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CHAPTER 0
ANTRODUCTION

In spring, 1983, the author was one of the participants
of an implementation project. The objective of the project
was to implement a portable SIMULA compiler to be used in
the Perkin Elmer portable SIMULA system. The system is an
adaptation of the portable SIMULA system ( S~Port) developed
by the Norwegian Computing Center (NCC) to the Perkin Elmer
32-bit machines.

The project work was divided into five broad
components.

1) The modifications to Pass 6 ,Pass 8 and Pass 9 of
Pascal/32 compiler,

2) The modifications to Pass 7 of Pascal/32 compiler,

3) The coding of an independent pass known as Interpass.

4) The design and coding of the Environment Interface
Support Package.

5) Code development for the token stream dumpers for Pass
6, Pass 7, Pass 8 and Pass 9 of the Pascal/32
compiler.

The function of Interpass is to translate S-code into.
the input language for - Pass F. ( S-code is a low language
control language used by a front end compiler to translate
the original SIMULA source program ), Interpass includes a
main controlling program c¢oded 1in Syntax/Semantic (5/SL)
language and a set of semantic operations coded in Pascal.
The author's task was to interpret the underlying data
structures of Interpass and to code the sewantic procedures

to be invoked by the S/SL program., Approximately 1300 lines
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of Interpass code (Semantic routines) were developed by

author during the course of project participation.

1)

3)
4)

3)

6)

7)

the

This report
Provides a brief history of SIMULA language and
introduces the S-port system

Discusses the impeortant features of the low level
langquage S-code
gives a brief description of Syntax/Semantic language
summarizes the passes one through nine of the
Pascal/32 compiler on Perkin-Elmer machine

discusses the components of the Perkin Elmer SIMULA
system

provides a a detailed description of the major data
structures and semantic operations of Interpass and
discusses some of the interesting problems encountered
in Interpass design.

The report concludes with a summary of the status of

project, the future modifications to be done in

Interpass and the author's general impressions of the

project on the whole,
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CHAPTER 1

SIMULA AND S—PORT

The first part of this chapter briefly describes the
history and important features of SIMULA language. The
second part discusses the major components of the portable
SIMULA system (S-Port).

1.1. S;MULA :
1,1.1., History of SIMULA67 :

SIMULA67 was developed at the Norwegian Computer
Center (NCC) during the years 1865-1967 [l]l. The language
is in effect an extended version of the simulation 1language
SIMULA I. The initiating ideas for SIMULA I can be traced
back intc late fifties but the major development phases of
this language were carried out from 1961 to 1964.
Initially, the design of SIMULA I was based on the 'network'
concept, A system was described as a network of a fixed
number of active components (events) with variable number of
passive components acted upon by the active components. But
as the language developed, the network concept was found to
have shortcomings and the designers of SIMULA I adopted the
'process set' concept.

A system was now viewed as a variable collection of
interacting processes. Each process was represented in the
form of a stack,. The idea of gquasi-parallel execution;

i.e., the control switching from one process to another by
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the action of special sequencing was also introduced. The
concept was further modified by including process
referencing using the pointer variables. At this point, the
design was strongly influenced by two languages : ALGOL60
and SIMSCRIPT. The Dynamic block structuring cf ALGOL60 and
the pointer concept of SIMSCRIPT had been used in the SIMULA
I design. The language was basically intgoduced as a
simulation language. After a number of successtul
applications of SIMULA I to different Jjobs, in 1965, the
designers of SIMULA I envisaged the possibility of modifying
SIMULA I into a general purpose language.

Two major observations were made in relation to SIMULA

1) The remote attributes accessing machanism was too

complex.

2) Several processes were found to be having common

properties.

In order to resolve these problems, a new concept was
introduced. Hoare's record class construct was included
along with the idea of prefixing. Each process was viewed
as assoclated with a 1link and the link=-process pair
considered to be a block instance. Further, a block
instance was composed of a prefix layer and a main part.
With the introduction of these concepts, SIMULA I was
transformed into a general purpose language SIMULA 67.
1.1.2 Features of SIMULA

SIMULA67 is designed to serve dual purposes :
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1} It should be wused elegently for defining large and

complex simulation problems.

2) It should be capable of being used as an algorithmic
language for a wide variety of less specialized
problems.

If we want to deal with a very large problem, then it
is neccessary to decompose the problem into components of
mangeable size, Each component <c¢an then be understood
individually one at a time. Also, In order to manipulate
and relate the subcomponents of a large problem, powerful
list processing capability is neccessary.

SIMULAG67 exhibits the features which are essential for
achieving the aforesaid objectives. As the history of the
language reveals, ALGOL60 is the base of SIMULA. In ALGOL6Q,
the decomposition is achieved through the 'block' concept.
B block is a formai description of an aggregate data
structure and the actions involved with this structure.
Whenever a block 1is executed, an 1instance of Dlock is
created, This instance may be 1in the form of a dynamic
memory area allocation for the variables local to that
block. Further, several block instances may be dgenerated at
the same time, These. block instances can interact
simultaneocusly with one another.

In SIMULA, the block <concept 1is modified through the
introduction of an object and 1its class declaration. An
object is an independent program segment (block instance)

having its local data and actions . A specific data and



Page 6
action pattern 1is defined in the class declaration. All
objects with similar patterns or formal descriptions tend to
belong to the same class. A class may also be used as a
prefix to another class declaration, The data and actions
declared by the prefixed class are used along with the data
and actions defined in the new class declaration. The
actions defined in a particular class declaration can be
executed sequentially by the obJject of that class, These
actions can also be executed as a series of individual
subsequences.

Besides decomposing the problem into smaller
components, the class/ subclass concept gives sufficient
flexibility to both the specialized and non specialized
users in the usage of the language; Through the ideas of
Classes and prefixing SIMULA67 behaves as a powerful
application language. A user may prefix his/her program
with predefined classes without worrying about the detailed
data structures associated with those classes. At the same
time, a specialized user may define new classes in the
program depending upen the complexity of his/her probleu.

SIMULA contains a basic type 'reference' or pointer to
identify and relate objects to each other. A reference is
qualified by a class name. This means that the given
reference can only peoint to the objects belonging to that
class or belonging to the subclasses of that class.
Components ¢f data associated with different objects of the

same class can be refered to by remote accessing using a dot
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notation., The reference (ref) type is used to provide 1list
processing to sets of objects. It also proﬁides reference
security to the data belonging to a particular class by
identifying it at compile time. The list processing
facility 1is implemented in the language through the
introduction of system defined <class 'Simset'. This class
is used as a prefix to the given classes to provide two way
links to the set of objects. [2]

1.2, S=PORT :

S-Port is a portable implementation of the SIMULA
lanquage, It is developed by the Norwegian Computing Center
(NCC) . (2]

S-port consists of three components :
1.2.1. Portable front end compiler :

The portable front end compiler translates a source
program written in SIMULA into an intermediate language
S-code. The compiler itself is written in SIMULA.
l1.2.2. Portable Run time system

This system 1s used to support the Input/Output
handling routines, editing and deediting tasks and
mathematical functions library on the machine in question,
It is used for the runtime environment manipulation of the
machine.

The front end compiler and the run time system are
distributed in S-code.
1.2.3. A machine dependent code generator :

In order to build a complete SIMULA system, S-port is
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to be supported by a back end compiler (S~compiler), The
task of S-compiler is to translate the programs in S-code
into the machine lahguage of the given machine. It also
must establish necessary 1links to the operating system of
the object machine. The environment interface support
package provides system dependent services to the S-Port
through an environment interface. The interface is system
independent and 1s organised according to the S-code
standards.

The S-compiler translates the front end compiler and
the run time system into object machine code. These
translated systems along with the environment interface
insert necessary links to the operating system of the object
machine and the front end compiler is thus adapted to the
object machine environment. Any SIMULA program can then be
translated into S-code by the front end compiler. The
translated version can be compiled by the S-compiler ana
linked with the machine code versions of the run time system
and environment interface support package to produce the
final object code of the original SIMNULA program.

The semiporfable SIMULA system provides the ftront end
compiler and the runtime system package. In orager to
implement the SIMULA system on Perkin-Elmer machines, it 1is
neccessary to develop the S-compiler for these machines and
to provide an environment support package compatible with

the operating system of these machines ([3].
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CHAPTER 2

The purpose of this chapter is to describe the
important features of the 1low level 1language S-Code.[3]
This is an intermediate language used as an interface
between the front-end compiler and the c¢ode generator
(S-compiler}. The language 1s non—-interpretable 1in the
sense that it controls a compilation process, the result of
which is an executable form of program.

S=code is a stack and descriptor oriented language.
The program translated in S-code is vaguely in the form of
Polish postfix notation. The syntax of S-code is described
in BNF form. A few key terms used in the definition of
S-code are first described in this chapter,

2.1 IMPORTANT DEFINITIONS :
2.1.1. Quantity :

Something which has a specific meaning ana which can be
manipulated at run time by the executing program.
2.1.2. Descriptor :

An abstraction used by the compiler to describe the
properties of the dguantities existing at run time. The
format of the descriptors depends upon their implementation
technique and the target machine., A descriptor defines the
actions taken by the compiler when it recognises a specitic

program element. The action may be data manipulation or
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code generation for the target machine. There can be a
tradecff between the data manipulation and code generation
at certain stages of compilation. But it is more or 1less
decided by the S-compiler. The descriptors themselves donot
exist at run time., They provide the information.about the
objects which can exist during the computation and are used
in the compilation process for generating executable code,

S=code defines a stack to perform operations on the
descriptors., It is a compile time data structure and is
used to describe the effects of S-code instructicons. The
stack does not have any existance in the executable code
obtained from compilation,

2.1.,3,. Tag :

A primitive syntax symbol used for identifying a
descriptor. It exists as a two byte value (Number) which
can be greater than or equal to zero. Tags are analogus to
the identifiers in high level languages. A 'new tag' is
tag value without any association to a quantity. A 'spec
tag" is tag value which has been associated in a
specification. The tag associated in a specification will
later be defined through a declaration of the tag value with
the same type.

e.g. constspec e REAL

const e REAL c=-real '2.303'

'e' is spec tag for <constant of type real which is
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undefined but specified between the two statements. It
becomes defined later through the token 'const' and obtains
the constant value 2.303.

2.1,4, Index :

A number used for identifying internal labels. An
index can be reused to define another label. At any
ingtant, there is a cne to one mapping between the index and
the instruction. The index may be used to generate the
internal labels for backward and forward jumps or to access
a particular element in a repetitive gquantity. A 'new
index' is an index which is undefined. It becomes detfined
upon its occurance,

2,1.5., 1Indefinite Repetitions :

The attribute of a record may be defined as a
repetitive field., When an attribute contains repetitions, a
vector of 1identical elements 1s defined. The individual
elements are accessed through indexing. A.count of zero
repetitions indicates that number of elements in the vector
is indefinite. Indefinite repetitions are allowed 1in a
record descriptors but only the last attribute or the last
attribute in any - alternate part may contain indefinite
repetitions. '

2.1.6, Object Unit :

24 data storage unit of implementation defined fixed
size. The size <consists of integral number of machine
addressable storage cells.

2,2 TYPES IN S—-CODE :
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Every data guantity in S-code belongs to some type. A
type decides the internal structure of the guantities ana
the operations to be performed on thenm. The global
variables, locals, constants, parameters etc, are defined
using type. A unique descriptor 1is associated with each
type. This descriptor cannot be used on the stack,
therefore types cannot be used dynamically. S-code defines
two major types

1) Prefined types
2) SBtructured types
2.2.1. Predefined Types :

These are simple types. They are represented as
predefined tags in S-code. Tags 0-10 are reserved for the
simple types. Simple Types are analogus to the built-in
types in high 1level 1languages. A simple type can be an
arithmetic type, data address type or an instruction address
type.
2.2.1.1. Arithmetic types:

Bool, Int, Char, Real, Lreal and Size are arithmetic
simple types.
2.2.1.2. Data Address types :

Qaddr, Adaddr and Gaddr are the data address simple
types.
2.2.1.3. Instruction Address types

Paddr and Raddr are the instruction address
predefined types.

The following three tables provide the description as
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well as the estimate of the value ranges of the predefined
types.

2.2.2. Structured types :

A record descriptor describes a structured type through
the use of a record tag. The generated type can be used 1in
the definition of constants and global or local variables.
The structured type can also be used as a prefix to another
record or as an attribute type. If the record descriptor
contains indefinite repetitions, then such a repetition must
be resolved through the wuse of fixrep token. The token
assigns a finite repetition value and therefore a finite
number of elements to the associated record descriptor.

A structured type can contain an optional prefix part,
common part and an optional alternate part. The prefix
refers to a simple or structured type descriptor previously
defined, The common part can contain a number of attributes
in its body. The allocation order of these attributes ana
the physical order of the attribute in the record descriptor
need not be the same, But, if an attribute includes
indefinite repetitions then such an attribute must be
declared as the last attribute in the list of attributes. |
i.e. just before the end of the record ). The recora
descriptor for the structured type may contain an alternate
part too. The concept is analogus to the concept of variant
records in Pascal.

Within a given part, the attributes can be packed by

the S-compiler in any convenient way. But within a recora
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TYPE DESCRIPTION VALUES
Bool Can have boolean values True/False
Int Can have integer values Range is machine dependent :
Usually half word or word
_ representation
Real Can have real values Range ismachine dependent :

Usually similar to short
reals representation on

32-bit machines
Lreal Can take real values of Range is machine dependent :
greater precision Generally similar to the

machine representation of
reals on conventional
architectures for 32-bit

machines
Char Can have 256 different Representation on 32-bit
alues machines as a byte
Size Describes the size of | Range is machine dependent

record or the distance
between two machine
addresses for two records

TABLE 1. ARTTHMETIC TYPES
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TYPE DESCRIPTION VALUES

Oaddr Describes the first Represents true machine
address of a record address |

Aaddr Defines the relative Represents the offset from
address of record comp- the base Qaddr : not
onent (attribute) neccessarily a true machine

| address

Gaddr Identifies a particular Represents an Oaddr and Aaddr

attribute of the record pair : Base offset may not
be a pure machine address

TABLE 2. DATA ADDRESS TYFER

TiPE DESCRIPTION VALUES
Paddr Defines the address of Represents a true machine
an instruction in the address '
program
Raddr Identifies the address Represents true machine
' of the entry of a address
routine

TABLE 3, INSTRUCTION ADDRESS TYPES
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the order of the parts - prefix..common..alternate must be
preserved. The size of a structured type is the size of
prefix + size of common part + size of the largest
alternative. Here is an example of a structured type :

record A
attr B INT
attr C CHAR
end record
record D
attr E BOOL
attr F A rep 3
end record
record G prefix D
attr H REAL
attr I REAL rep O
end record
2.3. GLOBAL VARIABLES :

In S-code, a global variable can be declared either
through a global definition or a global specification. The
declaration results in the static allocation of the global
area. A global variable may be initialized by using an ipit
token, If the wvariable is of structured type, all the
components of the record are assigned constant values. An
indefinite repetition, if present, is resolved during the
initialization. But in general, an uninitialized variable
is not allowed to contain indefinite repetition.

In some cases, it may be necessary to refer the
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variable before it is defined. A global specification is
used to bind the tag to the yet undefined variable. Later
in the program, the wvariable must be defined through a
global definition.

A global variable is always assigned an integral number
of object units. Therefore It can be addressed either by a
general address or an object address,

2.4. TAGGED CONSTANTS:

The language can declare a tag refering to a constant
area used to hold the wvalue of a constant. A descriptor
will be associated with this tag. If it is neccessary to
refer to the tagged constant before its value is known then
a constant specification 1s wused to bind a tag to the
constant of the given type. The constant may later be
defined through a constant definition. A constant 1s also
allocated an integral number of object units.

2.5, NAME SCOPE :

S-code allows two levels of scope for the variables or
identifiers., The wvariables or tags declared within a
routine have a specific meaning within the body of the
routine. The tags lose their meaning at the end of the
routine, They may be used with a different meaning in the
other routines or at a different point in the program. The
scope is -confined to two levels because the routines in
S-code are nonrecursive, and the static nesting of routines
is not allowed.

2.6, ROUTINES:
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In S-code, routines are analogus to the procedures in
the high 1level 1languages. But they exhibit certain
restrictive properties. The routines in this language are
inherently nonrecursive., The péramaters can only be passed
by value. A routine must return (exit) through its end. A
return address is available to the routine through an exit
definition. The definition identifies a descriptor for the
area containing the return address of the routine.
Therefore, a routine can change its return address.

A routine " definition <c¢reates two descriptors, one
relating to the profile and the other relating to the body
of the routine. A profile defines the input parameter list
( import parameters) and the exit descriptors <for the
routine and the body defines the local descriptors and the
instruction segquence within the routine. An 1import
definition declareé a local gquantity which will be later
associated with the profile. The order of the parameters 1in
the profile 1is important since this order defines the
correspondence between the formal parameter locations and
parameter value assignments. If an import parameter
contains repetition then the <c¢all to the routine must
contain the count of the maximum wvalues to be transferred.

The Peguliar routines in S-code are of three kinds. A
known peculiar routine has its body defined in S-code. The
S-compiler can replace the body with another code sequence
to achieve optimization., A system routine is used as a part

of the interfacing routine set used to provide interface to
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the run time environment of the S-program. These system
routines are not coded in §&-code. Therefore, a system
routine does not have a body. The calling and parameter
passing mechanisms in case of such routines are system
dependent, An external peculiar routine is the one which is
written in a language other than S-code and its definition
is implementation dependent.

2.7. STACK OPERATIONS :

In addition to the above mentioned features, S-code
contains instructions relating to the operations on a stack.
€.9.

2.7.1. Push

It is used to push a copy of descriptor of associated
with a global constant or local quantity.
2.7.2. Dup :

It is used to duplicate the descriptor on the top of
the stack.
2.7.3. Rupdate :

It is used to transfer the wvalue described by the
descriptor on the second position of the stack to the
location described by the top of the stack. S=code also
provide addressing instructions to modify or refer to the
areas described by the descriptors of the type GADDR, OADDR
or AADDR. e.g.

2.7.4, Deref
It is used to modify the top of the stack to describe

the address of the given area.
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The language specifies branches in the program through

the use of jump instructions. Specific labels are created
for the forward and backward jump destinations using
indexes., S-code also provides instructions for handling
dynamic quantities and for controlling the segementation 1in

the program,



Page 20

CHAPTER 3
SYNTAX/SEMANTIC LANGUAGE
This chapter serves as an introduction to

Syntax/Semantic language. The important features are
described 'in the following paragraphs. Syntax/Semantic
language (S/SL) was developed at the University of Toronto
mainly for implementing compilers.[4] The structure of a
program written in §S/SL resembles a textual notation far
syntax diagrams with statements relating to the output
actions and calls to the semantic routines inserted. The non
determinancy associated with the syntax diagrams is resolved
in this language by explicitely including selectors in the
choice actions. aAn §S/SL program behaves like a recursive
descent parser with output actions and semantic routine
calls included in it, 5]
S/SL is a very simple language. The structure of the

the language exhibits only five basic features:
3.1. LANGUAGE FEATURES :

1) Input and output of tokens and matching of tokens

2) selection, repetition and sequencing of the statements

3) Rules or subprograms

4) Calls to semantic operations

5) Output of error signals

The semantic operations are written in some base

language 1like Pascal. S/SL 1is essentially a control
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language. It does not have any data handling capabilties.
Therefore, it does not feature variables or assignments.
Data is manipulated only via the semantic operations.
Because of the simplicity in structure, §/SL 1is highly
suitable for writing compilers.

Each S/SL program consists of a list of declarations
followed by executable subprograms or rules, A rule has
three components: name, an optiocnal return type and a list
of actions followed by ';'. There are two kinds of rules -=-
Procedure rules and Choice rules. The Procedure is analogus
to the procedures in Pascal and can be recursive. The
Choice rule is analogus to the function in Pascal.

3.2, S/SL ACTIONS

S/SL program éenerally exhibits eight specific kinds of
actions.

32l Call Action:

This action is used to invoke a procedure rule.The rule
name Preceded by the symbol @ signifies a call.
Fe2uls Return Action:

The action is used to indicate a return before reaching
the end of the rule. The symbol >> signifies the return.
In a Choice rule, the return action must include a value to
be returned but in a Procedure rule the return value is not
given. This action is generally not used in Procedure rules
since a return is implicit at the end of a procedure rule.

3.2.3. Input Action:

The input action reads the next input and matches it
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against a specific input token. The action is indicated by
the presence of an input token name in a rule.It is also
called a Match action.

3.2.4. Emit action:

This action is used to output a token in the output
stream, It is specified by a dot (.) followed by the token
name.

3.2.5, Error action:

This action is used to output the error signal in the
special error output stream. It is specified by a (#)
followed by the error signal.

3.2.6, Cycle action:

This action is analogqus to the loop structure in the
high level languages like Pascal. The statements enclosed
within '{' and '}' are executed until a return '>>' or one
of the <cycle exits 1is encountered, The cycle exit is
specified by the symbol '>'.
3edule BExit action:

This action is taken whenever a cycle exit 1is
encountered. The control is transferred from the innermost
cycle.

3.2.8, Choice action:

The effect of this action 1is analogus to a case
statement in Pascal. The action is optionally headed by a
selector and is followed by a 1list of 1labels and the
associated actions, The last label may be a '*' which

signifies 'otherwise'.
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A choice action can be a rule choice, a semantic choice
or an input choice. If the selector is the name of an §/SL
choice rule then the checice action is a rule choice. 1If the
selector is the name of a semantic operation (routine} then
the choice action 1is considered to be a semantic choice.
The rule choice calls a specified <choice rule and tries to
match the wvalue returned by the rule to any of the labels.
A semantic choice calls a semantic routine and tries to
match the value returned by it against any of the labels,
If the selector is '=' then the next input token is matched
against one of the labels. This is called an input choice.

If none of the labels matches with the input token(in
case of input ~choice) or the value returned(in case of a
semantic choicej then the alternative £following the '*' is
taken. The symbol'*' is analogus to the otherwise clause in
a Pascal case statement.

The Choice action controls the decision process. The
input token or the value returned is only used as a
determiner for the selection of a particular set of actions,
it does not modify or manipulate any data.

The semantic routines called by the S/SL program are
procedures written in a language like.Pascal. They can be
parameterized or nonparameterized, The parameters passed to
the parameterized routines can be only constants, since 5/SL
does not contain any variables. The entire data handling
process is carried out through the execution of these

routines. S/SL adheres to a strict data abstraction by
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separating the algorithm from the data. The algorithm
invokes the semantic routines where the data is
manipulated.

All input tokens, output tokens, error signals and
results returned by semantic procedures used by §8/SL rules
are defined in the form of sets of values. They may be
defined by enumerating their members. Each member is an
identifier. The enumeration resembles the enumeration type
in Pascal.

3.3, S/SL IMPLEMENTATION :

The S/SL language is implemented in two phases, A
translator translates the .S/SL program into an intermediate
language called S/SL-code., The is a machine- language-like
instruction set encoded into sequence of numbers, The
result is a Pascal array of integers. The translated S/SL
program is then interpreted by an §/SL interpreter. It
scans through the array by using a large case statement.
Each instruction and semantic operation of S/S8L-code has a
counterpart 1label 1in the case statement. There are
additional instructions for handling parameterized semantic
operations. The actions of the §/SL-code( S/SL program )
are carried out as the 1instructions are interpreted by the

interpreter,
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CHAPTER 4

PASCAL/32

This chapter describes the major functions performed by
the Passes 1 through 5 and gives a detailed account of the
code generation Passes 6 through 9 of the Pascal/32 compiler
[5]. This compiler is a nine pass Pascal compiler for the
Perkin-Elmer machine, It is an extensive modification of
Hartmann's compilers for concurrent and sequential
Pascal.[6]

4,1, LEXICAL ANALYSIS ({Pass 1)

The pass transforms the character input from the source
program into a sequence of integers Kknown as tokens. Each
unique identifier is mapped to a specific spelling index.
These spelling indices are then used by the later passes.
4.2, SYNTAX ANALYSIS (Pass 2 ) :

This pass verifies the syntax of the intermediate code
generated by pass 1. The output of this pass is in the form
of a polish postfix notation, the operand <followed by
operators.

4.3. NAME ANALYSIS (Pass 3) :

This pass establishes the scope of the identifiers. It
maps each spelling index to a unigue name index. Since the
same identifier may be used with different meanings in
various blocks, pass 3 distinguishes the usage of the

identifier by establishing a naming scope.
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4.4 .DECLARATION ANALYSIS (Pass 4) :

The main function of this pass is semantic processing
of the intermediate code generated by Pass 3. It allocates
storage to the data by providing data addressing and data
type informatipn. The input to this pass is unigue name
indices which refer to the types, variables parameters or
recutines. The output refers to the objects by a four tuple
consisting of mode, context, displacement and level,

4,5, OPERAND ANALYSIS (Pass 5)

The pass performs operand type checking on all the
operators in the program. It checks the compatibility of
operands and their operators. The input to this pass refers
to the objects by addressing mode, displacement, context and
level. This is the intermediate code generated by pass 4.
The output of this pass 1is a set of assembler instructions
for a virtual stack machine.

4.6, PROGRAM LOGIC (Pass 6)
There are two main functions performed by this pass.

1) Optimisation and rearrangement of the intermediate

code supplied by Pass 5 ,

2) Operations on the Constants (Constant Folding}.
Pass 6 builds an in-core data structure for the procedures
from the input stream and 1in the process carries out the
optimisation and constant folding. The data structure is a
" stack of lists of trees., The fundamental element of the
list is a record containing three pointers. The next

pointer (MP) points to the next element of the list. The
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left and right pointers(LP-RP) point to the left and right
substructures. The next pointer is used to link a list of
statements. A head pointer points to the beginning and a
tail pointer points to the end of the list.

In general, one element 1is created for each input
operator. The data structure is built from the input using
a stack. Each element of the stack is a list similar to the
list to be created. The stack element stores the head and
tail pointers. Three basic elements operations are
performed on this stack.

1) Pushihg a new element on the stack

2) Appending an element to the list

3) Branching one or two 1lists to the right and left
substructures

Constant folding is done during the process of building
the data structure. For example, if both operands of an
operator afe constants, represented by the right and left
substructures, then the value of the expression 1is
calculated at compile time, Both operands are popped from
the stack and a PUSHCONST entry along with the calculated
value is pushed on the stack.

Some other optimizations are also ddne for generating
better code. In order to generate the intermediate code for
pass 7, the data structure is traversed recursively in post
order. During this traversal, some of the special
optimisation cases are handled. For example, in a 'For'

loop, if the initial value is greater than the final wvalue,
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the loop is skipped entirely. Similarly, if the value of
the expression in a 'Case' statement 1is known at compile
time then the case statement is replaced by a jump to the
particular label.

4.7, CODE GENERATION (Pass 7) :

The main function of the pass 1is to generate code for
the 8/32 interdata machine, The input to this pass is a set
of instructions for the virtual stack machine (generated by
Pass 5) modified in structure by Pass 6. The output is a
set of 8/32 instructions in unformatted form.

pass 7 allocates general, single precision and double
precision £floating point registers. It also generates
symbolic references to code labels, procedure labels,
statement labels, stack depths and 1literals. One of the
main data structures of this pass is an attribute stack.
The stack is in the form of a linked list of records. It
simulates the contents of run time stack of virtual stack
machine. The fundamental element of this stack 1is an
attribute record. Two pointers are maintained on the stack.
The TOP pointer points to the top most record and Second
pointer points to the second top most record. An attripute
record itself contains a backward 1link field, type of the
object being described and a kind field describing the Kkind
of the cobject.

Another data structure used by Pass 7 1is a set of
structures associated with register allocation. General,

real and short real are the three register sets available to
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the user, The current state of each register is stored in
an array and each register 1is either marked free or
allocated,

Pass 7 does not distinguish between the instructions
which perform similar functions but whose sizes are varying.
The intermediate code generated by the pass contains all
such instruction pairs.

4,8. CODE OPTIMISATION (pass 8) :

The main function of this pass 1s to make machine
dependent optimizations. It makes 1instructions choices
depending upon the length of the instruction. Pass 8 maps
the code 1labels to the actual machine addresses by
generating a table. It performs machine dependent
optimisations using the peephole technique.

4.9. FINAL ASSEMBLY (pass %) :

The main function of this pass 1is to convert the
machine code into the format accepted by the linking loader.
It uses the table supplied by Pass 8 to replace the labels

with the addresses.
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CHAPTER 5

PERKIN-ELMER SIMULA SYSTEM

The major objective of this chapter is to describe the
components of Perkin-Elmer SIMULA System, This system is
going to be implemented as a complete SIMULA system on
perkin~Elmer machine . It is to be run under the Unix(Tm)
operating system. S-Port or the Semi-Portable SIMULA system
provides a portable front end compiler and a portable run
time system. ° It also outlines the machine independent
environment interface., 1In order to implement the system on
the Perkin-Elmer machine, It is neccesary to provide a
machine dependent <code generater, The task involves the
generation of an S-compiler (the code generator) and an
environment interface support Package. The package 1is
machine dependent, The S-compiler written for the Perkin
Elmer Machine consists of two components.

5.1, S-COMPILER COMPONENTS:
1) An independent pass known as interpass
2) A set of modified code generator (passes 6 through 9 )
of the Pascal/32 compiler.
5.1.1. Interpass :

This pass translates the token stream of S-code into
the intermediate language of a modified version of pass 6 of
the Pascal/32 compiler. The input to this pass is a token

stream of S-code, It is a file of integers in binary byte
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code form.

Interpass recognizes the operations indicated by the
S-code and releases appropriate tokens for the input stream
of modified pass 6. It also allocates data space for the
constants and global or local variables within the
respective areas, Unlike the initial passes of Pascal/32,
interpass , in certain cases, does not release the tokens at
the end of the output stream. Instead through the use of
pointers the tokens are inserted in the middle of the output
stream . The main controlling language of interpass is S/SL,
but the operations associated with the manipulation of data
are written in Pascal. The S/SL program invokes these
semantic operations. The S/SL interpreter for the interpass
is also written in Pascal.

5.1.2. Modifications to pass 6 through pass 9 :
5.1.2.1. Passé6:

1) New tokens must be included in the input tcken stream
of this pass for the language features which are
present in S-code but not 1in Pascal. E.g. S-—code
contains the terminal tokens wupdate and rupdate for
transferring the value described by one operand to the
location designated by the second operand.
Unmodified Pass 6 does not contain counterpart tokens
for these two operations.

2) Pass 6 contains the mechanism for handling the true
constants but not initialized wvariables which behave

like constants. S=-code has 1initial constant values
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for the variables of the arithmetic type, data address
type and instuction type. Pass 6 1is therefore
modified to include one more area which can hola the
initialized glocbal variables of S-code.

3) The design of Pass 6 supports a polish postfix
notation and the basic data structure is a tree. Each
result operand is used only once and so this structure
is suitable. The dup token of S-code requires the
duplication of its operand. It 1s not possible to
represent this operation by a tree. Therefore,
algorithms for generating graphs other than a tree are
included in the design of Pass 6.

5,1.2.2. Pass 7:

This pass is designed to hold the descriptors of the
runtime operands on the stack as 1long as they are not
computed, The register <containing the operand 1is freed
after the computation of the result 1is complete. In order
to process the tokens like dup in S-code. it is necessary to
save the contents of the register or the temporary location
after the result 1s computed. Pass 7 has thus to be
modified to allow for the prevention of the automatic
deallocation of the register or the temperary location,

Besides the dup token processing, there are various
other cases which need multiple uses of the registers. E.qg.
for an efficient handling of dynamic gquantities. Pass 7 is
also modified to include operations to process the general

(GADDR) type of S-code. The object address (OADDR) and
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attribute address (AADDR) pair of GADDR type is treated as a
single item in S-code, But two full 32 bit words are
required to hold these components. Existing Pass 7
generates code for all such large values, and the value not
being held in single register, is manipulated in the memory.
Such an arrangement is considerably slow for addressing
operations involving GADDR type. The Pass 7 is modified to
treat the GADDR values as a pair of values on the stack of
its token stream. Pass 6 and Pass 7 conta;n the facility
for array bound checks and in case of lower bound, the
substraction of a lower value other than zero. S-code
assumes a lower bound of =zerc for the list of repetitive
guantities. Also, bounds checking 1s not required 1in
S-code. These passes are modified for the zero lower and no
bounds checking.
5.2. ENVIRONMENT INTERFACE SUPPORT PACKAGE
The package is used to facilitate the'access to the
UNIX operating system. Since the base language of the Unix
operating system is 'C', the package 1is written in C. In
particular, the package provides the system dependent
interface for the environment in which the Portable SIMULA
system i1s to be implemented. Since the runtime environment
of the Pascal code generator is different from that of UNIX,
the support package contains procedures £for the neccessary
environment switch between the Pascal and SIMULA
environments and the C environment. In particuiar, this

includes saving of stack pointers for both C stack and
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Pascal stack and copying of the parameters., The package
translates system independent envi;onment functions into
UNIX functions. In addition to this, UNIX supplied editing
and deediting 'services are modified by introducing new

functions in the package.
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CHAPTER 6

DATA STRUCTURES AND SEMANTIC ROUTINES FOR INTERPASS

The author was one of the participants of the Perkin
Elmer Simula system project. The Project work was devided
into five broad components. Coding of interpass was one of
the major components. Interpass includes a main'controlling
program coded in Syntax/semantic language (S/SL) and a set
of semantic operations coded in Pascal. The author's task
was to interpret the underlying data structures and to code
the semantic procedures to be invoked by the S/SL program.
The outline of the data structures and the semantic
operations was provided by the project director, Dr. Rodney
Bates, This chapter gives a detailed description of the
major data structures and the semantic operations of
Interpass. The role of these semantic operations in the
design of interpass is also discussed.

6.1. DATA STRUCTURES :
6.1.1. S-stack :

This is a global stack which corresponds to the compile
time stack defined in the S-code. It is a stack of pointers
pointing to the descriptors. The stack is implemented as a
Pascal array of pointers.

6.1.2. Tag-stack
The tag stack is a stack of tag values associated with

the descriptors. It is implemented as an array of 1integers
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within a predefined subrange.
6.1.3. Count-stack :

The count stack is used to temporarily hold various
integer values such as displacements, length etc during the
compilation. Compile time arithmetic is done using the
count stack. It is implemented as an array of integers.
6.1.4. Update stack :

This stack stores the global meanings of tags which are
redefined with local meaning in a routine body. At body
exlt, the stack entries are used to restore the former
meanings of the tags.,

6.1.5. Reachable stack :

This is a global stack of boolean values. It is used
to indicate whether the current point in S-code is reachable
or not. Initially, it has only one entry with value false.
The top is turned false by the tokens associated with
backward jumps, forward Jjumps, unconditional gotos and
switches. The top of the stack 1is turned true by backward
destinations, forward destinations, switch destinations and
the 1labels endif and else, The stack 1is pushed when
statically nested procedures are entered and popped when
they are exited, |

6.1.6. Mark stack :

This is a stack of marks pointing to sections of
S-stack. The entries of the mark stack store the subscripts
to the S-stack. Each entry of the mark stack points to the

element just below the bottom o¢f the section. The bottom
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element of this stack points to the bottom of the entire
S~stack. The stack grows upwards (see <chapter7 for the
significance of sections).

6.1.7. Fragment stack :

This is a stack of pointers pointing to the roots of
lists of fragment pointers. The fragment pointers point to
the starting and ending locations of a fragment within the
output file (see chapter 7 for the description of tfragment
pointers {file pointers } and output file ).

6.1.8. Tag Table :

This table is an array of tag records. A tag record
stores two kinds of information about a tag. One field of
the record stores the tag state. A tag may be undefined,
referenced or defined. The other field points to the
descriptor associated with the given tag. The table is used
to locate the descriptor when the tag naming it appears in
the input. The table entries are modified at compile time
when the tags are declared or undeclared.

6.1.9. Descriptor Kinds:

The descriptors contain information about the objects
which exist during the compilation process. In this
implementation, seven major descriptor kinds are defined,
The descriptors corresponding to these descriptor kinds are
implemented as a type of variant record with the record
fields stating the information relevent to the specific
kind.
6.1.9.1, DATA DESCRIPTOR KINDS :
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Descriptors of this kind represent the information
about the data objects. Such descriptors may be used to
define the areas associated with the global variables, local
variables and constants or to manipulate the parameters in a
routine profile. The data descriptors can be of the
following kinds :

1) Global descriptor kind
2) Local descriptor kind

3) Constant descriptor kind
4) Import descriptor kind
5) Export descriptor kind
6) Exit descriptor kind

A tag is associated with each descriptor which is one
of the above kinds. A data descriptor may also contain
information about the results obtained on account of runtime
operations. Such a data descriptor belongs to the
resultdescriptor kind. No tag names can be associated with
the descriptors of this kind.
6.1.9.1.1. Datadescriptor Information :
6.1.9.1.1.1, Output pointer:

The pointer points the spot in the output file
immediately following the token which produced the given
data descriptor. The descriptor must be on the S-stack.
6:lu9:l.1s25 Mode:

The mode of the descriptor can be a VAL mode, REF mode
or a VALADDRESSDESCRIPTOR mode. The thirda kind 1is

neccessary to describe the data which 1is of val mode
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according to the S-code definition but is of a type which
pass 6 of the Pascal compiler references with an address,
6.1.9.1.1.3., Type Tag:

This is a unique tag for the type associated with the
given descriptor.
6.1.9.1.1.4. Displacement:

The descriptor holds the displacement of the global or
local variables or constants with in their respective areas.
The displacement has no meaning for descriptors of the
resultdescriptor kind.
6.1.9.1.1.5, External ID:

If the data is external then the identification of the
data is stored in the descriptor.
6.1.9.,1.1.6. External procedure Label:

For the descriptor defining the external procedure, the
information about the pass 6 procedure label is stored in
the descriptor.
6.1.9.1.1.7. Identification:

The identification string of the tag associated with
the data item is stored in this field .
6.1.9,1.1.8. SIMULA Line Number:

~For the data descriptor of structured type, the Simula
line number associated with the tag 1is stored in the
descriptor.
' 6.1.9.1,1.9., Fix Repetition count:
If the data descriptor type 1includes an indefinite

repetition, then the number of repetitions within this
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instance of the type is resolved and stored. The field has
a meaningful wvalue only 1if the has f£ix repetition field
contains true.
6.1.9.1.1.10. Has Fix Repetitions:

The data descriptor contains the information about the
presence or absence of a fix repetition value. This boolean
field holds true if the fixed repetition value is present,
6.1.9.1.1.11. Repetition Count:

The number of repetitions in the data item type 1is
stored in the descriptor.
6.1.9.1.1.12, Range Léwer Bound:

The data item may be of a type which which is
restricted to a certain range. The 1lower bound of this
range is stored here, The field holds a meaningful vaiue
only data is restricted to a certain range.
6.,1.9.1.1.,13. Range Upper Bound:

For the range. restricted data item, similar to the
lower bound, the value of the upper bound is also stored.
6.1.9.1.1.14. Has Range:

This boolean field of descriptor denotes the presence
of a range.
6.1.9.1.1.,15. Has Pass 6 Counter Part:

A compile time stack of pass 6 holds a descriptor which
corresponds to this data descriptor then the data descriptor
has a Pass 6 <counter part. This boolean field in the
variant'record will be a true 1if such a descriptor is

present in Pass 6,
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6.1.9.2. TYPE DESCRIPTOR KIND :

A descriptor is associated with every declared type and
a built-in type. The following information is neccessary to
describe a given type :
6.1.9.2.1. Typedescriptor Information :
6.1.9.2.1.1. TypeLength :

The length of the variables of type is stored in this
field. In case of a structured type, if there are more than
one alternatives present,the length ©of the largest alternate
is stored. Also, if the type contains indefinite
repetitions, the repetitions are assumed to be zero times,
6.1.9.2.1.2. Record alternative length :

For given type, alternate with indefinite repetition is
chosen and the repetitions are assumed to occur zerc times.
The length of the alternate 1is stored in the record field.
This length and the type length are synonymous 1if no
alternates are present,
6.1.9.2.1.3. TypeAlignment :

The alignment value of a variable of the given type is
stored, It can be 8,4,2 or 1 bytes for the types in S-code
and Perkin-ELmer.
6.1.9.2.1.4. Prefix Tag:

If the record type has a prefix then the tag of the
prefix is stored in the descriptor record field.
6.1.9.3. PROFILE DESCRIPTOR KIND :

The profile of a routine 1s used to define the import

and export parameters as well as exit descriptors for the
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routine. A descriptor of this kind holds the following
information :
6.1.9.3.1. Profiledescriptor Information :
6.1.9.3.1.1., Profile Kkind :

The profile may define a known routine , external
routine, system routine, interface routine or ordinary
routine. The routine kind is thus stored in the profile
descriptor record field.
6.1.9.3.1.2. Body Tag :

For known, system and external profiles there is only
one body and it is defined. The tag associated with the
body is stored in this field.
6.1.9.3.1.3. Identification :

Peculiar routines associated with the profile are
identified by a string. The string 1is therefore stored in
the descriptor record.
6.1.9.3,1.4. Nature ID :

For external routines associated with the profile, the
nature of the routine is specified in the form of a
character string. This information is held 1in the
descriptor record.
6.1.9.3.1.5. Export parameter :

If an export parameter is -—present 1in the profile then
the tag associated with it 1is stored here. There canbe
atmost one export parameter.
6.1.9.3.1.6., Exit parameter :

The tag associated with an exit parameter is stored, if
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any exit parameter is present., There canbe at most one exit
parameter,
6,1.9.3.1.7. Activation Record Displacement

The profile descriptor record £field contains the
displacement (one word) within the activitation record for
the position of next parameter or next local variable. The
value changes during compilation as local declarations are
processed.
6.1.9.3.1.8. Import parameter List:

The root of the list of import parameter tags is stored
in this field.
6.1,9.3.1.9. Current p&rameter:

The pointer to the current parameter 1in the import
parameter is stored in the descriptor record.
6.1.9.4. BODY DESCRIPTOR KIND :

The routine body 1is used to compile a set of
instructions and a descriptor is associated with the same.
A body descriptor may hold the following information
6.1.9.4.1. Bodydescriptor Information :
6.1.9,4.,1.1. Pass 6 procedure Label:

The passé proc label for the sequence of instructions
defining the routine body is stored here.
6.1.9.4.1.2. Activation Record Displacement:

The displacement within the activation record for the
next local variable 1is stored in this field. The value
changes during compilation,

6.1.9.4.1.3. Profile Tag:
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The tag of the profile of the given routine body is
stored here,
6.1.9.5. LABEL DESCRIPTOR KIND

General labels 1in the S-code are used for the
unconditional transfer of control within the S-program. A
descriptor is associated with each label. The label
descriptor contains the passé statement label to which the
given S-code label will be translated.
6.1.9.6, SWITCH DESCRIPTOR KIND :

A switch 1in the S—-program identifies a set of
destinations and a Jjump may be made to the specific
destination within this range. The switch desériptor holds
the following information :
6.1.9.6.1, Switchdescriptor Information :
6.1.9.6.1.1, Minimum Pass6é Label:

The minimum (lowest numbered) pass 6 label in the passé
case table which corresponds to the lower destination value
is stored in this field.
6.1.9.6.1.2. Maximum Pass6 Label:

The maximum pass6é label in the pass6 case table is
stored. This corresponds to the upper bound of the
destinations.
6.1.9.7. ATTRIBUTE DESCRIPTOR KIND :

A descriptor is associated with every attribute of a
record. A record attribute .in S-code is analogus to the
record field in Pascal. When a value of the attribute

appears in the value of the surrounding record, a check is
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made to see if the attribute is already initialized or not.
The descriptor contains a boolean field to hold this
information.

6.1.10. Index Table :

The'specific labels generated as a result of Jump
instructions are not referenced by tags. Instead, they are
accessed through the use of a kind of label called index.
The index may be defined,referenced or undefined.Defined
means the destination £for the 3jump has occured during
compilation but the jump itself has not, referenced means
jump has occured but the destination is yet undefined. The
undefined refers to a new index with no specific meaning.

An index table is a record with two fields :
6.1.10.1. Index state entry :

This stores the current state of the index.(undefined,
referenced or defined)
6.1.10.2. Index Pass 6 label entry :

This field stores the pass6é label which the given index
will be translated into. Thé index must be defined or
referenced.

There is an Index table array with one element for each
legal index., Each element of the array is an index table
record., Initially, all elements have undefined index entry
state.

6.1.11, Minimum Tag :

Upon entering a routine body, the destination indices

and label tags locally acquire a new meaning. Minimum tag
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is a compile time global variable which is used to store the
minimum tag defined locally within the body. At body exit,
this value is used to undefine all the local tags.

6.1.12, Value area :

This is a compile time area used to store the values of
long reals and record types. It is implemented as an array
of bytes.

6.1.13. Constant, global and local areas :

These are runtime areas allocated at compile time, The
displacement within each of the next available locations 1is
stored. A three element array subscripted by area names 1is
used to hold these displacements.

6.2. SEMANTIC OPERATIONS :
6.2.1. Semantic operations associated with the S-stack :

As the compilation process 1in Interpass progresses,
the descriptors are continuously created and destroyed on
the S-stack. The stack semantics for assignment and
addressing instructions in the S-program require that
certain conditions on the descriptors held in the stack are
valid. For example, the correct interpretation of the
assign instruction and therefore wvalid code generation is
possible only if the second topmost descriptor on the stack
is of ref mode. At runtime the value held in the topmost
descriptor is to be transferred to the location designated
by the second topmost descriptor, The addressing
instructions modify or replace the top descriptor on the

stack. This means a new result descriptor must occupy the
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top of the stack at the end of translation.

It is also neccessary to set the mode, type or
outputpointer fields of the new result descriptor, if it 1is
a data descriptor. Push and set operations are used to
accomplish this, The -emission of the right tokens in the
ocutput stream is possible only by examining the information
(mode or type) in a descriptor record. Choice operations on
the S-stack descriptors are needed for this purpose. Here
are some of the possible operations which are used in the
correct interpretations of stack, assignment, addressing and
arithmetic instructions.
6.2.1.1. Verification operatiohs :

1) Check the kind of descriptor which 1is on the top of
the S-stack. ‘

2) Check the mode of the top most or the second top most
descriptor on the S-stack.

3) Verify that the types of the top most and the second
top most descriptors are identical.

4) Verify the type of the top most or the second top most
descriptor on the S-stack.

6.2.1.2.. Replacement operations :

1) Set the‘ mode of the topmost descriptor to a given
value.

2) Set the type of the topmost descriptor to the value
obtained from the tag stack.

3) Remember the position in the output stream

corresponding to the token for the descriptor on the
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s-stack.(i.e. Set the output pointer in the token
stream)

6.2.1.3, Push Operations :
1) Push a copy of the topmost descriptor on the S-stack.
2) Push a new descriptor.
6.2.1.4. Choice QOperations :
1) Return the type of the descriptor which is on the top
of the stack.
2) Return the mode of the topmost descriptor on the
s~stack.
3} Return a boolean value indicating whether the topmost
descriptor has a Pass6 counter part.
4) Return the kind of the topmost descriptor.

Here is an example of how the S/SL program will invoke
some of the associated semantic routines: |
dist :

This is a dyadic addressing S-code instruction., The
topmost and the second topmost descriptors describe address
values. Code is generated to compute the signed difference
from second topmost descriptor to the top descriptor
measured in object units, The two descriptors are replaced
by a descriptor for this difference. The operations
inveolved are :

1) If top descriptor is of REF mode then change the top
of the stack to hold the contents of the area refered to

by this descriptor.
2) Verify that the new descriptor on the top of the stack
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4)

5)

6)
7)

8)
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is of type OADDR.,
If the second topmost descriptor is of REF mode then
change the second top of the stack to hold the
contents of the area refered to by the descriptor.
Verify that the new descriptor is of type OADLDR.
Emit a pass 6 sub token (for the subtraction between
the two addresses ) in the output token stream.
Pop the two topmost descriptors from‘the stack.
Push the descriptor associated with the result
obtained.
Set the type of the descriptor to 'Size',

S/8L will invoke the £following semantic routines for

interpreting the dist instruction.

@Force TOS value [ S/s1 rule ]
oVerifySMDataDotType (OADDR) [ Semantic routine]
@Force SOS value [ S/sl1 rule ]
oVerifySSosMDataDotType (CADDR) [ Semantic routine]
oEmittoken (sub) [ Semantic routine]
oPopSs [ Semantic routine]
opops [ Semantic routine]
oPushSNewResultDescriptor [ Semantic routine]
oSetSMDataDotType (Size) [ Semantic routine].

The S/SL rule Force TOS value invokes the following

semantic routines

oChocoseShotMode

oChooseSMDataDotType

oSetSDotMode (Mode)
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cEmitToken (Pass6é token)
oEmitTagMTypeDotP6Type
6.2.2. Semantic Operations associated with count stack
During the compilation of an S~program, the count stack
is used to temporarily hold the constant values which may
appear in various program elements, In particular, the
count stack may store : »
1) Number of repetitions 1in a repetition field of a
quantity of given type.
2) Number of fixed repetitions in the quantity of
resolved type.
3) Size of an S-code type.
4) Size of the S-code structured type having an alternate
with indefinite repetition,
5) Displacements with in the activation records for
routine profile and routine body.
6) Lower and upper bound of a range.
7) Count of jump indices for the jump instructions.
8) Byte, number or string (converted) values for the
char, int, real or long real types.
9) Parameter size of a profile.
10} Displacements within the constant, global and local
areas.
A constant value is placed on the count stack through
push operations. There are various semantic routines which
push the appropriate constant value on the count stack.

While processing tokens whose interpretation involves



Page 51
these operations, it is some times neccessary to increment
or decrement the constant value on the count stack. Compile
time addition or multiplication of the top two constants on
the stack is also needed in some translations. Therefore
simple semantic routines for these cperations are
introduced. E.g. while proccessing an sdest instruction in
the S-program, it is neccessary to locate the destination
{within a specified range) where a jump is to be made., This
involves the addition of lower bound of destination size to
the number included in the argument of the instruction. The
8/8L program at this point will invoke the appropriate
semantic routine.

Constant values for the character, real types etc must
be emitted to output stream following a Pass6é push constant
token. Semantic routines exist for the emission of the
constant vaiues from the ccunt stack.

The count stack always holds the values temporarily.
Once the constant has been used, it is discarded through a
pop operation. There 1is &a semantic routine for this
operation too.

6.2.3. Semantic Operations associated with tag stack and tag
table :

Whenever a tag is read from the input stream, it is
held temporarily in the tag stack. Since tags may be
specified upon their definition, it is neccessary to verify
the state of the tag whenever the tag is refered to. The

tag value stored in the tag stack is used to create a new
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descriptor relating to that tag. The pointer to the
descriptor will be stored in the tag table at the tag
value.

As the arguments to a token are scanned further, the
appropriate fields of the descriptor refering to the tag are
set up. The setting operations may use the constant values
being held in the count stack temporarily. During the
Processing of S-code tokens 1like profile the arguments to
the token contain more than one new tags. This requires the
use of tags stored at a position one or two elements deep in
the tag stack. The semantic operations are sometimes
carried out on descriptors pointed to by the second topmost
tag on the tag stack. While interpreting the type
conversion instructions it is neccessary to examine the tag
held in the tag stack in order to determine whether the
conversion will be valid or not, Choice coperations are
needed to accomplish ﬁhis. The choice operations are also
neccessary to act as determiners in the §/SL selector
statements when more than one option 1is available in the
compilation process. In particular, during emission of
constant values, the emitted tokens can differ depending
upon the type (stored in the tag stack) of the constant.
6.2.3,1. Replacement or set operations :

There is a group of semantic operations which is used
to set the fields of:

1) Data descriptor record

2) Profile descriptor record
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3) Body descriptor record

4) Switch descriptor record

5) Label descriptor record
For the information held in the fields o¢f these

records, the reader is directed to refer to the section 6.1
6.2.3.2., Verification operations :

1) Verify the state of the tag on the top of the tag
stack. The state c¢an be undefined, defined or
specified.

2) Verify that the tag refers to an S-code type.

3) Verify that an attribute is not initialized. The tag
will be associated with an attribute descriptor.

4) Verify that all attributes in a record type are
initialized.

6.2.3.3. Choice Operaticns :

1) Return the tag value associated with the top of the
tag stack.

2) Return the tag state corresponding to the topmost
tag.

6.2.4, Semantic Operations associated with the index stack :

The backward and forward Jjump instructions access the
jump labels through indexing. When a jump instruction is
encountered an index entry relating to the destination of
the jump is changed. 1In particular, the state of the index
will change depending on the kind of jump. The index will

be undefined if the jump is forward jump. A set of pass 6
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labels is associated with the destination indices. It is
neccessary to allocate a new pass6é label every time the
destination is defined or referenced, Further, once a jump
has occured the corresponding index should be made available
for reuse. But the Pass 6 labels can neﬁer be reused. A new
index table is pushed when the compile time control enters a
new scope level. Following Semantic operations operate on
the index stack :
6.2.4.1., Push operation :

Push a new index table on the index stack
6.2.4.2. Allocation operation :

Allocate a new pass 6 label for the destination defined
or referenced in the index stack.
6.2.4.3. Set operation :

Set the state of the 1index in the index table entry
subscripted by the top value on the count stack.
6.2.4.4. Pop operation :

Pop the index table entry off the index stack.
6.2.5. Semantic operations associated with the emission of
tokens :

When an output action is required to be taken in the
S/SL program, the program invokés an emit routine. In
Interpass, emit operations exist for the emission of Passé6
tokens, values, Passé statement labels, Pass 6 procedure
labels and Passé general labels, There are also emit

operations which are used to emit the mode, displacement,

Type length or Pass 6 type.



Page 55
6.2.6. Semantic operation associated with the Passé label
stack :

The only operations needed are for pushing a new label,
popping the existing label and swapping the top two labels.
6.2.7. Semantic Operations associated with reachable stack

It is required to push, pop, set or return a boolean to
indicate the reachability of the S-code. Appropriate
operations exist for accomplishing this task.

6.2.8. Semantic Operations associated with the constant,
global and local areas :

A Semantic operation is used to align the area
displacement for a given type. There 1is also a semantic
operation which iﬁcrements the area displacement as the
constant, local or global is placed in the respective area.
The routinés corresponding to these operations are used in
the interpretation of constant and global specifications.
6.2.9., Semantic Operations associated with the Value area:

Pass 6 long constant values and address constants are
accumulated in the value area. There are semantic routines
which are used to store the constant values of long reals,
reals, text strings, integers, characters and booleans in
the wvaluye area,. The displacement within the area 1is
temporarily held on the count stack and is used for the
Placement of the constant value in the area. A packed value
is stored for the address constants relating to the global,
constant, body or 1local descriptors through the use of a

semantic routine. The values are packed in a full word.
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Pass 8 eliminates duplicate constants. The packed addresses
are created to ensure the distinction among the constants
when Pass8 processes them, because c¢onstants which may
appear similar till the Pass8 compilation may differ when
the actual addresses are assigned. Once the value area is
filled, the contents of the area are emitted in the output
stream. A semantic operation is used for such emission,
6.2,10, Semantic Operations associated with Segmentation
and S-stack sections :

The reader \is directed to refer to chapter 7
(Interesting problems), for the detailed description of
these semantic operations.

6.2.,11 Miscellenous Semantic operations :

Interpass includes a semantic routine which prints
error messages and terminates the compilation process when
ever error conditions arise during c¢ompilation. The front
end compiler translates SIMULA into S-program, At this
stage, all the errors relating to SIMULA are detected by the
front end compiler. Normally, therefore, the S-program tobe
compiled by Interpass should not contain errors, Detection
of errors by Interpass indicates that S-program is
incorrect. Immediate termination of the compilation process
is therefore called for. There also exist semantic routines
which operate on the global minimum tag variable.

See Appendix I and Appendix II- for the data structure

declarations and code for some of the semantic routines.
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CHAPTER 7

INTERESTING EROBLEMS

Some of the interesting issues which arose during the
design of interpass are discussed in this chapter. The
solutions adopted in each case are also described.

7.1. SEGMENTATION AND NESTED PROCEDURES :

S-code allows for the existence of out of sequence code
in the S-program, A segment instruction.in S-code uses bseg
and eseg tokens t¢ enclose 'thunks' of code which will be
located somewhere in the program and which cannot be
generally scanned in strict sequential corder. Further, the
bseg and eseg tokens may be nested thus allowing for nested
procedures. Pass 6 of the Pascal/32 compiler has no
provision for handling such nested procedures, A direct
handling of the nonsequential code can result in a waste of
memory space. Thereforé, the solution adopted was to use
files for the treatment of code in the nonsequential order,

An output file called the main file is written
physically in, the order the tokens are produced. There is
another file known as map file which allows Pass 6 to read
the tokens of the main £file 1in the correct logical order.
Because of segmentation, the 1logical order of the tokens
will be diffeient from their physical order, The main file
is divided inte fragments. It 1is assumed that, within a

fragment, the physical and the logical ordering of the
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tokens is the same, The map £file contains a list of
pointers to these fragments. The physical ordering of the
pointers is Kept the same as the 1logical cordering of
fragments to which they point. Pass 6 will read the map
file sequentially but this sequential scan will result in
random access to the main file as and when required.

A segment stack is defined., It is a stack of segments
which are entered but not exited yet. Each entry of the
stack is the roét of a 1list of pointers pointing to the
fragments in the segment. The list itself 1is a doubly
circular linked list of fragmentPointer nodes. Each node
stores a pair of main file pdinters and two pointer fields
which are used as the right and left link fields for the
linked list. The pair of (£file pointers consists of a
start-of-fragment pointer and an end-of-fragment pointer.
The start-of-fragment pointer points to the first word of
the fragment and the end-of-fragment pointer points to the
word beyond the last word of the fragment,

The fragments reside in the main £file. The main file
contains tokens which are not 1in order on the whole. But
the tokens within a single fragment are internally in order.
Further, the fragments have no inherent ordering, they all
can be scattered within the main file.

The index or map file 1is 1list of fragment pointers in
the order in which the fragments should be processed.
Placing the fragment pointers in the map file and writing of

the tokens in the main file is implemented in the tollowing
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manner

At the beginning o¢f a segment, the fragments of this
segment are linked in a list as 1long as the:segment is not
exited.

1) The segment stack is checked to see if it is empty or
not. -

2) If the stack 1is not empty then the last fragment
pointer of the list corresponding to the top entry of
the segment stack is 'closed',

3) A new segment is pushed onto the segment stack. This
segment contains (initially empty) fragment list,

4) The new 1list 1is set to grow by adding an empty
fragmentpointer node and 'opening' it.

When the segment ends ( esed token is encountered), the
pointers to its fragments are written to the map file. This
is implemented in the following way :

1) The last fragment pointer of the list corresponding
to the top of the segment stack is 'closed’'.

2) The list of fragment pointers attached to the top
entry of the segment stack 1s written to the map
file.

3) After fragment pointers from the list are written to
the file, the top segment stack entry is popped. |

4) 1f the segment stack 1is not empty, then a new
fragmentpointer node is added to list pointed by the
new top of the segment stack and is 'opened'.

5) The last fragment pointer of top list is always ocpen
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because the unfinished fragment is currently in the
process of being built. That means tokens are being
accumulated in a serial order with in this growing
fragment.

7.1.1. OPENING:

To open a fragment, the start-of-fragment pointer of
the new fragment is set to the next main file position. The
current token pointer is updated every time a new token is
written, S0 the next token stream position is the spot
pointed to by the current token pointer.

7.1.2. CLOSING :

To close a fragment, the currenf token pointer is
stored in the end-of-fragment pointer of the open fragment
list node. This marks the end of the current‘fragment.

It is to be noted that the start of the next fragment and
the end of the current fragment point to the same spot in
the main file.

7.2. FORCE VALUE OPERATIONS

The descriptors on the S-stack c¢an be of REF mode. A
force value operation on such a descriptor requires the
insertion of a passé pushindirect token at a place in the
token stream Jjust after the instruction token which
generated this descriptor. The instruction token may be
residing at a position other than the end of the token
stream and the force value operations can be performed on a
descriptor which 1is below the top of the S-stack., This

requires inserting the Pushindirect token at a spot other
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than at the end of the token stream.

The solution adopted is to insert the token logically
in the middle of the stream by splitting a fragment. The
insertion mechanism is implemented as follows :

1) The descriptor record on the S-stack contains a field
which stores the pointer to the spot in the ocutput
stream where the token which produced this descriptor
is located.

2) The fragment containing this token 1is split into two
fragments. This is done by first searching for that
fragment through a scan of the fragment pointers in
the list attached to the top entry of the segment
stack.

3) The found fragment is split into two, and a new
fragment is linked between the two pieces. The
inserted fragment contains the pointers to the token
tobe inserted. The token itself is written physically
at the end of the main token file.

In this way, the logical ordering of tokens is arranged
without disturbing the physical ordering of the emitted
tokens in the output stream.

Some special cases may arise in the insertion process:

1) The token to be followed by Pushindirect may be found
exactly at the end of the fragment. In such a case, a
new fragmentpointer node is created and linked to the
existing list.

2) If the token to be followed by Pushindirect lies at
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the end of the token file then it belongs to the last
open fragment and 1is therefore appended to that
fragment.

7.3. CONSTANTS :

Another problem which arose during the interpass design
was the treatment of constants. In Pass6, the constants
which can reside in the memory are placed in the
longconstant tokens. These tokens will later be used to
construct the contents of the constant area. This is done
in thé order the longconstants actually occur. The
displacements within the constant area are included in the
tokens which operate on these constants.

In S-code, the <constants <c¢an be specified through a
constant specification. The displacements within the area
must be determined at the time of specification in order to
agree with the layout of the constant area. But no constant
value is available at the time of specification. This
requires inserting a token at the point of specification,
when at a later stage in the program the constant is defined
through a constant definition. A mechanism similar to the
one used in handling force wvalue operations is used here.
The token is inserted after the specification token by using
the insertion mechanism.

7.4, S-STACK SECTIONS :

The controlling structure in S-code for the

If-statement, posed yet another interesting problem in the

interpass design. Because of the control mechanism of
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S-code, it was neccessary to divide the S-stack into
sections., It was also neccessary to identify the boundaries
to the various sections. A mark stack ﬁas therefore added
in the interpass data structure. The mark stack stores the
subscripts (markers) to the S-stack and is used to divide
the S-stack into sections. When the if token appears in the
S-program, the relation following the 1if ’is checked by
examining the top two entries of the S-stack. Code is
generated which at runtime will transfer control to the else
label if the relation 1is false. At this point, a copy of
the complete state of the S-stack (and the associated
descriptors) is saved as an IF stack.

This is implementéd in the following manner

1} The marker pointing to the top of the S-stack is
pushed on the mark stack.

2) A copy of the entire stack from the marker below the
one just pushed is pushed on the S-stack.

When the glse token 1is encountered, a branch is
jenerated to the endif 1label and a copy of the entire
3=stack is saved as an ELSE stack. The stack itself is
restored to the original state of the saved if-stack.

This is implemented as follows :

1) The topmost and the second topmost sections of the
s-stack are swapped. The top most section is the
section between the top o©of the s-stack down to the
first marker and the second top most section is the

section between the first and the second marker.
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2) When an endif label is reached, the current stack and
the saved stack are merged. The merge involves taking
the corresponding descriptors and checking that they
are identical. The descriptors can only differ in
mode, in that case the VAL mode of the descriptor is
changed to REF mode.

This is implemented as follows :

1) The number of elements in the sections of the s-stack
in top and second top sections are counted.

2) If the descriptofs differ only in the mode, the
descriptor with the VAL mode 1is changed to ref by
inserting a passé push indirect token at the
appropriate place. The insertion mechanism is used
here.

3) After the merge, the top section and the top mark are
popped from 7the s-stack and the mark stack
respectively.

The merge is neccessary to ensure that the state of
s-stack is same after taking either of the branches in the

if statement.
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CHAPTER 8

As a result of the participation in Portable SIMULA
project work, the author got an opportunity to study the
components involved in the adaptation of semiportable
systems. The author also received an exposure to the low
level intermediate language S-code. The involvement with
thé task of coding Interpass resulted in a fascinating
indepth study of the underlying data structures of
Interpass.

It was observed that the selection of Syntax/Semantic
language as the main control 1language was made because the
language structure of S/SL 1is suited well for the control
structure of S-code. It was also observed that the
restricted size of the S-code control instruction set aided
in keéping the S/SL and Pascal components of Interpass to a
comparatively small size, This will result into a more
efﬁicient implementation of the SIMULA system.

8.1. PROJECT STATUS (Interpass) :

The coding work of Interpass which includes the Coding
of S/SL program and coding of semantic routines in Pascal is
about half complete. No testing 1is, however, yet done on
the code sofar developed.

8.2, FUTURE WORK :

The design of Interpass, at present, does not include
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the treatment of initialised attributes of a record‘type in
S-code. Future modifications to the design will include
some additions to the related data structures. In
particular, this will involve addition of extra fields in
the record descriptor. Corresponding semantic operations
will also be introduced and coded at a later stage.

Interpass design will also be modified to include the
code for utility routines. The routines will involve the
reading of S-code tokens from Interpass input stream,
writing the tokens to Interpass output stream, allocating
and freeing the descriptors during thg compilation process
and converting the text strings and input literals from
S-code into internal form.

Finally, the coding of the S/SL interpreter remains to
be done for interpretating the S/SL program along with the

semantic routines which are called by it.
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APPENDIX I



; const max_s_stack
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DECLARATIONS FOR SEMANTIC OPERATIONS

50
max_count_stack 30
max_update stack = 50
max_reachable_stack = 50
max_tag_stack = 50
max_tag_count = 100
max_bound = 100
max_p6_proc_label_count =100000
max_sim_lin_num = maxint
max_wora = XXXX
max_mark = 50
maxareas = 3
maxbytes 255

* ERROR MESSAGE CODES
eCheckDataDescriptor =1
eVerifySDotMode = 2
eVerifySSosDotMode = 3
eVerifySTosSosMDataDotTypesMatch
eSStackOverflow = 5
eSStackUnderflow = 6
eVerifySMDataDotType = 7
eVerifySSosMDataDotType = 8
eVerifyTagDotState = &
eVerifyTagDotKindType = 10
ePushTagWwithSMdataDotType = 11
ePushTagWithSSosMDataType = 12
eChooseTagMTypeDotHasRepField = 13
eSetTagSosTagMDataDotTypeToTag = 14
eSetTagMDataDetDisplacementToCount = 15
eSetTagSosMbDataOutputPointer = 16
eSetTagSosidataDotHadFixRep = 17
eSetTagSosliDataDotRepToCount = 18
eSetTagSosiMDataDotLowerBoundToCount
eSetTAgScosiDataDotUpperBoundToCount
eSetTagSosMDataDotHasRange = 21
eVerifyCountvValue = 22
eCountStackOverflow = 23
eCountStackUnderflow = 24
eCheckSwitchDescriptor = 25
eVerifyDataDescriptor = 26
eVerifyTagDotKindType = 27
eVerifyTagDotProfileKindType = 28
eVerifyTagDotBodyKindType = 29
eVerifIndexStateSubCountDotState = 30
eVerifyAllIndexesUndefined = 31
eIndexStackOverflow = 32
eIndexStackUnderflow = 33
eP6LabelStackOverflow = 34
eP6LabelStackUnderflow = 35

4

19
20
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‘declaredTypeDescrKind

eReachableStackOverflow = 36
eReachableStackUnderflow = 37
eFragmentStackOverflow = 38
eFragmentStackUnderflow = 39
eMarkstackOverflow = 40
eMarkstackUnderflow = 41
eTagstackOverflow = 42
eTagstackUnderflow = 43
eNoTwoSections = 44
eNotenoughelementsonSstack = 45
Descriptor Kinds
globalDescrkind = 0
localDescrXind = 1
constantDescrKind =
importDescrKind = 3
exportDescrKind = ¢
exXxitDescrKind = 5
resultDescrKind

2

]

6

uu
oo

built_inTypeDescrKind
attributeDescrKind = 9
labelDescrKind = 10
swtichTableDescrKind = 11
profileDescrKind = 12
bodyDescrKind = 13

Descriptor Modes

refmode 0
valmode 1
valAddrDescrmode = 2
Tag entry state values
undef inedtagState 0
specifiedTagState 1
definedTagState = 2
Index entry state values
undef inedIndexState = 0
definedIndexState = 1
referencedIndexState = 2
Profile Descriptor Profile Kinds

knownProfileKind = 0
systemProfileKind = 1
externalProfielRind = 2
interfaceProfileKind = 3
ordinaryProfileRKind = 4

** Comparison values for Count TOS and SOS **
Count_less_than = 0
Count_greater_than = 1
Count_Equal_to = 2
* s~CODE TYPES *

Bool = 0
Char =1
Int = 2
Real = 3
Lreal = 4

Size = 5
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QOaddr
Aaddr
Gaddr
Raddr
Paddr
Recrd

w00~ O

0
1

e e e wa M mw

* Area Names *
Globaldrea =1
ConstantArea =
LocalArea = 3

9 -

- e we

type s_pointer = @ descriptorTyp
tag_typ = 0 .. max_tag_count
tag_table entry typ = 0 .. max_tag_count
tagstateTyp = undefinedTagState .. definedTagState
ScodeTyp = Bool .. Recrd
descriptorPointerTyp = € descriptortyp
datadescriptorTyp
= globalDescrRKind .. resultDescrKind
DataDescrptorSetTyp = Set of datadescriptorTyp
S_code_SetTyp = Set of ScodeTyp
descriKindTyp = globalDescrRKind .. bodyDescrKind
outputPointertyp = 0 .. max_output_count
descrModeTyp = refmode .. valAddrDescrmode
displacementTyp = 0 .. max_displac_num
areadisplacementTyp = 0 .. max_displac_num
stringTyp = Packed array (. 1 .. max_char .) of char
SIMULALinenumberTyp = 0 .. max_sim_lin_num
SRepTyp = 0 .. max_rep_num
boundTyp = 0 .. max_bound
p6LabelTyp = 0 .. max_p6_label count
péprocLabelTyp = 0 .. max_p6_proc_label count
profileKindTyp '
= knownprofileKind
.. ordinaryProfileKind indexstateTyp
= undefinedIndexState .. referencedIndexState
filepointerTyp = 0 .. max_word
fragmentlistNodepointerTYP = " fragmentListNode
fragmntpointerTyp
= Record
fragmentStartpointer : filepointerTyp
; fragmentEndpointer : filepointerTyp
end
fragmntListNodeTyp
= Record
fragmentListLeftLink
: fragmentlistNodepointerTyp
; fragmentListRightLink
: fragmentlistNodepointerTyp
; fragmentListNcdeFragmentpointer
: fragmntpointerTyp
end
frag_pnterTyp = fragmentlistNodepointerTyp
s_stackTyp
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= array (. 1 .. max_s_stack .) of s_pointer
cnt_stackTyp
= array (. 1 .. max_count_stack .} of integer
reechable stackTyp
= array (. 1 .. max_reach_count .) of boolean
p6lbel_stackTyp '
= array (. 1 .. max_p6_label _count .) of integer
Mrk_stackTyp = array (. 1 .. max_mark .) of integer
fragmnt_stackTyp
= array (. 1 .. max_fragments .,) of frag_pnterTyp
gl_con_leoc Typ
= array (. 1 .. maxareas .) of areadisplacementTyp
value_area Typ = array (. 1 .. maxbytes .) of Byte
tag_tbleTyp
= record
tagentrytate : tagStateTyp
; tagentryDescriptorPointer : descriptorPointerTyp

!
end
tag_tabl arrayTyp
= array (. 1 .. max_tag_count .} of tag_tbleTyp
{ the array of tags ,subscripted by tag values }
updat_recTyp
= record
updateStackTagvalue : tagTyp
; updateStackoldTagTableEntry : tag_tbleTyp
¥
end
updat_stackTyp
= array (. 1 .. max_upd_count .) of updat_rec
descriptrTyp
= record
case descrKind : descrKindTyp
of globalDescrKind , localDescrKind
; constantDescrKind , importDescrKind
; exportDescrKind , exitDescrKInd
r resultDescrKind
dataDescrOutputPointer : outputpointerTyp
dataDescrMode : descrModeTyp
dataDescrTypeTag : tagTyp
dataDescrDisplacement : displacementTyp
dataDescrExternallId : externalldTyp
dataDescrExternalProclabel : péproclableTyp
dataDescrlId : stringTyp
dataDescrLineNumber : SIMULALineNumberTyp
dataDescrFixrep : SRepTyp
dataDescrHasFixrep : boolean
dataDescrLowerBound : boundTyp
dataDescrUpperBound : boundTyp
dataDescrHasrange : boolean
dataDescrHasp6écounterpart : boolean

S g g Tmg g mE NG MG NG WA WS WM Wy WS -

; attributeDescrKind .
: ( attributeDesrInitialized : boolean
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)
; labelDescrKind
: ( labelDescrpéstlab : integer )
; switchTableDescrKind
: ( switchDescrLowerp6Label : p6LabelTyp

; switchDescrUpperpéLabel : p6LabelTyp

)
; declaredTypeDescrKind , built inTypeDescrKind
typeDescrLength : displacementTyp
typeAlignment : displacementTyp
typeDescrindefAlterLength : displacementTyp
typeDescrindefrep : tagTyp
typeDescrPrefixtag : tagTyp
typeDescrHasRepField : boolean

rof ileDescrKind

profileDescrprofileKind : profileKindTyp
profileDescrBodyTag : tagTyp
profileDescrId : stringTyp
profileDescrNature : stringTyp
profileDescrExportParameter : tagTyp
profileDescrExitparameter : tagTyp
profileDescrparameterARDisplacement

:+ displacemenTyp
profileDescrimportparameterList : tagListTyp
profileDescrCurrentparameter : tagListTyp

-y
ws wme we e e wt T e we we we N

bodyDescrpélab : p6plabTyp
bodyDescrARDisplacement : displacementTyp
bodyDescrprofileTag : tagTyp

H
7
)
; bodyDescrKind
(
i
H

.

End { case descriptors }
7 IndxTablentryTyp
= record
indexentrystate : indexStateTyp
; indexp6label : p6LabelTyp
end
; des_Pointer = descriptorPointerTyp

var DataDescriptorSet : DataDescrptorSetTyp
S_Code_Type Set : S_code SetTyp
Descriptor : DescriptrTyp

s_stack : s_stackTyp

Tag_table : Tag_tabl arrayTyp
count_stack : cnt_stackTyp

reachable stack : reechable stackTyp
pélabel_stack : pé6lbel stackTyp
Mark_stack : Mrk_stackTyp
fragmentListNode : fragmntListNodeTyp
frag_pointer : frag_pnterTyp
fragment_stack : fragmnt_stackTyp
tag_table rec : tag_tbleTyp

updat_rec : updat_recTyp

e WE ma WP s eE i Ny wp Wy wp we w§
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update_stack : updat_stackTyp

IndexTablentry : IndxTablentryTyp
glob_const_loc_array : gl con_loc_TYp
val_area_array : value area_TYp

s_stack_top , count_stack_top : integer
reachable_stack_top , P6label stack_top : integer
fragment_stack_top , mark_stack_top : integer
tag_stack_top : integer

current_output_pointer : integer
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{*************************************

Semantic Operations Assoclated With
S Stack ::

¢ A stack of pointers pointing to
the Descriptors
***********************************************}
Procedure oPushSWithTagllDataDescriptor
{Push a copy of the descriptor associated with tay top
of stack(tcs) onto the S-stack. The tag must be defined
and must be of data descriptor kind }

S_Stack

; var pointer : DescriptorPointerTyp

;7 begin
if Tag_stack (. tag_stack_top .) .
tagentryDescriptorPointer °
. Descrkind
IN DataDescriptor Set
- (. importDescrKind , exportDescrKind ,
exitDescrKind
¢ resultDescrKind .)
+ (. ParameterDescrKind , ProfileDescrKind .)
then if Tag_stack (. tag_stack_top .) .
tagentrystate
= specifiedtagstate
then begin
GETDESCRIPTOR ( Pointer )
; Pointer °
:= Tag_stack (. tag_stack_top .)
. tagentryDescriptorPointer
oPushS ( Pointer )

nd

fD'u “e

I

end

; Procedure oSetSMDataDotllode ( Descriptorliode )
{ Set the mode field of the top descriptor on
S=-stack to the parameter value

; begin
if § Stack (. s_stack_top .) " . DescrKind
IN DataDescriptor_Set
then begin
S_Stack (. s_stack_top .) © . dataDescrliode
:= Descriptorlode

I
end
end

; Procedure oSetSkMDataDotHasP6Counterpart
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{ Set the has pass 6 counterpart field of the
top descripteor on the S~stack to true }

; begin
if § stack (. s_stack_top .)
IN Datadescriptor_Set
then 8 Stack (. s_stack_top .) *
dataDescrHasP6Counterpart
:= true
end

. DescrKind

; Procedure oSetSMDataDotOutputPointer
{ Sets the output pointer field to the top
descriptor on S-stack to the current spot
in the output stream .

; begin
If S Stack (. s_stack_top .) "~ . DescrKindg
IN Datadescriptor_Set
then § Stack (. s_stack_top .) ~
dataDescrOutputPointer

:= current_output_pointer
end

: Procedure oSetSDotDescriptorKind ( descriptorKina )
{ Sets the des¢riptor kind field of descriptor
on top of the S-stack to the parameter value }

; begin _
S_Stack (. s_stack_top .) " . DescrKina :=
descriptorKind
end

; Procedure oPushSWithDuplicate
{ Duplicate the copy of descriptor on top
of S-stack and push it on the S-stack !}

: var param : descriptorPointerTyp

: begin
GETDESCRIPTOR ( param )
; param " := S_Stack (. s_stack_top .)
; oPushS ( param )
end
; Procedure oChooseEmpty

{ Returns false (zero) if S-stack not empty
otherwise true (One)
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; begin
if s_stack_top = 0
then HANDLE_CHOICE ( ora {( false ) )

else HANDLE_CEQICE ( ora ( true ) )
end

;+ Procedure oChooseSMDataDotType
{ Returns the type field of the descriptor
which is on the top of the S-stack. }

; begin
if s stack (. s_stack_top .)

IN DataDescriptor_Set
then HANDLE CHOICE

( S_Stack (. s_stack_top .) * . dataDescrTypeTay

. descrKind

else oAbort ( eCheckDataDescriptor )
end

; Procedure oChooseSMDataDotlMode

{ Returns the mode field of the descriptor
wnich is on the top of the S-stack }

; begin
if S Sstack (. s_stack_top .) IN DataDescriptor Set
then HANDLE CHOICE

{ s_Stack (. s_stack_top .) * . dataDescriiode )
else oAbort ( eCheckdataDescriptor )
end

; Procedure oChooseSDotHasP6Counterpart
{ Returns the Has pass 6 counterpart field
of top descriptor on the S-stack }

3 begin
if § stack (. s_stack_top .)
IN DataDescriptor_Set
then HANDLE CHOICE
{ ord
( S_Stack (. s_stack_top .) ~
. dataDescrHasP6Counterpart
) .

. descrikind

)

else oAbort ( eCheckdataDescriptor )
end

; Procedure oVerifySDotMode ( Descriptorllode )
{ Aborts if the mode c¢f the descriptor on the
top of S-stack is not equal to the parameter }

; begin
if S_Stack (. s_stack_top .) " . wescrKind
IN DataDescriptor_Set
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then begin
if § stack (. s_stack_top .) ° . dataDescrliode
<> Descriptorhode
then oAbort ( eVerifySDotllode )
end

else oAbort ( eCheckdataDescriptor )
end ‘

; Procedure oVerifySSosDotMHode ( DescriptorMode )
{ Aborts if the mode of the second topmost
descriptor on S-stack is not equal to the
parameter. 1

: begin
if 8 Stack {. pred ( s_stack_top ) .) = . descrKind
IN DataDescriptor_Set
then begin '
if 8§ Stack (. s_stack_top .) " . dataDescrlilode
<> Descriptorliiode
then oAbort ( eVerifySSosDotiicde )
end
else oAbort ( eCheckdataDescriptor )
end

; Procedure oVerifySTosSosMaataDotTypesllatch
{ Aborts if the types of the topmost and second
topmost descriptors on the S-stack are unequal. }

; begin R
if ( ( sS_Stack (. s_stack_top .) . descrKind
IN DataDescriptor_Set
)

AND { S_Stack (. pred ( s_stack_top ) .) ~ .

descrKind
IN DataDescriptor_Set
)
)
then begin R
if S Stack (. s_stack_top .) . dataDescrlypeTay
<> S_Stack (. pred ( s_stack_top ) .) °
. dataDescrTypeTag
then oAbort ( eVerifySTosSosloatalDotTypestiatch )
end
else oAbort ( eCheckdatadescriptor )
end

; Procedure oPopS
{ pops the top entry from the S-stack}

; begin
if s_stack_top = 0
then odbort ( eSStackUnderflow )
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else begin

FREEDESCRIPTOR ( S Stack (. s_stack_top .)

; s_stack_top := pred ( s_stack_top )
end

end

; procedure oPushS ( descrPointer : descriptorPointerTyp )

{ Pushes a (Pointer to) descriptor on the S-stack}

; begin
if succ ( s_stack_top ) > max_s_stack
then oAbort ( eSStackOverflow )
else begin
s_stack_top := succ ( s_stack_top )

; S_Stack (. s_stack_top .) := descrPointer
end :

end
; Procedure oChooseSDotDescriptorKindg
{f Returns the descriptor kind of the topmost
descriptor of the S-stack. }

; begin
HANDLE_CHOICE ( S_Stack (. s_stack_top .}
descrkKind )
end
; Procedure oVerifySMDataDotType ( SCodeType )
{ Aborts if the type of the top descriptor
of S-stack does not belong to the S-code type}

: begin
if § stack (. s_stack_top .)
IN DataDescriptor_Set
then begin
if 8§ Stack (. s_stack_top .) " . dataDescrTypelay
<> ScodeType

then oAbort ( oVerifySMDataDotType )
end

else oAbort ( eCheckDataDescriptor )
end

. descrkina

*

: Procedure oVerifySSosMDataDotType ( SCodeType )
{ Aborts if the type of the second topmost
descriptor of the S-stack is not an S-code type. }

; begin

If S Stack (. pred ( s_stack_top ) .) © . descrKind
IN DataDescriptor_Set
then begin

if § Stack (. pred ( s_stack_top ) .)



dataDescrTypeTag
<> SCodeType

then oAbort ( oVerifySSoskDataDotype )
end

else oAbort ( eCheckDataDescriptor )
end

; Procedure oChooseSMDataDotHasFixrep
{ Returns the fix repetition value of the
topmost descriptor of the S~stack. }

; begin

if S Stack (. s_stack_top .) " . descrKinag

IN DataDescriptor_Set
then begin
HANDLE CHOICE
{ ord ( s_sStack (. s_stack_top .) * .
dataDescrHasFixrep )
end

else oAbort ( eCheckDataDescriptor )
end

; procedure oChooseSMDataDotHasRange
{ Returns the Has range field value of the
topmost descriptor of the S-stack }

: begin
if 8 Stack (. s_stack_top .) " . descrKind
IN DataDescriptor_Set
then HANDLE CHOICE
( ord ( S_Stack (. s_stack_top .) ~
dataDescrHasgange )

else oAbort ( eCheckDataDescriptor )
end

; Procedure oPushSNewResultDescriptor
{ Pushes a new descriptor on S-stack }

var d_Pointer : des_Pointer

-

; begin
GET_DESCRIPTOR ( d_Pointer )
s_stack_top := succ ( s_stack_top )}
s_stack (. s_stack_top .) := d_Pointer
with s_stack (. s_stack_top .} °
do begin

DescrKind := ResultDescrKind
; DataDescriHasP6counterpart := true
end { with }
end

~ w8 wa
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Procedure oSwapSCountDepthIntoS

{ Swap topmost descriptor with the one located
at a distance indicated by the topmost value
of count stack deep in the S-stack. }

-

var temp : des_Pointer

; begin
temp := s_stack (. count_stack (. count_stack_top .)

; s_stack (. count_stack (. count_stack_top .) .)
1= s_stack (. s_stack_top .)

; s_stack (. s_stack_top .} := temp

end

Procedure oSReverseTopCountElements

f Reverse the top certain number of elements
on the S-stack. The number is stored on the
top of the count stack. ¥

; var temp : des_Pointer
; topelements , I : integer

begin
topelements := count_stack (. count_stack_top .)
if s_stack_top < topelements
then oAbort ( eNotenoughelementsonSstack )
else begin

for I := 1 to { topelements div 2 )
do bedgin
)

temp := s_stack (. I .
; s_stack (. I .) := s_stack (. topelements + 1 -

~a

; s_stack (. topelements + 1 - I .) := temp
end { for }

;

end { else }
'
end

Procedure oSetSMDataDotTypeToTag
{ Set the type field of the topmost descriptor
to the top element value on the tag stack. }

; begin
If S Stack (. s_stack_top .) " . descrKind
IN DataDescriptor_Set
then S Stack (. s_stack_top .} ~ . dataDescrTypeTay
:= Tag_stack (. tag_stack_top .)
else oAbort { eCheckDataDescriptor )
end
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{*************************************

Semantic Operations Associated with
TAG_STACK ::

Tag_stack :: A semantic stack of tag values

**********************************************}

Procedure oGetDescriptorPointer

({ Table_Pointer : Integer ; var d_Pntr : des_Pointer )
{ Gets the pointer to the descriptor associated

with a given tag }

-

; var table Entry : tag_tabl_Typ

: begin-
table entry := tag_table (. Table Pcinter .)
; d_Pntr := table_entry . tagentryDescriptorPointer
end

; Function oCheckDataDescriptorKind ( pntr : Integer )
Boolean

{ Checks if the descriptor associated with the tay

is a data descriptor or not }

; begin
If tag_table (. Pntr .) . TagentryDescriptorPointer

. DescrKind
IN DataDescriptor_Set
then oCheckDataDescriptorKind := true
end

ht

procedure oPushTagWithInputTag

{ Reads a tag from the input and pushes it
on the tag stack }

;7 var tag : tagTyp

; Begin READ_NUMBER ( tag ) ; oPushTag ( tay ) ena

-

procedure oVerifyTagDotState ( tagState )
{ Abort if tag tos unequal to parameter }

; Begin
If Tag_table (. Tag_stack (. tag_stack_top .} .)
. TagEntryState
<> tagState
then oAbort ( everifyTagDotState )}
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; -
end

; Procedure oSetTagDotState ( tagState )
{ Set the state tag tos to the parameter value }

; Begin
Tag_table '
(. Tag_stack (. tag_stack_top .) . TagEntryState =
tagState
end

; Procedure oChooseTagDotState
{ Return the state of tag tos }

; var State_param : TagStateTyp

; begin
State_param
:= Tag_table (. Tag_stack (. tag_stack_top .} .)
. TagEntryState
: HANDLE CHOICE ( ord ( State_Param ) )
end

; Procedure oChooseTag
{ Return the tag tos }

; begin HANDLE CHOICE ( Tag_stack (. tag_stack_top .} )
end

;i Procedure oVerifyTagDotKindIsType
{ Abort if tag tos does not nanme
an S-code type }

; var DescriptorPointer : des_Pointer

; begin
oGetDescriptorPointer
( Tag_stack (. tag_stack_top .) .,
Descriptorpointer )
; If DescriptorPointer "~ . DescrKind NOT IN
S_Code_Type_Set
then olAbort ( everifyTagDotKindType )
end

;1 Procedure oPushTagWithSMDataDotType
{ 8 tos must be a data kind descriptor.
push the s-code type field on the tag stack }
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; begin
if 8 stack (. s_stack_top .) " . DescrKind
IN DataDescrKind_set
then cPushtag ‘
( S_stack (. s_stack_top .) ° . dataDescrTypeTag

else oAbort ( epushTagWithSMDataDotType )
end

; Procedure oPushTagWithSSosMDataType
{ 8 S0os must be a data kind descriptor,
Push the S-code type field of this descriptor
onto the tag stack } 2

; begin
if § stack (. pred ( s_stack_top ) .) " . Descrkina
IN DataDescrKind_set
then oPushtag
( S_stack (. pred ( s_stack_top ) .) " .
dataDescrTypeTag
)

else oAbort ( epushTagWithSSosMDataType )
;end ‘
; Procedure oChooseTagMTypeDotHasRepField
{ Return boolean indicating whether the
type defined by Tag tos has a rep
field. Tag tos must name an S-code Type }

var DescriptorPointer : des_Pointer

-y

1]

begin
if oCheckScodeTypeDescrKind ( Tag_stack (.

tag_stack_top .) )

then begin

oGetDescriptorPointer
( Tag_stack (. tag_stack_top .) .,
Descriptorpointer )
; HANDLE CHOICE
{ ord { Descriptorpointer * . typeDescrHasrep )

end
else oAbort ( eChooseTagMTypeDotHasRepField )
end

; Procedure oPushTag ( tg : tagTyp )
{ Pushes a tag on the tag stack }

; begin
If tag_stack_top > max_tag_stack
then oAbort ( etagStackOverflow )
else begin
tag_stack_top := succ ( tag_stack_top )
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; Tag_stack (. tag_stack_top .) := tg
end
end

; procedure opopTag
{ Pop the tag stack }

; begin
If tag_stack_top > 0
then tag_stack_top := pred ( tag_stack_top )
else oAbort ( etagstackunderflow )
end

; Procedure oSetTagSosMDataDotTypeToTag
{ Set the type field of the descriptor
named by the Tag Sos to Tag Tos, Tag
Sos must name a data descriptor }

var d_pointer : des_pointer

-a

-

begin
If oCheckDatadescriptorKind
{ Tag_stack (. pred ( tag_stack_top ) .) )
then begin
oGetDescriptorpointer
{ Tag_stack (. pred ( tag_stack_top ) .) ,
d_pointer )
; d_pointer " , dataDescrTypeTag
- := Tag_stack (. tag_stack_top .)
end
else oAbort ( oSetTagSosMDataDotTypeToTag )
end

; procedure oSetTagMbataDotDisplacementToCount
{ Set the displacement field of the descriptor nameaq
by the top most tag to the current displcacement
obtained from the top of the count stack, the top
of tag stack must name a datadescriptor }

; var d_pointer : des_pointer

; begin
if oCheckDatadescriptorKind ( Tag_stack (.
tag_stack_top .) )
then begin
oGetDescriptorpointer
( Tag_stack (. tag_stack_top .} , d_pointer )
; d_pointer © ., dataDescrDisplacement
:= Count_stack (. count_stack_top )
end
else oAbort ( oSetTagbDataDotDisplacementToCount )
end
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Procedure oSetTagSosMDataQutputpointer

{ Set the output pointer field of the
descriptor named by the top tag to the
current output point }

-

var d_pointer : des_pointer

-

bl ]

begin
if oCheckdatadescriptorKind
( Tag_stack (. pred ( tag_stack_top ) .) )
then begin
oGetDescriptorpointer
( Tag_stack (. pred ( tag_stack_top ) .) .
d_pointer )
; d_pointer * . dataDescrOutputpointer :=
Current_output_point
end
else odAbort ( eSetTagSosMDatalOutputPointer )
end

; Procedure oSetTagSosMDataDotFixrepToCount
{ Set the fix repetition field of the data
descriptor named by the second most tag
to a value taken from the top of the count
stack }

; var d_pointer : des_pointer

; begin
if oCheckdatadescriptorKind
( Tag_stack (. pred ( tag_stack_top ) .) )
then begin
oGetDescriptorpointer
( Tag_stack (. pred ( tag_stack_top ) .) .,
d_pointer )
:+ d_pointer . dataDescrFixrep
:+= Count_stack {. count_stack_top .)
end

-~

!

procedure oSetTagSosMDataDotHasFixrep

{ Set the has fix repetition field of the
data descriptor named by the second topmost
tag to true

var d_pointer : des_pointer

~a

begin
if oCheckdatadescriptorKind
( Tag_stack (. pred ( tag_stack_top .) )
then begin
oGetDescriptorpointer ‘
( Tag_stack (. pred ( tag_stack_top ) .) .

e

d_pointer )
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; d_pointer © . dataDescrHasFixrep := true
end

else oAbort ( eSetTagSosMDataDotHAsFixrep )
end

i procedure oSetTagSosMDataDotRepToCount
{ Set the repetition field of the data descriptor
to the value obtained from the top of the count
stack }

var d_pointer : des_pointer

-a

: begin
if oCheckdatadescriptorKind
( Tag_stack (. pred ( tag_stack_top ) .) )
then begin
oGetDescriptorpointer
( Tag_stack (. pred ( tag_stack_tecp ) .) «
d_pointer )
; d_pointer = . dataDescrRep
:+= Count_stack { count_stack_top )
end
else ocAbort { eSetTagSosMDataDotRepTolount )
end

; procedure oSetTagScsMDataDotLowerBoundToCount
{ Set the lower bound field of the data descriptor
named by the second topmost tag to the wvalue
obtained from the top of the count stack }

; var d_pointer : des_pointer

begin .
if oCheckdatadescriptorKind
( Tag_stack (. pred ( tag_stack_top ) .) )
then begin
oGetDescriptorpointer
( Tag_stack (. pred ( tag_stack_top ) .) .,

-e

d_pointer )
; d_pointer © . dataDescrLowerBound
s+= Count_stack ( count_stack_top )
end
else oAbort ( eSetTagSosMDatalLowerBoundToCount )
end

procedure oSetTagSosMDataDotUpperBoundToCount

{ Set the upper bound field of the data
descriptor named by the second topmost tag
to the value cobtained from the top of the
count stack

-

var d_pointer : des_pointer

~a

begin

-
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if oCheckdatadescriptorKind
( Tag_stack (. pred ( tag_stack_top ) .} )
then begin
oGetDescriptorpointer
( Tag_stack (. pred ( tag_stack_top ) .) .
d_pointer )}
; d_pointer © . dataDescrUpperBcund
:= Count_stack ( count_stack_top )
end
else oAbort ( eSetTagSosMDataDotUpperBoundToCount )
end

; Procedure oSetTagSosMDataDotHasRange
set the has range field of the data
descriptor named by the second topmost
tag to true }

var d_pointer : des_pointer

-

begin
if oCheckdatadescriptorKind
{ Tag_stack {. pred ( tag_stack_top ) .) )
then begin '
oGetDescriptorpointer
( Tag_stack (. pred ( tag_stack_top ) .) .

-8

d_pointer )
; d_pointer ° . dataDescrHasrange := true
end
else obdbort ( eSetTagSosMDataDotHasRange )
end

{*****************************************
Semantic operations associated with COUNT STACK

COUNT STACK
Stack of Integers

******************************************}

; procedure oVerifycountValue ( value )

{ Abort if the count tos is not
equal to the value of the parameter }

; begin
if count_stack (. count_stack_top .) <> value
then oabort ( eVerifycountValue )
end

procedure oChcooseCountValue

-

{ returns the count tos value }
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; begin HANDLE ChOICE ( Count_stack (. count_stack_top
.} ) end

; procedure oChooseSosValue
{ return the tag sos value }
; begin
HANDLE CHOICE ( Count_stack (. pred (
Count_stack_top ) .) )
end

; procedure olIncrementCount

{ Add one to count tos }
; begin
Count_stack (. count_stack_top .)
:= Count_stack (. count_stack_top ) + 1
end

; procedure oDecrementCount
{ subtract one from count tos : }

; begin
count_stack (. count_stack_top .)
:= count_stack (. count_stack_top .} -1
end

; procedure oAddCount

{ replace Count tos and Count sos by their sum }

; begin
count_stack (. pred ( count_stack_top ) .)
:= count_stack (. count_stack_top .)
+ count_stack {. pred ( count_stack_top )} .)
; pop._.count
end

; procedure oMultiplyCount
{ replace count tos and sos by their product }

; begin
count_stack (. pred ( count_stack_top ) .)
:= count_stack (. count_stack_top .)
* count_stack (. pred ( count_stack_top ) .)
; pop_count
end

; procedure oChooseCountComparison
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{ compare and pop count tos and count sos.
Return one of the values - lessthan,
equalto or greaterthan }

; begin

If count_stack (. count_stack_top .)
< count_stack (. pred ( count_stack_top } .}

then HANDLE CHOICE ( Count_Less_Than )

else If count_stack (. count_stack_top .)

> count_stack (. pred ( count_stack_top ) .}
then HANDLE CHOICE ( count_Greater_Than )
else HANDLE CHOICE { count_Equal To )
end

: Procedure oPushCountWithValue ( value )

{ push the value of the of the parameter
on the count stack

var localval : integer

e

; begin localval := value ; PushCount ( Localval ) end
: Procedure oPushCountWithDuplicate
{ push a copy of the Count tos onto the count stack }
; var localval : integer
; begin
localval := count_stack (. count_stack_top .)
; PushCount ( localval )
end
; Procedure oPushCountWithInputByte

{ read a byté from the input and
push it on the count stack }

; var Byte_num : integer

-y

begin READBYTE ( Byte_num ) ; PushCount ( Byte_num )
end , '

; Procedure oPushCountWithInputNumber

{read a number from the input and
push on the count stack 3

; var number : integer
; begin READNUMBER ( number ) ; PushCount ( number ) end

Procedure oPushCountWithInputLiteral

.
7
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{ Read a string from the input, interpret
as an integer and push it on the stack }
; var Literal num : integer

; begin READSTRING ( Literal_num ) ; PushCount (
theral num ) end

; Procedure oPopCcunt
{ Pop the count stack }

H Begi%
If count_stack_top = 0
then olAbort ( eCountStackUnderflow )
else count_stack_top := pred ( count_stack_top )
end '

-

Procedure oPushCountWithTaghMSwitchFirstpéLabel

{ Tag tos must be a switch descriptor. Push
the first P6label on the count stack }

var param : integer
; d_pointer : des_pointer

-~

; begin

If oCheckSwitchDescrptorKind ( Tag_stack (.
tag_stack_top .))
then begin
oGetDescriptorPointer :
( Tag_stack (. tag_stack_top .) , d_pointer )
; param := d_pointer ~ ., switchDescrLowerp6label
; oPushCount ( param ) :
end
else oAbort ( eCheckSwitchDescriptor )
end

; Procedure oPushCountWithTagSwitchLastP6Label

{ Push the last label value in the range
on the count stack }

var param : integer
; d_pointer : des_pointer

~s

; begin
If oCheckSwitchDescrptorKind ( Tag_stack (.
tag_stack_top .} )}
then Begin
oGetDescriptorPointer
( Tag_stack (. tag_stack_top .) , d_pointer )
; param := d_pointer * . switchDescrUpperP6label
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; oPushCount ( param )

end

else oAbort ( eCheckSwitchDescriptor )
end '

;+ Procedure oPushCountWithTagMdataDotDisplacement
{ Tag tos must name a data descriptor,
push displacement field of this descriptor
on the count stack }

var param : integer
; d_pointer : des_pointer

-~

: begin

If oCheckDataDescriptorKind ( Tag_stack (.
tag_stack_top .) )

then begin

oGetDescriptorPointer
( Tag_stack (. tag_stack_top .) , d_pointer )

; param := d_pointer * . dataDescrDisplacement

; oPushCount ( param )}

end

else oAbort ( eCheckDataDescriptor )

end

; Procedure oPushcountWithSMDataDotDisplacement
{ Push the displacement field of the top most
s-stack descriptor on the count stack }

; var param : integer
; d_pointer : des_pointer

; begin

If s_stack (. s_stack_top .) ~ . descrKindTyp
IN Descriptor_set -
then begin
param := s_stack (. s_stack_top .) 7 .
dataDescrDisplacement
; oPushCount ( param )
end
else oAbort ( everifydatadescriptor )}
end

; Procedure oPushCountWithSMDataFixrep
{ Push the fix rep field of the topmost
s-stack descriptor on the count stack 1}

; var param : integer

; begin
If s_stack (. s_stack_top .) " . descrKindTyp
IN DataDescriptor_set
then begin



~

param := s_stack (. s_stack_top .) .
dataDescrFixrep

; oPushCount ( param )
end

else oAbort ( eVerifydatadescriptor )
end

; Procedure oPushCountWithSMDataDotRep
{ Push the repetition field of the
topmost s-stack descriptor on the count stack }

; var param : interger
; begin

If s_stack (. s_stack_top .) " . descrKindT¥p
IN DataDescriptor_set

then begin
param := s_stack (. s_stack_top .) © .
dataDescrRep
; oPushCount ( param )
end
else oAbort ( eVerifydatadescriptor )
end :

Procedure oPushCountWithSMDataDotLowerBound
{ Push the lower bound field of the topmost
s-stack descriptor on the count stack }

ws

var param : integer

t

; begin
If s_stack (. s_stack_top .) "~ . descrKindTyp
IN DataDescriptor_set
then begin
param := s_stack (. s_stack_top .) ~ .

dataDescrLowerBound

; oPushCount ( param )

end

else oAbort ( eVerifydatadescriptor )

end

1 Procedure oPushCountWithSMDataDotUpperBound
Push the upper bound field of the topmost
s-stack descriptor on the count stack }

; var param : integer

; begin
if s_stack (. s_stack_top .) " . descrkindTyp
IN DataDescriptor_set
then begin
param := s_stack (. s_stack_top .} " .
dataDescrUpperBound
; oPushCount ( param )

Page 95
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else oAbort ( eVerifydatadescriptor )
end.

;i Procedure opushCountWithTagTypeDotlength
{ Tag tos must name a s-code type descriptor

Push the length field of this descriptor on
the count stack }

; var param : integer

begin

oGetDescriptorPointer

( tag_stack (. tag_stack_top .) .,
Descriptorpointer )
; if Descriptorpointer © . Descrkind IN

s_code_type set
then begin

param := Descriptorpointer © . typeDescrLength
; oPushCount ( param )
end

else oAbort ( eVerifyTagDotKindType )
end

bl ]

-

Procedure oPushCountWithTagMTypeDotHasIndefRepField
{ Tag tos must name a type descriptor, push

the HasIndefrepfield (1 or 0) on the count
stack }

; var param : integer

; begin
oGetDscriptorpointer
( tag_stack (. tag_stack_top .) .

descriptorpointer )
if Descriptorpointer " . DescrKind IN
s_code_type set
then begin
param
:= Descriptorpointer * .
typedDescriIndefAlternstelength
; oPushCount ( param )
end

else oAbort { eVerufyTagDotKindType )
end

; Procedure oPushCountWithTagMProfileDotARDisplacement
{ Tag tos must name a profile descriptor. Push

the activation record displacement field on the
count stack }

var Param : integer
; d_pointer : des_pointer

-

~-e

begin
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If oCheckprofileDescriptorKind ( Tag_stack (.
tag_stack_top .)

then begin
oGetDescriptorpointer
( Tag_stack (. tag_stack_top .) , d_pointer )
; param := d_pointer " .,
profileDescrParameterARDisplacement
; oPushCount ( param )
end

else oAbort ( eVerifyTagDotProfileXindTyp )
end

; Procedure oPushCountWithTagMBodyDotARDisplacement
{ Tag tos must name a body descriptor, push

activation record displacement field on
the count stack }

var param : integer
; d_pointer : des_pointer

LY

; begin
if oCheckprofileDescriptorKind ( Tag_stack (.
tag_stack_top .) :
then begin
oGetDescriptorpointer
{ Tag_stack (. tag_stack_top .} , d_pointer )
; param := d_pointer © . bodyDescrARDisplacement
; oPushCount ( param )
end

else oAbort ( eVerifyTagDotBodyKindTyp )
end

{*****************************************

Semantic operations associated with the
Index table stack : !

Index table stack : stack of s-code
jump indexes

******j*************************************}

; Procedure oSetlIndexSubCountDotState ( indexState )
{ Topmost count stack entry is the table
subscript, set its state to the parameter value |}

; begin
Index_Table stack
(. count_stack (. count_stack_top .) )
indexEntryState
:= IndexState
end
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:+ Procedure oVerifyIndexStateSubCountDotState ( indexState
)

{ Topmost count stack is the table subscript, verify
its index state.

begin

If Index_Table stack (. count_stack (.
count_stack_top .) .} '

. indexEntryState
<> IndexState

then OAbort ( eVerifyIndexStateSubCountDotState )
end

-~

; Procedure oSetIndexSubCountDotpé6LabelToNewLabel
{ Topnmost count stack entry is the table
subscript, allocate a new P6 label and

store it in the p6 label field of the
table entry : 1

; var label : integer

; begin
oCreateP6Label { label )
: Index_Table_Stack (. Count_stack (. count_stack_top
e) o)
. IndexP6Label
:= label
end

i Procedure oVerifyAllIndexesUndefined
{ Verify that all entries in the Index
table are undefined, abort if not }

; var j : integer

; begin

For J := 1 to max_index_table
do If Index_Table Stack (. j .) . IndexEntryState <>
undefined

then oAbort ( eVerifyAllIndexesUndefined )
end

: Procedure oPushDownlIndexes
{ Push a new Index table on the Index
table stack with all entries undefined }

: begin
if Succ ( index_stack_top ) > max_index_stack
then o2bort ( eIndexstackoverflow )
else begin
index_stack_top := succ ( index_stack_top )
; Index_stack (. index_stack_top ) . IndexEntryState
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:= undefined
end
H

end

; procedure oPoplIndexes
{ Pop the Index table stack }

: begin
if index_stack_top = 0
then oAbort ( elIndexstackunderflow )}

else begin index_stack_top := pred ( index_stack_top
) end

end

{**************************************

Semantic operations associated with
P6label stack

**********i****************************}

; Procedure oPushP6lLabelWithNewLabel
{ Create a new P6label and push it
on the P6label stack }

; begin
If succ ( Pé6label_stack_top ) > max_labels
then ocAbort ( eP6labelstackoverflow )
else begin
p6label_stack_top := succ ( p6label stack_top )

; p6label_stack ( p6label stack_top ) :=
p6label_stack_top
end

[
I

end

; procedure oPopP6Labels
{ Pop the P6label stack }

; begin
if p6label_stack_top = 0
then oAbort ( eP6labelstackunderflow )

else begin P6label_stack_top := pred (
P6label_stack_top ) end
end

; Procedure oSwapP6Labels
Swap the top two labels on the P6label stack }

; var temp : integer

; begin
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temp := p6Label stack (. P6label stack_top .)
péLabel_stack (. P6label stack_top .)

:= P6LAbel_stack (. pred ( P6label stack_top ) .
; P6Label_stack (. pred ( P6élabel stack_top ) .) :

~e

)
temp
end

{******************************************************:

Semantic operations associated with the
Reachable stack

: stack of booleans used to determine when the
s-code is reachable. ( i.e. When the runtime
control can reach the current point

AR AR AR ER SRS R LR R SRR R R AR Rl AR R AR RS R R R R R LR LS LSS N

; Procedure -oPushReachableWithTrue
{ Push true on the reachable stack }

; begin
if Succ ( reachable_stack_top )} >
max_reachable stack
then oAbort ( eReachablestackoverflow )
else begin
reachable_stack_top := succ ( reachable stack_top

; Reachable stack (. reachable_stack_top .) := true
end :

end

; Procedure oPushReachableWithFalse
{ Push false on the reachable stack }

; begin
if Succ ( reachable_stack_top ) >
max_reachable_stack
then oAbort ( eReachablestackoverflow )
else begin

reachable_stack_top := succ ( reachable_stack_top

; Reachable stack (. reachable_stack_top .)
end
end

false

; Procedure oPopReachable
{ Pop the reachable stack }

; begin
if reachable_stack_top = 0

then oAbort ( eReachablestackunderflow )
else begin

reachable_stack_top := p{ed ( reachable_stack_top
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end
end

; Procedure oSetReachableToTrue
{ Set the top entry of the reachable stack
to true }

; begin Reachable_stack (. reachable_stack_top .) :=
true end

; procedure oSetReachableToFalse
{ set the top entry of the reachable
stack to false }

; begin Reachable_stack (. reachable_stack_top .} :=
false end

: Procedure oChooseReachable
{ Return the value of the top entry
of reachable stack

; begin
HANDLE CHQICE
{ ord ( Reachable_ stack (. reachable_stack_top .)

end

{******************************************************

Semantic operations associated with Global, local
and constant areas

(22222 R R LR EERL SRR EES AR SRS R R R SRR RS R AR R R RS EE S

Procedure oAlignAreaToTagType ( areaName )

{ The area displacement named by the parameter
is aligned to the alignment of the type named
by the topmost descriptor pointed by the ta?
stack

~e

var d_Pointer : des_Pointer

-e

-

begin
oGetDescriptorPointer
( tag_stack (. tag_stack_top .) , d_Pointer )
; If d_pointer " . DescrKind Not IN S_code type set
then oAbort ( everifyTagDotKindIsType )
else glob_const_loc_array (. areaName .)
:= ( ( glob_const_loc_array (. areaName .) = 1 )
DIV ( d_Pointer = . tagAlignment )
+ 1
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* d_Pointer "~ , tagAlignment
end

; Procedure oIncrAreaDisplacementByCount ( areaName )
{ Increment the current displacement of the
area named by the parameter by adding the

top value from the count stack }

; begin
glob_const_loc_array (. areaName .)
:= gloc_const loc_array (. areaName .)
+ count_stack (. count_stack_top .)
end

; Procedure oSetAreaToCount ( areaName )
{ Set the area displacement named by the
parameter to the top value from the
count stack }

; begin .
glob_const loc_array (. areaName .)
:= count_stack (. count_stack_top .)

end

~e
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SEMANTIC OPERATIONS FOR INTERPASS SEGMENTATION
procedure oBegSegment

; begin
if fragment_stack_top > 0
then begin
fragment_stack (. fragment_stack_top .)
. fragmentListNodeLeftLink
. fragmentListNodeFragmentpointer .
fragmentendpointer
:= current_output_pointer

’
end { then }
; push segment
With fragment_stack (. fragment_stack_top .)
do begin
fragmentListNodeRightlink
:= fragment_stack (. fragment_stack_top .)
fragmentListNodeLeftLink
:= fragment_stack (. fragment_stack_top .)
fragmentListNodepointer . fragmentStartpointer :=

~e

hl

-

fragmentListNodepointer . fragmentEndpointer := 0
end { with }
{ add one fragment to the newly pushed list }
getnode
( fragment_stack (. fragment_stack_top .)
. fragmentListNodeLeftLink
)

; With fragment_stack (. fragment_stack_top .)
do begin
fragmentListNodeLeftLink * .
fragmentListNodeLeftLink
:= fragment_stack (. fragment_stack_top .)
; fragmentListNodeRightLink :=
fragmentListNodeLeftLink
; fragmentListNodeLeftLink = .
fragmentListNodeRightLink
:= fragment_stack (. fragment_stack_top .)
; fragmentListNodeLeftLink ~ . :
fragmentListNodefragmentpointer
. fragmentStartPointer
:= current_output_pointer
end { with }

~e

~

~

end { oBegsegment }
; procedure push segment

; begin
if succ ( fragment_stack_top ) > max_£fragment_stack
then eFragmentStackOverflow
else begin
fragment_stack_top := succ ( fragment_stack_top )
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; getnode ( fragment_stack (. fragment_stack_top .)
end

H
end { push_segment}

; procedure getnode ( var p : fragmentListNodepointerTyp )

; begin
if avail = nil
then new ( p )
else begin
p := avail

; avail := p © . fragmentListNodeRightLink
end

end { GET NODE }

; procedure releasenodelist ( p :
fragmentListNodePointerTyp )

; var temp : fragmentListNodepointerNodeTyp

; begin
temp := p * . fragmetListNodeRightLink

-~

i P . fragmentListNodeRightLink := avail
; avail := temp
end { RELEASE NODE LIST}

; procedure oWriteList ( var refptr
fragmentListNodePointerTyp )

; var P : fragmentListNodepointerTyp

; begin
P 3= refptr
p := p ~ . fragmentListNodeRightLink
while p <> refptr
do begin

Write ( map_£file )

1= p © . fragmentListNodefragmentpointer

. fragmentStartpointer

; fragment_pointer := succ ( fragment_pointer )

Write ( map_file )
t= p ~ . fragmentListNodefragmentpointer

. fragmentEndPointer

; fragment_pointer := succ {( fragment_pointer )

; p :=p " . fragmentListNodeRightLink
end { while }

e e

-

;
end { OWRITELIST }
; procedure oPopSegment

; var param : fragmentListNodepointerTyp



Page 105

; begin
if fragment_stack_top = 0
then eFragmentstackunderflow
else begin
param
:= fragment_stack (. fragment_stack_top .)
. fragmentListNodeLeftLink
; releasenodelist ( param )
; fragment_stack_top := Pred ( fragment_stack_top )

end
énd { opopSegment }
; procedure cEndsegment
;7 var swap_pointerl : fragmentListNodePointerTyp
; begin
with fragment_stack (. fragment_stack_top .}

do fragmentListNodeLeftLink *
. fragmentListNodefragmentpointer .

fragmentEndpointer
1= current_output_pointer
{ WRITE TOS's LIST TO FRAGMENT POINTER FILE }

; oWriteList ( fragment_stack (. fragment_stack_top .)

; OoPopSegment
{ ATTACH A NEW FRAGMENT TQ END OF tos LIST AND OPEN IT

; 1f Fragment_stack_top > 0

then begin
swap_pointerl
:= fragment_stack (. fragment_stack_top .)

. fragmentListNodeLeftLink

getnode ‘

( fragment_stack (. fragment_stack_top .)

. fragmentListNodeLeftLink
)

with fragment_stack (. fragment_stack_top .)
do begin
fragmentListNodeLeftLink ~ .
fragmentListNodeRightLink :
:= fragment_stack (. fragment_stack_top .)
; fragmentListNodeLeftLink © .
fragmentListNodeLeftLink
:= swap_pointerl
; swap_pointerl ° . fragmentListNodeRightLink
- += fragmentListNodeLeftLink o :
; fragmentListNodeLeftLink °
. fragmentListNodefragmentpointer .
fragmentStartpointer
:= current_output_pointer
end { with }

~

-e

~

-~

-
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end { oEndsegment }

-
¥’
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Procedure PushMark ( marker : integer )

; begin .
if succ ( mark_stack_top ) > max_mark
then oaAbort ( eMarkstackoverflow )
else begin
mark_stack_top := succ ( mark_stack_top )
; mark_stack ( mark_stack_top ) := marker
end
end

Procedure oMarkAndCopySSection

-~

; var upper_mark , lower_mark : integer
; count : integer

begin

PushMark ( s_stack_top )

upper_mark := Mark_stack (. mark_stack_top .)
lower_mark := Mark_stack (. pred ( mark_stack_top )

~e

—y ™y

.)

; For count := succ ( lower_mark ) to upper_mark .
do begin
s_stack_top := succ ( s_stack_top )
; S_Stack {. s_stack_top .) © := S_Stack (. count .)
end
:
end

; Procedure oSwapMarkedSSections

; var sec_limit_3 , sec_limit_2 , sec_limit_1 ,
ref_point , sub
rJo
: integer
; temp_stack : array (. 1 .. max_s_stack .) of
s_.pointer

; begin
sec_limit_3 := s_stack_top
; sec_limit_2 := mark_stack (. mark_stack_top .)
If pred ( mark_stack_top ) < min_mark
then oAbort ( eNoTwosections )
else begin
sec_limit_l1 := mark_stack (. pred ( mark_stack_top

-

;1 sub =1
; For j := sec_limit_3 to succ ( sec_limit_2 )
do begin
temp_stack (. sub .) := s_stack (. j .}
; sub := succ ( sub )
end

; ref_point := sec_limit_3
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;7 For j := sec_limit_2 downto succ { sec_limit_1l )
do begin
s_stack (. ref_point .) := s_stack (. J .)
; ref_point := pred ( ref_point )}

end
; mark_stack {. mark_stack_top .) := ref_point
; sub := 1
; For j := ref_point downto sec_limit_1

do begin

s_stack (. ref_point .) := temp_stack (. sub ,)
s sub := succ ( sub )
end

i
end { else }

!
end { swap sections }
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ABSTRACT
Perkin-Elmer SIMULA system is an adaptation of the Portable
SIMULA system (S-port) developed by Norwegian Computing
Center (NCC) to the Perkin-Elmer 32-bit machines. This
report mainly concerns with the description of data
structures and semantic operations of Interpass.Interpass is
a part of the c¢ompiler to be wused in the Perkin Elmer
portable SIMULA system.
The Portable SIMULA system
(S-Port) consists of a portab;e front end compiler and
runtime system.The front end compiler translates the program
written in SIMULA to an intermediate language called
S-code., In order to implement the portable SIMULA system (
S-port) on the Perkin-Elmer machine, it is neccessary to add
a machine dependent code generater (S-Compiler) to S-Port.
S-compiler translates the program in S-code into the machine
language of jnterdata machine.Code generating mechanism and
intermediate token stream languages of the last four passes
are used in the construction of S-compiler. Also, a new pass
, known as Interpass is written to translate the S-code into
the input token stream for the Pascal code
generater.Interpass is written in Pascal and
S/SL (syntax/semantic) language.The program written in S/SL
resembles a recursive descent Parser with output actions and
semantic procedures called in.The semantic routines are
written in Pascal.
This report presents a brief history of the

SIMULA language.It introduces the S-port system and low



introduction to Syntax/Semantic langquage , describes the
major features of the pass 1 through pass 9 of Pascal/32
compiler, discusses the components of Perkin-Elmer SIMULA
system and provides a detailed description of the major data
structures and semantic operations of Interpass.The report
also discusses some of the problems encountered in the

design of Interpass.





