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Abstract 

The two topics addressed in this dissertation are both related to surface water quality. 

Reservoir sedimentation and water quality trading are examined from economic and 

environmental perspectives. Each topic and the resulting policy implications are relevant to 

stakeholders at the local, state, and federal levels. 

 

Reservoir Sedimentation 

Reservoir sedimentation has been recognized as a major environmental, social, and 

economic issue in much of the Midwestern US. There is an effort to focus public and private 

funds to achieve the greatest return on the investment from soil erosion and sediment reduction 

strategies. How can physiographical and economic relationships within the watershed be 

quantified in such a way to provide insights into the selection of alternative management 

strategies? This study focuses on answering that question by integrating a physically-based 

watershed model with an economic analysis of alternative sedimentation reduction strategies for 

the case of Tuttle Creek Lake located in northeastern Kansas. 

Several key finding of this study are that both physiographical and economic factors must 

be considered for cost-effective conservation to occur. Considering these factors and targeting 

BMP implementation from 8 to 23 times more cost-effective than random implementation. If 

targeting cannot be done effectively or if “intangible” costs of BMP implementation are too 

large, dredging is likely to be more cost-effective. While this research compares the cost-

effectiveness of various BMP implementation approaches in Kansas with dredging, the benefits 

associated with each of these strategies is not addressed. 

 



  

Water Quality Trading 

While there is substantial evidence that nonpoint sources have lower nutrient reduction 

costs than point sources, experience with water quality trading (WQT) reveals a common theme: 

little or no trading activity. These outcomes suggest the presence of obstacles to trading that were 

not recognized in the design of existing programs. 

To examine the ways that various market imperfections may impact the performance of a 

WQT market, an agent-based model is constructed, which simulates a hypothetical point-

nonpoint market. This study first presents an overview of the concepts and simulation modeling 

technique used and then analyzes the effects of two prominent market impediments identified in 

the WQT literature: information levels and trading ratios.  

The results imply that if market designers feel that only a limited number of trades will be 

consummated, creating an institution that provides accessible information about buyers’ prices is 

preferred to providing information about sellers’ prices. Overall, more information is always 

better, but it becomes less important with higher trading ratios. 
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CHAPTER 1 - Overview 

“…and when all the flocks were gathered there, the shepherds would roll the 

stone from the mouth of the well and water the sheep, and put the stone back in its 

place over the mouth of the well.” 

Genesis 29:3 (English Standard Version), approx. 1850 B.C. 

 

“When the well is dry, we learn the worth of water.” 

Benjamin Franklin, 1746 

  

“Gone are the days when water is taken for granted by city or rural residents, by 

recreational users, by agriculture or any other group who utilizes water.” 

Steve Irsik, Chair of Kansas Water Authority, 2004-present. 

 

Water is the one of the primary foundations for life on Earth. Civilizations throughout 

history have risen and fallen, advanced and regressed, and prospered and suffered due to the 

availability of, or absence of, adequate quality water supplies. From Biblical times up through 

the present age, human civilizations have developed an appreciation, albeit of varying degrees, 

for the value of preserving and protecting our water resources.  

Though the predominantly blue planet in which we live is three-fourths covered by 

oceans, rivers, and lakes, 98 percent of that water is too salty to drink. Of the 2 percent that is 

fresh, only half is found in rivers, lakes, or groundwater and readily available for human 



2 

 

consumption.
1
 Of this relatively tiny fraction of readily available fresh water, much is polluted to 

the point that it is unfit for drinking (Cech 2005). Though contaminated water and water 

shortages are often thought of as being “developing” country issues, even a casual follower of 

current events across the United States would recognize that we are continually confronted with 

these same types of issues here.  

Increases in global demands for food, feed, and fuel over the past five years has given 

agricultural producers sufficient market signals (i.e., higher prices) to increase commodity 

production. Increased production requires additional land, nutrients, water, and other cropping 

inputs to be used to produce greater overall yields. If not done carefully, these changes in 

agricultural production can create the potential for greater sediment and nutrient runoff resulting 

in poorer surface water quality. Thus, the potential tradeoff between agricultural production and 

environmental quality has renewed urgency (Claassen 2009).  

In an attempt to increase environmental quality, environmental regulations related to 

water quality in most areas across the country are trending toward more stringency. In addition, 

many of the new laws and regulations are pointing more fingers towards unregulated nonpoint 

sources of pollution, particularly agriculture. Many of these new regulations won’t be passively 

accepted by all stakeholders involved. In the Chesapeake Bay, for example, the American Farm 

Bureau Federation and the Pennsylvania Farm Bureau have filed suit against the Environmental 

Protection Agency (EPA) for the issuance of a Chesapeake Bay total maximum daily load 

(TMDL). Nonpoint source pollution, and particularly agriculture, have been identified as major 

causes of TMDL non-compliance The farmer groups contend that the TMDL violates the Clean 

Water Act and the EPA’s own regulations (US District Court 2011). There also may be the 

                                                 
1
 The majority is locked up in ice caps. 
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feeling among the farmer groups that if the TMDL is enforced in the Chesapeake Bay it may be 

just a matter of time before TMDLs are enforced nationwide. 

At this same time, federal and many state and local budgets are not expanding, and in 

many cases, shrinking. It is fairly safe to say that public money spent on soil and water 

conservation will not be increasing in many areas around the country as we look towards the near 

future. Because of the tight budget situations, more effort (or at the very least, lip-service) is 

being exerted to ensure that dollars are spent in cost-effective ways in all areas of government. 

Thus, we need to get as much conservation as possible out of every dollar spent. 

Cost-effective conservation is smart economics and is a way of getting the biggest “bang 

for the buck,” but it may not be the most politically or socially palatable approach. Cost-effective 

conservation requires the frugal use of funding and does not pay individuals for practices they 

are already doing. Payments that do not leverage a change in conservation behavior deplete 

budget resources without improving environmental quality (Claassen 2009). Cost-effective 

conservation also targets funding to farmers who can generate the most environmental 

improvement at the lowest cost. This non-uniform approach may benefit some farmers, and 

consequently, has the potential to indirectly “harm” other neighboring farmers.
2
 This unintended 

consequence has been recognized in previous policy programs (e.g., Conservation Security 

Program, CSP). So, there are obvious tradeoffs between cost-effectiveness and equity and an 

inverse relationship between the two appears to exist.  

Competitive bidding is another approach for achieving cost-effective conservation. One 

strategy recently used in several watersheds across the country is known as a best management 

practice (BMP) auction. In a BMP auction, bids are submitted to the “agency” and then ranked 

                                                 
2
 Farmers who get conservation payments may be able to afford higher bids for cash renting cropland compared to 

neighboring farmers who did not receive the payments. 
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based upon the quantity of pollutant (e.g., soil, nutrients) reduction generated per dollar. Winning 

bids are awarded to producers that can provide the most pollution reduction for the least cost. 

The auction allows the buyer to identify and purchase the most cost-effective environmental 

improvements for a specified budget. The buyer could be a governmental entity, as is often the 

case, or a private firm seeking to achieve a reduction in emissions. The latter would be more akin 

to water quality trading. Auction research is ongoing and the potential of auctions to improve 

conservation program cost-effectiveness could be large (Claassen 2009). Attaining cost-effective 

conservation is not a simple or easy proposition. However, it will be necessary in order to 

achieve greater soil and water conservation in the years ahead. 

The two topics addressed in this dissertation are both related to surface water quality. 

Reservoir sedimentation and water quality trading are examined from economic and 

environmental perspectives. Each topic and the resulting policy implications are relevant to 

stakeholders at the local, state, and federal levels. The remaining chapters are briefly described, 

in turn, below. 

Chapter 2 focuses on reservoir sedimentation in the context of a Kansas reservoir. The 

research question being addressed is: How can physiographical and economic relationships 

within the watershed be quantified in such a way to provide insights into the selection of 

alternative management strategies? This chapter focuses on answering that question by 

integrating a physically-based watershed model with an economic analysis of alternative 

sedimentation reduction strategies. This will offer decision-makers better insight into the cost 

implications associated with achieving various water quality levels and sedimentation reduction 

goals within a large watershed.  
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Chapter 3 serves as a transition from Chapter 2 to Chapter 4. Chapter 4 brings point 

sources of pollution into the discussion and analysis. Other similarities and differences between 

the two analyses are discussed. 

Chapter 4 also covers surface water, but incorporates point sources of pollution into the 

policy analysis through a market-based approach. Specifically, this chapter attempts to answer 

the following research question: How can water quality trading markets be designed in ways that 

take into account different levels of information among buyers and sellers and what are the 

implications for the determination of “optimal” trading ratios? To examine the ways that these 

market imperfections may interact to impact the performance of a WQT market, an agent-based 

model is constructed, which simulates a hypothetical point-nonpoint market. 

Chapter 5 serves as a concluding “wrap-up” of this entire dissertation. The author’s 

overall thoughts and lessons learned related to watershed management are presented. 

Additionally, reflections stemming from nearly 10 years of water resources research and related 

work are offered in this chapter. 

 

  



6 

 

CHAPTER 2 - From the Dust Bowl to the Mud Bowl: The 

Economics of Reservoir Sedimentation 

 Introduction 

With the primary purposes of flood control, electricity generation, water supply, and the 

creation of jobs, many water reservoir impoundments were built in the US from 1930-1960. As 

most reservoirs were produced by the construction of dams on rivers and streams, there was the 

obvious and inevitable realization that sediment deposition and accumulation would occur 

behind dams. With this in mind, the majority of these structures were built to operate for a 

projected 50 to 200 years before various designated uses would be negatively impacted by excess 

sediment accumulation. For many of these reservoirs, the volume of water storage has been 

reduced by sedimentation. Sedimentation is the process by which sediment particles settle by 

gravity and deposit on the bottom of slow-moving waters. In some cases sediment accumulation 

has occurred slower than or on pace with projections, but in other cases sedimentation rates have 

greatly exceeded original estimates (Hargrove et al. 2010; Juracek 2007). Regardless of how 

closely actual rates match the original projections, the fact that 50 to 80 years have passed since 

dam closure on many US reservoirs indicates that reservoir sedimentation has and will become 

more of an environmental, social, and economic issue of concern going forward. 

Erosion of cropland and streambanks have been identified as two culprits that not only 

cause significant damage to fields and lead to degraded aquatic ecosystems, but also result in 

sediment accumulations in downstream reservoirs. This poses environmental and economic 

concerns for stakeholders living in and around the watersheds and reservoirs affected by 

sedimentation. Sedimentation reduces reservoir storage capacity, negatively impacting public 
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water supply, flood control capability, and water availability for downstream navigation. Both 

suspended and settled soil particles can affect the viability of aquatic life, reduce the recreational 

value of lakes and waterways, and increase operational costs to power plants, city water supplies, 

and navigation. Soil erosion also causes loss of cropland, particularly along stream and 

riverbanks, and lost soil productivity on crop and pasture land (Williams and Smith 2008).  

 Focus of this research 

Reservoir sedimentation has been recognized as a major issue in much of the Midwestern 

US, including the state of Kansas. While there are many technical, environmental, and economic 

management problems associated with sediment sources and solutions to reservoir 

sedimentation, the state of Kansas has proactively recognized the need to protect, secure, and 

restore the life of its reservoirs (KWO 2010a). Because budgets are limited, every effort should 

be made to focus public and private funds to achieve the greatest return on the investment from 

soil erosion, sediment, and nutrient reduction strategies. This dissertation provides an evaluation 

of a large watershed and reservoir severely impacted by erosion and sedimentation. The results 

from this study will be useful to stakeholders and decision-makers at the field, watershed, state, 

and national level. 

This study focuses on the Tuttle Creek Lake (TCL) watershed located in northeast 

Kansas. In the 47 years that have passed since dam closure, TCL has lost over 42 percent of its 

total (multi-purpose and sediment) storage capacity due to sediment accumulation (KWO 

2010b). TCL exhibits, perhaps, one of the most critical cases of reservoir sedimentation in 

Kansas and throughout the Midwest. As of 2009, the Kansas Water Office estimated that the 
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lake’s sediment pool (Figure 2.1) had reached about 77 percent of design capacity (KWO 

2010b).
3
  

Figure 2.1 Reservoir design with Tuttle Creek Lake specifications 

 

For several reasons, the loss of storage capacity and an overall degradation of reservoir 

quality are of importance to a variety of stakeholders. At the state level, the state of Kansas owns 

the rights to nearly 115,000 acre-feet (or nearly 60 percent of the multi-purpose pool) of water 

storage in TCL which it uses for augmenting flows in the Kansas River to ensure adequate 

supplies of surface water for downstream industries and municipalities (e.g., Topeka, Lawrence, 

and the greater Kansas City area). The US Army Corps of Engineers holds the rights to the 

remaining water in the multi-purpose pool, which it uses for water quality and navigational 

                                                 
3
 In construction, a sediment pool is some fraction of the total storage capacity reserved for sediment accumulation. 

Once the sediment pool is 100 percent full, the lake still exists but additional accumulation reduces the multi-

purpose pool storage. It is at this point that owners of water storage are negatively impacted (although one could 

argue that they are impacted well before this point is reached as well). 
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purposes downstream, particularly in the Missouri River. The lake and surrounding parks also 

are important to the local economies. Smith and Leatherman (2008) estimated that TCL visitor 

expenditures generated $3.73 million (2007$) in direct economic activity (sales) within the 

regional (seven-county) economy, $1.74 million (2007$) in all types of income associated with 

the production of economic activities, and 82 area full- and part-time jobs. In another report, the 

US Army Corps of Engineers reported that the average annual economic benefits of TCL are $55 

million (2000$) (USACE 2001). The breakdown given is $46.0 million in annual flood control 

benefits, $2.5 million in downstream navigation benefits, and $6.5 million in recreation and other 

benefits. In 1993 alone, the damages prevented from flooding equaled $1.25 billion. Clearly, this 

lake and the surrounding park areas provide many valuable benefits to stakeholders.  

Some of the above uses and activities will be negatively affected by poor water quality 

and/or sediment accumulation. In response to past and current water quality degradation, the lake 

has been listed on the state of Kansas’s “303(d) list” for water quality impairment due to 

excessive levels of phosphorus, sulfate, pH, lead, biology, copper, and total suspended solids 

(EPA 2010).
4
 Because of the importance of this resource, stakeholders from the national to the 

state to the local level have made the protection of TCL a priority.  

 To preserve and/or restore the reservoir and watershed, a reasonable approach may be to 

slow the trend of sediment accumulation and reduce nutrient depositions. In order to do that, 

corrective action is needed and this action would ideally be based on a better understanding of 

watershed and stream sediment loading characteristics as well as the costs of alternative 

reservoir/watershed management strategies. How can physiographical and economic 

relationships within the watershed be quantified to provide insights into the selection of cost-

                                                 
4
 The term, “303(d) list,” is short for the list of impaired waters that the Clean Water Act requires all states to submit 

for Environmental Protection Agency (EPA) approval every two years. 
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effective alternative management strategies? This study focuses on answering that question by 

integrating a geographic information system (GIS) based watershed model, reservoir 

rehabilitation management strategies, statistical analyses of historic watershed and water quality 

data, with an economic analysis of alternative sedimentation reduction strategies. This will offer 

decision-makers better insight into the cost implications associated with achieving various water 

quality criteria and sedimentation reduction goals within a large watershed. 

 Overview of Analysis Approach 

This comprehensive study is unique because this is the first time that the information 

obtained regarding reservoir sediment inflows along with sediment removal strategies will be 

incorporated within an economic framework. Additional uniqueness is due to the large scale, of 

both the watershed and reservoir, on which this analysis focuses. An economic analysis used in 

combination with physically-based watershed modeling can provide valuable insights into the 

evaluation of alternative reservoir sedimentation management scenarios. The following is an 

outline of the general approach that is used to evaluate alternative strategies for sediment 

reduction and reservoir rehabilitation: 

1. Data Collection 

a. Identify watershed characteristics. 

b. Identify the extent and types of best management practices (BMPs) and other 

management systems currently in place.
5
 

                                                 
5
 Best management practices (BMPs) are defined as practical, cost-effective actions that producers can take to 

conserve water, nutrients, and/or soil. Descriptions of specific BMPs will be discussed in detail later in this paper. 
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c. Identify potential BMPs from TCL Watershed Restoration and Protection 

Strategy (WRAPS) group and expert opinion. 

2. Decision Support System Development 

a. Identify critical source areas using a physically-based watershed model.  

b. Develop comprehensive cost-return analyses of BMPs to optimize economic 

returns (or minimize costs) to agricultural production and improve watershed 

scale water quality. 

c. Prescribe appropriate BMPs for each critical area (based on the corresponding 

diagnosis). 

3. Economic Analysis 

a. Determine costs and returns of alternative BMPs modeled at field and watershed 

scale – including dredging of TCL. 

b. Evaluate sediment reduction cost-effectiveness using optimization and spatial 

targeting approaches. 

c. Estimate the amount of additional conservation funding that would be needed to 

achieve various levels of annual sedimentation reduction and compare the costs of 

watershed management scenarios to dredging (and various combinations of each) 

to a “do-nothing” scenario. 

A visual depiction of the economic analysis used is displayed in Figure 2.2. 
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Figure 2.2 Approach used to analyze sedimentation reduction strategies for Tuttle Creek 

Lake 

 

 Relevant Literature 

Identifying the land to target in a watershed is crucial for reducing the amount of 

sediment and nutrients entering a reservoir or exiting the watershed outlet. There have been 

several attempts to target and/or optimize BMP placement in agricultural watersheds (Yang et al. 

2003; Yang et al. 2005; Khanna et al. 2003; Yuan et al. 2002; Rodriguez et al. 2011; Veith et al. 

2004). While most of these analyses have occurred on much smaller watershed scales than the 

TCL watershed studied here, the methods and conclusions from these previous works are 

Establish watershed characteristics and 

BMPs including sedimentation rates and 

sources

Develop baseline physically-based 

watershed model 

Identify alternative BMPs for each 

subwatershed unit

Evaluate sedimentation change under 

alternative BMP scenarios

Estimate cost-effectiveness of BMPs that 

meet a budget constraint

Estimate cost savings from reduced 

dredging due to BMP application
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beneficial for the development of analysis techniques that will be used. Nevertheless, very little 

work has examined the economics of reservoir sedimentation in the context of dredging versus 

BMP implementation and that which had did not have a calibrated physically-based watershed 

model underlying the analysis. It is primarily these two elements (size/scale of the analyzed 

watershed and the inclusion of the economics of reservoir sedimentation) and the inclusion of 

multiple BMPs into the analysis that comprise the unique contributions to existing literature. 

 Yang et al. (2003) 

Yang et al. (2003) developed an integrated framework of economic, environmental, and 

GIS modeling to examine alternative land retirement strategies in 12 contiguous agricultural 

watersheds in Illinois totaling 965 square miles. A main objective of this study was to analyze 

the cost effectiveness of the Conservation Reserve Enhancement Program (CREP), which has a 

key goal of reducing sediment loadings by 20 percent in the Illinois River.  

In order to examine the cost effectiveness of CREP, the authors estimated sediment losses 

from land parcels, each 300ft x 300ft, using the Agricultural Nonpoint Source Pollution 

(AGNPS) model. A GIS interface was modified to prepare parcel-specific input data for the 

simulation model. Crop budgets were obtained and applied to each parcel of cropland and quasi-

rents were estimated for each parcel. The quasi-rents were equal to total revenues minus total 

variable costs and represented a producer’s opportunity cost for taking the land out of 

production. 

For the simulation model, the authors defined all land eligible for enrollment in CREP 

(required to be in the 100-year floodplain) to be equal to 900 feet along all streams and 

tributaries. The authors noted that for small streams the 900 ft buffer generally exceeded the 100-

year floodplain boundaries, while for major tributaries and the Illinois River, this buffer could be 
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narrower than the floodplain. For the most part, the 900 ft buffer included most of the land 

eligible for CREP enrollment, but it also included highly sloping land adjacent to streams that is 

typically outside of the 100-year floodplain. 

The authors concluded that cropland selected for retirement in all watersheds was closer 

to water bodies, more sloping, more erosive, and more likely to receive larger volumes of upland 

sediment flows than cropland not selected for retirement. Many of the cropland parcels selected 

for retirement were located outside of the 100-year floodplain. Much of the floodplain cropland 

tended to be flatter and more productive than highly sloped land outside of the floodplain. 

Therefore, it would be much more cost effective to focus the CREP program on these highly 

sensitive lands to get the “biggest bang for the buck.” For example, the least cost-effective 

subwatershed yielded marginal sediment reduction costs of $256 per ton whereas the most cost-

effective subwatershed had costs of just $42 per ton (2003$). 

 Yang et al. (2005) 

Building upon previous work, Yang et al. (2005) first examined the cost-effectiveness of 

CRP and CREP in the Illinois River watershed. These two programs differed greatly in their 

eligibility requirements and selection mechanisms. In short, CRP eligibility included most 

cropland located in the watershed. Selection was based on the environmental benefits index 

(EBI) score and the producer’s bid price. CREP, on the other hand, had to be located in either the 

100-year floodplains, on wetlands, or on sloping land adjacent to established riparian buffers. 

Note that the EBI was not used in selecting CREP enrollments, because it was assumed that any 

land parcel that met the restrictions of CREP automatically generated EBI scores above the 

typical cutoff level used in CRP. 
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Using a similar technique as described in Yang et al. (2003), Yang et al. (2005) found 

that in the absence of any land retirement in the watershed, 28,644 tons of sediment would enter 

streams in the watershed during a typical five-year storm event. Under CRP, 1,763 tons of 

sediment loss would be prevented at a cost of $109,767 per year for an average cost of abatement 

of $62 per ton. Under the status quo CREP, there were 5,889 cropland acres retired resulting in 

6,485 tons of sediment abatement at a cost of $583,286 per year for an average cost-effectiveness 

of just under $90 per ton. Further analysis found that CREP parcels consisted of flatter, less 

erodible soils than the land enrolled in CRP. Through the use of Lorenz curves
6
,
 
it was found that 

environmental benefits (sediment loading reduction) were more variable across parcels than 

costs in both programs. These results suggested that there was considerable potential to improve 

on the performance of CREP. 

The second objective of the Yang et al. (2005) study was to investigate if and how the 

cost-effectiveness of CREP could be improved upon. Three targeting strategies were tested. The 

first strategy was one in which all parcels (all of equal size) were ranked from low to high in 

terms of cost and the least expensive parcels were enrolled first until 5,889 acres of cropland 

were retired. The second approach involved ranking the parcels based on their potential 

environmental benefits and selecting the parcels, which offer the highest benefits until 5,889 

acres of cropland were retired. The third targeting method took into account both benefits and 

costs and selected those parcels, which had the highest benefit to cost ratio until 5,889 acres of 

cropland were retired. It should be noted that when the opportunity cost of enrollment and the 

potential for sediment abatement benefits were compared across parcels in the CREP eligible 

                                                 
6
 A Lorenz curve shows the degree of inequality that exists in the distributions of two variables. Here, the curves 

depict the percentage of potential environmental benefits as a function of the percentage of acreage enrolled. 
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area, a negative correlation coefficient of -0.42 was calculated suggesting that all three targeting 

strategies should yield somewhat similar results. 

The authors found that using the benefit or benefit/cost targeting schemes could have 

achieved abatement levels more than two times higher than the status quo CREP and at about 86 

percent of the cost. Further, the benefit/cost targeting scenario could be just as cost-effective as 

CRP by reducing sediment loading at $84 per ton. It could possibly be more cost-effective if 

there weren’t such stringent enrollment restrictions. 

Yang et al. (2005) provided evidence that because sediment abatement benefits are more 

heterogeneous than costs across land parcels, the preferred selection criteria should at the very 

least be based on a measure of these benefits. A competitive selection process which takes into 

account benefits and costs can significantly improve the performance of CREP in Illinois relative 

to the status quo method of enrolling parcels on a first-come basis. 

 Khanna et al. (2003) 

Working in the same geographic area as Yang et al. (2003), Khanna et al. (2003) 

developed a framework to determine cost-effectiveness of sediment reduction using land 

retirement within the CREP. A hydrologic model (AGNPS) with GIS data and an economic 

model were applied to a 61,717-acre Illinois watershed. Of this area, 8,172 acres were eligible 

for targeting, assuming that sloping cropland adjacent to a stream and riparian buffer within 900 

feet of a stream were also considered eligible for land retirement using CREP. They found that to 

achieve a 20 percent sediment reduction for a 5-year storm, 11 percent of these acres would need 

to be in CREP with an average abatement cost of $31 per ton. With a 30 percent reduction goal 

the average cost was $47 per ton. Marginal costs rise from $29 per ton at a 10 percent reduction 

level to $117 per ton at the 30 percent reduction goal. Their results show that most of the land 
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selected for enrollment is from highly sloping and highly erodible areas rather than flat 

floodplains that are not highly erodible. 

 Yuan et al. (2002) 

Yuan et al. (2002) used a calibrated Annual AGNPS model to evaluate the effectiveness 

of BMPs for reducing sediment yield from a 30-acre subwatershed in the Mississippi Delta. The 

objectives of this study were to: 1) assess the impact of several BMPs on sediment yield from a 

typical Mississippi delta cropland watershed and 2) identify the most cost-effective BMPs for 

different tillage systems. 

This simulation was accomplished by using 50 years of weather data to predict the 

potential impacts of three BMPs on three tillage systems (conventional-tillage, reduced-tillage, 

and no-till) for both cotton and soybean crops in the study subwatershed. The BMPs 

implemented in the simulations were: grade stabilization pipes, cover crops, and grass filter 

strips. The authors used two variants of cover crops: volunteer winter weeds and planted winter 

wheat cover crops. 

BMP cost estimates were based upon 2001 data from the Mississippi Natural Resource 

Conservation Service (NRCS). Costs were divided into one-time initial fixed costs and annual 

variable costs. Finally, the annualized costs were divided by the subwatershed area (30 acres) to 

come up with “distributed costs” for each BMP. 

The distributed annualized costs assuming a 5 percent interest (discount) rate and 25 year 

time horizon were $0 per ac for volunteer winter weeds cover crop, $16.20 per ac for winter 

wheat cover crop, $6.82 per ac for a vegetative filter strip, $3.05 per ac for a slotted inlet grade 

stabilization pipe, and $9.21 per ac for a 1.25 feet deep water impoundment, which was 

essentially a box inlet water control structure into which boards were stacked to impound water 
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on the field year-round. The relative cost-effectiveness of each BMP was calculated by dividing 

the total annualized cost by the sediment yield reduction of each BMP within a tillage system. It 

should be noted that Yuan et al. (2002) assumed that the tillage system had an impact on 

predicted sediment yield, but not on profitability. 

The authors found that the marginal sediment reduction costs for all BMPs were about 

$7.00 per ton for conventional and reduced tillage and $9.60 per ton with no-till. The greater cost 

with no-till occurred because no-till alone reduces sediment yield by 50 percent and further 

reductions tend to be more difficult and expensive. 

This analysis did not find 33 feet (10m) wide filter strips to be a particularly cost-

effective BMP for any of the tillage systems. This was because filter strips required more land to 

be taken out of production than with an impoundment, and the estimated sediment reduction 

benefit was less. Filter strips could be installed at a lower initial cost, but when one factored in 

the annual land rental costs the total distributed annualized costs were higher. 

Not surprisingly, this study found that allowing volunteer winter annual weeds to grow 

following harvest was the most cost-effective BMP for all tillage systems as there was no cost 

associated with this BMP. Slotted inlet pipes and slotted board riser pipes were the next most 

cost-effective BMPs; however, these pipes did not achieve the 50 percent sediment reduction 

goal from conventional and reduced tillage systems unless combined with some type of cover 

crop. Vegetative filter strips (33 ft wide) were the least cost-effective of the BMPs considered. 

The authors suggested that narrower filter barriers (i.e., 3.3 ft wide) may be more cost-effective 

for sediment reduction.  

Yuan et al. (2002) concluded by asserting that decisions on the adoption of BMPs should 

be made after jointly considering the environmental and economic impacts. The results reported 
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in this study could be considered valid for other agricultural regions similar to the Mississippi 

delta with fields slopes of less than 1 percent and where sediment is the primary cause of water 

quality impairment. 

 Rodriguez et al. (2009) 

Rodriguez et al. (2009) used a nondominated sorting genetic algorithm (NSGA-II) to 

evaluate the optimal fitness of 35 different BMPs (combinations of pasture management, buffer 

zones, and poultry litter application practices) on the basis of subfield (i.e., HRU) pollutant loads 

estimated with the Soil and Water Assessment Tool (SWAT). The uniqueness of this study was 

that the authors analyzed the combined effect that pastureland, buffer zone, and poultry litter 

management could have as a phosphorus or nitrogen reduction strategy. The studied region was 

the Lincoln Lake watershed, which is a subwatershed within the Illinois River watershed. It is a 

relatively small watershed (12.36 mi
2
) located in northwest Arkansas. This watershed has been 

the focus of an interstate water quality dispute between Oklahoma and Arkansas regarding the 

role that animal agriculture, particularly poultry, contributes to excess phosphorus 

concentrations.  

The final NSGA-II optimization model generated a number of near-optimal solutions by 

selecting from the 35 BMP combinations for placement on any of the 461 pasture HRUs. Thus, 

the search space consisted of 35
461

 (or 6.54 x 10
711

) possible combinations. The authors claimed 

that the final optimization model ran for 10,000 generations and 800 populations and were 

completed in less than one hour using a supercomputer. 

 The optimization routines operated by placing BMP combinations to reduce nutrient 

loading (phosphorus or nitrogen or both) while simultaneously minimizing total cost (defined as 

the summation of standard production costs and the additional costs for each BMP combination). 
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They compared these results to the baseline or current pasture management situation. In 

compiling the results, the authors found the lowest-cost, the medium-cost, and the highest-cost 

solutions of the 800 available.  

By implementing all the BMP combinations recommended in the lowest-cost solution, 

total phosphorus could be reduced by at least 76 percent while increasing cost by less than 2 

percent in the entire watershed. This value represented an increase in cost of $2.22 per ac 

compared to the baseline. For the medium- and the highest-cost solutions, implementing all of 

the prescribed BMPs could decrease total phosphorus immensely but would increase the total 

cost by 7 and 25 percent, respectively. 

When the optimization routine focused on nitrogen reduction for all cost implementation 

solutions, the total nitrogen loads were reduced by at least 98.9 percent. The authors did not 

reveal the percentage cost increases for these scenarios or the scenarios in which both 

phosphorus and nitrogen were the focus. They did, however, state that even though the majority 

of the BMPs were recommended to reduce both nutrients, their frequencies and placement 

distributions across the HRUs will determine their effectiveness. Thus, they recommend an 

optimization (targeting) strategy similar to theirs’ be used to help guide BMP implementation in 

a watershed. 

 Veith et al. (2004) 

Veith et al. (2004) sought to determine if selection of sediment reducing BMPs through 

genetic algorithm optimization, a performance-based method, could identify more cost-effective 

BMP scenarios than targeting, a plan-based method. The comparison between the two methods 

was conducted for a 2,506 ac predominantly agricultural-based watershed in Virginia.  
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The authors defined plan-based methods as those which draw from past field studies and 

scientific theory to assign pollutant reduction efficiencies to BMPs. Performance-based methods, 

on the other hand, use simulation models to assess changes in watershed response due to 

alternative BMP scenarios.  

In this study, the baseline scenario was one with all cropland managed as conventionally 

tilled corn silage. The targeting scenario was defined as a plan-based method, which focused 

pollution control on areas within the watershed that have the greatest potential for sediment 

losses. Specifically, the targeting strategy used in this study involved converting all cropland 

with the majority of the field slope greater than 3 percent to minimum-tillage corn silage on the 

contour with a winter wheat cover crop.  

Three optimization plans were evaluated. These included the full combination of BMPs 

used by the targeting strategy along with the option of applying BMPs individually across the 

watershed. Optimization plan 1 was most similar to the targeting strategy in that there were only 

two management variations of corn silage: conventional tillage or minimum-tillage on the 

contour with a winter wheat cover crop. Optimization plans 2 and 3 allowed for many more 

management variants and thus did not allow for a fair comparison to the targeting strategy. For 

that reason, this literature review will only compare the targeting strategy to optimization plan 1. 

The optimization procedure was comprised of three components all operating within a 

Genetic Algorithm framework: optimization, NPS prediction, and economic analysis. The NPS 

component utilized the Universal Soil Loss Equation and a sediment routing routine developed 

by Veith (2002). The economic analysis component utilized enterprise budgeting from the 

Virginia Farm Management Crop and Livestock Enterprise Budgets.  



22 

 

The targeting strategy was first applied to the baseline scenario, and it was found that 

watershed sediment yield was reduced by 2,507 lb/ac. Because the optimization routines required 

a pollutant reduction goal, the goal was set to match the results from the targeted strategy - 2,507 

lb/ac. Cost-effectiveness of each solution was calculated by dividing the amount of additional 

costs (from adopting the BMPs) by the amount of sediment decrease. Under the targeting 

strategy, the estimated cost-effectiveness of sediment reduction was $53.93 per lb/ac, whereas in 

the optimization plan 1, the cost-effectiveness was estimated to be about $47.19 per lb/ac. 

Optimization plans 2 and 3 resulted in even higher levels of cost-effectiveness than optimization 

plan 1. 

The explanation offered for the increased cost-effectiveness of optimization plan 1 over 

targeting was that optimization plan 1 applied BMPs primarily on high-sloped fields that 

bordered streams whereas with the targeting strategy, any field with greater than 3 percent slope 

had the set of BMPs applied regardless of the proximity to the stream. 

The authors concluded by stating that targeting strategies offer the benefit of lesser data 

requirements and less computing time. However, when a complete cost-benefit analysis was 

performed for this study, which included the costs associated with additional data requirements 

and computing time for optimization models, the optimization model (plan 1) still proved to be 

more cost-effective than the targeting strategy. The optimization techniques used in this study 

also offer some flexibility in BMP implementation by providing a number of near-optimal 

solutions in contrast to the targeted approach, which offers one and only one BMP 

implementation scenario. 

 Hansen and Hellerstein (2007) 
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Hansen and Hellerstein (2007), evaluated the impact of soil conservation on reservoir 

services. To do this, it was assumed that reservoir services (flood control, recreational 

opportunities, aesthetic beauty, power generation, etc.) are a function of the level of sediment in 

the reservoir. An implication of this approach is that sediment that settles in a reservoir the year 

before the reservoir is dredged will impose little environmental cost. The authors extended the 

use of replacement cost theory, which differed from past work, which focused on sediment’s 

impact on future dredging costs; hence, sediment that settled in a reservoir the year before it was 

dredged would impose the greatest social cost.  

This framework was used to value the effect that a marginal change in soil erosion had on 

current and future reservoir benefits. They analyzed impacts across more than 70,000 reservoirs 

across 2,111 Hydrologic Unit Code (HUC) areas of the 48 contiguous states. The results showed 

that marginal reductions in soil erosion provide benefits ranging from zero to $1.38 per ton. As 

expected, HUCs with no reservoirs offered no reservoir-related soil conservation benefits. And, 

those HUCs with relatively more reservoirs tended to have greater soil conservation benefits.  

There were several assumption made in order to derive estimates of the parameters in the 

benefit function. One of the more notable assumptions in their analysis, which has some 

relevance to our analysis is that dredging was assumed to be optimal once a reservoir had lost 30 

percent of its capacity. According to the authors, past studies have found that, across reservoirs, 

dredging occurs with 15-45 percent capacity loss. They tested the sensitivity of this assumption 

by re-estimating benefits based on a 20 and 40 percent loss in capacity and found that the median 

benefit estimates ranged from approximately 15 percent higher to 1 percent lower.  

 Williams and Smith (2008) 
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In 2008, Williams and Smith prepared a sedimentation white paper on the economics of 

watershed protection and reservoir rehabilitation. They noted that this was a broad topic and 

enormous task. This is partially due to there being very little literature on the economics of 

sediment control at the watershed scale and virtually no studies addressing whether dredging of 

sediment or prevention of sedimentation is more economical. The research began by giving an 

overview of the costs of soil erosion and sedimentation based on existing literature. The authors 

went on to analyze the potential savings from implementing some individual in-field erosion 

control methods in a watershed to reduce the future cost of dredging sediment from a reservoir. 

The estimates, they noted, were meant to provide some perspective on the savings that may be 

gained by using individual soil erosion management practices to reduce the need for dredging. 

They found that it may be more economical for the government to fund expenditures for 

management practices to reduce further erosion and sedimentation in a watershed than to rely on 

future use of dredging in situations where the amount of accumulated sediment has not reduced 

the usefulness of the reservoir. They qualify this by mentioning that their analysis is not 

complete due to the lack of critical data. Specifically, the study identified the following items as 

necessary information: the source of the sediment, how suitable the management practices will 

be for various locations in a watershed, and the number of acres that actually need application of 

these practices from a technical and economic perspective. 

The research performed here provides and applies much needed data and builds upon the 

previous work of Williams and Smith (2008) as well as Yang et al. (2003) and Khanna et al. 

(2003). Again the uniqueness of this research includes the size/scale of the analyzed watershed 

along with considerations of the economics of reservoir sedimentation. Williams and Smith 

(2008) was a first attempt at this, but relied on many assumptions regarding watershed 
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characteristics and BMP effectiveness. This research extends Williams and Smith (2008) by 

incorporating estimated data from a calibrated physically-based watershed model. 

 Conceptual Framework 

Soil erosion and nutrient runoff from cropland results in decreased on-site productivity as 

well as numerous offsite consequences (Williams and Smith 2008). Offsite, surface water quality 

can become impaired and reservoir life shortened. These physical effects in turn have negative 

consequences on the environment and regional economy. Figure 2.3, which is adapted from 

Williams and Smith (2008), shows the flow of these effects. This analysis primarily focuses on 

soil erosion and nutrient runoff from cropland affecting water quality and the life of a reservoir. 

While this analysis indirectly and qualitatively considers recreation, flood control, and water 

supply effects, options for protecting and/or restoring (i.e., BMP implementation and/or 

dredging) the reservoir are quantitatively examined. 
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Figure 2.3 General effects of soil erosion and other pollutant runoff 

 

The conceptual framework can be divided into two parts. First, there is an underlying 

conceptual model for the BMP implementation scenarios on cropland within the watershed. The 

second part involves the concepts of dredging alongside or in place of BMP implementation. 

This conceptual framework section will be split into two subsections, which cover the two 

previously mentioned parts. 

 STAGE I: “BMP implementation” conceptual model description 

Environmental protection within production agriculture often relies on incentives to 

induce adoption and implementation of BMPs. The logic behind this is straightforward. 

Agricultural producers generally seek and adopt profit-enhancing practices and technologies on 

their own without compensation from outside sources. If a conservation BMP is profit-enhancing 
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(benefits outweigh expected costs), producers will recognize this over time and choose to adopt 

the practice. One has to look no further than the increasing utilization of no-till over the past two 

decades. As for some other BMPs (e.g., filter strips), the producer may not receive any financial 

benefit from adoption. The benefits might go to stakeholders downstream and society in general. 

This is the definition of an externality. If a producer’s goal is to maximize profit, there is often 

no incentive to adopt some BMPs.  

Economic considerations are a key determinant in the adoption of BMPs. Although some 

producers have already adopted such practices, an expansion in adoption will occur only if the 

practices become profitable (in the absence of regulatory mandates). Simultaneously, it is 

important to recognize that producers across a watershed face different cost and production 

conditions. Although specific production practices may be profitable for some producers in some 

locations, they are not likely to be profitable for all producers in all locations. Further, the 

benefits of some BMPs accrue mostly to society at large and farmers are not compensated for 

these external benefits. Federal, state, local agencies, and private organizations seek to provide 

incentives for environmental protection where markets have failed to do so (Claassen 2009). This 

analysis considers the financial costs that would have to be expended (e.g., from a governing 

authority) in order to entice producers to adopt a given set of BMPs across the watershed.  

The underlying conceptual model may be best represented in flow-chart organizational 

form based on (but modified to fit this analysis) work by Vellidis et al. (2009). The conceptual 

model is shown in Figure 2.4. It shows the linkages among socioeconomic factors and producers’ 

BMPs while explicitly integrating cause and effect among socioeconomic factors, producers’ 

decision making, and physically-based outcomes. The entire model is constrained by a federal, 

state, and/or regional conservation program. That is, it is assumed that all profit-enhancing BMPs 
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have been adopted at an earlier time and any additional BMP implementation will occur if and 

only if a conservation program (Box A) provides sufficient financial support. Within this 

program, there is a suite of BMPs that can be adopted by producers. Physically-based and 

agronomic factors (Box B) as well as economic and social factors (Box C) determine whether or 

not BMPs will be adopted. Maintenance constraints (Box D) as well as physically-based and 

agronomic constraints (Box E) determine the effectiveness of the BMPs post-implementation. 

Further economic and social factors (Box F) can help to ensure that the BMPs remain in place 

throughout the life of the contract. A detailed description of the 6 levels of the constraints is 

below. 

A. Conservation program constraints - The program constraints are based on funding 

availability, geographical eligibility, and resource focus.  

B. Physically-based and agronomic constraints I- The first level of physically-based and 

agronomic constraints refer to the suitability of BMPs to different soil types, climatic 

conditions and cropping patterns. For example, no-till may not be suitable for heavy clay 

soils or a continuous corn rotation. Because of such constraints, more funding may have 

to be offered to different regions. This essentially accounts for any non-economic factor 

that affects BMP implementation. 

C. Economic and social constraints I - The first level of economic and social constraints 

refer to acceptability of BMPs to producers. This may be due to social or economic 

reasons which may be related to the physically-based and agronomic constraints in part 

(B). The economic factors also may include available cost-share (i.e., one-time payments 

made to partially or fully offset initial installation costs) for given BMPs. 
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D. Maintenance constraints - Once BMPs are implemented periodic maintenance is required 

to maintain effectiveness. This also has an economic component. 

E. Physically-based and agronomic constraints II - The second level of physically-based and 

agronomic constraints occur at both the farm- and watershed-level. These constraints help 

determine the effectiveness of the BMPs. Watershed models can be used to predict the 

amount of pollution reduction achieved at the farm- or field-level all the way up to the 

watershed-level. 

F. Economic and social constraints - The second level of economic and social constraints 

include the adequacy of program payments. These include annual incentive and 

maintenance payments. The annual incentive payments must compensate the producer for 

the annual loss of production as well as any maintenance (e.g., mowing of a filter strip) 

that may be necessary to ensure longer-term BMP effectiveness. 
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Figure 2.4 Conceptual model linkages and data flow within the integrated economic model 

 

Figure 2.4 illustrates how the conceptual model is implemented. The SWAT physically-

based watershed model is used to evaluate the watershed’s water quality response to the different 

BMP implementation scenarios. The amount of annual conservation payments needed to induce 

implementation of BMPs to different amounts of acreage is estimated based on partial budgeting 

as well as historical rental rates. This is described in detail in the “Data” section. The final results 

or output from this part of the analysis include amounts of pollutant reduction along with the 

annual total and marginal costs of BMP implementation. A more detailed description of these 

concepts follows. 

Here, we consider the problem of a watershed manager who seeks to achieve maximum 

pollution (i.e., sediment, nitrogen, and/or phosphorus) reduction subject to an annual budget 
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constraint. The individual costs of implementing a given BMP on a given cropland parcel are 

equal to the sum of the lost revenues and the additional costs incurred (both one-time and annual 

over a 15-year time horizon) for a given farm. Nonpecuniary benefits (e.g., wildlife 

enhancement) from BMP adoption may also be a consideration for some producers/landowners, 

but these are obviously difficult to quantify and are ignored in this analysis. The annual 

aggregate cost of pollution reduction is represented by the sum of the annualized individual BMP 

implementation costs incurred. 

To model the pollutant loading from each land parcel, a watershed model is developed. 

The model estimates edge-of-field loading and also factors in a delivery ratio to predict the 

average annual amount of pollutants entering the reservoir based on the application of BMPs. 

Cost and load reduction factors are used for each BMP-farm combination to estimate individual 

cost-effectiveness values (e.g., dollars per ton of sediment reduction).  

Two types of management strategies are modeled: targeted and random BMP 

implementation. The targeted approach implements BMPs on cropland that have the most 

attractive cost-effectiveness values (e.g., the lowest dollars per ton of sediment reduction). 

Implementation continues until the budget constraint is reached. The random approach models 

the case in which BMPs are implemented in a random fashion, which spreads the BMPs 

randomly across the watershed. This approach is possibly more akin to the status quo 

conservation programs in use currently across the country (although some targeting approaches 

are used in some programs) (Nelson et al. forthcoming).  

Finally, total and marginal cost curves can be derived for pollutant reduction for each 

management strategy modeled. These costs can be compared to the marginal costs of dredging. 



32 

 

From this, the “optimal” amount of sediment reduction achieved via BMP implementation and 

via dredging can be derived given the assumptions and constraints of the model.  

 STAGE II: “Dredging versus BMP implementation” conceptual model description 

Along with BMP implementation, dredging is another method for reducing the amount of 

sediment in TCL. While dredging may also reduce the amount of nitrogen and phosphorus in the 

reservoir, analyzing these nutrient reductions with any precision requires knowledge of 

concentration levels in the dredged material. This is beyond the scope of this research and, thus, 

only sediment is considered in the “dredging versus BMP implementation” analysis.  

Because sediment accumulation in TCL (and any reservoir for that matter) is inevitable, 

dredging is likely to be needed at some point in the future to preserve TCL. As will be discussed 

later in this study, dredging can be a relatively expensive option. However, at some point it may 

become feasible if the costs of dredging are less than additional BMP implementation on a per 

unit basis of sediment reduction. The question is: at what point does this occur? The answer can 

be found by comparing the marginal costs of BMP implementation with the costs of dredging. 

As Williams and Smith (2008) point out, the decision on whether or not to dredge will 

depend on sediment source, sedimentation rate with and without management practices, 

effectiveness and cost of management practices, dredging cost inflation, the planning horizon, 

and the discount rate used to calculate present values. If accumulated sediment has not 

negatively impacted current reservoir services (e.g., recreation, flood control), then it might be 

reasonable to forego dredging in favor of investing in additional in-field and in-stream 

conservation practices to reduce the need for future dredging.  

Following Williams and Smith (2008), this analysis also examines how many acres a 

BMP can be applied to if savings generated from reduced dredging finance the implementation 
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of the BMP. Estimated future savings from dredging costs avoided because of implementing 

sediment reduction BMPs are a key component of this analysis. To determine these values, the 

reservoir sedimentation rates are estimated with and without BMP implementation over a 15-

year planning period. A 15-year period is chosen because this is approximately equal to the 

number of years until the sediment pool is 100 percent full given average annual sediment 

loading rates. The costs of dredging 15 years in the future also are estimated based on the current 

rate of sedimentation versus a reduced rate of sedimentation that will result from implementing 

BMPs. This analysis is limited to costs; therefore, any benefits resulting from reduced erosion, 

sedimentation, and/or any nutrient reduction that may occur are not considered here. The method 

used for comparing dredging with BMPs also is shown in Figure 2.4. 

 Data 

The data requirements for this study include both economic and physically-based data. 

This section begins by describing the types of BMPs considered and the economic costs (in 

2009$) of each. The physically-based data for the simulations are generated from a calibrated 

watershed model. The second part of this section focuses on the model development and the 

physiographical results that are to be incorporated into the alternative watershed management 

simulations. 

 Best Management Practices 

There are two main types of strategies for reducing the amount of sediment and nutrients 

that enter a reservoir: in-field and in-stream strategies. According to Devlin and Barnes (2008), 

in the Kansas River basin (which the Tuttle Creek watershed is a part of) unprotected croplands 

contributed the majority of sediment loads. While streambank erosion may contribute a 
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significant amount of sediment to TCL, the watershed model developed here only considers the 

control of in-field sediment and nutrient sources.
7
 The three in-field strategies analyzed are filter 

strips, no-till, and permanent vegetation. 

The simulation program developed here requires the calculations of BMP costs. Existing 

research in this area shows that the costs and returns to BMPs are highly variable. According to a 

comprehensive BMP cost study performed by Williams and Smith (2008), the costs for 

implementing no-till, for example, may range from -$37.00 to more than $37.00 per acre. In 

other words, some producers may see significant economic returns (due to lower crop input costs 

and/or higher yields) from adopting no-till while others may see increased costs and/or lower 

yields. In general, however, Williams and Smith (2008) indicated that most sediment reducing 

BMPs exhibit positive costs. A relevant study by Valentin et al. (2004) utilized actual farm-level 

economic and BMP adoption data to rigorously analyze the relationship between BMP use and 

farm income. They showed that while the adoption of nutrient BMPs had a significant positive 

effect on net farm income for wheat and corn in Kansas nearly all of the soil conservation BMPs 

had no statistically significant impact on farm income.  

In general, it is likely that cropland BMPs have already been adopted by producers, who 

stand to reap significantly increased net returns from doing so. While there may be other 

producers who have the potential to benefit economically from adopting a given BMP, for 

whatever the reason, they may resist implementing that BMP. Additionally, there are likely many 

producers who would see decreased income by the adoption of certain BMPs. An assumption 

made for this study is that in order to induce any further BMP adoption within the Tuttle Creek 

watershed, cost-share and/or incentive payments would have to be made to producers. The next 

                                                 
7
 The Soil and Water Assessment Tool (SWAT) watershed model does not have the ability to analyze sediment and 

nutrient loading due to streambank erosion unless site specific data can be provided.  
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step is determining the level of costs (incentives) for inducing more BMP adoption for purposes 

of the simulation routines. 

Filter strips (also known as vegetative buffers) are land areas maintained in permanent 

vegetation that reduce nutrient and sediment losses from agricultural fields, improve runoff water 

quality, and provide wildlife habitat (Williams and Smith 2008). Generally, filter strips are 

placed at the edge of the field near or around bodies of surface water. There are several federal 

and state programs to encourage producers to adopt and maintain filter strips. In order to 

calculate the annualized costs of a filter strip, the KSU Vegetative Buffer Decision-Making Tool 

(Smith and Williams 2010) is used.  

There are several cost-related assumptions that have to be made and entered into the tool. 

It is assumed that 2009 cash rents by county would be used as the lost opportunity cost of 

converting cropland to a grass filter strip or permanent vegetation (Dhuyvetter and Kastens 2009; 

USDA-NASS 2009). These are slightly higher than current CRP rental rates and are 

representative of rates typically paid for acres enrolled through the Continuous CRP enrollment. 

The higher rates are used because it is assumed that land converted to filter strips would be high 

quality land requiring more of a rental payment than typical CRP land.  

Another assumption is that the procedure used for installing a filter strip involves the use 

of a cover crop before planting. This is based on discussion with NRCS personnel in the region. 

In addition, it is assumed that there would be $50 (5 hrs x $10 per hr) per acre one-time producer 

labor costs associated with the establishment of a filter strip and the design life (or time horizon) 

for the filter strip would be fifteen years. In line with Smith (2004) and Williams and Smith 

(2008), it is assumed that each acre of filter strip affects or treats runoff from 25 acres of 

cropland. The calculated annualized costs for an acre cropland treated by a filter strip by county 
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can be seen in Table 2.1. A comprehensive filter strip budget example can be found in Table 2.2. 

Note, that a 15-year time horizon is used for reasons stated earlier and a discount rate of 4.625 

percent is used, which is based on the year 2009 “Plan Formulation Rate for Federal Water 

Projects” (NRCS 2009).  

Table 2.1 “Original” BMP Annualized costs over a 15-year time horizon 

County, State 

Annualized Cost 

($/acre) for Filter 

Strips per cropland 

acre treated
1
 

Annualized Cost 

($/acre) for No-till 

Annualized Cost 

($/acre) for Permanent 

Vegetation 

Clay, KS $3.83 $13.00 $81.05 

Gage, NE $5.67 $20.00 $108.15 

Jefferson, NE $5.67 $20.00 $101.93 

Marshall, KS $4.71 $13.00 $89.23 

Nemaha, KS $4.79 $13.00 $92.46 

Pawnee, NE $5.47 $20.00 $105.52 

Pottawatomie, KS $4.31 $13.00 $86.58 

Republic, KS $3.88 $13.00 $76.63 

Riley, KS $4.55 $13.00 $81.87 

Washington, KS $4.56 $13.00 $83.07 
1
 Annualized cost of filter strip divided by 25 cropland acres (treated) 
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Table 2.2 Filter strip budget for Marshall Co., KS 

 

General Data For Filter Strip in Marshall Co., KS

4.63%

$76.19 per acre / year

3.07%

$6.67 per acre / year

4.00%

660

66

1.00

15

$5.00

$5.00

COSTS PAYMENTS RECEIVED

Total one-time $175.44 Total one-time $0.00

Total annual $6.67 Total annual $0.00

Net Present Value Table: Filter Strip (per acre)

Year One Time Costs Annual Costs One Time Payments Annual Payments

Net Property Tax

Impact
Year Rent

0 $175.44 $0.00 $0.00 $0.00 $0.00 0 $0.00

1 $0.00 $6.67 $0.00 $0.00 $0.00 1 $76.19

2 $0.00 $6.94 $0.00 $0.00 $0.00 2 $78.53

3 $0.00 $7.21 $0.00 $0.00 $0.00 3 $80.94

4 $0.00 $7.50 $0.00 $0.00 $0.00 4 $83.42

5 $0.00 $7.80 $0.00 $0.00 $0.00 5 $85.99

6 $0.00 $8.12 $0.00 $0.00 $0.00 6 $88.63

7 $0.00 $8.44 $0.00 $0.00 $0.00 7 $91.35

8 $0.00 $8.78 $0.00 $0.00 $0.00 8 $94.15

9 $0.00 $9.13 $0.00 $0.00 $0.00 9 $97.04

10 $0.00 $9.49 $0.00 $0.00 $0.00 10 $100.02

11 $0.00 $9.87 $0.00 $0.00 $0.00 11 $103.09

12 $0.00 $10.27 $0.00 $0.00 $0.00 12 $106.26

13 $0.00 $10.68 $0.00 $0.00 $0.00 13 $109.52

14 $0.00 $11.11 $0.00 $0.00 $0.00 14 $112.88

15 $0.00 $11.55 $0.00 $0.00 $0.00 15 $116.35

Sum totals $175.44 $133.56 $0.00 $0.00 $0.00 Sum totals $1,424.34

Present Value $175.44 $91.73 $0.00 $0.00 $0.00 Present Value $985.69

Net Present Value ($267.17) Net Present Value $985.69

Annualized Value ($25.09) Annualized Value $92.57

Total economic cost equals annualized cost of filter strip plus annualized cropland rents forgone = $117.66

NPV Table: Cropland Rent (per acre)

Project Length (feet)

Project Width (feet)

Acres (length x width/43,560)

Length of analysis (years)

Cropland Property Tax ($/acre)

Annual Cropland Rental Growth Rate

Total Annual Costs

Inflation Rate of Annual Costs

Discount Rate

Cropland Rental Rate - not CCRP rental rate

Tame Grass Property Tax ($/acre)
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No-till is a form of conservation tillage in which herbicides are used in place of tillage for 

weed control and seedbed preparation (Williams and Smith 2008). No-till has seen increased 

adoption rates through much of the past two decades. According to Smith et al. (2007), nearly 30 

percent of producers in the central Great Plains are currently utilizing 100 percent no-till 

management strategies. According to Dhuyvetter and Kastens (2005), no-till is generally adopted 

in central and eastern Kansas due to decreased costs, but higher yields and associated revenue 

provide incentives for no-till adoption in western Kansas. As previously stated, the costs and 

returns associated with no-till adoption are highly variable and are farm specific (see Williams 

and Smith 2008). 

Currently, the EQIP program will pay a Kansas producer $13.00 per acre per year for up 

to 3 years for converting to a no-till management system (NRCS 2010). In Nebraska, a producer 

can be paid $20.00 per acre per year for 3 years for converting to no-till (Torpin 2010). Based on 

these data, it is assumed that the annualized cost for inducing producers to convert to no-till 

would be $13.00 per acre per year in Kansas and $20.00 per acre per year for those farms in 

Nebraska all over a 15-year time horizon (Table 2.1). 

Land retirement, which includes the establishment of permanent vegetation, has the 

potential to significantly reduce soil erosion. The CRP program currently provides incentives to 

make up for the value of lost production. The KSU Vegetative Buffer Decision-Making Tool 

(Smith and Williams 2010) is used to calculate the annualized costs of converting cropland field 

to permanent native grass vegetation over a 15-year time horizon. The values used represent the 

lost value of production and are set equal to the average CRP rental rates for each county in 

2009. Table 2.1 displays the annualized costs per county for land retirement. A detailed budget 

for permanent vegetation (land retirement) can be found in Table 2.3. 
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Table 2.3 Permanent vegetation budget for Marshall Co., KS 
General Data For Permanent Vegetation in Marshall Co., KS

4.63%

$58.51 per acre / year

3.07%

$6.67 per acre / year

4.00%

660

66

1.00

15

$5.00

$5.00

COSTS PAYMENTS RECEIVED

Total one-time $101.42 Total one-time $0.00

Total annual $6.67 Total annual $0.00

Net Present Value Table: Permanent Vegetation (per acre)

Year One Time Costs Annual Costs One Time Payments Annual Payments

Net Property Tax

Impact
Year Rent

0 $101.42 $0.00 $0.00 $0.00 $0.00 0 $0.00

1 $0.00 $6.67 $0.00 $0.00 $0.00 1 $58.51

2 $0.00 $6.94 $0.00 $0.00 $0.00 2 $60.31

3 $0.00 $7.21 $0.00 $0.00 $0.00 3 $62.16

4 $0.00 $7.50 $0.00 $0.00 $0.00 4 $64.07

5 $0.00 $7.80 $0.00 $0.00 $0.00 5 $66.03

6 $0.00 $8.12 $0.00 $0.00 $0.00 6 $68.06

7 $0.00 $8.44 $0.00 $0.00 $0.00 7 $70.15

8 $0.00 $8.78 $0.00 $0.00 $0.00 8 $72.30

9 $0.00 $9.13 $0.00 $0.00 $0.00 9 $74.52

10 $0.00 $9.49 $0.00 $0.00 $0.00 10 $76.81

11 $0.00 $9.87 $0.00 $0.00 $0.00 11 $79.17

12 $0.00 $10.27 $0.00 $0.00 $0.00 12 $81.60

13 $0.00 $10.68 $0.00 $0.00 $0.00 13 $84.10

14 $0.00 $11.11 $0.00 $0.00 $0.00 14 $86.69

15 $0.00 $11.55 $0.00 $0.00 $0.00 15 $89.35

Sum totals $101.42 $133.56 $0.00 $0.00 $0.00 Sum totals $1,093.82

Present Value $101.42 $91.73 $0.00 $0.00 $0.00 Present Value $756.96

Net Present Value ($193.15) Net Present Value $756.96

Annualized Value ($18.14) Annualized Value $71.09

Total economic cost equals annualized cost of permanent vegetation plus annualized cropland rents forgone = $89.23

Annual Cropland Rental Growth Rate

Total Annual Costs

Inflation Rate of Annual Costs

Discount Rate

Cropland Rental Rate - not CCRP rental rate

Tame Grass Property Tax ($/acre)

NPV Table: Cropland Rent (per acre)

Project Length (feet)

Project Width (feet)

Acres (length x width/43,560)

Length of analysis (years)

Cropland Property Tax ($/acre)
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 Physically-based Model and Results 

This subsection presents the physically-based model that quantifies the environmental 

impacts of practices adopted by farmers. In particular, the Soil and Water Assessment Tool 

(SWAT) model is applied to the Tuttle Creek watershed located in Kansas and Nebraska to 

predict the changes in sediment, nitrogen, and phosphorus loading at the watershed outlet 

(entering TCL), in response to the adoption of the three cropland in-field BMPs.
8
 The first part 

briefly describes the study region and the input data for the SWAT model. The next part presents 

the modeling scenarios, which correspond to the three BMPs of interest plus a baseline (no 

BMPs) situation. Each scenario requires detailed inputs about tillage and other agronomic 

practices. The third part then presents the modeling results from the various scenarios and 

explains how the data needed for the simulations are assembled. The fourth and final part briefly 

summarizes the model and results. 

 Model Inputs 

A necessary component of an effective BMP implementation plan is a way to estimate 

the amount of pollution reduction achieved from the adoption of certain BMPs. In order to 

analyze the potential of various BMP management scenarios in the Tuttle Creek watershed, a 

SWAT watershed model was developed for the portion of the Tuttle Creek watershed located 

almost completely in Kansas (Figure 2.5). It should be noted that the sediment and nutrient 

contributions from the greater Nebraska portion of the watershed were included in the analysis, 

but treated as exogenous in the models. In other words, no BMP applications occurred in the 

greater Nebraska portion of the TCL watershed. The average annual amounts of pollutants 

                                                 
8
 As described later, BMP implementation only occurs in the “Kansas” portion of the watershed. The word “Kansas” 

is in quotes because very small portions of the analyzed subwatersheds actually lie in Jefferson, Gage, and Pawnee 

counties located in Nebraska. 
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coming from Nebraska streams and rivers into the Kansas portion of the TCL watershed are 

817,394 tons of sediment, 39,817,689 pounds of total nitrogen, and 9,354,214 pounds of total 

phosphorus. In terms of total pollutant loading into TCL, Nebraska contributes 30.5, 75.7, and 

75.2 percent of the annual sediment, nitrogen, and phosphorus, respectively. Stated differently, 

Kansas is responsible for 1,861,031 tons of sediment, 12,765,177 pounds of total nitrogen, and 

3,084,057 pounds of total phosphorus loading into TCL each year. 

Figure 2.5 Kansas portion of the Tuttle Creek watershed with 28 subwatersheds delineated 

 
 

The SWAT (2009) model was developed and is maintained by the USDA Agricultural 

Research Service (ARS) (Arnold et al. 1998; Neitsch et al. 2005; Gassman et al. 2007; Douglas-

Mankin et al. 2010). SWAT is a watershed-scale model widely used for quantifying the impact 

of land management practices (Nejadhashemi et al. 2011; Rodriguez et al. 2011). Briefly, the 

KS portion:

2,377 mi2 total

1,015 mi2 cropland
Manhattan

Marysville

Washington

Clay Center
Westmoreland

NEBRASKA

KANSAS



42 

 

SWAT model was developed to predict the impact of land management practices on water, 

sediment, and agricultural chemical yields in large complex watersheds with varying soils, land-

use, and management conditions over long periods of time. Major model components include 

weather, hydrology, soil temperature, plant growth, nutrients, pesticide, and land management 

(Gassman et al. 2007). Each watershed is divided into subwatersheds and then into hydrologic 

response units (HRUs) based on land-use, slope, and soil distributions.  

A preliminary step in the watershed model development process was to access reliable 

landuse data. The most recent comprehensive land use data set available was the National Land 

Cover Data (NLCD) created and compiled by the United States Geological Survey in 2001.  

In addition to the 2001 NLCD landuse data, other physically-based data were acquired 

for use in the SWAT model. State Soil Geographic Database (STATSGO) soils data was 

incorporated into the model along with 31 years of relevant National Climatic Data Center 

(NCDC) weather data (i.e., daily temperatures and precipitation). A summary of the land use, 

slope, and hydrologic soil groups (see note at bottom of Table 2.4) located in each of the 28 

subwatersheds are displayed in Table 2.4.  
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Table 2.4 Summary of land use, slope, and soil group by subwatershed 
    Land Use (%) Slope (%) Hydrologic Soil Group (%)9 

Sub- 

watershed 
Area (ac) Crop Urban Forest Range 

Wet-

land 
Water 0-2 2-4 4-6 6-8 8+ A B C D 

1  12,393  44.5 4.6 8.4 41.1 0.0 1.4 76.1 18.6 4.3 1.0 0.0 0.0 16.2 83.8 0.0 

2  48,527  63.5 3.8 4.9 27.2 0.0 0.6 79.5 17.6 2.9 0.0 0.0 0.0 1.5 0.0 98.5 

3  6,267  57.1 4.7 12.3 22.9 0.0 3.0 76.5 19.5 4.0 0.0 0.0 0.0 20.5 33.9 45.6 

4  39,374  36.4 2.9 7.5 51.4 0.4 1.3 62.9 25.3 9.3 2.2 0.3 0.0 41.2 55.2 3.6 

5  60,724  58.8 4.4 6.6 29.6 0.3 0.4 75.4 19.4 4.6 0.6 0.0 0.0 4.3 95.7 0.0 

6  23,890  67.0 4.4 6.2 20.0 0.7 1.7 73.6 24.1 2.3 0.0 0.0 0.0 16.2 40.4 43.4 

7  7,734  50.8 11.4 6.5 26.2 2.3 2.8 78.2 20.5 1.4 0.0 0.0 0.0 26.5 40.6 32.9 

8  1,450  39.1 12.6 0.0 39.4 0.0 8.9 100.0 0.0 0.0 0.0 0.0 0.0 49.7 0.0 50.3 

9  42,852  68.6 5.8 5.2 19.5 0.4 0.6 78.0 17.7 3.6 0.7 0.0 0.0 1.0 0.0 99.0 

10  259,609  43.1 4.4 6.0 45.8 0.1 0.5 67.3 21.4 8.4 2.7 0.3 0.0 34.8 63.2 1.8 

11  75,604  72.2 4.4 3.9 19.0 0.0 0.6 66.4 24.8 7.7 1.1 0.0 0.0 3.3 0.0 96.7 

12  81,114  41.1 4.1 5.8 46.3 1.1 1.7 63.2 23.2 10.7 2.7 0.2 0.0 19.5 60.6 19.9 

13  45,102  50.7 4.7 6.9 35.9 0.0 1.9 61.5 23.7 12.3 2.5 0.0 0.0 6.5 0.0 93.5 

14  34,557  42.2 4.7 8.9 40.2 2.1 1.9 57.7 22.5 12.6 5.0 2.1 0.0 14.1 46.2 39.7 

15  26,028  52.6 4.2 7.6 34.0 0.7 0.9 60.4 27.7 9.9 2.1 0.0 0.0 6.8 78.5 14.7 

16  17,768  40.8 6.7 8.2 41.5 1.0 1.8 63.7 22.5 10.2 3.0 0.6 0.0 17.3 41.9 40.8 

17  75,559  58.3 4.6 7.2 28.8 0.5 0.6 62.9 25.9 9.4 1.8 0.0 0.0 7.7 0.0 92.3 

18  59,506  40.3 4.4 10.1 43.5 0.7 1.0 56.5 26.5 13.7 3.1 0.2 0.0 7.1 0.0 92.9 

19  6,183  16.8 11.3 7.4 57.9 3.5 3.1 58.6 16.7 12.7 7.1 5.0 0.0 26.0 24.4 49.6 

20  14,667  40.3 3.8 10.3 44.0 1.5 0.0 63.3 25.2 10.3 1.2 0.0 0.0 12.7 0.0 87.3 

21  38,499  20.2 4.0 9.7 65.5 0.3 0.3 54.0 26.5 14.1 4.9 0.5 0.0 0.3 42.1 57.6 

22  76,565  44.6 4.0 6.1 44.8 0.2 0.3 67.9 22.1 7.8 2.1 0.1 0.0 4.8 63.1 32.1 

23  45,733  38.0 3.6 8.7 47.0 1.4 1.3 56.7 23.3 14.5 4.9 0.6 0.0 15.3 18.9 65.8 

24  23,823  24.7 2.9 10.5 59.3 1.0 1.5 57.8 20.9 14.1 5.9 1.4 0.0 18.6 33.4 48.0 

25  53,826  8.5 2.5 12.0 74.2 1.8 1.1 49.1 19.5 17.2 9.7 4.6 0.0 7.2 62.2 30.6 

26  160,864  33.6 3.7 5.8 56.3 0.2 0.3 59.4 26.0 10.5 3.1 1.0 0.0 14.2 47.8 38.0 

27  169,764  8.7 4.3 16.6 59.4 1.2 9.7 44.4 18.6 16.7 11.2 9.1 0.0 12.0 69.4 18.7 

                                                 
9
 Group A soils have the lowest runoff potential as they typically have predominantly gravel or sand textures. Group B soils have moderately low runoff potential 

when thoroughly wet. Group C soils have moderately high runoff potential and Group D soils are comprised of significant amounts of clay and exhibit the 

highest erosive potential 
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The entire Tuttle Creek watershed area is 6,144,000 acres, with 25 percent of the entire 

watershed area residing in Kansas. According to data compiled from the 2007 National 

Agricultural Statistics Service (NASS) reports, the average farm size in the watershed was 482 

acres with a size distribution depicted in Figure 2.6. The median sized farm in the watershed was 

calculated from the NASS data to be approximately 243 acres. In order to delineate a watershed 

to fit the NASS results while maintaining reasonable shape and size for hydrology, the Kansas 

portion of the Tuttle Creek watershed was divided into 27 subwatersheds.
10

 Subwatersheds were 

further divided into 2,752 HRUs, which are unique combinations of land use and soil that occur 

within an individual subwatershed. Within these 2,752 HRUs, only 1,858 were categorized as 

cropland. According to the data in Table 2.4, approximately 41 percent of the total land area in 

the analyzed watershed is classified as cropland, 4 percent urban, 8 percent forest, 45 percent 

range/pastureland, 1 percent wetland, and 2 percent is categorized as surface water.  

 

                                                 
10

 Actually, the TCL watershed was divided into 28 subwatersheds (Figure 2.5) which was necessary to calculate 

loading into TCL. However, subwatershed 28 is located on the backside of the dam and does not contribute any 

loading to the reservoir. For this reason, the results only include loading from subwatersheds 1 through 27. 
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Figure 2.6 Size distribution of farms in the Tuttle Creek watershed 

 

Focusing on the 1,858 agricultural HRUs, the average size was 350 acres with the 

smallest being 5 acres and the largest being approximately 8,175 acres in size. The median size 

for the HRUs was 107 acres. About 60 percent of the HRUs were between 10 and 179 acres 

while nearly 80 percent were sized between 10 and 499 acres. The size distribution of the 

agricultural HRUs followed somewhat closely to the NASS derived distribution of farms as 

shown in Figure 2.6. The HRU data consisted of many farms in the 10 to 179 acre range, which 

resulted in a slightly smaller average farm size than the NASS data. The median values of 107 

acres and 243 acres for the HRUs and the NASS data, respectively, again supported the fact of 

there being many “smaller” sized farms.  

 Modeling Scenarios 

Based on previous research and reports (Williams et al. 2009; Langemeier and Nelson 

2006; O’Brien and Duncan 2008a-d), data for cropping rotations and the associated field 
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operations were developed for the Kansas and Nebraska portions of the Tuttle Creek watershed. 

For the Kansas side, there were four major crops planted and harvested under six different 

cropping rotations. For the Nebraska side, there were four major crops occurring under three 

different cropping rotations. Having knowledge of predominant crop rotations and knowing the 

reported crop acreage from the NASS, the proportions of each cropping rotation were estimated 

for each state-side of the TCL watershed. The crop acreage was very near the reported crop 

acreage reported by the NASS. Table 2.5 shows the crop and rotation breakdown for each state 

side of the watershed. It was assumed that these crop rotations existed in the TCL over the 31 

year SWAT modeling simulation period. 

Table 2.5 Percentage of crops and rotations in the TCL watershed 

Kansas side of TCL watershed  Nebraska side of TCL watershed 

Crop Percentage of Cropland  Crop Percentage of Cropland 

Corn (C) 37%  Corn (C) 63% 

Grain Sorghum (G) 29%  Grain Sorghum (G) 3% 

Soybeans (S) 28%  Soybeans (S) 31% 

Wheat (W) 7%  Wheat (W) 3% 

   

Cropping Rotation   Cropping Rotation  

C-S 25%  C-S 55% 

Continuous S 5%  Continuous C 35% 

Continuous C 15%  G-S-W 10% 

S-W 25%    

Continuous W 10%    

G-S-W  20%    

 

In addition to the cropping rotations, the associated field operations and enterprise 

budgets also were developed. Examples of the field operations used for a continuous corn 

cropping rotation are shown in Table 2.6. These operations were utilized by the SWAT model. 
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The remaining field operations by cropping rotation and enterprise budgets can be found in 

Appendix A.
11

  

Table 2.6 Continuous corn rotation under conventional tillage 

Date Practice SWAT Practice Amount 

3/27 Tandem disk Tandem disk plow  

4/5 Chisel Chisel plow  

4/5 Knife anhydrous ammonia Anhydrous ammonia 116 lbs/ac 

4/15 Field cultivate Field cultivator  

4/15 Herbicide application Atrazine 1.9 lbs/ac 

4/15 Herbicide application Metolachlor 1.5 lbs/ac 

4/16 Plant corn Plant/Begin growing season  

4/16 Nitrogen application Elemental nitrogen 14 lbs/ac 

4/16 Phosphorus application Elemental phosphorus 47 lbs/ac 

5/20 Herbicide application Dicamba 0.3 lbs/ac 

10/1 Harvest corn Harvest and kill  

11/5 Chisel Coulter Chisel plow  

 

Under the baseline scenario, the crops (and thus, cropping rotations) were randomly 

applied throughout the watershed consistent with the data displayed in Table 2.5. The cropland 

was rotated in a manner consistent with the data in Table 2.5 throughout the course of the 31 

years of weather simulation in the SWAT model. In the baseline case, it was assumed that there 

were no filter strips in place and all cropland was farmed using conventional tillage as shown in 

Table 2.7. 

Table 2.7 Description of scenarios 

 

                                                 
11

 The field operations data were used in the SWAT watershed model. The enterprise budget data were not directly 

utilized to calculate BMP costs, but have been included in Appendix A for additional information. 

 Baseline Scenario #1 Scenario #2 Scenario #3 

Tillage System Conventional 

tillage 

Conventional 

tillage 

No-till N/A 

Filter Strip? NO YES NO N/A 

Types of crops Cropping 

rotations 

Cropping 

rotations 

Cropping 

rotations 

Native grass 
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In scenario 1, the cropland also was under conventional tillage. However, this scenario 

included a 33 ft wide grass filter strip at the edge of each cropland HRU. It is assumed that each 

acre of filter strip treats runoff from 25 acres of cropland. Note, that the edge of each HRU does 

not necessarily border a body of surface water, hence each filter strip does not necessarily border 

a body of surface water. The cropping rotations were the same as in the baseline scenario (Table 

2.7). 

Scenario 2 employed 100 percent no-till management on all cropland. The only 

operations that break the surface of the ground are planting and drilling in a 100 percent no-till 

system. Chemicals are used for weed control. There were no filter strips in place and the 

cropping rotations were the same as in the baseline scenario (Table 2.7). 

Scenario 3 involved converting all cropland into native grass (Table 2.7). The native 

grass permanent vegetation (land retirement) was a mixture of bluestem grasses, switchgrass, and 

Indiangrass. Once established, there was no cultivation involved with the permanent vegetation, 

and it was assumed that there would be no fertilization. 

 Model Calibration and Validation 

The goal of this stage of the study was to calibrate the SWAT model for the TCL 

watershed. Two major rivers (Big Blue River and Little Blue River) discharge water and 

sediment to TCL. Therefore, there was a need to estimate and incorporate flow and sediment 

inputs from these rivers (inlets). The locations of the inlets are identified in Figure 2.7. 
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Figure 2.7 TCL watershed inlets 

 

In order to estimate sediment input to the TCL watershed, we set up and calibrated two 

watersheds for flow and sediment. We called the first watershed Upper Left (HUC 10270207), 

which contains the Little Blue River. The second watershed was named the Upper Right (HUC-

10270201, HUC-10270202, HUC-10270203, and HUC-10270204), which contains the Big Blue 

River. The two watersheds are identified in Figure 2.8. The results from the calibrated models 

above were used as inputs to the TCL watershed. The final stage involved calibration of the TCL 

watershed for flow and sediment. 
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Figure 2.8 Upper left and right watersheds 

 

The following datasets were required to set up the watershed models in SWAT: 

 Land use: National Land Cover Database 2001 (NLCD 2001) 

 Soils: State Soil Geographic Database (STATSGO) 

 Topography: USGS 90-meter Digital Elevation Model (DEM) 

 River Network: Environmental Protection Agency (EPA) Reach File Version 1.0 

 Weather: National Climatic Data Center (NCDC) weather stations 

There is need to identify at least one dry climatological period and one wet climatological 

period for the model setup and calibration. Precipitation from 24 weather stations over 31 years 

were used to estimate average annual precipitation shown in Figure 2.9. The period of 1998-2002 

was selected for model calibration and validation; data from 1997 was used for model warm-up.  



51 

 

Figure 2.9 Annual precipitation for the TCL watershed 

 

The model was set up based on 31 years (1978-2008) of climatological data from 9 

stations in this watershed (Figure 2.10). Observed streamflow discharge was obtained from the 

US Army Corps of Engineering station (upstream of TCL), while total suspended solids (TSS) 

concentration was obtained from Kansas Department of Health and Environment sampling point 

000240 shown in Figure 2.11. Calibration for TCL was completed using SWAT2009. The results 

of observed versus uncalibrated and calibrated model output as well as statistical analyses and 

model performance before and after calibration can be found in Nejadhashemi et al. (2011). 

Although no BMPs were applied in the base case within the SWAT model, it is important 

to note that the SWAT model was calibrated to actual flow and sediment inputs. This means that 

the calibrated loading values incorporate the fact that there are BMPs in place in the TCL 

watershed. Because there are BMPs in place throughout the TCL watershed and because the 

location of these BMPs is not known, assumptions are made in determining where BMPs are 
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already in place. This process used for accomplishing this will be covered in greater detail later 

in the “Economic Simulation Model” section. 

Figure 2.10 TCL watershed weather stations 
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Figure 2.11 TCL watershed monitoring stations 

 

 Modeling Results and Findings 

As described previously, scenarios 1, 2, and 3 assume BMP application across all 

cropland HRUs in the Kansas portion of the TCL watershed. While it is not realistic to assume 

that all cropland in the watershed will be treated by a BMP simultaneously, we move forward 

with the assumption that the estimated HRU pollutant loading values maintain their relative 

rankings and any inaccuracies in loading predictions are negligible. This assumption allows us to 

utilize the SWAT analysis output (ex-post) as input into the economic models.  

The average sediment and nutrient loading estimates across all cropland HRUs are 

displayed by Table 2.8 along with percentage reductions in pollutant loading from the baseline 

for all three BMP scenarios. 
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Table 2.8 Acre-weighted average pollutant loading at edge of HRU across all agricultural 

HRUs (tons or lbs/ac/yr) 

Pollutant Baseline Filter Strips 100% No-till 
Permanent 

Veg. 

 Average loading at edge of HRU (tons or lbs/acre/year) 

Sediment (tons/ac/yr) 2.87 0.78 2.21 0.15 

Nitrogen (lbs/ac/yr) 19.65 5.61 16.19 2.67 

Phosphorus (lbs/ac/yr) 4.75 1.30 4.89 0.36 

 Percentage loading reduction from baseline (%) 

Sediment (tons/ac/yr) - 72.6% 23.0% 94.6% 

Nitrogen (lbs/ac/yr) - 71.4% 17.6% 86.4% 

Phosphorus (lbs/ac/yr) - 72.6% -3.0% 92.5% 

 

Focusing on the loading at the edge of the agricultural HRUs, the average sediment 

loading under the baseline condition was estimated to be just below 2.9 tons/ac/yr. When 33 feet 

wide native grass filter strips were applied to all agricultural HRUs, the watershed-wide average 

sediment loading was reduced by 72.6 percent (Table 2.8) to 0.78 tons/ac/yr. Similar percentage 

reductions were achieved for nitrogen and phosphorus as well with 71.4 and 72.6 percent 

reductions for each of these nutrients, respectively.  

The use of 100 percent no-till management applied to all cropland fields resulted in lesser 

sediment reduction than filter strips by reducing loadings by 23 percent across the watershed. 

When all of the cropland in the watershed was converted to a permanent stand of native grass, 

substantial reductions in sediment (and nutrient) loading resulted. Sediment loading was reduced 

by approximately 95 percent while nitrogen and phosphorus loadings were reduced by 86.4 and 

92.5 percent, respectively.  

To account for sediment and nutrient transport in the watershed, delivery ratios are 

typically derived for each subwatershed and for each HRU. The delivery ratio of pollutant 

loading is a function of the stream transport effects. The stream transporting effects are defined 
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as the outflow pollutant load divided by the inflow load. The difference between inflow and 

outflow loads are due to pollutant deposition or other losses.  

The methods used for determining the sediment delivery ratios for each subwatershed in 

the TCL watershed are briefly described next using subwatershed 1 as an example. First, we 

know the amount of sediment exiting subwatershed 1 (as well as from the other 26 

subwatersheds) under baseline (and unaltered) conditions. We also know the amount of sediment 

entering TCL under baseline (and unaltered) conditions. In order to derive the sediment delivery 

ratio from subwatershed 1, the amount of sediment exiting subwatershed 1 is manually and 

artificially forced to zero within the SWAT model. Ceteris paribus conditions throughout the rest 

of the TCL watershed are employed in that the remaining 26 subwatersheds’ data remain intact 

and unaffected. Next, the amount of sediment entering TCL is calculated under these altered 

conditions (i.e., with subwatershed one “zeroed” out). The difference in sediment loading at TCL 

from the unaltered and altered conditions is calculated. This difference is then divided by the 

amount of sediment exiting subwatershed 1 under unaltered conditions. This results in a 

sediment delivery ratio value for subwatershed 1. This same technique is used for calculating the 

remaining 26 delivery ratios for each subwatershed.  

The sediment delivery ratios tend to be slightly variable across subwatersheds as 

displayed in Table 2.9. A delivery ratio of 0.56 in subwatershed 1 indicates that on average every 

one ton of sediment (leaving the edge of an HRU located in that subwatershed) results in 0.56 

tons in TCL. The remaining 0.44 tons is assumed to be deposited within to the stream channel. In 

general, the subwatersheds located nearer TCL and/or a major tributary exhibit higher sediment 

delivery ratio values. 
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Table 2.9 Sediment delivery ratios by subwatershed 

Subwatershed Sediment Delivery Ratio 

1 0.56 

2 0.51 

3 0.56 

4 0.71 

5 0.67 

6 0.60 

7 0.68 

8 0.69 

9 0.70 

10 1.00 

11 0.69 

12 1.00 

13 0.66 

14 0.73 

15 1.00 

16 0.99 

17 0.72 

18 0.67 

19 1.00 

20 0.75 

21 0.79 

22 1.00 

23 1.00 

24 0.79 

25 1.00 

26 1.00 

27 1.00 

 

Here, there is an assumption that all nutrient loads reaching a major stream segment will 

be further transported to the watershed outlet (into TCL). Thus, the nutrient (both nitrogen and 

phosphorus) delivery ratios are assumed to be 100 percent for the entire portion of the Tuttle 

Creek watershed analyzed. The reasons for assuming 100 percent nutrient delivery ratios for 

subwatersheds 1 through 27 are two-fold. First, the SWAT model provides no standard way of 

calculating nutrient delivery ratios. Second, this assumption is reasonable when one considers the 



57 

 

multi-year time horizon for which this analysis occurs and the relatively high nutrient delivery 

ratios (i.e., all over 95 percent) that were derived in previous northeast Kansas watershed 

research (Peterson et al. 2009).  

 Economic Simulation Model 

The SWAT watershed model described in the previous section generated calibrated 

results of average annual pollutant loading by farm (HRU) for each of the scenarios presented in 

Table 2.7. Using this output from the SWAT watershed model as input, the economic analysis 

model simulates possible BMP implementation scenarios and estimates the resulting pollutant 

loading into a reservoir and the costs of implementing the BMPs. There are two versions of the 

economic analysis model. The first emulates an economically optimal BMP scenario where 

BMPs are placed in areas of the watershed where pollutant loading is reduced at the lowest cost. 

The other version emulates a random approach to BMP implementation in the watershed. This to 

some degree represents the status quo approach of uniform BMP implementation across a 

watershed and serves as a point of comparison for the economically optimal approach (Nelson et 

al. forthcoming). Both of these models operate under the criteria of meeting a specified pollutant 

reduction goal subject to a specified budget constraint. These models can focus on either 

sediment, nitrogen, or phosphorus reduction individually and can accommodate up to three 

different types of BMPs. 

While it may appear that a genetic algorithm optimization model would be ideal for this 

analysis, the enormity of the TCL watershed makes this option infeasible.
12

 The search space 

increases exponentially as the possible BMP implementation combinations is 3
1,858 

(which equals 

                                                 
12

 A genetic algorithm is a search heuristic that mimics the process of evolution by generating solutions to 

optimization problems using techniques inspired by evolution, such as inheritance, mutation, selection, and 

crossover. 
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3.10 x 10
886

). In other words, too large of a search space given present-day computational and 

time constraints.  

Considering the multitude of social, environmental, economic, and political factors 

present at any point in time in an agricultural watershed, attempting to effectively examine the 

cost-effectiveness of alternative watershed management schemes can be a difficult task. An 

increasingly popular method of analyzing complex systems is the utilization of agent-based 

simulation modeling. An agent-based model (ABM) is a class of computational models with 

agents representing autonomous decision-making units. This allows the analyst to assess the 

effects of agent decision-making on the system as a whole. Recently, ABM’s have become a 

popular model choice for analyzing complex systems driven by micro-level decisions (Tesfatsion 

2006). ABM’s are particularly useful in emulating alternative market structures, specifically 

those where agents are heterogeneous and adapt their behavior to institutional rules. 

ABM’s are made up of two computational objects: the “agents” themselves and the 

“environment” in which they operate (Parker, Berger, and Manson 2002). In the Tuttle Creek 

watershed, the agents are the farm managers and the environment is the management mechanism 

that determines which BMPs are implemented and where. A goal of the simulations is to 

understand how changes in the environment (management mechanism) may induce different 

patterns and levels of BMP adoption among the agents. 

 Agents 

The         farms (HRUs) are indexed by         and are considered potential 

BMP adopters and thus have the ability to reduce the amount of soil leaving their cropland fields. 

Here, it is assumed that a governing authority or watershed manager has set a goal of reducing 

the maximum amount of sediment,   units, (or nitrogen or phosphorus) entering TCL while 
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operating under an annual fiscal budget of   dollars per year. Each farm can generate up to    

units of sediment reduction at a total annualized cost of   . Using the cost of implementing each 

BMP data described previously, total costs, which include one-time and annual costs over a 

given time horizon for each BMP on each farm, are determined and assigned. Average per unit 

costs of pollutant reduction (dollars per pound of pollutant reduced) are calculated for each farm-

BMP combination. Average per unit costs are assumed to vary across farms but are constant at 

the farm level. This cost property implies that the aggregate total and marginal cost curves will 

have “staircase” structures. 

Each farm can potentially adopt one of   BMPs,        . Here    , and the three 

BMPs are filter strips, no-till, and permanent vegetation. Let A denote the (  x  ) “average per 

unit cost matrix” representing the per-unit costs for BMP implementation. If farm i is to adopt a 

given BMP,     must be positive. That is, the BMP implemented must result in a positive 

amount of sediment reduction if sediment is the primary pollutant of concern. However, the 

associated nitrogen and phosphorus reductions may not be positive if sediment is the primary 

pollutant of concern. Before any BMP implementation occurred, the program eliminates any 

farm-BMP combination, which displays negative pollutant reduction
13

 (     ) because it is 

assumed that in all cases the watershed manager is knowledgeable of this and would not issue 

conservation funding to farms to adopt BMPs that actually increase the amount of pollutant 

runoff.  

 A deficiency of the data is that the physically-based information is at a subwatershed 

scale and the cost data is at the county level. This is because HRU’s are not necessarily 

contiguous (Hernandez et al. 2003). Therefore, it is not possible to precisely determine the 

                                                 
13

 This is only for the objective pollutant (or pollutant of concern); not all three pollutants. 
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annualized costs of a given BMP for a HRU (farm). The following method is used to account for 

this issue.  

First, the fraction of each subwatershed (numbered 1-27) in each county is determined. 

For example, subwatershed 26 covers four counties: Washington, Marshall, Clay, and Riley. 

Based on the data underlying Figure 2.5, subwatershed 26 is subdivided as 23 percent in 

Washington County, 2 percent in Marshall County, 25 percent in Clay County, and 50 percent in 

Riley County. Table 2.10 exhibits the county fractions for each subwatershed. 
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Table 2.10 Fraction of each county located in each subwatershed 
                     County 

Subwatershed Clay Gage Jefferson Marshall Nemaha Pawnee 

Pottawat-

omie Republic Riley 

Washing-

ton TOTAL 

1 0.00 0.90 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

2 0.00 0.18 0.00 0.46 0.00 0.36 0.00 0.00 0.00 0.00 1.00 

3 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

4 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.88 1.00 

5 0.00 0.15 0.03 0.58 0.00 0.00 0.00 0.00 0.00 0.24 1.00 

6 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

7 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

8 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

9 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.74 1.00 

11 0.00 0.00 0.00 0.64 0.36 0.00 0.00 0.00 0.00 0.00 1.00 

12 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.00 

13 0.00 0.00 0.00 0.27 0.73 0.00 0.00 0.00 0.00 0.00 1.00 

14 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

15 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.27 1.00 

16 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

17 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

18 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.00 0.00 0.00 1.00 

19 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

20 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

21 0.00 0.00 0.00 0.57 0.00 0.00 0.43 0.00 0.00 0.00 1.00 

22 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.86 1.00 

23 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

24 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

25 0.00 0.00 0.00 0.20 0.00 0.00 0.72 0.00 0.08 0.00 1.00 

26 0.23 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.50 0.26 1.00 

27 0.00 0.00 0.00 0.04 0.00 0.00 0.46 0.00 0.50 0.00 1.00 
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It is known that the farms within subwatershed 26 are located in one of four counties. The 

next step is to assign each farm to a single county. This was so that costs for BMP 

implementation could be assigned to each farm because costs varied by county. The percentages 

from Table 2.10 are used to determine this. For example, there are 36 farms in subwatershed 26. 

Based on the percentages in Table 2.10, it is determined that 8 of these farms are located in 

Washington County, 1 in Marshall County, 9 in Clay County, and 18 farms are located in Riley 

County.  

The next step is determining which farms to place into each county. Because of a lack of 

accurate data, this determination is made through a stochastic process in Monte Carlo fashion. 

That is, for each iteration the 36 farms are assigned randomly to each of the four counties. But, 

the number of farms in each county do not vary from that discussed previously. The simulations 

are run 3,000 times and the results are averaged to ensure that the results are not just a “luck of 

the draw” occurrence.
14

  

An assumption of the SWAT model is that there are no BMPs in place in the Base 

scenario. First-hand knowledge of the area as well as NRCS reports indicate that this is not the 

case. But, the challenge is to determine where BMPs have been put into place and where they 

exist today. Determining this with any precision and incorporating this into the SWAT model is a 

difficult and expensive task that is beyond the scope of this research. For that reason, the 

following method is used. 

While personal knowledge and NRCS reports show that many soil saving BMPs have 

been implemented over the past three decades, other research has determined that some farmers 

                                                 
14

 To ensure that the final results were not sensitive to a particular set of random draws, all simulations were 

repeated 3,000 times in Monte Carlo fashion, with a “new” set of eligible farms picked each time. The authors tested 

this model and it was found that 3,000 iterations was sufficient to ensure that the mean performance measures 

computed across the 3,000 iterations was a stable statistic.  
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have extremely high willingness to accept (WTA) values and will most likely need very high 

payments for adoption and will not adopt certain BMPs under most realistic scenarios (Smith et 

al. 2007). Specifically, Smith et al. (2007) found that approximately 20 percent of Kansas farms 

have already adopted filter strips and 30 percent of farms have already adopted no-till. To 

account for these facts within this simulation model, it is assumed that 20 percent of the farms 

have already adopted BMPs and an additional 5 percent of farms have extremely high WTA 

values for BMP adoption. Thus, it is assumed that farms with these characteristics would not 

adopt new or additional BMPs in the model’s time horizon and thereby are removed from the 

choice set.  

At the beginning of each BMP implementation simulation, 25 percent of the farms are 

eliminated from the potential pool. Again, the problem is determining which 465 out of the 1,858 

farms would be eliminated. To handle this, the 465 ineligible farms are picked in a random 

fashion each time and Monte Carlo techniques are used with 3,000 iterations.
15

 

Once these initialization search and delete methods are completed, the simulation 

program proceeds to the selection process for BMP implementation (note, each of the 3,000 

iterations consists of the initialization processes and BMP implementation routine). 

 Environment 

The “environment” is the management mechanism that determines which BMPs are 

implemented on which farms in the watershed and the order in which these occur. The 

mechanism used is similar to a method used in the modeling of water quality trading markets. 

Specifically, the method modeled is a variant of the sequential, bilateral trading algorithm 

proposed by Atkinson and Tietenberg (1991). 

                                                 
15

 In later sections, this “random” method of removing 25 percent of the farms is replaced by an alternative method 

that removes 25 percent of the most erosive farms.  
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The BMP implementation process occurs by iterating over BMP implementation projects 

in the sequence they occur. With each implementation project, indexed by t, the algorithm begins 

by identifying the particular farm-BMP combination (i,b). Two different ways of doing this are 

modeled, one which simulates a highly targeted approach and the other which is random and 

more representative of a worst-case, potentially status-quo approach. These two implementation 

regimes are described below.  

Once the farm-BMP combination is identified, a BMP is assumed to be implemented on 

that farm resulting in    units of sediment reduction. This quantity is recorded, along with the 

average annualized per unit cost (of sediment, nitrogen, or phosphorus),     , total cost,      , 

and area treated by the BMP. Additionally, the average unit costs and reductions for each of the 

secondary pollutants (nitrogen and phosphorus in this example) are recorded. The A matrix is 

then updated by eliminating that farm (setting      ) from further BMP implementation 

because of the restriction of one BMP implemented per farm. The model then iterates through 

additional BMP implementation projects using the same process until: 1) no positive values exist 

in the A matrix; 2) no other BMPs could be implemented without violating the budget constraint; 

or 3) the primary pollutant reduction goal has been met.  

The two implementation regimes are: 

1. Targeted BMP implementation: This scenario assumes full information by the watershed 

manager in that BMPs can be placed strategically in the watershed to deliver the greatest 

sediment reduction for least cost. In this optimal case, the algorithm determines the farm-

BMP combination (   ), which has the lowest (and positive) average per unit cost of 

primary pollutant reduction. If this combination will not exceed either the pollutant 

reduction goal or the budget constraint, then the BMP will be implemented on this farm 
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and the resulting pollutant reduction and cost will be recorded in an output matrix as 

described above. This farm will then be removed from the possible choice set, which 

prevents it from being selected again. 

2. Random BMP implementation: The random approach to BMP implementation assumes 

very low information by the watershed manager and occurs in much of the same fashion 

as the optimal approach with one very important distinction. That is, each farm-BMP 

combination (   ) is selected in a completely random manner in which no consideration 

is given to the average per unit costs of pollutant reduction assuming neither of the 

constraints will be violated.  

 Scenarios Modeled 

Each of the BMP implementation scenarios operate under varying budget constraints. 

The annual budget constraint varies from $50,000 to $450,000 per year in increments of 

$100,000. These values are in line with estimated minimum and maximum funding amounts that 

could be available from the state of Kansas (e.g., through WRAPS and Kansas Water Plan 

funding sources) for purposes of addressing sedimentation in the TCL watershed (KDHE 2009). 

In addition to varying implementation regimes and budget constraints, the primary 

pollutant of concern also changes across scenarios. Specifically, simulations are first run which 

focus on reducing sediment accumulation in TCL. The resulting amounts of nitrogen and 

phosphorus reduction also are tabulated for these scenarios. In the same manner, scenarios, 

which focus on reducing nitrogen and phosphorus reduction, are run next. Table 2.11 lists the 

assumptions for each of the 30 original simulation scenarios modeled. 
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Table 2.11 Description of original scenarios 

Scenario1 BMP Regime 
Primary 

Pollutant 

Annual 

Budget 

Targ_S_50 Targeted Sediment $50,000 

Targ_S_150 Targeted Sediment $150,000 

Targ_S_250 Targeted Sediment $250,000 

Targ_S_350 Targeted Sediment $350,000 

Targ_S_450 Targeted Sediment $450,000 

Rand_S_50 Random Sediment $50,000 

Rand_S_150 Random Sediment $150,000 

Rand_S_250 Random Sediment $250,000 

Rand_S_350 Random Sediment $350,000 

Rand_S_450 Random Sediment $450,000 

Targ_N_50 Targeted Nitrogen $50,000 

Targ_N_150 Targeted Nitrogen $150,000 

Targ_N_250 Targeted Nitrogen $250,000 

Targ_N_350 Targeted Nitrogen $350,000 

Targ_N_450 Targeted Nitrogen $450,000 

Rand_N_50 Random Nitrogen $50,000 

Rand_N_150 Random Nitrogen $150,000 

Rand_N_250 Random Nitrogen $250,000 

Rand_N_350 Random Nitrogen $350,000 

Rand_N_450 Random Nitrogen $450,000 

Targ_P_50 Targeted Phosphorus $50,000 

Targ_P_150 Targeted Phosphorus $150,000 

Targ_P_250 Targeted Phosphorus $250,000 

Targ_P_350 Targeted Phosphorus $350,000 

Targ_P_450 Targeted Phosphorus $450,000 

Rand_P_50 Random Phosphorus $50,000 

Rand_P_150 Random Phosphorus $150,000 

Rand_P_250 Random Phosphorus $250,000 

Rand_P_350 Random Phosphorus $350,000 

Rand_P_450 Random Phosphorus $450,000 
1
 In later sections these original scenarios will include “_Orig.” at the end to denote that these are the original 

scenarios modeled. 
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 BMP Implementation Results 

This section begins by summarizing the overall simulation results followed by more in 

depth analyses regarding the effects of targeting versus random BMP implementation strategies, 

budgetary constraint levels, primary pollutant of concern, and changing BMP costs. 

Table 2.12 summarizes the results of the original 30 scenarios. The first column serves as 

a cross reference for the scenario assumptions listed in Table 2.11. The second through fourth 

columns report the average pollutant reduction costs per unit for sediment, nitrogen, and 

phosphorus, respectively. Note, these costs are not additive. Rather, they are simply the total cost 

divided by the amount of pollutant (sediment, nitrogen, or phosphorus) reduction. 

The next five columns report information related to BMP projects implemented in terms 

of the description of the projects and the total amount of land treated by the BMPs.
16

 Columns 

six through eight of this table provide more detail regarding the categories of the BMP projects 

in terms of the number of filter strips, no-till, and permanent vegetation projects, respectively. 

Column nine reports the total amount of land area treated by the BMP projects. 

The final three columns of Table 2.12 report the total amount of pollutant reduction 

achieved for sediment, nitrogen, and phosphorus, respectively, by the implementation of the 

BMP projects. 

Overall the lowest average annual cost of sediment reduction is achieved by the 

Targ_S_50 scenario which reduces sediment for $0.35 per ton. The highest cost per ton of 

sediment is with the Rand_S_450 scenario at $14.13 per ton. This is only slightly higher than the 

Rand_N_450 and Rand_P_450 scenarios which are $13.88 and $13.47 per ton, respectively. 

                                                 
16

 In the cases of no-till and permanent vegetation, one acre of BMP application “treats” one acre of cropland. 

However, in the case of filter strips, one acre of filter strip is assumed to “treat” runoff from 25 acres of cropland. 



68 

 

Table 2.12 Original simulation results 

Scenario 

Average 

sediment 

reduction 

cost for all 

land treated 

by BMPs 

(/ton) 

Average 

nitrogen 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Average 

phosphor-

rous 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Total # of 

BMP 

projects 

# of Filter 

Strip 

Projects 

# of No-

till 

Projects 

#of 

Permanent 

Vegetation 

Projects 

Total 

area of 

land 

treated 

by BMPs 

(ac) 

Total 

amount 

of 

sediment 

reduction 

(tons) 

Total 

amount 

of 

nitrogen 

reduction 

(lbs) 

Total 

amount of 

phosphorus 

reduction 

(lbs) 

Targ_S_50 $0.35 $0.11 $0.43 84 84 0 0 10,578 139,488 427,374 114,162 

Targ_S_150 $0.47 $0.12 $0.48 249 249 0 0 32,118 314,587 1,195,437 305,579 

Targ_S_250 $0.55 $0.13 $0.52 327 327 0 0 53,640 447,431 1,835,904 473,438 

Targ_S_350 $0.62 $0.14 $0.56 415 415 0 0 74,970 553,999 2,434,125 618,854 

Targ_S_450 $0.69 $0.15 $0.59 502 502 0 0 96,494 640,157 3,019,082 752,754 

            

Rand_S_50 $7.65 $1.25 $5.87 20 9 7 4 3,009 6,317 38,599 8,227 

Rand_S_150 $10.95 $1.78 $8.34 33 14 11 8 6,604 13,169 80,838 17,288 

Rand_S_250 $12.44 $2.03 $9.47 44 17 15 12 9,800 19,291 118,020 25,346 

Rand_S_350 $13.45 $2.19 $10.12 53 20 18 15 12,630 24,838 152,538 33,035 

Rand_S_450 $14.13 $2.29 $10.56 62 23 21 18 15,522 30,332 186,945 40,589 

            

Targ_N_50 $0.50 $0.09 $0.45 122 122 0 0 10,721 97,558 524,256 108,760 

Targ_N_150 $0.53 $0.11 $0.51 252 252 0 0 32,217 279,333 1,299,507 292,967 

Targ_N_250 $0.60 $0.13 $0.53 373 373 0 0 53,593 414,752 1,955,732 464,351 

Targ_N_350 $0.66 $0.14 $0.57 460 460 0 0 75,057 528,394 2,545,985 612,373 

Targ_N_450 $0.71 $0.14 $0.59 530 530 0 0 96,068 624,512 3,074,626 747,955 

            

Rand_N_50 $7.46 $1.20 $5.54 20 10 7 4 2,972 6,462 40,052 8,707 

Rand_N_150 $10.68 $1.70 $7.76 33 14 11 8 6,487 13,464 84,412 18,524 

Rand_N_250 $12.15 $1.94 $8.77 44 18 14 12 9,562 19,704 123,313 27,284 

Rand_N_350 $13.20 $2.10 $9.42 53 21 17 15 12,283 25,257 158,814 35,386 

Rand_N_450 $13.88 $2.20 $9.84 62 24 20 18 15,059 30,815 194,491 43,473 

            

Targ_P_50 $0.41 $0.11 $0.39 94 94 0 0 10,676 120,530 460,259 125,746 

Targ_P_150 $0.52 $0.13 $0.46 206 206 0 0 31,852 286,353 1,176,655 322,245 

Targ_P_250 $0.59 $0.13 $0.50 317 317 0 0 53,326 417,752 1,840,376 491,548 

Targ_P_350 $0.65 $0.14 $0.54 409 409 0 0 74,438 534,304 2,474,334 640,962 

Targ_P_450 $0.71 $0.15 $0.58 540 540 0 0 95,902 630,748 3,033,672 769,160 

            

Rand_P_50 $7.01 $1.12 $4.94 20 10 5 4 2,896 6,891 43,023 9,776 

Rand_P_150 $10.16 $1.61 $6.98 33 15 9 9 6,210 14,197 89,725 20,676 

Rand_P_250 $11.75 $1.86 $8.00 43 19 11 13 8,922 20,355 128,547 29,895 

Rand_P_350 $12.80 $2.02 $8.63 52 23 13 16 11,443 26,119 165,374 38,758 

Rand_P_450 $13.47 $2.12 $9.03 61 26 16 19 14,025 31,883 202,693 47,564 
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The cost of nitrogen reduction ranges from a low of $0.09 per pound in the Targ_N_50 

scenario up to $2.29 per pound in the Rand_S_450 scenario. The lowest cost of reducing 

phosphorus is achieved with the Targ_P_50 scenario at an average cost of $0.39 per pound. The 

Rand_S_450 scenario has the highest phosphorus reduction costs of $10.56 per pound. This 

scenario results in the highest average costs across all of the pollutants. 

The number of BMP projects range from a low of 20 in all of the random implementation 

scenarios operating under a $50,000 annual budget to a high of 540 BMPs in the Targ_P_450 

scenario. Targeting nitrogen results in the highest number of BMP projects for each of the budget 

scenarios with the exception of $450,000.  

The total area of land treated by BMPs ranges from 2,896 acres in the Rand_P_50 

scenario up to 96,494 acres in the Targ_S_450 scenario. Across all of the pollutants and budget 

constraints, the targeted scenarios affect more land than the corresponding random scenarios. For 

example, there is 96,494 acres treated by BMPs in the Targ_S_450 scenario but only 15,522 

acres are treated in the Rand_S_450 scenario. 

The greatest amount of annual sediment reduction is achieved by the Targ_S_450 

scenario at 640,157 tons. The most nitrogen reduction is 3,074,626 pounds (scenario 

Targ_N_450) while the greatest phosphorus reduction is 202,693 pounds per year (scenario 

Targ_P_450).  

 Targeting vs. Random BMP Implementation 

Targeting should, by definition, result in more cost-effective primary pollutant reduction 

than random BMP implementation. In addition, to the extent that pollutants are positively 

correlated (e.g., installing a BMP to reduce sediment will also result in nitrogen and phosphorus 
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reduction), targeting also could result in more cost-effective reduction across the secondary 

pollutants. This is found to be the case in the TCL watershed.  

Focusing only on the “targeted” strategies, the first three columns of Table 2.12 

demonstrate, as expected, that the average sediment reduction costs are lowest for the strategies, 

which target sediment reducing BMPs. The same holds true for the strategies which target the 

other pollutants (nitrogen and phosphorus). The average sediment reduction costs range from 

$0.35 to $0.69 per ton in the Targ_S strategies as the annual budget increases from $50,000 to 

$450,000 per year. Nitrogen reduction costs range from $0.09 to $0.14 per pound in the Targ_N 

scenarios across the low to high budget constraints. In likewise fashion, phosphorus reduction 

costs go from $0.39 to $0.58 per pound as the budget goes from $50,000 to $450,000 per year.  

Targeted sediment strategies range from nearly 20.5 to over 23.2 times more cost-

effective than random implementation strategies (in terms of sediment reduction). Targeted 

nitrogen strategies are about 14.8 to 20.4 times more cost-effective (in terms of nitrogen 

reduction) while targeted phosphorus reduction strategies are 17.1 to 19.9 times more cost-

effective than random approaches (in terms of phosphorus reduction).  

Targeted strategies result in a greater number of BMP projects and a larger number of 

acres treated by the projects relative to the random approaches. Not only does targeting require 

more effort up front in terms of watershed modeling, but it also requires more BMP contracts 

and/or meetings with producers.  

Figure 2.12 displays the total cost curves for the targeted versus random schemes 

focusing on sediment with a $50,000 annual budget. Across the entire range of values, the total 

cost curve for the targeted strategy is much flatter than the random case. The flatness of the total 

cost curve indicates that more sediment is being reduced at the same total cost. Given a $50,000 
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annual budget, the targeted strategy reduces over 22 times more sediment compared to the 

random case (139,488 tons compared to 6,317 tons of annual sediment reduction). Alternatively, 

if the goal is 6,300 tons of sediment reduction it would cost nearly $50,000 to achieve this 

through random approaches versus just $1,600 using a targeted strategy, which is 3.2 percent of 

the cost. 

Figure 2.12 Sediment total cost curves for Targ_S_50 and Rand_S_50 

 

The total cost curve data in Figure 2.12 can also be expressed marginally. That is, how 

does the average annual cost per ton change as more sediment is being reduced? Examining the 

marginal cost curves in Figure 2.13 for these same scenarios highlights more of the differences 

between strategies. The random approach yields a downward sloping somewhat variable 

marginal cost curve (the explanation for this can be found on page 72). This curve ranges from 
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sloping climbing from $0.22 to $0.44 per ton of sediment reduction. 
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Figure 2.13 Sediment marginal cost curves for Targ_S_50 and Rand_S_50 
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Figure 2.14 Nitrogen total cost curves for Targ_N_50 and Rand_N_50 

 

Figure 2.15 Phosphorus total cost curves for Targ_P_50 and Rand_P_50 
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 Effects of the budget constraint 

As the budget increases from $50,000 to $450,000, the total cost curve for the targeted 

case continues increasing at an increasing rate. This means that the primary pollutant reduction 

becomes more expensive as the most cost-effective BMPs are implemented. Thus, the marginal 

cost curve for the targeted case should continue to be upward sloping as the budget constraint 

increases.  

Figure 2.16 shows how the total cost curve for the $150,000 case essentially builds upon 

the total cost curve for the $50,000 scenario. This continues as the budget constraint increases. 

However, upon closer inspection one can see that there is not a perfectly smooth transition 

between like scenarios with different budget constraints. Figure 2.17 shows that total cost curve 

for the lower budget constraint scenario deviates above the higher budget scenario as the budget 

constraint is approached. This is because “large” total cost projects, which may be the next best 

in terms of cost-effectiveness, may exceed the budget. Thus, lower total cost projects must be 

implemented even though they may not be the next best in terms of cost-effectiveness. This 

result occurs in each of the targeted scenarios as budget constraints change.  
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Figure 2.16 Sediment total cost curves for Targ_S scenarios 

 

Figure 2.17 Sediment total cost curves for Targ_S_50 and Targ_S_150  
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This result also is seen by analyzing the marginal cost curves. In Figure 2.18, the 

marginal cost curves are upward sloping and essentially build upon each other. In each scenario, 

the marginal cost curve turns nearly vertical as the budget constraint is reached. However, there 

is very little horizontal movement at those points, so the effects on total costs are minimal. 

Figure 2.18 Sediment marginal cost curves for Targ_S scenarios 
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cost curves for Rand_S_150, Rand_S_250, Rand_S_350, and Rand_S_450 scenarios in Figure 

2.19. 

Figure 2.19 Sediment marginal cost curves for Rand_S scenarios 
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relatively high budget scenarios, Rand_S_350 and Rand_S_450 and in the case of an infinite 

budget constraint shown later in Figure 2.22. The larger budget constraint scenarios generate 

somewhat flatter marginal cost curves (Figure 2.19). 
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The total cost curves for the secondary pollutants, nitrogen and phosphorus (note that 

sediment is still being targeted here), in Figure 2.20 and Figure 2.21 do not display the smooth 

convex curvature as the primary pollutant total cost curves. The secondary total cost curves 

exhibit much more variability. But, the curves are upward sloping and do build upon each other 

as the budget constraint increases. 

Figure 2.20 Nitrogen total cost curves for Targ_S scenarios 
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Figure 2.21 Phosphrous total cost curves for Targ_S scenarios 
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Table 2.13 Simulation results for the targeted and random scenarios with an unlimited budget and pollutant reduction goal 

Scenario 

Total annual 

cost of BMPs 

Average 

S 

reduction 

cost for 

all land 

treated 

by BMPs 

(/ton) 

Average 

N 

reduction 

cost for 

all land 

treated 

by BMPs 

(/lb) 

Average 

P 

reduction 

cost for 

all land 

treated 

by BMPs 

(/lb) 

Total # of 

BMP 

projects 

# of 

Filter 

Strip 

Projects 

# of No-

till 

Projects 

#of 

Perma-

nent 

Vegeta-

tion 

Projects 

Total 

area of 

land 

treated 

by BMPs 

(ac) 

Total 

annual 

amount 

of 

sediment 

reduction 

(tons) 

Total 

annual 

amount 

of 

nitrogen 

reduction 

(lbs) 

Total 

annual 

amount 

of 

phosphor

us 

reductio

n (lbs) 

Targ_S_$$$ $3,429,944 $3.89 $0.61 $2.58 1,393 815 578 0 484,551 880,609 5,577,824 1,327,619 

Targ_N_$$$ $3,885,785 $4.81 $0.65 $2.82 1,393 795 598 0 484,551 807,783 5,936,667 1,380,356 

Targ_P_$$$ $4,371,890 $4.28 $0.63 $2.56 1,393 1,214 179 0 484,551 1,020,888 6,976,413 1,709,869 

             

Rand_S_$$$ $30,230,696 $32.49 $5.13 $23.00 1,393 464 464 465 484,607 930,535 5,887,270 1,314,662 

Rand_N_$$$ $32,535,051 $33.83 $5.17 $22.11 1,393 481 437 475 484,607 961,595 6,296,998 1,471,656 

Rand_P_$$$ $37,407,025 $35.90 $5.38 $21.86 1,393 541 311 541 484,607 1,041,857 6,950,307 1,711,283 

S = Sediment, N = Nitrogen, P = Phosphorus
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Figure 2.22 Sediment marginal cost curves under an unlimited budget constraint 

 

 

Figure 2.23 Nitrogen marginal cost curves under an unlimited budget constraint 
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Figure 2.24 Phosphorus marginal cost curves under an unlimited budget constraint 
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stated previously, but rather that they are not the most cost-effective BMPs across all of the 

pollutants.  

Figure 2.25 depicts this result. As expected, the most cost-effective sediment reduction is 

achieved when sediment is the primary pollutant. When sediment is the primary pollutant, the 

$50,000 annual budget results in nearly 140,000 tons of sediment reduction. On the other hand 

when nitrogen or phosphorus are the primary pollutants, only 97,500 (70 percent of the 

Targ_S_50 scenario) and 120,500 (86 percent of the Targ_S_50 scenario) tons of sediment 

reduction is achieved.  

Figure 2.25 Total cost curves for sediment reduction in the Targ_(S,N,P)_50 scenarios 
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Figure 2.26 Total cost curves for nitrogen reduction in the Targ_(S,N,P)_50 scenarios 
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Figure 2.27 Total cost curves for phosphorus reduction in the Targ_(S,N,P)_50 scenarios 
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Figure 2.28 Total cost curves for nitrogen reduction in the Targ_(S,N,P)_450 scenarios 
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Figure 2.29 Total cost curves for sediment reduction in the Rand_(S,N,P)_50 scenarios 

 

Figure 2.30 Total cost curves for sediment reduction in the Rand_(S,N,P)_450 scenarios 

 

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

0 2,000 4,000 6,000 8,000

T
o

ta
l 

a
n

n
u

a
l 

co
st

Sediment reduction (tons)

Rand_S_50

Rand_N_50

Rand_P_50

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

$500,000

0 10,000 20,000 30,000 40,000

T
o

ta
l 

a
n

n
u

a
l 

co
st

Sediment reduction (tons)

Rand_S_450

Rand_N_450

Rand_P_450



88 

 

 Effects of changing BMP costs 

The BMP cost data displayed in Table 2.1 are based on 2009 values of cropland cash 

rent, CRP rents, and establishment and maintenance costs for filter strips and for converting 

cropland to permanent vegetation. Further, the costs of no-till are based on per acre incentive 

payments for converting to no-till established by the EQIP program in 2009 (KS EQIP 2009; NE 

EQIP 2009). 

Recent upward swings in commodity prices and overall farm profitability are being 

capitalized into land values and rents. Thus, the opportunity costs associated with converting 

cropland to filter strips and permanent vegetation also increase. Increasing fuel prices also result 

in higher establishment costs for each of these BMPs. Meanwhile, higher fuel prices make no-till 

a more financially attractive option (all else being equal) to conventional or minimum tillage. For 

these reasons, adjustments to the 2009 BMP costs are made as follows.  

The total annualized costs for filter strips and permanent vegetation are first increased by 

150 percent to capture the increasing land opportunity costs and fuel prices. For no-till, the 

annualized costs were decreased by 50 percent to account for the higher fuel prices. Table 2.14 

displays the annualized costs for each BMP over a 15-year time horizon. These cost scenarios 

will be denoted as the “X” scenarios to distinguish these from the original scenarios. 
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Table 2.14 Adjusted BMP Annualized costs over a 15-year time horizon - “X” scenarios 

County, State 

Annualized Cost 

($/acre) for Filter 

Strips per cropland 

acre treated
1
 

Annualized Cost 

($/acre) for No-till 

Annualized Cost 

($/acre) for Permanent 

Vegetation 

Clay, KS $5.74 $6.50 $121.58 

Gage, NE $8.50 $10.00 $162.23 

Jefferson, NE $8.50 $10.00 $152.90 

Marshall, KS $7.06 $6.50 $133.85 

Nemaha, KS $7.18 $6.50 $138.69 

Pawnee, NE $8.21 $10.00 $158.28 

Pottawatomie, KS $6.47 $6.50 $129.87 

Republic, KS $5.82 $6.50 $114.95 

Riley, KS $6.82 $6.50 $122.81 

Washington, KS $6.83 $6.50 $124.61 
1
 Annualized cost of filter strip divided by 25 cropland acres (treated) 

Table 2.15 displays the results of the “X” scenarios. In general, the results for the “X” 

scenarios follow the same patterns as the original scenarios. In the targeted “X” scenarios, filter 

strips are again the only BMP implemented in the watershed. Even though the annualized costs 

for filter strips and no-till are very similar on a per acre basis, the greater pollutant reduction 

efficiencies achieved by filter strips makes this the more attractive BMP. In the random “X” 

scenarios, however, there is more balance between no-till and filter strip projects but less 

permanent vegetation projects compared to the original scenarios. 

In all cases, the amount of pollutant reduction achieved by the “X” scenarios is less than 

the corresponding original scenarios. This is due to the higher costs of filter strips, which tend to 

still be more cost-effective than no-till (even with the reduced costs of no-till).
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Table 2.15 Simulation results for the “X” scenarios 

Scenario 

Average 

sediment 

reduction 

cost for all 

land treated 

by BMPs 

(/ton) 

Average 

nitrogen 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Average 

phosphor-

rous 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Total # of 

BMP 

projects 

# of Filter 

Strip 

Projects 

# of No-

till 

Projects 

#of 

Permanent 

Vegetation 

Projects 

Total 

area of 

land 

treated 

by BMPs 

(ac) 

Total 

amount 

of 

sediment 

reduction 

(tons) 

Total 

amount 

of 

nitrogen 

reduction 

(lbs) 

Total 

amount of 

phosphorus 

reduction 

(lbs) 

Targ_S_50_X $0.50 $0.17 $0.62 59 59 0 0 7,124 99,591 287,113 79,608 

Targ_S_150_X $0.62 $0.17 $0.69 189 189 0 0 21,357 237,035 859,769 213,526 

Targ_S_250_X $0.73 $0.19 $0.74 264 264 0 0 35,701 338,541 1,299,917 334,169 

Targ_S_350_X $0.81 $0.20 $0.78 318 317 0 0 50,203 427,653 1,735,850 447,735 

Targ_S_450_X $0.88 $0.21 $0.81 369 369 0 0 64,140 503,141 2,134,228 548,622 

            

Rand_S_50_X $8.34 $1.37 $6.90 20 8 8 3 3,108 5,791 35,152 6,997 

Rand_S_150_X $12.07 $1.99 $9.71 32 12 12 7 6,389 11,956 72,505 14,871 

Rand_S_250_X $14.39 $2.36 $11.30 40 15 15 10 8,839 16,626 101,551 21,165 

Rand_S_350_X $15.87 $2.60 $12.32 48 18 18 13 11,053 21,050 128,465 27,109 

Rand_S_450_X $17.01 $2.78 $13.09 56 20 20 15 13,263 25,300 154,841 32,880 

            

Targ_N_50_X $0.72 $0.13 $0.65 86 86 0 0 7,143 68,595 375,152 75,943 

Targ_N_150_X $0.75 $0.16 $0.73 197 197 0 0 21,478 196,100 928,965 202,707 

Targ_N_250_X $0.82 $0.17 $0.77 283 283 0 0 35,574 300,861 1,408,522 319,485 

Targ_N_350_X $0.88 $0.19 $0.79 360 360 0 0 50,211 393,850 1,855,596 437,498 

Targ_N_450_X $0.94 $0.20 $0.82 426 426 0 0 64,163 471,594 2,254,543 539,930 

            

Rand_N_50_X $8.16 $1.31 $6.37 20 8 8 3 3,020 5,915 36,716 7,570 

Rand_N_150_X $11.90 $1.91 $8.98 32 13 12 7 6,143 12,122 75,470 16,057 

Rand_N_250_X $14.28 $2.28 $10.55 40 16 15 10 8,477 16,767 105,187 22,699 

Rand_N_350_X $15.75 $2.51 $11.51 48 18 17 13 10,634 21,260 133,211 29,080 

Rand_N_450_X $16.94 $2.70 $12.28 55 21 20 15 12,636 25,345 159,192 34,975 

            

Targ_P_50_X $0.58 $0.16 $0.56 63 63 0 0 7,099 84,922 313,976 87,605 

Targ_P_150_X $0.70 $0.18 $0.65 163 163 0 0 21,323 212,515 832,787 229,075 

Targ_P_250_X $0.80 $0.19 $0.70 224 224 0 0 35,336 308,546 1,282,136 351,387 

Targ_P_350_X $0.87 $0.20 $0.74 304 304 0 0 49,804 397,459 1,729,568 465,191 

Targ_P_450_X $0.93 $0.21 $0.78 353 353 0 0 63,879 476,897 2,165,517 568,319 

            

Rand_P_50_X $8.01 $1.28 $5.80 19 9 6 4 2,712 6,017 37,736 8,307 

Rand_P_150_X $11.87 $1.89 $8.35 30 13 9 8 5,452 12,132 76,238 17,232 

Rand_P_250_X $14.23 $2.25 $9.84 39 16 11 11 7,600 16,937 107,058 24,490 

Rand_P_350_X $15.80 $2.50 $10.83 46 19 13 13 9,514 21,316 134,816 31,115 

Rand_P_450_X $17.09 $2.70 $11.63 52 22 15 16 11,233 25,227 159,798 37,079 
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Next, the total annualized costs for filter strips and permanent vegetation are increased by 

200 percent to capture a more drastic increase in land opportunity costs and fuel prices. For no-

till, the annualized costs were decreased by 75 percent to account for the even higher fuel prices, 

and thus, a greater relative cost advantage of no-till (all else equal). Table 2.16 displays the 

annualized costs for each BMP over a 15-year time horizon. These cost scenarios will be denoted 

as the “Y” scenarios to distinguish these from the original (Table 2.1) and “X” scenarios (Table 

2.14). 

Table 2.16 Adjusted BMP Annualized costs over a 15-year time horizon - “Y” scenarios 

County, State 

Annualized Cost 

($/acre) for Filter 

Strips per cropland 

acre treated
1
 

Annualized Cost 

($/acre) for No-till 

Annualized Cost 

($/acre) for Permanent 

Vegetation 

Clay, KS $7.66 $3.25 $162.10 

Gage, NE $11.34 $5.00 $216.30 

Jefferson, NE $11.34 $5.00 $203.86 

Marshall, KS $9.41 $3.25 $178.46 

Nemaha, KS $9.57 $3.25 $184.92 

Pawnee, NE $10.95 $5.00 $211.04 

Pottawatomie, KS $8.63 $3.25 $173.16 

Republic, KS $7.76 $3.25 $153.26 

Riley, KS $9.10 $3.25 $163.74 

Washington, KS $9.11 $3.25 $166.14 
1
 Annualized cost of filter strip divided by 25 cropland acres (treated) 

Table 2.17 displays the results of the “Y” scenarios. In general, the results for the “Y” 

scenarios follow the same patterns as the original and “X” scenarios. In all cases the amount of 

pollutant reduction achieved by the “Y” scenarios is less than the corresponding original and “X” 

scenarios.  

A notable difference here is that in the targeted “Y” scenarios, both filter strips and no-till 

are implemented in each of the budget constraints considered. Based on the distribution of these 

two BMPs, it appears that no-till is relatively more cost-competitive at reducing nitrogen as 

compared to sediment or phosphorus. For example, under a $50,000 annual budget constraint, 
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the Targ_N_50_Y scenario results in 156 total BMP projects, of which, 154 are no-till projects. 

On the other hand, the Targ_S_50_Y and Targ_P_50_Y scenarios result in a near even 

distribution of filter strips and no-till projects. 
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Table 2.17 Simulation results for the “Y” scenarios 

Scenario 

Average 

sediment 

reduction 

cost for all 

land treated 

by BMPs 

(/ton) 

Average 

nitrogen 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Average 

phosphor-

rous 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Total # of 

BMP 

projects 

# of Filter 

Strip 

Projects 

# of No-

till 

Projects 

#of 

Permanent 

Vegetation 

Projects 

Total 

area of 

land 

treated 

by BMPs 

(ac) 

Total 

amount 

of 

sediment 

reduction 

(tons) 

Total 

amount 

of 

nitrogen 

reduction 

(lbs) 

Total 

amount of 

phosphorus 

reduction 

(lbs) 

Targ_S_50_Y $0.63 $0.22 $0.86 62 32 30 0 7,297 79,092 221,238 57,737 

Targ_S_150_Y $0.78 $0.23 $0.95 181 107 75 0 22,255 189,131 654,387 155,535 

Targ_S_250_Y $0.92 $0.25 $1.02 266 165 101 0 36,695 270,298 1,004,966 243,851 

Targ_S_350_Y $1.02 $0.26 $1.05 311 198 113 0 48,945 340,221 1,313,930 328,689 

Targ_S_450_Y $1.11 $0.27 $1.09 359 228 131 0 61,382 401,990 1,634,355 407,518 

            

Rand_S_50_Y $8.39 $1.42 $7.67 21 8 10 3 3,375 5,774 34,212 6,318 

Rand_S_150_Y $13.02 $2.16 $10.99 32 12 14 7 6,328 11,147 67,119 13,201 

Rand_S_250_Y $15.77 $2.61 $12.91 40 14 17 9 8,458 15,321 92,592 18,713 

Rand_S_350_Y $17.99 $2.95 $14.42 46 16 19 11 10,228 18,720 113,964 23,355 

Rand_S_450_Y $19.53 $3.21 $15.44 52 18 21 13 11,945 22,181 135,088 28,055 

            

Targ_N_50_Y $1.30 $0.13 $1.19 156 2 154 0 15,065 37,944 378,335 41,627 

Targ_N_150_Y $1.20 $0.18 $1.39 310 29 281 0 39,188 123,904 817,404 106,742 

Targ_N_250_Y $1.22 $0.21 $1.35 410 75 335 0 57,906 203,797 1,170,024 182,941 

Targ_N_350_Y $1.28 $0.23 $1.32 456 102 355 0 71,519 271,321 1,484,817 261,627 

Targ_N_450_Y $1.35 $0.25 $1.33 500 125 375 0 84,228 330,137 1,776,426 334,959 

            

Rand_N_50_Y $8.35 $1.36 $6.94 21 8 10 3 3,202 5,803 35,746 6,984 

Rand_N_150_Y $12.96 $2.08 $10.09 32 12 14 7 6,008 11,207 69,815 14,393 

Rand_N_250_Y $15.78 $2.53 $11.97 40 14 16 9 7,997 15,348 95,796 20,221 

Rand_N_350_Y $17.94 $2.86 $13.38 46 17 18 11 9,740 18,845 118,307 25,260 

Rand_N_450_Y $19.48 $3.11 $14.42 52 19 20 13 11,401 22,302 139,683 30,118 

            

Targ_P_50_Y $0.76 $0.19 $0.72 58 38 20 0 6,401 64,564 264,917 68,113 

Targ_P_150_Y $0.89 $0.23 $0.83 157 116 41 0 17,765 165,654 652,979 178,616 

Targ_P_250_Y $0.99 $0.24 $0.90 210 158 52 0 28,831 248,743 1,016,077 275,697 

Targ_P_350_Y $1.09 $0.26 $0.94 267 203 64 0 39,964 316,663 1,341,790 364,237 

Targ_P_450_Y $1.17 $0.26 $0.99 320 250 70 0 51,933 380,819 1,696,268 449,598 

            

Rand_P_50_Y $8.42 $1.35 $6.32 20 9 8 3 2,723 5,776 35,965 7,698 

Rand_P_150_Y $13.25 $2.10 $9.47 30 12 11 7 5,145 10,997 69,284 15,375 

Rand_P_250_Y $16.14 $2.56 $11.34 37 15 13 9 6,867 15,020 94,647 21,370 

Rand_P_350_Y $18.35 $2.90 $12.74 43 17 14 11 8,415 18,466 116,906 26,600 

Rand_P_450_Y $20.01 $3.16 $13.79 48 19 15 13 9,800 21,737 137,474 31,527 
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Figure 2.31 and Figure 2.32 display the marginal and total cost curves for sediment, 

respectively, as the costs of BMPs change from the original case to the “X” case and finally to 

the “Y” case. Across the first 100,000 tons of sediment reduction, each of the marginal cost 

curves appear to have similar slopes (only different y-intercepts). But, after 100,000 tons of 

reduction, the slope of scenario “Y” increases at a much faster rate than the original scenario. 

Figure 2.33 depicts the total acreage being treated by BMPs across total sediment 

reduction for each of the different scenarios. It can be seen that the curves for the original and 

“X” scenarios perfectly overlay across the first 503,000 tons of reduction. From this figure, it is 

evident that the original and “X” scenarios consist of the same 426 BMP projects. In each of 

these scenarios, only filter strips are applied. Because filter strip costs are higher in the 

Targ_S_450_X scenario, the acreage-sediment reduction curve ends after when the $450,000 

constraint is met at 503,000 tons of reduction. 

The Targ_S_450_Y scenario, on the other hand, follows closely to the original and “X” 

scenario curve across the first 100,000 tons of reduction. It is likely that the same filter strips are 

being applied in each case. After 100,000 tons of reduction, no-till becomes the most cost-

effective BMP and more of these projects are implemented in the “Y” scenario. However, no-till 

is not as environmentally effective on a per acre basis as filter strips. Therefore, more acres need 

to be treated to achieve the same amount of sediment reduction as compared to the other two 

scenarios. In the “Y” scenario, 350,000 tons of sediment reduction requires 50,500 acres of BMP 

treatment, whereas, only 37,500 acres need to be treated in the “X” scenario to achieve a similar 

reduction. 
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Figure 2.31 Sediment marginal cost curves for different BMP cost levels 

 

Figure 2.32 Sediment total cost curves for different BMP cost levels 

 

$0.00

$0.20

$0.40

$0.60

$0.80

$1.00

$1.20

$1.40

$1.60

$1.80

$2.00

0 200,000 400,000 600,000

A
n

n
u

a
l 

co
st

 p
e

r 
to

n

Sediment reduction (tons)

Targ_S_450_Orig.

Targ_S_450_X

Targ_S_450_Y

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

$500,000

0 200,000 400,000 600,000

T
o

ta
l 

a
n

n
u

a
l 

co
st

Sediment reduction (tons)

Targ_S_450_Orig.

Targ_S_450_X

Targ_S_450_Y



96 

 

Figure 2.33 Total acres treated by BMPs for different BMP cost levels (Sediment) 

 

The targeted nitrogen cost curves (Figure 2.34 and Figure 2.35) depict a different story as 

compared to the sediment examples discussed above. As with the sediment case, the original and 

“X” scenario exhibit a similar shape due to the fact that the same BMP projects are implemented 

in each case as shown in Figure 2.36 (across the first 2,250,000 lbs of nitrogen reduction). 

However, the relatively high cost of filter strips and low cost of no-till in Targ_N_450_Y results 

in a quite differently shaped marginal cost curve (Figure 2.34). Here, the marginal costs are 

lower than the “X” case across the first 250,000 lbs of nitrogen reduction. In terms of total cost, 

this translates to about $30,000. Evidently, the reduced cost of no-till combined with the 

moderate effectiveness of nitrogen reduction resulting from no-till adoption makes certain no-till 

projects more cost-effective than filter strips in the Targ_N_450_X scenario. As Table 2.17 

shows, 99 percent of the BMPs implemented in the Targ_N_50_Y scenario compared to 48 and 
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more acres need to be treated in the “Y” scenario to achieve the same amount of nitrogen 

reduction as compared to the other two scenarios. In the “Y” scenario, 1,776,426 lbs of nitrogen 

reduction requires 84,228 acres of BMP treatment, whereas, only 47,500 acres need to be treated 

in the original scenario to achieve a similar reduction. 

Figure 2.34 Nitrogen marginal cost curves for different BMP cost levels 
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Figure 2.35 Nitrogen total cost curves for different BMP cost levels 

 

Figure 2.36 Total acres treated by BMPs for different BMP cost levels (Nitrogen) 
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In the case of targeting phosphorus, the cost curves behave much as they do in the case of 

targeting sediment (Figure 2.37 and Figure 2.38). The marginal cost curves in Figure 2.37 are all 

very similar in shape with the main differences being in the y-intercept. Examining Figure 2.39, 

one can see that again the same BMP projects are being implemented for the original and “X” 

scenarios. However, unlike the cases of targeting sediment or nitrogen, the acre-reduction curve 

for the Targ_P_450_Y scenario comes very close to matching the other two scenarios. Upon 

closer inspection, it is evident that the projects are not being implemented in the exact same 

order. However, the filter strip and no-till BMP projects are matching the acres per sediment 

reduction values of the other two scenarios closely. Across all of the considered budget 

constraints, the ratio of filter strip projects to no-till projects is approximately 3:1 (Table 2.17).  

Figure 2.37 Phosphorus marginal cost curves for different BMP cost levels 
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Figure 2.38 Phosphorus total cost curves for different BMP cost levels 

 

Figure 2.39 Total acres treated by BMPs for different BMP cost levels (Phosphorus) 
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 Cost-effective spatial targeting for conservation 

Spatial targeting occurs all of the time in our daily life. Consider a person who leaves the 

house on a shopping trip with their billfold in hand and returns to their house two hours later 

without it. A “wise” person will begin searching in areas in which they have just been in the past 

two hours. Retracing steps and focusing the search to these areas is a more efficient use of one’s 

time than just searching randomly across the countryside. In principle, spatial conservation 

targeting is no different. It is the deliberate focus of BMP implementation on a particular 

geographical area. Implementing BMPs in areas that exhibit the most potential for erosion and/or 

nutrient loads is a good first step in efficient targeting. This approach to targeting could simply 

rely on baseline sediment and nutrient loading maps as shown in Figure 2.40, Figure 2.41, and 

Figure 2.42. 

Figure 2.40 Baseline sediment losses from cropland by subwatershed 
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Figure 2.41 Baseline nitrogen losses from cropland by subwatershed 
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Figure 2.42 Baseline phosphorus losses from cropland by subwatershed 

 

However, this may not be the most cost-effective technique because costs are not being 

considered. Cost-effective conservation spatial targeting includes the economics of pollutant 

reduction and focuses BMPs in areas of the watershed, which deliver the greatest benefits 

(pollutant reduction) for the cost. 

Using the targeted approach discussed in previous sections, prescriptions for cost-

effective spatial targeting can be derived. The process for determining target areas is described 

next. 

The spatial targeting approach described here answers the question: Where in the 

watershed will a given BMP (i.e., filter strips, no-till, or permanent vegetation) provide the most 

cost-effective pollutant (i.e., sediment, nitrogen, or phosphorus) reduction? This targeting 

approach is performed with the original BMP costs as well as for the adjusted BMP costs used in 
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the “Y” scenarios described previously. For obvious reasons, only the targeted scenarios (not the 

random) are used. No farms are deleted or eliminated from the choice set. The budget constraint 

and pollutant reduction goals are both set infinitely high, so that all possible BMPs are 

implemented. Only one iteration is run to produce the results necessary to determine the cost-

effective spatial targeting prescriptions. 

The results from one iteration provide information on the costs and pollution reduction 

achieved by implementing a given BMP on a farm. Each farm is located in one of the 27 

subwatersheds. Using the cost, pollution reduction, and the acreage being treated by the BMP, 

acre-weighted averages are calculated for each subwatershed. A $6.69/ton sediment acre-

weighted average reduction costs for subwatershed 1 reported in the first cell of Table 2.18 

indicates that for an average acre in this subwatershed, sediment can be reduced for $6.69/ton. 

This is more cost-effective than implementing BMPs in subwatershed 8, which exhibits 

$16.69/ton sediment reduction costs, but not near as cost-effective as investing in filter strips in 

subwatershed 17. 

While subwatershed 17 possesses the most cost-effective sediment reduction via filter 

strips, this subwatershed does not exhibit the most cost-effective nitrogen reduction via filter 

strips. Table 2.18 also displays the acre-weighted average costs of reducing nitrogen and 

phosphorus by subwatershed. Filter strips on subwatershed 17 results in an average cost of 

$0.26/lb of nitrogen reduction compared to just $0.20/lb for the same BMP on subwatershed 13 - 

nearly 25 percent more cost-effective. While the difference in cost-effectiveness is just $0.06/lb, 

this 25 percent increase in cost-effectiveness adds up greatly across thousands of pounds of 

nitrogen reduction. Table 2.18 also displays the weighted average costs of pollution reduction for 

no-till and permanent vegetation. 
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The targeting calculations also are performed for the “Y” scenarios. The “Y” scenarios 

represent the case where the total annualized costs for filter strips and permanent vegetation are 

increased by 200 percent to capture a more drastic increase in land opportunity costs and fuel 

prices. For no-till, the annualized costs were decreased by 75 percent to account for the even 

higher fuel prices, and thus, a greater relative cost advantage of no-till (all else equal). The 

results for the “Y” scenarios are displayed in Table 2.19.
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Table 2.18 Acre-weighted average pollutant reduction costs for Targ_S_$$$_Orig. scenarios for each BMP 

 
Filter Strips 

 
No-till 

 
Permanent vegetation 

Subwatershed 
Sediment 

($/ton) 

Nitrogen 

($/lb) 

Phosphorus 

($/lb) 
  

Sediment 

($/ton) 

Nitrogen 

($/lb) 

Phosphorus 

($/lb) 
  

Sediment 

($/ton) 

Nitrogen 

($/lb) 

Phosphorus 

($/lb) 

1 $6.69 $0.47 $2.09   $78.82 $5.03 $52.99   $98.00 $7.30 $31.27 

2 $3.24 $0.35 $1.23   $32.84 $4.74 $25.73   $47.63 $5.51 $18.64 

3 $3.43 $0.37 $1.41   $31.99 $4.25 $31.57   $50.48 $5.84 $21.14 

4 $3.63 $0.35 $1.64   $35.45 $3.07 $28.74   $50.30 $5.23 $23.24 

5 $3.45 $0.33 $1.49   $33.07 $2.60 $22.57   $49.93 $5.04 $21.99 

6 $3.39 $0.33 $1.35   $30.77 $3.22 $28.40   $49.73 $5.20 $20.07 

7 $3.90 $0.39 $1.65   $35.82 $3.70 $32.44   $56.96 $6.16 $24.61 

8 $16.69 $1.16 $4.79   $158.06 $16.36 $161.36   $238.95 $23.35 $71.24 

9 $2.53 $0.38 $1.31   $23.49 $6.11 $19.63   $37.41 $5.93 $19.67 

10 $2.20 $0.32 $1.46   $21.16 $2.62 $23.54   $31.12 $4.77 $21.07 

11 $1.43 $0.26 $0.95   $12.42 $2.41 $14.28   $21.16 $4.24 $14.47 

12 $2.07 $0.31 $1.41   $18.72 $2.37 $17.28   $29.00 $4.73 $20.01 

13 $1.81 $0.20 $0.97   $14.49 $1.08 $7.67   $26.34 $3.27 $14.68 

14 $2.81 $0.32 $1.38   $25.75 $2.39 $14.84   $41.13 $4.93 $20.45 

15 $1.83 $0.29 $1.28   $17.06 $2.06 $15.62   $26.53 $4.35 $18.74 

16 $2.95 $0.38 $1.69   $27.17 $3.28 $24.15   $43.05 $5.95 $24.91 

17 $1.36 $0.26 $0.93   $11.15 $2.42 $13.66   $19.86 $4.10 $13.90 

18 $1.48 $0.27 $1.00   $13.55 $2.76 $16.59   $21.50 $4.32 $14.99 

19 $4.47 $0.53 $2.32   $41.41 $4.80 $47.46   $65.19 $8.38 $34.53 

20 $1.65 $0.30 $1.09   $14.28 $3.29 $26.23   $23.81 $4.64 $16.26 

21 $1.61 $0.29 $1.09   $15.20 $3.09 $18.10   $23.80 $4.64 $16.67 

22 $2.52 $0.34 $1.51   $23.02 $2.93 $23.21   $35.31 $5.08 $21.48 

23 $1.56 $0.35 $1.31   $14.39 $3.24 $13.95   $23.04 $5.46 $19.60 

24 $2.38 $0.41 $1.52   $20.52 $5.14 $41.06   $34.31 $6.27 $22.77 

25 $2.62 $0.34 $1.61   $22.81 $2.56 $16.49   $39.05 $5.73 $24.99 

26 $2.36 $0.37 $1.46   $21.86 $3.60 $20.49   $33.58 $5.50 $21.12 

27 $2.29 $0.38 $1.51   $17.55 $3.65 $25.26   $32.85 $6.03 $22.33 
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Table 2.19 Acre-weighted average pollutant reduction costs for Targ_S_$$$_Y scenarios for each BMP 

 
Filter Strips 

 
No-till 

 
Permanent vegetation 

Subwatershed 
Sediment 

($/ton) 

Nitrogen 

($/lb) 

Phosphorus 

($/lb) 
  

Sediment 

($/ton) 

Nitrogen 

($/lb) 

Phosphorus 

($/lb) 
  

Sediment 

($/ton) 

Nitrogen 

($/lb) 

Phosphorus 

($/lb) 

1 $13.37 $0.94 $4.19   $19.70 $1.26 $13.25   $196.00 $14.61 $62.54 

2 $6.47 $0.69 $2.47   $8.21 $1.19 $6.43   $95.26 $11.01 $37.27 

3 $6.86 $0.73 $2.82   $8.00 $1.06 $7.89   $100.95 $11.67 $42.28 

4 $7.25 $0.71 $3.29   $8.86 $0.77 $7.19   $100.61 $10.46 $46.47 

5 $6.89 $0.65 $2.98   $8.27 $0.65 $5.64   $99.86 $10.07 $43.97 

6 $6.78 $0.66 $2.70   $7.69 $0.80 $7.10   $99.46 $10.40 $40.15 

7 $7.80 $0.77 $3.31   $8.96 $0.93 $8.11   $113.91 $12.32 $49.21 

8 $33.37 $2.32 $9.57   $39.52 $4.09 $40.34   $477.90 $46.69 $142.49 

9 $5.06 $0.75 $2.61   $5.87 $1.53 $4.91   $74.81 $11.87 $39.35 

10 $4.40 $0.63 $2.92   $5.29 $0.66 $5.89   $62.25 $9.54 $42.14 

11 $2.86 $0.53 $1.91   $3.10 $0.60 $3.57   $42.32 $8.49 $28.94 

12 $4.15 $0.63 $2.82   $4.68 $0.59 $4.32   $58.01 $9.45 $40.03 

13 $3.62 $0.39 $1.94   $3.62 $0.27 $1.92   $52.68 $6.54 $29.35 

14 $5.63 $0.64 $2.77   $6.44 $0.60 $3.71   $82.26 $9.85 $40.90 

15 $3.67 $0.57 $2.55   $4.26 $0.52 $3.90   $53.06 $8.70 $37.47 

16 $5.91 $0.77 $3.38   $6.79 $0.82 $6.04   $86.10 $11.90 $49.82 

17 $2.72 $0.52 $1.85   $2.79 $0.60 $3.42   $39.73 $8.20 $27.80 

18 $2.96 $0.55 $2.00   $3.39 $0.69 $4.15   $43.00 $8.64 $29.98 

19 $8.95 $1.05 $4.65   $10.35 $1.20 $11.86   $130.38 $16.77 $69.07 

20 $3.31 $0.60 $2.19   $3.57 $0.82 $6.56   $47.62 $9.28 $32.51 

21 $3.22 $0.58 $2.18   $3.80 $0.77 $4.53   $47.61 $9.27 $33.33 

22 $5.04 $0.69 $3.02   $5.75 $0.73 $5.80   $70.61 $10.15 $42.95 

23 $3.13 $0.69 $2.62   $3.60 $0.81 $3.49   $46.09 $10.93 $39.19 

24 $4.77 $0.82 $3.05   $5.13 $1.28 $10.26   $68.63 $12.55 $45.54 

25 $5.24 $0.69 $3.23   $5.70 $0.64 $4.12   $78.11 $11.46 $49.99 

26 $4.71 $0.74 $2.92   $5.47 $0.90 $5.12   $67.15 $11.01 $42.24 

27 $4.59 $0.77 $3.03   $4.39 $0.91 $6.31   $65.71 $12.05 $44.66 
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The data in Table 2.18 and Table 2.19 may be better represented in map form. Dividing 

each of the scenario’s results into “quartiles,” cost-effective conservation spatial targeting maps 

are created.
 17

 In other words, sorting the average costs for a given scenario in ascending order 

and then dividing the data into four groups of seven subwatersheds each is a useful way of 

presenting the results cartographically. Individual maps are created for each of the 18 scenarios 

covered in Table 2.18 and Table 2.19. Upon closer inspection, the spatial priority ranking of the 

subwatersheds is identical across the original cost scenarios and the adjusted “Y” cost scenarios. 

For this reason, only the maps for the “Y” scenarios (which correspond with Table 2.19) will be 

analyzed here. The remaining maps for the original cost scenarios can be found in Appendix C. 

Figure 2.43 has been included to give the reader an indication of which watercourses are 

located in the economically derived priority areas. It displays the locations of the major rivers 

and creeks in the Kansas portion of the TCL watershed. Figure 2.44 shows the priority areas in 

the TCL watershed for reducing sediment via filter strips. According to this figure, the most cost-

effective sediment reducing locations for placing filter strips is in the east-northeast portion of 

the watershed. Particularly, subwatersheds 11, 13, 17, 18, 20, 21, and 23. Here, sediment can be 

reduced for $2.72 to $3.62/ton annually. The poorest places (from a cost-effectiveness 

standpoint) for sediment reducing filter strips are subwatersheds 1, 4, 5, 7, 8, and 19. Here, 

sediment reduction costs are much higher ranging from $6.87/ton up to $33.37/ton annually. In 

general, the north-central portion of the TCL watershed is the least cost-effective region to place 

filter strips for sediment reduction.  

Figure 2.45 and Figure 2.46 display the nitrogen and phosphorus reduction costs via filter 

strips by subwatershed. Many of the subwatersheds are prioritized in similar fashion to the 

                                                 
17

 The word “quartiles” is in quotes because the number 27 is not perfectly divisible by 4. So, the quartiles used here 

contain 7, 7, 7, and 6 subwatersheds in the high, medium-high, medium-low, and low categories. 
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sediment case. For example, subwatersheds 11, 13, 18, 20, and 21 are labeled as the highest 

priority areas across all of the pollutants for filter strips. Sediment can be reduced for $2.72 to 

$3.62/ton annually, nitrogen reduction for $0.39 to $0.60/lb annually, and phosphorus can be 

reduced for $1.85 to $2.47/lb annually. Alternatively, subwatersheds 1, 7, 8, and 19 are identified 

as being the least cost-effective across all of the pollutants for filter strips. Sediment, nitrogen, 

and phosphorus annual reduction costs can approach $33.37/ton, $2.32/lb, and $9.57/lb, 

respectively. 

Figure 2.43 Major watercourses and subwatershed delineation for the TCL watershed 

 Tuttle Creek Lake

Little Blue River

Big Blue River

Big Blue River

Horseshoe Creek

Black Vermillion River

Mill Creek



110 

 

Figure 2.44 Spatial average sediment reduction costs under adjusted (“Y”) costs with filter 

strips 

 

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$2.72 - $3.62

$3.63 - $5.04

$5.05 - $6.86

$6.87 - $33.37

Adjusted cost scenario (‘Y’) with filter strips.
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Figure 2.45 Spatial average nitrogen reduction costs under adjusted (“Y”) costs with filter 

strips 

 

Economic Priority Areas
Nitrogen Reduction Costs ($/lb/yr)

$0.39 - $0.60

$0.61 - $0.69

$0.70 - $0.77

$0.78 - $2.32

Adjusted cost scenario (‘Y’) with filter strips.
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Figure 2.46 Spatial average phosphorus reduction costs under adjusted (“Y”) costs with 

filter strips 

 

 

Figure 2.47, Figure 2.48, and Figure 2.49 display the average annual pollutant reduction 

costs when no-till is applied in each of the subwatersheds. According to Figure 2.47, the most 

cost-effective sediment reducing locations for placing no-till is again in the east-northeast portion 

of the watershed. Particularly, subwatersheds 11, 13, 17, 18, 20, 21, and 23. Here, sediment can 

be reduced for $2.79 to $3.80/ton annually. The poorest places (from a cost-effectiveness 

standpoint) for sediment reducing no-till are subwatersheds 1, 4, 5, 7, 8, and 19. Here, sediment 

reduction costs are much higher ranging from $8.22/ton up to $39.52/ton annually. In general, 

the north-central portion of the TCL watershed is the least cost-effective region to place no-till 

for sediment reduction. 

Economic Priority Areas
Phosphorous Reduction Costs ($/lb/yr)

$1.85 - $2.47

$2.48 - $2.82

$2.83 - $3.23

$3.24 - $9.57

Adjusted cost scenario (‘Y’) with filter strips.
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Figure 2.48 displays the nitrogen reduction costs via no-till. The prioritization, here, 

differs quite a little bit from the sediment case. For example, only three of the subwatersheds are 

identified as high-priority in both cases - subwatersheds 11, 13, and 17. In addition, some of the 

subwatersheds that are identified as medium-high priority regarding sediment are labeled as high 

priority in the nitrogen case. This occurs with subwatersheds 12, 15, and 25.  

Figure 2.49 shows the annual phosphorus reduction costs for no-till adoption in the TCL 

watershed. Again, some of the subwatersheds that are identified as medium-high priority with 

sediment are characterized as high priority with phosphorus. Subwatersheds 15 and 25 fall into 

this category. Alternatively, several of the subwatersheds identified as high priority under 

sediment are medium-high priority regarding phosphorus - subwatersheds 18 and 21, in 

particular.  

Considering no-till as a BMP for cost-effectively reducing all of the pollutants 

simultaneously, would indicate that subwatersheds 11, 13, and 17 as the highest priority for no-

till adoption. Here, sediment can be reduced for $2.79 to $3.80/ton annually, nitrogen reduction 

for $0.27 to $0.64/lb annually, and phosphorus can be reduced for $1.92 to $4.12/lb annually. On 

the flip side, subwatersheds 1, 8, and 19 are identified as being the least cost-effective across all 

of the pollutants for no-till. Sediment, nitrogen, and phosphorus annual reduction costs can 

approach $39.52/ton, $4.09/lb, and $40.34/lb, respectively.  
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Figure 2.47 Spatial average sediment reduction costs under adjusted (“Y”) costs with no-

till 

 

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$2.79 - $3.80

$3.81 - $5.70

$5.71 - $8.21

$8.22 - $39.52

Adjusted cost scenario (‘Y’) with no-till.
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Figure 2.48 Spatial average nitrogen reduction costs under adjusted (“Y”) costs with no-till 

 

Economic Priority Areas
Nitrogen Reduction Costs ($/lb/yr)

$0.27 - $0.64

$0.65 - $0.80

$0.81 - $1.06

$1.07 - $4.09

Adjusted cost scenario (‘Y’) with no-till.
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Figure 2.49 Spatial average phosphorus reduction costs under adjusted (“Y”) costs with 

no-till 

 

 

Figure 2.50, and Figure 2.51, and Figure 2.52 display the annual average pollutant 

reduction costs with permanent vegetation. In general, there are less difference between these 

maps as compared to the differences seen with the other two BMPs discussed previously. In 

other words, subwatersheds that are identified as high economic priority for sediment are 

generally identified as high economic priority for nitrogen and phosphorus as well. For each of 

the pollutants, subwatersheds 11, 13, 17, 18, 20, and 21 are all labeled as high priority. In similar 

fashion, subwatersheds 1, 7, 8, and 19 are all identified as low priority for permanent vegetation 

reduction of each of the pollutants. Subwatersheds 24 and 27 are low priority for nitrogen via 

Economic Priority Areas
Phosphorous Reduction Costs ($/lb/yr)

$1.92 - $4.12

$4.13 - $5.80

$5.81 - $7.10

$7.11 - $40.34

Adjusted cost scenario (‘Y’) with no-till.
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permanent vegetation whereas these are considered medium-high priority areas for sediment 

reduction. 

Figure 2.50 Spatial average sediment reduction costs under adjusted (“Y”) costs with 

permanent vegetation 

 

 

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$39.73 - $52.68

$52.69 - $70.61

$70.62 - $99.86

$99.87 - $477.90

Adjusted cost scenario (‘Y’) with permanent 
vegetation.
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Figure 2.51 Spatial average nitrogen reduction costs under adjusted (“Y”) costs with 

permanent vegetation 

 

 

Economic Priority Areas
Nitrogen Reduction Costs ($/lb/yr)

$6.54 - $9.28

$9.29 - $10.46

$10.47 - $11.90

$11.91 - $46.69

Adjusted cost scenario (‘Y’) with permanent 
vegetation.
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Figure 2.52 Spatial average phosphorus reduction costs under adjusted (“Y”) costs with 

permanent vegetation 

 

 

 

From a cost-effective conservation spatial targeting standpoint, certain areas of the TCL 

watershed should be prioritized higher than others. Depending on which BMP and which 

pollutant is under consideration the subwatersheds may be ranked differently. In other words, if 

sediment is the concern and filter strips are expected to be promoted and adopted the focus 

should be on subwatersheds 11, 13, 17, 18, 20, 21, and 23. However, if nitrogen is the main 

concern and no-till will be the primary BMP promoted and financed, then the focus should be on 

subwatersheds 11, 12, 13, 14, 15, 17, and 25. 

Economic Priority Areas
Phosphorous Reduction Costs ($/lb/yr)

$27.80 - $37.27

$37.28 - $42.14

$42.15 - $46.47

$46.48 - $142.49

Adjusted cost scenario (‘Y’) with permanent 
vegetation.
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If one were to place equal weighting on each of the three BMPs and pollutants, two 

prescriptions can be made based on the previous maps. First, the most cost-effective pollutant 

reduction will likely be achieved in subwatersheds 11 and 13. These subwatersheds were 

identified as high priority across all of the BMPs and pollutants. Secondly, subwatersheds 1, 8, 

and 19 exhibit the least potential (relatively speaking) for cost-effectively reducing any of the 

pollutants in regards to any of the BMPs considered. The remaining 22 subwatersheds fall 

somewhere in between these two bounds. In other words, depending on the BMP/pollutant focus, 

these subwatersheds may exhibit some potential for cost-effective conservation. 

 Characteristics of economically targeted areas 

As described previously, the economically targeted areas take into account both the 

physiographical and the economic characteristics of the farm (or HRU) and the BMP. In general, 

the three primary physiographical factors affecting sediment and nutrient runoff and contribution 

to TCL for a given farm and BMP are land slope, hydrologic soil group, and delivery ratio (for 

sediment). Thus, it would be expected that subwatersheds 11 and 13 would exhibit different 

physiographical characteristics than subwatersheds 1, 8, and 19.  

Based on information in Table 2.4, subwatershed 19 actually has a much greater 

percentage of land with slopes greater than 6 percent than either subwatershed 11 or 13. 

However, only 49.6 percent of the land in subwatershed 19 is classified as being in hydrologic 

soil group D.
18

 This compares to 96.7 and 93.5 percent of the land in subwatersheds 11 and 13. 

Subwatersheds 1 and 8 have 0.0 and 50.3 percent of land with “D” soils, respectively. In terms of 

delivery ratios for sediment (Table 2.9), subwatershed 19 has the highest at 1.00 while 

subwatersheds 1, 8, 11, and 13 have sediment delivery ratios of 0.56, 0.69, 0.69, and 0.66, 

                                                 
18

 Which represents areas with higher risks for runoff generating potential. 
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respectively. From this, it appears that soil type is driving much of the differences in sediment 

and nutrient contribution to TCL. However, the physiographical characteristics that make up 

each subwatershed only put into picture part of the story. The economic characteristics help to 

explain the other part.  

Each of the five subwatersheds described previously are contained completely or partially 

in Marshall County, Kansas. Subwatersheds 8 and 19 lay completely in Marshall County. Over 

90 percent of subwatershed 1 is contained in Gage County, Nebraska with the remaining 10 

percent in Marshall County. Subwatershed 11 is 64 and 36 percent in Marshall and Nemaha 

Counties, respectively. Subwatershed 13 is 27 and 73 percent in Marshall and Nemaha Counties, 

respectively. Of the counties in Kansas, Nemaha County exhibits the highest annualized costs for 

filter strips and land retirement with permanent vegetation. Gage County, Nebraska exhibits the 

highest annualized costs across all of the counties considered here. Thus, it appears that while 

high land opportunity costs make subwatersheds 11 and 13 less attractive, the relatively large 

pollutant loading and levels of BMP effectiveness make these subwatersheds prime spots for 

cost-effective BMP investments. 

According to Figure 2.41, subwatershed 2 would be a higher priority area for reducing 

nitrogen than subwatershed 26. This is likely due to the fact that 98.5 percent of the land in 

subwatershed 2 is “D” soils compared to just 38 percent of subwatershed 26. However, as Table 

2.19 shows, no-till investments are nearly 25 percent more cost-effective when applied to 

subwatershed 26 as opposed to subwatershed 2. Part of the reason for this is that the annualized 

costs of no-till are approximately 25 percent less for subwatershed 26 compared to subwatershed 

2.  



122 

 

What does all of this mean for cost-effective targeting? Cost-effective targeting is not as 

simple as looking at just one factor such as land slope or land opportunity costs. While soil type 

appears to be a good indicator of targeting, relying heavily on it can even be misleading. For 

example, 99 percent of the soils in subwatershed 9 are hydrologic group D. This subwatershed 

ranks number one in this respect. However, this subwatershed should be low priority for nitrogen 

reduction via no-till and should be medium-low priority for sediment reduction with filter strips. 

At least in the case of TCL watershed, cost-effective targeting can only occur when all relevant 

physiographical and economic factors are considered. 

 Distribution of BMP types across subwatersheds 

The spatial targeting analysis performed previously focused on one BMP at a time across 

the TCL watershed. Building on this, another important aspect may be the distribution of the 

different BMP types across the watershed when cost-effective targeting is performed and all 

BMPs are available for adoption. In other words, what is the optimal ratio of filter strips to no-till 

to permanent vegetation projects across subwatersheds in the TCL watershed? In order to 

determine this, the following procedures are used. 

Targeted simulations are run focusing on sediment, nitrogen, and phosphorus. The 

pollution reduction goal is set infinitely high and the annual budget constraint is set at $450,000. 

No farms (HRUs) are deleted from the choice set. The BMP costs are from the “Y” scenarios 

(Table 2.16). One iteration of each scenario is run and the simulation results are tabulated and 

further analyzed.  

The total number of BMP projects implemented is equal to 1,770 in each scenario. It is 

not equal to 1,858 (total number of cropland farms or HRUs) because 88 farms exhibit zero or 

negative primary pollutant reduction and are eliminated from the possible choice set. In regards 
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to the 1,770 BMP projects, specific information about the subwatershed location/identification 

and BMP type (i.e., filter strip, no-till, or permanent vegetation) is known and tabulated. From 

this data, Figure 2.53, Figure 2.54, and Figure 2.55 are created which show the proportion of the 

total BMP projects that fall into each subwatershed by type of BMP. These three figures 

represent the cases when sediment, nitrogen, or phosphorus are the primary pollutants of 

concern, respectively. The total number of BMP projects implemented under each scenario are 

400, 580, and 343. 

To briefly summarize these figures, one can see that permanent vegetation projects are 

not implemented in any scenario. In general, more filter strips are applied in the targeted 

sediment and phosphorus cases as compared to when nitrogen is the primary concern. No-till 

projects are predominantly implemented when nitrogen is the focus pollutant (Figure 2.54). 

Across all scenarios, subwatershed 10 has the greatest number of projects mainly due to its 

relative large area. Focusing on subwatersheds 11 and 13 (which were identified as very high 

priority in the previous subsections), there is approximately an equal distribution of filter strips 

and no-till when sediment is the main focus. However, under a targeted nitrogen strategy, there is 

about a 3.5 to 1 ratio of no-till to filter strips in these two subwatersheds. Under a targeted 

phosphorus strategy, there is approximately a 2.5 to 1 ratio of filter strips to no-till in 

subwatersheds 11 and 13. In terms of least cost-effective subwatersheds, very little to zero BMP 

activity occurs across subwatersheds 8 and 19.  
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Figure 2.53 Distribution of the different BMPs across subwatersheds, Targ_S_450_Y 

 

Figure 2.54 Distribution of the different BMPs across subwatersheds, Targ_N_450_Y 
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Figure 2.55 Distribution of the different BMPs across subwatersheds, Targ_P_450_Y 

 

For reasons stated previously, it may be the case that many producers have already 

adopted some of these BMPs on their farms. It also possible (and maybe even probable) that 

many of these BMPs have been adopted on farms (HRUs) that exhibit the most cost-effective 

pollutant reduction. In other words, the BMPs have been adopted on fields which have great 

erosion and runoff potential and/or have a low cost of implementation. If we make this 

assumption, then the stochastic “search and deletion of farms” process used previously may not 

be the most accurate. In order to mimic this assumption, the data used to generate Figure 2.53, 

Figure 2.54, and Figure 2.55 are used with one important modification. That is, the most cost-

effective 25 percent BMP projects/farms are removed. Figure 2.56, Figure 2.57, and Figure 2.58 

show the proportion of the total BMP projects that fall into each subwatershed by type of BMP 

under this assumption for sediment, nitrogen, and phosphorus cases.  
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In these scenarios, the number of BMP projects in subwatersheds 11 and 13 tend to 

decrease. For example, when all farms are considered no-till projects in subwatershed 13 make 

up over 5 percent of all projects across the TCL watershed when nitrogen is the pollutant of 

concern. However, when the most cost-effective 25 percent of BMPs are removed, this amount 

drops to below 2 percent. Meanwhile, the percentage of filter strips attributable to subwatershed 

11 increases from 1.6 to 2.1 percent as the most cost-effective farms are removed (when nitrogen 

is the pollutant of concern).  

Figure 2.56 Distribution of the different BMPs across subwatersheds, Targ_S_450_Y with 

the most cost-effective 25 percent of farms removed 

 

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

P
ro

p
o

rt
io

n 
o

f T
o

ta
l B

M
P

 P
ro

je
ct

s

Subwatershed

% of Total Projects that 
are Permanent 
Vegetation

% of Total Projects that 
are No-till

% of Total Projects that 
are Filter Strips



127 

 

Figure 2.57 Distribution of the different BMPs across subwatersheds, Targ_N_450_Y with 

the most cost-effective 25 percent of farms removed 

 

Figure 2.58 Distribution of the different BMPs across subwatersheds, Targ_P_450_Y with 

the most cost-effective 25 percent of farms removed 
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 An alternative method of selecting farms that have already adopted BMPs 

Up to this point in the analysis, it has been assumed that any existing BMP adoption in 

the TCL watershed was random in nature. That is, a random 25 percent of the farms in the 

watershed are assumed to have already implemented BMPs, and therefore, are eliminated from 

the choice set in the simulation routines. The reason behind this is that given the available data 

that exists there is no way of precisely determining which farms have or have not implemented 

BMPs in the past.  

Perhaps a more realistic assumption would be to assume that BMPs have already been 

adopted by farms which have the greatest potential for soil erosion.
19

 In cases where soil erosion 

is severe, farmers will often install BMPs either with or without cost-share funding in an effort to 

save significant losses of top soil and/or prevent gullies from forming in their fields. To simulate 

this alternative approach, the following assumption is made within the simulation program. Prior 

to any simulation the 25 percent of farms that exhibit the greatest amount of baseline soil erosion 

(on a per acre basis) are eliminated from the possible choice set. More specifically, the top 465 

farms out of 1,858 in total are assumed to have already implemented BMPs and are removed 

from the selection pool. The simulation processes proceed in the same manner as described in 

previous sections. It should be noted that the adjusted “Y” costs are used in these analyses and 

the primary pollutant is sediment (i.e., scenarios in which nitrogen and phosphorus are “primary” 

are not presented or discussed). Also of importance, the text “_alt” is included at the end of the 

scenario description to indicate that this alternative method of selecting farms that have already 

adopted BMPs is used. 

                                                 
19

 Soil erosion is used as opposed to nitrogen or phosphorus loss because of the visible nature of erosion. 
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Table 2.20 presents the results attained by using the alternative method of selecting farms 

that have already adopted BMPs. Comparing these results to those in Table 2.17 (which uses the 

“random” method of selecting the 25 percent of farms already adopting BMPs), there is an 

“across-the-board” increase in the average pollutant reduction costs. In terms of sediment under a 

$50,000 annual budget, the average reduction costs increase from $0.63 per ton to $1.75 per ton. 

This is equal to a difference of $1.12 per ton and a 277 percent increase in average costs. As the 

budget constraint increases, the difference between the two corresponding sets of scenarios (in 

Table 2.20 and Table 2.17) remains around $1.12 per ton, but the percentage increase decreases 

from 277 percent in the case of a $50,000 budget to just over 200 percent increase in the case of 

a $450,000 budget.  
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Table 2.20 Simulation results for the "Y" scenarios with alternative method of selecting farms already having adopted BMPs 

Scenario 

Average 

sediment 

reduction 

cost for all 

land 

treated by 

BMPs 

(/ton) 

Average 

nitrogen 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Average 

phosphor-

rous 

reduction 

cost for all 

land treated 

by BMPs 

(/lb) 

Total # of 

BMP 

projects 

# of Filter 

Strip 

Projects 

# of No-

till 

Projects 

#of 

Permanent 

Vegetation 

Projects 

Total 

area of 

land 

treated 

by BMPs 

(ac) 

Total 

amount 

of 

sediment 

reduction 

(tons) 

Total 

amount 

of 

nitrogen 

reduction 

(lbs) 

Total 

amount of 

phosphorus 

reduction 

(lbs) 

Targ_S_50_Y_alt $1.75 $0.30 $1.54 59 16 43 0 9,484 28,215 165,381 31,993 

Targ_S_150_Y_alt $1.91 $0.31 $1.50 107 44 63 0 23,172 78,022 486,589 99,385 

Targ_S_250_Y_alt $2.03 $0.32 $1.49 168 82 87 0 36,957 122,876 789,159 166,956 

Targ_S_350_Y_alt $2.14 $0.33 $1.50 236 123 113 0 50,915 163,063 1,062,330 232,647 

Targ_S_450_Y_alt $2.26 $0.34 $1.55 318 175 142 0 63,790 198,542 1,307,531 289,801 

            

Rand_S_50_Y_alt $14.24 $1.81 $10.86 20 7 10 3 3,672 3,408 26,767 4,470 

Rand_S_150_Y_alt $21.71 $2.74 $15.11 30 11 14 6 6,805 6,675 52,828 9,590 

Rand_S_250_Y_alt $26.88 $3.38 $17.91 37 13 16 8 8,837 9,005 71,585 13,511 

Rand_S_350_Y_alt $29.84 $3.75 $19.45 43 15 18 10 10,792 11,341 90,275 17,399 

Rand_S_450_Y_alt $32.45 $4.07 $20.83 48 17 19 11 12,549 13,411 106,902 20,887 
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Figure 2.59 and Figure 2.60 graphically display the total and marginal cost curves for the 

targeted and random cases for both methods of selecting farms that have already adopted BMPs. 

The random BMP implementation scenarios do not appear to be significantly different (i.e., 

comparing the total cost curves for Rand_S_50_Y and Rand_S_50_Y_alt). For example, the 

Rand_S_50_Y scenario reduces 5,774 tons of sediment annually compared to 3,408 tons in the 

Rand_S_50_Y_alt scenario. Much of the noticeable divergence between these two random 

scenarios occurs after the first $25,000 in funding is used. 

On the other hand, the targeted scenarios differ significantly. The “alternative” method of 

selecting the 25 percent of farms already adopting BMPs (Targ_S_50_Y_alt) results in only 

28,215 tons of annual sediment reduction compared to nearly 80,000 tons in the Targ_S_50_Y 

scenario. 

As stated in a previous section, the targeted approach to BMP implementation can be 20 

to 23 times more cost-effective than a random approach. Under the assumption of this 

“alternative” method of selecting the 25 percent of farms already adopting BMPs, we find that 

targeted BMP strategies are 8 to 14 times more cost-effective than random methods. While this is 

significantly lower than the previous findings, there still appears to be a vast advantage in terms 

of cost-effectiveness to targeting.
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Figure 2.59 Sediment total cost curves including alternative method of selecting farms 

already adopting BMPs 

 

Figure 2.60 Sediment marginal cost curves including alternative method of selecting farms 

already adopting BMPs 
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Assuming 25 percent of the most erosive farms in TCL have already adopted BMPs 

results in fairly significant changes in terms of cost-effective spatial targeting prescriptions. 

Comparing Figure 2.44 to Figure 2.61, we can see that the economic priority areas move from 

the eastern portion of TCL watershed to the western portion (when considering sediment and 

filter strips). Only subwatersheds 13 and 17 remain as a high priority in each case.  

Figure 2.61 Spatial average sediment reduction costs with filter strips and assuming 25% of 

most erosive farms in TCL watershed have already adopted BMPs 

 

 

Comparing Figure 2.47 to Figure 2.62 we see a similar shift of economic priority from 

the northeastern part of TCL watershed to the southwest region. Again, subwatersheds 13 and 17 

are the only two that remain classified as “high” in each case. Perhaps most significant here is 

the finding that subwatersheds 24 and 25 move from being “medium-high” priority to “low” 

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$5.87 - $6.55

$6.56 - $7.49

$7.50 - $8.18

$8.19 - $33.37

Adjusted cost scenario (‘Y”) with filter strips 
assuming 25% of most erosive farms 
already have adopted BMPs.
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priority under this alternative method of selection. The reason for this is that there are a few 

highly erosive farms in each of these subwatersheds. If these few farms have already adopted 

BMPs, there is not much relative value in funding additional BMPs such as no-till in these two 

subwatersheds. 

Figure 2.62 Spatial average sediment reduction costs with no-till and assuming 25% of 

most erosive farms in TCL watershed have already adopted BMPs 

 

 

The east to west change of focus is again evident when comparing Figure 2.63 to Figure 

2.50 for controlling sediment with permanent vegetation. Again, subwatersheds 11 and 17 are the 

only two that remain a “high” economic priority in each case. Comparing Figure 2.63 (with 

permanent vegetation) to Figure 2.61 (with filter strips) one can see that all of the “high” and 

“low” priority subwatersheds are the same across the two scenarios.  

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$5.76 - $7.09

$7.10 - $8.40

$8.41 - $9.49

$9.50 - $39.52

Adjusted cost scenario (‘Y”) with no-till 
assuming 25% of most erosive farms 
already have adopted BMPs.
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Figure 2.63 Spatial average sediment reduction costs with permanent vegetation and 

assuming 25% of most erosive farms in TCL watershed have already adopted BMPs 

 

  

 Dredging versus BMPs 

TCL and its watershed are used as a case-study to examine the economics of watershed 

protection and reservoir rehabilitation including dredging. TCL exhibits, perhaps, one of the 

most critical cases of reservoir sedimentation in Kansas and throughout the Midwest. As of 2009, 

which was 47 years since the reservoir was completed, TCL contained 180,378 acre-feet of 

sediment. With over 42 percent (Table 2.21) of its total original conservation (sediment plus 

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$85.75 - $92.87

$92.88 - $109.35

$109.36 - $119.58

$119.59 - $477.90

Adjusted cost scenario (‘Y”) with permanent 
vegetation assuming 25% of most erosive 
farms already have adopted BMPs.
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multi-purpose) storage capacity (425,312 acre-feet) lost to sediment accumulation, TCL provides 

a unique and fitting case-study example for this analysis. 

Table 2.21 Tuttle Creek Lake and watershed characteristics and dredging costs 

Characteristics  

Original conservation storage pool (acre-feet)  425,312  

Sediment deposited as of 2009 (acre-feet)  180,378  

Sediment deposited as of 2009 (cubic yards)  291,009,849  

Sediment deposited as of 2009 (tons)  291,009,849  

Total drainage area (square miles)  9,628  

Total drainage area (acres)  6,161,920  

Kansas portion of Tuttle Creek watershed 

Portion of drainage area - KS portion (%) 25% 

Drainage area - KS portion (square miles)  2,377  

Drainage area - KS portion (acres)  1,521,554  

Pastureland/Rangeland - KS portion (%) 42% 

Pastureland/Rangeland - KS portion (acres)  646,639  

Cropland - KS portion (%) 43% 

Cropland - KS portion (acres)  649,548  

Other - KS portion (%) 15% 

Other - KS portion (acres)  225,367  

  
Dredging costs in 2009  

Cost per cubic yard or ton $4.11 

Dredging and disposal cost per acre foot $6,631 

Sediment deposited as of 2009 (acre-feet)  180,378  

Cost to remove sediment deposited until 2009 $1,196,050,480 

Onetime equivalent costs  

Cost per total watershed-acre $194.10 

Cost per cropland acre (total watershed) $269.59 

 

 Dredging  

Dredging is the removal of accumulated lake bottom sediments. This removal process 

can take place through mechanical, hydraulic, or pneumatic means (Hudson 1998). Sediments 
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are frequently removed from our nation’s rivers and ports for navigation and boating purposes. 

Although less common, dredging can also take place in lakes and reservoirs as a way of 

reclaiming water storage capacities. While there are many aspects to consider with dredging 

projects, one important consideration is cost.  

As Williams and Smith (2008) point out, the decision on whether or not to dredge will 

depend on sediment source, sedimentation rate with and without management practices, 

effectiveness and cost of management practices, dredging cost inflation, the planning horizon, 

and the discount rate used to calculate present values. If accumulated sediment has not 

negatively impacted current reservoir services (e.g., recreation, flood control), then it might be 

reasonable to forego dredging in favor of investing in additional in-field and in-stream 

conservation practices to reduce the need for future dredging.  

As part of this process, dredging cost data were collected from the U.S. Army Corps of 

Engineers historical dredging database (USACE 2011). These costs include the cost of 

maintenance dredging, as well as mobilization of equipment and costs of disposal. The smaller 

the project the larger the mobilization cost is as a percent of overall costs. Both Corps and 

industry managed projects are included in the calculations. Figure 2.64 displays the historical 

trend in dredging costs in nominal dollars. From a low of $0.30/yd
3 

in 1970 to a high of 

$4.11/yd
3 

in 2009, dredging costs have exhibited an average inflation rate of 6.94 percent over 

this 39 year period.  
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Figure 2.64 Historical dredging costs in nominal dollars 

 

The cost of constructing TCL in 1962 dollars was $80,051,031. Given an annual inflation 

rate of 6.94 percent (consistent with the average inflation of dredging costs) in construction 

costs, the cost in 2009 dollars is $1,096,699,225. If $6.45/yd
3 

were spent to dredge 291,009,874 

cubic yards from the lake, it would approximately equal the construction cost in 2009 dollars. At 

a dredging cost of $4.11/yd
3
, it would cost $1,196,050,480 (or $194 per total watershed-acre) to 

restore TCL to its original storage capacity (Table 2.21). Clearly, dredging is an expensive 

option. 

While reservoir sedimentation and dredging data are typically in acre-feet or cubic yards 

units, soil erosion figures are typically reported in tonnage. Since each of these processes will be 

compared in this analysis, a common unit of measurement is needed. According to Holland 

(1971), past sediment samples from Kansas reservoirs exhibited (dry) soil bulk densities of 

approximately 0.82 tons/yd
3
. Other studies have specified cropland soil bulk densities in the 
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ranges of 0.94 to 1.43 tons/yd
3
 (NYSSESC 2005) and 1.01 to 1.35 tons/yd

3
 (Hillel 1998) 

depending on the soil characteristics (i.e., more clay content yields lower soil bulk density 

values). For simplicity, we will assume a ratio of 1 ton per 1 cubic yard. Thus, a 2009 dredging 

cost of $4.11 per cubic yard is equal to $4.11 per ton. This will be used as a starting point for the 

following analysis. 

Under the adjusted BMP cost assumptions, Table 2.17 shows that all of the targeted “Y” 

scenarios up to a $450,000 annual budget result in average sediment reduction costs of much less 

than $4.11/ton. But, the marginal cost curves were increasing at an increasing rate. While 

dredging is expensive, there may be some point at which it becomes more feasible than spending 

additional money on BMP implementation. What is the transition point at which it becomes 

more cost-effective to dredge (either now or in the future) rather than spend more money on 

BMP implementation?  

 Case 1a: Implement BMPs and/or dredge beginning in year 1 (i.e., year 2009) assuming a 

random 25% of farms have already adopted BMPs 

Several simplifying assumptions are made in the following case study. This case assumes 

perfect substitutability and equality between preventing a ton of soil from reaching TCL via 

BMP implementation and dredging a ton of sediment from TCL. Each results in one less ton of 

sediment in TCL at the end of each year. While there are other non-monetary benefits and costs 

associated with each of the BMP methods, these are not directly accounted for in this analysis.  

The cost of dredging in year 1 is equal to $4.11 per ton. The average annual cost 

preventing sediment from reaching TCL via the three BMPs analyzed previously is $1.11 per ton 

for a $450,000 budget. Graphing the marginal and total cost curves for sediment reduction 

according to the assumptions of Targ_S_$$$_Y (i.e., targeted sediment reduction scenario with 
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adjusted BMP costs and unlimited budget) shows that BMP implementation is economically 

preferred to dredging for the first 603,414 tons of sediment per year or $915,274 annual budget. 

This is equal to reducing 32.4 percent of the baseline sediment loading into TCL each year (from 

the Kansas portion of the watershed). Stated differently, all funds should be directed towards 

BMP implementation if operating under an annual budget of less than $915,274 per year. Or, if 

there are more than $915,274 in funding available for the restoration and/or protection of TCL, 

then the first $915,274 should be spent on BMPs and any remaining funds should be directed 

towards dredging (note, this is ignoring any other possible benefits provided by watershed 

BMPs). Figure 2.65 graphically shows the points of transition.  

Figure 2.65 Marginal and total cost curves for sediment reduction for Targ_S_$$$_Y (Case 

1a) 

 

The above prescription assumes that BMPs are implemented in a highly targeted or 

“optimal” approach. If targeting of BMPs is not an option, then the prescription here would be to 

immediately spend the funds dredging. This is based on Figure 2.66, which shows the 
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Rand_S_$$$_Y scenario along with a line equal to the constant marginal cost curve of dredging 

at $4.11 per ton. The average cost of reducing sediment via BMPs without any targeting is 

$32.49 per ton, which is nearly 8 times higher than the cost of dredging.  

Figure 2.66 Marginal cost curve for sediment reduction for Rand_S_$$$_Y (Case 1a) 

 

 Case 1b: Implement BMPs and/or dredge beginning in year 1 (i.e., year 2009) assuming the 

most erosive 25 percent of farms have already adopted BMPs 

Using the same methods as in Case 1a but under the assumption that the most erosive 25 

percent of farms have already adopted BMPs, yields somewhat different results. Figure 2.67 

shows that BMP implementation is economically preferred to dredging for the first 226,427 tons 

of sediment per year or $545,544 annual budget. This is equal to reducing 12.2 percent of the 

baseline sediment loading into TCL each year (attributable to the Kansas portion of the 

watershed). In other words, all funds should be directed towards BMP implementation if 

operating under an annual budget of less than $545,544 per year. While this is significantly 
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lower than the $915,274 value from Case 1a, it is still evident that targeted BMP implementation 

is economically preferred to dredging under “realistically feasible” budget scenarios.
20

 

Figure 2.67 Marginal and total cost curves for sediment reduction for Targ_S_$$$_Y_adj 

(Case 1b) 

 

If targeting of BMPs is not an option, then the prescription here, again, would be to 

immediately spend the funds dredging. This is based on Figure 2.68, which shows the 

Rand_S_$$$_Y_adj scenario along with a line equal to the constant marginal cost curve of 

dredging at $4.11 per ton. The average cost of reducing sediment via BMPs without any 

targeting is $53.63 per ton, which is nearly 13 times higher than the cost of dredging. Thus, if we 

assume that BMPs have already been adopted on highly erosive fields throughout TCL 

watershed, the more important targeting of BMPs becomes. 

 

                                                 
20

 The term “realistically feasible” is based on a previous assertion that $450,000 annual budget is in all likelihood a 

maximum based on relevant agency budgets. 
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Figure 2.68 Marginal cost curve for sediment reduction for Rand_S_$$$_Y_adj (Case 1b) 

 

 Case2a: Implement BMPs in year 1and dredge beginning in year 16 assuming a random 25% 

of farms have already adopted BMPs 

The second case describes a situation in which BMPs are implemented in years 1 through 

15. Then, beginning in year 16, dredging will occur. The question is: What are the savings in 

dredging costs realized in year 16 due to the implementation of BMPs in years 1 through 15?  

This calculation is essentially calculating the present value of the cost of dredging in 15 

years. Beginning with a current cost of dredging of $4.11 per ton, a 6.94 percent inflation rate, 

and a 15 year analysis period, the future value of dredging (at the beginning of year 16) is 

calculated to be $11.25 per ton. Converting this to present value terms using a discount rate of 

4.625 percent (NRCS 2009) yields a present value of $5.71 per ton. The higher inflation rate 

relative to a lower discount rate results in a present value of dredging in 15 years value that is 
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higher than current dredging costs. From an economic perspective, if dredging is to be delayed 

15 years or more, more money can be justifiably spent on BMP implementation. 

As Figure 2.69 depicts, up to $1,047,959 should now be spent on targeted BMP 

implementation. This is an increase of $132,685 per year due to the decision to delay dredging 

until year 16. This amounts to 629,488 tons of annual sediment reduction or 33.8 percent of the 

total sediment loading into TCL from the Kansas portion of the watershed. Coincidentally, this 

also happens to approximately be the point at which the marginal cost curve becomes effectively 

vertical. 

Figure 2.69 Marginal and total cost curves for sediment reduction for Targ_S_$$$_Y (Case 

2a) 

 

As stated earlier, this finding is simply a function of the inflation to discount rate 

difference. If the two rates were set equal, then the prescription from Case 2 would essentially be 

no different from the prescription from Case 1. In other words, the point at which funding should 

taken away from BMP implementation is the same. Conversely, if the discount rate was higher 
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than the rate of inflation, less money should be directed towards BMP implementation because 

dredging is going to relatively cheaper in the future.  

In all cases and scenarios, if BMPs can only be implemented in a random fashion, the 

prescription would be to forego all BMP implementation in favor of dredging now or in the 

future. This is because random BMP implementation is between 5 to 8 times more costly than 

current or delayed dredging costs. 

 Case 2b: Implement BMPs in year 1 and dredge beginning in year 16 assuming the most 

erosive 25 percent of farms have already adopted BMPs 

Using the same methods as in Case 2a but under the assumption that the most erosive 25 

percent of farms have already adopted BMPs, yields somewhat different results. Applying this 

assumption results in less funding that could be spent on targeted BMP implementation. That is, 

when Case 2a is compared to Case 2b, nearly $325,000 less could now be spent on targeted BMP 

adoption. This is displayed in Figure 2.70 which shows that up to $723,347 could now be spent 

on targeted BMP implementation compared to $1,047,959 in Case 2a.  

Making the decision to delay dredging until year 16 (i.e., comparing to Case 1b) results in 

an increase of $177,803 per year that could be spent on BMPs. Case 2b suggests that 261,199 (an 

increase from 226,427 tons in Case 1b) tons of annual sediment reduction could be achieved via 

BMP implementation or 14.0 percent of the total sediment loading into TCL from the Kansas 

portion of the watershed.  
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Figure 2.70 Marginal and total cost curves for sediment reduction for Targ_S_$$$_Y_adj 

(Case 2b) 

 

 Conclusion 

This study answered the question: How can physiographical and economic relationships 

within the watershed be quantified to provide insights into the selection of cost-effective 

alternative management strategies? This question was addressed by integrating a geographic 

information system (GIS) based watershed model, reservoir rehabilitation management 

strategies, statistical analyses of historic watershed and water quality data, with an economic 

analysis of alternative sedimentation reduction strategies. The following are some of the key 

findings, which can offer decision-makers better insight into the benefits and cost implications 

associated with achieving various water quality levels and sedimentation reduction goals within a 

large watershed. 
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Both physiographical and economic factors must be considered for cost-effective conservation 

to occur. 

Consideration of only one side (i.e., either physiographic or economic) of a soil and water 

resource issue will not result in an optimal strategy from a cost-effectiveness standpoint. 

Targeting areas that produce the most pollution per acre is more cost-effective than a random 

approach, but may miss the mark if those areas also exhibit high BMP costs (e.g., due to high 

opportunity costs). Likewise, focusing only on areas where BMP costs are low may produce 

“better than random” results, but may not achieve cost-effective pollution reduction if the areas 

do not exhibit high levels of pollutant reduction. 

 

Optimal BMP targeting is from 8 to 23 times more cost-effective than random implementation, 

but also is likely to be more costly to administer. 

Random BMP implementation is not an effective method for funding and placing BMPs. 

This is somewhat representative of a policy where conservation funds are issued to any interested 

and willing landowner in a county or watershed. While this approach achieves equity, 

conservation dollars are being spent in areas that do not deliver a good “bang for the buck” 

relative to other areas. Specifically, a targeted approach can reduce 23 times more sediment for a 

given budget than a random approach. It should be noted, however, that a highly targeted 

approach can be costly from an administration standpoint. 

 

BMP implementation is more cost-effective than dredging if done in a targeted manner, but 

not if randomly implemented. 
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In the case of TCL watershed, if conservation funds cannot be implemented in a highly 

targeted manner, then it may in fact be more cost-effective to allocated funds for dredging. 

Annualized dredging costs are around $5 per ton whereas annualized “random” BMP 

implementation costs average from $30 to $50 per ton. Under a targeted approach, 

approximately $500,000 to $1,000,000 per year could be spent on BMP implementation before 

any funds are spent on dredging. It should be noted that if one were to assume that sediment 

delivery ratios are equal to one for each subwatershed, these dollar figures would increase. 

  

Up to approximately 1 million dollars per year, not considering “intangible” costs of BMP 

implementation, could be spent on targeted BMP implementation before some selected 

dredging may be needed.  

 “Intangible” costs represent all those costs other than pure accounting costs, which a 

farmer may take into consideration when deciding whether to implement a given BMP. 

Examples may include: various hassle factors, need for additional training/education, and/or 

concern of more future government regulation if participating in a conservation program. This 

study only included the accounting costs of adopting BMPs, and thus, may have underestimated 

the total costs of BMP implementation.  

However, the original BMP costs were adjusted to reflect more current-day economic 

values. These adjusted “Y” cost scenarios were used in the dredging cost analysis. Based on this, 

approximately $500,000 to $1,000,000 could be spent on targeted BMP implementation before 

any funds are spent on dredging.  
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If “intangible” costs of BMP implementation are significant and/or BMPs cannot be targeted 

effectively, dredging is likely more cost-effective. 

In general, reservoir dredging has been looked upon as a very expensive approach to 

reducing reservoir sedimentation. However, it may not be entirely cost-prohibitive on an 

annualized per unit basis. Relatively low “intangible” costs and/or effective targeting are 

necessary conditions that must exist for BMP implementation to be more cost-effective than 

dredging. If either one of these conditions does not hold, dredging may in fact be a more cost-

effective approach to addressing sedimentation in TCL. Again, random BMP implementation 

results in average costs of sedimentation reduction of  $30 to $50 per ton whereas dredging costs 

average $5 per ton. 

 Limitations and future research needs 

While this research analyzes and compares the cost-effectiveness of various BMP 

implementation approaches in the TCL watershed with dredging, the benefits associated with 

each of these strategies have not been addressed. Other limitations of this study are that only 

three in-field cropland BMPs are included in the analysis and streambank stabilization strategies 

were not considered. In addition to these points, only the Kansas portion (~25 percent) of the 

entire TCL watershed was considered for BMP application. In other words, “business as usual” 

is assumed to be the case for the Nebraska portion. There may in fact be value related to an 

interstate cooperative approach to address these issues. To be clear, a comprehensive benefit-cost 

analysis is not performed in this study. The following discussion highlights some of the 

limitations of this study and makes recommendations for future areas of research related to BMP 

implementation, dredging, and reservoir sedimentation in general. 
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The exact locations and types of BMPs currently in place throughout the TCL watershed 

are unknown. Because of this reality, assumptions are made in this study regarding previous 

BMP implementation. Specifically, 25 percent of the farms are removed from the choice set. 

This is accomplished by either: 1) randomly removing 25 percent of the farms; or 2) removing 

the most erosive 25 percent of farms from the choice set. In reality, current conditions are likely 

somewhere in between these two extremes. Thus, the results presented should be interpreted with 

this in mind. More accurate information regarding past and current BMP adoption is necessary to 

enhance the realism of studies like this. 

While this analysis compares BMP implementation to dredging from a cost standpoint, 

this is only half of the story. The benefits created or preserved by each activity must be 

considered to adequately analyze these management alternatives. Consider the following as a 

foreword to some of the relevant benefits. 

The application of BMPs to reduce soil erosion and nutrient runoff can result in benefits 

to a watershed region that may not be directly linked to the downstream reservoir (i.e., TCL). 

BMPs can improve soil productivity over time, which is a benefit to landowners. Improved 

wildlife habitat for hunting and other related recreation benefits in the watershed above the 

reservoir also may be created or preserved through BMP implementation. Further, benefits 

related to improved water quality in streams and rivers may be non-additive. That is, a reduction 

in nitrogen runoff close to a stream located far away from the reservoir may actually be more 

valuable to society than a reduction of soil erosion in a field bordering the reservoir. Our analysis 

only considers the costs and pollutant reductions achieved by BMP implementation and does not 

attempt to quantify any of the other benefits. 



151 

 

To the extent that society values carbon sequestration in the future, BMP implementation 

could result in benefits that accrue to society at large and not just those in the watershed or 

reservoir users. It also may be likely that users of water downstream of TCL would benefit from 

improved water quality attributable to BMPs.  

The possibility of changes in climatic conditions and the impacts of those changes are 

other wild cards in this discussion. Climatic changes may significantly affect water use, water 

quality, and TCL watershed ecosystem services. Less frequent but more intense rainfall events or 

even more droughty conditions may increase the use and benefits of BMPs. The possibilities of 

these additional benefits and the growth of them would need to be considered in a more 

comprehensive benefit-cost analysis. 

There does not exist a current, comprehensive analysis of the benefits generated by all of 

the resources in and around TCL or any of the conservation practices implemented throughout 

the watershed. A 2001 Army Corps of Engineers study estimated benefits generated by TCL, but 

this study focuses solely on the reservoir (USACE 2001). Without much provided detail, it is 

likely that this study did not include many of the non-market benefits of TCL. A more 

comprehensive, watershed-wide analysis of costs and benefits (including non-market values) 

would be necessary to more adequately compare the various alternatives for protecting and/or 

restoring TCL: BMP implementation to dredging to BMP implementation with dredging to “do-

nothing”. 
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CHAPTER 3 - Incorporating Point Sources into the Watershed 

Management Discussion 

While nonpoint sources are nearly the sole contributors of sediment in many watersheds, 

contributions of nutrient pollution often comes from both point and nonpoint sources. 

Wastewater treatment plants, in particular, emit both nitrogen and phosphorus into receiving 

surface waters. These point sources are regulated through environmental permits which define 

the amount of nutrients (and other pollutants) that may be discharged into receiving streams and 

rivers. Nonpoint sources (with the exception of larger confined animal operations) are generally 

unregulated. Water quality trading is a policy alternative that attempts to capitalize on 

cooperative arrangements between regulated point sources and unregulated nonpoint sources. 

Chapter 4 incorporates a similar agent-based modeling technique as used in the previous 

chapter, but focuses on the simulation of a point-nonpoint source water quality trading market 

for nutrient reduction. Whereas Chapter 2 considered the case of a “watershed manager” 

attempting to allocate conservation funding in a targeted manner, Chapter 4 simulates a market 

where the participants have the incentive to find the most cost-effective means of reducing 

nutrient loading to meet water quality limits. Potentially, society as a whole can benefit from 

such cooperative arrangements.  

As one might imagine, the construction and design of these markets will affect the 

amount of trading that does or does not occur. Chapter 4 attempts to answer the following 

research question: How can water quality trading markets be designed in ways that take into 

account different levels of information among buyers and sellers and what are the implications 

for the determination of “optimal” trading ratios? To examine the ways that these market 
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imperfections may interact to impact the performance of a WQT market, an agent-based model is 

constructed, which simulates a hypothetical point-nonpoint market.
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CHAPTER 4 - A Simulation of Factors Impeding Water Quality 

Trading 

 Introduction 

Environmental economists have argued that pollution trading programs are an efficient 

means of improving environmental quality, as they give firms with the lowest pollution control 

costs the largest incentive to reduce pollution. Such low-cost firms are able to sell pollution 

credits to firms with higher control costs. Aligning incentives with control costs is the condition 

needed to ensure minimum-cost control of pollution overall. Such incentives typically do not 

arise from traditional, uniform regulations. 

Following on the highly successful trading programs for air emissions such as sulfur 

dioxide (NCEE, 2001), many states have recently adopted trading programs to improve water 

quality. There are at least 47 water quality trading (WQT) programs currently active or under 

development worldwide with the overwhelming majority in the United States (Selman et al., 

2009). In principle, such programs could be applied to any water-borne pollutant and allow 

trading among point sources, among nonpoint sources, or between point and nonpoint sources 

(the latter is known as “point-nonpoint trading”). Most of the existing programs are designed 

with point-nonpoint trading to limit nutrient loading: point sources are allowed to meet their 

nutrient emission limits by purchasing water quality credits from agricultural producers in the 

surrounding watershed. These producers are then obligated to implement a best management 

practice (BMP) that reduces expected nutrient loading by an amount commensurate with the 

number of credits sold. 
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Substantial evidence exists that nonpoint sources can reduce nutrient loading at a much 

lower cost than point source polluters in many watersheds, suggesting substantial scope and 

gains from point-nonpoint trading (Faeth, 2000). Despite the potential gains, perhaps the most 

commonly noted feature of existing programs is low trading volume; none of the programs have 

had extensive trading activity and many have had no trading at all (Hoag and Kughes-Popp, 

1997). A widely cited and vivid example is the Fox River program in Wisconsin (Hahn, 1989), 

which had only one trade after its inception in 1981 even though an early study (O’Neil, 1983) 

found substantial potential gains from trading among all participating firms. 

These outcomes suggest the presence of obstacles to trading that were not recognized in 

the design of existing programs. While these obstacles have not been studied in a systematic 

fashion, individual researchers have identified various trading barriers in different contexts. Two 

of the barriers discussed in the literature are limited trading information and distortionary trading 

ratios. Limited information among market participants regarding each others’ bid prices will 

introduce inefficiency because there is no assurance that the executed transactions are the most 

gainful (Atkinson and Teitenberg, 1991; Netusil and Braden, 2001). The trading ratio in point-

nonpoint programs is typically defined as the quantity of expected nonpoint loading reduction 

needed to offset one unit of point source loadings. Many existing programs set trading ratios 

substantially greater than one, ostensibly to adjust for the greater uncertainty in nonpoint loading 

reduction (EPA, 1996). However, such ratios operate like a tax to dampen the benefits from 

trading, hence reducing trading volume and overall gains from trading (Malik et al., 1993; 

Horan, 2001, Horan and Shortle, 2005; Hennessy and Feng, 2008). 

How can WQT markets be designed in ways that take into account different levels of 

information among buyers and sellers and what are the implications for the determination of 
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“optimal” trading ratios? To examine the ways that these market imperfections may interact to 

impact the performance of a WQT market, an agent-based model is constructed, which simulates 

a hypothetical point-nonpoint market. In particular, the market is modeled using a variant of the 

sequential, bilateral trading algorithm proposed by Atkinson and Tietenberg (1991). This paper 

first presents an overview of the simulation modeling technique and then analyzes the effects of 

two prominent market impediments identified in the WQT literature: information levels and 

trading ratios.  

 Relevant literature 

While WQT has been promoted by economists as a cost-effective means to achieve water 

quality goals, experience with actual WQT programs has yet to produce these results. Several 

theoretical studies have investigated the factors impeding trading (e.g., Malik et al, 1993; Horan, 

2001; Hennessy and Feng, 2008; Stavins, 1995), but very few articles have simulated an 

environmental trading market in action and only a small number of these have focused on water 

quality trading. Two notable exceptions have utilized trading simulations and relate to this 

research. An often cited article in the environmental markets literature is Atkinson and 

Tietenberg (1991) who simulated a sulfur dioxide trading market. Netusil and Braden (2001) 

followed with a simulation of a water quality market with varying transactions costs. There also 

are several relevant articles that addressed the effects of a trading ratio including Horan (2001) 

and Horan and Shortle (2005).  

Atkinson and Tietenberg examined the bubble policy of the Emissions Trading Program. 

The data used in this study came from 27 point sources in the St. Louis Air Quality Control 

Region. They attempted to explain the divergence in costs between the least cost solution and 

incentive based emissions trading approaches in air quality. More specifically, the article 
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examined the hypothesis that a sequential, bilateral process cannot achieve a cost-effective 

equilibrium in markets dealing with non-uniformly mixed pollutants. 

Simultaneous trading with complete information was the first scenario modeled. This 

most closely mimicked the least cost solution. The second scenario consisted of sequential 

trading with complete information. Firms were assumed to have complete knowledge of each 

other’s control costs, so that trades occurred in the order of gains from exchange – i.e., the first 

trade was between the two traders that had the most to gain from a transaction. The last scenario 

was sequential and operated under incomplete information in which a firm was randomly 

selected and then a “best” trading partner was found. This semi-random selection process 

continued until no feasible trades remained. This algorithm was run 500 times for each air 

quality standard. In all of the scenarios, the air quality standards had to be met. 

The results showed that more stringent standards resulted in greater divergence from the 

least cost benchmark, for all scenarios. The authors also concluded that the amount of 

information available and the sequencing of trades played a large role in the amount of cost 

savings realized. They thought that the most realistic scenario should be found somewhere 

between the complete information, sequential trading scenario and the random partial 

information scenario (thus achieving anywhere between 7% to 88% of the least cost benchmark). 

They did admit, however, that their cost savings results may be too optimistic because they did 

not account for transactions costs. They also suggested that a market for uniformly mixed 

pollutants may come closer to achieving the least cost benchmark. 

Netusil and Braden (2001) built upon Atkinson and Tietenberg (1991) and extended their 

previous work in the area of transferable discharge permits. This is one of only a few studies that 

examined markets for water quality. The authors examined the effects of sequential bilateral 



158 

 

trading under imperfect information in a hypothetical sediment loading market. Their model 

allowed market participants to make multiple trades as opposed to a single trade. 

Their research also incorporated different levels of transactions costs into each trade. 

Another unique issue the authors addressed was lumpy abatement technologies. Trading does not 

always result in perfectly divisible transactions. This effectively simulated how a market would 

function in the real-world, since the quantity supplied by a given trader does not always equal the 

quantity demanded by a given trading partner. 

The data used in this analysis came from a 1,064-acre watershed area in Macon County, 

Illinois. Modeling was performed using a gains-ranked (high information) and a random (zero 

information) contracting scenario. In each scenario, the number of internal and external contracts 

was computed. Internal contracts were defined as trades between two sites under common 

ownership and external contracts were trades between two separate entities. 

The results showed that under the gains-ranked scenario, the sediment load under all 

transaction cost levels were lower than the regulatory policy’s requirement. Another important 

finding in this scenario was that the distribution of internal and external contracts changed as the 

transactions costs levels changed. High transactions costs resulted in a decrease in overall trading 

and caused a shift towards internal contracting. An interesting finding was that as transactions 

costs increased, the overall spending on abatement activities (inclusive of transactions costs) can 

sometimes decrease. The reasoning is that high transactions costs block low value contracts from 

occurring and allow the higher value trades to happen. Under random contracting (zero 

information), however, an increase in transactions costs always resulted in an increase in 

abatement and total costs. 
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The conclusions drawn were that neither trading scenario matched the least cost solution. 

This is because the least cost solution allows for simultaneous multilateral reallocations. 

Nevertheless, it is important to note that both trading scenarios resulted in substantial cost 

savings relative to the regulatory approach even at the highest transactions costs level and lowest 

information level. 

Horan (2001) and Horan and Shortle (2005) analyzed different levels of trading ratios in 

the context of water quality trading. Horan (2001) presented trading ratios utilized in several 

existing, pilot, and planned point- and nonpoint-source trading markets. These ranged from 1.3:1 

to 3:1. Horan and Shortle (2005) performed a numerical example of trading in Susquehanna 

River Basin and arrived at “optimal” trading ratios in the range of 0.89:1 to 3.3:1  

Horan (2001) argued that from a welfare efficiency standpoint, the optimal trading ratio 

would necessarily be less than one when a WQT model is specified to have uniformly mixed 

pollutant loads, stochastic nonpoint loads, convex damages, and no transactions costs. This is 

because the variability in nonpoint loadings creates stochastic ambient pollution concentrations 

and stochastic damages from pollution. This leads to more social risk if damages are convex in 

ambient pollution and if increases in nonpoint loadings increase the variability of ambient 

pollution. Social risk is costly, so there are more benefits to reducing the variable nonpoint 

source pollution. Higher trading ratios work against this objective because they reduce the 

trading revenue per unit of loading reduction for nonpoint sources, thereby attracting fewer 

nonpoint traders and a higher overall level of nonpoint pollution. Thus, smaller trading ratios are 

more economically efficient.  

Horan (2001) suggested that it is realistic to assume policies are designed to allocate 

resources within the context of policy makers’ preferences, not to maximize aggregate economic 



160 

 

surplus. Thus, trading ratios are designed to be politically optimal. He further argued that trading 

ratios in excess of one may be the rational public sector response to the risk associated with 

stochastic nonpoint pollution because political support groups are likely to focus on expected 

loading reductions as opposed to overall social risks. Thus, trading ratios must be greater than 

one for most trading programs to be politically palatable. 

 Conceptual Model 

As with most markets, WQT markets can suffer from various imperfections and frictions, 

which tend to hinder trading and/or reduce the overall gains from trading. This section utilizes 

classic demand a supply diagrams to assess the impact of different market imperfections. 

 Frictionless market 

As a point of comparison, the equilibrium of a frictionless market with no imperfections 

is discussed first, represented in Figure 4.1. The demand curve in this figure represents treatment 

plants’ willingness to pay (WTP) for purchasing credits, reflecting the cost of controlling 

pollution through technology upgrades. The supply curve represents farms’ cost of pollution 

control through best management practices, which is their willingness to accept (WTA) to sell 

credits. When   = 0 credits, treatment plants are meeting their limits by controlling all of their 

pollution through their own facility upgrades or technological improvements. As   increases, 

plants are buying additional credits to allow more of the pollution to be controlled by the 

nonpoint sources. Thus, at any point on the diagram the total amount of pollution control does 

not change; however, the sources responsible for the pollution control does change. Stated 

differently, the quantity of trades has zero effect on expected water quality. 
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Figure 4.1 Frictionless WQT market 

 

 

This frictionless market condition assumes there are no intangible or transaction costs, 

and also that the trading ratio is 1:1. In the equilibrium of this market, point sources purchase  * 

credits from nonpoint sources at a price of   . Area   represents the market gains to point 

sources, reflecting the difference between the potential cost of technology upgrades (points along 

the demand curve) and the actual cost of purchased credits (the price   ). Area B is the gain to 

nonpoint sources, or the price received for the credits sold (  ) less the cost of generating those 

credits (points along S). The sum of these two areas is equal to total benefits or total cost savings 

from the program. Cost savings are maximized under these frictionless or “perfect” market 

conditions.  
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It is important to note that the areas delineating the gains to point source and nonpoint 

sources in the figure assume that every contract is traded at the equilibrium price,   . This would 

only occur under a simultaneous trading scenario. However, the way water quality markets are 

designed, trading must occur in a sequential and bilateral fashion. So, each contract results in a 

potentially unique price. Acknowledging this would change the individual values of the point- 

and nonpoint-source gains, but the total cost savings (sum of the two gains) would not vary. This 

limitation is true for all of the following market scenarios.  

 Information levels 

The first type of imperfection considered is limited information, which impacts the 

sequencing of trades. A frictionless market presumes complete information, where every 

participant in the market knows precisely the willingness-to-pay and willingness-to-accept of all 

potential traders. In this situation, the trades would be executed in order of their market gains: the 

first trade would be between the buyer with the highest WTP and the seller with the lowest 

WTA, with successive trades yielding progressively narrower gaps between WTP and WTA 

until all gains have been exhausted at the equilibrium point. In a low information scenario, 

participants have little or zero information on other traders’ WTP or WTA values. In this limiting 

case, buyers and sellers would be traders would be paired together in a random order 

uncorrelated to the gains from trading. 

Ermoliev et al. (2000) actually proved that random-ordered, sequential trading can lead to 

an efficient outcome ( * in Figure 4.1). However, this can only occur when every participant has 

the ability to be a buyer and a seller and there are no transaction costs. That is, traders can back 

out of earlier trades at no penalty if they find a new trading partner that is more advantageous. 

This assumption is unlikely to hold for water quality trading programs in practice, where each 
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trade usually involves a binding contract that can only be breached at some financial penalty. All 

of the models in our paper operate under the assumptions that only point sources are able to buy 

credits, only nonpoint sources can sell credits, and that the penalties for breaching trade contracts 

are prohibitively large. Since Ermoliev et al.’s (2000) assumptions are not met in these models, 

different information levels should result in different levels of cost savings. 

 Figure 4.2 shows the effects of different information levels in the market. For this 

example, the focus only will be on the point sources located at points 1 and 3 on the demand 

curve (hereafter plant 1 and plant 3), and the nonpoint sources located at points 2 and 4 on the 

supply curve (hereafter farm 2 and farm 4). For simplicity, let us assume that all four of these 

entities would trade at most one credit. As in any market, the net gain from a given trade is equal 

to the difference between the price along the demand curve and the price along the supply curve. 

In a complete information and frictionless market, the first transaction involving any of these 

traders would be between plant 1 and farm 4. Plant 3 and farm 2 will not engage in trading 

because there would be a negative net gain from doing so. So, for the four traders combined, the 

net gain from trading under complete information is P1 – P4. 
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Figure 4.2 Effects of information 

 

 

A low information scenario, on the other hand, has the potential to result in different net 

gains (theoretically, it also has the potential to result in the same net gains). Suppose plant 1 

trades with farm 2. The resulting net gain from this transaction is P1 – P2. Suppose also that plant 

3 trades with farm 4 for a net gain of P3 – P4. The combined net gain from this sequence of 

trading is (P1 – P2)+(P3 – P4) = (P1 – P4) – (P2 – P3). So, assuming that all other traders are paired 

the same as the complete information scenario, this “ill-ordering” of trades would reduce the 

overall market gains by P2 – P3. This suggests that lower information is likely to increase trading 

volume while reducing the total gains from trading. However, whether point sources or nonpoint 

sources gain or lose from less information depends on the order of trading that is realized and 

cannot be unambiguously predicted. 
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 Trading ratios 

Figure 4.3 displays the impact of imposing a trading ratio on an otherwise frictionless 

market. As explained above, maximum efficiency is achieved by a 1:1 trading ratio. Imposing a 

2:1 trading ratio affects the nonpoint sources or the suppliers in the market. They must reduce 

nutrient loading by two pounds in order to receive one tradable credit. This essentially doubles 

the price of all credits sold, resulting in the steeper supply curve shown in Figure 4.3. 

 

Figure 4.3 Effects of a trading ratio 

 

 

The quantity of credits traded reduces to    and the equilibrium price of credits increases 

to   . The gains to point sources with the 2:1 trading ratio is area A, compared to area A+B+C+D 

in the efficient market. Thus, raising the trading ratio to 2:1 induces a loss to point sources of 

Credit price

Quantity of 

credits

S (1:1 t-ratio)

D = PSP*

Q*

A

B

S (2:1 t-ratio)

E F G

C
D

P’

Q’



166 

 

area B+C+D. The gains to nonpoint sources with a 2:1 trading ratio is area B+E, compared to 

area E+F+G in the efficient market. Thus, the net effect of the 2:1 trading ratio to the nonpoint 

sources is equal to B–F–G. If B is bigger than F+G, then the nonpoint sources benefit from the 

higher trading ratio. The change in total cost savings from the higher trading ratio is equal to a 

loss of area C+D+F+G. 

Unlike the frictionless market, expected loading in this case does respond to changes in 

the volume of credit trades. Because nonpoint traders must reduce loading by 2 lbs for every 1 

pound emitted by point source traders, there will be a net reduction of 1 pound of expected 

loading for each trade. For the equilibrium depicted in the diagram, point sources increase their 

expected loading by    pounds, while nonpoint sources reduce expected loading by 2   pounds. 

This implies a net reduction in expected loading equal to    pounds. 

 Co-effects of information levels and trading ratios 

The last type of market imperfection covered in this section of the thesis are the co-

effects of trading ratios with low information levels. The combined effects of these two 

imperfections are illustrated in Figure 4.4. Note, that linear supply and demand curves are used 

here for clarity.  
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Figure 4.4 Co-effects of trading ratio and information 

 

 

First, assume a supply curve under some “base” trading ratio (e.g., 1:1). Next, consider a 

higher trading ratio case (e.g., 3:1), which as seen before results in an upward shift and pivot of 

the supply curve. Focusing on the demand side, one can see that the highest price a point source 

is willing to pay for a credit is equal to     , which is located at the top of the demand curve. 

Similarly, the lowest willingness to accept prices are represented where the nonpoint sources’ 

supply curves (under each trading ratio) cross the y-axis and are equal to      and      . 

In previous discussion of information levels, it was found that whenever market 

participants located to the right of where demand and supply cross trade a less than efficient 

outcome results. Under a zero information case, these participants, which will be referred to as 
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“poor” traders (high cost sellers and low cost buyers) because they result in “poor” market 

performance, can and will participate in the market. 

Highlighted segments A, B, C, and D in Figure 4.4 illustrate the segments of demand and 

supply that fall to the right of equilibrium. Under the base trading ratio, the potential “poor” 

traders are equal to line segment A on the demand side and segment C on the supply side. In the 

case of a higher trading ratio, the amount of “poor” traders is represented by segment B on the 

demand side and D on the supply side. To determine the effects of a higher trading ratio under 

zero information, these segments must be compared across trading ratio levels. 

When segments A and B on the demand side are compared, there is a slight increase. This 

means that the potential for “poor” point sources to trade in the market increases. On the other 

hand, when C is compared to D on the supply side, there is a significant decrease, which 

indicates that the potential for “poor” nonpoint sources trading decreases significantly. Overall, 

this indicates that increasing the trading ratio can actually improve market efficiency (“ill-

ordered” trades decrease) when there is a scarcity of information in the marketplace.  

 Conceptual model summary 

The main predictions of theory are that the lack of information increases the quantity of 

credits traded and reduces overall cost savings. The trading ratio will also reduce overall cost 

savings but will reduce the quantity of credits traded. However, several relationships cannot be 

resolved from theory alone, nor can the magnitude of any of the impacts be assessed. These 

items will be addressed in the empirical simulation analysis in the following sections.  
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 Simulation Model 

An agent-based model (ABM) is created to simulate a hypothetical point-nonpoint source 

market. ABM’s have increasingly been used to study micro-level decisions and the resulting 

cascade of impacts within complex systems (Tesfatsion, 2006). This simulation is one in which 

all point sources (hereafter, we also refer to point sources as “plants”) are required to meet a 

lower limit of nutrient concentrations in their discharge stream. Plants can either upgrade their 

technology to meet this limit, or keep their old technology and buy water quality credits from 

nonpoint sources (hereafter, also called “farms”) to offset their excess discharges. Such a 

regulatory driver is necessary for the market to function. Farms who sell credits are then 

obligated to adopt land management practices to reduce expected loadings. 

The model relies on pre-specified values of the willingness-to-pay (WTP) for purchasing 

credits by each plant and the willingness-to-accept (WTA) for selling credits by each farm who 

is a potential trader. A sequential, bilateral trading algorithm (Atkinson and Tietenberg, 1991) 

then simulates market outcomes from these base data. As described in the subsections below, the 

impact of information levels and trading ratios are captured either by varying the input data or by 

altering the assumptions in the trading algorithm that govern how buyers and sellers are paired 

together. 

ABMs require specification of two types of computational objects: the “agents” 

themselves and the “environment” in which they operate (Parker et al., 2002).  

 Agents 

The agents in this model are point- and nonpoint-sources of a water contaminant (e.g., 

nutrients). To create model agents, costs and quantities are generated for each of I = 10 point 

sources and J = 500 nonpoint sources using random draws from independent lognormal 
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distributions. The lognormal distribution is chosen to allow for the well-documented skewness in 

the distribution of costs and environmental impacts across the population of polluters (Nowak, et 

al., 2006). The parameter values of the lognormal distributions for both buyers and sellers are 

shown in Table 4.1. The distributional parameters and the population sizes are chosen to 

approximately reflect the data used by Smith (2004) to model phosphorus trading in the Middle 

Kansas River subwatershed. To ensure that the final results are not sensitive to a particular set of 

random draws, all scenarios are repeated 10,000 times in Monte Carlo fashion, with a new set of 

prices and quantities assigned to all agents each time. The results reported are the means of the 

10,000 iterations.  

Table 4.1 Lognormal distribution parameters for buyers and sellers 

Item Mean Standard deviation 

Buyer quantities (lbs) 5,000 1,250 

Buyer WTP ($/lbs) 20 15 

Seller quantities (lbs) 200 50 

Seller WTA ($/lbs) 12 8 

  

 Environment 

The “environment” is the trading mechanism that determines how buyers and sellers are 

paired together in the water quality trading market.  

 The marginal gains matrix and the trading ratio 

In each replication of the model, the WTP and WTA data were randomly generated from 

the distributions presented in Table 4.1. These data are used to form the core element of the 

simulation model, the marginal gains matrix. This matrix contains the potential gains from each 

possible pairing of the farms and plants. The rows of this matrix correspond to plants while its 

columns correspond to farms. In scenario  , the cell in row   and column   of this matrix is  
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where    is the assumed trading ratio in scenario   (expressed as the number of credits a farm 

must sell to offset one unit of plant discharge) and          is the mutual gain if plant   buys 

one more credit from farm   under the assumptions embedded in scenario  . 

A related matrix  , has the same dimensions and tracks the quantity of credits available 

for trade between each trading partner. The quantity data are also generated from the 

distributions in Table 4.1. At the start of trading the (i,j)th element of   is equal to     = min(qi, 

qj), where qi and qj are the randomly generated quantity of credits demanded by plant i and 

quantity of credits to be supplied by farm j, respectively. As trading proceeds the values in this 

matrix are reduced by the quantity transacted by the respective trading partners. A trader is 

removed from the market when its available quantity reached zero. 

 The trading algorithm and information levels 

The effect of marketplace information is captured by varying the assumptions in the 

sequential, bilateral trading algorithm that pairs buyers and sellers together in a specific order. 

Four possible information scenarios are modeled, which are described in turn below. 

 Complete information or marginal-gains-ranked trading 

This scenario assumes that every point source and every nonpoint source in the watershed 

knows precisely all the WTP and WTA values of all traders. In this situation, the most 

advantageous trades are executed first. Action begins by the plant with the highest WTP trading 

with the farm having the lowest WTA. This is determined by the element in the marginal gains 

matrix with the greatest positive value. 
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The point source purchases as many credits as it needed or until it buys out the nonpoint 

source, whichever occurs first. The quantity data and the marginal gains matrix are both updated 

accordingly when the trade is completed. 

The second trade begins by finding the greatest positive number in the updated marginal 

gains matrix. This determines the next two trading partners. The aforementioned process is then 

repeated. This marginal gains-ranked process continues until there are no more gains to be made 

by trading. 

 Zero information trading 

The second scenario presumes zero information, in which none of the traders know their 

own or anyone else’s WTP/WTA. Therefore, the trades occur in a completely random order. The 

single restriction is that only trades resulting in positive gains are allowable. A single element 

from the marginal gains matrix is chosen at random and this determines the trading partners. The 

trade is then made and the marginal gains matrix and quantity data are updated. Subsequent 

trades operate in the same random fashion. Trading continues until no positive gains remain. 

 Incomplete information trading: WTP Known 

The third scenario models the case where the plants’ WTP values are known to all 

traders, but farms’ WTA values are unknown. This depicts a situation in which the point sources 

drive the market. The first trade is between plant with the highest WTP and a randomly selected 

farm. Plants in remaining trades are selected in descending order of their WTP, paired with a 

randomly chosen farm each time. Trading data are updated using the same process as the other 

scenarios. 
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 Incomplete information trading: WTA Known 

The fourth scenario is similar to the third but reverses the roles of the plants and farms. 

Here, the plants’ WTP values are unknown, but farms’ WTA are common knowledge, implying 

that farms choices will drive the market. Farms enter the market in ascending order of their 

WTA, and are paired with randomly chosen plants, following the same previously described 

updating rules between trades.  

 The simulation experiments 

Table 4.2 lists the assumptions for each of the 24 simulation experiments conducted. 

Scenarios 1a through 1f assume that all market participants have perfect, complete information 

regarding others’ WTP and WTA values. On the other hand, scenarios 2a through 2f assume that 

there is zero information known regarding these values. A comparison of scenario sets 1 and 2 

will reveal the effect of complete information on market performance. If market performance 

changes significantly between these two cases, scenarios 3(a through f) and 4(a through f) will 

illuminate the separate effects of marketplace information on WTP or WTA under the partial 

information scenarios.  
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Table 4.2 The simulation experiments 

Scenario Trading Ratio Information Level 

1a 0.5:1 Complete 

1b 1:1 Complete 

1c 1.5:1 Complete 

1d 2:1 Complete 

1e 2.5:1 Complete 

1f 3:1 Complete 

2a 0.5:1 Zero 

2b 1:1 Zero 

2c 1.5:1 Zero 

2d 2:1 Zero 

2e 2.5:1 Zero 

2f 3:1 Zero 

3a 0.5:1 WTP Known 

3b 1:1 WTP Known 

3c 1.5:1 WTP Known 

3d 2:1 WTP Known 

3e 2.5:1 WTP Known 

3f 3:1 WTP Known 

4a 0.5:1 WTA Known 

4b 1:1 WTA Known 

4c 1.5:1 WTA Known 

4d 2:1 WTA Known 

4e 2.5:1 WTA Known 

4f 3:1 WTA Known 

 

Various levels of the trading ratio also are used. The trading ratio varies from a low of 

0.5:1 in the “a” scenarios up to 3:1 in “f” scenarios. The increment between the ratios is 0.5.  

Before presenting the simulation results for each scenario, two matters of interpretation 

should be noted. First, in evaluating the performance of the WQT market, comparisons are made 

to a baseline situation in which treatment plants would be required to meet the nutrient reduction 

limit by upgrading technology. Based on the information about the plants’ expected costs and 

quantities in Table 4.1, the limits would require the plants to reduce their annual nutrient load by 

a combined (expected value of) 10 plants × 5,000 lbs/plant = 50,000 lbs annually. The expected 
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total annual cost of these technology upgrades would be $20/pound × 50,000 lbs = $1.0 million. 

These two values form a baseline for comparing market outcomes. As trades occur in a WQT 

market, the same loading reduction is achieved but an increasing share of loading reduction is 

obtained from farms instead of treatment plants. Trading also will reduce the overall cost of 

achieving the target. Therefore, cost savings can be expressed both in dollar terms and as a 

percentage of the baseline costs. Likewise, trading volume can be expressed as the number of 

credits traded (measured in the pounds of loading reduction borne by farms) or as a percentage of 

the loading reduction target. 

Second, the gains from trading are equivalent to the cost savings to society from trading. 

A portion of these cost savings would be a gain to the point sources, to the extent that their credit 

purchases are less costly than the technology upgrades would have been. The remaining portion 

would be a benefit to farms, to the extent that credit revenue is larger than their costs of adopting 

land management practices. However, these simulations make no attempt to partition the total 

cost savings into the benefits to the two groups. The relative sizes of the gains would depend on 

the actual credit prices, which would vary across transactions and would depend on the relative 

negotiating power of the two groups. Lacking any reliable means to estimate the relative 

bargaining power and contract prices, estimates of the gains to the two groups could only be 

obtained by making arbitrary assumptions.  

 Simulation Results 

Table 4.3 summarizes the results of the scenarios resulting from the first 50 trades. While 

all of the scenarios ultimately resulted in more than 50 trades (ranged from 120-300 trades 

depending on the scenario), real-world evidence has shown that most programs result in very few 

transactions. Based on this, it was decided to primarily focus on the first 50 trades to provide a 
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more realistic analysis setting. This offers one base of comparison, which would apply if trading 

is limited. Appendix C displays the scenario results when all possible trades are completed. 

Table 4.3 Simulation results 

Scenario 

Trading 

Ratio 

Volume Traded Cost Savings Final Costs 

Base 

Loading 

Reduction 

by NPS 

(lbs) 

Loading 

Reduction 

by PS (lbs) 

Additional 

Loading 

Reduction 

by NPS 

(lbs) 

Total 

Loading 

Reduction 

(lbs) Total ($) 

Percent 

(%) Total ($) 

Avg. 

($/lb) 

1a 0.5 9,133 31,735 - 40,867 412,685 41.3 587,315 14.37 

1b 1.0 9,476 40,524 - 50,000 228,499 22.8 771,501 15.43 

1c 1.5 6,351 43,649 3,175 53,175 147,751 14.8 852,249 16.03 

1d 2.0 4,816 45,184 4,816 54,816 106,804 10.7 893,196 16.29 

1e 2.5 3,888 46,112 5,832 55,832 76,717 7.7 923,283 16.54 

1f 3.0 3,239 46,761 6,479 56,479 56,569 5.7 943,431 16.70 

2a 0.5 9,139 31,722 - 40,861 226,862 22.7 773,138 18.92 

2b 1.0 9,492 40,508 - 50,000 85,333 8.5 914,667 18.29 

2c 1.5 6,368 43,632 3,184 53,184 50,567 5.1 949,433 17.85 

2d 2.0 4,822 45,178 4,822 54,822 37,452 3.7 962,548 17.56 

2e 2.5 3,887 46,113 5,831 55,831 29,546 3.0 970,454 17.38 

2f 3.0 3,240 46,760 6,480 56,480 24,331 2.4 975,669 17.27 

3a 0.5 9,134 31,733 - 40,866 363,109 36.3 636,891 15.58 

3b 1.0 9,476 40,524 - 50,000 177,677 17.8 822,323 16.45 

3c 1.5 6,354 43,646 3,177 53,177 101,392 10.1 898,608 16.90 

3d 2.0 4,820 45,180 4,820 54,820 66,671 6.7 933,329 17.03 

3e 2.5 3,888 46,112 5,832 55,832 43,917 4.4 956,083 17.12 

3f 3.0 3,240 46,760 6,480 56,480 31,088 3.1 968,912 17.16 

4a 0.5 9,134 31,733 - 40,866 275,477 27.5 724,523 17.73 

4b 1.0 9,476 40,524 - 50,000 117,971 11.8 882,029 17.64 

4c 1.5 6,351 43,649 3,175 53,175 68,249 6.8 931,751 17.52 

4d 2.0 4,816 45,184 4,816 54,816 49,469 4.9 950,531 17.34 

4e 2.5 3,888 46,112 5,832 55,832 42,166 4.2 957,834 17.16 

4f 3.0 3,240 46,760 6,479 56,479 38,569 3.9 961,431 17.02 

NPS = nonpoint source 

PS = point source 
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The first and second columns of Table 4.3 serves as a cross reference for the scenario 

inputs and assumptions listed in Table 4.2. The third through sixth columns report trading 

volume; loading reductions by type and source. 

The next two columns report the cost savings, in total dollars and as a percentage of the 

baseline total costs ($1 million). Simulated cost savings varied widely, ranging from about 

$24,000 to $413,000 or from about 2.4% to 41.3% of baseline costs. Again, the potential cost 

savings varied substantially under the various simulated market structures. 

The last two columns report the final (post-trading) costs. Due to the different trading 

ratios, some of the scenarios exactly achieved the loading reduction target while others were 

either below or above the target level. The next-to-last column was computed simply as the 

baseline (pre-trading) costs less the cost savings from trading (e.g., in scenario 1a, $1,000,000 - 

$412,685 = $587,315), while the last column expresses the final cost in average terms – i.e., 

costs per unit of loading reduction achieved (in scenario 1a, $587,315/40,867 lbs = $14.37/lb of 

loading reduction). The last column provides a useful comparison of the cost-effectiveness 

across scenarios. With no trading, the cost per unit of loading reduction is $1,000,000/50,000 lbs 

= $20.00/lb. With trading, this cost ranged from $14.37/lb to $18.92/lb, so as expected, trading 

will reduce per-unit control costs.  

 Information levels 

The effect of marketplace information on overall cost savings is unambiguously positive. 

This can be illustrated by comparing scenario 1a (complete information), which resulted in net 

cost savings of $412,685 to scenario 2a (zero information), which resulted in savings of only 

$226,862. This relationship between complete and zero information held for every scenario 

modeled regardless of trading ratios. These results were expected and are similar to the findings 
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of Atkinson and Tietenberg (1991). Intuitively, lower information reduces cost savings because it 

creates some risk that “high cost” sellers – those with high WTA values – will displace some low 

cost sellers that could have traded for a larger gain. Similarly, the “low paying” buyers with low 

WTP values, may displace some of the higher paying buyers. The market transactions that 

maximize cost savings would include the low cost sellers paired with the high cost buyers, but in 

the limiting case of zero information, all buyers and sellers are equally likely to participate.  

When the gains per trade are depicted graphically, the effects of information levels on 

market performance become more pronounced. Table 4.5 illustrates the gains per trade under 

different information levels with a 1:1 trading ratio assuming all trades are completed. Scenario 

1b ends at $497,161 of total gains. This level of gains is reached after 227 trades have been 

completed. Scenario 2b, on the other hand, reaches a maximum of $392,259, but does so after 

255 trades; an additional 28 trades. Scenario 1b could have ceased after 118 trades and more 

gains would have been realized ($393,724) than the total for scenario 2b. If trading were halted 

after 118 trades in scenario 2b, only $188,623 (48% of its final value) of gains would have been 

realized.  
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Figure 4.5 Effects of marketplace information on cost savings with a 1:1 trading ratio 
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Figure 4.5 also reveals the effects of different types of incomplete information. When 

traders are informed of buyers’ prices (WTP Known - scenario 3b), the cumulative cost savings 

curve behaves very similarly to the complete information case (scenario 1b) across the early 

trades while scenario 4 (WTA Known) behaves similarly to the zero information case. Scenario 

3b results in more cost savings than scenario 4b across the first 65% of trades. Analyzing only 

the first 50 trades (Figure 4.6), shows the importance of information regarding buyers’ prices 

relative to sellers’ prices when only a limited number of trades occur. These results imply that if 

market designers feel that only a limited number of trades will be completed, creating an 

institution that provides accessible information about buyers’ prices (3b) is preferred to 

providing information about sellers’ prices (4b). Of course, this still depends on other factors 

such as the cost of providing this information to market participants. 
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Figure 4.6 Effects of marketplace information on cost savings with a 1:1 trading ratio (first 

50 trades) 

 

 

 Trading ratio 
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As stated earlier, the purpose of a trading ratio greater than one is to account for nutrient 

reduction uncertainty and ensure that there is an overall increase in water quality (beyond that 

which would occur in the absence of WQT and reliance on only technology upgrades). 

According to the simulation results, this is generally the case. Figure 4.7 illustrates the trading 

volume and net environmental gains in the different scenarios. The height of the red bars 

represents the amount of loading reduction transferred from point sources to nonpoint sources 

through trading. The green bars represent the amount of loading reduction achieved from 

necessary upgrading of wastewater treatment plants. In cases of a trading ratio greater than 1:1 

(i.e., scenarios 1c through 1f and 2c through 2f), there are additional loading reductions achieved 

beyond the target, represented by the height of the blue bars. With a 2:1 trading ratio for 

example, each unit of increased plant loadings is offset by a two pound reduction in expected 

loading by farms, resulting in net environmental gains. Scenario 1d results in 4,816 credits 

traded. Because of the 2:1 trading ratio, nonpoint sources reduce expected loading by a total of 

9,632 lbs (2*4,816), so combining this with the 45,184 lbs of reduction achieved from 

wastewater treatment plant upgrades the total expected loading reduction amounts to 54,816 lbs. 

So, the introduction of a trading ratio greater than 1:1 results in an environmental improvement – 

the 50,000 lbs loading reduction target is exceeded by 4,816 lbs. 
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Figure 4.7 Trading volume and additional loading reduction by scenario (first 50 trades) 
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Figure 4.8 Effects of a trading ratio under complete information 

 

  

$14.00

$15.00

$16.00

$17.00

$18.00

$19.00

$20.00

0 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 C

o
s

t 
p

e
r 

P
o

u
n

d
 o

f 
R

e
d

u
c

ti
o

n

Trades

Simulation 1a

Simulation 1b

Simulation 1c

Simulation 1d

Simulation 1e

Simulation 1f



185 

 

Figure 4.9 Effects of a trading ratio under zero information 

 

 

The results are different for zero information. Here, the 0.5:1 trading ratio (Scenario 2a) 

is the least cost-effective (highest average costs) across the first 50 trades (Figure 4.9). Under 

zero information, we find that the trading ratio has an unambiguously positive effect on cost-

effectiveness. One reason this occurs is that high trading ratios help to eliminate the highest-cost 

sellers by pricing them out of the market. As noted above, zero information creates a risk that 

high-cost sellers make transactions that displace their low-cost peers. However, this occurs only 

to the extent that high-cost sellers can find buyers with high enough WTP to generate gainful 

transactions. An increase in the trading ratio can be interpreted as a proportional increase in each 

sellers’ effective WTA (e.g., a 2:1 trading ratio doubles each sellers’ WTA). As such, the sellers 

$17.00

$18.00

$19.00

$20.00

0 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 C

o
s

t 
p

e
r 

P
o

u
n

d
 o

f 
R

e
d

u
c

ti
o

n

Trades

Simulation 2a

Simulation 2b

Simulation 2c

Simulation 2d

Simulation 2e

Simulation 2f



186 

 

with initial WTA’s near the maximum WTP will not be able to find a gainful trading partner if 

the trading ratio is increased.  

 Co-effects of information levels and trading ratios  

Table 4.4 shows the effects of information levels on cost-effectiveness across different 

trading ratios. Specifically, scenarios 1(a through f) with complete information are compared to 

scenarios 2(a through f) with zero information. The results show that as the trading ratio 

increases information levels become less important. At extremely high trading ratios, the 

difference in average cost-effectiveness between complete- and zero-information approaches 

zero. It is important to note, however, that this difference will never become positive. In other 

words, more information is always preferred to less information but it becomes less important as 

the trading ratio increases. 

Table 4.4 Effects of information levels on cost-effectiveness across different trading ratios 

Scenarios for 

Comparison 

Trading 

Ratio 

Difference in 

Average 

Cost-Effectiveness 

($/lb) 

More Cost-

Effective 

Scenario? Conclusions 

1a & 2a 0.5:1 -4.55 Complete (1a)  

As trading ratio 

increases, information 

becomes less 

important. 

1b & 2b 1:1 -2.86 Complete (1b)  

1c & 2c 1.5:1 -1.82 Complete (1c)  

1d & 2d 2:1 -1.26 Complete (1d)  

1e & 2e 2.5:1 -0.85 Complete (1e)  

1f & 2f 3:1 -0.57 Complete (1f)  

      

Based on these results, the determination of an “optimal” trading ratio should necessarily 

depend on the amount of information available to market participants. The next section discusses 

points to consider in the characterization of an “optimal” trading ratio.  
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 Characteristics of an “optimal” trading ratio 

Since real-world WQT markets most likely operate somewhere in between complete and 

zero information, a “partial” information scenario, where there is some information known about 

both WTP and WTA values, may be more realistic. If the partial information scenario is defined 

as halfway in between complete and zero information, then averages can be calculated across 

appropriate scenarios’ output data. For example, the output from scenario 1b (complete 

information, 1:1 trading ratio) and scenario 2b (zero information, 1:1 trading ratio) can be 

averaged. The averaged data are reported in Table 4.5. 

In the process of designing existing programs, potential traders often emphasize cost-

effectiveness while environmental groups tend to focus on expected loadings. A possible test of 

political feasibility is to compare the scenarios based on these two criteria. Based on the 

information in Table 4.5, the poorest performing scenarios appear to be the cases where there are 

extremely low or high trading ratios. The “a” (0.5:1 trading ratio) scenario have the lowest 

average costs of all scenarios at $16.65/lb of reduction. Most importantly, however, is the fact 

that the “a” scenario result in only 40,864 lbs of loading reduction - 9,136 lbs short of the goal. 

This is the only scenario that fails to meet the goal of 50,000 lbs of loading reduction. For this 

reason, the 0.5:1 trading ratio would not be a politically or socially acceptable.  
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Table 4.5 Partial information scenarios 

 

Disregarding scenario “a”, scenario “b” (1:1 ratio) results in the greatest amount of cost 

savings (16%) and the lowest average costs at $16.86/lb. However, there is no additional loading 

reduction achieved beyond the 50,000 lbs target. 

The “f” scenario (3:1 trading ratio) exhibits the highest average costs of nutrient 

reduction at $16.99/lb. The overall cost savings of 4% are minimal. On the positive side, 

however, is the fact that this scenario does result in 6,479 lbs of additional loading reduction.  

It is difficult to definitively rank scenarios b through f as the ordering would be 

dependent upon normative judgments about the relative weighting of the criteria. There are, 

however, several definite implications for an “optimal” trading ratio.   

If overall information availability is a concern or if the goal is to maximize total loading 

reduction a higher trading ratio (e.g., 3:1) is recommended.  On the other hand, if it is presumed 

that information will be readily disseminated and understood by market participants, a lower 

trading ratio may be more economical. The cost of disseminating information to market 

participants needs to be considered during the decision-making process. If the goal is to simply 

maximize cost savings while achieving the reduction goal, a 1:1 trading ratio shows the greatest 

potential. However, if WQT market designers hope to gain additional loading reduction while 

Scenario 

Trading 

Ratio 

Volume Traded Cost Savings Final Costs 

Base 

Loading 

Reduction 

by NPS 

(lbs) 

Loading 

Reduction 

by PS (lbs) 

Additional 

Loading 

Reduction 

by NPS 

(lbs) 

Total 

Loading 

Reduction 

(lbs) Total ($) 

Percent 

(%) Total ($) 

Avg. 

($/lb) 

a 0.5 9,136  31,728   -  40,864  319,774  32.0   680,226  16.65  

b 1.0 9,484  40,516   -  50,000  156,916  15.7   843,084  16.86  

c 1.5 6,359  43,641  3,180  53,180  99,159   9.9   900,841  16.94  

d 2.0 4,819  45,181  4,819  54,819  72,128   7.2   927,872  16.93  

e 2.5 3,888  46,112  5,831  55,831  53,132   5.3   946,868  16.96  

f 3.0 3,240  46,760  6,479  56,479  40,450   4.0   959,550  16.99  
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maintaining high levels of cost savings a 1.5:1 trading ratio may be most appropriate. If overall 

average cost-effectiveness or additional nutrient reductions is of importance and buyer and seller 

information is scarce, a higher trading ratio may be in order. 

 Simulation of real-world WQT markets 

While the model developed here utilized constructed data, there is no reason why these 

same market simulation algorithms could not simulate markets from observed data in particular 

locations. Because WQT programs, by nature, involve complex interactions between economics 

and the biophysical world, accurately simulating a WQT market requires detailed cost and 

watershed modeling data.  

There are two types of cost data needed. On the point source side, facility upgrade costs 

and annual operation maintenance costs of meeting a more stringent nutrient standard are needed 

for wastewater treatment plants in the study watershed. These data either can be attained from 

surveys or by using general industry cost functions (e.g., Greenhalgh and Sauer, 2003). In either 

case, the one-time and annual costs along with the appropriate time horizon should be used to 

calculate the annualized costs, which considers the time value of money by including a discount 

rate. 

For nonpoint sources, the expected costs for BMPs are needed. These costs can come 

from surveys or from previous research. University Extension fact sheets can often times provide 

general estimates for this type of data (e.g., Devlin et al., 2003). One-time and annual costs 

should be converted to an annualized basis in analogous fashion to the point source data. 

Further, traders may perceive “intangible” costs that are weighed against any potential 

gains. That is, the assumption that only monetary trading gains enter traders’ utility functions 

may not hold. A growing literature documents that the behavior of participants in an institution is 
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influenced by institutional processes and rules, independent of the participants’ fiscal outcomes 

(Berg, et al., 2005; Johnston and Duke, 2007). Obtaining the information necessary to estimate 

intangible costs that may exist is crucial for simulating a real-world WQT market. Since these 

data are subjective by nature, it only can be obtained accurately through interaction with 

potential market participants via experiments, interviews, or surveys.  

Along with the economic data, biophysical watershed data are needed. Watershed models 

play a central role in the simulation and execution of real-world WQT markets. Watershed 

models represent a scientific understanding of how land characteristics, BMPs, and other factors 

relate to pollutant loading into surface waterbodies (Nejadhashemi et al., 2009). There are many 

types of models ranging from very simple to very advanced (see Nejadhashemi et al., 2009 for 

guidance in choosing a model). Regardless of the type of model used, the minimum output from 

the model should be: the baseline nutrient loading from each subwatershed, reduction in loading 

from each subwatershed after a given BMP(s) is implemented, and relevant delivery ratios.  

Combining all of this information will allow the researcher to generate the necessary 

WTP and WTA curves discussed previously in this paper. The procedures laid out in this paper 

should be followed to simulate sequential, bilateral trading in the real-world watershed.  

 Conclusion 

While there is substantial evidence that nonpoint sources have lower nutrient reduction 

costs than point sources, experience with WQT reveals a common theme: little or no trading 

activity. The success of WQT seems, in part, to depend on the structure of the market created to 

bring buyers and sellers together to transact exchanges. These outcomes suggest the presence of 

obstacles to trading that were not recognized in the design of existing programs.  
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While the complete information scenario serves as a useful benchmark, most existing 

WQT markets are decentralized in nature, so that limited information causes traders to be 

matched in a less efficient sequence. A variety of information levels are possible. One side of the 

market may have more information than the other (incomplete information) or neither side 

having any knowledge of the other side’s bid or offer prices (zero information). Each of these 

scenarios leads to a different sequencing of trades.  

Several notable results are found regarding information levels. The results imply that if 

market designers feel that only a limited number of trades will be consummated, creating an 

institution that provides accessible information about buyers’ prices is preferred to providing 

information about sellers’ prices. Overall, more information is always better, but it becomes less 

important with higher trading ratios.  

Trading ratios are a common component of many existing WQT programs. A typical 

trading ratio of 2:1 requires a nonpoint source to reduce two pounds of expected nutrient loading 

in order to receive one pound of trading credit. These ratios are purported to serve as a “safety 

factor” and are incorporated to account for the uncertainty in the measurement and monitoring of 

nonpoint source loading. Because nonpoint traders must reduce loading by two pounds for every 

one pound emitted by point source traders, there will be a net reduction of one pound of expected 

loading for each trade. So, while inhibiting some trades from ever occurring, trading ratios also 

have the potential to improve water quality beyond trading with a 1:1 trading ratio. This paper 

examines these tradeoffs in terms of effects on market performance and then describes 

procedures that can be used to characterize an optimal trading ratio if one exists. Based on the 

findings of this study, an “optimal” trading ratio should depend on the market designers’ goals 

and the amount of information available and the cost of disseminating this information.  



192 

 

Previous studies (Malik et al, 1993; Horan, 2001; Horan and Shortle, 2005) have shown 

that under plausible conditions a trading ratio greater than 1:1 is likely to increase the risk of 

environmental damage because it dampens the incentive for nonpoint sources to trade and results 

in a greater share of overall loading attributed to (risky) nonpoint sources. This result is at odds 

with the trading ratios chosen in existing programs, nearly all of which are greater than 1:1. 

Horan (2001) offers one potential explanation for this discrepancy – certain groups of political 

stakeholders lobby for higher trading ratios because their goal is to raise overall loading 

reductions. Here, we find that apart from any implications on environmental risk or political-

economic factors, there is an economic welfare justification for high trading ratios in certain 

situations with limited trading information. Limited information introduces a random element to 

market participation, creating a risk that high-cost sellers (low-cost buyers) will transact to 

displace low-cost sellers (high-cost buyers) who could have traded for greater gain. To the extent 

that high trading ratios price the highest-cost sellers and lowest-cost buyers out of the market, it 

reduces this risk and lowers average costs.  

There are several limitations to this study. One is that these simulations did not consider 

the risk and variability associated with NPS loading. Mean loading values were used. In the real-

world, there will most definitely be some years in which the BMPs put in place by farms will 

over-perform and significantly reduce nutrient runoff and in other years the BMPs may 

significantly under-perform. Incorporating this stochastic process into the model would 

illuminate the effect of environmental risk – which previous research has shown will tend to 

decrease the welfare-maximizing trading ratio – against the information effects considered in the 

present study. A stochastic model also would be capable of predicting policy-relevant measures 

such as the percentage of time nutrient reduction targets would be exceeded and by how much. 
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Two other important market impediments not addressed in this study are transactions 

costs and intangible costs. These two factors may play a major role in determining the success or 

failure of a market for water quality.  

Based on the findings of this paper and the previous research that helped to mold this 

study, there appears to be a need for the comprehensive simulation of a WQT market in a real-

world watershed to provide a further examination of potential market impediments. The data 

requirements for a study such as this would be substantial, but necessary for describing the “true” 

story that has and continues to be played out in past, current, and future WQT markets.



194 

 

CHAPTER 5 - Concluding Remarks 

Nearly a decade of working in the water resource economics research and extension 

fields has provided an appreciation for the role that economics can play in the management of 

our water resources as well as the limitations that exist. The following are a few general 

observations based on my extension experience and research. 

Cost-effective conservation is smart economics and is a way of getting the biggest “bang 

for the buck,” but it may not be the most politically or socially palatable approach. In other 

words, cost-effective policies may fund conservation practices for one farmer, while a neighbor 

farmer just down the road receives nothing due to not meeting the cost-effective criteria needed 

to receive any funding in the way of BMP cost-share or incentive payments. A similar case may 

occur when a farmer who has already been using a suite of conservation practices funded out of 

his own pocket gets no additional funding, while his neighbor, whose fields have massive gullies 

after every rain resulting from years of neglecting terraces and moldboard plowing, receives 

substantial conservation payments.  

What is “right” or “wrong” or “fair” in this situation? Or, to whom should conservation 

payments be issued? These are most definitely challenging questions and certainly hot topics in 

conservation policy arenas. First, there is likely not a “Pareto-optimal” approach where everyone 

is made better off (or at least as well off) and no one is made worse off. Many policies seem to 

attempt to achieve this result often times at the taxpayers’ expense. Secondly, it seems 

reasonable to assert that, from an economic perspective, conservation payments should only be 

issued for practices where the vast majority of benefits go to those offsite or downstream. In 

other words, in cases where the external benefits of the BMP are much greater than those 

received by the farmers themselves.  
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As stated in Chapter 2, a BMP such as no-till has been adopted by many farmers on their 

own without outside compensation. This is most likely due to the increased net returns offered 

from no-till cropping systems for certain farming operations. For this reason, it is questionable as 

to whether management practices like no-till should be funded through conservation programs. If 

it makes economic sense to the farmer to adopt no-till, he will adopt. If it doesn’t make economic 

sense, he will not adopt. It is a debatable point as to whether or not a relatively small per acre 

incentive payment for three years (i.e., EQIP) is going to be enough to convince a farmer to 

change their entire cropping management strategy. It is economically reasonable to presume that 

any farmer who has in the past received conservation funding for converting to no-till would 

have converted to no-till on their own without any outside compensation or returned to their 

conventional farming methods at the conclusion of the allotted time period. Cases such as these 

yield a negative return on investment for the conservation funding agencies. Further, these cases 

have the potential to “harm” neighboring farmers.
21

  

A tillage management strategy is a significant and long-term decision and investment by 

a farmer and a little money for a few years is likely not going to cause any change in behavior 

that would not have occurred otherwise without the conservation funding. If policy cost-

effectiveness is of concern, conservation dollars ought not to be directed towards cropping 

management strategies such as these that many farmers have already found to be very cost-

effective and profitable on their own without outside compensation.  

On the other hand, BMPs such as filter strips offer little financial benefit to the farmer. 

Rather, the overwhelming majority of the benefits go to downstream stakeholders. These 

represent market failures by way of externalities. In these cases, cost-share and incentive 

                                                 
21

 Farmers who get conservation payments may be able to afford higher bids for cash renting cropland compared to 

neighboring farmers who did not receive the payments. 
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payment funding can be economically justified. Most farmers operate a profit-seeking business. 

Just like any other business they have a goal of remaining in operation and viable in the future. 

So, a profit must be made. Taking profitable cropland out of production for the benefit of society 

and wildlife may sound great in theory, but the truth is that it is not feasible for the majority of 

farmers. Society stands to benefit from BMPs such as filter strips and permanent vegetation 

establishment, so society should justifiably bear some of the cost. As an aside, it is my 

experience that most farmers will voluntarily contribute some of their own resources (e.g., time 

and money) to such projects even if the majority of benefits go downstream. Most farmers are 

excellent stewards of the land and desire to conserve our soil and water resources for future 

generations.  

Related to all of this, it is not cost-effective to allocate conservation funds to individuals 

for practices they are already doing (i.e., early versions of the Conservation Security Program). 

Again, this is paying farmers for something that they obviously thought generated positive net 

returns or made sense to them in some other way. Throwing more money at existing BMPs 

depletes budget resources without improving environmental quality.  

The idea of “cost-effective conservation” was addressed in this dissertation and every 

attempt was made to make this research as applicable as possible to real-world policy. It was 

found that targeting of conservation practices is 8 to 23 (note: not small by any stretch of the 

imagination) times more cost-effective than an approach where funds are given to any willing 

farmer/landowner who fills out an application. This really highlights the necessity of targeting. 

Considering the case of a watershed impacted by reservoir sedimentation, saving or spending 

funds on dredging would be economically preferred to random or even semi-random BMP 

implementation. It should be noted that “optimal” targeting is difficult in the real-world and most 
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likely cannot be achieved to the degree modeled in this dissertation. But, one policy alternative 

that does offer some potential in attaining the most cost-effective environmental improvement is 

competitive bidding. Specifically, a BMP auction policy approach.
22

 BMP auctions are an 

excellent way of creating the proper incentives to allow the “market” to identify the most cost-

effective environmental improvements in a watershed.  

Doing much research in the area of WQT and meeting with both farmers and those in the 

wastewater treatment plant (WWTP) industry helps to provide an understanding and a sense of 

the potential success/failure for this policy alternative. This chapter concludes with a few 

concluding remarks related to WQT.  

Right now, it does not appear that WQT has great potential - at least in the central part of 

the United States. The current nutrient discharge limits in place (or those being proposed for the 

very near future) are achievable by most WWTPs with relatively little effort and/or financial 

resources.  

The WWTP community sees a lot of risk associated with participating in these types of 

markets relative to “concrete and steel” engineering solutions that can be achieved via plant 

upgrades. Further, cities desire to have up to date and modern treatment facilities. WWTPs 

notoriously, whether deservedly or undeservedly, get a bad rap for being dirty, smelly, and 

pollution causing. A poor, rundown looking facility does not help this cause. A WWTP operator 

in central Kansas summarized it best by saying, “Look, we work around crap all day long, we 

don’t want a facility that looks like crap.” In other words, they want shiny, state-of-the-art 

facilities. So, why would they want to pay farmers to put conservation practices in at the expense 

of facility improvements?  

                                                 
22

 BMP auctions were briefly described in Chapter 1. 
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However, if EPA cranks the nutrient limits down to very low levels in the future (given 

today’s costs of technology), WQT may have more potential. This would be the necessary driver 

for WQT to work. This would likely create such a huge divergence in point versus nonpoint 

source control costs to overcome the risk, uncertainty, and overall reluctance by WWTPs to want 

to participate in WQT markets. 
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Appendix A - Field operations and enterprise budgets 

The following field operations and cropping budgets were assembled for each crop 

rotation and tillage system combination in both the Nebraska and Kansas side of the TCL 

watershed. Note that all cost values are in a dollars per acre basis. The field operations data were 

used in the SWAT model. The budgets presented here were not used in determining the costs of 

the BMPs. They are simply included as additional cropping information. 

Table A.1 Field operations for continuous corn 
 Conventional Tillage Reduced Tillage No-Tillage 

C
O

R
N

 

Chisel 5-Nov Chisel 5-Nov Herbicide application 10-Oct 

Tandem disk 27-Mar Knife anhydrous amm. 5-Apr Knife anhydrous amm. 5-Apr 

Knife anhydrous amm. 5-Apr Field cultivate 15-Apr Herbicide application 15-Apr 

Field cultivate 15-Apr Herbicide application 15-Apr Plant corn 16-Apr 

Herbicide application 15-Apr Plant corn 16-Apr Fertilizer application 16-Apr 

Plant corn 16-Apr Fertilizer application 16-Apr Herbicide application 20-May 

Fertilizer application 16-Apr Herbicide application 20-May Harvest corn 1-Oct 

Herbicide application 20-May Harvest corn 1-Oct   

Harvest corn 1-Oct     

  

Table A.2 Budget for continuous corn 

 CORN 

 Tillage Type 

INCOME PER ACRE Conv. Red. NT 

A. Yield per acre 110 110 110 

B. Price per bushel 4.21 4.21 4.21 

C. Net government payment 13.60 13.60 13.60 

D. Indemnity payments - - - 

E. Miscellaneous income - - - 

F. Returns/acre ((A x B) + C + D + E) 476.70 476.70 476.70 

    

COSTS PER ACRE    

 1. Seed  85.86 85.86 85.86 

 2. Herbicide 23.03 23.03 29.93 

 3. Insecticide / Fungicide - - - 

 4. Fertilizer and Lime 134.25 134.25 134.25 

 5. Crop Consulting - - - 

 6. Crop Insurance - - - 

 7. Drying - - - 
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 8. Miscellaneous 8.25 8.25 8.25 

 9. Custom Hire / Machinery Expense 131.53 119.72 99.03 

 10. Non-machinery Labor 9.49 9.49 9.49 

 11. Irrigation    

 a. Labor - - - 

 b. Fuel and Oil - - - 

 c. Repairs and Maintenance - - - 

 d. Depreciation on Equipment / Well - - - 

 e. Interest on Equipment - - - 

 12. Land Charge / Rent 76.00 76.00 76.00 

G. SUB TOTAL 468.41 456.60 442.81 

 13. Interest on 1/2 Nonland Costs 13.73 13.32 12.84 

H. TOTAL COSTS 482.14 469.92 455.64 

I. RETURNS OVER COSTS (F - H) (5.44) 6.78 21.06 

J. TOTAL COSTS/BUSHEL (H/A) 4.38 4.27 4.14 

K. RETURN TO ANNUAL COST (I+13)/G 1.77% 4.40% 7.65% 

 

 

Table A.3 Field operations for corn-soybean rotation 
 Conventional Tillage Reduced Tillage No-Tillage 

C
O

R
N

 

Chisel 5-Nov Chisel 5-Nov Herbicide application 10-Oct 

Tandem disk 27-Mar Knife anhydrous amm. 5-Apr Knife anhydrous amm. 5-Apr 

Knife anhydrous amm. 5-Apr Field cultivate 15-Apr Herbicide application 15-Apr 

Field cultivate 15-Apr Herbicide application 15-Apr Plant corn 16-Apr 

Herbicide application 15-Apr Plant corn 16-Apr Fertilizer application 16-Apr 

Plant corn 16-Apr Fertilizer application 16-Apr Herbicide application 20-May 

Fertilizer application 16-Apr Herbicide application 20-May Harvest corn 1-Oct 

Herbicide application 20-May Harvest corn 1-Oct    

Harvest corn 1-Oct         

S
O

Y
B

E
A

N
S

 

Chisel 5-Nov Field cultivate 15-Apr Herbicide application 30-Apr 

Tandem disk 27-Mar Field cultivate 14-May Plant soybeans 5-May 

Field cultivate 15-Apr Plant soybeans 16-May Fertilizer application 5-May 

Field cultivate 14-May Fertilizer application 16-May Herbicide application 1-Jun 

Plant soybeans 16-May Herbicide application 14-Jun Harvest soybeans 1-Oct 

Fertilizer application 16-May Harvest soybeans 1-Oct    

Herbicide application 14-Jun      

Harvest soybeans 1-Oct         
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Table A.4 Budget for corn-soybean rotation 

 CORN SOYBEANS ROTATION 

 Tillage Type Tillage Type Tillage Type 

INCOME PER ACRE Conv. Red. NT Conv. Red. NT Conv. Red. NT 

A. Yield per acre 110 110 110 33 33 33    

B. Price per bushel 4.21 4.21 4.21 8.69 8.69 8.69    

C. Net government payment 13.60 13.60 13.60 13.60 13.60 13.60    

D. Indemnity payments - - - - - -    

E. Miscellaneous income - - - - - -    

F. Returns/acre ((A x B) + C + D + E) 476.70 476.70 476.70 300.37 300.37 300.37 388.54 388.54 388.54 

          

COSTS PER ACRE          

 1. Seed  85.86 85.86 85.86 35.00 35.00 35.00    

 2. Herbicide 23.03 23.03 29.93 11.86 11.86 18.76    

 3. Insecticide / Fungicide - - - - - -    

 4. Fertilizer and Lime 117.15 117.15 117.15 36.61 36.61 36.61    

 5. Crop Consulting - - - - - -    

 6. Crop Insurance - - - - - -    

 7. Drying - - - - - -    

 8. Miscellaneous 8.25 8.25 8.25 8.25 8.25 8.25    

 9. Custom Hire / Machinery Expense 131.53 119.72 99.03 101.89 75.21 58.78    

 10. Non-machinery Labor 9.49 9.49 9.49 6.37 6.37 6.37    

 11. Irrigation          

 a. Labor - - - - - -    

 b. Fuel and Oil - - - - - -    

 c. Repairs and Maintenance - - - - - -    

 d. Depreciation on Equipment / Well - - - - - -    

 e. Interest on Equipment - - - - - -    

 12. Land Charge / Rent 76.00 76.00 76.00 76.00 76.00 76.00    

G. SUB TOTAL 451.31 439.50 425.71 275.98 249.30 239.77 363.64 344.40 332.74 

 13. Interest on 1/2 Nonland Costs 13.14 12.72 12.24 7.00 6.07 5.73 10.07 9.39 8.99 

H. TOTAL COSTS 464.44 452.22 437.95 282.98 255.36 245.50 373.71 353.79 341.72 

I. RETURNS OVER COSTS (F - H) 12.26 24.48 38.75 17.39 45.01 54.87 14.83 34.74 46.81 

J. TOTAL COSTS/BUSHEL (H/A) 4.22 4.11 3.98 8.58 7.74 7.44    

K. RETURN TO ANNUAL COST 

(I+13)/G 

5.63% 8.47% 11.98% 8.84% 20.49% 25.28%    
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Table A.5 Field operations for grain sorghum-soybeans-wheat rotation 
 Conventional Tillage Reduced Tillage No-Tillage 

G
R

A
IN

 S
O

R
G

H
U

M
 

Chisel 1-Aug Chisel 15-Aug Herbicide application 10-Aug 

Tandem disk 1-Sep Herbicide application 15-Oct Herbicide application 15-Oct 

Tandem disk 27-Mar Knife anhydrous amm. 5-May Knife anhydrous amm. 5-May 

Knife anhydrous amm. 5-May Field cultivate 15-May Fertilizer application 25-May 

Field cultivate 15-May Fertilizer application 25-May Plant sorghum 25-May 

Fertilizer application 25-May Plant sorghum 25-May Herbicide application 25-May 

Plant sorghum 25-May Herbicide application 25-May Herbicide application 1-Jul 

Herbicide application 25-May Herbicide application 1-Jul Harvest sorghum 25-Sep 

Herbicide application 1-Jul Harvest sorghum 25-Sep    

Harvest sorghum 25-Sep         

S
O

Y
B

E
A

N
S

 

Chisel 5-Nov Chisel 5-Nov Herbicide application 30-Apr 

Tandem disk 27-Mar Field cultivate 15-Apr Plant soybeans 5-May 

Field cultivate 15-Apr Field cultivate 14-May Fertilizer application 5-May 

Field cultivate 14-May Plant soybeans 16-May Herbicide application 1-Jun 

Plant soybeans 16-May Fertilizer application 16-May Herbicide application 1-Jul 

Fertilizer application 16-May Herbicide application 14-Jun Harvest soybeans 1-Oct 

Herbicide application 14-Jun Harvest soybeans 1-Oct    

Harvest soybeans 1-Oct         

W
H

E
A

T
 Field cultivate 10-Oct Fertilizer appl. (preplant) 15-Oct Fertilizer appl. (preplant) 15-Oct 

Fertilizer appl. (preplant) 15-Oct Plant wheat 16-Oct Plant wheat 16-Oct 

Plant wheat 16-Oct Harvest wheat 1-Jul Harvest wheat 1-Jul 

Harvest wheat 1-Jul         
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Table A.6 Budget for grain sorghum-soybeans-wheat rotation 

  GRAIN SORGHUM SOYBEANS WHEAT ROTATION 

  Tillage Type Tillage Type Tillage Type Tillage Type 

INCOME PER ACRE  Conv. Red. NT Conv. Red. NT Conv. Red. NT Conv. Red. NT 

A. Yield per acre  76 76 76 33 33 33 50 50 50    

B. Price per bushel  4.33 4.33 4.33 8.69 8.69 8.69 6.24 6.24 6.24    

C. Net government payment  13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.60    

D. Indemnity payments  - - - - - - - - -    

E. Miscellaneous income  - - - - - - - - -    

F. Returns/acre ((A x B) + C + D + E) 342.68 342.68 342.68 300.37 300.37 300.37 325.60 325.60 325.60 312.99 312.99 312.99 

              

COSTS PER ACRE              

 1. Seed   14.76 14.76 14.76 35.00 35.00 35.00 16.00 16.00 16.00    

 2. Herbicide  29.52 36.42 43.32 11.86 11.86 18.76 - - -    

 3. Insecticide / Fungicide  - - - - - - - - -    

 4. Fertilizer and Lime  77.92 77.92 77.92 36.61 36.61 36.61 84.82 84.82 84.82    

 5. Crop Consulting  - - - - - - - - -    

 6. Crop Insurance  - - - - - - - - -    

 7. Drying  - - - - - - - - -    

 8. Miscellaneous  8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25    

 9. Custom Hire / Machinery Expense 136.62 108.41 98.66 101.89 75.21 58.78 69.37 58.92 58.92    

 10. Non-machinery Labor  8.45 8.45 8.45 6.37 6.37 6.37 7.02 7.02 7.02    

 11. Irrigation              

 a. Labor  - - - - - - - - -    

 b. Fuel and Oil  - - - - - - - - -    

 c. Repairs and Maintenance  - - - - - - - - -    

 d. Depreciation on Equipment / Well - - - - - - - - -    

 e. Interest on Equipment  - - - - - - - - -    

 12. Land Charge / Rent  76.00 76.00 76.00 76.00 76.00 76.00 76.00 76.00 76.00    

G. SUB TOTAL  351.51 330.20 327.35 275.98 249.30 239.77 261.46 251.01 251.01 268.72 250.16 245.39 

 13. Interest on 1/2 Nonland Costs  9.64 8.90 8.80 7.00 6.07 5.73 6.49 6.13 6.13 6.75 6.10 5.93 

H. TOTAL COSTS  361.16 339.10 336.15 282.98 255.36 245.50 267.95 257.14 257.14 275.47 256.25 251.32 

I. RETURNS OVER COSTS (F - H)  (18.48) 3.58 6.53 17.39 45.01 54.87 57.65 68.46 68.46 37.52 56.73 61.67 

J. TOTAL COSTS/BUSHEL (H/A)  4.75 4.46 4.42 8.58 7.74 7.44 5.36 5.14 5.14    

K. RETURN TO ANNUAL COST 

(I+13)/G 

-2.51% 3.78% 4.68% 8.84% 20.49% 25.28% 24.53% 29.71% 29.71%    
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Table A.7 Field operations for continuous soybeans 
 Conventional Tillage Reduced Tillage No-Tillage 

S
O

Y
B

E
A

N
S

 

Tandem disk 27-Mar Field cultivate 15-Apr Herbicide application 30-Apr 

Field cultivate 15-Apr Field cultivate 14-May Plant soybeans 5-May 

Field cultivate 14-May Plant soybeans 16-May Fertilizer application 5-May 

Plant soybeans 16-May Fertilizer application 16-May Herbicide application 1-Jun 

Fertilizer application 16-May Herbicide application 14-Jun Harvest soybeans 1-Oct 

Herbicide application 14-Jun Harvest soybeans 1-Oct    

Harvest soybeans 1-Oct      

Chisel 5-Nov         

 

Table A.8 Budget for continuous soybeans 

 SOYBEANS 

 Tillage Type 

INCOME PER ACRE Conv. Red. NT 

A. Yield per acre 33 33 33 

B. Price per bushel 8.69 8.69 8.69 

C. Net government payment 13.60 13.60 13.60 

D. Indemnity payments - - - 

E. Miscellaneous income - - - 

F. Returns/acre ((A x B) + C + D + E) 300.37 300.37 300.37 

    

COSTS PER ACRE    

 1. Seed  35.00 35.00 35.00 

 2. Herbicide 11.86 11.86 18.76 

 3. Insecticide / Fungicide - - - 

 4. Fertilizer and Lime 36.61 36.61 36.61 

 5. Crop Consulting - - - 

 6. Crop Insurance - - - 

 7. Drying - - - 

 8. Miscellaneous 8.25 8.25 8.25 

 9. Custom Hire / Machinery Expense 101.89 75.21 58.78 

 10. Non-machinery Labor 6.37 6.37 6.37 

 11. Irrigation    

 a. Labor - - - 

 b. Fuel and Oil - - - 

 c. Repairs and Maintenance - - - 

 d. Depreciation on Equipment / Well - - - 

 e. Interest on Equipment - - - 

 12. Land Charge / Rent 76.00 76.00 76.00 

G. SUB TOTAL 275.98 249.30 239.77 

 13. Interest on 1/2 Nonland Costs 7.00 6.07 5.73 

H. TOTAL COSTS 282.98 255.36 245.50 

I. RETURNS OVER COSTS (F - H) 17.39 45.01 54.87 

J. TOTAL COSTS/BUSHEL (H/A) 8.58 7.74 7.44 

K. RETURN TO ANNUAL COST (I+13)/G 8.84% 20.49% 25.28% 
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Table A.9 Field operations for soybeans-wheat rotation 
 Conventional Tillage Reduced Tillage No-Tillage 

S
O

Y
B

E
A

N
S

 

Chisel 1-Aug Chisel 1-Aug Herbicide application 1-Aug 

Tandem disk 1-Sep Herbicide application 1-Sep Herbicide application 15-Oct 

Tandem disk 27-Mar Field cultivate 15-Apr Herbicide application 30-Apr 

Field cultivate 15-Apr Field cultivate 14-May Plant soybeans 5-May 

Field cultivate 14-May Plant soybeans 16-May Fertilizer application 5-May 

Plant soybeans 16-May Fertilizer application 16-May Herbicide application 1-Jun 

Fertilizer application 16-May Herbicide application 14-Jun Harvest soybeans 1-Oct 

Herbicide application 14-Jun Harvest soybeans 1-Oct    

Harvest soybeans 1-Oct         

W
H

E
A

T
 Field cultivate 10-Oct Fertilizer appl. (preplant) 15-Oct Fertilizer appl. (preplant) 15-Oct 

Fertilizer appl. (preplant) 15-Oct Plant wheat 16-Oct Plant wheat 16-Oct 

Plant wheat 16-Oct Harvest wheat 1-Jul Harvest wheat 1-Jul 

Harvest wheat 1-Jul         

  

Table A.10 Budget for soybeans-wheat rotation 

 SOYBEANS WHEAT ROTATION 

 Tillage Type Tillage Type Tillage Type 

INCOME PER ACRE Conv. Red. NT Conv. Red. NT Conv. Red. NT 

A. Yield per acre 33 33 33 50 50 50    

B. Price per bushel 8.69 8.69 8.69 6.24 6.24 6.24    

C. Net government payment 13.60 13.60 13.60 13.60 13.60 13.60    

D. Indemnity payments - - - - - -    

E. Miscellaneous income - - - - - -    

F. Returns/acre ((A x B) + C + D + E) 300.37 300.37 300.37 325.60 325.60 325.60 312.99 312.99 312.99 

          

COSTS PER ACRE          

 1. Seed  35.00 35.00 35.00 16.00 16.00 16.00    

 2. Herbicide 11.86 11.86 18.76 - - -    

 3. Insecticide / Fungicide - - - - - -    

 4. Fertilizer and Lime 36.61 36.61 36.61 84.82 84.82 84.82    
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 5. Crop Consulting - - - - - -    

 6. Crop Insurance - - - - - -    

 7. Drying - - - - - -    

 8. Miscellaneous 8.25 8.25 8.25 8.25 8.25 8.25    

 9. Custom Hire / Machinery Expense 101.89 75.21 58.78 69.37 58.92 58.92    

 10. Non-machinery Labor 6.37 6.37 6.37 7.02 7.02 7.02    

 11. Irrigation          

 a. Labor - - - - - -    

 b. Fuel and Oil - - - - - -    

 c. Repairs and Maintenance - - - - - -    

 d. Depreciation on Equipment / Well - - - - - -    

 e. Interest on Equipment - - - - - -    

 12. Land Charge / Rent 76.00 76.00 76.00 76.00 76.00 76.00    

G. SUB TOTAL 275.98 249.30 239.77 261.46 251.01 251.01 268.72 250.16 245.39 

 13. Interest on 1/2 Nonland Costs 7.00 6.07 5.73 6.49 6.13 6.13 6.75 6.10 5.93 

H. TOTAL COSTS 282.98 255.36 245.50 267.95 257.14 257.14 275.47 256.25 251.32 

I. RETURNS OVER COSTS (F - H) 17.39 45.01 54.87 57.65 68.46 68.46 37.52 56.73 61.67 

J. TOTAL COSTS/BUSHEL (H/A) 8.58 7.74 7.44 5.36 5.14 5.14    

K. RETURN TO ANNUAL COST (I+13)/G 8.84% 20.49% 25.28% 24.53% 29.71% 29.71%    
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Table A.11 Field operations for continuous wheat 

 Conventional Tillage Reduced Tillage No-Tillage 

W
H

E
A

T
 

Chisel 1-Aug Chisel 1-Aug Herbicide application 1-Aug 

Tandem disk 1-Sep Herbicide application 1-Sep Herbicide application 1-Sep 

Tandem disk 1-Oct Field cultivate 10-Oct Fertilizer appl. (preplant) 15-Oct 

Field cultivate 10-Oct Fertilizer appl. (preplant) 15-Oct Plant wheat 16-Oct 

Fertilizer appl. (preplant) 15-Oct Plant wheat 16-Oct Herbicide application 1-Mar 

Plant wheat 16-Oct Herbicide application 1-Mar Harvest wheat 1-Jul 

Herbicide application 1-Mar Harvest wheat 1-Jul    

Harvest wheat 1-Jul         

 

Table A.12 Budget for continuous wheat 

 WHEAT 

 Tillage Type 

INCOME PER ACRE Conv. Red. NT 

A. Yield per acre 50 50 50 

B. Price per bushel 6.24 6.24 6.24 

C. Net government payment 13.60 13.60 13.60 

D. Indemnity payments - - - 

E. Miscellaneous income - - - 

F. Returns/acre ((A x B) + C + D + E) 325.60 325.60 325.60 

    

COSTS PER ACRE    

 1. Seed  16.00 16.00 16.00 

 2. Herbicide 6.16 13.06 19.96 

 3. Insecticide / Fungicide - - - 

 4. Fertilizer and Lime 110.32 110.32 110.32 

 5. Crop Consulting - - - 

 6. Crop Insurance - - - 

 7. Drying - - - 

 8. Miscellaneous 8.25 8.25 8.25 

 9. Custom Hire / Machinery Expense 114.44 95.96 75.27 

 10. Non-machinery Labor 10.79 10.79 10.79 

 11. Irrigation    

 a. Labor - - - 

 b. Fuel and Oil - - - 

 c. Repairs and Maintenance - - - 

 d. Depreciation on Equipment / Well - - - 

 e. Interest on Equipment - - - 

 12. Land Charge / Rent 76.00 76.00 76.00 

G. SUB TOTAL 341.96 330.38 316.59 

 13. Interest on 1/2 Nonland Costs 9.31 8.90 8.42 

H. TOTAL COSTS 351.27 339.29 325.01 

I. RETURNS OVER COSTS (F - H) (25.67) (13.69) 0.59 

J. TOTAL COSTS/BUSHEL (H/A) 7.03 6.79 6.50 

K. RETURN TO ANNUAL COST (I+13)/G -4.78% -1.45% 2.85% 
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Appendix B - Example MATLAB Simulation Code for Chapter 2 

In order for the Chapter 2 code to work correctly, several “functions” are relied upon and 

the associated m.files need to be accessible (i.e., in the current directory in MATLAB). A 

list of these publicly available m.files are listed below: 

 keep3.m 

 officedoc.m (Note, this is not a free program. See the following link for more details 

regarding officedoc - http://undocumentedmatlab.com/OfficeDoc/) 

 randswap.m 

 unique_no_sort 

 

Example Code for Targeted BMP Implementation focusing on sediment and $50,000 

annual budget 
 

%Full information BMP implementation, Marginal Gains based implementation 

%Sediment Reduction 

  

clear %clears workspace; comment this out if using MasterRunFile 

clc %clears command window 

delete ('BestS_15yr_50K.xls') %deletes existing Excel spreadsheet output 

OutFile = 'C:\Documents and Settings\Craig Smith\My 

Documents\Ph.D\Cost_Effective_WS_Management\SimModel_6\BestS_15yr_50K.xls'; 

  

warning off MATLAB:divideByZero 

  

%What are the Sediment reduction goals and budget constraint and iterations? comment if 

%using MasterRunFile 

RedGoal = 100000000; 

Budget = 50000; 

xpercent = 0.25; %percent of farms to eliminate 

iterationsbest = 3000; %number of iterations (e.g., 1000 or more) 

  

%Load Cost and Quantity data 

WSdata = xlsread('Tuttle_Model_Data.xls', 'MATinput','A2:O1859'); 

TotFarms = size(WSdata,1); 

SubWS = WSdata(:,2); 

num_counties = 10; %number of counties 

num_BMPs = 3; %number of BMPs available 

seed_value = 31517; %seed value 

  

%Need to eliminate "xpercent" of the farms because we will assume that 

%xpercent of the farms have already adopted BMPs or will never adopt BMPs 

ineligiblefarms = round(xpercent*TotFarms); 

  

%--------------------------------- 

SubWS_percent = xlsread('BMPCosts_15yrs.xls','input','D3:AH12'); 
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%Create a matrix with max(SubWS) columns representing the subwatersheds 

%and the data in the rows represents which HRUs belong to each subwatershed 

SW = zeros(TotFarms,max(SubWS)); %preallocate a TotFarms by max(SubWS) matrix 

for i=1:max(SubWS) 

 SW_a = find(SubWS==i); 

 SW_b = zeros(TotFarms - size(SW_a,1),1); %need to add a column vector of zeros to make each vector 

the same length 

 SW_c = cat(1,SW_a,SW_b); 

 SW(:,i) = SW_c; %SW is the resulting matrix 

end; 

  

%--------------------------------------- 

%need a 1 by num of SubWS's matrix with number of HRUs in each SubWS 

SW_count = zeros(1,max(SubWS)); %preallocate 

for i = 1:max(SubWS) 

 SW_count(1,i) = max(find(SW(:,i)>0)); %this is # of HRUs in each SubWS 

end; 

  

Co_SW_matrix = SubWS_percent(:,1:max(SubWS)); %this is % of SubWS in each county 

Co_SW_matrix_1 = zeros(num_counties,max(SubWS)); %preallocate 

  

for i = 1:num_counties 

 Co_SW_matrix_1(i,:) = round((Co_SW_matrix(i,:).*SW_count)-.05); %subtract .05 so that we don't get 

any negative #'s in 

 %the Co_SW_matrix_2 which is calculated next 

end; 

%---------------------------------------- 

%Need to make sure each column adds up to the correct number of HRUs 

Co_SW_matrix_2 = zeros(1,max(SubWS)); 

  

for i = 1:max(SubWS) 

 Co_SW_matrix_2(1,i) = SW_count(1,i) - sum(Co_SW_matrix_1(1:9,i)); 

end; 

  

Co_SW_matrix_1(num_counties,:) = Co_SW_matrix_2; 

%---------------------------------------- 

  

BMP_ann_costs = SubWS_percent(:,29:31); 

BMP_cost_matrix = zeros(TotFarms,num_BMPs); %preallocate a matrix with TotFarms by 3 (# of 

BMPs) columns 

BMP_matrix1 = zeros(TotFarms,max(SubWS)); 

BMP_matrix2 = zeros(TotFarms,max(SubWS)); 

BMP_matrix3 = zeros(TotFarms,max(SubWS)); 

  

for j = 1:max(SubWS) 

 A = 0; 

 for i = 1:num_counties 

 if Co_SW_matrix_1(i,j) == 0 

 continue 

 end 
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 BMP_matrix1(A+1:Co_SW_matrix_1(i,j)+A,j) = BMP_ann_costs(i,1); 

 BMP_matrix2(A+1:Co_SW_matrix_1(i,j)+A,j) = BMP_ann_costs(i,2); 

 BMP_matrix3(A+1:Co_SW_matrix_1(i,j)+A,j) = BMP_ann_costs(i,3); 

 A = Co_SW_matrix_1(i,j)+A; 

 end; 

end; 

  

%---------------------------------------- 

%Subdivide matrix into column vectors cell arrays 

  

for i = 1:max(SubWS) 

 y{i} = zeros(TotFarms,1);%preallocate 

 bmp1{i} = zeros(TotFarms,1); 

 bmp2{i} = zeros(TotFarms,1); 

 bmp3{i} = zeros(TotFarms,1); 

end; 

  

for i = 1:max(SubWS) 

 y{i} = SW(:,i); 

end 

  

for i = 1:max(SubWS) 

 bmp1{i} = BMP_matrix1(:,i); 

end 

  

for i = 1:max(SubWS) 

 bmp2{i} = BMP_matrix2(:,i); 

end 

  

for i = 1:max(SubWS) 

 bmp3{i} = BMP_matrix3(:,i); 

end 

%----------------------------------------- 

  

%Get rid of zeros in each column vector 

for i=1:max(SubWS) 

 y_new{i} = y{1,i}(y{1,i}~=0); 

end 

  

for i=1:max(SubWS) 

 bmp1_new{i} = bmp1{1,i}(bmp1{1,i}~=0); 

end 

  

for i=1:max(SubWS) 

 bmp2_new{i} = bmp2{1,i}(bmp2{1,i}~=0); 

end 

  

for i=1:max(SubWS) 

 bmp3_new{i} = bmp3{1,i}(bmp3{1,i}~=0); 

end 
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%---------------------------------------- 

  

%Combine common Subwatershed vectors, so the result will be 3 BMP cost 

%column vectors. We can then randomly pair these using the randswap function 

for i = 1:max(SubWS) 

 combined_bmpcosts{i} = cat(2,bmp1_new{1,i},bmp2_new{1,i},bmp3_new{1,i}); 

end 

rand('seed',seed_value); %set seed value 

  

%---------------------------------------- 

%Start simulating the BMP implementation scenarios. Note that this is the 

%outerloop 

  

for j = 1:iterationsbest 

 j 

 tic; 

 HRU_id = WSdata(:,1); 

 FarmArea = WSdata(:,3); 

 BaseNLoad = WSdata(:,4); 

 BMP1NLoad = WSdata(:,5); 

 BMP2NLoad = WSdata(:,6); 

 BMP3NLoad = WSdata(:,7); 

  

 BMP1NQuantity = BaseNLoad - BMP1NLoad; 

 BMP2NQuantity = BaseNLoad - BMP2NLoad; 

 BMP3NQuantity = BaseNLoad - BMP3NLoad; 

  

 BasePLoad = WSdata(:,8); 

 BMP1PLoad = WSdata(:,9); 

 BMP2PLoad = WSdata(:,10); 

 BMP3PLoad = WSdata(:,11); 

  

 BMP1PQuantity = BasePLoad - BMP1PLoad; 

 BMP2PQuantity = BasePLoad - BMP2PLoad; 

 BMP3PQuantity = BasePLoad - BMP3PLoad; 

  

 BaseSLoad = WSdata(:,12); 

 BMP1SLoad = WSdata(:,13); 

 BMP2SLoad = WSdata(:,14); 

 BMP3SLoad = WSdata(:,15); 

  

 BMP1SQuantity = BaseSLoad - BMP1SLoad; 

 BMP2SQuantity = BaseSLoad - BMP2SLoad; 

 BMP3SQuantity = BaseSLoad - BMP3SLoad; 

  

 %Now randomly pair the combined BMP costs matrix with an HRU 

 for i = 1:max(SubWS) 

 rand_bmpcosts = randswap(combined_bmpcosts{1,i}); 

 SW_bmpcosts{i} = cat(2,y_new{1,i},rand_bmpcosts); 
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 end 

  

 %Reshape and order the bmpcosts matrix in numerical order by the first 

 %column which is HRU id number 

 SW_bmpcosts = reshape(SW_bmpcosts,max(SubWS),1); 

 stacked_bmpcosts = cell2mat(SW_bmpcosts); 

 ordered_HRU_bmpcosts = sortrows(stacked_bmpcosts,1); 

  

 %Determine Total and Average BMP costs for each HRU for N,P, and S 

  

 %Nitrogen Costs 

 BMP1NCost = ordered_HRU_bmpcosts(:,2).*FarmArea; 

 BMP2NCost = ordered_HRU_bmpcosts(:,3).*FarmArea; 

 BMP3NCost = ordered_HRU_bmpcosts(:,4).*FarmArea; 

  

 AVGBMP1NCost = BMP1NCost./BMP1NQuantity; 

 AVGBMP2NCost = BMP2NCost./BMP2NQuantity; 

 AVGBMP3NCost = BMP3NCost./BMP3NQuantity; 

  

 %Phosphorus Costs 

 BMP1PCost = ordered_HRU_bmpcosts(:,2).*FarmArea; 

 BMP2PCost = ordered_HRU_bmpcosts(:,3).*FarmArea; 

 BMP3PCost = ordered_HRU_bmpcosts(:,4).*FarmArea; 

  

 AVGBMP1PCost = BMP1PCost./BMP1PQuantity; 

 AVGBMP2PCost = BMP2PCost./BMP2PQuantity; 

 AVGBMP3PCost = BMP3PCost./BMP3PQuantity; 

  

 %Sediment Costs 

 BMP1SCost = ordered_HRU_bmpcosts(:,2).*FarmArea; 

 BMP2SCost = ordered_HRU_bmpcosts(:,3).*FarmArea; 

 BMP3SCost = ordered_HRU_bmpcosts(:,4).*FarmArea; 

  

 AVGBMP1SCost = BMP1SCost./BMP1SQuantity; 

 AVGBMP2SCost = BMP2SCost./BMP2SQuantity; 

 AVGBMP3SCost = BMP3SCost./BMP3SQuantity; 

  

 %Get rid of zeros and negatives in Average BMP cost matricies 

 BMPsAVGNCosts = cat(2,AVGBMP1NCost,AVGBMP2NCost,AVGBMP3NCost); 

 findzerosN = find(BMPsAVGNCosts<=0); %finds zeros and negatives in BMPsAVGNCosts matrix 

 BMPsAVGNCosts(findzerosN) = nan; %replaces zeros and negatives with nan's which is need for this 

program 

  

 BMPsAVGPCosts = cat(2,AVGBMP1PCost,AVGBMP2PCost,AVGBMP3PCost); 

 findzerosP = find(BMPsAVGPCosts<=0); %finds zeros and negatives in BMPsAVGPCosts matrix 

 BMPsAVGPCosts(findzerosP) = nan; %replaces zeros and negatives with nan's which is need for this 

program 

  

 BMPsAVGSCosts = cat(2,AVGBMP1SCost,AVGBMP2SCost,AVGBMP3SCost); 

 findzerosS = find(BMPsAVGSCosts<=0); %finds zeros and negatives in BMPsAVGSCosts matrix 
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 BMPsAVGSCosts(findzerosS) = nan; %replaces zeros and negatives with nan's which is need for this 

program 

  

 %Get rid of the negatives and zeros 

 NReductions = cat(2, BMP1NQuantity, BMP2NQuantity, BMP3NQuantity); 

 PReductions = cat(2, BMP1PQuantity, BMP2PQuantity, BMP3PQuantity); 

 SReductions = cat(2, BMP1SQuantity, BMP2SQuantity, BMP3SQuantity); 

  

 % findreductionsN = find(NReductions<0); %finds negative values in N reductions data 

 % NReductions(findreductionsN) = 0; %replaces negatives with zeros 

  

 % findreductionsP = find(PReductions<0); %finds negative values in P reductions data 

 % PReductions(findreductionsP) = 0; %replaces negatives with zeros 

  

 findreductionsS = find(SReductions<0); %finds negative values in S reductions data 

 SReductions(findreductionsS) = 0; %replaces negatives with zeros 

  

 %Need to eliminate "xpercent" of the farms because we will assume that 

 %xpercent of the farms have already adopted BMPs or will never adopt 

 %BMPs. This is done by randomly selecting xpercent of the farms and 

 %setting the appropriate rows in the BMPsAVGSCosts to zero. Note that 

 %if we were trading in regards to another pollutant (N or P), then this 

 %code would need to be changed to the appropriate BMP Avg Cost matrix. 

 %If there are already more farms with negatives and zeros than 

 %ineligible farms, then this piece of code has no effect 

  

 num_of_zeros = size(find(SReductions(:,1) == 0),1); 

 while num_of_zeros < ineligiblefarms 

 eliminate_id = round(rand(1)*TotFarms); 

 if eliminate_id == 0 

 continue 

 end 

 SReductions(eliminate_id,1:3) = zeros(1,3); 

 num_of_zeros = size(find(SReductions(:,1) == 0),1); 

 end; 

 num_of_zeros = size(find(SReductions(:,1) == 0),1); 

  

 findreductionsS_zeros = find(SReductions == 0); 

 BMPsAVGSCosts(findreductionsS_zeros) = nan;%set corresponding cells in BMPAVG S Cost 

 %matrix to nan 

  

 CummNQuantity = 0; 

 TotBMPNCost1 = 0; 

 CummPQuantity = 0; 

 TotBMPPCost1 = 0; 

 CummSQuantity = 0; 

 TotBMPSCost1 = 0; 

 zeromatrix = zeros(TotFarms,num_BMPs);%zeros matrix of dimension TotFarms x 3 which is # of 

BMPs 

 nanmatrix = nan(TotFarms,num_BMPs);%nan matrix of dimension TotFarms x 3 which is # of BMPs 
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 %This is the innerloop where the actual BMP implementation occurs 

 i = 0; 

 while (CummSQuantity < RedGoal) && (i < TotFarms) %loop while below reduction goal AND while 

the number of 

 %BMP projects implemented is less than or equal to the total number of farms (this is because each 

 %farm can only implement one BMP) 

  

 [FarmID,BMP] = find(min(min(BMPsAVGSCosts)) == BMPsAVGSCosts); %Find minimum avg PCost 

  

 if BMPsAVGSCosts(FarmID,BMP) == nan %if there is zero SCost for BMP implementation 

 %set that Farm-BMP Combo to nan and the corresponding SReductions value to zero 

 BMPsAVGSCosts(FarmID,BMP) = nan; 

 SReductions(FarmID,BMP) = 0; 

 continue; %go back to the start of the while loop 

 end; 

  

 if SReductions == zeromatrix 

 break; end; 

  

% if BMPsAVGSCosts == nanmatrix %this can be commented out if the 

% budget and/or reduction goal are binding 

% break; end; 

  

 if size ([FarmID,BMP],1) > 1 %If there are BMPs (and/or Farms) with identical SCosts, pick the first one 

 FarmID = FarmID(1); 

 BMP = BMP(1); 

 end; 

  

 AVGPracticeSCost = BMPsAVGSCosts(FarmID,BMP); 

 Area = FarmArea(FarmID,1); 

 NQuantity = NReductions(FarmID,BMP); 

 PQuantity = PReductions(FarmID,BMP); 

 SQuantity = SReductions(FarmID,BMP); 

 TotPracticeSCost = AVGPracticeSCost*SQuantity; 

  

 if (TotPracticeSCost + TotBMPSCost1) > Budget 

 BMPsAVGSCosts(FarmID,BMP) = nan; 

 SReductions(FarmID,BMP) = 0; 

 continue; 

 end; %if implementing this BMP will exceed the budget, take that Farm-BMP Combo out of the market 

  

 SReductions(FarmID,BMP) = SReductions(FarmID,BMP) - SQuantity; %Update SReductions1 Matrix 

 i = i + 1; 

  

 if SReductions(FarmID,BMP) == 0 

 BMPsAVGSCosts(FarmID,:) = nan; %If the previous BMP was fully implemented, take that farm out of 

the market 

 SReductions(FarmID,:) = 0; 

 end; 
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 if i == 1 %save data 

 Simout = [Area, FarmID, BMP, AVGPracticeSCost, SQuantity, TotPracticeSCost]; 

 OtherSimout = [NQuantity, PQuantity]; 

 else Simout = [Simout; Area, FarmID, BMP, AVGPracticeSCost, SQuantity, TotPracticeSCost]; 

 OtherSimout = [OtherSimout; NQuantity, PQuantity]; 

 end; 

  

 Count = (1:i)'; %this numbers the rows in the first column of output 

 TotArea = sum(Simout(:,1)); 

 CummSQuantity = sum(Simout(:,5)); 

 TotBMPSCost = sum(Simout(:,6)); 

 TotBMPSCost1 = TotBMPSCost + 0; 

 CummNQuantity = sum(OtherSimout(:,1)); 

 CummPQuantity = sum(OtherSimout(:,2)); 

 numofBMP1 = size(find(Simout(:,3)==1),1); %calculates # of BMP1 implemented 

 numofBMP2 = size(find(Simout(:,3)==2),1); %calculates # of BMP2 implemented 

 numofBMP3 = size(find(Simout(:,3)==3),1); %calculates # of BMP3 implemented 

 end; 

  

 a = nan(i-1,1); %nan matrix that is i-1 rows and 1 column 

 TotBMPnumOUT = cat(1,i,a); %the scalar value is inserted at top of a matrix to make 

 %a i x 1 matrix for output purposes - same procedure for next 5 

 %output variables 

 TotAreaOUT = cat(1,TotArea,a); 

 TotBMPSCostOUT = cat(1,TotBMPSCost,a); 

 RedGoalOUT = cat(1,RedGoal,a); 

 BudgetOUT = cat(1,Budget,a); 

 CummNQuantityOUT = cat(1,CummNQuantity,a); 

 CummPQuantityOUT = cat(1,CummPQuantity,a); 

 CummSQuantityOUT = cat(1,CummSQuantity,a); 

 numofBMP1OUT = cat(1,numofBMP1,a); 

 numofBMP2OUT = cat(1,numofBMP2,a); 

 numofBMP3OUT = cat(1,numofBMP3,a); 

  

 Output = cat(2,Count, Simout, OtherSimout, TotBMPnumOUT, TotAreaOUT, CummSQuantityOUT, 

TotBMPSCostOUT, RedGoalOUT,... 

 BudgetOUT, CummNQuantityOUT, CummPQuantityOUT, numofBMP1OUT, numofBMP2OUT, 

numofBMP3OUT); 

 % numericalOutput = num2cell(Output); %change the numerical array into a cell array 

  

 OUT{j} = {Output}; 

 toc 

 time2{j} = toc; 

end; 

  

disp ('Successfully finished the iterations!!') 

%------------------------------------------------ 

  

%Finds the maximum number of BMP projects implemented(rows) in the output data. Changes all 
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%matrices to have the same number of rows. Zeros are put in the rows that 

%are added.For more information, go to section 15.3 in the array manipulation 

%publication 

  

  

for j=1:iterationsbest 

 b(j) = max(OUT{1,j}{1,1}(:,1)); %finds total # of BMP projects implemented in each iteration 

end; 

  

m = mean(b); %finds average # of BMP projects implemented across all iterations 

m = round(m); %rounds the average # to nearest whole number 

% aa = a(:)'; %creates another matrix aa equal to a 

% aa = aa(ones(m,1),:); %transforms aa into an m by iterations matrix 

bb = (1:m)'; %creates bb which is a column vector going from 1 to m 

% bb = bb(:,ones(length(a), 1)); %transforms bb into a m by iterations matrix 

% %with each column going from 1 to m 

% b = bb .* (bb <= aa); %the dot indicates array multiplication (not the same 

% %as matrix multiplication. Arrays in bb are multiplied by an array of ones 

% %and zeros corresponding to the number of BMP projects implemented 

% M = mean(b,2); %sums across all rows of the b matrix resulting in a column vector 

  

for i = 1:iterationsbest %this loop equalizes number of rows (equal to mean # of BMP projects 

implemented) 

 %across all iterations so that the means can be calcualted 

 cc{i} = OUT{i}{1}(:,2); %area 

 ee{i} = OUT{i}{1}(:,6); %tons of soil reduction 

 ff{i} = OUT{i}{1}(:,7); %total BMP cost 

 gg{i} = OUT{i}{1}(:,8); %pounds of N reduction 

 hh{i} = OUT{i}{1}(:,9); %pounds of P reduction 

 ii{i} = OUT{i}{1}(1,10); %num of BMPs 

 jj{i} = OUT{i}{1}(1,11); %total area 

 kk{i} = OUT{i}{1}(1,12); %cummulative soil reduction 

 ll{i} = OUT{i}{1}(1,13); %total BMP costs 

 mm{i} = OUT{i}{1}(1,14); %soil reduction goal 

 nn{i} = OUT{i}{1}(1,15); %budget 

 oo{i} = OUT{i}{1}(1,16); %cummulative N reduction 

 pp{i} = OUT{i}{1}(1,17); %cummulative P reduction 

 qq{i} = OUT{i}{1}(1,18); %num of BMP1 implemented 

 rr{i} = OUT{i}{1}(1,19); %num of BMP2 implemented 

 ss{i} = OUT{i}{1}(1,20); %num of BMP3 implemented 

  

 [u,y] = size(cc{i}); 

 if u >= m 

 cc1{i} = cc{i}(1:m,:); 

 ee1{i} = ee{i}(1:m,:); 

 ff1{i} = ff{i}(1:m,:); 

 gg1{i} = gg{i}(1:m,:); 

 hh1{i} = hh{i}(1:m,:); 

 else v = m-u; 

 w = zeros(v,1); 
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 cc1{i} = cat(1,cc{i},w); 

 ee1{i} = cat(1,ee{i},w); 

 ff1{i} = cat(1,ff{i},w); 

 gg1{i} = cat(1,gg{i},w); 

 hh1{i} = cat(1,hh{i},w); 

 end; 

end; 

  

%convert cell array of matricies to single matrix 

ccc = cell2mat(cc1); 

eee = cell2mat(ee1); 

fff = cell2mat(ff1); 

ggg = cell2mat(gg1); 

hhh = cell2mat(hh1); 

iii = cell2mat(ii); 

jjj = cell2mat(jj); 

kkk = cell2mat(kk); 

lll = cell2mat(ll); 

mmm = cell2mat(mm); 

nnn = cell2mat(nn); 

ooo = cell2mat(oo); 

ppp = cell2mat(pp); 

qqq = cell2mat(qq); 

rrr = cell2mat(rr); 

sss = cell2mat(ss); 

ddd = sum(mean(fff,2))/sum(mean(eee,2)); %avg S reduction costs (total) 

ttt = sum(mean(fff,2))/sum(mean(ggg,2)); %avg N reduction costs (total) 

uuu = sum(mean(fff,2))/sum(mean(hhh,2)); %avg P reduction costs (total) 

  

%finds mean of rows 

mccc = mean(ccc,2); %area 

meee = mean(eee,2); %tons of soil reduction 

mfff = mean(fff,2); %total BMP cost 

mvvv = mfff./meee; %avg S reduction incremental costs 

mddd = cat(1,mean(ddd,2),nan(m-1,1)); %avg S reduction costs (total) 

mggg = mean(ggg,2); %pounds of N reduction 

mwww = mfff./mggg; %avg N reduction incremental costs 

mttt = cat(1,mean(ttt,2),nan(m-1,1)); %avg N reduction costs (total) 

mhhh = mean(hhh,2); %pounds of P reduction 

mxxx = mfff./mhhh; %avg P reduction incremental costs 

muuu = cat(1,mean(uuu,2),nan(m-1,1)); %avg P reduction costs (total) 

miii = cat(1,mean(iii,2),nan(m-1,1)); %num of BMPs 

mjjj = cat(1,sum(mccc),nan(m-1,1)); %total area 

mkkk = cat(1,sum(meee),nan(m-1,1)); %cummulative soil reduction 

mlll = cat(1,sum(mfff),nan(m-1,1)); %total BMP costs 

mmmm = cat(1,mean(mmm,2),nan(m-1,1)); %soil reduction goal 

mnnn = cat(1,mean(nnn,2),nan(m-1,1)); %budget 

mooo = cat(1,sum(mggg),nan(m-1,1)); %cummulative N reduction 

mppp = cat(1,sum(mhhh),nan(m-1,1)); %cummulative P reduction 

mqqq = cat(1,mean(qqq,2),nan(m-1,1)); %num of BMP1 implemented 
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mrrr = cat(1,mean(rrr,2),nan(m-1,1)); %num of BMP2 implemented 

msss = cat(1,mean(sss,2),nan(m-1,1)); %num of BMP3 implemented 

  

SumOut = 

cat(2,bb,mccc,mfff,meee,mvvv,mddd,mggg,mwww,mttt,mhhh,mxxx,muuu,miii,mjjj,mlll,mmmm,mnnn,

mkkk,mooo,mppp,mqqq,mrrr,msss); 

SumOutcell = num2cell(SumOut); 

Headings = {'#' 'Area (ac)' 'TotBMPCost' 'S_Quantity (tons)' 'AVGincremCost_S (/ton)' 'AVGred_S_Cost 

(/ton)' 'N_Quantity (lbs)' 'AVGincremCost_N (/lb)'... 

 'AVGred_N_Cost (/lb)' 'P_Quantity (lbs)' 'AVGincremCost_P (/lb)' 'AVGred_P_Cost (/lb)' 

'TotBMPnum' 'Total Area (ac)' 'TotBMPCost'... 

 'S_RedGoal (tons)' 'Budget' 'Cumm_S_Quantity (tons)' 'Cumm_N_Quantity (lbs)' 'Cumm_P_Quantity 

(lbs)'... 

 '# of BMP1' '# of BMP2' '#of BMP3'}; 

  

allOutput = [Headings; SumOutcell]; 

xlswrite('BestS_15yr_50K.xls',allOutput,1,'A1'); 

  

%---------------------------------------------------------------- 

  

% Run OfficeDoc to format Excel output 

% Open document in 'append' mode: 

[file,status,errMsg] = officedoc('BestS_15yr_50K.xls', 'open', 'mode','append'); 

  

status = officedoc(file, 'format', 'sheet', 1, 'Range', 'A1:W1', 'bold','on','WrapText',1); 

status = officedoc(file, 'format', 'sheet', 1, 'Range', 'D:D,E:E,F2,H:H,I2,K:K,L2', 

'NumberFormat','$#,##0.00'); 

status = officedoc(file, 'format', 'sheet', 1, 'Range', 'D:D,G:G,J:J,U2,V2,W2', 'NumberFormat','#,##0.00'); 

status = officedoc(file, 'format', 'sheet', 1, 'Range', 'C:C,O2,Q2', 'NumberFormat','$#,##0'); 

status = officedoc(file, 'format', 'sheet', 1, 'Range', 'B:B, M2,N2,P2,R2,S2,T2', 'NumberFormat','#,##0'); 

status = officedoc(file, 'format', 'sheet', 1, 'Range', 'A:W', 'ColAutoFit',1); 

  

% Close the document, deleting standard sheets and releasing COM server: 

status = officedoc(file, 'close', 'release',1,'delStd','off'); 

toc 

% Re-display document; file is no longer valid so we must use file name: 

%officedoc('BestS_15yr_50K.xls', 'display'); 
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Example Code for Random BMP Implementation focusing on sediment and $50,000 

annual budget 
 

%Random BMP implementation 

%Sediment Reduction 

  

clear %clears workspace; comment this out if using MasterRunFile 

clc %clears command window 

delete ('RandS_15yr_50K.xls') %deletes existing Excel spreadsheet output 

OutFile = 'C:\Documents and Settings\Craig Smith\My 

Documents\Ph.D\Cost_Effective_WS_Management\SimModel_6\RandS_15yr_50K.xls'; 

  

warning off MATLAB:divideByZero 

  

%What are the Sediment reduction goals and budget constraint and iterations? comment if 

%using MasterRunFile 

RedGoal = 100000000; 

Budget = 50000; 

xpercent = .25; %percent of farms to eliminate 

iterations = 3150; %number of iterations (e.g., 1000 or more ** note: increase by roughly 5%) 

  

%Load Cost and Quantity data 

WSdata = xlsread('Tuttle_Model_Data.xls', 'MATinput','A2:O1859'); 

TotFarms = size(WSdata,1); 

SubWS = WSdata(:,2); 

num_counties = 10; %number of counties 

num_BMPs = 3; %number of BMPs available 

seed_value = 31517; %seed value 

  

%Need to eliminate "xpercent" of the farms because we will assume that 

%xpercent of the farms have already adopted BMPs or will never adopt BMPs 

ineligiblefarms = round(xpercent*TotFarms); 

  

%--------------------------------- 

SubWS_percent = xlsread('BMPCosts_15yrs.xls','input','D3:AH12'); 

  

%Create a matrix with max(SubWS) columns representing the subwatersheds 

%and the data in the rows represents which HRUs belong to each subwatershed 

SW = zeros(TotFarms,max(SubWS)); %preallocate a TotFarms by max(SubWS) matrix 

for i=1:max(SubWS) 

 SW_a = find(SubWS==i); 

 SW_b = zeros(TotFarms - size(SW_a,1),1); %need to add a column vector of zeros to make each vector 

the same length 

 SW_c = cat(1,SW_a,SW_b); 

 SW(:,i) = SW_c; %SW is the resulting matrix 

end; 

  

%--------------------------------------- 

%need a 1 by num of SubWS's matrix with number of HRUs in each SubWS 

SW_count = zeros(1,max(SubWS)); %preallocate 
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for i = 1:max(SubWS) 

 SW_count(1,i) = max(find(SW(:,i)>0)); %this is # of HRUs in each SubWS 

end; 

  

Co_SW_matrix = SubWS_percent(:,1:max(SubWS)); %this is % of SubWS in each county 

Co_SW_matrix_1 = zeros(num_counties,max(SubWS)); %preallocate 

  

for i = 1:num_counties 

 Co_SW_matrix_1(i,:) = round((Co_SW_matrix(i,:).*SW_count)-.05); %subtract .05 so that we don't get 

any negative #'s in 

 %the Co_SW_matrix_2 which is calculated next 

end; 

%---------------------------------------- 

%Need to make sure each column adds up to the correct number of HRUs 

Co_SW_matrix_2 = zeros(1,max(SubWS)); 

  

for i = 1:max(SubWS) 

 Co_SW_matrix_2(1,i) = SW_count(1,i) - sum(Co_SW_matrix_1(1:9,i)); 

end; 

  

Co_SW_matrix_1(num_counties,:) = Co_SW_matrix_2; 

%---------------------------------------- 

  

BMP_ann_costs = SubWS_percent(:,29:31); 

BMP_cost_matrix = zeros(TotFarms,num_BMPs); %preallocate a matrix with TotFarms by 3 (# of 

BMPs) columns 

BMP_matrix1 = zeros(TotFarms,max(SubWS)); 

BMP_matrix2 = zeros(TotFarms,max(SubWS)); 

BMP_matrix3 = zeros(TotFarms,max(SubWS)); 

  

for j = 1:max(SubWS) 

 A = 0; 

 for i = 1:num_counties 

 if Co_SW_matrix_1(i,j) == 0 

 continue 

 end 

 BMP_matrix1(A+1:Co_SW_matrix_1(i,j)+A,j) = BMP_ann_costs(i,1); 

 BMP_matrix2(A+1:Co_SW_matrix_1(i,j)+A,j) = BMP_ann_costs(i,2); 

 BMP_matrix3(A+1:Co_SW_matrix_1(i,j)+A,j) = BMP_ann_costs(i,3); 

 A = Co_SW_matrix_1(i,j)+A; 

 end; 

end; 

  

%---------------------------------------- 

%Subdivide matrix into column vectors cell arrays 

  

for i = 1:max(SubWS) 

 y{i} = zeros(TotFarms,1);%preallocate 

 bmp1{i} = zeros(TotFarms,1); 

 bmp2{i} = zeros(TotFarms,1); 
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 bmp3{i} = zeros(TotFarms,1); 

end; 

  

for i = 1:max(SubWS) 

 y{i} = SW(:,i); 

end 

  

for i = 1:max(SubWS) 

 bmp1{i} = BMP_matrix1(:,i); 

end 

  

for i = 1:max(SubWS) 

 bmp2{i} = BMP_matrix2(:,i); 

end 

  

for i = 1:max(SubWS) 

 bmp3{i} = BMP_matrix3(:,i); 

end 

%----------------------------------------- 

  

%Get rid of zeros in each column vector 

for i=1:max(SubWS) 

 y_new{i} = y{1,i}(y{1,i}~=0); 

end 

  

for i=1:max(SubWS) 

 bmp1_new{i} = bmp1{1,i}(bmp1{1,i}~=0); 

end 

  

for i=1:max(SubWS) 

 bmp2_new{i} = bmp2{1,i}(bmp2{1,i}~=0); 

end 

  

for i=1:max(SubWS) 

 bmp3_new{i} = bmp3{1,i}(bmp3{1,i}~=0); 

end 

  

%---------------------------------------- 

  

%Combine common Subwatershed vectors, so the result will be 3 BMP cost 

%column vectors. We can then randomly pair these using the randswap function 

for i = 1:max(SubWS) 

 combined_bmpcosts{i} = cat(2,bmp1_new{1,i},bmp2_new{1,i},bmp3_new{1,i}); 

end 

  

%----------------------------------------- 

%Outer loop for testing purposes 

% for k=1:1 

%keep3 function is a complement to the clear fcn. in that it clears all 

%variables except the ones listed 
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keep3 combined_bmpcosts RedGoal Budget xpercent iterations WSdata TotFarms SubWS num_counties 

num_BMPs ineligiblefarms OutFile y_new seed_value 

rand('seed',seed_value);%set seed value 

OUT = cell(1,iterations); 

%---------------------------------------- 

%Start simulating the BMP implementation scenarios. Note that this is the 

%outerloop 

for j = 1:iterations 

 j 

 tic; 

 HRU_id = WSdata(:,1); 

 FarmArea = WSdata(:,3); 

 BaseNLoad = WSdata(:,4); 

 BMP1NLoad = WSdata(:,5); 

 BMP2NLoad = WSdata(:,6); 

 BMP3NLoad = WSdata(:,7); 

  

 BMP1NQuantity = BaseNLoad - BMP1NLoad; 

 BMP2NQuantity = BaseNLoad - BMP2NLoad; 

 BMP3NQuantity = BaseNLoad - BMP3NLoad; 

  

 BasePLoad = WSdata(:,8); 

 BMP1PLoad = WSdata(:,9); 

 BMP2PLoad = WSdata(:,10); 

 BMP3PLoad = WSdata(:,11); 

  

 BMP1PQuantity = BasePLoad - BMP1PLoad; 

 BMP2PQuantity = BasePLoad - BMP2PLoad; 

 BMP3PQuantity = BasePLoad - BMP3PLoad; 

  

 BaseSLoad = WSdata(:,12); 

 BMP1SLoad = WSdata(:,13); 

 BMP2SLoad = WSdata(:,14); 

 BMP3SLoad = WSdata(:,15); 

  

 BMP1SQuantity = BaseSLoad - BMP1SLoad; 

 BMP2SQuantity = BaseSLoad - BMP2SLoad; 

 BMP3SQuantity = BaseSLoad - BMP3SLoad; 

  

 %Now randomly pair the combined BMP costs matrix with an HRU 

 for i = 1:max(SubWS) 

 rand_bmpcosts = randswap(combined_bmpcosts{1,i}); 

 SW_bmpcosts{i} = cat(2,y_new{1,i},rand_bmpcosts); 

 end 

  

 %Reshape and order the bmpcosts matrix in numerical order by the first 

 %column which is HRU id number 

 SW_bmpcosts = reshape(SW_bmpcosts,max(SubWS),1); 

 stacked_bmpcosts = cell2mat(SW_bmpcosts); 

 ordered_HRU_bmpcosts = sortrows(stacked_bmpcosts,1); 
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 %Determine Total and Average BMP costs for each HRU for N,P, and S 

  

 %Nitrogen Costs 

 BMP1NCost = ordered_HRU_bmpcosts(:,2).*FarmArea; 

 BMP2NCost = ordered_HRU_bmpcosts(:,3).*FarmArea; 

 BMP3NCost = ordered_HRU_bmpcosts(:,4).*FarmArea; 

  

 AVGBMP1NCost = BMP1NCost./BMP1NQuantity; 

 AVGBMP2NCost = BMP2NCost./BMP2NQuantity; 

 AVGBMP3NCost = BMP3NCost./BMP3NQuantity; 

  

 AVGBMP1NCost(isinf(AVGBMP1NCost)) = 0; %replace infinity values with zeros 

 AVGBMP2NCost(isinf(AVGBMP2NCost)) = 0; %replace infinity values with zeros 

 AVGBMP3NCost(isinf(AVGBMP3NCost)) = 0; %replace infinity values with zeros 

  

 %Phosphorus Costs 

 BMP1PCost = ordered_HRU_bmpcosts(:,2).*FarmArea; 

 BMP2PCost = ordered_HRU_bmpcosts(:,3).*FarmArea; 

 BMP3PCost = ordered_HRU_bmpcosts(:,4).*FarmArea; 

  

 AVGBMP1PCost = BMP1PCost./BMP1PQuantity; 

 AVGBMP2PCost = BMP2PCost./BMP2PQuantity; 

 AVGBMP3PCost = BMP3PCost./BMP3PQuantity; 

  

 AVGBMP1PCost(isinf(AVGBMP1PCost)) = 0; %replace infinity values with zeros 

 AVGBMP2PCost(isinf(AVGBMP2PCost)) = 0; %replace infinity values with zeros 

 AVGBMP3PCost(isinf(AVGBMP3PCost)) = 0; %replace infinity values with zeros 

  

 %Sediment Costs 

 BMP1SCost = ordered_HRU_bmpcosts(:,2).*FarmArea; 

 BMP2SCost = ordered_HRU_bmpcosts(:,3).*FarmArea; 

 BMP3SCost = ordered_HRU_bmpcosts(:,4).*FarmArea; 

  

 AVGBMP1SCost = BMP1SCost./BMP1SQuantity; 

 AVGBMP2SCost = BMP2SCost./BMP2SQuantity; 

 AVGBMP3SCost = BMP3SCost./BMP3SQuantity; 

  

 AVGBMP1SCost(isinf(AVGBMP1SCost)) = 0; %replace infinity values with zeros 

 AVGBMP2SCost(isinf(AVGBMP2SCost)) = 0; %replace infinity values with zeros 

 AVGBMP3SCost(isinf(AVGBMP3SCost)) = 0; %replace infinity values with zeros 

  

 %Get rid of zeros and negatives in Average BMP cost matricies 

 BMPsAVGNCosts = cat(2,AVGBMP1NCost,AVGBMP2NCost,AVGBMP3NCost); 

 findzerosN = find(BMPsAVGNCosts<=0); %finds zeros and negatives in BMPsAVGNCosts matrix 

 BMPsAVGNCosts(findzerosN) = 0; %replaces zeros and negatives with 0's which is need for this 

program 

  

 BMPsAVGPCosts = cat(2,AVGBMP1PCost,AVGBMP2PCost,AVGBMP3PCost); 

 findzerosP = find(BMPsAVGPCosts<=0); %finds zeros and negatives in BMPsAVGPCosts matrix 
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 BMPsAVGPCosts(findzerosP) = 0; %replaces zeros and negatives with 0's which is need for this 

program 

  

 BMPsAVGSCosts = cat(2,AVGBMP1SCost,AVGBMP2SCost,AVGBMP3SCost); 

 findzerosS = find(BMPsAVGSCosts<=0); %finds zeros and negatives in BMPsAVGSCosts matrix 

 BMPsAVGSCosts(findzerosS) = 0; %replaces zeros and negatives with 0's which is need for this 

program 

  

 %Need to eliminate "xpercent" of the farms because we will assume that 

 %xpercent of the farms have already adopted BMPs or will never adopt 

 %BMPs. This is done by randomly selecting xpercent of the farms and 

 %setting the appropriate rows in the BMPsAVGSCosts to zero. Note that 

 %if we were addressing another pollutant (N or P), then this 

 %code would need to be changed to the appropriate BMP Avg Cost matrix. 

 %If there are already more farms with negatives and zeros than 

 %ineligible farms, then this piece of code has no effect 

  

 num_of_zeros = size(find(BMPsAVGSCosts(:,1) == 0),1); 

 while num_of_zeros < ineligiblefarms 

 eliminate_id = round(rand(1)*TotFarms); 

 if eliminate_id == 0 

 continue 

 end 

 BMPsAVGSCosts(eliminate_id,1:3) = zeros(1,3); 

 num_of_zeros = size(find(BMPsAVGSCosts(:,1) == 0),1); 

 end; 

 num_of_zeros = size(find(BMPsAVGSCosts(:,1) == 0),1); 

  

 %Get rid of the negatives and zeros 

 NReductions = cat(2, BMP1NQuantity, BMP2NQuantity, BMP3NQuantity); 

 PReductions = cat(2, BMP1PQuantity, BMP2PQuantity, BMP3PQuantity); 

 SReductions = cat(2, BMP1SQuantity, BMP2SQuantity, BMP3SQuantity); 

  

 % findreductionsN = find(NReductions<0); %finds negative values in N reductions data 

 % NReductions(findreductionsN) = 0; %replaces negatives with zeros 

  

 % findreductionsP = find(PReductions<0); %finds negative values in P reductions data 

 % PReductions(findreductionsP) = 0; %replaces negatives with zeros 

  

 findreductionsS = find(SReductions<0); %finds negative values in S reductions data 

 SReductions(findreductionsS) = 0; %replaces negatives with zeros 

  

 CummNQuantity = 0; 

 TotBMPNCost1 = 0; 

 CummPQuantity = 0; 

 TotBMPPCost1 = 0; 

 CummSQuantity = 0; 

 TotBMPSCost1 = 0; 

 zeromatrix = zeros(TotFarms,num_BMPs);%zeros matrix of dimension TotFarms x 3 which is # of 

BMPs 
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 %This is the innerloop where the actual BMP implementation occurs 

 i = 1; 

 S = [1:TotFarms.*num_BMPs]'; 

 findzerocosts = find(BMPsAVGSCosts == 0); 

 S([findzerocosts]) = [0]; % Replace some of the elements of S with zero if they have already been ruled 

ineligble 

 S_rand = S(randperm(size(S,1)),:); %randomize the S matrix 

  

 %This piece of code moves all zeros to the bottom of the column vector 

 S_randsort=[]; 

 [m,n]=size(S_rand); 

 for col=1:n, 

 a=zeros(m,1); 

 a(1:sum(S_rand(:,col)>0))=S_rand(find(S_rand(:,col)>0),col); 

 S_randsort=[S_randsort a]; 

 end 

  

 mat_size = [TotFarms,num_BMPs]; 

 [FarmID_1,BMP_1] = ind2sub(mat_size,S_randsort); %The ind2sub command determines the equivalent 

subscript values corresponding 

 %to a single index into an array 

  

 %need to eliminate duplicates from FarmID_1 and the 

 %corresponding elements in BMP_1 vector. This is because only one 

 %BMP can be implemented on a farm 

 [FarmID_2,BMP_position] = unique_no_sort(FarmID_1); %this is a specially made function which is 

similar to "unique" 

 %function except that it does not sort 

 FarmID_2 = (FarmID_2(1:length(FarmID_2)-1))'; 

 BMP_position = (BMP_position(1:length(BMP_position)-1))'; 

  

 %This loop creates the corresponding BMP_2 matrix to match the FARMID_2 

 %vector created earlier 

 for i = 1:length(BMP_position) 

 BMP_2(i,1) = BMP_1(BMP_position(i,1),1); 

 end; 

  

 i=0; 

 while (CummSQuantity < RedGoal) && (sum(sum(single(SReductions)))>0) %loop while below 

reduction goal AND 

 %while there are still BMPs available 

 i = i+1; 

  

 if i > length(BMP_position) 

 break; end; 

  

 FarmID = FarmID_2(i); 

 BMP = BMP_2(i); 
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 if FarmID == 0 

 break; end; 

  

 if BMPsAVGSCosts(FarmID,BMP)>0 && SReductions(FarmID,BMP)>0 

 AVGPracticeSCost = BMPsAVGSCosts(FarmID,BMP); 

 Area = FarmArea(FarmID,1); 

 NQuantity = NReductions(FarmID,BMP); 

 PQuantity = PReductions(FarmID,BMP); 

 SQuantity = SReductions(FarmID,BMP); 

 TotPracticeSCost = AVGPracticeSCost*SQuantity; 

 else 

 continue; 

 end; 

  

 if (TotPracticeSCost + TotBMPSCost1) > Budget 

 continue; 

 end; 

  

 %SReductions(FarmID,BMP) = SReductions(FarmID,BMP) - SQuantity; %Update Reductions Matrix 

 SReductions(FarmID,:) = zeros(1,num_BMPs); %after a BMP is implemented, zero out the row so that 

farm is eliminated 

 %from further consideration 

  

 if i == 1 %save data 

 Simout = [Area, FarmID, BMP, AVGPracticeSCost, SQuantity, TotPracticeSCost]; 

 OtherSimout = [NQuantity, PQuantity]; 

 else Simout = [Simout; Area, FarmID, BMP, AVGPracticeSCost, SQuantity, TotPracticeSCost]; 

 OtherSimout = [OtherSimout; NQuantity, PQuantity]; 

 end; 

  

 TotArea = sum(Simout(:,1)); 

 CummSQuantity = sum(Simout(:,5)); 

 TotBMPSCost = sum(Simout(:,6)); 

 TotBMPSCost1 = TotBMPSCost + 0; 

 CummNQuantity = sum(OtherSimout(:,1)); 

 CummPQuantity = sum(OtherSimout(:,2)); 

 numofBMP1 = size(find(Simout(:,3)==1),1); %calculates # of BMP1 implemented 

 numofBMP2 = size(find(Simout(:,3)==2),1); %calculates # of BMP2 implemented 

 numofBMP3 = size(find(Simout(:,3)==3),1); %calculates # of BMP3 implemented 

 end; 

  

 num_of_BMPs = size(Simout,1); 

 Count = (1:num_of_BMPs)'; %this numbers the rows in the first column of output 

 a = nan(num_of_BMPs-1,1); %nan matrix that is # of BMPs rows and 1 column 

 TotBMPnumOUT = cat(1,num_of_BMPs,a); %the scalar value is inserted at top of a matrix to make 

 %a # of BMPs x 1 matrix for output purposes - same procedure for next 5 

 %output variables 

 TotAreaOUT = cat(1,TotArea,a); 

 TotBMPSCostOUT = cat(1,TotBMPSCost,a); 

 RedGoalOUT = cat(1,RedGoal,a); 
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 BudgetOUT = cat(1,Budget,a); 

 CummNQuantityOUT = cat(1,CummNQuantity,a); 

 CummPQuantityOUT = cat(1,CummPQuantity,a); 

 CummSQuantityOUT = cat(1,CummSQuantity,a); 

 numofBMP1OUT = cat(1,numofBMP1,a); 

 numofBMP2OUT = cat(1,numofBMP2,a); 

 numofBMP3OUT = cat(1,numofBMP3,a); 

  

 Output = cat(2,Count, Simout, OtherSimout, TotBMPnumOUT, TotAreaOUT, CummSQuantityOUT, 

TotBMPSCostOUT, RedGoalOUT,... 

 BudgetOUT, CummNQuantityOUT, CummPQuantityOUT, numofBMP1OUT, numofBMP2OUT, 

numofBMP3OUT); 

 % numericalOutput = num2cell(Output); %change the numerical array into a cell array 

  

 OUT{j} = {Output}; 

 toc 

 time2{j} = toc; 

end; 

  

disp ('Successfully finished the iterations!!') 

%------------------------------------------------ 

  

%The rest of the code is for organizing and summarizing all of the output and 

%reporting it in a neat formatted fashion 

  

%Delete the cases where the budget constraint was exceeded (this somehow 

%occurs in approximately 4% of the cases). So, increase the number of 

%iterations by 4%. i.e., if you want 1000 good simulations, run 1040 

  

for j=1:iterations 

 costs(j,1) = OUT{1,j}{1,1}(1,13); %finds the TotBMPCost for each iteration 

end; 

  

delete_bad = find(costs > Budget) 

size_delete = length(delete_bad) 

  

for j=delete_bad 

 OUT(j) = []; 

end; 

  

%Finds the maximum number of BMP projects implemented(rows) in the output data. Changes all 

%matrices to have the same number of rows. Zeros are put in the rows that 

%are added.For more information, go to section 15.3 in the array manipulation 

%publication 

  

iterations = iterations - size_delete; 

  

for j=1:iterations 

 b(j) = max(OUT{1,j}{1,1}(:,1)); %finds total # of BMP projects implemented in each iteration 

end; 
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m = mean(b); %finds average # of BMP projects implemented across all iterations 

m = round(m); %rounds the average # to nearest whole number 

% aa = a(:)'; %creates another matrix aa equal to a 

% aa = aa(ones(m,1),:); %transforms aa into an m by iterations matrix 

bb = (1:m)'; %creates bb which is a column vector going from 1 to m 

% bb = bb(:,ones(length(a), 1)); %transforms bb into a m by iterations matrix 

% %with each column going from 1 to m 

% b = bb .* (bb <= aa); %the dot indicates array multiplication (not the same 

% %as matrix multiplication. Arrays in bb are multiplied by an array of ones 

% %and zeros corresponding to the number of BMP projects implemented 

% M = mean(b,2); %sums across all rows of the b matrix resulting in a column vector 

  

for i = 1:iterations %this loop equalizes number of rows (equal to mean # of BMP projects implemented) 

 %across all iterations so that the means can be calcualted 

 cc{i} = OUT{i}{1}(:,2); %area 

 ee{i} = OUT{i}{1}(:,6); %tons of soil reduction 

 ff{i} = OUT{i}{1}(:,7); %total BMP cost 

 gg{i} = OUT{i}{1}(:,8); %pounds of N reduction 

 hh{i} = OUT{i}{1}(:,9); %pounds of P reduction 

 ii{i} = OUT{i}{1}(1,10); %num of BMPs 

 jj{i} = OUT{i}{1}(1,11); %total area 

 kk{i} = OUT{i}{1}(1,12); %cummulative soil reduction 

 ll{i} = OUT{i}{1}(1,13); %total BMP costs 

 mm{i} = OUT{i}{1}(1,14); %soil reduction goal 

 nn{i} = OUT{i}{1}(1,15); %budget 

 oo{i} = OUT{i}{1}(1,16); %cummulative N reduction 

 pp{i} = OUT{i}{1}(1,17); %cummulative P reduction 

 qq{i} = OUT{i}{1}(1,18); %num of BMP1 implemented 

 rr{i} = OUT{i}{1}(1,19); %num of BMP2 implemented 

 ss{i} = OUT{i}{1}(1,20); %num of BMP3 implemented 

  

 [u,y] = size(cc{i}); 

 if u >= m 

 cc1{i} = cc{i}(1:m,:); 

 ee1{i} = ee{i}(1:m,:); 

 ff1{i} = ff{i}(1:m,:); 

 gg1{i} = gg{i}(1:m,:); 

 hh1{i} = hh{i}(1:m,:); 

 else v = m-u; 

 w = zeros(v,1); 

 cc1{i} = cat(1,cc{i},w); 

 ee1{i} = cat(1,ee{i},w); 

 ff1{i} = cat(1,ff{i},w); 

 gg1{i} = cat(1,gg{i},w); 

 hh1{i} = cat(1,hh{i},w); 

 end; 

end; 

  

%convert cell array of matricies to single matrix 
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ccc = cell2mat(cc1); 

eee = cell2mat(ee1); 

fff = cell2mat(ff1); 

ggg = cell2mat(gg1); 

hhh = cell2mat(hh1); 

iii = cell2mat(ii); 

jjj = cell2mat(jj); 

kkk = cell2mat(kk); 

lll = cell2mat(ll); 

mmm = cell2mat(mm); 

nnn = cell2mat(nn); 

ooo = cell2mat(oo); 

ppp = cell2mat(pp); 

qqq = cell2mat(qq); 

rrr = cell2mat(rr); 

sss = cell2mat(ss); 

ddd = sum(mean(fff,2))/sum(mean(eee,2)); %avg S reduction costs (total) 

ttt = sum(mean(fff,2))/sum(mean(ggg,2)); %avg N reduction costs (total) 

uuu = sum(mean(fff,2))/sum(mean(hhh,2)); %avg P reduction costs (total) 

  

%finds mean of rows 

mccc = mean(ccc,2); %area 

meee = mean(eee,2); %tons of soil reduction 

mfff = mean(fff,2); %total BMP cost 

mvvv = mfff./meee; %avg S reduction incremental costs 

mddd = cat(1,mean(ddd,2),nan(m-1,1)); %avg S reduction costs (total) 

mggg = mean(ggg,2); %pounds of N reduction 

mwww = mfff./mggg; %avg N reduction incremental costs 

mttt = cat(1,mean(ttt,2),nan(m-1,1)); %avg N reduction costs (total) 

mhhh = mean(hhh,2); %pounds of P reduction 

mxxx = mfff./mhhh; %avg P reduction incremental costs 

muuu = cat(1,mean(uuu,2),nan(m-1,1)); %avg P reduction costs (total) 

miii = cat(1,mean(iii,2),nan(m-1,1)); %num of BMPs 

mjjj = cat(1,sum(mccc),nan(m-1,1)); %total area 

mkkk = cat(1,sum(meee),nan(m-1,1)); %cummulative soil reduction 

mlll = cat(1,sum(mfff),nan(m-1,1)); %total BMP costs 

mmmm = cat(1,mean(mmm,2),nan(m-1,1)); %soil reduction goal 

mnnn = cat(1,mean(nnn,2),nan(m-1,1)); %budget 

mooo = cat(1,sum(mggg),nan(m-1,1)); %cummulative N reduction 

mppp = cat(1,sum(mhhh),nan(m-1,1)); %cummulative P reduction 

mqqq = cat(1,mean(qqq,2),nan(m-1,1)); %num of BMP1 implemented 

mrrr = cat(1,mean(rrr,2),nan(m-1,1)); %num of BMP2 implemented 

msss = cat(1,mean(sss,2),nan(m-1,1)); %num of BMP3 implemented 

  

SumOut = 

cat(2,bb,mccc,mfff,meee,mvvv,mddd,mggg,mwww,mttt,mhhh,mxxx,muuu,miii,mjjj,mlll,mmmm,mnnn,

mkkk,mooo,mppp,mqqq,mrrr,msss); 

SumOutcell = num2cell(SumOut); 

Headings = {'#' 'Area (ac)' 'TotBMPCost' 'S_Quantity (tons)' 'AVGincremCost_S (/ton)' 'AVGred_S_Cost 

(/ton)' 'N_Quantity (lbs)' 'AVGincremCost_N (/lb)'... 
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 'AVGred_N_Cost (/lb)' 'P_Quantity (lbs)' 'AVGincremCost_P (/lb)' 'AVGred_P_Cost (/lb)' 

'TotBMPnum' 'Total Area (ac)' 'TotBMPCost'... 

 'S_RedGoal (tons)' 'Budget' 'Cumm_S_Quantity (tons)' 'Cumm_N_Quantity (lbs)' 'Cumm_P_Quantity 

(lbs)'... 

 '# of BMP1' '# of BMP2' '#of BMP3'}; 

  

allOutput = [Headings; SumOutcell]; 

xlswrite('RandS_15yr_50K.xls',allOutput,1,'A1'); 

%end; 

  

%---------------------------------------------------------------- 

  

%------------------------------ 

%This code erases any empty sheets in an excel workbook 

%Open the output xls file 

  

excelObj = actxserver('Excel.Application'); 

%opens up an excel object 

excelWorkbook = excelObj.workbooks.Open(OutFile); 

worksheets = excelObj.sheets; 

%total number of sheets in workbook 

numSheets = worksheets.count; 

  

count=1; 

for j=1:numSheets 

 %stores the current number of sheets in the workbook 

 %this number will change if sheets are deleted 

 temp = worksheets.count; 

  

 %if there's only one sheet left, we must leave it or else 

 %there will be an error. 

 if (temp == 1) 

 break; 

 end 

  

 %this command will only delete the sheet if it is empty 

 worksheets.Item(count).Delete; 

  

 %if a sheet was not deleted, we move on to the next one 

 %by incrementing the count variable 

 if (temp == worksheets.count) 

 count = count + 1; 

 end 

end 

excelWorkbook.Save; 

excelWorkbook.Close(false); 

excelObj.Quit; 

delete(excelObj); 

  

% Run OfficeDoc to format Excel output 
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% Open document in 'append' mode: 

[file,status,errMsg] = officedoc('RandS_15yr_50K.xls', 'open', 'mode','append'); 

  

for z=1:1 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A1:W1', 'bold','on','WrapText',1); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'D:D,E:E,F2,H:H,I2,K:K,L2', 

'NumberFormat','$#,##0.00'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'D:D,G:G,J:J,U2,V2,W2', 'NumberFormat','#,##0.00'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'C:C,O2,Q2', 'NumberFormat','$#,##0'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'B:B, M2,N2,P2,R2,S2,T2', 'NumberFormat','#,##0'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A:W', 'ColAutoFit',1); 

end 

  

% Close the document, deleting standard sheets and releasing COM server: 

status = officedoc(file, 'close', 'release',1,'delStd','off'); 

  

% Re-display document; file is no longer valid so we must use file name: 

%officedoc('RandS_15yr_50K.xls', 'display'); 

  

toc 
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Appendix C - Additional targeting maps for the original cost 

scenarios based on Table 2.18 

 

Figure C.1 Spatial average sediment reduction costs under original costs with filter strips 

  

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$1.36 - $1.81

$1.82 - $2.52

$2.53 - $3.43

$3.44 - $16.69

Original cost scenario with filter strips.
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Figure C.2 Spatial average nitrogen reduction costs under original costs with filter strips 

  

Economic Priority Areas
Nitrogen Reduction Costs ($/lb/yr)

$0.20 - $0.30

$0.31 - $0.34

$0.35 - $0.38

$0.39 - $1.16

Original cost scenario with filter strips.
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Figure C.3 Spatial average phosphorus reduction costs under original costs with filter 

strips 

  

Economic Priority Areas
Phosphorous Reduction Costs ($/lb/yr)

$0.93 - $1.23

$1.24 - $1.41

$1.42 - $1.61

$1.62 - $4.79

Original cost scenario with filter strips.
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Figure C.4 Spatial average sediment reduction costs under original costs with no-till 

  

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$11.15 - $15.20

$15.21 - $22.81

$22.82 - $32.84

$32.85 - $158.06

Original cost scenario with no-till.
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Figure C.5 Spatial average nitrogen reduction costs under original costs with no-till 

  

Economic Priority Areas
Nitrogen Reduction Costs ($/lb/yr)

$1.08 - $2.56

$2.57 - $3.22

$3.23 - $4.25

$4.26 - $16.36

Original cost scenario with no-till.
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Figure C.6 Spatial average phosphorus reduction costs under original costs with no-till 

  

Economic Priority Areas
Phosphorous Reduction Costs ($/lb/yr)

$7.67 - $16.49

$16.50 - $23.21

$23.22 - $28.40

$28.41 - $161.36

Original cost scenario with no-till.
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Figure C.7 Spatial average sediment reduction costs under original costs with permanent 

vegetation 

  

  

Economic Priority Areas
Sediment Reduction Costs ($/ton/yr)

$19.86 - $26.34

$26.35 - $35.31

$35.32 - $49.93

$49.94 - $238.95

Original cost scenario with permanent 
vegetation.
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Figure C.8 Spatial average sediment reduction costs under original costs with permanent 

vegetation 

  

Economic Priority Areas
Nitrogen Reduction Costs ($/lb/yr)

$3.27 - $4.64

$4.65 - $5.23

$5.24 - $5.95

$5.96 - $23.35

Original cost scenario with permanent 
vegetation.
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Figure C.9 Spatial average phosphorus reduction costs under original costs with 

permanent vegetation 

 

   

Economic Priority Areas
Phosphorous Reduction Costs ($/lb/yr)

$13.90 - $18.64

$18.65 - $21.07

$21.08 - $23.24

$23.25 - $71.24

Original cost scenario with permanent 
vegetation.
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Appendix D - Example MATLAB Simulation Code for Chapter 3 

Example Code for Targeted for WQT trading under Full Information 
 

%Simulation 1: Full information trading 

%Full information: highest Marginal Gains element is picked first 

  

clear 

clc 

tic 

  

outFile = 'C:\Documents and Settings\Craig Smith\My 

Documents\Ph.D\WQT_Simulation\Simulations\WQT_1.xls'; 

delete(outFile) %deletes existing Excel spreadsheet output 

  

  

%Parameters 

tratio = 3; %starting value for trading ratio 

trloops = 0; %this should be set to 0 - it counts the number of times through the tratio loop 

trcosts = 0; 

PSintcost = 0; 

NPSintcost = 0; 

iterations = 100; 

%loops = 1; %should should be set to 1 in most cases, this was initially used to test for appropriate 

number of simulations to get stable statistics 

  

p = 10; %number of PS's 

n = 500; %number of farms 

  

%trading ratio parameters 

trmax = 3; %max trading ratio to consider 

trstep = 0.5; %step length for trading ratio 

  

while tratio <= trmax 

 tratio 

 trloops; 

  

 %keep3 function is a complement to the clear fcn. in that it clears all 

 %variables except the ones listed 

  

 keep3 tratio trloops trcosts PSintcost NPSintcost iterations outFile p n trmax trstep 

  

 for j=1:iterations 

 j 

  

 %Code to generate a lognormal distribution of PS's. Particularly, log 

 %normal distributions of reductions and cost/lb values. This serves as 

 %NPS input into the simulations. The logn_rnd function must be in current 
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 %directory 

  

 PSmeanred = 5000; %mean of reductions 

 PSvarred = 1562500; %variance of reductions 

 PSmeancost = 20; %mean of costs 

 PSvarcost = 225; %variance of costs 

  

 a = log(PSmeanred)-.5*log(1+(PSvarred/PSmeanred^2)); 

 b = log(1+(PSvarred/PSmeanred^2)); 

  

 PSlognTotPred = logn_rnd(a,b,p,1); 

  

 c = log(PSmeancost)-.5*log(1+(PSvarcost/PSmeancost^2)); 

 d = log(1+(PSvarcost/PSmeancost^2)); 

  

 PSlognTotPcost = logn_rnd(c,d,p,1); 

  

 PSdata = cat(2,PSlognTotPred, PSlognTotPcost); 

 PSnum = size(PSdata,1); 

 PSwtp = PSdata(:,2) - PSintcost*ones(PSnum,1); 

 PSqbuy = PSdata(:,1); 

  

 %Code to generate a lognormal distribution of farms. Particularly, log 

 %normal distributions of reductions and cost/lb values. This serves as 

 %NPS input into the simulations. The logn_rnd function must be in current 

 %directory 

  

 meanred = 200; %mean of reductions 

 varred = 2500; %variance of reductions 

 meancost = 12; %mean of costs 

 varcost = 64; %variance of costs 

  

 a = log(meanred)-.5*log(1+(varred/meanred^2)); 

 b = log(1+(varred/meanred^2)); 

  

 lognTotPred = logn_rnd(a,b,n,1); 

  

 c = log(meancost)-.5*log(1+(varcost/meancost^2)); 

 d = log(1+(varcost/meancost^2)); 

  

 lognTotPcost = logn_rnd(c,d,n,1); 

  

 NPSdata = cat(2,lognTotPred, lognTotPcost); 

 NPSnum = size(NPSdata,1); 

 NPSqsold = NPSdata(:,1)/tratio; 

 NPSwta = tratio*(NPSdata(:,2) + NPSintcost*ones(NPSnum,1)); 

 PSwtp1 = PSwtp; 

 PSqbuy1 = PSqbuy; 

 NPSqsold1 = NPSqsold; 
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 %Marginal Gains matrix 

 mar.gains = PSwtp*ones(1,NPSnum) - ones(PSnum,1)*NPSwta' - trcosts*ones(PSnum,NPSnum); 

  

 i = 0; 

 while max(max(mar.gains)) > 0 

 i = i + 1; 

 [PSid, NPSid] = find(max(max(mar.gains)) == mar.gains); %Find max mar.gains element 

 if size([PSid, NPSid], 1) > 1 %If PS (NPS) have identical wtp (wta), pick the first one 

 PSid = PSid(1); 

 NPSid = NPSid(1); 

 end; 

  

 %Make sure current PS is a feasible trader: it must have sufficient 

 %supply to meet its demand and have credits left to buy. If either 

 %of these conditions is not met, a new PS is found that meets both. 

 PSok = 0; 

 while PSok == 0 

 Sellers = (mar.gains(PSid,:) > 0); 

 Supply = Sellers*NPSqsold1; 

 if Supply >= PSqbuy1(PSid) && PSqbuy1(PSid) > 0, PSok=1; break; end; 

 mar.gains(PSid,:) = 0; 

 PSwtp1(PSid) = 0; 

 if max(max(mar.gains)) <= 0, PSok=-1; break; end; 

 PSid = find(max(PSwtp1) == PSwtp1); %find PS with maximum WTP 

 if size(PSid,1)>1 %If PS have identical wtp, pick the first one 

 PSid = PSid(1); 

 end; 

 end; 

  

 %if no PS is a feasbile trading partner, then exit the trading loop 

 if PSok == -1 

 %disp('Trading stopped because no feasible PS traders exist.'); 

 break; 

 end; 

  

 PSprice = (NPSwta(NPSid) + PSwtp1(PSid))/2 + trcosts/2; 

 NPSprice = (NPSwta(NPSid) + PSwtp1(PSid))/2 - trcosts/2; 

 Quantity = min(PSqbuy1(PSid), NPSqsold1(NPSid)); 

  

 if i == 1 %save data 

 Simout = [i, tratio, PSid, NPSid, PSprice, PSwtp1(PSid), NPSwta(NPSid), Quantity, ... 

 mar.gains(PSid,NPSid), mar.gains(PSid,NPSid)*Quantity]; 

 else Simout = [Simout; i, tratio, PSid, NPSid, PSprice, PSwtp1(PSid), NPSwta(NPSid), ... 

 Quantity, mar.gains(PSid,NPSid), mar.gains(PSid,NPSid)*Quantity]; 

 end; 

  

 PSqbuy1(PSid) = PSqbuy1(PSid) - Quantity; 

  

 NPSqsold1(NPSid) = NPSqsold1(NPSid) - Quantity; 

 if NPSqsold1(NPSid) == 0 
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 mar.gains(:,NPSid) = 0; 

 end; 

 end; 

 %This writes trades to a cell array 

 OUT{j} = {Simout}; %store output from each iteration in a cell array 

 end; 

  

 disp ('successfully finished the trading iterations!') 

  

 %Finds the maximum number of trades(rows) in the output data. Changes all 

 %matrices to have the same number of rows. Zeros are put in the rows that 

 %are added.For more information, go to section 15.3 in the array manipulation 

 %publication 

  

 for j=1:iterations 

 a(j) = max(OUT{1,j}{1,1}(:,1)); %finds total # of trades in each iteration 

 end; 

 m = mean(a); %finds average # of trades across all iterations 

 m = round(m); %rounds the average # to nearest whole number 

 % aa = a(:)'; %creates another matrix aa equal to a 

 % aa = aa(ones(m,1),:); %transforms aa into an m by iterations matrix 

 bb = (1:m)'; %creates bb which is a column vector going from 1 to m 

 % bb = bb(:,ones(length(a), 1)); %transforms bb into a m by iterations matrix 

 % %with each column going from 1 to m 

 % b = bb .* (bb <= aa); %the dot indicates array multiplication (not the same 

 % %as matrix multiplication. Arrays in bb are multiplied by an array of ones 

 % %and zeros corresponding to the number of trades 

 % M = mean(b,2); %sums across all rows of the b matrix resulting in a column vector 

  

 for i = 1:iterations %this loop equalizes number of rows (equal to mean # of trades) 

 %across all iterations so that the means can be calcualted 

 cc{i} = OUT{i}{1}(:,6); 

 dd{i} = OUT{i}{1}(:,7); 

 ee{i} = OUT{i}{1}(:,8); 

 ff{i} = OUT{i}{1}(:,9); 

 gg{i} = OUT{i}{1}(:,10); 

 [u,y] = size(cc{i}); 

 if u >= m 

 cc1{i} = cc{i}(1:m,:); 

 dd1{i} = dd{i}(1:m,:); 

 ee1{i} = ee{i}(1:m,:); 

 ff1{i} = ff{i}(1:m,:); 

 gg1{i} = gg{i}(1:m,:); 

 else v = m-u; 

 w = zeros(v,1); 

 cc1{i} = cat(1,cc{i},w); 

 dd1{i} = cat(1,dd{i},w); 

 ee1{i} = cat(1,ee{i},w); 

 ff1{i} = cat(1,ff{i},w); 

 gg1{i} = cat(1,gg{i},w); 
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 end; 

 end; 

  

 ccc = cell2mat(cc1); %converts cell array of matricies to single matrix 

 ddd = cell2mat(dd1); 

 eee = cell2mat(ee1); 

 fff = cell2mat(ff1); 

 ggg = cell2mat(gg1); 

 mccc = mean(ccc,2); %finds mean of rows 

 mddd = mean(ddd,2); 

 meee = mean(eee,2); 

 mfff = mean(fff,2); 

 mggg = mean(ggg,2); 

 mhhh = cumsum(mggg);%calculates running total of gains 

 SumOut = cat(2,bb,mccc,mddd,meee,mfff,mggg,mhhh); 

  

 % This writes the Cummulative Output to an Excel Spreadsheet (all in a single sheet) 

 Headings1 = {'Trade#' 'PSwtp' 'NPSwta' 'Quantity' 'Mar. Gains' 'Gains' 'Cum. Gains'}; 

 numericalOutput1 = num2cell(SumOut);%converts back into cell array 

 allOutput1 = [Headings1; numericalOutput1]; 

 xlswrite(outFile,allOutput1,int2str(trloops+1),'A1'); 

  

 tratio = tratio + trstep; %assign the next tratio to simulate 

 trloops = trloops+1; 

end; 

  

%------------------------------ 

%This code erases any empty sheets in an excel workbook 

%Open the output xls file 

  

excelObj = actxserver('Excel.Application'); 

%opens up an excel object 

excelWorkbook = excelObj.workbooks.Open(outFile); 

worksheets = excelObj.sheets; 

%total number of sheets in workbook 

numSheets = worksheets.Count; 

  

count=1; 

for j=1:numSheets 

 %stores the current number of sheets in the workbook 

 %this number will change if sheets are deleted 

 temp = worksheets.count; 

  

 %if there's only one sheet left, we must leave it or else 

 %there will be an error. 

 if (temp == 1) 

 break; 

 end 

  

 %this command will only delete the sheet if it is empty 
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 worksheets.Item(count).Delete; 

  

 %if a sheet was not deleted, we move on to the next one 

 %by incrementing the count variable 

 if (temp == worksheets.count) 

 count = count + 1; 

 end 

end 

excelWorkbook.Save; 

excelWorkbook.Close(false); 

excelObj.Quit; 

delete(excelObj); 

  

%---------------------------------- 

% Run OfficeDoc to format Excel output 

% Open document in 'append' mode: 

[file,status,errMsg] = officedoc(outFile, 'open', 'mode','append'); 

disp('Formatting Excel Output...') 

  

for z = 1:trloops 

 % Format Output in Excel: 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A1:G1', 'bold','on','WrapText',1); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A:A, D:D', 'NumberFormat','#,##0'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'B:B, C:C, E:E', 'NumberFormat','$#,##0.00'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'F:F, G:G', 'NumberFormat','$#,##0'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A1:G1050', 'ColAutoFit',1); 

end 

  

% Close the document, deleting standard sheets and releasing COM server: 

status = officedoc(file, 'close', 'release',1,'delStd','off'); 

toc 
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Example Code for Targeted for WQT trading under Zero Information 

 

%Simulation 2: No information trading 

%Low information: PS and NPS picked at random 

  

clear 

clc 

tic 

  

outFile = 'C:\Documents and Settings\Craig Smith\My 

Documents\Ph.D\WQT_Simulation\Simulations\WQT_2.xls'; 

delete(outFile) %deletes existing Excel spreadsheet output 

  

  

%Parameters 

tratio = 3; %starting value for trading ratio 

trloops = 0; %this should be set to 0 - it counts the number of times through the tratio loop 

trcosts = 0; 

PSintcost = 0; 

NPSintcost = 0; 

iterations = 100; 

%loops = 1; %should should be set to 1 in most cases, this was initially used to test for appropriate 

number of simulations to get stable statistics 

  

p = 10; %number of PS's 

n = 500; %number of farms 

  

%trading ratio parameters 

trmax = 3; %max trading ratio to consider 

trstep = 0.5; %step length for trading ratio 

  

while tratio <= trmax 

 tratio 

 trloops; 

  

 %keep3 function is a complement to the clear fcn. in that it clears all 

 %variables except the ones listed 

  

 keep3 tratio trloops trcosts PSintcost NPSintcost iterations outFile p n trmax trstep 

  

 for j=1:iterations 

 j 

  

 %Code to generate a lognormal distribution of PS's. Particularly, log 

 %normal distributions of reductions and cost/lb values. This serves as 

 %NPS input into the simulations. The logn_rnd function must be in current 

 %directory 

  

 PSmeanred = 5000; %mean of reductions 

 PSvarred = 1562500; %variance of reductions 
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 PSmeancost = 20; %mean of costs 

 PSvarcost = 225; %variance of costs 

  

 a = log(PSmeanred)-.5*log(1+(PSvarred/PSmeanred^2)); 

 b = log(1+(PSvarred/PSmeanred^2)); 

  

 PSlognTotPred = logn_rnd(a,b,p,1); 

  

 c = log(PSmeancost)-.5*log(1+(PSvarcost/PSmeancost^2)); 

 d = log(1+(PSvarcost/PSmeancost^2)); 

  

 PSlognTotPcost = logn_rnd(c,d,p,1); 

  

 PSdata = cat(2,PSlognTotPred, PSlognTotPcost); 

 PSnum = size(PSdata,1); 

 PSwtp = PSdata(:,2) - PSintcost*ones(PSnum,1); 

 PSqbuy = PSdata(:,1); 

  

 %Code to generate a lognormal distribution of farms. Particularly, log 

 %normal distributions of reductions and cost/lb values. This serves as 

 %NPS input into the simulations. The logn_rnd function must be in current 

 %directory 

  

 meanred = 200; %mean of reductions 

 varred = 2500; %variance of reductions 

 meancost = 12; %mean of costs 

 varcost = 64; %variance of costs 

  

 a = log(meanred)-.5*log(1+(varred/meanred^2)); 

 b = log(1+(varred/meanred^2)); 

  

 lognTotPred = logn_rnd(a,b,n,1); 

  

 c = log(meancost)-.5*log(1+(varcost/meancost^2)); 

 d = log(1+(varcost/meancost^2)); 

  

 lognTotPcost = logn_rnd(c,d,n,1); 

  

 NPSdata = cat(2,lognTotPred, lognTotPcost); 

 NPSnum = size(NPSdata,1); 

 NPSqsold = NPSdata(:,1)/tratio; 

 NPSwta = tratio*(NPSdata(:,2) + NPSintcost*ones(NPSnum,1)); 

 PSwtp1 = PSwtp; 

 PSqbuy1 = PSqbuy; 

 NPSqsold1 = NPSqsold; 

  

 %Marginal Gains matrix 

 mar.gains = PSwtp*ones(1,NPSnum) - ones(PSnum,1)*NPSwta' - trcosts*ones(PSnum,NPSnum); 

  

 i=0; 
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 while max(max(mar.gains)) > 0 

  

 %Pick trial PS and NPS for first iteration 

 if i == 0 

 PSid = double(int16((PSnum-0.01)*rand+0.5)); 

 NPSid = double(int16((NPSnum-0.01)*rand+0.5)); 

 end; 

  

 %Make sure current PS is a feasible trader: it must have sufficient 

 %supply to meet its demand and have credits left to buy. If either 

 %of these conditions is not met, a new PS is found that meets both. 

 PSok = 0; 

 while PSok == 0 

 Sellers = (mar.gains(PSid,:) > 0); 

 Supply = Sellers*NPSqsold1; 

 if Supply >= PSqbuy1(PSid) && PSqbuy1(PSid) > 0, PSok=1; break; end; 

 mar.gains(PSid,:) = 0; 

 if max(max(mar.gains)) <= 0, PSok=-1; break; end; 

 PSid = double(int16((PSnum-0.01)*rand+0.5)); 

 end; 

  

 %if no PS is a feasbile trading partner, then exit the trading loop 

 if PSok == -1 

 %disp('Trading stopped because no feasible PS traders exist.'); 

 break; 

 end; 

  

 %if current NPS is "sold out" or has no gainful trading partners, 

 %then set its mar.gains to zero pick a new NPS 

 if (NPSqsold1(NPSid) == 0) || (max(mar.gains(:,NPSid)) <=0) 

 mar.gains(:,NPSid) = 0; 

 NPSid=double(int16((NPSnum-0.01)*rand+0.5)); 

 end; 

  

 %if mar.gains for current (PS, NPS) pair is nonpositive, pick a new NPS 

 if mar.gains(PSid, NPSid) <= 0 

 NPSid=double(int16((NPSnum-0.01)*rand+0.5)); 

  

 %otherwise (i.e., if mar.gains are positive) execute trade and save data 

 else 

 i = i + 1; 

 PSprice = (NPSwta(NPSid) + PSwtp(PSid))/2 + trcosts/2; 

 NPSprice = (NPSwta(NPSid) + PSwtp(PSid))/2 - trcosts/2; 

 Quantity = min(PSqbuy1(PSid), NPSqsold1(NPSid)); 

 PSqbuy1(PSid) = PSqbuy1(PSid) - Quantity; 

 NPSqsold1(NPSid) = NPSqsold1(NPSid) - Quantity; 

  

 if i == 1 %save data 

 Simout = [i, tratio, PSid, NPSid, PSprice, PSwtp(PSid), NPSwta(NPSid), Quantity, ... 

 mar.gains(PSid,NPSid), mar.gains(PSid,NPSid)*Quantity]; 
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 else Simout = [Simout; i, tratio, PSid, NPSid, PSprice, PSwtp(PSid), NPSwta(NPSid), ... 

 Quantity, mar.gains(PSid,NPSid), mar.gains(PSid,NPSid)*Quantity]; 

 end; 

  

 end; 

 end; 

  

 %This writes trades to a cell array 

 OUT{j} = {Simout}; %store output from each iteration in a cell array 

  

 end; 

  

 % %Close ActiveX Server input 

 % invoke(Excel.ActiveWorkbook,'Save'); 

 % Excel.Quit 

 % Excel.delete 

 % clear Excel 

  

 disp ('successfully finished the trading iterations!') 

  

 %Finds the maximum number of trades(rows) in the output data. Changes all 

 %matrices to have the same number of rows. Zeros are put in the rows that 

 %are added.For more information, go to section 15.3 in the array manipulation 

 %publication 

  

 for j=1:iterations 

 a(j) = max(OUT{1,j}{1,1}(:,1)); %finds total # of trades in each iteration 

 end; 

 m = mean(a); %finds average # of trades across all iterations 

 m = round(m); %rounds the average # to nearest whole number 

 % aa = a(:)'; %creates another matrix aa equal to a 

 % aa = aa(ones(m,1),:); %transforms aa into an m by iterations matrix 

 bb = (1:m)'; %creates bb which is a column vector going from 1 to m 

 % bb = bb(:,ones(length(a), 1)); %transforms bb into a m by iterations matrix 

 % %with each column going from 1 to m 

 % b = bb .* (bb <= aa); %the dot indicates array multiplication (not the same 

 % %as matrix multiplication. Arrays in bb are multiplied by an array of ones 

 % %and zeros corresponding to the number of trades 

 % M = mean(b,2); %sums across all rows of the b matrix resulting in a column vector 

  

 for i = 1:iterations %this loop equalizes number of rows (equal to mean # of trades) 

 %across all iterations so that the means can be calcualted 

 cc{i} = OUT{i}{1}(:,6); 

 dd{i} = OUT{i}{1}(:,7); 

 ee{i} = OUT{i}{1}(:,8); 

 ff{i} = OUT{i}{1}(:,9); 

 gg{i} = OUT{i}{1}(:,10); 

 [u,y] = size(cc{i}); 

 if u >= m 

 cc1{i} = cc{i}(1:m,:); 
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 dd1{i} = dd{i}(1:m,:); 

 ee1{i} = ee{i}(1:m,:); 

 ff1{i} = ff{i}(1:m,:); 

 gg1{i} = gg{i}(1:m,:); 

 else v = m-u; 

 w = zeros(v,1); 

 cc1{i} = cat(1,cc{i},w); 

 dd1{i} = cat(1,dd{i},w); 

 ee1{i} = cat(1,ee{i},w); 

 ff1{i} = cat(1,ff{i},w); 

 gg1{i} = cat(1,gg{i},w); 

 end; 

 end; 

  

 ccc = cell2mat(cc1); %converts cell array of matricies to single matrix 

 ddd = cell2mat(dd1); 

 eee = cell2mat(ee1); 

 fff = cell2mat(ff1); 

 ggg = cell2mat(gg1); 

 mccc = mean(ccc,2); %finds mean of rows 

 mddd = mean(ddd,2); 

 meee = mean(eee,2); 

 mfff = mean(fff,2); 

 mggg = mean(ggg,2); 

 mhhh = cumsum(mggg);%calculates running total of gains 

 SumOut = cat(2,bb,mccc,mddd,meee,mfff,mggg,mhhh); 

  

 % This writes the Cummulative Output to an Excel Spreadsheet (all in a single sheet) 

 Headings1 = {'Trade#' 'PSwtp' 'NPSwta' 'Quantity' 'Mar. Gains' 'Gains' 'Cum. Gains'}; 

 numericalOutput1 = num2cell(SumOut);%converts back into cell array 

 allOutput1 = [Headings1; numericalOutput1]; 

 xlswrite(outFile,allOutput1,int2str(trloops+1),'A1'); 

  

 tratio = tratio + trstep; %assign the next tratio to simulate 

 trloops = trloops+1; 

end; 

  

%------------------------------ 

%This code erases any empty sheets in an excel workbook 

%Open the output xls file 

  

excelObj = actxserver('Excel.Application'); 

%opens up an excel object 

excelWorkbook = excelObj.workbooks.Open(outFile); 

worksheets = excelObj.sheets; 

%total number of sheets in workbook 

numSheets = worksheets.count; 

  

count=1; 

for j=1:numSheets 
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 %stores the current number of sheets in the workbook 

 %this number will change if sheets are deleted 

 temp = worksheets.count; 

  

 %if there's only one sheet left, we must leave it or else 

 %there will be an error. 

 if (temp == 1) 

 break; 

 end 

  

 %this command will only delete the sheet if it is empty 

 worksheets.Item(count).Delete; 

  

 %if a sheet was not deleted, we move on to the next one 

 %by incrementing the count variable 

 if (temp == worksheets.count) 

 count = count + 1; 

 end 

end 

excelWorkbook.Save; 

excelWorkbook.Close(false); 

excelObj.Quit; 

delete(excelObj); 

  

%---------------------------------- 

% Run OfficeDoc to format Excel output 

% Open document in 'append' mode: 

[file,status,errMsg] = officedoc(outFile, 'open', 'mode','append'); 

disp('Formatting Excel Output...') 

  

for z = 1:trloops 

 % Format Output in Excel: 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A1:G1', 'bold','on','WrapText',1); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A:A, D:D', 'NumberFormat','#,##0'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'B:B, C:C, E:E', 'NumberFormat','$#,##0.00'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'F:F, G:G', 'NumberFormat','$#,##0'); 

 status = officedoc(file, 'format', 'sheet', z, 'Range', 'A1:G1050', 'ColAutoFit',1); 

end 

  

% Close the document, deleting standard sheets and releasing COM server: 

status = officedoc(file, 'close', 'release',1,'delStd','off'); 

toc 
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Appendix E - Additional WQT output from Chapter 4 

Table E.1 Simulation results considering all trades occur 

 

 

 

Scenario 

Trading 

Ratio 

Volume Traded Cost Savings Final Costs 

# of 

Trades 

Base 

Loading 

Reduction 

by NPS 

(lbs) 

Loading 

Reduction 

by PS 

(lbs) 

Additional 

Loading 

Reduction 

by NPS 

(lbs) 

Total 

Loading 

Reduction 

(lbs) Total ($) 

Percent 

(%) Total ($) 

Avg. 

($/lb) 

1a 0.5 134 24,088 1,823 - 25,912 701,703 70.2 298,297 11.51 

1b 1.0 227 40,816 9,184 - 50,000 497,161 49.7 502,839 10.06 

1c 1.5 224 26,396 23,604 13,198 63,198 319,788 32.0 680,212 10.76 

1d 2.0 188 16,210 33,790 16,210 66,210 205,138 20.5 794,862 12.01 

1e 2.5 151 9,993 40,007 14,990 64,990 134,540 13.5 865,460 13.32 

1f 3.0 121 6,386 43,614 12,772 62,772 90,824 9.1 909,176 14.48 

2a 0.5 134 24,112 1,777 - 25,888 597,226 59.7 402,774 15.56 

2b 1.0 255 47,156 2,844 - 50,000 392,259 39.2 607,741 12.15 

2c 1.5 301 36,035 13,965 18,017 68,017 234,861 23.5 765,139 11.25 

2d 2.0 258 22,515 27,485 22,515 72,515 142,475 14.2 857,525 11.83 

2e 2.5 203 13,613 36,387 20,419 70,419 90,259 9.0 909,741 12.92 

2f 3.0 154 8,356 41,644 16,712 66,712 59,869 6.0 940,131 14.09 

3a 0.5 134 24,108 1,785 - 25,892 602,482 60.2 397,518 15.35 

3b 1.0 252 46,330 3,670 - 50,000 406,054 40.6 593,946 11.88 

3c 1.5 273 32,630 17,370 16,315 66,315 262,055 26.2 737,945 11.13 

3d 2.0 228 19,860 30,140 19,860 69,860 161,605 16.2 838,395 12.00 

3e 2.5 181 12,261 37,739 18,392 68,392 101,590 10.2 898,410 13.14 

3f 3.0 141 7,700 42,300 15,401 65,401 65,051 6.5 934,949 14.30 

4a 0.5 134 24,098 1,804 - 25,902 699,950 70.0 300,050 11.58 

4b 1.0 243 43,916 6,084 - 50,000 479,847 48.0 520,153 10.40 

4c 1.5 266 31,444 18,556 15,722 65,722 293,180 29.3 706,820 10.75 

4d 2.0 232 19,951 30,049 19,951 69,951 180,392 18.0 819,608 11.72 

4e 2.5 185 12,388 37,612 18,581 68,581 116,491 11.6 883,509 12.88 

4f 3.0 147 7,988 42,012 15,976 65,976 81,077 8.1 918,923 13.93 

           


