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FAST COMMUNICATION

EXISTENCE OF SOLUTIONS TO AN EVOLUTION EQUATION AND

A JUSTIFICATION OF THE DSM FOR EQUATIONS WITH

MONOTONE OPERATORS ∗

N. S. HOANG † AND A. G. RAMM ‡

Abstract. An evolution equation, arising in the study of the Dynamical Systems Method (DSM)
for solving equations with monotone operators, is studied in this paper. The evolution equation is a
continuous analog of the regularized Newton method for solving ill-posed problems with monotone
nonlinear operators F . Local and global existence of the unique solution to this evolution equation are
proved, apparently for the first time, under only the assumption that F

′(u) exists and is continuous
with respect to u. The earlier published results required more smoothness of F . The Dynamical
Systems Method (DSM) for solving equations F (u)=0 with monotone Fréchet differentiable operator
F is justified under the above assumption apparently for the first time.

Key words. Dynamical systems method (DSM), nonlinear operator equations, monotone op-
erators.
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1. Introduction The Dynamical Systems Method (DSM) for solving an oper-
ator equation F (u)=f in a Hilbert space consists of finding a nonlinear map Φ(u,t)
such that the Cauchy problem

u̇=Φ(t,u), u(0)=u0; u̇ :=
du

dt
,

has a unique global solution, there exists limt→∞u(t) :=u(∞), and F (u(∞))=f (see
[5]–[9]). Here u0∈H is an arbitrary element, possibly belonging to a bounded subset
of H.

One of the versions of the DSM [5] for solving the nonlinear operator equation

F (u)=f (1.1)

with monotone continuously Fréchet differentiable operator F in a Hilbert space is
based on a regularized continuous analog of the Newton method, which consists of
solving the following Cauchy problem

u̇=−
(

F ′(u)+a(t)I
)−1(

F (u)+a(t)u−f
)

, u(0)=u0. (1.2)

Here F :H→H is a monotone continuously Fréchet differentiable operator in a Hilbert
space H, u0 and f in H are arbitrary, and a(t)>0 is a continuously differentiable
function, defined for all t≥0 and decaying to zero as t→∞. This function is a regu-
larizing function: if F ′(u) is not a boundedly invertible operator and F is monotone
then F ′(u)≥0 and the operator F ′(u)+a(t)I is boundedly invertible if a(t)>0.
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1074 A JUSTIFICATION OF THE DSM

Throughout this paper we denote I to be the identity operator, 〈u,v〉 to be the
inner product in H, y to be the minimal-norm solution to (1.1), and c>0 to be various
estimation constants.

If F is monotone and continuous, then the minimal-norm solution to (1.1) exists
and is unique (see, e.g., [5]). Monotonicity of F is understood as follows

〈F (u)−F (w),u−w〉≥0, ∀u,w∈H. (1.3)

The DSM is a basis for developing efficient numerical methods for solving operator
equations, both linear and nonlinear, especially when the problems are ill-posed, for
example, when F ′(u) is not a boundedly invertible operator (see [5, 2, 3]).

If one has a general evolution problem with a nonlinear operator in a Hilbert (or
Banach) space

u̇=B(u), u(0)=u0, (1.4)

then the local existence of the solution to this problem is usually established by
assuming that B(u) satisfies a Lipschitz condition, and the global existence is usually
established by proving a uniform bound on the solution:

sup
t≥0

||u(t)||<c, (1.5)

where c>0 is a constant.
In (1.2) the operator

B(u)=−
(

F ′(u)+a(t)I
)−1(

F (u)+a(t)u−f
)

is Lipschitz if one assumes that

sup
{u:||u−u0||≤R}

||F (j)(u)||≤Mj(R), 0≤ j≤2.

This assumption was used in many cases in [5] and a bound (1.5) was established
under suitable assumptions in [5].

There are many results (see, e.g., [1, 4] and references therein) concerning the
properties and global existence of the solution to (1.4) if −B(u) is a maximal mono-
tone operator. However, even when F is a monotone operator, the operator −B in
the right-hand side of (1.2) is not monotone. Therefore these known results are not

applicable. Even the proof of local existence is an open problem if one makes only the

following assumption:
Assumption A:

F is monotone and F ′(u) is continuous with respect to u.
The main result of this paper is a proof, apparently published for the first time,

that under Assumption A problem (1.2) has a unique local solution u(t), and that
under assumptions (2.2) on a(t) (see below) this local solution exists for all t≥0, so
it is a global solution. These results are formulated in Theorems 1.1 and 2.1.

Moreover, if the equation F (y)=f has a solution and y is its (unique) minimal-

norm solution, and if limt→∞a(t)=0 and limt→∞
ȧ(t)
a(t) =0, then there exists u(∞),

and u(∞)=y. This justifies the DSM for solving the equation F (u)=0 with a mono-
tone continuously Fréchet differentiable operator F , for the first time under the weak
Assumption A. This result is formulated in Theorem 3.1.
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Let us prove the existence of the solution to (1.2).
Let

ψ(t)=F (u)+a(t)u−f :=Ψ(u,t) :=Ψ(u). (1.6)

If a(t)>0 and F is monotone and hemicontinuous, then it is known (see, e.g., [1, p.
100]) that the operator F (u)+a(t)u is surjective. If F ′(u) is continuous, then, clearly,
F is hemicontinuous. If F is monotone and a(t)>0 then, clearly, the operator F (u)+
a(t)u is injective. Thus, Assumption A implies that the operator F (u)+a(t)u is
injective and surjective, it is continuously Fréchet differentiable, as well as its inverse,
so the map u 7→F (u)+a(t)u is a diffeomorphism. Therefore equation (1.6) is uniquely
solvable for u for any ψ, and the inverse map ψ=Ψ(u) is a diffeomorphism. The
inverse map u=U(ψ), is continuously differentiable by the inverse function theorem
since the operator Ψ′

u =F ′(u)+a(t)I is boundedly invertible if a(t)>0. Recall that
F ′(u)≥0, because F is monotone. If a(t)∈C1([0,∞)) then the solution u=u(t) of
equation (1.6) is continuously differentiable with respect to t (see [5, pp. 260-261]),
and if u=u(t) is continuously differentiable with respect to t, then so is ψ(t)=Ψ(u(t)).
The differentiability of u(t)=U(ψ(t)) also follows from a consequence of the classical
inverse function theorem (see, e.g., [1, Corollary 15.1, p. 150]). Therefore, equation
(1.2) can be written in an equivalent form as

ψ̇(t)= ȧ(t)u(t)−ψ(t) :=Q(t,ψ), ψ(0) :=ψ(u0), (1.7)

where u(t)=U(ψ(t)) is continuously differentiable with respect to t and ψ(t) is con-
tinuously differentiable with respect to t. The map Q(t,ψ) is Lipschitz with respect to
ψ, and the local existence of the solution to problem (1.7) follows from the standard
result (see, e.g., [5, p.247]). Since the map U(ψ) is continuously differentiable and ψ̇
is a continuous function of t, the function u̇ is a continuous function of t, and problem
(1.7) is equivalent to problem (1.2). We have proved the following theorem.
Theorem 1.1. If Assumption A holds, then problem (1.2) has a unique local solu-

tion.

In Section 2 we discuss existence of the global solution to problem (1.2).

2. Existence of the global solution

Since G(t,ψ) is Lipschitz with respect to ψ and continuously differentiable with
respect to t, the solution to (1.7) exists globally, i.e., for all t≥0, if

sup
t≥0

‖ψ(t)‖≤ c<∞. (2.1)

If the solution ψ to problem (1.7) exists globally, then the solution u(t) to the equiv-
alent problem (1.2) exists globally because the map ψ 7→u is a diffeomorphism for
t∈ [0,T ], where T >0 is an arbitrary large number.

Let us prove (2.1) assuming that

|ȧ(t)|

a(t)
<

1

2
, t≥0. (2.2)

Denote h(t) :=‖ψ(t)‖. We multiply both sides of (1.7) with ψ(t) and obtain

hḣ=−h2 +〈ȧ(t)u(t),ψ〉. (2.3)

Let w(t) solve the equation

F (w(t))+a(t)w(t)−f =0, t≥0. (2.4)
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It is known (see [5, p.112]) that if equation (1.1) is solvable and limt→∞a(t)=0, then
w(∞) exists, and w(∞)=y. So

||w(t)||<c ∀t≥0.

Equation (2.3) implies

ḣ≤−h+‖ȧ|‖u(t)−w(t)‖+ |ȧ(t)|‖w(t)‖. (2.5)

Later we will prove the estimate

‖u(t)−w(t)‖≤
h(t)

a(t)
, ∀t≥0. (2.6)

If (2.6) holds, then (2.5) implies

ḣ≤−h

(

1−
|ȧ(t)|

a(t)

)

+ |ȧ|‖w(t)‖≤−
h

2
+c|ȧ(t)|. (2.7)

Therefore,

h(t)≤h(0)e−
t

2 +ce−
t

2

∫ t

0

e
s

2 |ȧ(s)|ds, ∀t≥0. (2.8)

From (2.8) and (2.2) one obtains

h(t)≤h(0)e−
t

2 +ce−
t

2

∫ t

0

e
s

2

a(s)

2
ds, ∀t≥0. (2.9)

Since we have assumed that a(t)>0 is a C1([0,∞)) function, such that a(t)→0
as t→∞, we have supt≥0a(t)<c. Thus, from inequality (2.9) one obtains

h(t)≤h(0)e−
t

2 +c(1−e−
t

2 ), ∀t≥0. (2.10)

Therefore, estimate (2.1) is proved as soon as (2.6) is verified.

Let us state our result and then prove (2.6).

Theorem 2.1. If Assumption A and (2.2) hold, then problem (1.2) has a unique

global solution.

Let us verify (2.6).

Using (1.3) one obtains

〈F (u)−F (w)+a(u−w),u−w〉≥a‖u−w‖2. (2.11)

Thus,

‖u(t)−w(t)‖≤
‖F (u(t))−F (w(t))+a(t)(u(t)−w(t)‖

a(t)
=
h(t)

a(t)
. (2.12)

So (2.6) is verified and Theorem 2.1 is proved. 2
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3. Justification of the DSM

By the justification of the DSM for solving equation

F (y)=f, (3.1)

we mean the proof of the following statements (see [5, p. 1, formulas (1.1.5)]):

∃!u(t), ∀t≥0; ∃u(∞); F (u(∞))=f. (3.2)

In Theorem 2.1 the first of these statements is proved. Let us assume

lim
t→∞

a(t)=0, lim
t→∞

ȧ(t)

a(t)
=0, (3.3)

and prove the remaining two statements from (3.2).

Remark 3.1. Actually our argument allows for the following generalization of the

results: assumption (2.2) can be weakened to |ȧ(t)|
a(t) ≤ q, ∀t≥0, q∈ (0,1) and the second

assumption (3.3) can be weakened to limsupt→∞
|ȧ(t)|
a(t) ≤ q′, where q+q′<1.

Theorem 3.1. If Assumption A, (2.2) and (3.3) hold, and equation (3.1) has a

solution, then (3.2) hold, and u(∞)=y, where y is the unique minimal-norm solution

to (3.1).
Proof. It is known (see, [5, p.112]) that

lim
t→∞

w(t)=y, (3.4)

so limsupt→∞ ||w(t)||<c. Inequality (2.6) implies

a(t)||u(t)||≤a(t)||w(t)||+h(t)≤ ca(t)+h(t). (3.5)

Inequalities (3.5) and (2.3) imply

ḣ≤−h+
|ȧ(t)|

a(t)
[ca(t)+h(t)]. (3.6)

Assumptions (2.2) and (3.3) imply that

lim
t→∞

|ȧ(t)|=0. (3.7)

From the second assumption (3.3) it follows that

|ȧ(t)|

a(t)
<δ, ∀t>tδ, (3.8)

where δ>0 is an arbitrary small fixed number. From (3.6), (3.7), and (3.8) it follows
that

lim
t→∞

ψ(t)=0. (3.9)

Indeed, (3.6) implies

ḣ≤−(1−δ)h+c|ȧ(t)|, t> tδ. (3.10)
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Thus

h(t)≤h(tδ)e
−(1−δ)(t−tδ) +ce−(1−δ)t

∫ t

tδ

e(1−δ)s|ȧ(s)|ds, t≥ tδ. (3.11)

Clearly limt→∞h(tδ)e
−(1−δ)t =0. The L’Hospital rule yields

0≤ lim
t→∞

∫ t

tδ

e(1−δ)s|ȧ(s)|ds

e(1−δ)t
= lim

t→∞
(1−δ)−1|ȧ(t)|=0. (3.12)

Thus, (3.9) is proved.
Let us prove that (3.9) implies the existence of the limit u(∞) := limt→∞u(t), the

relation

F (u(∞))=f, (3.13)

and the relation u(∞)=y, where y is the minimal-norm solution of the equation
F (u)=f .

It is proved in [5, p.112], that the limit w(∞), as a=a(t)→0, i.e., t→∞, of the
solution wa to the following equation:

F (wa)+awa−f =0, a>0, (3.14)

with a hemicontinuous monotone operator F , exists and w(∞)=y, provided that
equation (3.1) is solvable.

Thus, the existence of u(∞) follows from (2.6) if one proves that

lim
t→∞

h(t)

a(t)
=0. (3.15)

To verify (3.15), we claim that the second assumption (2.2) implies that

lim
t→∞

e−(1−δ)t

a(t)
=0.

Indeed, the inequality ȧ(t)≥−0.5a(t) implies a(t)≥ ce−0.5t, where c>0 is a constant.
Thus, the claim follows if δ<0.5.

Let us now prove (3.15). Divide both side of (3.11) by a(t) and let t→∞. The
first term on the right tends to zero, and the second term by the L’Hospital’s rule
tends also to zero because of the second assumption (3.3). Thus, (3.15) is established.

Since the limit w(∞)=y exists, it follows from (2.6) and (3.15) that u(∞) exists
and u(∞)=y.

Theorem 3.1 is proved.
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