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Abstract 

Sorghum is a vital cereal crop grown in many regions around the world. Tolerance to harsh 

climates and low moisture conditions are unique traits making sorghum an economical choice in an 

era of global water scarcity. In recent years, sorghum has gained greater recognition as a gluten-free 

grain and is a safe alternative for individuals suffering from gluten sensitivities or celiac disease. Still, 

the lack of gluten proteins does not allow sorghum to form a viscoelastic dough. In this study 

reducing agents were added to improve functional properties of sorghum kafirins for bread baking. 

Study objectives were to determine the effect of reducing agents on protein body structure of 

sorghum kafirins, investigate the influence on the sorghum batter consistency, and evaluate the 

effects on the physical characteristics of sorghum bread. Protein analysis, accomplished using RP-

HPLC, showed reducing agents, L-cysteine and sodium metabisulfite, reduced protein structure; 

increasing RP-HPLC total peak area up to 747% and 681%, respectively. Batter consistency was 

obtained using a RVA. Treatments of L-cysteine (2.5% fwb) expressed increased RVA peak viscosity 

and decreased final viscosity. Samples treated with sodium metabisulfite (500 ppm fwb) had 

increased peak viscosity, holding strength and final viscosity. Yeast activity of batter treated with 

≥3000 ppm (fwb) sodium metabisulfite caused volume loss of 95% yet at 500 ppm (fwb) sodium 

metabisulfite did not have an effect. Batter with 2.5% (fwb) L-cysteine experienced reduced yeast 

activity after 20 min. Sorghum bread characteristics were altered. Loaf volume and crumb grain 

characteristics of bread produced using sodium metabisulfite (500 ppm) were equal to that of the 

control, while initial texture and staling were improved. The addition of L-cysteine (2.5% fwb) to 

breads lowered loaf volume but produced softer initial crumb texture and improved in-vitro protein 

digestibility by 18.8%.
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Introduction 

Grain sorghum is grown in many regions around the world. The crop’s ability to withstand 

harsh climates and low moisture conditions aids in its versatility. In recent years, sorghum has gained 

recognition as a gluten-free grain, making it a popular alternative for individuals suffering from celiac 

disease or other gluten sensitivities. White sorghum varieties are preferred for food use. 

Nevertheless, because sorghum grain does not possess gluten proteins it is unable to form a 

viscoelastic dough. Without an elastic and extensible network of proteins, dough does not have the 

ability to retain gases produced during fermentation, which is required to properly leaven and to 

ultimately evolve into a quality loaf of bread.   

1.1 Statement of Problem 

Many studies have evaluated sorghum in composite bread applications (Carson et al., 

2000,Goodall et al., 2012,Mkandawire, 2013), investigated the carbohydrate composition and 

functionality (Subramanian et al., 1994, Beta et al., 2001, Sang et al., 2008, Taylor et al., 2010), as well 

as protein characterization, functionality and digestibility (Hamaker et al., 1987, Duodu et al., 2003, 

Ioerger et al., 2007, Oom et al., 2008, Miller, 2013). Yet little work has been done to alter the native 

protein body structure of sorghum kafirin proteins. Previous research has indicated reducing agents 

may be employed to alter protein body structure for functional purposes (Hamaker et al., 1987, 

Elkhalifa et al., 1999, Yano, 2010, Guo et at al., 2012). In a study conducted by Yano (2010), the 

reducing agent, glutathione was evaluated for its effects on rice bread batter. The study concluded 

the reduction of rice proteins lead to a significant improvement of gas retention in batter.  A 

subsequent study performed by Guo et al. (2012) investigated the effects of reducing agents on 
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stored rice. They discovered the reducing agent, ascorbic acid, increased peak viscosity while also 

improving water absorption capacity, soluble solid content and granule swelling capacity of aged 

rice. Similar results were found by Elkhalifa et al. (1999) when cysteine, sodium metabisulfite and 

ascorbic acid were added to cooked sorghum gruel. Treatment with reducing agents improved in-vitro 

starch digestibility of sorghum gruel, up to 58% when sodium metabisulfite was used. Additionally, a 

study carried out by Hamaker et al. (1987) found protein digestibility of cooked sorghum was 

improved in the presence of reducing agents, sodium bisulfite and L-cysteine. These studies indicate 

there is potential for reducing agents to be used in gluten-free breads, for the purpose of improving 

functional properties of batter and finished products. 

1.2 Study Objectives 

The purpose of this study was to provide further insight into grain sorghum biochemistry, 

physiochemical composition and protein structure as it relates to bread baking. This was done by 

evaluating the effects of reducing agents, glutathione, L-cysteine, and sodium metabisulfite, at 

various concentrations. The objectives of this study were: 

1. Determine the effect of reducing agents on the structure of the primary prolamin proteins 

(kafirins) present in sorghum grain. 

2. Investigate the influence of reducing agents on the consistency of sorghum bread batter.  

3. Evaluate the effect of reducing agents on the physical characteristics of sorghum bread. 
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Literature Review 

2.1 Celiac Disease 

Celiac disease is a chronic, genetic intestinal disease affecting millions of individuals. 

Awareness of celiac disease has increased in recent years due to improved diagnostic tests. 

Approximately 1 in 133 Americans is diagnosed with celiac disease (Fasano et al., 2003). This 

condition is characterized by an autoimmune response to a particular set of gluten storage proteins 

found in wheat, barley and rye. Gluten is not a singular protein but a heterogeneous mixture of two 

proteins; gliadin and glutenin. Both proteins provide unique attributes to dough during mixing and 

baking in addition to the pathogenesis of celiac disease. Gliadins are monomeric proteins, 

responsible for imparting extensibility to the gluten protein matrix during mixing and facilitating gas 

retention during leavening. Kagnoff et al. (1982) report a portion of the gliadin proteins exist in the 

isoform, α-gliadin, which triggers the immune response of celiac disease. Specifically, five peptide 

sequences derived from a subcategory within the α-gliadin isoform, are highly toxic and have been 

identified to be the specific instigators of the immune response in celiac patients (Kagnoff et al., 

1982,De Vincenzi et al., 1996,Wal et al., 1999,Vader et al., 2002). Glutenins are multimeric proteins, 

responsible for the elastic characteristic of wheat dough. When glutenin is solubilized as in digestion, 

it disassociates into low-molecular-weight (LMW) and high-molecular-weight (HMW) subunits. The 

LMW subunits contain the same peptide sequences found in the toxic gliadin fractions. To a lesser 

extent than gliadins, the LMW glutenin subunit contribute to the adverse effects of gluten proteins 

on celiac patients (De Vincenzi et al., 1996).  
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The triggered immune response to gluten proteins is a combination of genetic predisposition 

and adaptive response experienced by celiac patients.  Spurkland et al. (1997) discovered celiac 

disease is associated with the HLA-DQ2 and HLA-DQ8 genes. Individuals who possess HLA-DQ2 

and/or HLA-DQ8 genotypes have a predisposition for disease development. Interestingly, the 

strength of association varies between genotypes based on their ability to bind gluten peptides. The 

association between celiac disease and HLA-DQ8 is weak because it only binds a narrow range of 

gluten peptides, while HLA-DQ2 binds a wider range; thus, it is strongly associated. A study 

completed by Tjon et al. (2010) revealed the presence of the HLA-DQ2 gene is fairly common, 

found in nearly 25% of the European population. Yet, of that fraction of the population, 

approximately only 4% will develop celiac disease. A visual representation of the affected 

population, based on genetic markers is shown in Figure 2.1. 

 

 
 

Figure 2.1: Prevalence of celiac disease (CD) based on genetic markers HLA-DQX and HLA-DQ2. 
Adapted from Tjon et al. (2010). 

 
 
 

In contrast to traditional food allergies, celiac disease does not develop as an immediate 

hypersensitivity to a protein (Green et al., 2015). Instead, celiac disease is a delayed immune 

response, initiated when gluten enters the intestinal tract. The epidermal tissue transglutaminase 

(TTG), a protective enzyme lining of the intestine, activates the gluten polymer causing it to present 

as a pathogenic antigen. In response, the immune system deploys white blood cells with specific 
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CD4 glycoprotein. The CD4+ T-cells transmit signals to other immune cells equipped to destroy 

what the body interprets as an infectious agent. While trying to protect the body the cytokines 

released ultimately result in inflammation of the epithelial layer of the gastrointestinal mucosal lining 

and atrophy of the intestinal villa. The subsequent clinical expressions of this damage are commonly 

noted as abdominal pain, weight loss and diarrhea, which can ultimately lead to malabsorption, 

nutrient deficiency, osteoporosis, anemia and certain cancers (Tjon et al., 2010,Green et al., 2015). 

There is no cure for celiac disease and to-date the only treatment is life-long adherence to a gluten-

free diet. As this is the only solution for celiac patients, the quality and variety of gluten-free 

products must improve. 

2.2 Gluten-free 

Intuitively, as the prevalence of celiac disease diagnoses have increased, the gluten-free 

market has shown tremendous growth. In the United States, 30% of adults are interested in partially 

or fully omitting gluten from their diets (McLynn, 2013) indicating the demand for gluten-free is 

evident.  In 2013, the United States Food and Drug Administration officially defined “gluten-free” 

with the Final Rule of Food Labeling; Gluten-free Labeling of Foods. In order for products to bear 

the claim “gluten-free”, food must not include a gluten-containing grain (e.g., spelt wheat); an 

ingredient derived from a gluten-containing grain (e.g., wheat flour); or an ingredient derived from a 

gluten-containing grain that has been processed to remove gluten (e.g., wheat starch) (FDA, 2014). 

The use of any of those ingredients must result in the presence of less than 20 parts per million 

(ppm) of gluten in the food product to be deemed gluten-free. Additional claims such as “no 

gluten”, “free of gluten” and “without gluten” are considered synonymous with “gluten-free” and 

therefore, are required to adhere to the standards of the FDA definition.  
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In conjunction with regulatory standards, quality standards are critically important to the 

food industry. The gluten-free segment of the food market has shown tremendous growth. In 2014, 

the gluten-free market was valued at $1.77 billion and is projected to grow to $23.9 billion by 2020 

(Statista, 2016). However, in spite of the growing success of this niche market there is still a large 

push to improve products in terms of taste, texture, aroma and shelf-life. Gluten-free products pose 

a difficult challenge, as omitting gluten proteins from products creates a large functional void which 

needs to be replaced by other ingredients. Gluten provides both elasticity and extensibility to a 

dough which in turn allows for gas retention and leavening. It is also unique in that it plays a 

significant role in structure, moisture retention and shelf-life stability (Cornish et al., 2006). Due to 

gluten’s diverse functionality, there is not a single ingredient that can replace gluten in a baking 

system. Often, hydrocolloids and isolated starches are incorporated to maintain structure and retain 

moisture. Isolated starch products such as potato starch, tapioca starch and corn starch are most 

commonly formulated in gluten-free products. Starch sources such as these are capable of binding 

large amounts of water, aiding in crumb quality and freshness. In addition, hydrocolloids such as 

xanthan gum, locust bean gum and hydroxypropyl methylcellulose (HPMC) are incorporated into 

gluten-free products. Xanthan and locust bean gums are well-suited for fermented bread 

applications due to their salt tolerance and stability over a range of pH and temperatures. Surface-

active hydrocolloids such as HPMC are also well adapted for gluten-free bread; providing emulsion 

stabilization by dispersing and retaining air cells within the batter, resulting in a uniform crumb 

structure and in some cases, improved volume.  

2.3 Sorghum 

Sorghum (Sorghum bicolor (L.) Moench) has been extensively researched for its applications in 

gluten-free baking, feed manufacturing, and ethanol production. Grain sorghum belongs to the grass 
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family, Poaceae, and is most comparable in composition to maize. Sorghum contains a high degree 

of genetic diversity in addition to considerable variation which occurs naturally across germplasm 

collections.  

Currently, sorghum is grown on five of the seven continents and ranks fifth among the most 

important cereal crop in the world (The United Sorghum Checkoff, 2012). This abundant, durable 

crop readily grows in semi-arid climates, such as those found in Africa, India, parts of Asia, and the 

Midwestern United States, because of its natural tolerance to drought, insects and heat. These 

unique attributes allow sorghum to thrive in regions uninhabitable for other crops, while remaining 

economical to producers. Furthermore, sorghum maintains an impressive nutritional profile, 

containing high amounts of vitamins, minerals, dietary fiber, antioxidants, and phytochemicals 

(Lemlioglu, 2014). Although protein digestibility of sorghum is poor upon cooking, the proteins 

found in sorghum are not harmful to individuals with celiac disease thus making it  a promising 

wheat alternative for gluten-free food applications, given methods can be implemented to improve 

digestibility. 

2.3.1 Plant Structure 

As mentioned previously, sorghum exhibits tremendous diversity. Both phenotypic and 

genotypic expressions vary between cultivars, however the general plant structure is fundamentally 

the same. The plant consists of roots, stem, leaves, and panicle or seed head. The seed head consists 

of multiple sets of paired spikelets. Sorghum develops in stages, reaching physiological maturity 

between 80 to 120 days after emergence (Vanderlip, 1993). When maturity and optimum moisture 

content (20-35%) are reached, stalks range in height from 2 to 4 feet with seed heads containing 

roughly 500-2000 kernels.  

The sorghum kernels or caryopses are the most diverse component of the plant. Caryopsis 

size and weight vary widely based upon accumulation of dry matter during stage three of 
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development. Typical weight of an individual caryopsis at maturity averages between 20 to 30 mg 

(Delcour & Hoseney, 2010a). An assortment of pigmentations are possible for pericarp color. While 

only three genetic colors exist based on gene expression the caryopsis may appear white, yellow, red, 

brown, bronze or black (Rooney & Awika, 2004).  

The sorghum caryopsis is generally spherical in shape and comprised of the germ, 

endosperm, and bran or pericarp (Figure 2.2). The germ is the reproductive portion of the caryopsis. 

Within this portion of the kernel, densely packed B-vitamins, minerals, lipids and proteins are 

contained to provide a nutrient source for a germinating kernel.  The endosperm constitutes the bulk 

of the kernel at approximately 70%. Vitreous and floury endosperm are dispersed within the kernel 

and surrounded by the aleurone layer. Vitreous endosperm is distinguishable by the high-molecular-

weight proteins and number of disulfide bonds present (Ioerger et al., 2007). Inversely, floury 

endosperm is comprised of low concentrations of proteins, fewer cross linkages and a greater 

concentration of starch. The aleurone layer is tightly bound to the vitreous and floury endosperm 

sectors, and is mainly comprised of lipids yet contains some starch. Winger et al. (2014) noted 

endosperm color as a defining characteristic of sorghum flours; claiming it provides some indication 

of the flavor and consistency of the final baked good product. The bran is the outer most layer of 

the kernel and is comprised of sublayers to include the testa, pericarp, mesocarp, epicarp, and others 

(Rooney & Miller, 1982, Delcour & Hoseney, 2010a). The pericarp serves as a physical protective 

barrier between environmental elements and the kernel. Within the pericarp resides starch, fiber, and 

low concentrations of vitamins. The testa is a sublayer contained by the pericarp, which also 

provides an additional level of fortification. Varieties with a pigmented testa contain 

polyanthocianins or condensed tannin, which are phenolic compounds that impart a bitter taste used 

as a defense mechanism by the crop to ward off birds and other predators (Delcour & Hoseney, 

2010a).  
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Figure 2.2: Sorghum grain caryopsis structure, showing the pericarp, endosperm (vitreous and 
floury), scutellum and the germ. Adapted from Delcour and Hoseney (2010a). 

 

 

The pericarp and testa layers are unique in that they determine the classification of the 

sorghum grain. A common reference system categorizes sorghum variety based on genotypic 

expression in relation to tannin content, which is housed in the testa and pericarp. These genetic 

categories are outlined as Types I, II, and III (Earp et al., 2004,Price et al., 1978). Type I sorghum 

varieties exhibit no pigmentation in the testa layer, contain no tannins, and have a low degree of 

phenols. Type II varieties contain tannin deposits in vesicles within the testa layer. Lastly, Type III 

varieties display tannin deposits in the cell walls of the testa and pericarp layers. It should be noted 

that grain color is not a direct indicator to sorghum type. To accurately and definitively categorize a 

sorghum cultivar, DNA and spectroscopic analyses must be conducted (Dykes et al., 2014). 

2.3.2 Composition 

 

Macromolecules such as carbohydrates, proteins, and lipids represent the majority of 

sorghum flour composition, while minor constituents such as vitamins, minerals, phytochemicals 
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and inorganic materials are also present. The intricate roles and interactions of macromolecules 

dictate the reactions of sorghum flour during hydration, mixing, cooking and staling processes.  

2.3.2.1 Carbohydrates 

Carbohydrates are the most essential component of any cereal grain due to the amount of 

energy stored within. The primary carbohydrates found in sorghum are amylose and amylopectin. 

Located predominantly in the endosperm, the total starch content of a kernel is 55.6-75.8%, with an 

average of 70% db (Taylor et al., 2010). Amylose accounts for roughly 24-33% of the total starch in 

normal, non-waxy sorghum varieties. The average degree of polymerization (DP) of amylose lies 

between 1330-1390, while amylopectin has an average DP of 8900 (Gaffa et al., 2004). Both amylose 

and amylopectin are physically bound by the storage proteins; trapped within by a complex starch-

protein matrix.  

2.3.2.2 Protein 

Sorghum generically has an average protein content of 11% but can range between 6 to 18% 

(Lásztity, 1996). Non-prolamin proteins such as albumins, globulins and glutelins are present within 

the endosperm and account for approximately 30% of the protein content (de Mesa-Stonestreet et 

al., 2010). The major fraction of protein within sorghum are the storage prolamin proteins known as 

kafirins. These proteins are most widely known for forming indigestible protein matrices with starch 

granules (Figure 2.3). Various classifications of kafirins exist and are distinguishable based on 

molecular weight and solubility characteristics.  
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Figure 2.3: Sorghum protein body in relation to starch and the glutelin matrix (de Mesa-Stonestreet 
et al., 2010). 

 
 
 

Kafirins exist in four subunits; α, β, γ and δ. Occurring in the greatest concentration, α-

kafirins account for approximately 66 to 71% of the total kafirins within the floury endosperm and 

80 to 84% in vitreous endosperm (Watterson et al., 1993). The α-kafirins exist in one of two 

polypeptide groups; molecular weight (Mw) 25 kDa or 23 kDa. Found primarily as monomers or 

oligomers, these polypeptides are comprised of the nonpolar amino acids proline, leucine, and 

alanine. The α-kafirins only form intramolecular disulfide bonds thus do not exhibit extensive 

crosslinking. The β-kafirins make up 10–13% of the total kafirins within floury endosperm and 7–

8% in vitreous endosperm tissue (Watterson et al., 1993). They are categorized by an approximate 

Mw 18 kDa. The β-kafirins exist as both monomers and polymers containing amino acids 

methionine and cysteine, which are rich in sulfur. Due to the high number of sulfur groups present 

in this polypeptide, more opportunities for disulfide bonding exist. Consequently, β-kafirins are 

extensively crosslinked via intramolecular and intermolecular disulfide bonds. The γ-kafirins are 

identified by Mw 20 kDa and constitute 19–21% of the total kafirin fraction in floury endosperm and 

9–12% in vitreous endosperm, according to Watterson et al. (1993). Similar to β-kafirins, the γ-

kafirins are rich in sulfur-containing amino acids such as cysteine, proline and histidine. This fraction 
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of kafirins are largely found as polymers or oligomers. Furthermore, γ-kafirins are highly crosslinked 

with intramolecular and intermolecular disulfide bonds making them highly indigestible by protease 

enzymes (Belton et al., 2006,de Mesa-Stonestreet et al., 2010). Additionally, due to the frequent 

occurrence of proline, these polypeptides are the most hydrophobic of the kafirins. Lastly, δ-kafirins 

are present in minute concentrations. Identified by Mw 13 kDa, this fraction of kafirins are rich in 

methionine. To-date little is known about the participation of δ-kafirins in intramolecular or 

intermolecular disulfide bonds. 

2.3.3 Food Application 

For centuries throughout African and Asian cultures, sorghum has been a dietary staple due 

to its availability and unique ability to grow in semi-arid climates. These cultures manufacture an 

assortment of products such as popped sorghum, porridge, fermented and unfermented flatbreads, 

rolls, couscous, and malted beverages (Rose et al., 2014). Traditional products, while providing much 

needed sustenance, typically lack in favorable sensory attributes namely flavor and texture, as well as 

nutritional quality (Taylor et al., 2010). 

The United States is the largest producer of grain sorghum, with Kansas being the number 

one contributing state as of 2014 (U.S. Department of Agriculture National Statistics Service, 2015), 

(Figure 2.4). Although the U.S. is the leading cultivator of sorghum, the use of sorghum is almost 

extensively for livestock feed and biofuel production. Research has been accumulating since the 

1970’s to determine the utilization of sorghum in food applications. Undeniably, with the continued 

increase in wheat related illnesses, allergies and sensitivities, sorghum continues to grow in 

popularity. Although the research has been on-going for many years, the struggle to make sorghum-

based baked goods comparable to wheat-based baked goods still exists. Fully understanding the 

chemical composition and molecular interactions will aid in developing better baked good products.  
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Figure 2.4: Domestic map of sorghum for grain production per acre by county for 2014  

(U.S. Department of Agriculture National Statistics Service, 2015) 

 

 

There are boundless benefits of grain sorghum. Not only is it globally available in great 

quantities but it also possesses a robust nutritional profile. Previous studies have linked individual 

constituents of sorghum to a variety of health benefits, such as cardiovascular health, colon health, 

and diabetes (Awika & Rooney, 2004). Despite the availability and contingent health benefits, 

sorghum proteins do not form cohesive bonds with other constituents such as starch or water to the 

extent needed to construct a viscoelastic dough (Oom et al., 2008). For this reason it is difficult to 

produce sorghum bread using a traditional dough method. Instead, sorghum is more suited for 

products made by a batter method, similar to cakes. Through hypothetical, chemical modification of 

the inherent kafirin proteins of sorghum may attribute some degree of viscoelasticity.  In a study 

accomplished by Goodall et al. (2012) showed a composite dough made with 30 to 60% of a high 

digestibility, high-lysine (HDHL) sorghum variety flour and wheat flour had significantly improved 
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extensibility compared to normal sorghum-wheat composite dough. The HDHL sorghum was 

selectively bred to obtain a folded protein body shape. This morphology allows α-kafirins to be 

more accessible for interactions when in a flour form, ultimately improving the protein network of 

the dough to possess viscoelastic property. If the alterations of protein bodies through breeding 

techniques can improve viscoelastic properties of dough, then there is promise that chemical 

modification with reducing agents can produce similar results.   

2.4 Reducing Agents 

On a biochemical level, reducing agents are catalysts for catabolic reaction between proteins. 

Large conglomerations of proteins, previously referred to as a protein body, are held together by 

disulfide bonds and ionic charges which create a tertiary structure. Reducing agents target the 

disulfide (–S-S-) bonds within or between proteins, reducing them to sulfhydryl group or thiol group 

(-SH), shown in Figure 2.5 as the sulfhydryl-disulfide exchange. Thus, when a reducing agent is 

introduced to a protein body, the protein structure is catabolized into smaller subunits or 

polypeptides as the disulfide bonds are cleaved.  

 

 

Figure 2.5: Sulfhydryl-disulfide exchange reduction reaction of protein with reducing agents. 
Adapted from Lallemand (2011). 
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Traditionally reducing agents are utilized in wheat bread formulations as dough conditioners. 

Reducing agents such as glutathione, L-cysteine and sodium metabisulfite cleave the disulfide bonds 

between gluten proteins. This action causes a reduction in dough strength and is often used to 

increase the extensibility of the dough system. Known benefits of reducing agents in wheat dough 

are decreased mix time, reduced dough elasticity, shorter proofing period and improved handling 

properties for high protein or strong dough.  

In contrast to wheat proteins, sorghum kafirin proteins do not bear the same viscoelastic 

properties, therefore the effect of reducing agents in a sorghum bread formulation is unknown. As 

previously mentioned, kafirins are highly crosslinked and exist within the grain as tightly compacted 

protein bodies. It is known that the basic function of reducing agents is to break disulfide bonds. 

Since sorghum proteins have a high level of disulfide bonds, in theory, reducing agents would be 

able to break down the large protein bodies into smaller protein conglomeration or individual 

proteins and free the embedded starch granules trapped within the protein matrix. As a result, the 

liberated starch granules may have a greater chance of becoming hydrated, and gelatinizing during 

baking. Also the reduced kafirin proteins may be more apt to form a cohesive dough in addition to 

being more readily digestible.  

2.4.1 Glutathione 

Glutathione is a tripeptide consisting of amino acids glutamate, cysteine and glycine (Figure 

2.6). This tripeptide is a metabolic by-product of yeast, namely from nonviable cells, which occur at 

higher concentrations in dry yeasts (Pyler & Gorton, 2009). Furthermore, glutathione is endogenous 

in low levels within the wheat germ. The presence of glutathione in wheat dough is known to 

increase extensibility of the gluten protein matrix. The sulfhydryl (-SH) present on the amino acid, 

cysteine, allows glutathione to behave as a reducing agent. By utilizing a process known as the 
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sulfhydryl-disulfide interchange, glutathione is continuously able form and rearrange disulfide bonds 

that occur intermolecularly and intramolecularly within a protein structure.  

 
Figure 2.6: Chemical structure of glutathione  

 

Glutathione is recognized as a safe food additive by the FDA (Yano, 2010), yet it is relatively 

expensive and may not be suitable for industrial applications. It was selected for this research 

because it has been reported to reduce disulfide bonds and aid in gluten-free baking products 

containing rice flour (Yano, 2010). Moreover, successfully using glutathione in a second gluten-free 

baking application could increase use of brewer’s spent yeast (a natural and flavorful source of 

glutathione), ultimately creating a value-added product for another segment of the grain industry. 

2.4.2 L-cysteine 

L-cysteine is a synthetic version of the essential amino acid cysteine, which is naturally 

occurring in animal proteins. L-cysteine is the most common and extensively utilized reducing agent 

for wheat dough in commercial settings. It is employed for its ability to reduce mix time, increase 

dough extensibility and improve pan flow. For use in bread systems, L-cysteine can be used in 

concentrations ranging from 10-90 ppm but most commonly added at 20 to 30 ppm (fwb). As 

previously mentioned, L-cysteine possesses a thiol group (-SH) which provides the reducing 

capability. When L-cysteine participates in the sulfhydryl-disulfide interchange reaction, the number 

of reduced protein subunits is proportional to the number of cysteine molecules added.  
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Figure 2.7: Chemical structure of L-cysteine 

 

2.4.3 Sodium Metabisulfite  

Sodium metabisulfite (SMB) is most commonly used for its antioxidant capacity in food 

preservation for baked goods, wine, dried fruit and jams. Most frequently, sodium metabisulfite is 

used as a reducing agent in cookie and cracker production. When hydrated during mixing, sodium 

bisulfite is formed from the sodium metabisulfite (Dow 2015), while sulfur dioxide is released and 

free to interact with proteins (Equation 2.1). Unlike L-cysteine or glutathione, sodium metabisulfite 

does not perform as a reducing agent through sulfhydryl-disulfide interchange. The active 

component of sodium metabisulfite is the bisulfite ion. When suspended in water, bisulfite anions 

within sodium metabisulfite generate a sulfurous acid which equilibrates (Shandera et al., 1995). The 

sulfurous acid subsequently reacts with the cysteine amino acids, creating S-sulfocysteine residues 

within the protein structure. These residues inhibit the restoration of disulfide bonds. Essentially, 

sodium metabisulfite acts as a cap, covering the reactive thiol group on cysteine so it is unavailable 

to reform a disulfide bond. This reaction sequence makes sodium metabisulfite uniquely different 

from glutathione and L-cysteine. At equal quantities of each reducing agent, sodium metabisulfite 

has the greatest reducing capacity, due to the two sulfur atoms available for reactions.  
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𝑵𝒂𝟐𝑺𝟐𝑶𝟓+ 𝑯𝟐𝑶 𝑯𝒚𝒅𝒓𝒂𝒕𝒊𝒐𝒏/
𝑫𝒆𝒉𝒚𝒓𝒂𝒕𝒊𝒐𝒏

↔        𝟐 𝑵𝒂𝑯𝑺𝑶𝟑 

Equation 2.1: Reversible conversion of sodium metabisulfite (𝑵𝒂𝟐𝑺𝟐𝑶𝟓) into sodium bisulfate 

(𝑵𝒂𝑯𝑺𝑶𝟑) through hydration or dehydration reaction (Dow, 2015).  

 

 

The reaction of sodium metabisulfite with disulfide bonds in wheat is extensive; cleaving 

nearly all the disulfide bonds. Incidentally, there is far greater danger of over-dosing a formulation 

with sodium metabisulfite compared to other reducing agents. This reducing power is one reason 

the industry currently prefers alternatives reducing agents. Precautions should be taken when using 

sodium metabisulfite. Even though the FDA recognizes it as a GRAS ingredient, some individuals 

may present a sensitivity especially asthmatics. Sulfites characteristically present an unpleasant 

aftertaste in finished products and it must be declared on the label if more than 10 ppm (fwb) is 

present in the final product. Irrespective of the negative attributes, past research has shown 

promising use of sodium metabisulfite as a reducing agent in sorghum. Elkhalifa et al. (1999) found, 

after cooking with sodium metabisulfite, there was an increase in sorghum starch digestibility . It was 

selected for this research due to its strong reducing power, low cost and effectiveness in past 

research 

 

 

Figure 2.8 Chemical structure of sodium metabisulfite 

  



19 

 

Materials and Methods 

3.1 Materials 

Commercially available, tannin-free, pearled white sorghum flour was purchased from Nu 

Life Market (Scott City, KS). Other ingredients included unmodified potato starch (Bob’s Red Mill, 

Milwaukee, WI), emulsified vegetable shortening (HYMO Stratas Foods LLC, Memphis, TN) 

iodized salt (Kroger, Cincinnati, OH), granulated sugar (Kroger, Cincinnati, OH), hydroxypropyl 

methylcellulose (HPMC) (Methocel K4M, E 464, Dow Chemical Co., Midland, MI), instant nonfat 

dry milk (NFDM) (Honeyville, Honeyville, UT), and instant yeast (Lesaffre Yeast Corporation, 

Milwaukee, WI). Flour and yeast were stored at 30°F until ready to use. The reducing agents, 

glutathione and sodium metabisulfite were acquired from Fisher Scientific (Fair Lawn, NJ), while L-

cysteine was acquired from Sigma Aldrich Co. (St. Louis, MO).  

3.2 Flour Analyses  

3.2.1 pH Measurement  

The pH of the sorghum flour was determined using AACCI Method 02-52.01. Equipment 

was calibrated with standard buffers prior to analysis. A 10 g portion of sorghum flour was 

combined with 100 mL of distilled water and continuously agitated for 15 min using a magnetic 

stirrer. Once flour was fully suspended, it was allowed 10 min to settle before decanting the 

supernatant. The pH measurement was acquired by fully submerging the calibrated electrode in the 

supernatant fluid and reading the potentiometer.  
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3.2.2 Moisture Content 

Moisture content of the sorghum flour was measured using AACCI Method 44-15.02. The 

weight loss of the sample during heating was measured and used to calculate moisture as a 

percentage of the initial sample weight. A sample of approximately 2.0 g of flour was weighed into 

an aluminum moisture dish. The dishes were left uncovered and placed in an air oven to bake for 60 

min at 54.4°C. Immediately after heating, the aluminum moisture dishes were covered then 

transferred to a desiccator to cool to room temperature (24°C) (~ 45 to 60 min). The moisture 

content was computed using calculator provided in AACCI Method 44-15.02. 

3.2.3 Protein Content 

The crude protein content of the sorghum flour was acquired following the AACCI Method 

46-30.01, Combustion Method. In pure oxygen, at temperatures in excess of 510°C, nitrogen 

contained within the flour sample is freed and measured by thermal conductivity detection. The 

volatile nitrogen content was multiplied by a factor of 6.25 to determine the equivalent crude protein 

content (%) within the sample, as shown in Equation 3.1.  

 

a) 𝑪𝒓𝒖𝒅𝒆𝒅  𝑷𝒓𝒐𝒕𝒆𝒊𝒏 (%, 𝒂𝒔 − 𝒊𝒔) = (
𝑾𝒆𝒊𝒈𝒉𝒕  𝒐𝒇 𝑹𝒆𝒔𝒊𝒅𝒖𝒆

𝑾𝒆𝒊𝒈𝒉𝒕  𝒐𝒇 𝑺𝒂𝒎𝒑𝒍𝒆
𝒙 𝟏𝟎𝟎)𝟔. 𝟐𝟓 

b) 𝑪𝒓𝒖𝒅𝒆 𝑷𝒓𝒐𝒕𝒆𝒊𝒏 (%, 𝟏𝟒% 𝒎𝒃) = (
(𝟏𝟎𝟎−𝟏𝟒)

(𝟏𝟎𝟎−𝑺𝒂𝒎𝒑𝒍𝒆  𝑴𝑪%)
)𝒙 𝑪𝒓𝒖𝒅𝒆 𝑷𝒓𝒐𝒕𝒆𝒊𝒏 𝒂𝒔 − 𝒊𝒔 𝒗𝒂𝒍𝒖𝒆  

Equation 3.1: Calculation for sample protein content on “as-is” basis (a) and adjusted for 14% 
moisture basis (b). 

 

3.2.4 Ash Content 

The ash content of the sorghum flour was measured using AACCI Method 08-01.01. 

Approximately 4.0 g of sorghum flour was scaled into a porcelain crucible and placed in a 

temperature controlled muffle furnace heated to 575°C. Samples remained in the furnace overnight 
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(≥16 h) then crucibles were transferred to a desiccator to cool. Once cooled to room temperature 

(24°C), the remnants in the crucibles were weighed. Ash content was reported as a percentage of the 

whole sample (Equation 3.2).  

 

c)  𝑨𝒔𝒉 (%, 𝒂𝒔 − 𝒊𝒔) =
𝑾𝒆𝒊𝒈𝒉𝒕  𝒐𝒇 𝑹𝒆𝒔𝒊𝒅𝒖𝒆

𝑾𝒆𝒊𝒈𝒉𝒕  𝒐𝒇 𝑺𝒂𝒎𝒑𝒍𝒆
𝒙 𝟏𝟎𝟎 

d)  𝑨𝒔𝒉 (%, 𝟏𝟒% 𝒎𝒃) =
(𝟏𝟎𝟎−𝟏𝟒)

(𝟏𝟎𝟎−𝑺𝒂𝒎𝒑𝒍𝒆  𝑴𝑪%)
𝒙 𝒂𝒔𝒉 𝒂𝒔 − 𝒊𝒔 𝒗𝒂𝒍𝒖𝒆 

Equation 3.2: Calculation for sample ash content on “as-is” basis (a) and adjusted for 14% 
moisture basis (b). 

 

 

3.2.5 Starch Damage 

Starch damage of sorghum flour sample was determined using AACCI Method 76-33.01, 

Amperometric Method by SDmatic (CHOPIN Technologies, Villeneuve-la-Garenne Cedex, 

France). The SDmatic utilizes an amperometric probe to measure the speed and capacity of iodine 

absorption by sorghum flour in an acid solution at 35°C. The test solution was prepared in a glass 

reaction bowl using 120 mL of distilled water, 3.0 ± 0.2 g of boric acid and 3.0 ± 0.2 g of potassium 

iodine. A single drop of 0.1N sodium thiosulfate solution was added to the test solution prior to 

sample loading. Once the glass reaction bowl containing the test solution was loaded onto the 

apparatus, the head of the apparatus was lowered to submerge the measuring probe, stirrer and 

heating resistor. Next, 1.0 ± 0.100 g of sorghum flour was scaled on to an SDmatic plastic sample 

holder, which was then inserted into the vibrating bed. Flour sample weight, moisture content and 

protein content were recorded into the software prior to test initiation. Test solution and sodium 

thiosulfate were heated and mixed thoroughly to ensure accurate iodine production, followed by the 

addition of sorghum flour and continued mixing to facilitate iodine absorption. Upon test 

completion, the SDmatic display provided iodine absorption rate (AI%) or starch damage of the 
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sorghum flour in Chopin Dubois units (UCD) and AACCI Method 76-31.01 units (%, fwb). Due to 

the settings of the SDmatic, the output values given were adjusted for sorghum flour using the 

calibrated equation developed by Wilson et al. (2016)(Equation 3.3). 

 

𝐒𝐭𝐚𝐫𝐜𝐡 𝐃𝐚𝐦𝐚𝐠𝐞 (𝐬𝐨𝐫𝐠𝐡𝐮𝐦 𝐟𝐥𝐨𝐮𝐫 ) =  𝟎. 𝟏𝟔𝟖(𝐀𝐢%) 𝟐  + −𝟑𝟎. 𝟏𝟐𝟑(𝐀𝐢)% +  𝟏𝟑𝟒𝟗. 𝟔𝟒𝟖 

 

Equation 3.3: Calibrated linear regression model (r=0.95) for sorghum starch damage using the 
SDmatic (Wilson et al., 2016). 

 

3.3 Bread Method 

Bake tests of sorghum bread containing reducing agents were conducted to study bread 

baking potential. The batter bread formulation was adapted from previous sorghum research 

described by Schrober et al. (2005), and is listed in Table 3.1. Ingredient proportions are reported on 

a flour weight basis (fwb), where sorghum flour and potato starch comprise the total flour weight.  

 
 

Table 3.1: Sorghum bread formulation 

Ingredients Flour Basis (%) 
Sorghum flour a 70.0 
Potato starch a 30.0 
Sucrose b 6.0 
Emulsified shortening 3.0 

HPMC 2.0 
Active dry yeast 2.0 

Salt b 1.5 
Non-fat dry milk (NFDM) 1.0 
Distilled water 105.0 
a Sorghum flour and potato starch comprise the total flour weight; all percents based on flour weight basis.  
b Ingredient added in solution (Appendix A)  

 

 

Batters were produced in a Hobart stand mixer model N-50 (The Hobart Mfg., Troy, OH) 

using a flat paddle attachment. Sorghum flour, potato starch, HPMC, NFDM, instant yeast, and 
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emulsified shortening were scaled and blended together for 1 min on speed 2 to fully homogenize 

ingredients. Liquid ingredients were then added to include sugar–salt solution, reducing agent 

solution and distilled water (Appendix 1). Dependent on concentration treatment, different aliquot 

volumes of stock reducing agent solutions were added to the formula. A complementary volume of 

distilled water was added to the formula last to achieve a final water content of 105% (fwb) .  

All ingredients were mixed for 30 sec on speed 1. The bowl and paddle attachment were 

scraped with a rubber spatula then mixing continued for an additional 2.5 min on speed 2. Following 

mixing, 250 g of batter were scaled into a greased loaf pan (9 cm x 15 cm x 5.5 cm), labeled and 

placed in the fermentation cabinet (National Manufacturing Co., Lincoln, NE) to proof for 35 min 

at 30°C with 95% relative humidity (RH). Baking pans were directly transferred from the 

fermentation cabinet into a rotary baking oven (National Manufacturing Co., Lincoln, NE) to bake 

at 204°C for 30 min. Beakers of water were placed on alternate shelves inside the oven to add steam 

into the oven. After baking, loaves were de-panned and allowed to cool for 1.5 to 2.0 h on wire 

racks prior to further analyses or packaging. 

3.4 Bread Analyses 

After baking, bread was allowed to cool to room temperature (24°C) before further testing 

occurred. This ensured moisture and temperature equilibriums were attained and samples provided 

accurate, representative values during analysis. Once the weight and volume measurements were 

recorded, bead loaves proceeded to further analyses. 

3.4.1 Specific Loaf  Volume 

Bread loaves were weighed (g) and respective volumes (cm3) were measured by rapeseed 

displacement in accordance with AACCI Method 10-05.01. Specific volume (cm3/g) was calculated 

by dividing loaf volume by loaf weight.  
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3.4.2 Internal Crumb Structure 

The C-Cell (Calibre Control International Ltd., Appleton, Warrington, United Kingdom) 

was used to evaluate the internal crumb structure. The instrument uses dedicated image analysis 

software (C-Cell Software Version 2.0) to quantify cell characteristics. The characteristics of interest 

for this study were cell number, cell diameter and cell wall thickness. For the analysis, two 35 mm 

slices were analyzed from each bread loaf and photographed using the C-Cell imaging system to 

obtain high-definition images.    

3.4.3 Staling Study 

Texture analysis of the sorghum bread crumb was measured over a period of time to 

accomplish a staling study. The analyses were performed using a TA.XTPlus Texture Analyzer 

(Texture Technologies Corp., Scarsdale, NY/Stable Micro Systems, Godalming, Surrey, UK) in 

accordance with AACCI Method 74-10.02 Measurement of Bread Firmness—Compression Test.  

For each treatment, three batters were made, each yielding four loaves of bread. Bread loaves 

produced from the same batter were analyzed on different days. After baking, weights and volumes 

were recorded for each loaf. One hour after baking, loaves were double packaged in polyethylene 

bread bags and stored at room temperature (24°C). On each test day, three loaves of each treatment 

were cut into six 25 mm thick slices using a slice regulator. The two end slices were discarded, while 

three of the middle slices were chosen at random for texture analysis. The TA.XTPlus was outfitted 

with a TA-4 acrylic cylinder (38-mm diameter, 35-mm tall) with a 5 kg load cell. The analysis was 

carried out at constant speed of 1.0 mm/s with pre-test and post-test speeds of 10.0 mm/s over a 

distance of 10.0 mm. A trigger force of 5.0 g was used to compress the center point of the slice to 

40% (10 mm) of the 25 mm bread slice. The force to compress 40% of the slice is taken as the 

firmness of the crumb and is an indication of freshness and quality. The elasticity of the crumb is 
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calculated as a percent of the force at 30 sec of relaxation and the peak force multiplied by 100, and 

is an estimate of bread cohesiveness or gumminess in cakes.  

3.4.4 Protein Digestibility  

Protein digestibility was assessed using the in-vitro pepsin digestibility (IVPD) method as 

described by Mertz et al. (1984). Bread samples containing reducing agent treatments, were frozen 

and lyophilized then subsequently ground using the Udy Cyclone Sample Mill (Udy Corporation, 

Fort Collins, CO) equipped with 0.5 mm screen. A 200 mg portion of ground bread sample was 

suspended in 35 mL of pepsin solution (1.5mg/mL) in 0.1 M phosphate buffer (pH 2.0). The 

mixture was incubated with gentle agitation at 37°C for 2 h using an Incu-Shaker 10L (Benchmark 

Scientific, South Plainfield, NJ). After incubation, 2 mL of 2.0 M sodium hydroxide was added to 

stop the digestion reaction. The suspension was then centrifuged (3220xg) for 15 min at 4°C. The 

supernatant fluid was decanted while the residue was washed in 10 mL of 0.1 M phosphate buffer 

(pH 2.0) and centrifuged a second time under the same conditions. Washing cycle was repeated once 

more, followed by centrifugation. The supernatant was again decanted and the remaining sample 

sediment was placed into a -80°F freezer. After being lyophilized and dried, the protein contents of 

digested and undigested breads were determined by nitrogen combustion using a Leco nitrogen 

determinator (Leco, St. Joseph, MO) according to AACCI Method 46-30.01. Protein digestibility 

was calculated using Equation 3.3 and expressed as a percentage of total protein in bread sample.  

 

𝑷𝒓𝒐𝒕𝒆𝒊𝒏  𝑫𝒊𝒈𝒆𝒔𝒕𝒊𝒃𝒊𝒍𝒊𝒕𝒚  (%) =
(𝑵 𝒊𝒏 𝒓𝒂𝒘 𝒔𝒂𝒎𝒑𝒍𝒆 −  𝑵 𝒊𝒏 𝒅𝒊𝒈𝒆𝒔𝒕𝒆𝒅 𝒔𝒂𝒎𝒑𝒍𝒆)

𝑵 𝒊𝒏 𝒓𝒂𝒘 𝒔𝒂𝒎𝒑𝒍𝒆
𝒙 𝟏𝟎𝟎 

 

Equation 3.4: Equation for protein digestibility calculated from nitrogen content of raw and 
digested samples of treated breads. 

 



26 

3.5 Batter Analyses 

3.5.1 Batter Consistency 

The batter consistency was analyzed using a Rapid ViscoTM Analyser (RVA 4500, Perten 

Instruments AB, Hägersten, Sweden) according to AACCI Method 76-21.03. Prior to analysis, the 

moisture contents of the sorghum flour and partial formula blend samples were determined. To 

ensure samples were comparable on a 14% (mb), 3.36 g of sorghum flour and 3.41 g of the partial 

formula blend, based on respective moisture contents, was added to 25 mL of distilled water. 

For treatment samples, a 25 mL volume of reducing agent solution was added to a new 

aluminum sample can. The sample can was fitted with a polycarbonate stirring paddle then mounted 

onto the machine. When the test was initiated, the sample was gently mixed while subjected to the 

Standard 1 temperature profile (Table 3.2). The parameters analyzed during the RVA test include 

peak viscosity, holding strength, final viscosity, peak time and pasting temperature. The generated 

curve (Figure 3.1) shows the viscosity transition in relation to time and temperature. The viscosity 

measurements were recorded in centipoise (cP) units (1 cP= 1 mPa/sec). 

  

 

Table 3.2: Standard 1 RVA temperature profile a  
Stage Temperature/ Speed STD1 
   1 50°C 0 min, 0 sec 
   2 960 rpm 0 min, 0 sec 
   3 160 rpm 0 min, 10 sec 
   4 50°C 1 min, 0 sec 
   5 95°C 4 min, 42 sec 
   6 95°C 7 min, 12 sec 
   7 50°C 11 min, 0 sec 
End of test  13 min, 0 sec 
Time between readings  4 sec 
* Idle temperature: 50 ± 1 °C 
a Adapted from Perten Instruments (2013) 
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Figure 3.1: Typical RVA pasting profile showing the commonly measured parameters (Perten 
Instruments, 2013).  
 

3.5.2 Protein Analysis  

Protein analysis was accomplished following the method previous described by Bean et al. 

(2011). Reversed-phase high performance liquid chromatography (RP-HPLC) was performed with 

an Agilent 1100 series instrument (Agilent, Santa Clara, CA) using surface porous Poroshell 300 SB 

columns (2.1 x 75 mm) with C18 as the stationary phase (Agilent, Santa Clara, CA). Mobile phase A 

was deionized water plus 0.1% trifluoroacetic acid (TFA) (w/v) and mobile phase B was acetonitrile 

(ACN) plus 0.07% (w/v) TFA.  

Chemicals and Samples. RP-HPLC sampling was completed at the ARS-CGAHR USDA 

facility in Manhattan, KS. HPLC-grade β-mercaptoethanol (BME) and 4-vinylpyridine (4-VP) were 

obtained from Sigma Aldrich Co. (St. Louis, MO). Reducing agent solutions were prepared using 

distilled water plus glutathione, L-cysteine or sodium metabisulfite at several concentrations 

(Appendix A). 
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Preliminary Sample Preparation. Samples were prepared using 100 mg pearled white 

sorghum flour and 100 μL distilled water or 100 μL of 0.5%, 1.0%, 2.5% or 5.0% (w/v) of reducing 

agent solution. BME was used as a positive control while no reducing agent was used as a negative 

control. Samples were continuously stirred by hand for 3 min using a metal spatula then transferred 

immediately into a -80°F freezer and lyophilized.  

1ST Stage Sample Preparation. Samples were prepared using 100 mg pearled white 

sorghum flour and 100 μL distilled water or 100 μL of reducing agent solution (0.5%, 1.0%, 2.5%,  

5.0% (w/v) of L-cysteine in distilled water; 100 ppm, 250 ppm, 500 ppm, 1000 ppm (w/v) of 

sodium metabisulfite in distilled water. BME was used as a positive control while no reducing agent 

was used as a negative control. Samples were continuously stirred by hand for 3 min using a metal 

spatula. Once mixed, samples were simultaneously heated and agitated using a VorTempTM 1550 

Shaking Incubator (Labnet International, Inc., Edison, NJ) set at 30-32°C for 35 min. Samples were 

then transferred immediately into a -80°F freezer and lyophilized.  

2ND Stage Sample Preparation. Samples were prepared using 100 mg of the partial 

sorghum bread formulation, consisting of 70% (fwb) sorghum flour, 30% (fwb) potato starch and 

2% (fwb) HPMC, and 100μL distilled water or 100 μL of 0.5%, 1.0%, 2.5% or 5.0% (w/v) of 

reducing agent solution. BME was used as a positive control while no reducing agent was used as a 

negative control. Samples were continuously stirred by hand for 3 min using a metal spatula. Once 

mixed, samples were simultaneously heated and agitated using a VorTempTM 1550 Shaking 

Incubator (Labnet International, Inc., Edison, NJ) set at 30-32°C for 35 min. Samples were then 

transferred immediately into a -80°F freezer and lyophilized. 

Kafirin Extraction Procedure. Kafirins were extracted from lyophilized samples using two 

cycles of rinsing with 1.0 mL of 6.65% (v/v) 4-vinylpyridine (4-VP) alkylating solution followed by 

homogenization using a Vortex-Genie 2 (Scientific Industries, Bohemia, NY) at approximately 3000 
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rpm for 30 sec. Samples were then centrifuged (Eppendorf™ 5424 Microentrifuge, Fisher Scientific, 

New Lawn, NJ) for 4 min at a speed of 10,000 rpm. A third cycle of 1.0 mL 4-VP rinse was 

accomplished followed by a 60 min vortex stage before entering the centrifuge for 4 min at 10,000 

rpm. After centrifugation, the supernatant was decanted into a waste container while the sediment 

material was subjected to further extraction procedures. Two extraction cycles were accomplished 

consisting of 1.0 mL 60% (v/v) t-butanol (t-buOH) rinse, 5 min vortex and 4 min centrifuge at the 

previously stated speeds. Between cycles a 0.5 mL aliquot of the supernatant was transferred to a 

clean microtube, while the remaining supernatant was decanted to waste. After the two cycles, each 

sample existed as a 1.0 mL aliquot of pooled extract. Next, a 20 μL of 2% BME (v/v) was added to 

the sample and vortexed for 15 min at 3000 rpm. The samples were alkylated a final time using 66.7 

μL of 4-VP followed by 10 min of vortex. Lastly, alkylated extracts were transferred to clean HPLC 

vials to be injected into the RP-HPLC for analysis.  

3.5.3 pH Measurement  

The pH of the batter was determined using AACCI Method 02-52.01. The pH meter and 

electrode were calibrated with standard buffer solutions prior to analysis. A 10 g portion of batter 

was combined with 100 mL of distilled water and continuously agitated for 15 min using a magnetic 

stirrer. Once batter was fully suspended, it was allowed 10 min to settle before decanting the 

supernatant. The pH measurement was acquired by fully submerging the electrode in the 

supernatant fluid.  

3.5.4 Yeast Activity 

The yeast activity of the batter was determined by measuring CO2 gas production using a 

Risograph (National Manufacturing Co., Lincoln, NE) following AACCI Method 89-01.01. Batters 

were prepared in accordance with the previously described bread method. A 50 g portion of batter 
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was scaled into a stainless steel chamber, placed into a water bath set at 30C and allowed 5 min to 

acclimate before test was initiated. Just prior to testing, the stainless steel chamber was attached to a 

gas-measuring device. Yeast activity was determined by the volume of gas evolved over a period of 

90 min at standard barometric pressure.  

3.6 Statistical Design and Analyses 

In this study, reducing agents, glutathione and L-cysteine were tested at four concentrations, 

0.5%, 1.0%, 2.5% or 5.0% (fwb), while sodium metabisulfite was tested at 100 ppm 250 ppm, 500 

ppm, and 1000 ppm (fwb). Triplicate readings of each chemical, physical and textural test were 

performed.  

All data from the chemical, physical and textural tests were analyzed using JMP, Software 

Release 12.0 (SAS, Institute Inc., Cary, NC, 2016). When treatment effects were found to be 

significantly different, the least square means with Tukey-Kramer groupings were used to 

differentiate treatment means at a level of significance of α < 0.05. 
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Results and Discussion 

4.1  Prologue to Study 

For this study a flour from a white, non-waxy sorghum variety, Jowar, was selected. Non-

waxy varieties retain a starch profile with a normal distribution of amylose and amylopectin. 

Furthermore, white sorghum possesses a pericarp with less than 2% pigmented testa. Implying, once 

decorticated, the majority of any confounding effects imparted by the pericarp and corresponding 

chemical components are significantly reduced. Decorticated white sorghum flour was procured 

through Nu Life Market and was utilized for all experimentation.  

4.2 Physiochemical Flour Composition 

The physiochemical composition of the flour is summarized in Table 4.1. Ash determination 

was performed to define the mineral residue content and correlate flour performance. Since 

sorghum bran in rich in tannins and other antioxidants, a sorghum flour containing bran particles, 

indicated by a high ash content, would be expected to decrease flour performance. The sorghum 

flour had an average ash content of 0.926 ± 0.002% (fwb). Flour moisture content was determined 

to control storage conditions, rheological properties of batter and control final product 

characteristics. Moisture content average was 10.95 ± 0.08% (fwb). Protein determination was 

performed using a Leco TruSpec CN. The protein content of the flour was approximately 7.73 ± 

0.04% (fwb). Due to the rigidity of the protein body structures, protein content is not directly tied to 

the functional properties of the flour, yet the potential remains to contribute to flour functionality if 

released from those structures (Hamaker & Bugusu, 2003). The pH of flour was also determined 

and was found to be consistent with other cereal grains, ranging from 6.00 to 6.20. 
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Table 4.1: Summary of physiochemical properties of pearled white sorghum flour  

Parameter Amount (fwb) 
Moisture 10.95 ± 0.08% 

Ash 0.926 ± 0.002% 

Protein 7.73 ± 0.04% 

 
 
 

Starch damage is an important factor in determining dough performance during mixing and 

directly influences dough behavior during fermentation. Damaged starch granules are more 

susceptible to swelling and degradation by α-amylase than intact starch granules (Delcour & 

Hoseney, 2010b). Subsequently, starch damage affects the volume of finished products as well as 

color. As previously mentioned in the materials and methods section, the rate of starch damaged was 

measured by an amperometric method where an electrode generates iodine and the device 

continually measures an electric current that is proportional to the amount of free iodine in the 

solution. Once flour is added, iodine binds to the damaged starch granules. The greater the iodine 

absorption, the greater the proportion of starch damaged. Sorghum flour samples were tested in 

triplicate, and adjusted using Wilson et al. (2016) calibrated equation to provide an average iodine 

absorption of 96.76% (± 0.34%), and average starch damage was 7.87% (± 0.79%) (AACCI Method 

76-31.01). 

4.3 Bread and Batter Results 

A pH determination was accomplished to gauge if the batter environment was suitable for a 

yeast leavened bakery product in addition to facilitating the intended reduction reaction. The rate of 

the sulfhydryl-disulfide interchange reaction is pH dependent. At a pH of 7, sulfhydryl groups are 

predominantly in a protonated state. As pH increases so will the reaction rate until the sulfhydryl 

group is deprotonated (Nagy, 2013). Therefore, batter must maintain a pH 6.0 - 8.0 to facilitate the 
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cleaving of disulfide bonds. The pH of batter for the control as well as reducing agent treatments 

were determined to be a suitable environment to enable the reaction, ranging between 6.00 to 6.80.  

4.3.1 Protein Analysis Results 

Reversed-phase high-performance liquid chromatography (RP-HPLC) was used to separate 

kafirin proteins and provide analysis for classification and quantification of individual or total peak 

area for protein fractions. Kafirins have a distribution of molecular weights; a difference of 3 to 12 

kDa separates one subclass from the next. Therefore, the separation of proteins can provide 

information relative to functional properties based on amount, presence of specific proteins, effect 

of processing, and/or differences between cultivars (Bean et al., 2011).  

Total kafirin extraction was made possible by first removing the salt-soluble globulins 

proteins followed by remaining water-soluble components including albumins. After extraction 

procedures were complete, samples were transferred to a clean HPLC vial and loaded for analysis. 

Samples were injected into a pre-equilibrated column at time 0 min. The eluent streams were 

measured at multiple wavelengths, but 214 nm was used for peak integration and data collection.  

Opposite to traditional high performance liquid chromatography, RP-HPLC uses a nonpolar 

stationary phase and a polar mobile phase. RP-HPLC is routinely used in the analysis of cereal 

proteins. During the extraction procedure, solutes are retained within the column by hydrophobic 

interactions with the stationary phase. Kafirins are known for their hydrophobicity. The 

hydrophobic portions present on kafirin proteins bind to the nonpolar, hydrophobic C18 chains that 

comprise the stationary phase. As the mobile phase gradient shifts from predominantly polar 

(mobile phase A) to nonpolar (mobile phase B), solutes elute in order of decreasing polarity thus 

increasing hydrophobicity (Reuhs & Rounds, 2010). The resulting data is a curve consisting of 

varying peaks which describe the different protein fractions. Oddly, γ-kafirins elute first, followed by 

β-kafirins and eventually α-kafirin fractions. Peaks belonging to β-kafirins and α-kafirin often blend 
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together due to the overlapping elution.  The greater the peak area, the greater the concentration of 

the corresponding protein is present in the sample.  

The reducing agent, β-mercaptoethanol (BME) was used at 2.0% (v/v) in distilled water as a 

positive control to provide a reference chromatogram of kafirin peaks after the reduction reaction. 

In contrast, the lack of a reducing agent was used as a negative control to generate a baseline 

chromatogram, illustrating the quantity of kafirins in sorghum flour and partial formula blend 

samples when the reduction reaction is absent. By comparing the treatment samples to the positive 

and negative controls, it was clear to determine if a reduction of protein body structure occurred. 

Both concentration and type of reducing agent are influential to the extraction of sorghum proteins 

(Park et al., 2006). When protein body structures are reduced, larger quantities of individual kafirin 

fractions elute, resulting in large peaks on the chromatogram, which are decipherable when 

compared to a chromatogram of the negative control. The total peak area correlates to the quantity 

of free proteins, therefore an increase in peak area corresponds to an increase in the amount  of 

proteins reduced. From 0 to 3 min the resulting peak was not captured as part of the total peak area 

as it consisted of residual molecules contained in the column which were not relevant for analysis. 

Total peak area (mAU) was calculated for each sample run using the Agilent software.  

Preliminary RP-HPLC testing uncovered L-cysteine and sodium metabisulfite at 0.5 % to 

5.0% (fwb) exhibited significant reduction of protein structures, indicated by large total peak areas. 

Unfortunately, glutathione treatments at all concentrations produce low total peak areas, similar to 

the negative control, signifying protein reduction did not adequately occur during the given reaction 

time. Due to the lack of protein reduction, glutathione was omitted from the remainder of the study 

(Appendix B). Subsequent baking trials revealed the tested levels of L-cysteine produced good bread 

loaves, yet sodium metabisulfite at the same concentrations, produced inadequate bread loaves 
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(Appendix B). Thus, sodium metabisulfite levels were reduced to 100 ppm, 250 ppm, 500 ppm and 

1000 ppm (fwb). 

1ST Stage Analysis. RP-HPLC analysis of 100 mg sorghum flour samples treated with 100 

μL distilled water or reducing agent solution (0.5%, 1.0%, 2.5%, 5.0% (w/v) of L-cysteine in distilled 

water; 100 ppm, 250 ppm, 500 ppm, 1000 ppm (w/v) of sodium metabisulfite in distilled water, 

were submitted to a 3 min mixing period then held at 32°C for an additional 35 min simulated 

proofing during the bread making process. For all sample treatments, total peak area significantly 

increased when subjected to simulated proofing compared with the 3 min holding time. The increase 

in total peak area is likely the result of longer reaction time and elevated temperature. The additional 

35 min at 32°C provided samples the necessary time and conditions to facilitate further protein 

reduction. Sorghum flour treated with 2.5% (fwb) and 5.0% (fwb) of L-cysteine along with BME 

generated the greatest total peak areas (Figure 4.1a). Due to a lack of significant difference in total 

peak area between 2.5% (fwb) and 5.0% (fwb), and supporting bake test results, 2.5% (fwb) was 

deemed the optimum concentration for L-cysteine (Table 4.2).  

Samples treated with all levels of sodium metabisulfite did not produce total peak areas 

significantly different from one another (Figure 4.1b). Yet when used at a concentration of 1000 

ppm, sodium metabisulfite produced a greater total peak area (2662 mAU) than the negative control 

(896 mAU). As with the L-cysteine treatment, an optimum concentration of sodium metabisulfite 

was determined based on the amount of kafirin protein reduction and performance during bake 

tests. Sodium metabisulfite at 500 ppm (fwb) was considered the optimum concentration. 
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a) b)  

Figure 4.1: RP-HPLC chromatograms for 1st stage analysis with sorghum flour and simulated 
proofing conditions for L-cysteine (a) and sodium metabisulfite (b) treatments.  

 

 

2ND Stage Analysis. The final RP-HPLC analysis was of a partial formula blend of 70% 

(fwb) sorghum flour, 30% (fwb) potato starch and 2% (fwb) HPMC with L-cysteine and sodium 

metabisulfite solutions and subjected to a 3 min mixing period followed by a 35 min holding periods 

in a simulated proofing environment (32°C). The partial formula blend was tested to determine if 

other major ingredients influenced the behavior of the reducing agents. Total peak area of the partial 

formula blends (Figure 4.2 and Table 4.2) were significantly lower in contrast to the total peak areas 

of sorghum flour for all treatments (Figure 4.3). Significantly lower total peak area across all 

treatments insinuates the addition of potato starch and HPMC influence reducing agent 

effectiveness. Speculatively, there are two potential reasons total peak areas were reduced in the 

partial formula compared to the sorghum flour, for all treatments. First, sample size was consistently 

100 mg, thus, treated samples using a partial formula blend only contained approximately 67.3 mg of 
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sorghum flour whereas samples using strictly sorghum contained 100 mg of sorghum flour. A 

difference in the initial protein content of the partial formula blend samples could be the cause of 

lower total peak area. Secondly, nearly a third of the partial formula blend is comprised of potato 

starch, which is capable of retaining large amounts of water. Because the reducing agent is 

suspended in solution, perhaps when the potato starch granules absorb water, the mobility of 

reducing agent is decreased. If this were the case, limited mobility would make it difficult for the 

reducing agents to reach and interact with the intended kafirin proteins.  

Regardless of the potential hindrance from other ingredients, samples treated with 2.5% 

(fwb) and 5.0% (fwb) L-cysteine displayed the greatest total peak areas (4107 mAU and 4205 mAU, 

respectively), along with BME (4038 mAU). Samples treated with sodium metabisulfite produced 

lower total peak areas compared to those treated with L-cysteine. Within sodium metabisulfite 

treatments, 500 ppm and 1000 ppm (fwb) produced the greatest total peak areas, 1774 mAU and 

1881 mAU, respectively. 
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Figure 4.2: Total peak area (mAU) of sorghum flour samples and partial blend formula samples 
containing for L-cysteine (CYS) and sodium metabisulfite (SMB subjected to simulate proofing 
conditions.  
*Error bars are standard error for each treatment mean. 
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Table 4.2:  RP-HPLC total peak area (mAU) of extracted kafirins from sorghum flour 
and partial formula blend samplesa treated with reducing agents and 
simulated proofing 

Treatment Sorghum flour Partial formula blend 

BME 5725a 4038a 

Control 896e 659f 

L-cysteine 0.5% 3194bc 2028c 

L-cysteine 1.0% 4428b 2849b 

L-cysteine 2.5% 6693a 4107a 

L-cysteine 5.0% 6976a 4206a 

Sodium metabisulfite 100 ppm 1247de 900ef 

Sodium metabisulfite 250 ppm 1496de 1229de 

Sodium metabisulfite 500 ppm 2171cde 1881c 

Sodium metabisulfite 1000 ppm 2662cd 1774cd 
* Values followed by different letters within a column are significant ly different (p < 0.05) 
a Partial formula blend samples: 70% (fwb) sorghum flour, 30% (fwb) potato starch and 2% (fwb) HPMC 
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a) b)  

Figure 4.3: RP-HPLC chromatograms for 2nd analysis with partial formula blend and simulated 
proofing conditions for L-cysteine (a) and sodium metabisulfite (b) treatments. 

 

4.3.2 Bread Baking Results 

Bake tests were conducted to determine the impact of reducing agents on bread volume, 

while C-Cell imaging was used to investigate crumb grain characteristics. L-cysteine was tested at 

0.5%, 1.0% and 2.5% (fwb). Bread was not baked using 5.0% (fwb) L-cysteine because there was not 

a significant difference in protein reduction (shown previously in RP-HPLC analysis) between 2.5% 

(fwb) and 5.0% (fwb) L-cysteine. Sodium metabisulfite was evaluated at 100 ppm, 250 ppm and 500 

ppm (fwb). Bread containing 1000 ppm (fwb) of sodium metabisulfite was omitted due to lack of a 

significant difference in protein reduction between 500 ppm (fwb) and 1000 ppm (fwb) 

concentrations. When incorporated at higher levels (0.5% to 2.5% fwb) sodium metabisulfite 

produced loaves with poor volume and dense crumb (Appendix B). Glutathione was not baked due 

to the lack of protein reduction found with RP-HPLC analysis. 
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As shown in Table 4.3, bread loaf volume and specific loaf volume between breads 

formulated with L-cysteine and sodium metabisulfite were similar to the control treatment. Bread 

containing 2.5% (fwb) L-cysteine had significantly lower loaf volume than breads containing 500 

ppm (fwb) sodium metabisulfite. Yet there was not a difference in specific loaf volume between any 

treatments.  

 

The internal crumb grain characteristics also exhibited differences between reducing agents. 

The diameter of the gas cells within the crumb were statistically greater for breads containing 100 

ppm (fwb) sodium metabisulfite compared to breads containing any level of L-cysteine. Except for 

2.5% (fwb) L-cysteine, all treatments exhibited the same cell diameter as the control bread crumb. 

The cell wall thickness and the number of gas cells present within the bread crumb were not 

statistically different between treatments (Table 4.3).  

The optimum concentrations were based on bake quality characteristics. In Figure 4.4, C-

Cell images provide a clear illustration of the crumb grain characteristics in addition to some 

indication of bread loaf symmetry and volume. Between breads treated with sodium metabisulfite, 

500 ppm (fwb) was deemed the optimum concentration. Likewise between breads treated with L-

cysteine, 2.5% (fwb) was considered the optimum concentration.  

Table 4.3: Physical characteristics of sorghum bread at optimum concentrations  

Treatment 

Actual 
Volume 

(cm3) 

Specific  
Volume 
(cm3/g) 

Number of  
Cells 
(mm) 

Cell Wall 
Thickness 

(mm) 

Cell 
Diameter 

(mm) 

Control 561.7ab 2.74a 3695a 0.524a 4.155ab 
L-cysteine 0.5% 558.3ab 2.80a 3403a 0.542a 3.416bc 

L-cysteine 1.0% 561.7ab 2.76a 3643a 0.524a 3.316bc 

L-cysteine 2.5% 548.3b 2.68a 3589a 0.518a 2.764c 
SMB 100 ppm 580.0ab 2.81a 3720a 0.525a 4.553a 

SMB 250 ppm 580.0ab 2.81a 3699a 0.529a 4.266ab 

SMB 500 ppm 586.7a 2.82a 3770a 0.520a 3.663abc 
* Values followed by different letters are significantly different, within a column (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb) 
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Figure 4.4: C-Cell images of bread slices taken from the center of breads treated with 0.5%, 1.0% 
and 2.5% (fwb) of L-cysteine and 100 ppm, 250 ppm, and 500 ppm (fwb) of sodium metabisulfite. 
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Based on the volume contour of the bread loaves, an argument could be made that the lack 

of water level optimization played an important role in attaining or preventing the maximum loaf 

volume for each treatment (. Since the implemented bread method closely resembles a traditional 

cake method, it is intuitive that water level optimization may be determine in the same fashion as 

high-ratio cakes. In Figure 4.4, the C-Cell image of breads containing 100 ppm (fwb) sodium 

metabisulfite or 0.5% (fwb) L-cysteine along with the control bread, exhibited a nearly-flat top 

without cracks. The lack of contour in the bread indicates the bread formulation contained excess 

water. Inversely, bread containing sodium metabisulfite at 500 ppm (fwb) or L-cysteine at 2.5% 

(fwb) presented a rounded top with minimal to severe surface cracks, which is a standard indication 

the bread formulation contained an insufficient amount of water. In order to confidently and 

conclusively state reducing agents do not significantly affect loaf volume, further investigation needs 

to occur in which water levels are optimized for each reducing agent treatment.  

4.3.3 Yeast Activity and Gas Production 

The yeast activity of batters were evaluated using a Risograph. Batters were prepared in 

accordance with the previously described bread method. A 50 g portion of batter was scaled into a 

stainless steel chamber, placed into a water bath. Just prior to testing, the stainless steel chamber was 

attached to a gas-measuring device. Yeast activity was determined by the volume of gas evolved over 

a period of 90 min at standard barometric pressure. The selected concentration of L-cysteine (2.5% 

fwb), sodium metabisulfite (500 ppm fwb) and the control batters were tested.   

Although the analysis lasted for 90 min, the activity occurring between 3 and 40 min of 

analysis was of most importance for the implemented bread method (Schrober et al., 2005), which 

has a 35 min proofing period. The analysis captured both the rate of CO2 gas evolution at each 

minute (Figure 4.5), and the cumulative total of CO 2 gas produced (Figure 4.6), illustrating yeast 

activity rate and the gas production capability, respectively.  
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Yeast activity in batters treated with 500 ppm (fwb) sodium metabisulfite was similar to the 

control batters throughout the 40 min testing period. Sodium metabisulfite and the control reached 

a peak yeast activity rate at 35 min and maintained that rate for the remained of the analysis.  Batters 

treated with 2.5% (fwb) of L-cysteine exhibited yeast activity similar to the control and sodium 

metabisulfite treatments during the first 15 min, then at 20 min showed a significantly lower rate  

(Table 4.4). In comparison to the control and sodium metabisulfite at 500 ppm (fwb), L-cysteine at 

2.5% (fwb) reached peak yeast activity at 20 min, before it began to decline at 35 min until the end 

of testing. This suggests when utilizing L-cysteine at 2.5% (fwb) the ideal proofing period would be 

15 to 20 min to achieve peak yeast activity. 

 

 

Figure 4.5: Rate of CO2 gas production from sorghum bread batters treated with optimum 
concentration of L-cysteine (2.5%, fwb) and sodium metabisulfite (500 ppm, fwb). 
* Error bars represent standard error associated with treatment means.  
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Cumulative total volume was of obtained in conjunction with yeast activity rate, to quickly 

evaluate if the same volume of gas was generated by each treatment batter (Figure 4.6).  Throughout 

the 40 min duration of the analysis, significant differences were not observed between any 

treatments (Table 4.5). Additional yeast activity data related to higher concentration of sodium 

metabisulfite provided in Appendix B. 

 

 

Figure 4.6: Cumulative total CO2 gas production of sorghum bread batters treated with optimum 
concentration of L-cysteine (2.5%, fwb) and sodium metabisulfite (500 ppm, fwb). 
* Error bars represent standard error associated with treatment means.  
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Table 4.4: Rate of CO2 production (mL/min) from sorghum bread batters a 

 Time Elapsed (min) 

Treatment 1 3 5 10 15 20 25 30 35 40 
Control 0.59a 1.20a 1.59a 2.31a 2.75a 2.96a 3.17a 3.31a 3.41a 3.49a 
L-cysteine 2.5% 0.53a 1.07a 1.38a 2.00a 2.38a 2.52b 2.48b 2.37b 2.22b 2.12b 
SMB 500 ppm 0.65a 1.23a 1.67a 2.26a 2.70a 3.00a 3.22a 3.37a 3.49a 3.48a 
* Values followed by different letters within a column are significant ly different (p < 0.05) 
a Samples were treated with optimum concentrations of L-cysteine and sodium metabisulfite  
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4.3.4 Bread Staling 

The staling study was conducted using a TA.XTPlus Texture Analyzer to detect changes in 

firmness and elasticity of sorghum bread crumb over a period of 5 days. The purpose of this study 

was to gauge crumb firmness, by measuring a fixed distance, as well as crumb elasticity, by 

computing crumb recovery after compression, over a period of 5 days. The force required to 

compress the crumb 10 mm (40%) is taken as the firmness of the crumb and is an indication of 

freshness and quality. The elasticity of the crumb is determined by the force at 30 sec of relaxation 

and the peak force and is an estimate of bread cohesiveness or gumminess in cakes.  

For initial texture analysis, breads designated as day 0 were analyzed 2 hours after baking. 

The control bread had the firmest crumb texture with a firmness of 710 ± 25 g (Table 4.6). The 

crumb from breads containing 2.5% (fwb) L-cysteine had a significantly softer texture (555 ± 16 g) 

compared to the control breads, while breads containing 500 ppm (fwb) of sodium metabisulfite had 

the significantly softest crumb texture overall (415 ± 84 g).  

Over the 5 day period, all breads displayed a consistent increase in crumb firmness as bread 

aged from 0 to 3 days (Table 4.6), yet bread crumb firmness on day 5 was not greater on day 3. 

 

 

Table 4.5: Cumulative total volume of CO2 gas production for sorghum bread batters a 

 Time Elapsed (min) 

Treatment 1 3 5 10 15 20 25 30 35 40 

Control 0.6a 2.9a 6.0a 16.6a 29. 9a 44.6a 60.4a 76.9a 94.0a 111.6a 
L-cysteine 2.5% 0.5a 2.0a 5.1a 14.0a 25.2a 37.6a 50.0a 62.1a 73.6a 84.3a 
SMB 500 ppm 0.7a 2.9a 6.0a 16.2a 28.9a 43.4a 59.0a 75.5a 92.7a 110.2a 
* Values followed by different letters within a column are significant ly different (p < 0.05) 

* All concentrations are expressed on flour weight basis (fwb)  

a Samples were treated with optimum concentrations of L-cysteine and sodium metabisulfite 
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The ability of the bread crumb to recover after compression is expressive of the 

cohesiveness and spring of the bread. Significant differences in elasticity were not observed between 

treatments, on any given day of analysis (Table 4.7). However, within a given treatment, significant 

differences in elasticity were seen over time. The control bread crumb, with an initial elasticity of 

42.6%, exhibited significantly less elasticity by day 3 (38.0 %). Breads treated with 2.5% (fwb) of L-

cysteine and 500 ppm (fwb) if sodium metabisulfite produced crumb textures with similar crumb 

elasticity on day 0 and day 1 however on day 3 the crumb grains were significantly less elastic. On 

day 5 of analysis, was not interpreted due to subjective observations made during analysis. Breads 

containing sodium metabisulfite were fragile and crumbled easi ly. Also after compression, 

indentions produced by the probe were evident; showing very little recovery which would indicate 

less cohesion and suggest lower elasticity.  

 

 

 

Table 4.6: Crumb firmness of sorghum bread treated with 2.5% (fwb) L-cysteine and  500 
ppm (fwb) sodium metabisulfite over 5 days 

 Crumb Firmness (g) 
 

Day 0 Day 1 Day 3 Day 5 

Control 710 ± 25a 964 ± 64a 1243 ± 123a 1408 ± 13a 

L-cysteine 2.5% 555 ± 16b 946 ± 94a 1220 ± 115a 1447 ± 118a 

SMB 500 ppm 415 ± 84c 841 ± 52a 893 ± 81b 1040 ± 54b 

*  Values followed by different letters within a column are significant ly different (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb)  

Table 4.7: Crumb firmness of sorghum bread treated with 2.5% (fwb) L-cysteine and  500 
ppm (fwb) sodium metabisulfite over 5 days 

 Crumb Elasticity (%)  
Day 0 Day 1 Day 3 Day 5 

Control 42.6 ± 2.2a 36.9 ± 4.5a 38.0 ± 0.8a 28.7 ± 5.9a 

L-cysteine 2.5% 40.9 ± 1.2a 39.8 ± 2.8a 28.2 ± 5.7a 31.6 ± 4.2a 

SMB 500 ppm 43.4 ± 0.4a 37.8 ± 2.8a 30.1 ± 6.0a 34.4 ± 3.5a 

*  Values followed by different letters within a column are significant ly different (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb)  
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4.3.5 Batter Consistency  

The parameters investigated during the RVA analyses provided insight into batter 

consistency. The batter consistency or viscosity measurements were recorded in centipoise (cP) units 

(1cP= 1 mPa sec-1). The objective of this analysis was to observe and quantify the batter viscosity of 

the sample as it transitioned through a temperature gradient in excess water. When starch granules 

are heated to a specific temperature in excess water, the crystalline structure of the granule begins to 

dissipate, resulting in the loss of birefringence (Perten Instruments, 2013). This irreversible process 

is known as gelatinization. The curve produced by the RVA (shown previously in Figure 3.1) 

describes a phenomenon which occurs post gelatinization. Pasting encompasses a series of events 

starting with granular swelling, leaching of amylose and amylopectin from the structure, and ending 

with the total disintegration of the starch granule. From the generated curve, the parameters most 

representative of the events occurring during analysis are peak viscosity, pasting temperature, peak 

time, holding strength and final viscosity.  

As the sample temperature increases from 50°C to 95°C, normal sorghum starch will 

undergo gelatinization between 66.4°C and 70.2°C (Taylor et al., 2010). As the sample temperature 

surpasses the gelatinization temperature of the starch, intact granules swell and amylose is leached 

(Delcour & Hoseney, 2010c). When the volume fraction occupied by the swollen granules increases 

so will viscosity (Guan et al., 2007). Pasting temperature is determined based on the corresponding 

temperature when the sample viscosity begins to increase (Perten Instruments, 2013). During the 

next stage of analysis, greater shear force is applied by mixing the sample at a rate of 960 rpm. In the 

presence of increasing temperature and shear force, when swelling and exudation of starch polymers 

is in equilibrium with granule rupture and polymer alignment, this is the maximum viscosity which is 

marked as the peak viscosity (PV). Subsequently, when peak viscosity is obtained, the corresponding 

time and temperature are then defined as peak temperature (Perten Instruments, 2013).  
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As the analysis continues, high shear force and high temperature conditions are held 

constant. Under these conditions the starch granules proceed to exudate amylose, and some 

amylopectin. Solubilized polymers will progressively orient themselves in the direction of the shear 

force (Delcour & Hoseney, 2010b). This alignment creates a low degree of internal friction thus a 

reduction in viscosity occurs. The minimum value is recorded as holding strength (HS).  

When the analysis enter the cooling stage, the temperature gradually decreases to 50°C. The 

cooling stage results in an increase in viscosity as starch polymers begin to re-associate through 

hydrogen bonding and entanglement (Delcour & Hoseney, 2010b). The consequent increase in 

viscosity is labeled as the final viscosity (FV). Although starch pasting properties and the intrinsic 

chemistry is important to the overall understanding of sorghum flour in a baked product , for this 

study RVA was used as a means to measure viscosity of the sorghum flour or partial formula blend 

during heating. 

The optimum treatment combinations, 2.5% (fwb) of L-cysteine, 500 ppm (fwb) of sodium 

metabisulfite and the control batters were subjected RVA testing to reveal changes to the viscosity 

profile occurring during heating. Two sets of experimentation were conducted. In the first set, 

sorghum flour was analyzed in the presence of reducing agent solutions to determine the effect of 

reducing agents on sorghum flour. In the second set, a partial formula blend of 70% (fwb) sorghum 

flour, 30% (fwb) potato starch and 2% (fwb) HPMC was analyzed to determine if the addition of 

starch and hydrocolloids significantly influenced the effect of the reducing agents.  

Sorghum Flour Analysis. The first round of experimentation utilizing strictly sorghum 

flour did reveal significant differences between treatments (Table 4.8). The peak viscosity (PV) was 

significantly greater when reducing agents were introduced to the batter compared to the control 

batter containing only water and sorghum flour. As mentioned previously, the peak viscosity is 

suggestive of the water holding capacity of starch. A greater peak viscosity indicates the starch has a 
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greater water holding capacity. Perhaps, the smaller protein fractions are capable of binding water, 

aiding in a higher viscosity. From the RP-HPLC data, it was shown reducing agents increased the 

amount of freed kafirin protein subunits, represented by a larger total peak area compared to the 

negative control treatment. Therefore, it could be postulated that because reducing agents 

successfully affected the compact protein body structures, starch granules previously bound by the 

protein matrix are potentially less restricted and possess a greater ability to swell or participate in 

gelatinization. Perhaps with a greater concentration of unrestricted starch granules, an increase in 

viscosity would be observed.   

Corresponding to the peak viscosity, the peak time and pasting temperature also displayed 

significant changes between treatments. Samples treated with L-cysteine at 2.5% (fwb) exhibited 

lower pasting temperature compared to other treatments. Sodium metabisulfite when added at 500 

ppm (fwb) appeared to delay the peak time (5.62 min) compared to the control and 2.5% (fwb) L-

cysteine treatments, which peaked earlier (5.4 min and 5.33 respectively).  

The thinnest consistency of the samples were captured as holding strength (HS). Samples 

treated with sodium metabisulfite maintained a greater holding strength (1943.3 cP) compared to 

both the control (1656.5 cP) and L-cysteine (1649.0 cP) treatment.  

Final viscosity (FV) of samples revealed the greatest diversity. Samples containing 2.5% 

(fwb) of L-cysteine possessed the lowest final viscosity (3639.3 cP). The control treatment had a 

significantly different final viscosity (4632.5 cP) than either reducing agent treatments. Samples 

containing 500 ppm (fwb) of sodium metabisulfite displayed the greatest final viscosity (5485.3 cP).  
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Partial Formula Blend Analysis. The second round of experimentation utilized a partial 

formula blend of 70% (fwb) sorghum flour, 30% (fwb) potato starch and 2% (fwb) HPMC to 

identify viscosity differences between treatments in the presence of the other major ingredients. The 

peak viscosity was significantly greater for samples treated with 500 ppm (fwb) of sodium 

metabisulfite (4015.3 cP) compared to the control (3742.3 cP) and 2.5% (fwb) of L-cysteine (3643.3 

cP) treated samples (Table 4.9).  

Peak times were altered in a manner consistent with the sorghum flour samples. Samples 

treated with L-cysteine reached peak viscosity earlier than the control, however were not 

significantly different from those treated with sodium metabisulfite. Differences in pasting 

temperatures were not seen between treatments. 

The holding strength or minimum viscosity of samples presented variation. Those treated 

with 2.5% (fwb) L-cysteine reached a minimum viscosity of 2250.7 cP, which was lower than the 

control’s minimum viscosity (2533.0 cP). Samples containing 500 ppm (fwb) of sodium metabisulfite 

maintained a greater minimum viscosity (2651.3 cP) compared to either treatments.  

The final viscosity of the samples again showed significant differences between treatments.  

Samples treated with 2.5% (fwb) L-cysteine exhibited a lower final viscosity (4542.3 cP), while those 

treated with 500 ppm (fwb) of sodium metabisulfite (5341.7 cP) or the control (5431.3 cP) 

maintained a greater final viscosity. 

Table 4.8: RVA Consistency of sorghum flour samples treated with optimum 
concentration of L-cysteine and sodium metabisulfite  

Treatment: 
PVa 
(cP) 

HSb 
(cP) 

FVd 
(cP) 

Peak Time 
(min) 

Pasting Temp 
(°C) 

Control 2658.0b 1656.5b 4632.5b 5.40b 80.25a 
L-cysteine 2.5% 2868.7a 1649.0b 3639.3c 5.33b 76.17b 
SMB 500 ppm 2964.7a 1943.3a 5485.3a 5.62a 80.67a 
* Values followed by different letters within a column are significantly different (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb)  

a Peak viscosity; b holding strength; c final viscosity 
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Due to the larger concentration of starch and the presence of HPMC within the sample, 

viscosities displayed less variation between treatments. Possibly, the indirect effect of reducing 

agents on the sorghum starch granules is hindered by the high quantity of potato starch. 

 

 

Comparison of flour and partial blend within treatments : Sorghum flour and partial 

formula blend samples treated with the control, 2.5% (fwb) L-cysteine and 500 ppm (fwb) sodium 

metabisulfite treatments, saw a significant difference in peak viscosity, holding strength and final 

viscosity. Samples using a partial formula blend had consistently higher viscosities. Greater viscosity 

values were probable due the high water holding capacity of potato starch, which is capable of 

holding 7-8 times its weight in water, and HPMC. Peak times and pasting temperatures were altered 

by the addition of potato starch and HPMC for 2.5% (fwb) L-cysteine and 500 ppm (fwb) sodium 

metabisulfite (data provided in Appendix C). 

Additionally, potato starch had a peak temperate of 68.3°C, while the pasting temperature of 

sorghum flour was found to be 80.25°C. When potato starch is blended with sorghum flour, to 

comprise 30% of the total flour, pasting temperature of the sample is affected; decreasing to 71.2°C. 

Furthermore, HPMC is a surface-active substance which could stabilize the paste with its many 

hydrophobic (hydroxyl propyl and methyl ester) side groups and the hydrophilic cellulose backbone 

(Gallagher 2009). By creating a more stable paste, HPMC could have also contributed to the increase 

in viscosity.  

Table 4.9: RVA consistency of partial formula blend samples treated with reducing agents 
at optimum concentrations  

Treatment: 
PVa 
(cP) 

HSb 
(cP) 

FVd 
(cP) 

Peak Time 
(min) 

Pasting Temp 
(°C) 

Control 3742.3b 2533.0b 5431.3a 5.42a 71.22a 
L-cysteine 2.5% 3643.3b 2250.7c 4542.3b 5.25b 70.45a 
SMB 500 ppm 4015.3a 2651.3a 5341.7a 5.33ab 71.45a 
* Values followed by different letters within a column are significant ly different (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb)  

a Peak viscosity; b holding strength; c final viscosity 
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4.3.6 Digestibility of  Bread 

Although slightly outside the scope of the stated objectives, bread digestibility was of interest 

after seeing promising results from bake tests and RP-HPLC data. Sample digestibility was 

determined using the method previously described by Mertz et al. (1984) and are expressed as a 

percentage of the total protein (determined from nitrogen content) in the raw treatment sample. 

Breads treated with L-cysteine at 2.5% (fwb), exhibited the highest protein digestibility (51.75%) of 

any treatment; achieving a level of digestibility comparable only to uncooked control flour, shown in 

Table 4.10. Breads containing 500 ppm (fwb) of sodium metabisulfite had a lower protein 

digestibility (30.45%) relative to the 2.5% (fwb) L-cysteine treatment, however it was similar to that 

of the control bread. The remaining samples were not statistically different from the control bread. 

These findings slightly contrast those of Hamaker et al. (1987), Oria et al. (1995) and Elkhalifa et al. 

(1999), which determined reducing agents, such as BME, sodium bisulfite and L-cysteine, improved 

protein digestibility in cooked sorghum flour. A potential explanation for this inconsistency is the 

differences in product application. In the study conducted by Hamaker et al. (1987) and Oria et al. 

(1995), cooked sorghum flour was subjected to protein digestion, whereas this study evaluated 

protein digestion of sorghum bread. Sorghum bread contains a multitude of ingredients which could 

confound the digestion of proteins.  

Regardless, the weight of one finding is substantial. Extensive research has proven sorghum 

protein digestibility drastically decreases upon cooking (reviewed by Duodu et al., 2003). Through 

the addition of reducing agent, L-cysteine at 2.5% (fwb), the level of digestible protein was restored 

to the original level detected in untreated, uncooked sorghum flour. Furthermore, bread treated with 

2.5% L-cysteine improved protein digestibility by 18.8% compared to the control bread. By 

recouping a substantial percentage of digestible protein, the nutritional value of sorghum is 

considerably improved.  
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Table 4.10: Protein digestibility of sorghum bread treated with L-cysteine 
and sodium metabisulfite 

Treatment Protein Digestibility (%) 

Control Flour 59.42 ± 2.57a 
Control Bread 32.98 ± 0.44bc 
L-cysteine 0.5% 32.82 ± 0.42bc 
L-cysteine 1.0% 28.84 ± 2.13c 
L-cysteine 2.5% 51.75 ± 1.26a 
Sodium metabisulfite 100 ppm 38.20 ± 7.18bc 
Sodium metabisulfite 250 ppm 37.84 ± 1.94bc 
Sodium metabisulfite 500 ppm 30.45 ± 1.18bc 
Sodium metabisulfite 0.5% 40.55 ± 0.71b 
* Values followed by different letters within a column are significant ly different (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb)  
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Conclusion 

The first objective of this study was to determine the effect of reducing agents on the 

structure of the primary prolamin proteins, kafirins, which exists in condensed protein bodies. Based 

on the results given by RP-HPLC, reducing agents L-cysteine and sodium metabisulfite successfully 

reduced protein body structure at concentrations 0.5-5.0% (fwb) and 500-500,000 ppm, respectively. 

After subjecting sorghum flour and partial formula blend samples to RP-HPLC analysis, proofing 

was discovered to facilitate greater protein reduction in sorghum flour but to a lesser degree in the 

partial formula blend. Regardless of starting material, L-cysteine at 2.5% (fwb) and 5.0% (fwb) 

generated the largest total peak areas corresponding to greater elution of kafirin protein fractions. 

Sodium metabisulfite when used at 500 ppm (fwb) and 1000 ppm (fwb) produced the greatest 

protein reduction within the sodium metabisulfite treatments yet was significantly lower than L-

cysteine at 2.5% (fwb) or 5.0% (fwb).  

 The second objective was to investigate the influence of reducing agents on the consistency 

of sorghum bread batter. From the rapid viscosity analysis, the addition of reducing agents affected 

batter consistency. Sorghum flour samples treated with 2.5% (fwb) L-cysteine expressed higher peak 

viscosity and a lower final viscosity. Additionally, L-cysteine at 2.5% (fwb) lowered the peak time 

and increased the pasting temperature of sorghum flour compared to the control treatment. When 

using a partial formula blend, L-cysteine at 2.5% (fwb) did not significantly alter peak viscosity, 

however holding strength and final viscosity decreased. The peak time was slightly delayed while 

pasting temperature remained consistent with other treatments.  

 When sorghum flour samples were treated with 500 ppm (fwb) of sodium metabisulfite, an 

increase in peak viscosity, holding strength and final viscosity were observed. There was not a 
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noticeable effect of sodium metabisulfite at 500 ppm (fwb) on pasting temperature but peak time 

was delayed compared to the control treatment. A partial formula blend treated with sodium 

metabisulfite at 500 ppm (fwb) maintained a higher peak viscosity and holding strength but final 

viscosity was similar to the control treatment. Also the previous delay in peak time was not 

witnessed for partial blend formula samples treated with sodium metabisulfite at 500 ppm.  

Yeast activity was also evaluated for its implications on batter consistency based on CO2 

production. Yeast activity of batter containing 500 ppm (fwb) of sodium was equal to that of the 

control treatment. L-cysteine at 2.5% (fwb) produced a similar volume of gas compared to sodium 

metabisulfite at 500 ppm and the control up to 20 min, yet after 35 min L-cysteine batters 

experienced a decrease in yeast activity to produce lower volume of CO 2 gas. 

The last objective was to evaluate the effect of reducing agents on the physical characteristics 

of sorghum bread. Breads produced using the optimum concentrations, 2.5% (fwb) of L-cysteine 

and 500 ppm of sodium metabisulfite, exhibited statistically similar loaf volumes. However, L-

cysteine treated breads presented a noticeable sulfurous aroma and yellow-gold crust color. When 

added at 2.5% (fwb), L-cysteine produced bread with a softer initial crumb texture compared to the 

control. Over the duration of 5 days, bread crumb texture of L-cysteine treated breads was similar in 

firmness to control crumb texture. Breads treated with 500 ppm (fwb) of sodium metabisulfite 

exhibited the softest initial crumb texture and although firmness values significantly increased during 

storage, breads treated with sodium metabisulfite retain a softer crumb texture compared to L-

cysteine and control treatments.  

Sorghum bread samples were subjected to in-vitro pepsin digestion (IVPD). In general, 

sodium metabisulfite at the designated concentrations did not have an impact on protein digestibility 

of sorghum bread. Bread containing 500 ppm (fwb) of sodium metabisulfite possessed a similar 

protein digestibility value as the control bread, averaging 30.45%, but was significantly lower 
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compared to bread treated with 2.5% (fwb) L-cysteine. Contrariwise, L-cysteine when incorporated 

at 2.5% (fwb) drastically improved protein digestibility. In fact, when treated with 2.5% (fwb) L-

cysteine the IVPD value returned to original range for uncooked sorghum flour, as captured by the 

control flour. 
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Future Work 

This study provided further insight into the functionality of reducing agents in sorghum bread 

application, however there are extensions and related areas of this research where further 

exploration is needed. 

 For this study concentrations were added at significant and wide range in order to determine if 

effects could be observed in batter and/or bread characteristics. Concentration range was 

selected based on past published literature. Although these concentrations did produce viable 

results, illustrating that reducing agents can reduce protein body structure, alter batter viscosity, 

and still produce a loaf of bread consistent to controls, L-cysteine and glutathione were not 

optimized to the same extent as sodium metabisulfite. Future work to determine the optimum 

concentrations of L-cysteine and possibly glutathione, in the form of brewer’s spent yeast, would 

provide a more balanced assessment of effects imparted by reducing agents.  

 Additionally, in regards to optimization, further investigation into the effects of reducing agents 

on bread loaf volume should be accomplished at optimum water levels for each reducing agent 

treatment. Based on the results of RP-HPLC which illustrated significant reductions in protein 

structure with the addition of select reducing agent treatments, it would be expected a greater 

amount of water could bind with the newly available protein. Like-wise, as supported by the C-

Cell images of treated and untreated breads, water levels likely impeded or facilitated the 

achievement of maximum loaf volume. Reevaluating using optimized water levels would be 

worth-while to definitively describe the effects of reducing agents on bread loaf volume. 

 A yeast leavened method incorporating 70% sorghum flour with 30% potato starch was tested 

in this study. The addition of potato starch may have affected the influence of reducing agents 
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on batter and bread. For future studies, the evaluation of reducing agents in a 100% sorghum 

flour bread, using a yeast leavened formula could provide more accurate results relating to true 

functionality of specific reducing agents on batter and bread characteristics. Additionally, 

because some concentrations had detrimental effects on the yeast, future studies could mimic 

the outlined experiments using a chemically leavened sorghum bread.  

 Moreover, the order of ingredient addition may be worth investigating to prove further 

illumination of functional properties. The implemented method incorporated reducing agent 

solutions into the formula after dry ingredients were blended together. From the RVA and RP-

HPLC results, potato starch influenced the changes imparted by the reducing agents. If reducing 

agent solutions were blended with the sorghum flour initially then followed by the remaining dry 

and liquid ingredients, this would provide the greatest opportunity for reducing agents to interact 

with sorghum kafirins, without competing or being immobilized by other ingredients.  

 Reducing agents L-cysteine and sodium metabisulfite were found to improve specific attributes 

of sorghum batter and/or bread. Further studies could utilize response surface methodology to 

develop formulations specific to reducing agents to optimize end-product characteristics such as 

texture, volume, digestibility and/or shelf-life. 

 Similar to the previous point, further investigation into the effects of reducing agents on final 

product could prove interesting if other baked products were examined. Leavened breads are a 

complex and difficult to recreate using gluten-free grains. By testing products which do not rely 

as heavily on leavening, such as a flatbread or English muffin, effects may be more prominent. 

Because reducing agents L-cysteine and sodium metabisulfite provoked unique changes in either 

batter consistency or bread characteristics, it would be intriguing to examine different products . 

 To fully understand the events occurring during RVA analysis, additional work should be 

accomplished to test optimum concentrations, 2.5% (fwb) L-cysteine and 500 ppm (fwb) 
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sodium metabisulfite, of reducing agents to determine the gelatinization properties of the batter. 

Using differential scanning calorimetry (DSC), gelatinization temperature as well as the enthalpy 

of the treated batters could be evaluated. This would allow for the quantification of gelatinized 

starch and provide valuable insight to any potential indirect effects reducing agents may have on 

starch gelatinization and subsequent pasting properties.   

 Lastly, the RP-HPLC analysis was oriented to quantify the total kafirin protein content. This 

approach was appropriate as the goal was to confirm the reductive effect of reducing agents on 

kafirin structure. However, this analysis did not provide the necessary information to gauge the 

degree of protein reduction that occurred. For future studies interested in the degree of protein 

reduction, Ellman’s Test should be implemented. Ellman’s reagent, 5,5'-dithiobis-(2-

nitrobenzoic acid), allows for the quantification of free thiol groups present in a sample 

permitting researcher additional insight into the biochemical reactions and reduction yields that 

occur with different reducing agent treatments.  
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APPENDIX A 

Preparation of  Solutions 

 Reducing Agent Solutions 

Reducing solutions were suspended in solution to achieve equal dispersion within a sample. 

For concentrations added as a percentage (0.5%, 1.0%, 2.5% and 5.0%, fwb) of the formula, the 

amount of reducing agent needed for solutions was used to calculate using the steps outlined in 

Example 1. 

 

 

Example 1:  RP-HPLC extraction solution preparation for 100 mg flour sample size 

Step 1: Create stock solution based on amount of reducing agent required per flour weight basis. 
 

𝟓. 𝟎% 𝑳 − 𝒄𝒚𝒔𝒕𝒆𝒊𝒏𝒆 =  
𝟓. 𝟎 𝒈 𝒐𝒇 𝑪𝒀𝑺

𝟏𝟎𝟎 𝒈 𝒇𝒍𝒐𝒖𝒓
=  

𝟎. 𝟎𝟎𝟓 𝒈 𝑪𝒀𝑺

𝟏𝟎𝟎 𝒎𝒈 𝒇𝒍𝒐𝒖𝒓 
 

 
Step 2: Designate solution concentration.  
 

𝟎. 𝟎𝟎𝟓 𝒈 𝑪𝒀𝑺

𝟏𝟎𝟎 𝝁𝑳 𝑯𝟐𝑶 
=
𝟎. 𝟓 𝒈 𝑪𝒀𝑺

𝟏𝟎 𝒎𝑳 𝑯𝟐𝟎
 

 
Step 3: Dilute stock solution to create remaining solutions. 
 

Stock solution: 5.0% L-cysteine = Reserve 10 mL 
  2.5% L-cysteine = 5 mL stock solution + 5 mL H20 
  1.0% L-cysteine = 2 mL stock solution + 8 mL H20 
  0.5% L-cysteine = 1 mL stock solution + 9 mL H20 
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For concentrations added as parts per million (100 ppm, 250 ppm, 500 ppm, and 1000 ppm, 

fwb) into the formula,  the amount of reducing agent needed for solutions was used to calculate 

using the steps outlined in Example 2.  

 

 

Example 2: Test bake requiring 3 bread loaves per 4 concentration. 

Step 1: Determine amount of reducing agent required per 100 g flour . 
 

𝟏𝟎𝟎 𝒑𝒂𝒓𝒕 𝑺𝑴𝑩

𝟏𝟎𝟎𝟎𝟎𝟎𝟎 𝒑𝒂𝒓𝒕 𝒇𝒍𝒐𝒖𝒓
=  
𝟎. 𝟎𝟎𝟎𝟏 𝒈 𝒐𝒇 𝑺𝑴𝑩

𝟏𝟎𝟎 𝒈 𝒇𝒍𝒐𝒖𝒓
 

 
Step 2: Designate solution concentration.  
 

𝟎. 𝟎𝟎𝟎𝟏 𝒈 𝑺𝑴𝑩

𝟏𝟎 𝒎𝑳 
=
𝟏𝟎𝟎 𝒑𝒑𝒎 𝑺𝑴𝑩

𝟏𝟎 𝒎𝑳
 

 
Step 3: Scale-up solution volume based on batch size.  
   

30 mL 100 ppm + 75 mL 250 ppm + 150 mL 000 ppm + 300 mL 1000 ppm = 555 mL Total solution needed  

555 mL solution required at a concentration of 100 ppm/10 mL 

 

 

 

 

 Sugar-Salt Solution 

Modified from AACCI Method 10-10.03, these preparations provide stock solution of sugar 

and salt suspension of such strength that 10 ml of solution contain required quantities of ingredients 

per 100 g flour. Solution contains 6 g sugar and 1.5 g salt in 10 ml solution. Weigh 1200 g sugar and 

300 g NaCl and place in 2-liter volumetric flask. Add distilled water to cover solids and mix 

thoroughly. Continuously stir while adding water until sugar and salt are dissolved and 2-liter mark is 

reached. Volume displacement for sugar and salt combination is approximately 0.039 ml. Solution 

will keep for several weeks at room temperature, however, discard if cloudiness is noted.  
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 Total Water Formula 

The amount of water required by the sorghum bread formula after the addition of reducing 

agent solution and sugar salt solution was determined using the following equation. Due to the 

displacement caused by sugar and salt when in solution, the amount of sugar-salt solution must be 

multiplied by a factor of 0.61. 

 

Water Added(mL) = 1.05(flour weight , g) − (reducing  agent solution, mL) − 0.61(sugar − salt solution, mL) 
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APPENDIX B 

Sodium Metabisulfite Preliminary Results  

 Protein Analysis Methods 

Protein analysis was accomplished following the method previous described by Bean et 

al.(2011). Reversed-phase high performance liquid chromatography (RP-HPLC) was performed with 

an Agilent 1100 series instrument (Agilent, Santa Clara, CA) using surface porous Poroshell 300 SB 

columns (2.1 x 75 mm) with C18 as the stationary phase (Agilent, Santa Clara, CA). Mobile phase A 

was deionized water plus 0.1% trifluoroacetic acid (TFA) (w/v) and mobile phase B was acetonitrile 

(ACN) plus 0.07% (w/v) TFA.  

Chemicals and Samples. RP-HPLC sampling was completed at the ARS-CGAHR USDA 

facility in Manhattan, KS. HPLC-grade β-mercaptoethanol (BME) and 4-vinylpyridine (4-VP) were 

obtained from Sigma Aldrich Co. (St. Louis, MO). Reducing agent solutions were prepared using 

distilled water plus 0.5%, 1.0%, 2.5% or 5.0% (w/v) of glutathione, L-cysteine or sodium 

metabisulfite. 

1ST Stage Sample Preparation. Samples were prepared using 100 mg pearled white 

sorghum flour and 100 μL distilled water or 100 μL of 0.5%, 1.0%, 2.5% or 5.0% (w/v) of reducing 

agent solution. BME was used as a positive control while no reducing agent was used as a negative 

control. Samples were continuously stirred by hand for 3 min using a metal spatula then transferred 

immediately into a -80°F freezer and lyophilized.  

2ND Stage Sample Preparation. Samples were prepared using 100 mg pearled white 

sorghum flour and 100 μL distilled water or 100 μL of 0.5%, 1.0%, 2.5% or 5.0% (w/v) of reducing 

agent solution. BME was used as a positive control while no reducing agent was used as a negative 

control. Samples were continuously stirred by hand for 3 min using a metal spatula. Once mixed, 
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samples were simultaneously heated and stirred using a VorTempTM 1550 Shaking Incubator (Labnet 

International, Inc., Edison, NJ) set at 30-32°C for 35 min. Samples were then transferred 

immediately into a -80°F freezer and lyophilized.  

 Protein Analysis Results 

1ST Stage Analysis. During the first stage of RP-HPLC testing, sorghum flour with reducing 

agent treatments were evaluated. Samples underwent a 3 min mix period prior to being lyophilized 

and extracted. This trial was designed to quantify the amount of reduction occurring just after the 

mixing stage in the bread method. In Table 4.7 and Figure 4.6a, the results show flour treated with 

5.0% of L-cysteine exhibited the greatest total peak area (4684 mAU) of all treatments; over seven 

times the total peak area of the negative control (638.1 mAU), where reducing agent was not added. 

The total peak area from the 5.0% L-cysteine treated flour was only comparable to that of the 

positive control, BME (3727 mAU), indicating a similar degree protein reduction was achieved by 

both. Also, sorghum flour treated with 2.5% of L-cysteine displayed a relatively high total peak area 

(2727 mAU) compared to the glutathione and sodium metabisulfite treatments. Although the total 

peak area for 2.5% (fwb) was lower than 5.0% (fwb) treatment of L-cysteine, both treatments were 

comparable to the BME control treatment peak area, representing the desired reduction had 

occurred.  

Inversely, flours treated with glutathione at any of the four concentrations produced low 

total peak areas (Table 4.7 and Figure 4.6b). Glutathione treatments were similar to the negative 

control treatment, implying the desired reduction of kafirin proteins did not occur.  

When sorghum flour was treated with sodium metabisulfite, concentrations of 0.5% (fwb) 

and 1.0% (fwb) produced the greatest total peak areas, 1918 mAU and 2323 mAU, respectively, but 

not as high as the L-cysteine treatments. These treatments were significantly different from both the 
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positive and negative control treatments, indicating a relatively moderate degree of protein reduction 

occurred within flour samples. 

 

 

 Table 6.1: Stage 1 analysis RP-HPLC total peak area (mAU) of extracted kafirins: 
sorghum flour treated with reducing agents and 3 min mix period a 

 Concentration (%, fwb) 
Treatment -- 0.50% 1.00% 2.50% 5.00% 
BMEb 3727ab -- -- -- -- 
Controlc 638f -- -- -- -- 
L-cysteine  -- 1346def 2152cd 2727bc 4684a 
Glutathione  -- 831f 734f 691f 703f 
Sodium metabisulfite  -- 1918cde 2323cd 1474def 1019ef 
* Values followed by different letters are significantly different (p < 0.05) 
a Samples were sorghum flour treated with reducing agents at various concentrations subjected to mixing for 3 min. 
b Positive control, 2.0 % (v/v) β-mercaptoethanol in distilled water 
c Negative control, no reducing agent added  
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c)  

Figure 6.1: Stage 1 analysis RP-HPLC chromatograms of extracted kafirins from sorghum flour 
treated with reducing agents and 3 min mix period  

 

2ND Stage Analysis. RP-HPLC analysis of sorghum flour with reducing agent treatments 

were submitted to a 3 min mixing period then held at 32°C for an additional 35 min simulated 

proofing during the bread making process For all sample treatments, total peak area significantly 

increased  when subjected to simulated proofing compared with the 3 min mixing time. The 

intensification in total peak area is likely the result of longer reaction time. The additional 35 min at 

32°C provided samples the necessary time and conditions to facilitate further protein reduction. 

By using the simulated proofing environment, more treatments were able to achieve a similar 

degree of reduction as the positive control, BME (5725.5 mAU). L-cysteine treatments at 5.0% 

(fwb) and 2.5% (fwb) (Table 4.8 and Figure 4.7a) displayed total peak areas of 6976.3, and 6692.7 

mAU, respectively, while sodium metabisulfite treatments at 2.5% (fwb) and 1.0% (fwb) (Figure 

4.7b) presented total peak areas of 5904.2 and 6099.9 mAU, respectively (Table 4.8). Unfortunately , 
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even with the extended reaction time, glutathione treatments at all concentrations continued to 

produce low total peak areas (≤1904.6 mAU) (Figure 4.7 c). Due to the lack of protein reduction, 

glutathione was omitted from the remainder of the study. 

 

 

Table 6.2: Stage 2 analysis RP-HPLC total peak area (mAU) of extracted kafirins a  
 Concentration (%, fwb) 

Treatment -- 0.50% 1.00% 2.50% 5.00% 
BME 5725abc -- -- -- -- 
Control 896f -- -- -- -- 
L-cysteine  -- 3194de 4428cd 6693ab 6976a 
Glutathione  -- 1741ef 1904ef 1586ef 1269f 
Sodium metabisulfite  -- 4953bcd 6100abc 5904abc 4674cd 
* Values followed by different letters are significantly different (p < 0.05) 
a Samples were sorghum flour treated with reducing agents at various concentrations subjected to simulated proofing conditions 
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c)  

Figure 6.2: Stage 2 analysis RP-HPLC chromatograms of extracted kafirins from sorghum flour 
treated with reducing agents subjected to 3 min mix and 35 min proofing period.  

 

 Bake Test  

The external bread characteristics between breads formulated with L-cysteine and sodium 

metabisulfite were notably different. Breads containing L-cysteine, at any of the three 

concentrations, was significantly greater than breads containing sodium metabisulfite. Yet there was 

not a difference in volume between the control bread and the L-cysteine treated breads. The internal 

crumb grain characteristics also exhibited differences between reducing agents. The cell wall 

thickness and diameter of the gas cells within the crumb were statistically greater for breads 

containing L-cysteine compared to breads containing sodium metabisulfite. Yet, the number of gas 

cell present within the crumb were the same across all treatments.  
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Table 6.3: Physical characteristics of sorghum bread treated with L-cysteine and sodium 
metabisulfite 

Treatment 

Actual  
Volume 

(cm3) 

Specific  
Volume  
(cm3/g) 

Number of 
Cells 
(mm) 

Cell Wall 
Thickness 

(mm) 

Cell 
Diameter 

(mm) 

Control 578.3a 2.85a 3945a 0.509a 3.749a 

L-cysteine 0.5% 558.3a 2.80a 3403a 0.542a 3.416a 

L-cysteine 1.0% 561.7a 2.76a 3643a 0.524a 3.316a 

L-cysteine 2.5% 548.3a 2.68a 3589a 0.518a 2.764ab 

SMB 0.5% 288.3b 1.36b 3731a 0.373b 1.888b 

SMB 1.0% 293.3b 1.44b 3841a 0.379b 1.801b 

SMB 2.5% 268.3b 1.31b 3662a 0.369b 1.693b 
* Values followed by different letters within a column are significant ly different (p < 0.05) 

* Percents are expressed on a flour weight basis (fwb) 

 

Breads formulated with sodium metabisulfite were extremely dense compared to L-cysteine 

breads and the control bread. C-Cell images of the control, L-cysteine and sodium metabisulfite 

treated breads illustrate the differences in volume. The data indicates breads formulated at 0.5% to 

5.0% (fwb) of sodium metabisulfite were overdosed. As mentioned, bread systems are easily 

overdosed with sodium metabisulfite due to its’ extensive reducing power. Due to the poor loaf 

volume, further bake tests were performed to determine an optimum concentration from sodium 

metabisulfite and the threshold concentration.  
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Figure 6.3: C-Cell images of bread crumb treated with reducing agents at 0.5%, 1.0% and 2.5% 
(fwb). 
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 Yeast Activity 

The yeast activity of batters were evaluated using a Risograph. Batters were prepared in 

accordance with the previously described bread method. A 50 g portion of batter was scaled into a 

stainless steel chamber, placed into a water bath. Just prior to testing, the stainless steel chamber was 

attached to a gas-measuring device. Yeast activity was determined by the volume of gas evolved over 

a period of 90 min at standard barometric pressure. The selected concentration of L-cysteine (2.5% 

fwb), sodium metabisulfite (500 ppm fwb) and the control batter were tested.   

Although the analysis lasted for 90 min, the activity occurring between 3 and 40 min of 

analysis was of most importance for the implemented bread method (Schrober et al., 2005), which 

has a 35 min proofing. The analysis captured both the rate of CO 2 gas evolution at each minute 

(Figure 4.5), and the cumulative total of CO2 gas produced (Figure 4.6), illustrating yeast activity rate 

and the gas production capability, respectively.  

As predicted, batters containing 3000 ppm (fwb)of sodium metabisulfite produced 

significantly lower volumes of CO2 gas at all time intervals (Table 4.11), indicating yeast activity was 

severely stifled or absent. From the generated curves in Figure 4.11 and Figure 4.12, it seems volume 

of CO2 gas began to rise slightly, however during the 90 min proofing a peak in CO 2 gas production 

was not observed. In contrast, batters treated with sodium metabisulfite at 500 ppm (fwb) produced 

similar volumes of CO2 gas as the control batter, signifying yeast activity was not hindered but in 

fact performed just as well as in the absence of a reducing agent. The time when yeast activity was 

greatest for batters treated with 500 ppm (fwb) of sodium metabisulfite appears to fall between 35 to 

45 min, yet after that period yeast activity does not taper significantly. This implies longer 

fermentation periods can be applied to batters treated with sodium metabisulfite at 500 ppm (fwb) 

without negatively impacting the volume of CO2 gas generated by the yeast. Batters treated with 

2.5% (fwb) of L-cysteine displayed an intermediate level of yeast activity. L-cysteine treated batters 
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produced larger volumes of CO2 gas compared to batters treated with the threshold concentration 

(3000 ppm) of sodium metabisulfite. Although after 20 min L-cysteine treated batters produced 

lower volumes of CO2 gas in comparison to the control and sodium metabisulfite at 500 ppm. The 

greatest volume of CO2 gas was generated around 20 min for batters treated with 2.5% (fwb) of L-

cysteine. This suggests when utilizing L-cysteine at 2.5% (fwb) the ideal proofing period would be 15 

to 20 min to achieve peak yeast activity. 

 

 

 

Figure 6.4: Rate of CO2 gas production for optimum concentrations and threshold concentration. 
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Table 6.4: Rate of CO2 production (mL/min) for sorghum bread batters a 

 Time Elapsed (min) 

Treatment 1 3 5 10 15 20 25 30 35 40 
Control 0.59a 1.20a 1.59a 2.31a 2.75a 2.96a 3.17a 3.31a 3.41a 3.49a 
L-cysteine, 2.5% 0.53a 1.07a 1.38a 2.00a 2.38a 2.52b 2.48b 2.37b 2.22b 2.12b 
SMB, 500 ppm 0.65a 1.23a 1.67a 2.26a 2.70a 3.00a 3.22a 3.37a 3.49a 3.48a 
SMB, 3000ppm 0.14b 0.19b 0.18b 0.14b 0.14 b 0.13c 0.14c 0.15c 0.18c 0.19c 
* Values followed by different letters within a column are significant ly different (p < 0.05) 
a Samples were treated with optimum concentrations of L-cysteine and sodium metabisulfite in addition to a threshold 

concentration of 3000 ppm sodium metabisulfite. 
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Figure 6.5: Cumulative total CO2 gas production for optimum concentrations and threshold 
concentration 
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Table 6.5: Cumulative total volume of CO2 gas production for sorghum bread batters a 

 Time Elapsed (min) 

Treatment 1 3 5 10 15 20 25 30 35 40 
Control 0.6a 2.9a 6.0a 16.6a 29. 9a 44.6a 60.4a 76.9a 94.0a 111.6a 
L-cysteine 2.5% 0.5a 2.0a 5.1a 14.0a 25.2a 37.6a 50.0a 62.1a 73.6a 84.3a 
SMB 500 ppm 0.7a 2.9a 6.0a 16.2a 28.9a 43.4a 59.0a 75.5a 92.7a 110.2a 
SMB 3000 ppm 0.1b 0.5b 0.9a 1.6b 2.3b 2.9b 3.6b 4.4b 5.2b 6.0b 
* Values followed by different letters within a column are significant ly different (p < 0.05) 

* All concentrations are expressed on flour weight basis (fwb)  

a Samples were treated with optimum concentrations of L-cysteine and sodium metabisulfite in addition to a threshold 

concentration of 3000 ppm sodium metabisulfite. 
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Yeast is sensitive to osmotic pressure. High osmotic pressure will decrease the fermentation 

rate. Salt at normal formula concentrations around 1.5-2.0% (fwb), negatively impacts yeast 

fermentation. For this reason, bread containing 6.5% (fwb) salt was tested to determine if the 

additional sodium contributed by sodium metabisulfite was increasing the osmotic pressure to a level 

that was inhibiting yeast fermentation. Bread formulated with 6.5% (fwb) total sodium, did show a 

decrease in volume but not to the same severity of the results seen when formulating with 0.5%- 

2.5% (fwb) sodium metabisulfite. The corresponding bake test indicated osmotic pressure was not 

the sole factor contributing to decreased yeast activity and poor loaf volume.  
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APPENDIX C 

Supplemental Data and Figures 

 Supplement to Batter Consistency Data (pages 45-50) 

 

Figure 6.6: Consistency of sorghum flour treated with reducing agents at optimum concentrations.  
 

 

Figure 6.7: Consistency of partial formula blend treated with reducing agents at optimum 
concentrations. 
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Figure 6.8 Comparison of sorghum flour and partial blend with control treatment. 
 

 

 

 

Figure 6.9: Comparison of sorghum flour and partial blend with 2.5% L-cysteine treatment. 

 

 

 

0

1000

2000

3000

4000

5000

6000

PV HS BD FV SB

V
is

c
o

si
ty

 (
c
P

)
Comparison of Control Treatment between Sorghum Flour and Partial 

Formula Blend 

Flour Partial Formula Blend

0

1000

2000

3000

4000

5000

PV HS BD FV SB

V
is

c
o

si
ty

 (
c
P

)

Comparison of 2.5% L-cysteine Treatment between Sorghum Flour 
and Partial Formula Blend 

Flour Partial Formula Blend

Table 6.6: Comparison of sorghum flour and partial formula blend samples for control  

Treatment: 
PVa 
(cP) 

HSb 
(cP) 

FVd 
(cP) 

Peak Time 
(min) 

Pasting  Temp 
(°C) 

Flour 2658b 2533.0b 4633a 5.40a 80.25a 
Partial Formula Blend 3742a 2250.7c 5431b 5.42a 71.22a 
* Values followed by different letters within a column are significant ly different (p < 0.05) 

* All concentrations are expressed on flour weight basis (fwb)  

a Peak viscosity; b holding strength; c final viscosity 



82 

 

 

Figure 6.10: Comparison of sorghum flour and partial blend with 500 ppm (fwb) sodium 
metabisulfite treatment. 
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Table 6.7:  Comparison of sorghum flour and partial formula blend samples treated 
with 2.5% L-cysteine  

Treatment: 
PVa 
(cP) 

HSb 
(cP) 

FVd 
(cP) 

Peak Time 
(min) 

Pasting 
Temp 
(°C) 

Flour 2869a 1649a 1220a 3639a 1990a 
Partial Formula Blend 3643b 2251b 1393b 4542b 2292b 
* Values followed by different letters within a column are significantly different (p < 0.05) 
* All concentrations are expressed on flour weight basis (fwb)  

a Peak viscosity; b holding strength; c final viscosity 

Table 6.8:  Comparison of sorghum flour and partial formula blend samples treated with 
500 ppm sodium metabisulfite 

Treatment: 
PVa 
(cP) 

HSb 
(cP) 

FVd 
(cP) 

Peak Time 
(min) 

Pasting  Temp 
(°C) 

Flour 2965a 1943a 1021a 5485a 3542a 
Partial Formula Blend 4015b 2651b 1364b 5342b 2690b 
* Values followed by different letters within a column are significant ly different (p < 0.05) 

* All concentrations are expressed on flour weight basis (fwb)  

a Peak viscosity; b holding strength; c final viscosity 


