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Abstract 
 

Tannin, a second metabolic product in sorghum, has been directly related to resistance to 

insects and birds. Tannin also impacts sorghum nutritional value. Previous studies have shown 

tannin content has a positive correlation with early season cold tolerance, an important 

agronomic trait. Sorghum contains condensed tannins in testa layer below the pericarp. The testa 

layer tannin is controlled by two complementary genes B1 and B2: tannins are present when both 

genes are dominant but absent when only one or none of these two is dominant. The purpose of 

this research is to identify and map QTLs associated with the presence of condensed tannins, 

analyze interaction of QTLs, and provide a potential path to dissect the more complex trait of 

early season cold tolerance in future studies. A population of 109 F6:7 recombinant inbred lines 

(RILs) developed from the cross of a high tannin sorghum Shan Qui Red (SQR) and non-tannin 

line Tx430 was used in the mapping study. Two QTLs related to condense tannin presence in 

testa layer were mapped to chromosome 2 and 4, respectively. Strong epistatic interaction of 

these two QTLs was detected. The two QTLs together with their interaction explained 74% of 

the phenotypic variation. 

Sorghum grain quality traits, including kernel size, kernel hardness, protein and starch 

content, are complex traits which are directly related to sorghum nutritional value and market 

value. Association mapping is a promising method for complex quantitative traits analysis and 

dissection in plant science. Sorghum grain quality trait association analysis research is purposed 

to analyze large amount of grain quality data based on a diversity panel. A sorghum bicolor 

panel of 300 lines including germplasm derived from sorghum conversion program and elite 

commercial lines were established and served as diversity population for the association study. 

Phenotypic data of grain quality traits were collected by single kernel characterization system 



(SKCS) and near infrared reflectance spectroscopy (NIRS). Data analysis proved high diversity 

within the SB panel. A correlation between tannin presence and kernel hardness was also 

observed. Quality traits showed high consistence across years and environments.  
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CHAPTER 1-LITERATUR REVIEW 

 

Sorghum 

Sorghum (Sorghum bicolor [L.] Moench) is a C4 monocot which originated from African 

dry areas and is ranked as the fifth cereal crop worldwide and third in United States (Sasaki and 

Antonio, 2009). With high yield ability and good water and heat stress tolerance, sorghum can be 

successfully cultivated in a very wide range of soil and weather types including stress-prone 

environments. It is widely planted in tropical, subtropical, and semi-arid regions of developing 

countries in Asia and Africa, and serves both as feed and food grain. In the United States, 

sorghum is mainly produced in the Great Plains region from South Dakota to Texas. The top five 

production states, Kansas, Texas, Nebraska, Oklahoma, and Missouri occupy 85% of the market 

proportion. In 2008, almost 3.4 million ha were planted in the United States, with 35% of these 

planted in Kansas (NASS 2008a, 2008b). Sorghum grown in United States is primarily used as 

feed grain for livestock of poultry, beef and pork industries and materials for ethanol production.  

The rising market for increasing human consumption of sorghum is emerging based on 

use as a demanding of multiple nutrition and gluten-free cereal for people who have celiac 

disease and consequently can not consume wheat products (Schober et al., 2005). Recently, a 

unique metabolic product present in sorghum but not other common cereal crops, tannin, was 

shown to be a good antioxidant. Antioxidants have been proved to have anticancer, anti-

inflammatory, and antimicrobial effect, also helpful for therapy of coronary heart disease. With 

cancer, cardiovascular disorders, and arthritis increasing, sorghum’s role as antioxidant source is 

drawing more attention. Compared to other candidates or traditional plant source, the tannins 



 

 2 

obtained from sorghum have merits of large amount and high level of antioxidant activity 

(Awika et al., 2004).  

 

Sorghum Tannin 

Chemical structure and research about sorghum tannin 
Compared to other cereal crops, sorghum has a unique chemical component tannin. 

Tannin sorghums include type II sorghum (tannins present in pigmented testa) and type III 

sorghum (tannins present in pigmented testa and pericarp), while non-tannin sorghum is 

classified as type I. Tannin is a plant chemical compound accumulated in sorghum during 

phenolic metabolism via the phenylpropanoid pathway, which also produces other phenolic 

compounds such as isoflavones, coumarins, lignins and aromatic amino acids. Tannins are water 

soluble, with molecular weight ranges from 500 to 3000 and be devided into hydrolysable 

tannins and condensed tannins (Haslam et al., 1989). The former has a glucose central core 

esterified with hydroxyl groups and gallic acid residues, rarely present in plants or only present 

in low amounts. The latter are flavona-3-ol unit oligomers or polymers (epicatechin and catechin) 

with hydrolysis-insensitive carbon-carbon bonds, also called as proanthocyanidin (compounds 

that yield anthocyanidin pigments upon oxidative cleavage in hot alcohols), and commonly exist 

in plants (Kaluza et al., 1980). The typical molecular structures are shown as in Figure 1.1.  

Until now, all sorghum germplasm with a testa layer have been found contain condensed 

tannin, whereas no condensed tannins were found in anatomical structures other than testa layers 

(Awika et al., 2004). Condensed tannin is easily confused with tannin acid. Tannin acid is 

commonly used in the leather tanning industry and is said to be toxic to animals and human 

beings. Condensed tannins are widely distributed in the plant kingdom, including both 
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gymnosperms and angiosperms. Within angiosperms, they are more common in dicotyledons 

than in monocotyledons. Plants organisms such seeds, leaves, buds, stems, roots, legumes, and 

fruits have different amount of tannin. Because of the proximity of aromatic rings and hydroxyl 

groups and their high molecular weights, condensed tannins are highly effective at quenching 

free peroxyl radicals and show distinguished antioxidant effect (Waterman et al., 1994; 

Hagerman et al., 1998).  

Almost all wild sorghums have condensed tannin, which is colorless, located at the 

innermost layer of the seed coat, testa layer. In model species such as Arabidopsis, the testa layer 

is termed the endothelium. About 10 days after fertilization, the sorghum seed has the color of 

the underlying endosperm. But at maturity, after seed dry, condensed tannins are oxidized and 

the testa becomes opaque. (Figure1.2) The United States Department of Agriculture’s Federal 

Grain Inspection Service (USDA-FGIS) classified sorghum into yellow, white, brown and mixed 

class based on the grain color and tannin content. Sorghums with pigmented testa containing 

tannin are classified as brown sorghum, even though the pericarp color could be white, yellow, 

or red. Almost 99% sorghum marketed in U.S. is non-tannin sorghum (Awika and Rooney, 

2004). Commercial producers dislike tannin sorghums because their negative effects on feed 

quality.  

First, tannin leads to an unwelcome astringent, puckery flavor in mouth after 

consumption, the same unfavorable taste as wines and unripe fruits. Second, tannin can bind and 

produce complexes with various molecules such as amino acids, protein, carbohydrates, 

polysaccharides, and enzymes involved in protein and carbohydrates digestion. Such binding 

could precipitate proteins and the other nutritional molecules, produce compounds which are 

more resistant to digestion in the stomach, and decrease digestive enzyme and digestion rate 
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activity (Kumar et al., 1984; Salunkhe et al., 1990, Bramel-Cox et al., 1990). It also chelates 

minerals and metal ions at low pH (Hagerman et al., 1997). As a result, tannins in sorghum 

reduces food nutritional and caloric availability, decreases livestock feed intake, and leads to 

poor feed efficiency. Third, previous studies also have shown that tannins may be harmful and 

destructive to animal and health. Observations such as decreased growth rate of mice and other 

laboratory animals (Mehansho et al., 1985), reduced poultry egg production (Sell and Rogler, 

1984), abased weight gain, decreased nitrogen retention and amino acid availability in rats 

(Deshpande et al., 1986), and caused abnormal leg bone development growth in chicks 

(Armstong et al., 1973).  

However, recent research evidence strongly indicates the benefit of sorghum tannin to 

human health: people with type II diabetes and obesity are suggested to consume tannin sorghum, 

because tannin protein complexes limit digestion rate, release monosaccharides slowly, 

effectively control blood sugar concentration and caloric availability. Some African farmers 

prefer tannin sorghum as cereal because it ‘remains in the stomach longer’, and they can do field 

work a whole day without feeling hungry (Awika and Rooney, 2004).  

More importantly, sorghum tannins have recently been shown to be good antioxidants 

(Zhang et al., 2008). Antioxidants are chemicals which convert free radicals in the human body 

to harmless molecules by donating electrons. They protect cells against oxidative damage 

leading to aging, arthritis and cancer. Antioxidants also prevent injury to blood vessel 

membranes, and optimize blood flow to the heart and brain, which as a result helps lower the risk 

of cardiovascular disease (Awika and Rooney, 2004) and dementia, including Alzheimer's 

disease. According to epidemiological evidence derived from previous studies, phytochemicals 

such as phenolics all have antioxidant effects. The ability to act as antioxidants depends on 
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extended conjugation, number and arrangement of phenolic substitutents, and molecular weight 

and polymerization degree of flavonoid oligomers. With molecular weight of greater than five 

hundred, polymerization and many phenolic hydroxyl groups, tannins turn out to be 15-30 times 

more effective antioxidants than simple phenolics (Hagerman et al., 1998). (Table 1.1) At the 

same time, tannins have little or no pro-oxidant activity, although many small phenolics are pro-

oxidants (Labieniec and Gabryelak, 2003). Also, because tannin forms strong complexes with 

protein, carbohydrates, and lipids, they can help avoid oxidative damage during digestion. The 

potential of tannins to diminish nutrient digestibility must be balanced against their potential to 

serve as biological antioxidants (Dykes et al., 2006). Furthermore, compared to plant-derived 

tannin, sorghum tannins have extremely higher antioxidant activity, which consolidate its status 

as strong dietary antioxidants (Awika et al., 2004). Comparison with other plants is showed in 

Table 1.1. 

Tannins also have favorable agronomic traits since they validate tannins sorghum a good 

defense mechanism against insects and birds, prevent sorghum from pre-harvest germination, 

molding, and diseases caused by fungi, bacteria and viruses (Friend et al, 1977; Hahn et al., 1983; 

Harris et al., 1970; Harris et al., 1973). Pervious studies also showed that a positive correlation 

exists between tannin and other phenolic compound presence and sorghum early season cold 

tolerance. Phenolic compounds in the seed, particularly condensed tannin in the seed coat, may 

contribute to emergence and seedling vigor by suppressing soil-borne pathogens which are often 

present in cold, wet soils. With a RIL population with 153 lines derived from Shan Qui Red 

(SQR, cold tolerant) and SRN39 (cold sensitive), phenolic compounds in the seed were found to 

be positively correlated with seedling emergence, seedling vigor, seedling height, and 

germination at 22°C (Cisse et al., 1995). The concentration of flavan-4-ols, tannins, and total 



 

 6 

phenols in the seed were associated with several markers on a linkage group. With the same 

population, a later study found that both the same set of markers and additional markers related 

to coat color are located in a region showing strong association with seedling emergence and 

vigor (Knoll et al, 2008). Particularly, the presence of a testa layer is associated with seedling 

vigor, but not emergence.  

 

Screening for Tannin Content 
Tannins are complex compounds composed of various units with total molecular weight 

raged from 500 to 3000. This complexity means that accurate characterization and measurement 

is not easy to achieve. The presence of condensed tannin is associated with the presence of a 

testa layer, which is underneath the pericarp and originates from the ovule integuments. The testa 

layer of sorghum varieties can be absent or present, also can be partially present. Testa layers 

with condensed tannins are pigmented and present brown color.  

From the very beginning, sorghum breeders have a misunderstanding for correlation of 

sorghum tannin content and the darkness of kernel colors. Red and brown sorghums were 

classified as tannin sorghum while white sorghums are thought to be non-tannin. However, the 

darkness is not a suitable indicator parameter for tannin content (Boren et al., 1992). Actually, 

kernel colors are determined and affected by many factors including 1) pericarp color 2) pericarp 

thickness 3) presence of pigment testa layer 4) endosperm color 5) endosperm texture 6) glum 

color and 7) environment. Pericarp colors are controlled by two genes, R and Y, epistastic 

interactions of these two produce three types of color: red (RRYY), yellow (rrYY), and colorless 

or yellow (RRyy and rryy). There is also another I gene, which serves as an intensifier, 

increasing the darkness of red and yellow pericarp. This genetic variation, together with 
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combination of thickness and color variation produced complex kernel colors which can not 

serve as evidence for tannin presence. Several red sorghums are non-tannin while several white 

sorghums are high in tannin content (Table 1.2). High tannin sorghums have a very wide range 

of seed color, while light-colored varieties might have high levels of tannin content (Waniska 

et.al, 1992). Qualitative and more accurate methods should be employed to determine the 

presence and amount of tannin. 

A fast and direct method of tannin sorghum classification is the scratch test along with 

visual observations. With a knife scrapping the pericarp layer, the kernels with a black testa layer 

is classified as tannin sorghum. However, because the thickness of pericarp layer and testa layer 

vary in different sorghum accessions, ranging from 8 to 160 um and from 8 to 40 um, 

respectively, the standard of the scrape intensity should vary according to germplasm sources 

and accurate classification with the scratch test needs experience to do accurately. 

The bleach test is a relatively accurate, inexpensive, and rapid method that can be used 

for sorghum kernel grading and classification. It is widely accepted as a standard tool to identify 

sorghum with tannins because its ability to screen several thousand single-head selection using a 

small amount of labor. It has been used by the United States Department of Agriculture’s Federal 

Grain Inspection Service-Grain Inspection, Packers and Stockyard Administration (USDA-

FGIS-GIPSA) from the 1980s to test samples during grading for the presence of tannin sorghum. 

An alkali/hot water extraction process which remove both the pericarp and testa layer was 

initiated in early 1970s (Blessin et al., 1971). Armstrong et al. (1974) found that the process 

effectively removed most of the tannin from sorghum grains. Sorghum grain is immersed in a 

3.5% sodium hypochlorite solution (bleach) containing alkali KOH. The kernels were then rinsed 

with water and deposited on paper towel to dry. After dry out, the kernel colors were rated for 
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tannin or non-tannin. The solution dissolves away the outer testa layer of sorghum grain, 

revealing the presence of a black pigmented testa layer in the case of tannin sorghums, or its 

absence in the case of non-tannin sorghums.  

Accuracy of bleach test directly related to the reagents, standards chosen, reaction time, 

and kernel deterioration levels (Waniska et al., 1992). KOH alone removed all the cell layers 

outside the endosperm. Bleach alone reacted with the compounds inside the kernels and showed 

preferential color differences among genotypes. Testa layer of different sorghum genotypes 

varies in thickness, intensity and color, so the bleach test works well on varieties with good 

accuracy, but can cause false positives at others. Bleach loses its strength over time, so fresh 

bleach should always be used for best results. Long treatment times dissolve the testa layers 

together with pericarp, while limited time may not remove the pericarp completely. Sorghum 

seeds that have been molded and weathered in the field prior to harvest without testa layer will 

turn dark or have some dark spots after bleach, lead to false-positives (Dykes et al., 2002; 

Waniska et al., 1992).  

To overcome all the factors affects accuracy of bleach test, samples of tannin and non-

tannin sorghum should always include as appropriate standard checks. Also the bleach time, 

concentration and temperature should be critically controlled. Over bleaching could give false 

positive results, while inefficient bleaching may fail to recognize tannin sorghum (Table 1.3). 

Kofoid et al. (1978) carried out bleach test with three concentrations of KOH: bleach (1:6, 1:5, 

and 1:4) at water bath temperatures (50, 60, and 70 C) for three time periods (10, 15, and 20 min), 

and reported significant effect for differences of genotypes time, and temperature. There was no 

single treatment combination that worked for all entries. False positive tannin sorghums do not 

occur routinely and causes only limited problems. With good knowledge of the bleach test and 
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carefulness, improper classification can be minimized (Awika et al., 2005). After years of 

technical modification, USDA-FCIS employs a standard mix jar to carry out the bleach test. 

Sorghum samples of 15 grams were place into a mixing jar, 15 grams of KOH pellets then added 

also with 40ml of standard commercial bleach. After 3 minutes mixture, the sorghum is rinsed 

with warm tap water to remove the KOH-bleach solution. Excess water is removed, and the 

sorghums are allowed to dry in a dish. Modified bleach test with appropriate tannin and non-

tannin standard can be used for sample size reduced to 10 kernels. Tannin grains have black over 

the entire surface, with the only exception the germ which is lighter in color. Non-tannin grains 

are either completely white or partially brown. 

Both the scratch test and bleach test are qualitative tests. Neither of them is designed to 

quantify tannin content. Proper confirmatory tannin analysis may be performed in addition to 

these tests. A colorimetric method, or vanillin/HCl assay, has been used to measure sorghum 

tannins which react with vanillin in the presence of HCl to give a bright red color. Catechin is 

used as a standard. However monomeric phenols also react with the reagents and yield false-

positives. So, appropriate blanks are included and their values are subtracted to exclude 

background non-tannin favanol molecules which also have A-ring and a single bond between C2 

and C3 reacting with vanillin (Earp et al., 1981). However, significant time is required for this 

test and for whole day measurements, and a standard curve must be run before sample 

measurement in the morning and again in the afternoon (Awika et. al, 2004). Slope of the lines 

should be determined by linear regression on the curve. A low regression value may be caused 

by old chemicals or unskilled technique. Also weathered grains have significantly higher 

vanillin-HCl blank readings than normal grains, indicating higher levels background 

pigmentation do produced which similar to bleach test result. (Awika et. al, 2004) 
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Methods based on the reducing power of phenolic hydroxyl groups, such as Prussian blue, 

folin-Denisand Folin-Ciocalteu procedures are also used to measure phenolic acids, flavonoids, 

and tannins. Because these different solvents and methods extract and measure different 

chemical parts of the tannin molecule, different tannin values could result. The acidic butanol 

method is specific for condensed tannin, but is interfered by other sorghum anthocyanidins. Also 

tannic acid is used as a reference compound in these methods which it is not present in sorghum. 

Protein precipitation and enzyme inhibition ability could also serve as measurement methods 

(Hahn et al, 1984), but can not differentiate hydrolyzed tannins and condensed tannin and are too 

sensitive to reaction conditions and the protein used. Normal-phase HPLC analysis with 

fluorescence detection efficiently separates tannins according to their degree of polymerization 

(Awika et al. 2003) Methods comparison is included in Table 1.4. 

 

Tannin Genetics 
The presence or absence of the testa layer is controlled by two complementary dominant 

genes B1 and B2. Normally, dominant alleles are needed in both genes to confer tannin presence. 

Condensed tannins are present when both loci are dominant (B1_B2_) and absent if either or both 

of the loci are recessive (B1_b2b2, b1b1B2_, or b1b1b2b2). According to classical literature, these 

two genes obey the rule of independent assortment and should locate at different sorghum 

chromosomes (Stephens, 1924). The segregation and recombination of these two genes is in 

accordance with Mendel's genetic laws. With the dominant spreader gene S, pigmented pericarp 

is present.  

For complementary dominance of testa layer and tannin presence, a quantitative genetic 

model could be developed incorporating the gene action effects of each locus and the effects of 



 

 11 

interactions between loci affecting the trait. The model is two-locus model in which each locus 

has two alleles (Loci B1 with alleles B1 and b1, loci B2 with alleles B2 and b2). Additive effect (a) 

is half the average difference between genotypic classes measured in other loci background. 

Dominant effect (d) is the difference between the heterozygote B1b1 and the average of the two 

homozygous genotypes at the B1 locus (Also the same for B2 locus).  

In recombinant inbred line (RIL) populations, the model becomes simple. Since all the 

genotypes in RIL are homozygous, there is no dominant effect. So, there is no dominant by 

additive effect, but only additive by additive effect (Table 1.4). In tannin RIL population, tannin 

is scored as 1 while non-tannin is scored as 0. So, the values of genetic effects are shown in 

Table 1.5. 

As mentioned previously, presence of a testa layer has a positive correlation with cold 

tolerance. Previous cold tolerance QTL research based on RIL derived from SQR (cold tolerance 

high tannin kaoliang line) and SRN39 (cold sensitive African caudatum without tannin) 

identified two cold tolerance QTLs located on chromosome 2 and 4 (Knoll et al., 2008). Another 

study, based on a RIL population derived from the cross of SQR and Tx430 (non-tannin), 

identified two tannin QTLs at the regions close to the flanking markers of the cold tolerance 

QTLs on chromosome 2 and 4 (Ridder, 2004). 

Testa layers begin to accumulate colorless condensed tannins from the very early stage of 

embryo development and turn brown upon oxidative reaction. It is identified in many plant 

species that condense tannin biosynthesis shares the common flavonoid pathway with the 

anthocyanins until after the flavan-3, 4-diol step, which is catalyzed by dihydroflavonol-4-

reductase (DFR). In arabidopsis, condensed tannin also produced in a testa layer, which more 

commonly named as endothelium or seed coat (Debeaujon et al., 2003). BAN (BANYULS) gene 



 

 12 

has been cloned and shown to be involved in synthesis branch between anthocyanin and 

condensed tannin (Nesi et al., 2001). The expression of BAN is restricted to the endothelium 

during early seed development (Devic et al., 1999). BAN either codes for an enzyme involved in 

the step converting leucocyanidin to catechin or an enzyme catalyzed the step converting 

catechin to epicatechin, which are leucoanthocyanidin reductase (LAR) and anthocyanin 

reductase (ANR) respectively. BAN protein is homolog to DFR, but only 20% identical to the 

LAR enzyme from Desmodium uncinatum (Abrahams et al., 2002), while the relationship of 

BAN and ANR is still not clear. The flavonoid biosynthesis pathways are shown in Figure 1.3. 

Furthermore, in Arabidopsis, nearly 22 loci related to flavonoid compounds production 

pathways were found through the analysis of seed coat mutants: transparent testa (tt) mutants, 

banyuls (ban) mutant, and transparent testa glabral (ttg) mutants. Among these loci, TT1, TT2, 

TT8, TT12, TTG1, and TTG2 genes are commonly accepted as directly associated with condense 

tannin (Koornneef, 1990; Shirley et al., 1995; Zhang et al., 2003). TT8 encodes a helix-loop-

helix and TT2 encode a R2R3 MYB protein which regulate BAN and DFR gene expression 

(Nesi et al., 2001). TT1 is a zinc finger gene (Sagasser et al., 2002). TT12 encode a transporter-

like protein which is required for condensed tannin accumulation in vacuoles of testa layer 

(Mueller et al., 2000). TT2, TT8, TTG1 and TTG2 act together regulate BAN expression at the 

transcriptional level, and TTG2 acts downstream of TTG1 to enable tannin biosynthesis 

(Johnson et al., 2002).  

TTG1 ortholog in sorghum is located on chromosome 4. It is related to pale aleurone 

color 1 (PAC 1) locus in maize, which required for anthocyanin pigment in the aleurone and 

scutellum of maize seed and has similar effect of tt1 in arabidopsis. Consequently, TTG1 could 
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be considered as a good candidate for one of the condense tannin complementary genes (Figure 

1.4).  

 

 

 

QTL Mapping 

Molecular Markers and Mapping populations 
Markers used for linkage map constructions include restriction fragment length 

polymorphism (RFLP), random amplified polymorphic DNA (RAPD), amplified fragment 

length polymorphism (AFLP), and simple sequence repeat (SSR). SSR markers, also known as 

microsatellites, are consists of nucleotide repeats of 1-6 base pairs sequence in length. Because 

of merits such as codominant, high occurrence frequency, whole genome distribution, high 

polymorphism level, high reproducibility, and amenability to simple and inexpensive polymerase 

chain action (PCR) assays, SSR is widely used in various plant species.  

To construct genetic linkage maps for QTL mapping, a suitable population is very 

important. The commonly used man-made populations include F2, backcross (BC1), double 

haploid (DH) and recombinant inbred lines (RIL). These populations are all derived from a bi-

parental cross and segregating for a desired trait. DH and RIL populations are preferred because 

of their genome stabilization, which facilitate multiple year and location experiments and 

guarantees accurate phenotypic value estimation. But time required for RIL population 

development is relatively long, even when winter nurseries in tropical areas are used as a time 

saving approach. Comparatively, DH population could be constructed within three years. 

However, since the recombination while DH production are limited to one or two cycle, its 
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genetic background is not so favorable compared with RIL which have undergo several round of 

recombination. There is no successful DH population produced for sorghum till now.  

 

 

 

QTL Mapping Methods 
Quantitative trait locus (QTL) mapping technologies are used to estimate the number of 

loci controlling genetic variation in a segregating population and to determine the map positions 

of these loci in the genome. QTL analysis methods based on statistics have been developing for 

years. Single marker analysis based on the likelihood ratio is the most original and simplest one. 

However, it can only be used to detect QTL effect without estimate QTL location on the 

chromosome. Interval mapping (IM) method based logarithm of the odds (LOD) calculation was 

employed to detect both the QTL effect and location in every two markers interval (Lander and 

Botstein, 1989). Where the maximized LOD score exceeds the threshold value is determined to 

be the most possible location of an objective QTL. Ghost QTLs are potential problems because 

IM could not eliminate the effects of other QTLs in nearby chromosome regions. Zeng et al. 

(1994) modified interval mapping and published composite interval mapping (CIM), which 

separates makers by a detecting window. Markers outside the detecting window serve as 

cofactors to remove the effect from other QTLs in the genome. Minor effects QTLs could also be 

detected using this method. Both IM and CIM are likelihood-based approach and require a 

suitable threshold to declare a QTL with significant effect. The permutation test has been widely 

accepted for threshold value determination. This test assigns trait data randomly to the 

individuals of certain populations repeatedly, and selects the best data set for threshold set up 
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(Churchill and Doerge, 1994). Zeng et al. (1999) developed the multiple intervals mapping 

(MIM) method that fits a multiple QTL model including epistasis. It provides the benefit of 

simultaneously searching the number, positions and interaction of QTLs. Compared to CIM, 

MIM has merits of improving statistical power for multiple QTL detection, facilitation for QTL 

epistasis analysis. 

 

Genetic Maps and QTL Analysis in Sorghum 
Sorghum is a diploid with haploid chromosome number of 10 (2n=2x=20). The physical 

size of the sorghum genome is 730 Mb (Paterson et al., 2009). This makes the sorghum genome 

the second smallest genome of cereal crops, about 60% larger than rice, but only one-fourth the 

size of the genomes of maize or human. Sorghum is closely related to major crops of tropical 

origin such as maize, sugarcane, and pearl millet, and thus provides a better roadmap for study 

of these crops at the DNA level. In 1990s, genome mapping of sorghum began and several 

genetic maps of sorghum were constructed. The initial marker used for map construction was 

restriction fragment length polymorphism (RFLP) markers. Amplified fragment length 

polymorphisms (AFLP) markers which have highly polymorphic information content, great 

multiplex ratio, ease of automation use, and the ability to develop large number of markers are 

also developed in sorghum (Menz et al. 2002). Simple sequence repeat (SSR) or microsatellite 

markers were integrated into genetic maps thereafter (Bhattramakki et al., 2000).  

Several QTLs for important agronomic traits in sorghum have been mapped using 

molecular markers, including disease resistance, tolerance to environmental stress, leaf 

phenotypic traits, seed and panicle characteristics, and plant status (height, flowering, maturity, 

tillering) (Subudhi et al., 2000).  
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Tannin QTL Analysis in Other Plant Species 
Condense tannins in seeds attract research attention not only in sorghum but also other 

valuable model plants and economical crops including Arabidopsis, canola, tea and the common 

bean (Wittkop et al., 2006). Using AFLP and SSR markers, Lipsa et al. (2009) identified 14 

QTLs for condensed tannin in canola seed coat (similar to the testa layer in sorghum) based on a 

double haploid population. In this research, 10 QTLs were in charge of oligmeric condensed 

tannin and 4 QTLs were associated with polymeric condensed tannin. Caldas and Blair (2009) 

identified condensed tannin QTL in the common bean based on three RIL populations. They 

found that seed tannin concentration in the common bean associated with Mendelian genes for 

seed coat color and pattern. Seed coat condensed tannins were determined with a butanol-HCl 

method and a total of 12 QTL were identified on separate linkage groups in the three RIL 

populations with individual QTL explaining from 10 to 64% of the phenotypic variation for this 

trait. Loci on linkage groups B3 and B10 were associated with the Mendelian genes Z and Bip 

for partly colored seed coat pattern, while a QTL on linkage group B7 was associated with the P 

gene which is the primary locus for the control of color expression in beans. Another study in 

common bean using AFLP markers also found one putative QTL associated with tannin content 

in the common bean seed which explain 42% of the phenotypic variance (Caldas et al. 2000). 

There are also tannin QTL identification researches for leaf tannin (Doyle et al., 1987). Tanaka et 

al. (2000) employed RAPD markers in a two clone derived population, and find one QTL effect 

tannin biosynthesis or degradation pathway in tea. 

 

Sorghum Conversion Program and Sorghum Diversity Panel 
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As the very early domesticated sorghum plants were selected and dispersed, genetic 

adaptation and intercrossing followed by selection and continued intercrossing in isolated 

ecosystems gave rise to new and stable sorghum biotypes. However, strong selection for 

domestication-related traits created a severe genetic bottleneck and reduced diversity in 

domesticated sorghum compared with wild relatives (Hyten et al., 2006). In addition, modern 

breeding practices have further constrained the amount of extant diversity in crop species and 

limited genetic gains in breeding programs. Most sorghum commercial varieties grown in United 

States are less than 5 feet height, named dwarf types, which facilitate modern mechanical harvest. 

Diversity shortage and germplasm consistency makes U.S. commercial sorghum lines 

susceptible to disease, pests and other environmental stress.  

Simultaneously, sorghum has a large range of genetic variability available in Africa 

where domestication first occurred. Due to the early introduction of sorghum to Asia, further 

diversity could be found in Asia. Landraces and wild relatives of cultivated sorghum from Africa 

and Asia are rich sources of resistance to stresses such as high temperature, drought, insects, and 

diseases. They may also provide a source for food, feed, and industrial products quality trait 

improvement.  

Around the 1960s, CMS A1 was used extensively for sorghum hybrid seed production, at 

the same time the tropical originated, photoperiod sensitive accessions were cultivated in U.S. 

temperate regions. Collection and conservation of sorghum germplasm should be accelerated to 

prevent the extinction of landraces and wild relatives of cultivated sorghum. To address this 

concern, in 1963, the USDA in cooperation with Texas A&M University initiated sorghum 

conversion program (SCP), which introduced novel genetic variation from exotic, tropical 

germplasm into modern U.S. cultivars (Stephens et al., 1967). After reciprocally crossing 
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tropical lines temperate and elite line, selecting day-neutral flowering and reduced height 

progenies, tropical lines were converted to photoperiod insensitive line with early maturing and 

short stature characters. Backcrossing of the progenies to the tropical parents were carried out 

until the resultant lines were fixed for temperate alleles at major maturity and height controlling 

loci but with nearly 90% of the tropical genome (Lin et al., 1995). About 850 converted tropical 

lines have been released by the SCP and these germplasm have allowed breeders to exploit novel 

variation for insect and disease resistance, drought tolerance, heterosis, and grain quality. As a 

result, most of the U.S. sorghum hybrids grown today have some tropical germplasm in their 

pedigrees (Gabriel, 2005).  

A sorghum diversity panel was recently assembled. This panel is comprised of 377 

accessions, including 228 converted tropical lines produced by the SCP, and 149 important 

breeding lines and their progenitors from all around the U.S. A subset of 300 lines from this 

panel was selected for sorghum grain quality traits research by association analysis (Hamblin et 

al., 2007). 

 

Sorghum Grain Quality 

Definition of grain quality depends on the grain type and its end use. It includes a range 

of properties that can be defined in terms of physical, sanitary, and intrinsic characteristics. 

Physical characters include moisture content, kernel weight, kernel size, total damaged kernels, 

and broken kernels. Grain quality is also related to fungi count, insects and insect fragments, 

rodent excrements, foreign material, toxic seeds, pesticide residue, odor and dust. Oil content, 

protein content, hardness, density, and starch content are classified as intrinsic characteristics 

(Henry and Ketlewell, 2007). The quality properties of a grain are affected by its genetic traits, 
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the growing period, timing of harvest, grain harvesting and handling equipment, drying system, 

storage management practices, and transportation procedures (Mazur et al., 1999). 

Grain hardness is an important attribute in the processing of cereal grains and in the end-

use products such as breads and snack foods (Bettge and Morris, 2000). It also plays a role in 

plant defense against molds (Jambunathan et al., 1992), weathering, and insect attack (Waniska, 

2000). For sorghum, hardness is reported to be significantly related to cooking quality 

parameters such as adhesion, cooked grain texture, alkali gel stiffness (Cagampang et al., 1984), 

porridge quality (Akingbala and Rooney, 1987), and production of high-quality couscous 

granules (Aboubacar and Hamaker, 1999). Milling quality of sorghum grain has been related to 

grain hardness as well (Rooney and Waniska, 2000). Commonly, large sorghum kernels are 

harder than small ones and related to higher quality grain (Lee et al., 2002).  

Sorghum kernels are round, small in size; vary from about 3 to 4mm in diameter. 

Variation in kernel size occurs not only between cultivars but within a cultivar obtained from a 

different location or season (Wills and Ali, 1983). Large sorghum kernels with corneous 

endosperm are usually preferred for human consumption and associated with desirable physical 

and chemical quality parameters: harder, higher in protein concentration, and lower ash, higher 

milling yields, higher water absorbance flour, brighter white color, and larger particle size (Lee 

et. al, 2002). Small kernel sorghum, which has a greater possibility to be hard and not easy for 

milling, is also not popular in the grain marker because of these qualities.  

Sorghum kernel weight is determined by kernel growth rate and total duration of grain 

filling, also related to grow position within the sorghum panicle (Gabriel et al, 2005; Buffo et al., 

1998). Sorghum kernel weight contributes greatly to final yield determination. The two 
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components for weight: kernel moisture content and kernel density are correlated with milling 

value.  

Sorghum kernel color varies from dull white, yellow, and brown to red, which is also a 

big component for sorghum grain quality. Because usually the seed with a red coat has a good 

chance of high tannin content which is not good for food and feed use, light color are more 

preferred. Lighter flour is more favorable in markets. 

Chemical quality parameters such as protein, starch and mineral contents are directly 

factors play roles in sorghum nutritional value, which are certainly consider as important grain 

quality components. 

 

Grain Quality Analysis 
The Single Kernel Characterization System (SKCS) is a device for whole grain physical 

properties measurements originally used in wheat analysis. After modification and calibration of 

parameter detection, adjusting new slope and bias values for kernel rejection criteria, SKCS has 

been employed to provide countable and accurate parameters for sorghum kernel parameters 

(Bean et al., 2006). Individual grains are crushed between a serrated rotor and a crescent, and 

parameters for kernel hardness, diameter, moisture and weight were sent to computer at the same 

time (Martin et al 1993). Typically 300 kernels are analyzed for each sample, and both the 

average and the standard deviations for the 300 kernels are reported. Moisture content obtained 

by SKCS for sorghum is skewed, less than air oven measurement, and not suitable for accurate 

usage. The SKCS accurately predicted weight relative to weight kernels on an analytical balance 

while predictions of kernel thickness were highly correlated to digital caliper measurements, 

with only 20% underestimated value (Bean et al, 2006). 
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Near infrared reflectance spectroscopy (NIRS) is a spectroscopic method utilizing the 

near infrared region of the electromagnetic spectrum (from about 800 nm to 2500 nm) to acquire 

the goal of rapid and nondestructive determination of the concentration of physical and chemical 

constituents in agricultural materials. Grain quality traits, such as protein content, moisture, 

starch could be predicted by NIRS. NIRS is based on molecular overtone and combination bands 

vibrations. The hydrogen containing bonds (O-H, C-H, N-H, S-H, P-H) and hetero-nuclear bonds 

such as C=O are abundant in nutritional molecules and have high anharmonicity and strong 

overtone absorptions. In addition to the chemistry of a material, near-infrared spectra are also 

influenced by the physical structure of a material. The size and shape of the particles, the void 

between particles and the arrangement of particles affect the length of light transmission passing 

through a sample and thereby influence reflectance. Near-infrared spectra are difficult to 

interpret directly because the molecular overtone and combination bands seen in the NIRS are 

typically very broad, which leads to complex spectra and increases the difficulty of assign 

specific features to specific chemical components. As a result, multivariate calibration is required 

for quantitative analysis of sample constituents by NIRS. 

Multiple wavelength calibration techniques are often employed to extract the desired 

chemical information. These calibration methods include principal components analysis, partial 

least squares, step wise multiple linear regression, Fourier regression, locally weighted 

regression are the most used ones. None of these proposed calibration techniques have achieved 

universal acceptance because calibration model that works well for one application may be 

unacceptable for another. So, careful development of a set of calibration samples and application 

of multivariate calibration techniques is essential for near infrared analytical methods.  
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Association Mapping and Candidate Gene Approach 

Grain quality traits are complex traits controlled by quantitative traits loci. QTL mapping 

developed for 20 years could map QTL within 10 to 30cM (Salvi et al., 2005). Near isogenic 

lines (NIL) are then used to mendalize the trait, which transfers quantitative data into qualitative 

data and lead to QTL positional clone (Doerge, 2002). However, plants with large genome with 

large amounts of repeat sequences make the fine mapping and positional clone problematic. 

Furthermore, the extent of QTL effect directly controls the mapping efficiency, no small effect 

but only main-effect QTLs were cloned. Association mapping, also called linkage disequilibrium 

mapping, is another approach for quantitative trait locus discovery and dissection. Compared 

with linkage analysis, association have four merits 1) time saving, the mapping population are 

always natural populations, which save the time for population construction 2) high throughput, 

alleles within the same loci can be analyzed at the same time, 3) high extension, identification 

could be based on single gene level, 4) detect more QTLs than linkage mapping and even QTLs 

with minor effects (Flint-Garcia et al., 2005). 

Association mapping is based on linkage disequilibrium, the random combination of 

alleles at different locus. If the rate of certain allele company with another allele of other loci on 

the same chromosome is larger than rate of two alleles show up together after random 

segregation, the two alleles is said to be in Linkage disequilibrium. Linkage disequilibrium (LD) 

is derived from polymorphism produced by mutation, and break by recombination (Hamblin et 
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al., 2005). Biological and historical factors, the outcross rate of species, chromosome location, 

population size, selection intensity of chromosome segments, and gene drifting, also affect LD 

extension and distribution. Self-pollinated species have high level of LD. Regions near the 

centromere have low recombination rate and high LD, while the regions on chromosome arms 

show relatively higher recombination rate and low LD. The population subdivision and mixture 

increase LD. Selection on specific genes will at the same time reduce diversity of this gene loci 

and the locus nearby, as a result increasing LD.(Wang et al., 2005)  

Association analysis could be employed by two approaches, the whole genome approach 

and the candidate genes approach. The former scans the whole genome to search for potential 

mutant locus explaining phenotypic variation. For the later, discovery of candidate genes related 

to target traits with assistances of bioinformatics and biochemistry methods is critical. Both 

approaches request large amount of statistical analysis and computation (Falush et al, 2003).  

Whole genome association mapping, strictly in concept, need thousands of markers and 

population with as many unrelated individuals as possible. It is only practically feasible when 

large amount of research funding available. The candidate gene approach can be combined with 

QTL analysis (Krrakman et al., 2004). If one gene locates within a certain QTL region, and its 

function is associated with phenotypic traits, this gene is probably a candidate gene of the QTL. 

If the sequence of the research species is already available, linkage analysis could locate 

objective QTL within 3 to 5 cM, then through employing functional prediction bioinformatics 

and relative physiological and biochemical analysis, most genes inside the objective region could 

be excluded. By association analysis of several candidate genes, the final objective gene is easily 

determined (Meuwissen et al., 2005). Furthermore, traditional QTL linkage analysis can not 

discover alleles which are not present in either of the parental lines, or alleles without 
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polymorphism between parental lines, and limits the number of QTLs detected. Candidate gene 

association analysis based on natural populations with great diversity and large genetic variations 

could overcome this problem. In all, candidate gene approach shortens the mapping time and 

decreases the resources required for gene identification (Doebley et al., 2005).  

Candidate gene association analysis also plays an important role in gene function 

verification (Doerge, 2002). Though transformation is widely accepted as gold standard for gene 

function verification, it is difficult for quantitative genes which only control one step of complex 

metabolic pathways. For example, carotenoid production in gold rice is controlled by four genes 

together. Only when all the four genes were transferred into rice genome together, the rice would 

present the golden color. Without clear dissection of metabolic pathway, functional verification 

of such genes is unavailable. Association analysis could avoid such drawbacks. 

Candidate gene association analysis could also promote the development of marker 

assistant breeding by detection of functional markers. Recently, makers used in MAS are 

developed from linkage mapping results, and proved to be tightly linked to objective genes. 

However, linkage mapping results are only based on particular population constructed by 

researchers, which might not discover the best allele, consequently the best selection result might 

not be achieved using MAS. Furthermore, recombination and genetic drift could lead to 

objective gene lose. A functional marker which is derived directly from gene coding region 

could solve such problems (Doerge, 2002). Exploiting a functional marker requires 1) candidate 

genes with known function and alleles sequence information; 2) availability of traits 

investigation, sequence comparison and analysis in multiple populations with different 

background using association analysis. With more SNP markers available in plant model species 
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and rapid development of bioinformatics and biochemistry, candidate gene association mapping 

will becomes hot point of plant genome research quickly. 

 

Metabolic Pathways and Candidate Genes 

Sorghum grain quality traits are determined by different metabolic pathways, the learning 

of the pathway and relative enzyme is very critical for trait dissection by association mapping 

candidate gene approach. Until now, fifteen candidate genes in starch metabolism pathway have 

already been sequenced. They influence synthesis or regulation of ADP-glucose 

pyrophosphorylase, debranching enzyme, starch synthesis, granule bound starch synthesis, 

sucrose synthesis, phosphoglucomutase, and Glucose-6-phosphate translocator. More candidate 

genes for other metabolic pathways related to grain quality traits is on the way of discovery. 
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Figure 1.1 Molecular structures of tannin related compound. From left to right, top to 
down: gallic acid, epicatechin, catechin, hydrolysable tannin, condensed tannin, and tannin 

acid. 
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Table 1.1 Antioxidant activity (ORAC) levels of tannin sorghum compared to common 

fruits (Adapted from Awika et al. 2004) 

Plant ORAC  
Tannin sorghum bran 2400-3100 

Blueberries 87-870 
Strawberries 356-400 

Plums 452-600 
Grapes 100 

Watermelon 15 
Orange 80-150 
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Figure 1.2 Fluorescence photomicrograph of cross-sections of a non-tannin (left) and a 
tannin sorghum kernel (right). Ep- epicarp; M- mesocarp; CW- cell wall; En- endocarp; 
Al- aleurone; E- endosperm cell. (Adapted from Earp et al., 2004) 
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Table 1.2 Kernel characteristics, their genotypes, grouping and tannin content. (Adapted 
from Earp et al., 1981). 

 
A: Absent; P: Present; Testa color was determined by visual observation of kernels with pericarp 
scratched off with a pocket knife
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Table1.3 Bleach test problems and their suggested solutions. 
Problem Suggested solution 

Kernels have black tips All kernels have a black hylar region  
 (where the kernel attached to the plant) 
Kernels are white Compared to standard sorghum checks  
 a. All kernels do not have tannin 
 b. Shaking time too long or the bleach is strong. 
Kernels are red to brown Compared to standard sorghum checks  
 a. All kernels do have tannin 
 b. Pericarp is not removed completely.  
 (Bleach is old or shaking time is not enough.) 
Kernels have dark speckles or 
spots Compared to standard sorghum checks.  
 Kernels may be damaged by insects, disease or weathering. 
 (Darkness of the spots depends on the damage extent) 

Kernels are black 
Compared to standard sorghum checks. All kernels have 
tannin. 
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Table1.4 Methods used to determine tannins. (Adapted from Hahn et al., 1984; Hagerman 
et al., 1997) 

Tannin Standard Reagents Time What is Measured 

Vanillin Catechin 4% HCl, 24 hr  
Leucoantho-
cyanidins  

  1% vanillin in methanol 20hr Condensed tannins 
Prussian blue Catechin FeCl3 in HCl 1 min Total phenols 

Folin-Denis Tannic acid Folin-Denis reagent 5 hr 
All reducing 
substances 

Protein Precipitation Tannic acid FeCl3, alkaline detergent 
20 
min Condensed tannins 

Folin-Ciocalteu 
Catechin or gallic 
acid Folin-Ciocalteu reagent 

1 hr 2 
hr Total phenols 

Polymerization 
Degree   4% HCl 

20 
min Anthocyanidins 

  
0.5% vanillin in acetic 
acid  Condensed tannins 

  4% HCl in acetic acid  Leucoathocyanidins 
Acid butanol Catechin 5% HCl in 2-butanol 1 hr Condensed tannins 
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Table 1.5 Condensed tannin complementary genes theoretical additive effects and their 
interaction. 

 B2-locus genotype 
B1-locus 
genotype B2B2 b2b2 Marginal mean 

B1B1 m+a1+a2+aa m+a1-a2-aa m+1/2a1 

b1b1 m-a1+a2-aa m-a1-a2+aa m-1/2a1 
Marginal mean m+1/2a2 m-1/2a2 m 
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Figure 1.3 Condensed tannins and anthocyanins metabolic pathways. (Adapted from Petit 
et al., 2007). 
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Figure 1.4 Tannin genetic regulatory pathways. Arrows indicate positive regulations. Gene 
activities prevailing in both the endothelium and the chalaza/micropyle are shown with 
boldface letters and solid arrows, and endothelium -specific activities are indicated with 
lightface letters and dashed arrows. The star indicates that the activity is necessary in a few 
cells at the endothelium base. 
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CHAPTER 2 – TWO INTERACTING QTL CONTROL FOR THE CONDENSED TANNIN IN 
SORGHUM GRAIN 

 

Abstract 

Condensed tannin is a unique secondary metabolic product that accumulates in the 

sorghum seed testa layer underneath the pericarp. The formation of the testa layer and presence 

of condensed tannin were shown to have antinutritional effects for human consumption and be 

related to sorghum resistance to stress. But recent studies also demonstrated the antioxidant 

activity of sorghum tanning for industry usage. Classical literature indicated that the presence of 

condense tannin is controlled by two unlinked genes acting in a complementary dominant 

epistasis pattern in an F2 population. But the exact genes and their genomic locations remain 

unknown. Our objective is to identify the quantitative trait loci (QTLs) controlling the presence 

and absence of condense tannin in the sorghum grain. Towards this goal, a high tannin line, Shan 

Qui Red, and a non-tannin line, Tx430, were crossed. The resulting recombinant inbred line (RIL) 

mapping population was phenotyped with a bleach test and genotyped with simple sequence 

repeat (SSR) markers for QTL analysis. Two QTLs with significant epistatic interaction were 

identified, with one on chromosome 2 and the other on chromosome 4. Multiple interval 

mapping indicated these two QTLs and their additive by additive epistasis explained about 74% 

of the overall phenotypic variation, which agreed with the binary trait analysis. Further research 

is being conducted to fine map these QTLs for gene tagging. 
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Introduction 

Sorghum is the fifth cereal crop in the world (Sasaki and Antonio, 2009). It is a C4 crop 

with high photosynthetic efficiency and high water use efficiency. It has good tolerance to 

extreme environments like high temperature, drought, and poor soil conditions. It’s also a good 

gluten-free food resource for people who have celiac diseases and can not consume wheat 

products (Schober et al., 2005). Compared to other cereal crops, sorghum is unique for its 

secondary metabolic product, tannin, present in tesat layer of some accessions. Tannin is a 

favorite agronomic trait but, has negative impacts on feed quality. Recently, it was shown that 

tannin is a good antioxidant, which is a potential medical treatment for cancer and cardiovascular 

disease (Awiak et al., 2003). Previous studies have also found a strong relationship exists 

between tannin presence and seed emergence in cold environment, which is related to sorghum 

early season cold tolerance and grain yield (Knoll et al., 2008).  

Sorghums with pigmented testa layer contain condensed tannins. Testa layer is 

underneath the outmost pericarp layer and covers the endosperm. In most of sorghum accessions, 

it is either absent or present. The testa layer (and thus condensed tannin) presence is controlled 

by two complementary dominant genes B1 and B2. Condensed tannin is present when both loci 

are dominant (B1_B2_) and absent if either or both of the loci are recessive (B1_b2b2, b1b1B2, and 

b1b1b2b2). Previous research using AFLP makers mapped two QTLs on chromosome 2 and 4 

respectively. Efforts were employed to convert these AFLP makers into STS markers, but 

problems of indetectable and unrepeatable band types occurred. To benefit tannin gene 

dissection in future using high throughput research approach, commonly used simple sequence 

repeat (SSR) maker is in need for QTL position and effect identification. 
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To identify the location of the condensed tannin QTLs in sorghum genome and their 

effects, a RIL population with 109 plants were constructed by cross of high tannin SQR and non-

tannin Tx430. SSR markers which are commonly used in both linkage mapping and association 

mapping were employed for QTL dissection. Multiple interval mapping method was utilized for 

complementary QTLs interaction exploration. 

 

Methods and Materials 

Plant materials 
A population of 109 F6:7 recombinant inbred lines (RILs) were developed from the cross 

of a high-tannin sorghum line, Shan Qui Red (SQR), and a non-tannin commercial line Tx430. 

As a Kaoliang sorghum, SQR was derived from cool temperature and high latitude regions in 

China with relatively broad leaves covered with waxy blooms. SQR produces red color seeds 

with high tannin content, presents a relatively high germination rate, rapid growth and strong 

early season cold tolerance compared to commercial lines in the US. But it also contains many 

agronomically unfavorable traits, such as tall plant height, open panicle, and susceptibility to 

many diseases. On the contrary, Tx430 is a typical “dwarf type” adapted U.S. line which is less 

than 5 feet in height and suitable for harvesting with combines, served as pollinator in hybrid 

production. But Tx430 has no tannin and is susceptible to early season cold stress. 

 

Tannin phenotyping 
Condensed tannin presence in testa layer was identified using bleach test. F6:7 RILs 

population grown in Manhattan, 2005, was tested for three duplications. Data sets of RILs grown 

in Manhattan in 2001-2005 were also compared for validation and better identification of tannin 
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presence purpose, among which Vanillin/HCl assay data also obtained for 2001, 2002, and 2003 

RILs and served as comparative parameters. 

The bleach solution is made by 15 grams KOH pellets with 40ml of fresh standard 

commercial bleach. Each 1.5ml Eppendorf® tube with 10 sorghum kernels was filled with 1 ml 

of bleach solution and shook for 3 minutes for complete reaction. Then, kernels were poured into 

a tea strainer and rinsed with 70°C water to remove the KOH-bleach solution. After removing 

excess water, kernels were placed in plate for completely dryness. Color screening was 

processed after all the kernels were dried. Tannin grains have black over the entire surface, only 

with the exception at germ place which is lighter in color. Non-tannin grains are either 

completely white, or partially brown. 

 

Sorghum DNA extraction 
Two-week-old fresh leaf tissue was collected from a single plant which represents most of the 

plants within an RIL line morphologically. Those tissues were placed in 1.5ml Eppendorf® tubes, 

lyophilized for 48 hours in a freeze drier (Thermo Fisher, Waltham, MA), and ground to fine 

powder in a Mixer Mill (Rheinische Strasse 36, Germany) by shaking tubes with a 3.2-mm 

stainless-steel bead at 25 times/sec for 5 min. Genomic DNA was extracted from parents and 

RILs by the revised cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle, 

1987). For each tube with 0.15g leaf tissues, 800ul 2x CTAB buffer was added. Samples were 

incubated at 75oC for 1hr, to guarantee sufficient reaction, tubes were shook up and down twice 

during the 1 hour. Next, 800ul of chloroform/isoamyl alcohol (24:1) was added, mixed well, then 

centrifuged at 12,000 rpm for 10 min. After centrifuging, 600ul of aqueous phase was transferred 

to a new tube. Then 500ul of cool isoamyl alcohol were added. Tubes with DNA precipitation 
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were centrifuged at 12,000rpm for 10 min. DNA was washed and purified with 70% alcohol. 

And then dissolved DNA in 200ul 0.1X TE.  

 

Maker selection and primer design 
Single sequence markers located on chromosome 2 and 4 were first selected based on 

previous researches (Bhattramakki et al., 2000; Menz et al. 2002; Knoll et al., 2008; Li et al., 

2009). Markers named with prefix of Xtxp are commonly used SSR makers. Markers named 

with a five-digit number are makers designed from public genomic sequence contigs of sorghum 

by other sorghum research groups (Li et al. 2009). Markers named with prefix W are newly 

designed markers in this study. 

In total120 new SSR makers were designed in this research. Maker design was based on 

sorghum bicolor genome sequence download from www.phytozome.com. The following marker 

design principles were followed: 1) PCR primers generally ranged in length from 18-25 

basepaires and the amplified DNA fragment products size should be in the range of 120-250 base 

pairs. 2) The GC content of the whole primers, both forward and reverse, should be within range 

of 40% to 60%. 3) Avoid sequences which would produce internal secondary structure. 4) The 

3’ends of the primers should not be complementary to avoid the production of primer-dimers in 

the PCR reaction. 5) The primer’s 3’end should be end with G and C, because the hydrogen 

bonds produced by G and C is much stronger than hydrogen bonds between A and T, which 

facilitate steady prolonging of the DNA amplified fragment, but three G or C nucleotides in a 

row near the 3’ end of the primer should be avoided. 6) Both primers should have similar G＋C 

content so that they anneal to their complementary sequences at similar temperatures. The 

temperature difference between forward and reverse primers should be less than 4°C. 

http://www.phytozome.com
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PCR amplification and genotyping 
A 20-μl PCR mixture contained 2 μl of 10X NH4 buffer (Bioline Inc. Taunton, MA), 2ul 

2.5 mM of MgCl2, 200 μM of each dNTP, 2ul primer, 1 U of Taq DNA polymerase, and 50 ng 

template DNA. GeneAmp® PCR system 9700 was used for PCR amplification with the 

touchdown program. Initially PCR mixture was denatured at 95°C for 5 min; the first five cycles 

started with 1 min of denaturing at 96°C, 5 min of annealing at 68°C with a decrease of 2°C for 

each subsequent cycle, and 1 min of extension at 72°C; in the next five cycles, the annealing 

temperature started at 58°C for 2 min with a decrease of 2°C for each subsequent cycle; the last 

25 cycles ran 1 min at 96°C, 1 min at 50°C, and 1 min at 72°C with a final extension at 72°C for 

5 min and 4°C for 5 min. 

Marker surveys by agrose gel electrophoresis were first conducted to identify 

polymorphic markers from an available SSR marker set. Polymorphic markers between the 

parental lines were further analyzed for linkage mapping and QTL analysis in the populations. 

For SSR markers which didn’t show good polymorphism on agrose gel, another PCR mixture 

was used for phenotyping by ABI 3730 DNA Analyzer (Applied Biosystems, Foster City, CA). 

This mixture contained 1.2 μl of 10X NH4 buffer (Bioline Inc. Taunton, MA), 2.5 mM of MgCl2, 

200 μM of each dNTP, 100 nM of forward tailed primer, 200 nM of reverse primer, 100 nM of 

M13 fluorescent-dye labeled primer, 1 U of Taq DNA polymerase, and 50ng template DNA.  

Because the PCR products of most primers in this research are low in molecular weight, 

4% agrose gel is used for agarose gel electrophoresis. 10X TBE was used as buffer. 

Bromophenol blue is used as gel loading buffer dye. Separated PCR amplicons were stained with 

ethidium bromide (10mg/ml) and visualized by UV lights on the gel.  
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The separation and detection of SSR products with relatively small amplicon size were 

operated by capillary gel system ABI 3730 DNA analyzer. The data was analyzed and scored 

using GeneMarker® version 1.6 (SoftGenetics LLC, State College, PA). 

 

Linkage and QTL analysis 
Linkage maps were constructed by using MAPMAKER/EXP version 3.0 (Whitehead 

Institute, 1993). LOD threshold value was set at 3.0 to group linked markers in linkage groups. 

Kosambi mapping function was used to convert recombination frequencies into genetic distance 

in centimorgan (cM) and create the genetic map.  

Composite interval mapping (CIM) and Multiple Interval Mapping (MIM) methods were 

employed to map QTL by QTL Cartographer version 2.5. Composite interval mapping was 

implemented by starting with default values of five cofactors obtained by a forward regression to 

control genetic background. To block a chromosome region between the nearby markers and the 

test site, a window size of 10 cM was used. In CIM, the walking speed for genome wide QTL 

scan was set at 1.0 cM and the LOD thresholds to declare a significant QTL were determined 

based on the result of 1000 permutations. Coefficient of determination (R2), which was the 

proportion of total phenotypic variance explained by a QTL, was determined based on the R2 of 

the single marker that was the closest to the target QTL. All loci that had significant main effects 

were tested against all other markers to detect significant interactions (P < 0.01). MIM was used 

to determine the additive effect of QTLs detected by CIM and any epistatic (additive by additive) 

interaction between QTLs. Forward and backward selection on markers were used for initial 

MIM model select method. Criteria of model selection was set at significant level 0.05, with BIC 

criteria of g(n)=ln(n). QTL number range was set to 2. Since based on the classical theory, the 
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complementary genes should be two. Afterward, the QTL interaction term was selected to 

present in the result. Model refine is used to detect the optimalizing positions of two tannin 

QTLs. 

Result 

Phenotypic data evaluation 
 Because of weathering and insect and pest bites, test kernels might have dark speckles or 

spots, or partially colored, which could make false positive without careful classification (figure 

2.1). Also testa layer thickness variation may cause inaccurate results while the small 

concentration bleach was applied. USDA-FGIS standard bleach protocol is used for large size 

sample screening with specific equipment. Comparative bleach tests were set up to verify 

feasibility on the SQR/Tx430 population. Comparative tests were: 1) standard USDA protocol: 

KOH 15 grams, fresh bleach 40ml. 2) KOH 7.5 grams, fresh bleach 40ml 3) KOH 15 grams, 

fresh bleach 20ml, H2O 20ml 4) KOH 15 grams, fresh bleach 20ml, H2O 20ml. A subset 

included 20 RILs was used for the bleach test result comparison. The standard USDA protocol 

was proved to be the best combination of condensed tannin presence identification. 

The seed kernels of 109 SQR/Tx430 RILs and their parents together with other 10 high 

tannin lines were bleached to test presence or absence of pigmented testa layer with tannins. The 

parental lines turn out to be significant different in bleach test, while SQR and all the high tannin 

lines present dark black color and classified into tannin presence, Tx430 was totally white after 

bleach, classified as non-tannin. RILs segregated for tannin presence and absence. In total, there 

are 41 tannin lines and 68 non-tannin lines out of the 109 (Table 2.1; Figure 2.3). To minimize 

the scoring error, three duplications of Manhattan 2005 RILs were carried out and compared 

with seeds of the previous year RILs population (Manhattan 2001 and Manhattan 2004). Tannin 
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samples were score as 1 and non-tannin ones were scored as 0. Total and tannin and non-tannin 

sample number of each population after bleach score is showed in table 2.1. Only 10 RILs out of 

the whole population showed differences in tannin screening. After careful examination and 

comparison, combined tannin data were used for final analysis.  

 

Marker analysis and QTL identification 
Because tannin QTLs and related cold tolerance QTLs have been previously located on 

chromosome 2 and 4 based on genetic analysis (Ridder, 2004; Knoll, 2008), 229 microsatellite 

markers (SSR) covering sorghum chromosome 2 and 4 were selected to screen the parental lines. 

Those markers include markers which were proved linked to tannin QTLs and cold tolerance 

QTLs in previous research. Marker analysis identified twenty six polymorphic SSRs between 

SQR and Tx430 (Table 2.2; Figure 2.4; Table 2.5).  

Linkage analysis detected two linkage groups located on Chromosome 2 and 4 associated 

with the tannin trait. The first linkage map covered a total genetic distance of 94.2 cM with 14 

makers. The second linkage group covered a total genetic distance of 79.82 cM with 12 makers 

(Figure 2.2). Two QTLs were identified on chromosome 2 and 4 separately by IM, CIM and 

MIM. A slight difference in QTL locations was observed between IM and CIM on chromosome 

2, which the QTL peak shifted towards left in IM than in CIM. Since CIM reduced the genetic 

noise and enhances the QTL detection power by incorporating cofactors in the model, the 

confidence intervals determined by one-LOD reduction from the maximum LOD value tend to 

be smaller in CIM than in IM. For this reason, the results from CIM were used for further result 

interpretation. CIM detected two major QTLs with major effect (R2= 0.08 and 0.40) on the 

chromosome 2 and chromosome 4 (Paterson et al., 2003). 
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Marker W072 and marker W075 were the closed markers to QTL1 at chromosome 2, and 

53842 and W015 were flanking markers for QTL2 at chromosome 4. W072 was the most closely 

linked marker to QTL1 at 1.2 cM, while W075 is in the vicinity of 2.8 cM. The marker 53842 

was mapped at 1.6 cM proximal to QTL2, and the maker W015 was 2.1 cM distal of QTL2.  

MIM also used to detect the interaction and its effect to QTL location and gave a pretty 

good result consider the additive effect and epistastic interaction effect it presented. According to 

complementary dominance theoretical values for RIL population, the QTL1, QTL2 and their 

additive by additive interaction effect should be 0.25, 0.25, and 0.25 respectively. The actual 

values detected by the MIM were 0.2615, 0.2317, and 0.2552 respectively (Table 2.4). 

 

Discussion 

Bleach test 
We chose the bleach test because it is widely accept as an efficient method for tannin 

measurements with USDA identified standard. Bleach test is easy to conduct with time and cost 

savings. However, many environment factors like weathering, mold, and insects bites may cause 

dark spots on the bleached kernels and affect the accurate and repeatability of the bleach test. 

Also because the pericarp and testa layer thicknesses vary in different sorghum germplasm, and a 

partially testa layer may be present, and the bleach concentration may be suitable in one 

accession but too strong or weak in other sorghum accessions. All these factors may lead to false 

positive results. Furthermore, USDA-FGIS bleach test standard is used with special equipment 

for large amount of seeds. Seeds proportion or percentage is an important identification standard 

for classification. In our research only ten seeds were tested for each sorghum sample, which 

may cause classification bias. To verify the efficiency and accuracy of the test methods, 
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comparison experiments with different bleach solution concentrations were set up. Data for RIL 

population of several years were compared, the frequency distribution (tannin: non-tannin ratio) 

was consistent in the three RIL populations tested. Such result indicated that the standard bleach 

test still is the best identification protocol for a sample size of 10 kernels. 

Because the testa layer is derived from tissue laid down by the maternal parent (maternal 

effects), testa color phenotypes of one generation were determined by seeds genotypes of the 

previous generation. For example, F2:3 testa color phenotypes were determined from F2 seeds and 

F6:7 phenotypes from F6 seeds. So, when the RIL population is pure enough, the tannin presence 

should be consistent in successive generations. Also the data comparison research for several 

generations might give more heritability cures and dissect heritability of the tannin genes in-

depth. 

In this research, tannin trait was scored as 1 for presence and 0 for absence, which is 

classified as binary trait. Further research employing vanillin/HCl assay with a continuous data 

set may provide a distribution graph of tannin phenotypic result and lead to more accurate 

identification of tannin QTL position and effect (Walton et al., 1983). A critical issue for 

vanillin/HCl assay data collection and management is that, a standard threshold value needs be 

chosen to classify seeds into tannin and non-tannin. Test values of the parental lines and also the 

background phenol compound values should be taken into consideration for the threshold set up.  

 

Candidate genes for tannin presence 
TTG1 is an important candidate gene for condensed tannin production in Arabidopsis 

seed coat (Zhang et al., 2003). Previous comparative genome research revealed that TTG1 is also 

similar to pale aleurone color 1 (PAC1) locus in maize, which is required for anthocyanin 



 

 46 

pigment in the aleurone and scutellum of maize seed. Consequently, TTG1 is considered as a 

good candidate for one of the condense tannin complementary genes. However, the flanking 

maker linked to this gene was used to screen SQR and Tx430, no polymorphism was shown 

between the two parental lines. Also, the PAC1 position in sorghum genome on chromosome 4 is 

located far from the QTL2 position detected in this research, which indicated that sorghum tannin 

gene accumulation and regulation mechanisms are different from the complex system of 

Arabidopsis and maize and might be more simple, which is good for marker assistant selection 

and consequently sorghum breeding. 

As mentioned early, candidate gene association mapping combined with QTL mapping is 

a good approach for target gene identification. This approach asks for available candidate genes 

related to tannin metabolic pathway or regulation factors in charge of tannin accumulation in 

testa layer cells. Therefore, the two QTL peak regions identified in this research were explored 

for potential candidate genes by comparing sorghum sequence at www.phytozome.com. 

However, for both the two region and their extension regions which are 200kb in length, there 

were only five genes with defined function. All the five function defined genes are unrelated to 

any metabolic pathways related to tannin presence. There are 15 more unknown genes included 

in these two regions. More cooperative research by genome comparison via bioinformatics tools 

or biochemical metabolic researches is needed for further dissection of tannin genes. 

 

Mapping result validation 
Population size and suitable QTL detecting methods are important factors affecting 

precision and accuracy of QTL mapping (Doerge, 2002). In the beginning of this research, a 

subset of 94 RILs was used for initial scoring. A ghost QTL peak was found near the QTL on 

http://www.phytozome.com
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chromosome 2 by both IM and CIM. After increasing the population size to 109, this ghost QTL 

disappeared, especially in the CIM mapping result, suggesting that the QTL detection power may 

increase with population size and a large population significantly improves precision for QTL 

detection. CIM appears to be more reliable in predicting QTL as it considers the background 

effect by taking cofactors into account, with which the total variance that is determined by other 

linked QTL is reduced, therefore increasing the relative variance explained by the target QTL. 

In this research, heterozygous band types which included the bands types of both the two 

parents were identified in genotypic screening. Band types which were different from both 

parents and could only be scored as missing data also present in four markers. Such results 

indicated the 109 plant RIL population was not pure enough. Purification of the RIL population 

was needed. Furthermore, according to the Bevis effect, small populations tend to emphasis 

major QTL effects explained by a limited number of QTLs, while large population would predict 

more QTLs with relative less effect for each individual QTL. To verify the two complementary 

genes hypothesis and validate the QTLs detected by SQR/Tx430 RIL population, bigger 

mapping populations and more population resources should be explored.  

According to the classical complementary dominant gene hypothesis, many US sorghum 

lines are found to be fixed with the B1 gene but not the B2 gene. Collecting such materials would 

provide good background for tannin gene mapping. Utilizing mapping population derived from 

cross of B1 fixed lines with high tannin lines, single QTL for B2 gene is easier to be dissected 

since complex interaction term is removed. Subsequence QTL detection for B1 gene could also 

be simplified. 

Previous research based on RIL population derived by the cross of SQR and SRN39 

discovered cold tolerance QTLs (Knoll et al., 2008). Previous QTL mapping using AFLP makers 
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located the two tannin QTLs near the region of SSR marker Xtxp 211 and Xtxp 212 on 

chromosome 2 and chromosome 4, respectively, which is the flanking marker of cold tolerance 

QTL. If the same population could be employed for tannin QTL validation, the relationship 

between cold tolerance QTLs and tannin QTLs would be clearer. Comparison study of proximal 

markers of these two groups of QTLs could provide more direct QTL positional evidences. As a 

result, lead to dissection of the two correlated traits: whether they are controlled by pleiotropy or 

they just tight linked in a short chromosome segment.  

 

Deployment of tannin QTL 
Both the QTL1 and QTL2 were located within a relatively small interval of approximately 

3 cM, which should be helpful for further high-resolution mapping, assuming that there are 

enough polymorphic markers at the distal of long arm of chromosome 2 and 4. If the best 

markers show consistently high polymorphism in more collections of germplasm, they could be 

readily used for marker-assisted breeding. Breeders could choose to select the allele from a non-

tannin tannin parent or select against the allele from a high tannin parent to decrease the level of 

tannin sorghum percentage for food and feed sorghum breeding, in which non-tannin is preferred. 

Wild sorghum could serve as new germplasm and tannin genes could be knocked out, and then 

elite lines cross to the wild ones to enlarge the genetic diversity of sorghum for breeding and 

selection. Further research may find other minor QTL or QTL in gene regulation regions which 

control the tannin content or metabolic pathways related to accumulation of tannin in testa layer 

cell vacuole and select high tannin sorghum for industry antioxidant production usage. As 

mentioned before, most sorghum cultivars in the US are fixed with the B1 gene but lack of B2 

gene. Breeding work could be addressed by selecting sorghum possess B1 by parents and 
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progeny for a tannin relationship studies. Afterwards, fix B2 gene. By this way, breeding circle 

would be shorten and resource saving. 
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Figure 2.1 Typical bleach test results. From left to right, top to bottom: white(non-tannin), 
black (tannin), brown (tannin), white with spots (non-tannin), tender yellow with spots 
(non-tannin), partially brown with spots (non-tannin).  
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Figure 2.2 Comparative bleach tests. From up to down, left to right 1) standard USDA 
protocol: KOH 15 grams, fresh bleach 40ml. 2) KOH 7.5 grams, fresh bleach 40ml 3) KOH 

15 grams, fresh bleach 20ml, H2O 20ml 4) KOH 15 grams, fresh bleach 20ml, H2O 20ml. 
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Table 2.1 Bleach test results. 

Seed Set 
Total 
Num. Tannin 

Non-
tannin 

Expected 
Ratio X² 

MN01 109 47 62 1:3 19.09 
MN04 99 41 58 1:3 13.84 

MN05-1 109 44 65 1:3 13.73 
MN05-2 109 46 63 1:3 17.20 
MN05-3 109 43 66 1:3 12.14 
MN05 109 41 68 1:03 9.25 
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Table 2.2. Segregation ratios of SSR marker alleles in SQR/Tx430 RIL population 
 

Marker Total Tannin 
Non-
tannin 

Observe  
Ratio 

Expected 
Ratio X² 

Xtxp297 101 53 48 1.10 0.33 1.78 
Xtxp211 104 65 39 1.67 0.33 5.33 

304 104 60 44 1.36 0.33 3.18 
W089 109 63 46 1.37 0.33 3.22 
W091 109 74 35 2.11 0.33 9.52 
W100 109 63 46 1.37 0.33 3.22 
W105 109 67 42 1.60 0.33 4.78 
W072 100 55 45 1.22 0.33 2.37 
W075 104 61 43 1.42 0.33 3.53 
35100 105 53 52 1.02 0.33 1.41 
W057 106 64 42 1.52 0.33 4.25 
Xtxp4 108 67 41 1.63 0.33 5.08 
9142 107 72 35 2.06 0.33 8.91 

Xtxp201 107 65 42 1.55 0.33 4.42 
Xtxp21 106 66 40 1.65 0.33 5.20 
W017 106 75 31 2.42 0.33 13.05 
W015 106 70 36 1.94 0.33 7.79 
53842 108 75 33 2.27 0.33 11.28 
W013 108 70 38 1.84 0.33 6.83 
W012 106 68 38 1.79 0.33 6.36 
33522 105 66 39 1.69 0.33 5.54 
71443 104 69 35 1.97 0.33 8.05 
59974 104 73 31 2.35 0.33 12.26 

Xtxp327 106 70 36 1.94 0.33 7.79 
37422 108 67 41 1.63 0.33 5.08 
3484 105 67 38 1.76 0.33 6.13 
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Table 2.3 QTL flanking markers statistical analysis. 
Source DF SS MS F value Pr > F 
Model 3 19.203 6.4009 96.88 <.0001 
53842 1 6.9675 6.9675 105.45 <.0001 
W072 1 3.3584 3.3584 50.83 <.0001 

53842*W072 1 3.3584 3.3584 50.83 <.0001 
Error 104 6.8714 0.0661   

Corrected Total 107 26.0741    
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Table 2.4 Composite interval mapping (CIM) and multiple interval analysis (MIM) of 
QTLs associated with testa layer condensed tannin presence. 

Chromosome Method Position(CM) Marker LOD 
Additive 

Effect Threshold R2 
2 CIM 71.2 W072 14 0.192 2.5 0.13 
2 MIM 62.7 W072 15.5 0.262 2.5 0.08 
4 CIM 70.8 53842 30 0.265 2.5 0.39 
4 MIM 37.4 53842 23 0.232 2.5 0.40 
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Figure 2.3 QTLs detected by CIM. Cofactors selection was conducted with “unlinked 
marker control” procedure. 

Chromosome 453842 Chromosome 453842 Chromosome 453842 
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Figure 2.4 QTLs detected by MIM. The number of QTLs was set to two to start the 
searching for both main effects and interactions. 
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Table 2.5. Characteristics of sorghum bicolor tannin genes and SSR loci that were analyzed and 

the primer sets used to amplify them. 

Marker 
name 

Genetic 
distance 

Physical 
position Sequence of forward primer Sequence of reverse primer 

Xtxp297 0 4236926 GACCCATATGTGGTTTAGTCGCAAAG ATTGTTGATTTAGGCGAAGATTGTGC 
Xtxp211 10.4 4994787 GTTAGAAATCATTGGCCGTTGA GTTGCGAATAAAAGGTAATGTG 

304 18.3 5703328 GAAGAGGGGCTTTTATGT CTTTCACACCCTTTATTCA 
W089 21.4 6024685 GGCGTGTACTAGCTTCCTC AGGGTTCCCGTCTTCAAT 
W091 31 6631092 AGAATGATGTGCTCTACAGACA ATTTTGACACGATAGGACTGA 
W093 41.5 6869388 AGAAGTAACCTTTGAGTTTGGA GTGGTCACAACTAGCTTATTGA 
W099 66.9 -* AGAGTCTCCGTGATTCACC AGAACGCCATGCTCATG 
W100 80.1 9450855 GTTTCTCTCTCGCTCAAAAG AGCGTACAGTACCTCTCATCA  
W105 90.6 11814002 GTGACTGGGATGGAGGTT GAGATACGCTAGGCTCAAAA 
W072 93.3 10248319 CTCTATGGCGACTAAGATGG TAGCCCACTCTAAACCCTAAC 
W075 93.9 10293489 CATCATCAGGCTTTGGAAGG GTGGCACAAGTAGTAACAGG 
35100 98.8 10293749 AAGATATTCCAGCTTGTGGA GCAACGAACGTAGTATAGGG 
W057 103.7 10591745 AGAAGCATTGGCACTATACC TGGGAGAACATGTCTGAAAG 
Xtxp4 108 13205419 AATACTAGGTGTCAGGGCTGTG CTTGGTTGTTGCGGTTACAT 
9142 110.8 19886670 AGAACTGGTCCAAGTCCAG AACTAGCATCGATCGACCTA 

Xtxp201 121.8 27850987 GCGTTTATGGAAGCAAAAT CTCATAAGGCAGGACCAAC 
Xtxp21 0 67961718 CGACCAAATCTATGGCAGCTC ACCTCGTCCCACCTTTGTTG 
W017 29.7 61685362 GTCAATGTGCCATACAGTAC CACCTATATATGAGGTACGG 
W015 32.5 61659852 GATCCGGTCGTTTGGTTTG AACGAACCCACGCAATGTC 
53842 35.5 61468888 TATAGCACGTTTTTAACTCGTG TAGTCTAAAAGCCCGTTTCA 
W013 38.8 61211508 CCTCGGTTGGTTCTTGATTG CATTGGACGAAGAAGCTCG 
W012 48.3 61210467 GGTAATGCCGTGTTAGTGG CACACACGCATATGTTTTGG 
33522 58.6 61211486 GGTGAGTGCGACTACGAC GTTCCTCGGTTGGTTCTT 
71443 62.7 60522623 AGAGGGAAGCAGCTGACT GCCAGAAGACCGACTACAT 
59974 65.1 60470490 GACGATGCCATTAGCTTATT CCGGTTGTTGAGAAGTTG 

Xtxp327 70.1 59266753 GTGAGCGTGAGCAGTGGT GCGGTGTACAGCTTCGTC 
37422 74.9 59260599 TCCCCATGGTCCTAAAGT TATTTAGTAGCAGCCCCAAG 
3484 78 58748445 ACAAATTGGCAATGCTAAGT CAAACCAACATAGCTGTAAATG 

* The physical position of this marker could not be validated after initial design. 
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Figure 2.5 Linkage groups on chromosome 2 and 4. Physical distances are shown by kb.  
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CHAPTER 3 - GRAIN QUALITY ANALYSIS OF THE 

SORGHUM DIVERSITY PANEL 

 

Abstract 

Grain sorghum has high photosynthetic efficiency and high water use efficiency as a C4 

crop. Its good tolerances to extreme environments and gluten-free statue make it an attractive 

grain. Grain quality traits are directly related to sorghum nutritional value and end use efficiency. 

To optimize its food and feed potential, evaluation of sorghum accessions is first step. A 

sorghum collection, sorghum bicolor panel (SB panel), with three hundred lines derived from 

sorghum conversion program or elite breeding lines and their progenitors was used for grain 

quality evaluation. The Single Kernel Characterization System (SKCS) and near infrared 

reflectance spectroscopy (NIRS) are employed for grain quality data collection. Results indicated 

the SB panel contains wide range of diversity traits which have high heritability and have a good 

potential to be used for association analysis.  

 

Introduction 

Sorghum is a C4 crop native to tropical and subtropical regions and ranks as the fifth 

cereal crop in the world and third in United States (Sasaki and Antonio, 2009). Sorghum is 

among the most efficient crops in conversion of solar energy and use of water. It is also known 

as a high-energy, high yield potential, good stress tolerant crop to various environments 

including high temperature, drought, and poor soil condition. Its wide uses and adaptation make 
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its status in cereal crop family irreplaceable. For people in European and African where celiac 

disease is present, gluten-free grain sorghum is a good food substitute resource (Schober et al., 

2005). 

Most sorghum commercial varieties grown in United States are dwarf types which are 

less than 5 feet in height. This facilitate combine harvest but lead to diversity shortage (Hamblin 

et al., 2006) and sorghum lines similar susceptive to disease, pests and other environmental stress. 

The sorghum conversion program (SCP) initiated in 1963, introduced novel genetic variation 

from exotic, tropical germplasm into modern U.S. cultivars (Stephens et al., 1967). After crosses 

between tropical lines and elite lines, and subsequent backcross and selection for day-neutral 

flowering and reduced height, about 850 converted tropical lines with photoperiod insensitive, 

early maturing and short stature features were released. Recently, a sorghum diversity panel was 

recently assembled. This panel is comprised of 377 accessions, including 228 converted tropical 

lines produced by the SCP, and 149 important breeding lines and their progenitors from all 

around the US (Casa et al., 2008). A subset of 300 lines from this panel was selected for 

sorghum grain quality traits research by association analysis. 

Grain quality includes a range of physical, sanitary, and intrinsic characteristics (Henry 

and Ketlewell, 2007). Factors including genetic inheritance, growing period, harvest timing, 

drying, storage management, and transportation procedures all affect grain quality. This research 

was focused on genetic inheritance traits classified as physical and intrinsic grain quality 

characteristics. For example, kernel hardness, size, weight, protein, fat, and starch content. The 

single kernel characterization system (SKCS) is used for whole grain physical properties 

measurements (Martin et al., 1993). Near infrared reflectance spectroscopy (NIRS) is employed 
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to provide rapid and nondestructive determination of the concentration of certain constituents in 

sorghum grain. 

Grain quality traits are complex traits controlled by quantitative traits loci (QTL). 

Association mapping, also called linkage disequilibrium mapping, is a promising approach for 

quantitative trait locus discovery and dissection (Zhu et al, 2008). Compared with linkage 

analysis, association mapping have merits of time saving, high throughput, high extension, high 

possibility of detection of genes or QTLs with minor effects. Because populations used for 

association analysis are natural populations with complex historical backgrounds, population 

structure, kinship and other potential factors should be dissected to avoid biased analysis results. 

The objective of this study is to determine the genetic diversity of sorghum diversity panel with 

300 lines. 

 

Materials and Methods 

Sorghum diversity panel 
A sorghum diversity panel for association mapping was recently assembled. This panel 

was comprised of 377 accessions, including 228 converted tropical lines produced by the SCP, 

and 149 important breeding lines and their U.S. progenitors. We selected 300 lines from the 

panel to study grain quality traits. Accessions with name prefix of SC are derived from SCP. 

Accessions which are elite US lines are named using their PI number. Seeds of the accessions 

were obtained from the USDA-ARS, PGRCU and planted in random complete block design in 

Manhattan, KS and West Lafayette, IN with two replications in 2007 and 2008. Seeds were 

harvested from 10 selfed sorghum heads for grain quality traits analysis. The trait means were 

employed to dissect the availability of association analysis within this panel. 
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Single kernel characterization system (SKCS) 
The single-kernel characterization system (SKCS) was designed to test 300 kernels in 

about 3 min and determine the sample average and standard deviation for several physical 

parameters. The SKCS singulates individual kernels, weighs them, and then crushes them 

between a toothed rotor and a progressively narrowing crescent gap. As a kernel is crushed, the 

force between the rotor and crescent and the conductivity between the rotor and the electrically 

isolated crescent are measured (Martin et al., 1993). The main parameters processed were 

hardness index, weight, moisture, and kernel thickness on an individual kernel basis. Mean of the 

four parameters and their standard deviations are then calculated from the single kernel data 

obtained on the entire 300 kernel sample. The SKCS was first used for wheat kernels and 

thereafter calibrated to be suitable for sorghum grain researches (Bean et al., 2006). Compare to 

traditional method for kernel traits data collection, SKCS has the merits of time saving, accuracy 

and automation. In this research, SKCS provided kernel hardness, size and weight determination 

for 290 accessions, in total 580 samples. 

 

Near infrared reflectance spectroscopy (NIRS) 
Near infrared reflectance spectroscopy (NIRS) is a rapid measurement technique utilizing 

spectrum near infrared region to determinate the concentration of most organic and some 

inorganic compounds in tissue. NIRS is a simple rapid, accurate, reliable, and repeatable method 

for analyzing several components of grains simultaneously .  

NIRS works by passing an infrared radiation through a sample and directly measure and 

determine the amount of radiation that is absorbed at a particular wavelength. When the infrared 
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radiation is absorbed by organic molecule, the energy is converted into molecular motions called 

vibrations. These molecular vibrations would allow the absorption bands to give rise throughout 

most of the infrared region of the spectrum. NIRS directly measure the absorbance at each 

wavelength. Chemical functional groups with C-H, O-H, and N-H produced absorption bands 

easy to be detected under near-infrared spectrum (Delwiche et al., 1996). As a result, NIRS is 

effective to predict compounds containing these functional groups. NIRS provide predictions of 

starch, fat, protein, fiber, and phosphorus in grain and it is very useful when limited sample 

amount available. Sometimes, the molecular overtone and combination bands seen in the near-

infrared spectra are very broad, which leads to complex spectra and increases the difficulty of 

assign specific features to specific chemical components. Utilizing calibration technique to 

careful develop a set of calibration equations is essential.  

A total of 15 g of seeds were ground in a cyclone mill (UDY Corporation, Fort Collins, 

CO) with a 1-mm screen. A total of 538 samples (269 accessions) from this population were 

analyzed by NIRS. To obtain accurate data from NIRS, the system was calibrated based on 

values obtained from chemical analyses of a subset of samples. For developing calibration 

equations, 114 of the most informative grain samples were chosen. Grain samples were then 

analyzed for starch, fat, crude protein, and acid detergent fiber content by wet chemistry methods. 

Based on fiber, fat, and crude protein value, data of digestible nutriments metabolizable energy, 

net energy for gain, net energy for lactation, net energy for maintenance were also calculated.  

Near infrared spectroscopy equations for each grain trait were developed. Trait values 

from a randomly selected group comprising 62 of the 114 samples were used to produce the 

calibration equations while values from a second group, the remaining 52 samples, were used to 

evaluate the derived equations. In all, 66 equations, each with different wavelengths and math 
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treatments, were tested for each trait. Based on low standard errors of prediction and high R2, the 

equations that maximized the prediction of trait values were retained. The best calibration 

equation were then evaluated using the full subset of 11 samples, and was used to predict 

composition values from the NIRS spectra of all grain samples (n = 538). 

 

Results and Discussions 

The SKCS analysis data are consistent for years (Table 3.1 and Figure 3.1). The hardness 

and weight data are especially consistent in duplications of the same year. While year 

comparison, both the two parameters have slightly increased. For minimum diameter characters, 

the seeds obtained in 2008 were almost two times larger than the seed produced in 2007, which 

averaged 0.7 and 1.5 respectively. But there was no obvious change observed for maximum 

values. The standard deviations obtained for all the samples which were calculated based on 300 

kernels. The maximum values for the standard deviations for hardness, weight and diameter are 

35.977, 17.144, and 0.844 respectively, all within the normal ranges. Moisture data were also 

provided by the SKCS, however the predicted data was not accurate enough, so were excluded 

(Bean et al., 2006). 

Kernel weight values varied from 15 to 40 ms or more in all the four duplications. Kernel 

diameter values also presented a wide range from 0.7cm to 3.2cm. Hardness is the most diverse 

parameter, with the maximum value of 126.46 and minimum value of 3.37. For standard test 

value for wheat, samples with hardness index of over 100 are classified as hard wheat, while 

kernels with hardness index less than 40 are considered as soft wheat (Pearson et al., 2009). The 

over 120 hardness index extension demonstrated the large diversity within the SB panel. 
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Consistency of the SKCS data for seed sets 2007 and 2008 were compared. The hardness, 

weight and diameter data for the two years had high correlation coefficient of 0.82, 0.71, and 

0.73. Negative correlation coefficient observed for hardness and weight, and hardness and 

diameter, which indicated that hard sorghums tend to be smaller and lighter. Correlation of 

weight and diameter is not strong, with the correlation coefficient of only 0.59. 

Also, based on the bleach test results of 2007 SB panel data, we found the sorghum 

accessions with lower hardness values were more likely to have tannin while accessions with 

higher hardness values tend to be non-tannin. A R2 of 0.72 were observed for tannin and kernel 

hardness. Such relationship does not exist between tannin content and two other grain quality 

traits (kernel weight and kernel diameter). 

In total data of 287 lines in the SB panel were obtained from the NIRS. All the chemical 

traits predicted by NIRS displayed a wide range of diversity. Fiber, Ca, protein, fat, p and starch 

contents ranged between 2.95-9.37, 0.04-0.08, 10.82-19.26, 2.26-4.35, 0.36-0.63, 61.74-74.38, 

respectively. The starch contents displayed large variations in SB panel, which had a standard 

deviation of 2.1. Ca content was the most consistent trait in the SB pane, with standard deviation 

of 0.06 (Table 3.3). Correlation of the six parameter obtained by NIRS is showed in Table 3.4. 

NIRS provided good data with perfect consistence. High R2 values were obtained for 

various traits using a validation set of 52 samples. The R2 for starch, crude protein, fat, acid 

detergent fiber, and P content were 0.985, 0.884, 0.978, 0.914, 0.877, and 0.985 respectively. 

Based on fiber, fat, and crude protein values, parameters for feed use efficiency were also 

calculated: total digestible nutriments, metabolizable energy, net energy for gain, net energy for 

lactation, and net energy for maintenance have R2 of 0.886, 0.895, 0.887, 0.887 and 0.887 

respectively. Since all the predict R2 values are higher than 0.85. The calibration equation proved 
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to be successful in indicating accurate test values for all the test characters. Out of the 62 random 

samples used for prediction, there was only one sample with a H value of 3.004, all other 

predicted samples showed a global H value less than 3.0. Based on all the statistical parameters 

mentioned above, NIRS was demonstrated efficient and accurate for chemical grain quality traits 

prediction of our SB panel.  

 To dissect the potential relationship of physical and intrinsic traits, we analyzed the 

correlation of all the traits data obtained by both SKCS and NIRS (Table 3.3). Protein and P 

content has the highest correlation coefficient of 0.75, out of all the traits comparison. This is 

reasonable since P is the fundamental component of amino acid and protein. Negative correlation 

between protein and fat, protein and starch were observed, indicated that the total amount of the 

three essential nutritional components in sorghum kernel may be conserved in different sorghum 

varieties. Both protein and starch content positively related to kernel weight, this is consistent 

with the fact that protein and starch are the main nutritional compounds in sorghum kernels. 

Kernel hardness didn’t show significant correlation with any of the other intrinsic traits.  

In future, SNP data and software including STRUCTURE, SPAGeDi, TASSEL will be 

employed for association analysis of these grain quality traits.  
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Table 3.1 Statistics for hardness, weight and diameter of the sorghum diversity panel. 
Variable N Mean Std Dev Minimum Maximum 

Hardness07 300 73.0 14.4 0.4 119.4 
Weight07 300 27.9 5.4 15.7 48.4 

Diameter07 300 2.2 0.3 1.5 3.1 
Hardness08 290 78.2 18.2 8.7 122.4 

Weight08 290 23.4 4.7 15.1 42.0 
Diameter08 290 1.6 0.3 0.7 2.7 
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Figure 3.1 Correlation of data for kernel hardness, kernel weight, and kernel diameter in 
2007 and 2008. 
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Table 3.2 SKCS data correlation coefficient for 2007 and 2008. 

  
Hardness 

07 
Weight 

07 
Diameter 

07 
Hardness 

08 
Weight 

08 
Diameter 

08 
Hardness 07  -0.25 -0.28 0.82 -0.21 -0.22 

  <.0001 <.0001 <.0001 0.0004 0.0001 
Weight 07 -0.25  0.88 -0.36 0.71 0.65 

 <.0001  <.0001 <.0001 <.0001 <.0001 
Diameter 07 -0.28 0.88  -0.36 0.59 0.73 

 <.0001 <.0001  <.0001 <.0001 <.0001 
Hardness 08 0.82 -0.36 -0.36  -0.31 -0.3 

 <.0001 <.0001 <.0001  <.0001 <.0001 
Weight 08 -0.21 0.71 0.59 -0.31  0.89 

 0.0004 <.0001 <.0001 <.0001  <.0001 
Diameter 08 -0.22 0.65 0.73 -0.3 0.89  

  0.0001 <.0001 <.0001 <.0001 <.0001   



 

 71 

Table 3.3 Statistics for NIRS of the sorghum diversity panel, 2007.  

Variable N Mean Std Dev Minimum Maximum 
Fiber 287 5.08 0.86 2.95 9.37 
Ca 287 0.06 0.01 0.04 0.08 

Protein 287 14.61 1.44 10.82 19.26 
Fat 287 3.18 0.35 2.26 4.35 
P 287 0.46 0.04 0.36 0.63 

Starch 287 68.86 2.10 61.74 74.38 
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Table 3.4 NIRS Data correlation for 2007.  

  Fiber Ca Protein Fat P Starch 
Fiber  0.05 0.37 0.03 0.28 -0.73 

  0.37 <.0001 0.57 <.0001 <.0001 
Ca 0.05  0.22 0.52 0.34 -0.26 

 0.37  0.0001 <.0001 <.0001 <.0001 
Protein 0.37 0.22  -0.1 0.75 -0.72 

 <.0001 0.0001  0.11 <.0001 <.0001 
Fat 0.03 0.52 -0.1  0.12 -0.21 

 0.57 <.0001 0.11  0.04 0 
P 0.28 0.34 0.75 0.12  -0.63 
 <.0001 <.0001 <.0001 0.0417  <.0001 

Starch -0.73 -0.26 -0.72 -0.21 -0.63  
  <.0001 <.0001 <.0001 0.0004 <.0001   
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Table 3.5 SKCS and NIRS Data correlation for SB panel, 2007.  

  Hardness Weight Diameter Fiber Ca Protein Fat P Starch 
Hardness  -0.31 -0.3 -0.24 0.23 0.08 0.29 0.12 0.04 

  <.0001 <.0001 <.0001 <.0001 0.18 <.0001 0.05 0.45 
Weight -0.31  0.89 -0.13 -0.04 0.08 -0.17 -0.03 0.05 

 <.0001  <.0001 0.03 0.5 0.17 0 0.57 0.37 
Diameter -0.3 0.89  -0.12 -0.09 0.03 -0.21 -0.07 0.11 

 <.0001 <.0001  0.04 0.11 0.64 0.0004 0.23 0.06 
Fiber -0.24 -0.13 -0.12  0.05 0.37 0.03 0.28 -0.73 

 <.0001 0.03 0.04  0.37 <.0001 0.57 <.0001 <.0001 
Ca 0.23 -0.04 -0.09 0.05  0.22 0.52 0.34 -0.26 

 <.0001 0.5 0.11 0.37  0.0001 <.0001 <.0001 <.0001 
Protein 0.08 0.08 0.03 0.37 0.22  -0.1 0.75 -0.72 

 0.18 0.17 0.64 <.0001 0.0001  0.11 <.0001 <.0001 
Fat 0.29 -0.17 -0.21 0.03 0.52 -0.1  0.12 -0.21 

 <.0001 0.0033 0.0004 0.57 <.0001 0.11  0.04 0.0004 
P 0.12 -0.03 -0.07 0.28 0.34 0.75 0.12  -0.63 
 0.05 0.57 0.23 <.0001 <.0001 <.0001 0.04  <.0001 

Starch 0.04 0.05 0.11 -0.73 -0.26 -0.72 -0.21 -0.63  
  0.45 0.37 0.06 <.0001 <.0001 <.0001 0.0004 <.0001   
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