various journals that are concerned with Bayesian
analysis. A list of articles for additional reading has also being given.
In the end a bibliography is given.

This report covers the following journals over a period of 10 to 12
years. (1} Bfometrika, (2) Technometrics, (3) Journal of Royal Statistical
Society, (4) Journal of American Statistical Association, (5) Annals of
Mathematical Statistics, (6} Journal of Quality Technology and (7) other
miscellaneous journals which were cited.

Initially it was decided to cover a wide range of literature on
Bayesian analysis, but due to the advanced and complicated nature of the
subject, together with the lack of sufficient background, work has been
severely restricted. Hence more complicated articles are either summarized

or listed for additional reading.
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CHAPTER 2
ARTICLES
ARTICLE #1

THE COMPOUND HYPERGEQMETRIC DISTRIBUTION AND A SYSTEM OF SINGLE SAMPLING

INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COSTS BY A. HALD [32].

The lot size N, the sample size n, the acceptance number c are the
three numbers required to define a single sampling plan. The general
decision rule is to accept the lot if the number of defective itemérin the
lot are < ¢, and if they are > ¢; reject the lot. The poésibi]ity of ac-

ceptance for a lot with fraction defective p = X/N is

C
Palp) = I T WA (2.1.1)
x:

where X denotes the number of defective items in the lot (denoted as M in'
the introduction).

We get the operating characteristic (0C) curve by plotting Pa against -
fraction defective of the inspection Tot. The two most important points
on the OC-curve are generally called the producer's risk («) and consumer's
risk (B). Usually it is difficult to fix « and B on the OC curve in a
proper manner as we have to consider the prior distribution as well as cost.
Here are some questions which should be considered before fixing risk points.
What fraction defective a consumer can accept without any complaint? What
.proportion of fraction defective will be intolerable for him? What is the
prior distribution of lots that has been previously supplied to the market?
What prior distribution do the suppliers of the market have? Even though

we do come with a plan by considering the above mentioned questions, the
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plan should be considered a random one as there is no perfect way in which
producer's risk and consumer's risk and risk points can be chosen. |
Denoting producer's risk point by Py and consumer's risk point by Pos

we can write, according to Peach and Littauer (53)
[(n-c)py1/[(ctl)qq] = F,

and [(n-c)p2]/[(c+1)q2] = F1-B : (2.1.2)

where q = 1-p, p{F<Fa} = a, and the degrees of freedom far F are 2(c¢+1) and
2(n-c). The solution of these equations for « = 0.05 and 8 = 0.10 has been
carried out by Grubbs (Ann. Math. Stat., 20, 1949) who tabulated Py and P,
as functions of (n,c) for c = 0(1)9 and n = 1(1)150;

To get a simpler solution, the Poisson distribution can be used, which

gives a fairly good approximation.

2npy = *E
and
2np., = 4o | (2.1.3)
pz ‘p]_B 'R

or in another form

R = py/py = ¥ /¥
and
- 2 o gl
n =4 / 2p; Vg / 2p2 . (2.1.4)

where the degrees of freedom for ¢2 are 2(c+1). Tables to facilitate the
solution of R and n have been given by Peach and Littauer (53).
Generally it is very difficult to explain the four quantities (p],u)

and (pz,s) to the inspector. At the most we'can specify for him Py and Py



on the basis of prior knowledge and techno-econo considerations. Then we
still have the problem of selecting the two risks. This problem can be
solved by selecting a = 0.05 and g = 0.10.

It can be said that if the prior is distributed binomially with
parameter p, then the number of defective items in a sample and in the
remaining part of the lots are also binomially distributed with parameter
p. In this case the average number of defectives in accepted lots will be
(N-n)p. Here we will assume that the inspection cost per item is k and the
Toss incurred by accepting a defective item is unity. Then the loss without
carrying out any inspection becomes Np and the cost of total (100%) inspection
becomes Nk. If we assume that the quality is acceptable, then we should
have p<k. The cost for lots that are accepted after doing sampling in-
spection is nk+(N-n)p on the average. When a lot is rejected, it is assumed
that it is entirely inspected, hence the cost of inspection becomes Nk.

The average total cost for sampling inspection then becomes the weighted
average of the two above mentioﬁed costs for accepted and rejected lots

respectively, which can be written as
nk + (N-n)[pPa + k(1-Pa)] (2.1.5)

This expression is always greater than Np for p<k.

Hence we can safely conclude that sampling inspection is more expen-
sive than accepting a lot without inspection even after taking into con-
sideration the losses incurred by accepting defective items. This is
expected since the process is supposed to be acceptable.

The fundamental concept of the Dodge-Romig {16) system is to select
a plan that minimizes the average total inspection (ATI) cost and simul-

taneously gives the required consumer protection. Assuming the cost of
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inspecting an item as unity, the cost for an average inspection can be

given as

I=n+ (N-n)(1-P,) (2.1.6)

Here we can see that I is a function of n and c, as well as of p. If we
average over the binomial prior distribution, we will get the same result
where p will be displaced by p, the process average. The optimum values
of (n,c) are then those values that minimize the cost function I{p) under
the condition that Pa(pt) = 0.10 where pt = Lot Tolerance Percent Defective
(LTPD).

We can approach the problem of defective items from a different angle.
We can replace the defective items by good items and consider the additional
cost as a part of productiﬁn costs. In this way we limit odrse1ves 1n1tia11y
to taking into account the iﬁspection costs. Suppose we measure the damage
caused by defective items in accepted lots economically. The loss from the
consumer's point of view can be divided into many categories, such as
price paid per item, costs of handling and identifying the defective item,
and the costs of assembling and dis-assembling. However, if the produéer
clears the defective product as a good product after inspection the con-
sumer may ask for replacement. In this case the producer will have to
face service and replacement costs in addition to loss of goodwill in the
market.

Hence the loss may change according to particular situation but we
will consider the loss incurred by accepting a defective item as an
economic unit. Consider the case where the Tot is accepted without in-

spection. For a lot having p fraction defective, the total cost will
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be Np. We assume that costs of rejected lots are directly proportional to

(N-n) and denote the costs of rejected lots per item by kr‘ Thus if we

sort the rejected lots, kr is the sorting costs per jtem divided by the

costs of accepting a defective item. Let kS be the cost of sampling in-.

spection. Here we have Kp < ks' [Fig. 5]

The costs linked with lots of quality p = X/N in sampling inspection

are composed of two expressions

(1) the costs for accepted lots that are
nks + (X-x)(1) for 0 < x <c,

and

(2) the costs for rejected lots that are

nkS + (Nnn)kr for cf] < X < n,

(2.1.7)

where X is the number of defective items in the lot and x is the number of -

defective items in the sample. Now the probability of getting x defective -

items in a sample from a lot containing X defective items is
N-X
pix )it = () 7 (M)

Hence the average cost for lots of quality p = X/N becomes

¢ n
K{n,c,p) = nks + 7 (X-x)p{x|X} + (N-n) K. ) p{x|X}
x=0 x=c+1]

2.1.1 The compound hypergeometric distribution

(2.1.8)

(2.1.9)

From the conditional hypergeometric distribution p{x|X} and the prior

distribution FN(X), i.e. the probability that a lot of N items contains

X defective items, we have the marginal probability
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p{X,x} = Fy (X)p{x/X} (2.1.10)

Let y denote the number of defective items in the part of lot which is not
inspected. Then |
y = X-X.

Here we have the probability

plxy) = Fyben) U™ 7 () (2.1.11)

Xty

Hence the marginal distribution of x can be obtained as

N-n '
g (x) = () L Py (5N 7 (4) (2.1.12)

This distribution is called the compound hypergeometric distribution.

2.1.2 Hypergeometric distribution

' Suppose we have a stock of M items containing A = Mp defective items
and from this stock, lots of N items are selected arbitrarily, then the

prior distribution of X is given by

QU QG
M N M
™ )

FN(X;ﬁ,M) = (2.1.13)

with mean Np and variance

If we substitute FN(X;ﬁ,M) into p{x,y} derived in the compound hypergeo-

metric distribution, we get

pix,y} = F (x;p,M)Fy__{y;p,.M-n)
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with

5 =BAX.(5_x% -3 '
Py~ =P /(0 -p) (2.1.14)
This indicates that (a) the probability of x indicated by gn(x) is a
hypergeometric distribution with the same parameters as prior distribution

and (b) the probability of y for given x indicated by p{y|x} is also a

hypergeometric distribution with parameters ﬁx and M-n.

2.1.3 The binomial distribution

Let the lots be produced with a process average equal to p so that -

Fy (X:P) = (ﬂ)ﬁxﬁn'x | (2.1.15)

with mean Np and variance Npg. Substituting this expression into p{x.y)

as in the previous case, we get
pix.y} = F (x;p)Fy_ (v3P) (2.1.16)

which indicates that x and y are independent and that both variables are

binomially distributed with the same parameter as in the prior distribution.



25

ARTICLE #2

BAYESIAN SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUQUS PRIOR DISTRI-

BUTIONS BY A. HALD [34].

In this article we will derive and discuss the fundamental properties of

a system of single sampling attribute plans which are obtained by minimizing
the average costs. The main assumptions made here are that sampling and
decision costs are linear in lot size, sample size, and the number of de-
fectives in the lot and the sample, that sampling is without replacement,
and that the distribution of lot quality is a mixed binomial. This means that
each lot is produced by a process in binomial control but the process average
varies from lot to lot according to a frequency distribution.

Initially we will discuss a system of single sampling attribute plans

by first minimizing the regret function

R(N,n,c) = n(ps—pm) + {(N-n)

Pp 1
. {é (p-p)Q(p)w(p)dp + | (p-pr)P(p)w(p)dp} (2.2.1)
, Py

where N,n and c have the usual meanings; also 0 < P < 1, 0 < Pp < 1,

Pg 2P.>Pyps P+Q=1andP =P =P(p). Now P, is given by

C
p = P(p) = Z b(xsnsp) B(c’n’p)

& x=0

where b(x,n,p) = (2) pan-x

The two terms in the expression of R indicate sampling costs and

average decision losses, respectively. This regret function is the
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standardized average cost for a single sampling plan. Here P is sampling
cost per item divided by the costs of accepting a defective item, Pp is the
rejection cost per item divided by the costs of accepting a defective item

and p, is average unavoidable minimum cost. A detailed derivation of the

model has been given by A. Hald [32 & 33].

Now the average unavoidable minimum cost Py can be given by

p 1 p
i, = [I) “pu(p)dp + [ pw(p)dp = p. - [I] " (p-p)w(p)dp (2.2.2)
pl‘

From (2.2.1) and (2.2.2) we get

R(N.n,€) = n(pg=py) + (N-n)(p,-p) = (N-n)y(n,c) (2.2.3)
where y(n,c) = g] B(c,n,p)(p_r-p)W(P)dp
Finally according to Hald it reduces to

c=np, - %+ P.-4q.-p.aw(p) /wlp) (2.2.4)

When the prior distribution is unimodal, it can be proved that w‘(pr) < 0,
but the requirement here is that Py should be larger than the mode, which
is usually the case in practice.

For example consider w(p) = ps'lqt'] / B(s,t) where s > 0, t > 0. It

can be said that
c=np, - 5+ (s+t)(p,-P) (2.2.5)

where E(p) = p = s/(s+t). Eliminating (s+t) and introduction the variance

2

op = pq / (s+t+1) to equation (2.2.5), we get
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c=np, - %-+ (p,-P)(pq - oﬁ) / °§ (2.2.6)

From the prior information and experience it is relatively easy to

estimate p and o while developing a system of sampling inspection plans.

P
From equation (2.2.6) it can be said that the optimum acceptance number
¢ is approximately a linear function of the sample size n.

According to Hald, we have

P. - Pp - y(n.nh) = -u1n'] - mzn"2 + O(n_s) (2.2.7)
where ¢ = nh, ay = -v/2 and 24a2 =w+ 2v - 10r'y' - 9rv" + 't2(v')2 / w

From (2.2.3) and (2.2.7), Hald obtained result that

R = n(pg-p,) - (N-n)(a;n™! + an? + o(n3)) (2.2.8)
. AR _
The equation T 0 leads to
(N-n){-ay-2a,n"" + 0(n"2)} = n2p-p tagn” '+ an”240(n"3)) (2.2.9)
Solving for n, Hald obtained n = A]Jﬁ'+ Ay +-0(N'I/2) e (2.2.10)

where A% = -a]/(ps-pm) and A, = az/u], which leads to

2 . -
A7 = rw/2(p-p,) and
Ay = (=3(1+4r)w + drriu' + oru' =12r% (w' )2 /w3 /12rw

To find the minimum average decision loss Hald used (2.2.9) to eliminate (N-n)

in the last term of (2.2.8) which then becomes

(n-x?-xz)(ps-pm) + 0(n'1). Adding this to the first term, Hald got

the minimum regret as
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Ry(N) = (20 - 3§ = ) (pg-py) + O(n™") (2.2.11)

From the above equations it can be observed that the optimum sample size is
approximately a linear function of the square root of the lot size N.

Hence as a summary we can say that the optimum sample size is
approximately a linear function of the square root of the lot size and the

optimum acceptance number is approximately a linear function of the sample

size.
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ARTICLE #3

SERIAL SAMPLING ACCEPTANCE SCHEME DERIVED FROM BAYES' THEOREM BY

D. R. COX [14].

It is safe to assume in many industrial situations that if lots of
items are produced sequentially, there will be some sort of correlation
between those lots. Hence if we know the number of defectives in a random
sample of fixed size taken from a certain batch to be screened and the
number of defectives found in batches before and after, we can safely
predict whether the batch is good or bad. Hence while making a decision
on a particular batch, we have to take into consideration the sample out-
come of that batch as well as the outcomes of the batches close to it.

A stochastic process can be set up to represent serial sampling acceptance
schemes and Bayes' theorem can be applied to it to obtain a screening

rule.

2.3.1 Specification of model

We will consider the sequence of batches (..., B ;s B s B s s vl
to be screened and let there be a corresponding sequence
| X1 Xn0 *ne1? ...) of number of defectives by counting the number
of defectives in random samples of predetermined fixed size. We will
assume that X, has a Poisson distribution of mean mos where m, is the
true batch quality. We will also specify the stochastic process {mn}.
Bernard [5] has specified the following model

We will assume that a and b (a<b) are the only two positive values my

has. We will call batches with m, = aas good batches and those with
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m, = b as bad batches. Naturally we will accept good batches and reject
bad batches. We will assume that the sequence {mn} has a simple Markov

chain with transition matrix.

This means that good and bad batches are independently geometrically dis-
tributed with mean run lengths Ilta and 1/tb. The prior odds that the
batch is bad is then t /t . The sequence of true batch qualities is
arbitrary if and only if ta + tb = 1.

Now we will enumerate the prior probability of a particular seduence

of m's. For the batches B,.1 and B, we have

b. ( ) tb(1-ta)
pr‘o . m 3 = m - a E —————
n-1 n ta+tb
ta(I-tb)
prob. (mn_-l = mn = b) = Tt FE (2.3.1)
.a_ b
: tatb
prob. (mn_1 =a, m = b) = prob. (mn_1 =b, m, =a)= T4,
For example, the probability that both batches are good is the probability
t
that B is good viz. . , times the conditional probability that B

is good given that Bn-1 is good which is 1-ta. This model is reversible
in time.
If we intend to screen the batch B on the basis of x ; and x .,

equation (2.3.1) gives prior probabilities of the various possible values
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for M1 and m . We can write the probabilities according to Poisson dis-

tribution, e.g.

- . _.aba_ b~
prob. (x ;s X, |m_y=am=b)=e W

h % (2.3.2)

The posterior probabilities of the various possible values for mo1 and m
- ]

can be derived from Bayes' theorem. The probability that Bn is bad is given

by

X + X
& (] t Je~ 2b n Xn-1 vt tbe -a- b Hii ]b

prob. (m = blx _;.x ) = (2.3.3)

-2a, X %=1 -a-b, *n-1_%n
tb(l -t ) + tafbe b a

Now if the loss from rejecting a good batch is W, and if the loss from

accepting a bad batch is Wys We will reject the batch if

b
prob. (mn = b) et
a
and accept if
"
prob. (mn = b) < ;;- (2.4.4)
b
The choice is left open about what to do if prob. (mh = = This
a

is the optimum screening rule.
The rejection region can be plotted with the fact that if (xn_],xn)
is a rejection point, so also is any other point (x&_T,xﬁ) for which

X! . > Xn-1 and x > X If a wrong decision is taken, the expected loss

Xp-1 =
per batch is a function of a two point prior distribution (Fig. 6),

n

wbP(acceptanceImn = b) + waP(rejectwnlmn =
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X921

The rejection region

x\‘\{y;ﬂ. Xne1)

CX2, Xyp=t)

Xn

Fig. 6 The rejection region.
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We will state some general properties of the scheme. We will assume
a critical number r such that any batch having r or more defectives will
be rejected irrespective of the outcome of previous batches. Note that as
the process {m,} is Markovian, we will reject a batch By for all (x 15X _5s-..)
if and only if we would reject it if we knew that B“;] is good i.e.

m_q =2 Now, form ;= a, the probability that B is bad is

-b, *n
(]-tb)e b
X

' -a_'n
tbe a
b
t.we
Thus r > log [_b__e_:_____a} / log (%)
(l—tb)wae

We may reject a batch Bn even when X, = 0. In order to avoid this, we

accept a batch when x, = O even when it's clear that B _, is bad, i.e.

that m _, = b. Hence we should have

(1-tb)e'b

-a
tbe a

W
<———

b .
W
If there is an occurence of consecutive bad batches, in order to im-
prove quality of the batches, a change in the process can be made after
the production of Bn-l batches. While screening B, it will be wrong to
use x's before X The right procedure then is to calculate the posterior

probability that Brl is bad by utilizing only X, and subsequent x's that

can be made available while screening occurs.



In this discussion it has been assumed that the sample size is pre-
determined and fixed. If the previous assumptions about the true batch
quality remain valid, the calculation of the screening rule is rather

easy if the sample size is varied.

34



L] 35

ARTICLE #4

BAYESIAN PREDICTION AND POPULATION SIZE ASSUMPTIONS BY T. L. BRATCHER,

W. R. SCHCANY AND H. H. HUNT [10].

Bayesian methods aid in obtaining the distribution of the number of
successes in a sample when the outcome of a previous éamp1e is given.
The main purpose of this article is to prove that the solution to the pre-
diction problem doesn't depend on the population size. We can assume the
population to be finite or infinite. We can also assume a uniform prior
distributjon on the proportion of successes and then Bayes' rule can be
applied. It can be proved that infinite and finite cases have identical

results.

2.4.1 Infinite population

Suppose we take a random sample of size m from an infinite pcpu]atibn'
where 6 is the unknown proportion of successes.  Then Y, the number df

successes in the sample has the binomial distribution

by(ysm) = () o¥(1-0)"Y, y = 0,1, ..o m (2.4.1)

The main problem is to see how the number of successes X are distributed
from a second sample of size n, given (y,m). Let o have a uniform prior
distribution. Now, the posterior distribution of @ can be obtained by

applying Bayes' rule,

floly) = % oY(1-0)™Y, 0<o<1 (2.4.2)

The distribution of f(X|e) is again binomial. By averaging out e we have,
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1
f(xly) = é be(x,n)f(aly)de (2.4.3)

because f(x,ely) = f(x|e) - f(oly)

Now according to Raiffa and Schlaifer (3), the hypergeometric is given by

(XHY) (n-Xtm-Y
f(xly) = :h+m+1;-x s  x=0,1, ..., n (2.4.4)
n

2.4.2 Finite population

Now let the population be finite with size N and an unknown number
of successes J. Here we will take the discrete uniform on the proportion

J/N to get the prior distribution
e -
f(d) = T Jd=0,1, ..., N. (2.4.5)

If we take a sample of size m, then the resulting probability function
" will be the hypergeometric
9y
hJ(y,m) = —izﬁgﬂz- y ¥ =05 esss M (2.4.6)
m

The joint probability will be

(-
f(y,d) = —‘i:'ILiL' Y
() (N+1) J

0,1, ..., m (2.4.7)
Yoy ¥la woey N»

Let s denote the remaining number of successes.

Hence
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sty, /N-s-y
Cop W iy 3 0,1, ..., m (2.4.8)
0,1, ... N-m.

fly,s) = "
WS = T ) s

But f(s) = Tﬁ:%ﬁjju S

Now we can write

0,1, ..., N-m,

(St (N-s-y)

f(s]y) = yn+])m" s s=0,1, ..., N-m. (2.4.9)

1

Y has the uniform marginal probability

fly) ='E%T > ¥y=0,1, ..., m.

Hence if n is the sample size and X is the number of successes, then

(S) (N‘m'S)
h (x,n) = X N=X °

s X=0,1, ..., n (2.4.10)

Therefore, averaging out S, we have

I h(x;n)f(sly)
S

f(x|y)

N-me(n-x) YIS G (3 (2.4.11)

-my (N+1
M)

=% m1

1t can be shown that this expression is regardless of the assumed size of the

population, N. According to Gould [27], we can write
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+y y  NHN-X-
(xxy)(n XYY Nem-ntx (S+y \ N-y-S )

f(x|y) B (TH'HH‘])( N‘H ) s=X Xty ‘n-xtm-y
' n+mt+1
(XEYy (Hm-X-y)
=2 ___IX _ x=-0,1,...,n (2.4.12)

n+m+1
gy
which is exactly same with the result obtained in 2.4.1.

2.4.3 General Case

The problem has been generalized toaccommodatea broader class of
prior distributions rather than the uniform distribution only. In the
infinite population case, if we use a beta prior distribution with para-
meters vy and Vo, On 6 and in the form given by Steck & Zimmer [63], if we
use the negative hypergeometric prior distribution on J with parameters
a=v, and b = Vi3 it can be proved in a similar manner that the probability

f(x]y) is independent of the population size.

[v]+x+y-]][v2+m+n-x-y-lJ

v]+y-1 v2+m~y-1
n

where x = 0,1, ..., n. By putting Vi =V, = 1, the above expression re-

duces to results obtained in 2.4.1 and 2.4.2.
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ARTICLE #5

A NEW PRIOR DISTRIBUTION FOR ATTRIBUTES SAMPLING BY W. K. CHIU [12].

In the Bayesian approach to attributes sampling, the beta distribution
is the most widely used continuous prior distribution. The main reasoﬁs for
using the beta distribution are (a) it 1is mathematically simple,and (b)
the nonavailability of other suitable continuous prior distributions.
However, the beta distribution also has some disadvantages (&) the beta
density can't be expected to fit other prior densities,(b) the beta distri-
bution doesn't have any practical model for which it can be used,(c) it
is often necessary to have more than one type of prior distribution. Hence,
in order to overcome the above mentioned difficulties, this article suggests
a simple alternative prior distribution.

Let a process manufacturing batches of items have a normally distributed
quality chéracteristics X with a mean ¢ and a variance of unity. The mean
u is presumed to have a normal prior distribution N(m,oz) where m and 62 are
known and do not depend on batch size. Let ¢(x) be the density function and
p(x) be the distribution function of a standard normal distribution.

Let the batch have a fraction defective p = ¢(x0-u) where u is the mean

quality and Xq is that value below which an item is classified defective.

¢ (u)

™
u
S

Fig. 7
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Since x ~ N(u,1) and u ~ N(m,cz)

We have

p = w[f-?-—-li}, %} = -¢lxgmu)
According to the author, Xg is assumed to be equal to zero, The shaded area
on the left side of Xg represents the defective items.[%ig. 7] It is clear that
the extent of this shaded area depends upon the value of y. We can get
the following density of the prior distribution of p, if we make a change

of variables from u to p,

wlp) = o~V exp 2/2 - (wm)Zr(26®)} (2.5.1)

where p = w(xo-u),.o 5_p'5_1, o

We will call this prior distribution the "normal generated distribution”.

The shape of the normal generated distribution for various values

of 02

are shown in Fig. 8.
We can compare the shapes of a normal generated density and of a beta
density when their means and variances are the same. The beta distribution

with parameters a and b has the following density function:

a-1 b-1
f(psa,b) = Egrilch) (2.5.2)

where a >0, b>0and 0 <p< 1.
for the cases (a)a<1,b>1,(b)a>1,b>1,and (c)a<1,b<T,

its curve has a shape similar to the figures A,B and C respectively. The
ab

(atb)?(atbtl)

distribution has the mean E(p) = E%E-and variance var(p) =



u(p) wip)
. k P bk P
4] 1 *] 1 0

(a) o* =1 (8) ot <1 (c) e*>1

Fig. 8 The normal generated distribution. [12]

41
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Now, we may ask which distribution fits actual data better. As the
beta distribution invoives the ca’culation of incomplete beta functions,
with large values of b; the numerical manipulation of the normal generated
distribution is generally easier than that of beta distribution.

Let a single attribute sampling problem have large batches of
size N and fraction defective p. Let the fraction defective p vary
according to the normal generated prior density w{p) given by equation
2.5.1. Let n be the sample size, ¢ be the acceptance number and m be the
observed number of defectives in the sample. Given n and p, we can say

that m is a binomial variate. Hence we have,

E(m|p) = np and E(mzlp) = n(n-1)p2 + np.
Hence the mean and variance of m can be derived as follows:
E(m) = nE(p) = np,
var(m) = n(n-])og + npg, where q = 1-p.

These are useful in the estimation of the mean p and the variance cg of
the prior distribution. |

Our main aim is to calculate the optimum values of n and ¢ from a
Bayesian viewpoint. Let Pp denote the breakeven quality, Ps denote the
average sampling cost per item and Pm denote the average unavoidable min-
imum cost per item. The Bayesian single sampling plan, according to

Hald (34), is given by

n= x]¢ﬁ'+ A, and c=np + B (2.5.3)
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&
where 13 2(ps'pm s

27012
A = {-3(1+4r)w + drr'w' + Orly" - 13f§£!—l—} /) (12rw)
and g, = -r' - L LA |
1 W 2
where W = w(pr), w' = w'(pr), W' = w“(pr), r=pJq.
and r' = 1-2pr.

. p :
Now p. =P, - é " (p,-p)w(p)dp

The minimum regret is

Ro(N) = (2n-2F -3,) (pgp,) + O(n™)

Now 1?, AZ and B] can be rewritten as

A2 = v 2olpp) ¢ (u)}
1= Prapd|—S o(ps-Pp) ¢ (up.

+ av(1-2p) - -3} / (12p,9,)

Ay = {-3-12prqr

and By = - 1.8 + 2pr -V

where

=
n

P2 T lurmo2 + 672 - (1)} 7 to(u)Y

and v = prqr{("r-m)o-z"”r} / ¢(ur)
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(2.5.4)

{2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)
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For the normal generated prior distribution with the parameters m and
2

o-, we have
= 1
Pp = Pv(-h) + y(-k) -
2mY 1-p
-h -k 2 2
- [ [ exp {- X_iggigfé_.} dy dz (2.5.9)

where

h=(mp) /o k=m V1462, o = ofV 146°

For example, consider the case

N = 3000, §=0.06, o =0.046, p.=0.1, pg=0.12, o2 = 0.149.

Equations 2.5.6, 2.5.7, 2.5.8 and 2.5.9 yield,
= = - = 2 = =
Now the optimum value of n is

n=A1»/N'+Az=63

and the optimum value of ¢ is-

c=np, + B] =-7
The minimum regret is Ry(N) = 9.8

Hence we can conclude that a normal generated distribution may fit the
actual data better than the widely used beta distribution as the normal

generated distribution is derived from a realistic model. The curves from
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these two distributions may have totally different shapes. The two distri-
butions generally give somewhat similar optimum plans in normal circum-

stances, but in case of very large values of N and very small values of

2

Op: the plans may vary considerably.
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ARTICLE #6

AN EMPIRICAL BAYES' ESTIMATOR FOR P_(SUCCESS) IN THE BINOMIAL DISTRI-

BUTION BY B. S. GRIFFIN AND R. G. KRUTCHKOFF . [28]

2.6.1 Introduction

Here for an empirical Bayes situation, we will conduct a series of in-
dependent experiments. Let each experiment have its own parameter, say
o for the m-th experiment. Let each experiment possesses the following
structure

(i) Let the parameter o be a function of ¢ which has unknown distri-
bution function G(e); '

(i) Each experiment has its own value of 6.

Let us denote 81 for thg first realization of ¢ and Z] for the ob-
servation from p(ZIIe]); similarly for 62 and so on. For the current
experiment m, o is the parameter value and Zm denotes the observed value
from p(Zmlem). Let us denote p(Zmlem) by B(n,em) assuming it is a binomial
function. Hence Zm is the number of successes that occured in the m-th
experiment. In this case, since the prior is not known, the Bayes'
estimator can't be used._ But from the data of past observations, a Bayes'
estimator can be written. In short, the general principal underlying the
empirical Bayes' approach consists of first determining the Bayes' esti-
mator in a form which can be estimated and then using past information

from the marginal distribution to estimate it.



2.6.2 Bayes' estimator

Let the loss for estimating e when y(Z) is the decision function be

given by

2
L(v,8) = é%%%%y (2.6.1)

The total risk of equation 2.6.1 is

n 2
R(v,6) = [ ] é%%%%y (7) 62(1-8)"% da(e) (2.6.2)

The above risk will be minimal if ¢ is selected such that the posterior
risk

, |
rv,6) = [ gy 96(e/2) (2.6.3)

is minimal for each value of Z.
Equation 2.6.3 can be differentiated with respect to ¢y so as to get

the minimal risk or Bayes' estimator

f H?_—e)- dG(G/Z)
V. (2) = 1 (2.6.4)
By making substitution of G(e) and the binomial loss function into 2.6.4,
we get
[ (3 e"-0)" %1 dato)
() =

[ (&) 6" (1-6)"" aa(e)

which after multiplying with proper constants become



48

/ ("21)32(1-3]"'2'1dﬁ(a)

. _
v (2) = =7 - '
b n-1 n-2, Z- -Z- i
f (536" (1-0)" 7 La(e) (269
where Z # 0,n.
When the prior is G(e), the marginal mass function of Z is given by
n -
p"(2) = [ ()e%(1-e)"Z da(e) (2.6.6)
substituting 2.6.6 into 2.6.5, we get
o2} m L s " z) o
5 = , Z#0,n (2.6.7)

p"(z-1)

where pn'](Z) = P[Z successes in sample of (n-1)]

and p"'z(z-l) = P[(Z-1) successes in sample of (n-2)]
Both are marginal probabilities.

2.6.3 Empirical Bayes' estimator.

In this case, m independent observations are available from p"(z).
Hence estimates of p""(z) and p"'z(Z-]) can be constructed.

According to Lemon and Krutchkoff [42], we have
8 n—1' a Zeq o yn=Z-1
E ( 7 )(9.‘) (1'31) » 2 #0,n (2.5.8)
=]
and

m o - ~ -f -
2z = () 1 ()5 80" 2 £ 0 (2.6.9)
1= ;
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in order to estimate the required marginal probabilities. The term éi

is an estimator of the parameter for the i-th experiment. Let us employ
the estimated Zi/n for the ﬁi‘s in equations 2.6.8 and 2.5.9. Then sub-
stituting equations 2.6.8 and 2.6.9 back into 2.6.7, we have an empirical

Bayes' estimator,

by =0 if 2=0

z

1_ ("IN (zmE -z m) ]

1 ifz40,n  (2.6.10)
(n-1) z (B-2) (z/m) 2 (1-zym)" !

s

¥ (2)

1 if Z =

The empirical Bayes estimator wm(z) given by equation 2.6.10 is a function

of all previous observations on Z. Hence its risk is defined by

n

,G) = L(y_(y).0)p(y|e)d&(e)
R (4,56) Z}ZO gofyz o(¥),0)p(y[e)dG(e 1

p'(Z;)

= s

1

For every different value of Z, Y will be a different function. Hence
for every sequence (2],22, — Zm), there is one estimator. The risk

Rm is the risk of ¢m(y) averaged over the total possible sequences. The
risk of the maximum 1likelihood estimator wO(Z) = Z/n, has a constant value
1/n 1rrespecfive of the value of G(e).

The risk ratio is defined as
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Ro{¥y:6)
T =
m leo,Gi
This risk ratio gives an indication of wm's performance. A simulation
srogram is written to evaluate Tm with Tm as Tm can not be evaluated
“heoretically.

Tm can be written as

(n/r) ) ( (Z.:) -0 :)%(e :(1-9 )1
m : ; m'mj mJ mJj mj

-
n

where r = number of sequences (ZI’ZZ’ vns§ Zm) generated

m-th observation in j-th sequence,

I

and o _.

mj o-value generated for experiment m in sequence j.

In short, the simulation program has following steps:

(1) a Pearson curve, G(e),'is created from the input values of
the first four moments.
(2) according to G(6), a deviate, say @_., is chosen at random.

mJ
(3) from the binomial function B(n,emj), a binomial deviate
ij is chosen.
(4) The estimate ¢m(2mj) is calculated for fixed j.
(5) the Toss L(wm(ij),emj) is first calculated and then stored.
(6) Stebs 2,3,4,5 and 6 are repeated for m up through 100 and
for j = 1,2, ..., 1000; this gives 1000 sequences of 100

observations each
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(7) an average is taken of the stored losses over the 1000 sequences
for each value of m;
(8) form=1,2, ..., 100, Tm and its standard error are calculated

and then printed out.

It can be stated that in the beginning, as m increases, Tm decreases

sharply and afterwards as m further increases, Tm decreases steadily.
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ARTICLE #7

BAYESIAN SOLUTION OF THE SINGLE SAMPLE INSPECTION SCHEME BY G. B.

WETHERILL [66].
In this article we assume that the prior distribution of a defective

item is a mixed binomial distribution. According to Bernard [5], we have
k
(ai,pi), (i =1,2, ..., k) where ai=1 (2.7.1)
i=1
where a, is the probability of having Ps defective items in a batch. We
will assume that the loss incurred while accepting a batch when p; is

true is denoted by N11 and the loss incurred while rejecting a batch

when P; is true is "2

i’ .
Let Po be the breakeven quality at which a batch can be accepted or
rejected without loss. Let p; > Pp > v > Py- In this case w]j will
be zero for all j such that pj <P, and wzj will be zero for all j such

that Pj 2 Pgr
If we assume p' and a as suitable constants, then the equations for

an optimum solution can be put simply as

Pi .
g = (/e ' (2.7.2)

2.7.1 Equatijon for the neutral line

The neutral line is defined as the locus of points (n,cn) where C,
is the acceptance number, such that at these points the loss incurred
while accepting a batch is equal to that incurred while rejecting it.

Hence the equation of netural line is
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C_ n-c
n n
a.{. Ip; Ty

] 1 n 1 & 0 (2-7.3)

I by 2

;
substituting equation 2.7.2 in equation 2.7.3 and simplifying, we get

Cc i/a
n 1y N —
;i (Wp-Hp) (p") =0

I~ <

:

This last equation can be rewritten as

K i-1
) Ax =0 (2.7.4)
i=1 _
Cn/a
where x = {p")
_ n
and A = aiqi(w]i-wzi)

If n is given, we can calculate the value of c with the help of this

equation. Then after calculating X, we can have

C, = “}—gg—g— (2.7.5)

2.7.2 Equation for optimal sample size

The acceptance number Ch is determined by the neutral line once
the sample size is known. Now our aim is to obtain an equation for the

optimum value of n.

R(n), the expected loss for a given n is give by

P(r def.[pi true) (Toss at (n,r)|pi true)
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It is evident that for optimum value of n

R{n-1) > R(n) < R(n*1)

We will now consider the term {R(n+1) -R(n)} i.e. difference between
taking risk for sample size of (n+1) and for sample size of n. At the
optimum value of n, the term {R(n+1) - R(n)} will change the sign from
negative to positive.

Now by equating {R(n+1) - R(n)} to zero, we will derive an expression
for the optimum value of n.

We will assume that the s]qpe of the ngutral Iine is less than one.
Hence (n+1, cn) is an acceptance point and (n+1, cn+]) is a rejection
point. Consider the case where a batch is accepted at a sample size of
n and rejected at a sample size of (n+1). Hence the expression
{R(n+1) - R(n)} here has the value

n Cn n-Cn
ailc Jpg May py(HygoHy;)

e x|

1
2 .

i=1

In the above case the extra sample inspected is defective. Now consider
the case where the extra sample inspected is effective. Let the batch
be rejected at a sample size of n and accepted at a sample size of (n+l1).

The expression {R(n*1) - R(n)} becomes

)
i=1

1 ny & M=¢,
7.1 oaile oy Moy Tay(ip-gy)

Hence

C n
Ny, N Mo )
ai(cn)pi 94 (wa-i N]i)(zpi 1) +1 (2.7.6)

ne~-1x
—

R(m+1) - R(n) = %
1
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since (pi'qi) = 2p;-1

Now equating (2.7.6) to zero and using 2.7.2 and 2.7.4, we have

k .
PEY 1/(c2) (2.7.7)
1= . .

where B; = a;p;ay(Hy;-Hyq) = pydye

Equations 2.7.4 and 2.7.7 essentially decide the optimum sampling plan
for given prior probabilities and loss functions.

For k = 2, if Py > Pg > Pps equation 2.7.4 becomes

a9y My _

2.7.8
» ( )

Al Mgy

Hence from equation 2.7.5, we have

a.W q
= —% [1og 1L+ [—l)} , 2.7.9
C, Tog b { 0g 32”22 n log )f (2.7.9)
equation 2.7.7 can be written in terms of x as

n 2 _ n
a1Pay Wy X - g8y Pt =1 /()

Hence from equation 2.7.8, we have

W n
a22222 [qZZJ (" (2.7.10)
(a]w”) (p1-p2) 4G 7 n

Hence



o a Q-
log { 2“2§ +n log t%) = Tog(.")
(a]N]1) (P]‘Pz) ' 1 ' n

We can write the above equation as

| aW :
y(n) = log 2 gz } +n log [ﬁgJ
(a]N]]) (P]‘pz) q]

- n
and Z, = 1og(cn)

The optimum value of n is that one at which y(n) = z(n)

2.7.3 Illustrative example

Suppose we have py = 0.09132, p, = 0.01, « = 1, p* = 0.01,

w '[ = w22= 2000, a-'l = 0020, az s U.m

1

The equation of the neutral line is

Cn = 0.6034 + 0.0373n

and the equation for the optimum sample size is

log (c"l = -0.9102 + 0.0788n
n

The following values for n,C,y(n) and Z(n) were obtained

56

(2.7.11)

(2:7.72]

(2.7.12)



n C, y(n) Z(n)
30 17225 1.4343 ].4771
70 3.2148 4.5069 4.9986

100 4.3339 5.9214 7.0281
105 4.5204 7.3655 7.3§39 _
106 4.5578 7.4443 7.4390
110 4.7070 7.7595 7.7095

At n = 105, the value of y(n) and Z(n) are almost equal. Hence our optimum
sampling plan is n = 105 and Cn = 4. This is a relatively rapid technique

for computing n and Coe
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ARTICLE #8

BAYESIAN ESTIMATION FOR THE PROPORTIONS IN A MIXTURE OF DISTRIBUTIONS
BY J. BEHBOODIAN [3].

Let us consider the equation

m(x) = pf(x) + qg(x) (2.8.1)

where f(x) and g(x) are two known, independent probability density

functions witﬁ 0<p<1.and g =1-p. As f(x) and g(x) are independent

from each other, two different values of p will give two different values

Qf m(x). Boes [7] has already investigated the estimation problem of

proportions in a finite mixture of distributions. Here we will consider

the information about the prcportion p prior to taking a sample. A prior

distribution for p generally expresses such information. By applying

Bayes' theqrem, the prior distribution yields a posterior distribution of p.
Since the pcsterior distribu@iqn is the product of the likelihood

function and prior density, we will first express its 1ikelihood function

in a suitable form before introducing a prior distribution for p.

2.8.1 The 1ikelihood function

Let the probability density function, equation 2.8.1, have a popu-
lation X], Xz, cees Xn as a random sample. Now the 1ikelihood function

of p for the values Xy, Xps «.. X, @S the random sample is

n

n
L{p) = X [pf(x;) + agx;)] (2.8.2)
o where 0 < p < 1
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We can eliminate non-informative xi's from the observed sample for which
f(xi) = g(xi). This case may happen in case of a mixture of two uniform
distributions defined on two different overlapping intervals of equal
length. But as n becomes large, the chance of such event becomes small
due to distinction of f(x) and g(x). Therefore we will assume that
f(xi) # g(xi) for all xi's to avoid exceptional cases.

We can expand the right hand side of equation 2.8.2 to write L(p)
in a convenient form. But for convenience, let us express the right
hand side of equation 2.8.2 by h(x1,x2, §5 8% xn). Using conditional
density, we have

. "
h(x],xz, cees xn) = kzo h(x],xa, o xn/Ek)P(Ek) (2.8.3)

where E, is the event that exactly k of the xi's have density f(x) and

others have density g(x). Hence how
P(E) = (E)pkq""‘ (2.8.4)

The joint density of X13Xps eees X is

ht (x],xz, vees xn) = II f(xa) I g(xb) (2.8.5) |

where t is a partition of the {1,2, ..., n} into two sets A, and B, with
k elements into A . Let T, express the set of all such partitions and once
more using the conditional density, we have
- - n
Sk(xI’XZ’ saey xn) - h(X]axz: LIECE | xnlEk) ZT htk(xI’ZZ’ seay xn)/(k)

teely
(2.8.5)

*
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where sk(x],xz. - xn) is a symmetric n-variate density. Now from

equations 2.8.3, 2.8.4 and 2.8.6, we have

n
L(p) = haxge eos %) = 1 (G 1) q" ks (xys%ps «ees X,) (2.8.7)

Hence, the joint density of the random sample X13Xps eees Xp is a binomial

mixture of the densities sk(xl’XZ’ cees xn) expressed by equations 2.8.5 and

2.8.6.

2.8.2 Bayesian estimation for p.

Let the random variable p be expressed by a beta density function

B(psu,v) = Ut pu=T(q vl , (2.8.8)
ftu) fiv)
where 0 <p<1andu >0, v>0. Now the posterior density of p is
given by
H(Pixl,xz, cies xn) « L(p)xB(psu,v) | (2.8.9)

where a denotes proportionality. Omitting the multiplier of equation

2.8.8 and the using equations 2.8.7 and 2.8.8, we get

n
M(pIxpsXps «ovs Xy) = kzo (0 5 Corakign serv K I g0 K0T

(2.8.10)

The constant of proportionality can be easily found from the fact that

the posterior density must integrate to one. It can be shown that

ka(p k+u,n=-k+v) (2.8.11)

éM:

H(p[x],xz, N xn) = )
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W, can be expressed as

W = VS (x],xz, cees X )/ JZO stJ(x sXps wees X ) (2.8.12)

where y, = ( )/ (":::V; (2.8.13)

The Wy depends upon the observed samples and parameters of the prior;
the contribution of the population is reflected in sk(x],xz, cees xn)
and the contribution of the prior is reflected in y,.
By using equation 2.8.11 and thg mean and variance of a beta distri-

bution, the posterior mean and posterior variance of p can be shown as,

- k+u
E(P) = 1 W mige 7 (2.8.14)
= -
n n
_ (k+u) (n-k+v) [ k+u
var_(p) = W + W -E ( )
A k20 & (n+urv)P(nturvel) k=oKUY

By using a family of finite mixtures of beta distributions, we can get a
diverse variety of distributions for expressing knowledge about p. If

we take a member of a family for the prior density of p, then it is noted
that the posterior density will be a member of the same family. Hence

a family of finite mixtures of beta distributions is conjugate with regard

to the likelihood function.
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CHAPTER 3
SHORT SUMMARIES OF IMPORTANT ARTICLES

(3.1) Rubin, H. and Sethuraman, J., "Bayes risk efficiency." [59]

In this paper, efficiency of tests are considered from a Bayesian
point of view. For two test procedures the ratio of the sample sizes
needed to obtain equal expected risks is defined to be the Bayes risk
efficiency (BRE). This efficiency is relatively insensitive to the weight
“functions. The discussion presented also gives the optimum choice of the
““significance level and consequences of a non-optimum choice. Bayes
expected risks obtained by varying the critical region based on one or a
few test statistics are approximated for large samples. BRE extends
easily to the comparison of such test procedures as the Kolmogorov-
Smirnov and Anderson-Darling tests, and to multiparameter testing problems.

The problem of BRE is treated here for a one sided hypothesis.

(3.2) Cacoullos, T. "Comparing Mahalanobis distances II: Bayes procedures
when the mean vectors are unknown". [11]
Let IIi be multivariate normal populations with means Mis
i=0,1, ..., k (k >2), respectively, and with the same known covariance
matrix }. The problem of selecting the nearest IIj, = ¥y wens ks $0O

II, is considered when only o is known and Hys +--s M are estimated

0
from samples of equal size out of each IIj. A unique Bayes procedure is
obtained by restricting attention to decision rules which are invariant
under a subgfoup of affine transformations on kp- space and the symmetric
group of permutations on the sample means 21, — ik. The theory de-

veloped, which is actually of wider applicability, is further applied

to the problem of selecting, among k pairs of normal populations, a pair
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with minimum distance between its members. The corresponding problems
when the common covariance matrix is also unknown or all the mean vectors

are unknown are also discussed.

(3.3) Van Ryzin, J., "Bayes risk consistency of classification procedures
using density estimation?. [64]

This paper introduces the concept of Bayes risk consistency for clas-
sification procedures. This notion allows to examine asymptotic properties
of classification procedures which are based on methods of general (non-
parametric) density estimation and related results. The advantage of these
procgdures js that they do not require assumptions on tﬁe exact'parametfic
form of the distributions, while the advantage of the concept of Bayes‘risk
cqnsistency is that it aids considerably in the selection of estimating

procedures under limited knowledge of the class distributions.

(3.4) Kappenman, R. F., Geisser S. and Antle, C. E., fBayesian and Fiducial
solutions for the Fieller-Creasy problem". [39] .

In biological assay work where one is interested in the relative potency
of two drugs or treatments, the following problem arises. Suppose a random
sample is avai]ab]g frqm a bivariate normal popu1ation with vector u,
whgrg u= (“1’“2)' Hé can find the range of values which can be ascribed
ton-= “2/“1’ with any desired degree of probability. In this paper the
results of an investigation of the Bayesian theory of inference as it

applies to the problem are presented.
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(3.5) Geisser, S., "Bayesian analysis of growth curve", [24]

From a Bayesian viewpoint we initiate the study of the generalized -
growth curve mode]l E(prN) = prmrm X ArxN where X and A are known
matrices of rank m < p and r < N respectively; t is unknown and the
columns of Y are independent p- dimentional multinormal variates having -
unknown variance matrix ). A Bayesian justification is presented for
Rao's adjusted estimator t of t', the set of unknown parameters, as we]]r'
as an estimating region. The order unadjusted estimator of v is also
shown to obtain either for a structured covariance matrix or for an o
augmented Tocation model. The problem of estimatfhg regions for future
observations from this model, given the past sample, is discussed in

detail, both for an arbitrary and a structured covariance matrix.

(3.6) Novick, M. R. and Grizzle, J. E., "A Bayesian’ approach to the
analysis of data from clinical trials", [51J

A Bayesian logical probability approach is described and its advan-
tages with respect to constructing prior distributions for Bayesian
analysis are discussed. Some standard Bayesian distribution theory for
categorized data is summarized. Data from an on-goinQ experiment to
compare the relative efficiency of four operative treatments for ulcer are
used both to pinpoint some of the practical problems involved in clinical
trails and to demonstrate the usefulness of Bayesian inference methods

when facing these problems.
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(3.7) Ando, A. and Kaufman, G. M., fBayesian analysis of the independent
multinormal process - neither mean nor precision known", [1]

Here under the assumption that neither the mean vector nor the
variance-covariance matrix are known with certainty, the natural conjugate
family of prior densities for multivariate normal process is identified.
Prior- posterior and preposterior analysis is done assuming that the
prior is in the natural conjugate family. Here a procedure is presented
for obtaining non-degenerate joint posterior and preposterior distributions
of all parameters even when the number of objective sample observations is

less than the number of parameters of the process.

(3.8) Antelman, G. R., "Insensitivity to non- optimal design in Baygsian
decision theory", [2]

Two simple inequalities involving two parameters, expected terminal
losses, expected sampling losses, and optimal (Bayes) and non-optimal
sample sizes are shown to hold for several fixed sample size decision
problems. The two parameters depend on the type of loss structure assumed.
One inequality relates to the division of tota] expected losses for a
sample of optimal size between expected terminal losses and expected
sampling losses. The other inequality gives upper bounds on the ratio of
total expected losses at non-optimal sample sizes to those at the optimal
sample size. The latter inequality shows that total expected losses are
often quite insensitive to the use of non-optimal sample sizes; in con-
junction with optimal sample size formulas; it can be used to show that
total expected losses are also insensitive to the use of a fwrong'

prior distribution or the wrong cost parameters.



The inequalities are shown to hold for several two-action problems
on the mean of a Normal process, ten quadratic loss estimation problems
involving Normal, Bernoullid, aﬁd Poisson processes, and one linear 1oss
estimation problem on the mean of a Normal process, in each of these

problems, a conjugate prior distribution is assumed.

13.9) Geisser, S., "A Bayes approach for combining correlated estimates",
[23]

A Bayes solution is supplied for an estimation problem involving a
sample from a multivariate normal population having an arbitrary unknown
‘covariance matrix, but a vector mean whose components are all equal.
Assuming that a particular unnormed prior density is a convenient expression
for displaying prior ignorance, it is then demonstrated that a posterior
interval for this common mean can be based on student's t distribution.

If prior information can be conveniently represented by a natural con-
jugate prior density, the posterior interval will also depend on student's
t. An extension is made tq the case of estimating the constant difference

between two parallel profiles.

(3.10) Novick, M. R. and Hall, W. J., "A Bayesian indifference procedure",
[52]
In a logical probability approach to inference, distributions on
3 parameter space are interpretable as representing states of knowledge,
and any prevailing state of knowledge may be taken to have been arrived
at from a previous state of ignorance followed by an accumulation of
prior data. In this paper an indifference procedure is introduced that

requires postulating what size and what kind of samples will and will
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not permit statistical inference and prediction - e.g., one observation
from a two-parameter normal model is not sufficient to permit inference
about the variance but two observations are. In essence, the procedure
stipulates that prior 1ndifference distributions be improper but become
proper after an appropriate minimal sample. With some limitation on the
family of priors considered, this procedure permits unique specification
of indifference for the more commonly encountered statistical models.
Furthermore, these specifications are affected neither by change of the

scale of measurement of the observations, nor by the sampling rule.

(3.11) Bhattacharya, S. K., "Bayesian approach to life testing and re-
Tiability estimationf, [6]

Bayesian analysis of the exponential model, based on life tests that
are terminated at preassigned time points or after preassigned number
of failures, has been developed. For the prior distribution of the
parameter invo]yed, unifqrm, inverted gamma and exponentia] densitigs
have been examined. Thg estimation of the reliability function has also
been carried out by using Bayesian methods and the case of 'attribute
testing' has been considered briefly. The role of prior quasi-densities
when a iife tester has no prior information has been inllustrated and
it has been observed that the reliability estimate for a diffuse prior
which is uniform over the entire positive real 1line closely resembles

the classical MYU estimate obtained by Pugh.
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(3.12) Winkler, R. L., fThe assessment of prior distributiqns in
Bayesian analysis", [67]

In the Bayesian framework, quantified judgements about uncertainty are
an indispensable input to methqu of statistical inference and decision.
Ultimately, all components of the formal mathematical models underlying
inferential procedures represent quantified judgements. In this study,
‘the focus is on just one component, the briqr distribution, and on some
of the problems of assessment that arise when a person tries to express
prior distributions in quantitative fqrm. The objective is to point
toward assessment procedures that can actua11y be used.

One particular type of statistical problem is considered and
several techniques of assessment are presented, together witﬁ the
necessary instruction so that these techniques can be understood and
applied. A questionnaire is developed and used in a study in which people
actually assess prior distributions. The results indicate that, by and
large, it is feasible to question people about subjective prior probability
distributions, although this depends on the assessor and on the assessment
techniques used. A revised gquestionnaire, which is aimed at potential
users of the assessment procedures and future investigators in the area

-~~ef probability assessment, is presented.

- (3.13) Box, G. E. P, and Tiao, G. C., "Bayesian estimation of means for
the random effect model", [8]
The problem of estimating the means in the one-way random effect
model Yik = ej + &5k is considered from a Bayesian viewpoint. Posterior

distributions of the aj are obtained under the assumption that the ej
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are independently drawn from a normal population N(a,cf) and that the

€5y are independent random errors haying a N(O,uf) distribution. It is
shown that the posterior distributions of the Bj are clustered more closely
together than are the corresponding distributions for a fixed effect model.

A numerical example is given.

(3.14) Hi1l, B. M., "Posterior distribution of percentiles: Bayes'
theorem for sampling from a population”, [36]

A Bayesian approach to inference about the percentiles and other
characteristics of a finite population is proposed. The approach doesn't
depend upon the use of parametric models. Some related questions con-
cerning the existence of exchangeable distributions are considered. It is
shown that there are no countably additive exchangeable distributions on
the space of observations which give ties probability 0 and for which a
next observation is conditiona]fy equally likely to fall in any of the

open intervals between successive order statistics of a given sample.

(3.15) Lee, T. C., Judge, G. G. and Zellner, A., " Maximum 1ikelihood and
Bayesian estimation of transition probabilities?, [41]
In ﬁhis paper, maximum likelihood and Bayesian methods are presented
for gstimating transition prqbabi]ities when data in the form of aggregated

proportions are available. The'probability function for the observed

. proportions is assumed to have a multinomial distribution under the

Lexis scheme. The multivariate beta distribution is used as the prior
probability density function in formulating the Bayesian estimator. The
results of some Monte Carlo experiments provide some evidence on the

sampling properties of several alternative estimators.



70

(3.16) Zellner, A. and Tiaq, G. Q., fBaygsian analysis of the regressiqn
model with autocorrelated errors?, [68]
In this paper-regression models with error terms generated by a
first order autoregressive scheme are analyzed from a Bayesian point of
vigw. Methods are deve]oped for computing pqs;erior distributions of
rggression coefficients and the parameter of the autoregressive process.
Thé relationship of this approach to sampling theory approaches is briefly

discussed.

(3.17) Hoadley, B., "The compound multinomial distribution and Bayesian
analysis of categorical data from finite populations”, [371

A Bayesian analysis of the parameter vector, W(wj = number of elements
in category j). of a multivariate hypergeometric distribution is considered.
It is shown that if, a priori, W is compound multinomial then a posteriori
W is a translated compound multinomial. Many properties of the compound
multinomial distribution are derived. These include joint moments Qf all
orders; a characterization in terms of independent compound poisson vari-
ables, cqnditiona1 distributiqn of one subvector given another, and
joint distributions of disjoint and overlapping sums of the component.

It is shown that in applications related to analysis of variance and
cqntingency tables, the parameters of intergst are functions of . A methqd
is prqpqsed for approximating po;teriqr distributions of such parameters,
and a numerical examp]e involying a performance index defined on a con-

tingency table is presented.
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(3.18) wa11er, R. A. and Duncan, D. B., fA Bayes rule for the symmetric
multiple comparisons problem”, [65]
A simple LSD (least significant difference) rule is presented for

simultaneously testing the difference between n treatments considered

in all possible pairs. This rule is based on the same multiple decision
» theory model except for a modified and extended use of a conjugate chi-
. square density in the prior. The new rule has the same intuitively
- appealing dependence on the between-treatment F ratio, varying from a
. sensitive comparisonwise-é—]ike rule when F is large or moderate, to a

conservative experimentwise-a-like rule when F is small.

(3.19) Hoadley, B., fA Bayesian 1ook at inverse linear regressionf, [38]
The model considered in this paper is simple Tinear regression

(Ey; = By + By%;5 1 =1, ..., n), and the problem is to make statistical

inferences about an unknown value of x corresponding to one or more ad-

ditional observed values of y.

(3.20) Girshick, M. A. and Rubin, H., "A Bayes approach to a quality
control model", [25]

This paper deals with a class of statistica] guality control pro-
_cedures and continuous inspectiqn procedures which are optimum for a
%specified income functiqn and a prqduction model which can only be in
.one of fqur states, two of which are states of repair, with known trans-

1tiqn prqbabi]itigs. The Markov process, generated by the model
and thg class of decision procedures, approaches a limiting distribution
and the integral equations from which the optimum procedures can be

derived are given.
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(3.21) Lindley, D. V., "The Bayesian analysis of contingency tables", [45]
This paper describes how data from a multinomial distribution, and
in particular data in the form of a contingency table, may be studied

by using a prior distribution of the parameters and expressing the results

:in the form of a posterior distribution of the parameters. The analysis
.used must depend on the priqr distribution and the forms described here
‘only applies to a certain type of prior knowledge but it is believed that
;this type is of frequent occurence. The binomial situation is first con-
1sidered and the resu]ts obﬁained there suggest a general result for the

_muitinomia] distribution, which is then established. A few remarks on

Bayesian analysis in general enable the result to be applied, first to
certain multinomial problems and then, with the aid of another general
result, to contingency tables. The method used there has close connections
with the analysis of variance and these corrections are examined, par-
ticularly with a view to simplifying the analysis of contingency tab]es

involving three or more factors.

(3.22) Samuel, E., "An empirical Bayes approach to the testing of
certain parametric hypothesesf, [60]
In this paper, initially the empirical Bayes approach is described.

Optimal empirical Bayes rules are given for the problem of testing a

, simple hypotheses against a simple alternative. A limit theorem is

proved which is used to obtain optimal empirical Bayes rules for testing
one and two sided hypotheses about the parameters in the Poisson,
geometric, negative binomial and binomial distributions. The same

methods are used to obtain optimal empirical Bayes rules for testing



hypotheses about parameters in continuous distributions of the expon-
ential family. Examples of areas of applications are given and appli-
cations of the above methods in the compound decision problem are dis-

cussed.

(3.23) Draper, N. R. and Guttman, I., fUnequa] group variances in the
fixed-effects one-way analysis of variance: A Bayesian side-
light", [17]

In two comprehensive papers, Box (1954), Ann. Math. Spat., 25,
290-302 & 484-498, examine& the effect of inequality of variance on the
standard F-tests for one-way and two-way analysis of variance (ANOVA)
classifications. These papers provide a number of theorems on the
exact and approximate distributfons of various quadratic forms and
ratios of quadratic forms, and applied them to the ANOVA situations
mentioned above. In the presenf paper certain results found by Box for
the one way classification are examined, and how a Bayesian analysis can
throw light on the consequences pf Box's work in a given experimental

situation is also observed.

(3.24) Maritz, J. S., "Smooth empirical Bayes estimation for one-
parameter discrete distributions", [46]

A study is made of the simple empirical Bayes estimators proposed
by Robbins (1956). (Proc. 3rd Berkeley Symposium on Math. Stat. and
Prob.). These estimators are compared with best conventional estimators
in terms of their expected squared error loss. The object of the study
is to determine the amount of prior data which would be needed for the

empirical Bayes estimator to be preferred to the conventional estimator.



74

It is concluded that the required number of previous observations is
likely to be too large for the simple empirical Bayes estimators to be
useful in practice. Smooth empirical Bayes estimators are proposed,
which make more effective use of prior results. A method of smoothing
is developed which is based on estimating a step function approximation
. to the prior distribution of the parameter. Some examples are studied
“in detail, and the results indicate that these smooth empirical Bayes

estimators are potentially useful in practice.

i(3.25) Springer, M. D. and Thompson, W. E., "Bayesian confidence limits
for the product of N binomial parameters", [62]

The posterior probability density function of the product of N
binomial parameters is derived in closed form using the Mellin integral
transform. This result permits the computation of Bayesian confidence
1imits for the product of an arbitrary number of binomial parameters,
and has an immediate application to problems of reliability and test of

independent cascaded subsystems.

(3.26) Rutherford, J. R. and Krutchkoff, R. G., "The empirical Bayes
approach: estimating the prior distribution", [57]
There is a random variable A distributed according to a specific

sut unknown prior distribution G from an appropriate class G The

1
random variable A = x is unobservable but another random variable X = X,
distributed with known conditional distribution function F(x/1),is ob-
servable. We construct estimators Gn(A) of G(A) such that

1im E[{Gn(x) - G(A)}ZJ = 0 and we use Gn(l) to estimate the posterior
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distribution G(A/x) and hence to construct consistent estimators of

posterior confidence intervals.

(3.27) Maritz, J. S., "Smooth empirical Bayes estimation for continuous
distributions", [47]

Although the conditions for app]ication of the technique of empirical
Bayes estimation of the parameter of a distribution may exist, the form
of the prior distribution is generally unknown. This often creates
major difficulties in the determinatiqn of empirical Bayes estimators.
The simple device of approximating the prior distribution by a step
function is used to overcome this problem and to obtain smooth empirical
Bayes estimators. This paper supplgments earlier work by considering
continuous distributions and mu]tip]e past and current observations.

The effectiveness of the proposed smoqth empirical Bayes estimators is
examined, and the results indica;e ;hat they can be substantiai]y better
than optimum non-Bayes estimators, even when the amount of past data

is small.

(3.28) Krutchkoff, R. G., fA supplementary sample non-parametric
empirical Bayes apprqach tq some statistical decision problems",
[40]

When an estimating problem is routine, it is often possible to con-
sider the parameter being estimated as a random variable. The data
obtained to estimate previous values of parameter then contain infqr-
mation which'can be used to advantage in estimating the present parameter.

Besides this data it is assumed that there are supplementary estimates



of the previous parameters, perhaps in the form of customer feedback.
A1l the probability distributions are assumed to be unknown. The
estimating procedure given here is shown to be asymptotically optimal,

and by a Montg Carlo example to have good small sample properties.

‘(3.29) Maritz, J. S., "On the smooth empirical Bayes approach to
o testing of hypotheses and the compound decision problem", [48]
The smooth empirical Bayes approach is based on using past obser-
:vations to estimate a specified type of approximation to the prior dis-
tribution. This approach is applied to problems of empirical Bayes
hypothesis testing and to the compound decision problem. Problems in-
volving composite hypotheses are considered which have received much
less attention than the case of two simple hypotheses. The methods are
shown to be asymptotically optima] and results of studies involving
finite sample numbers are reported, giving some indication of the rate

of approach to optimality in specific cases.

(3.30) Draper, N. R. and Gutfmdn, 1., "Some Bayesian stratified two-
phase sampling results", [18]

In this paper some results concerning the optimum allocation of
sampling effort among k- strata at the second phase of a two-phase
sampling procedure are derived by using jnformation obtained from the
first phase. Two different approaches are used; a Bayesian posterior
analysis and a Bayesian preposterior analysis. Two different allocation
methods are derived and i]]us-rated with some numerical examples, for

cases where some or all of the nuisance parameters are unknown.
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(3.31) Rutherford, J. R. and Krutchkoff, R. G., "Some empirical Bayes
techniques in point estimation", [58]

In point estimation with a squarred-error loss function the Bayes
estimator is the posterior mean. In the empirical Bayes approach we
must construct a consistence sequence of estimators for this posterior
mean using past experience. This construction is done here for four
‘general fami]ieS of conditional distributions which include as special

_ cases: the Poisson, the gamma, the normal and the uniform.

(3.32) Maritz, J. S., fEmpirical Bayes estimation for the Poisson
distribution”, [49]
A number of established me;hods of empirical Bayes estimation
for the Poisson distribution are surveyed, and their performances are
compared. A new method of smooth empirical Bayes estimation is presented,
and its perfqrmance is also s;udigd. The question of assessing the

effectiveness of the empirical Bayes approach in practice is examined.

(3.33) Griffin, B. S. and Krutchkoff, R. G., "Optimal linear estimators:
an empirical Bayés version with application to the binomial
distribution“, [29]

An empirical Bayes estimator is one which estimates the posterior
mean by making use of past data. For certain conditional distributions

no empirical Bayes estimator can be fouhd which converges to the posterior

mean as past data are accumulated. However, an optimal linear estimator

for a parameter, say 6, can often be found. This optimal Tinear estimator

depends upon the first two prior moments, both of which can often be
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estimated. The resulting estimator has been simulated under the
assumption that the conditional distribution is binomial and these
simulations have shown its risk substantially smaller than the risk of

the maximum likelihood estimator.

:3.34) Bennett, G. K. and Martz, H. F., "A continuous empirical Bayes
smoothing technique”, [4]

Discrete empirical Bayes smoothing techniques essentially attempt
.kto approximate the prior distribution function. Here a continuous
smoothing technique which is based on a smooth and continuous approxi-
mation to the prior density function is presented. Results from a |
Mbnte Carlo study of the Paisson distributiqn are reported which show
that the continuous smoothing technique has desirable small sample
properties. Some comparisons with discrete smoothing techniques are

also made.

(3.35) Leonard, T., "Bayesian methods for binomial data", [43]

A Bayesian procedure is obtained for the simultaneous estimation
of the parameters of m binomial distributions. The method uses logistic
transformations for the parameters and an exchangeable prior distribution.
Information is combined between the binomial distributions to obtain
estimates which, under certain circumstances, will be superior to the
usual proportions. This paper is intended as a forerunner to a more

general theory for the analysis of nonlinear models.
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(3.36) El-Sayyad, G. M. and Freeman, P. R., “Bayesian sequential esti-
mation of a Poisson process rate", [20]

This paper provides numerical and analytical solutions to the
‘problem of estimating the rate of a poisson process. Optimal designs
ere obtained for various loss functions and the method of analysis is
f&lid for any other loss function. The cost of sampling plays a funda-

m2ntal rule and since there are many practical situations where there
. %5 a time cost and an event cost, a sampling cost per observed event
?aﬁd a cost per unit time are both inc]uded.

(3.37) Leonard, T., fA Bayesian method for histograms", [44]

This paper describes a Bayeéian procedure for the simultaneous esti-
mation of the probabilities in a histqgram. A two-stage prior distri-
bution is constructed which assumes that probabilities corresponding to
adjacgnt intervals are 1ikely to be closely related. The method employs
mu];ivariate logit transformations, and a covariance structure similar
tq that assumgd in the first-order auto regressive process. Posterior
estimates are obtained which combine information between the intervals

and have the practical effect of smoothing the histogram.

{3.38) Martz, H. F. and Lian, M. G., “Empirical Bayes estimation of the
binomial parameter", [50]
A smooth empirical Bayes estimator for a binomial parameter is
derived. The risk in using this estimator is compared by simulation with
that of eight other binomial estimators. For these estimators not having

a simple closed form risk, suitable regression equations on the simulation
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parameters are obtained. These equations are used to identify the
regions of superiority of each of the estimators. A numerical example is

provided.

(3.39) Gunel, E. and Dickey, J., "Bayes factors for independence in
contingency tab]es?, [31]

The null hypothesis of row-column independence in a two-way contin-
~gency table can be expressed as a constraint on the parameters in various
standard statistical sampling models. Four sampling models are con-
sidered, which are related by nested conditioning. By having the prior
distribution in any one model induce the prior distribution in each further
condi tioned model, it is shown that the Bayes factors for independence
will factorize, and thereby expose the eyidence residing in the marginal
row and column of the table. Bounds on the marginal Bayes factors justify,
in a weak sense, Fisher's practice of conditioning. A general theorem
is given for factorized Bayes factors from a factorized 1ikelihood

function.

(3.40) Rao, J. N. K, and Ghangurde, P. D., "Bayesian optimization in
sampling finite populations", [55]

The problem of optimum allocation in sampling finite populations using
prior information is considered. The following cases are investigated:
(1) stratified simple random sampling with known strata sizes; (2) Neyman's
double sampling with unknown strata sizes; (3) the Hansen-Hurwitz method
for the non-response problem; (4) Two stage random sampling. The optimum
allocation in each case is obtaining by minimizing the expected posterior

~ variance of the mean subject to constraints. The results are extended



to multiple prior distributions and/or multiple characters. The solutions
are distribution-free and also free from the assumption of infinite popu-
lations and/or known variances. Attention is given to "data-based" prior

distributions.

(3.41) Romberg, H. F., “Continuous sequential testing of a Poisson process
to minimize the Bayes risk", [56]

A method of testing constant failure rates is presented, where the
distribution of failure times is assumed to be exponential., The failure
rate is unknown but two alternative failure rates are hypothesized. The
objective of the procedure is to minimize the decision cost, and the ob-
servational costs accumulated during the test. A Bayes procedure is found
whereby the prior probability thét one of the failure rates is true is
updated until it reaches a previously detenpined decision point. The
exact solutions and approximate 501utions for the decision points for the

minimum Bayes Risk are provided for the general renewal case.

(3.42) Dayananda, R. A. and Eﬁaﬁs, I. G., "Bayesian acceptance - sampling

schemes for two sided tests of the mean of a normal distribution

of known variance®, [15]

This article is concerned with the problem of deciding whether the mean

o of a normal distribution of known variance lies in a specified finite
interval (E,e+). Consideration is given to prior information on & and to
—quadratic and piecewise linear utility structures. Computer aided methods
are described for obtaining the optimum decision rule given a sample of
observations and for obtaining the optimal sample size when the sampling
cost is a linear function of the sample size. Some simpler approximate

methods are also described.
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(3.43) Good, I. J. and Crook, J. F. (1974), "The Bayes/non-Bayes compromise
and the multinomial distribution", Am. Stat. Ass. J., 69, 711-720, [26]
Compromises between Bayesian and non-Bayesian significance testing are
exemplified by examining distributions of criteria for multinomial equi-

probability. They include Pearson's ¢2

, the Tikelihood ratio, the Bayes
factor F, and a statistfc G that previously arouse from a Bayesian model

by II'T,ypta- IT maximum likelihood." Its asymptotic distribution, implied

by the theory of the "Type II likelihood ratio" is remarkably accurate
into the extreme tail. F too can be treated as a non-Bayesian criterion
and is almost equivalent to G. The relationship between F and its own tail

area sheds further light on the relationship between Bayesian and "Fisherian"

significance.

(3.44) Duncan, D. B., "A Bayesian approach to multiple comparisons", [19]
The main concern of this paper is the symmetric multiple comparison
problem of simultaneously testing the differences between several sample
means taken in all possible pajrs. Past and present procedures for solving
the problem are discussed and illustrated with emphasis on their wide
disagreements. A multiple-decision approach to the precblem with a simple
Jeffreys-like Bayesian emphasis is developed in depth. A working minimum-
average-risk procedure is derived which is found to have much the same
form as the simple Fisher LSD (least significant difference) rule, but
with the LSD determined as a specifically defined function of the between-
treatments observed F ratio. The overall analysis is of more general
interest. It provides a practical example of potentially fruitful
uses of decision-theoretic Bayesian techniques in a larger class of

similar important experimental inference problems.
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(3.45) Bracken, J., "Percentage points of the beta distribution for use
in Bayesina analysis of Bernoulli processes", [9]
Here percentage points of the beta distribution ZII are tabulated

such that FB(ZII/r,n) = II. The percentage points are given to four

cecimal places for II = .01, .05 (.05) .95, .99, n = 2(1)30,40,50 and
r = 1(1)[n/2]. The tables are primarily for use in Bayesian analysis of
Earnoulli processes. Numerical integration of a function with respect

t2 the beta distribution is also discussed.

13.46) Grosh, D. L., "A Bayes sampling allocation scheme for stratified
finite populations with hyperbinomial prior distributions”, [30]
When sampling is carried out independently for the k- strata of a
finite stratified dichotomous population (defective vs. standard items),
and the number X of defectives per stratum sample is observed, the corres-
ponding probability function for X = (x], cees xk) is the product of hyper-
geometric functions which depend on the sample size Ny the stratum sizes
Ni’ and the number of defectiveg m, in the stratum (i = 1,..., k). It is
assumed that prior information is available about the m,'s which can be

i
expressed, by suitable choice of the parameters a, and bi’ as the product
of independent hyperbinomial functions.

In each stratum the cost per observation is a known constant. Using
squarred error loss function, the prior Bayes risk is found for the linear

function of interest,

~and the optimum allocation of sample sizes is found, the one for which the

prior Bayes risk is minimum when the total sampling budget is fixed.
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ABSTRACT

The main purpose of this report is to see how Bayesian analysis is
applicable in Quality Control. In all, this report contains 8 articles
dealing with various aspects of Quality Control such as optimum sample
size, acceptance number, costs for accepted or rejectéd lots, subclasses
in stratified sampling, population size assumption, single sample inspection
schemes etc. To quote a few results, it has been found out that optimum
sample size is directly proportional to the square root of the lot size:
it is also shown that for the prediction problem, the population may be
assumed to Be infinite or finite.

The report also gives a short summary of artic]és published by
various authors in various journals that are concerned with Bayesian
analysis. A list of articles for additional reading has also being given.
In the end a bibliography is given.

This report covers the following journals over a period of 10 to 12
years. (1) Biometrika, (2) Technometrics, (3) Journal of Royal Statistical
Society, (4) Journal of American Statistical Association, (5) Annals of
Mathematical Statistics, (6) Journal of Quality Technology and (7) other
miscellaneous journals which were cited.

Initially it was decided to cover a wide range of literature on
Bayesian analysis, but due to the advanced and complicated nature of the
- subject, together with the lack of sufficient background, work has been
severely restricted. Hence more complicated articles are either summarized

or listed for additional reading.



