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Abstract 

A series of methylene-bridged resorcin[4]arenes featuring electrochemically active and 

hydrophilic viologene-units chemically attached to their “rim”-regions have been synthesized.  

Depending on the choices of pendent groups (feet) and the numbers of positive charges on the 

“rim” (four or eight), moderate to very good solubilities in water were obtained.  A fluorescent 

coumarin tag designed for the purpose of photophysical studies was chemically linked to the feet 

of some of the synthesized resorcin[4]arenes. 

These compounds were designed to act as guests in mycobacterial channel proteins 

(channel blockers).  The proven host-guest interaction between resorcin[4]arenes and the 

mycobacterial porin MspA suggests potential application of my research in TB treatment. Both, 

hydrophilic nutrients and metabolites have to diffuse through the porin channels of mycobacteria 

because of the lack of an active transport mechanism. If these channels are successfully blocked, 

the mycobacteria have either to synthesize new channels, which make their outer membrane 

more susceptible to conventional antibiotics, or they become dormant. 

(3,3’-dimethyl)-4,4’-bipyridinium units are very suitable electron relays.  They can be 

reduced stepwise to viologen monoradical cations and then to uncharged viologen diradicals 

which possess highly negative redox potentials, allowing them to reduce C-Cl bonds.  Therefore, 

the deep cavitand viologen resorcin[4]arenas, are expected to bind and detoxify chlorinated 

hydrocarbons by reductive dechlorination.  In this work, the step wise reduction process of 

viologen- resorcin[4]arenes and the formation of negative redox potentials of double-reduced 

viologen resorcin[4]arenes are demonstrated by electrochemistry studies.  These results 

encourage future studies toward an efficient electrocatalytic system for the reductive 

dehalogenation of organic compounds. 

Besides highly charged resorcin[4]arene cavitands, the synthesis of a thiol-footed 

resorcin[4]arene was also attempted.  The product was used for gold nanoparticle binding studies.  

The results of the photochemistry measurements provided a proof-of-concept for using the 

emission of gold nanoparticles in chemical sensors after covering their surfaces with thiol-footed 

resorcin[4]arenes. 

Two heterocylic resorcin[4]arene cavitands were synthesized for DNA-intercalation 

studies.  The results of the photochemical measurements suggested binding between DNA and 

the heterocyclic resorcin[4]arenes and provided proof-of-principle for potential drug applications 

of this type of macrocycle. 
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Abstract 

A series of methylene-bridged resorcin[4]arenes featuring electrochemically active and 

hydrophilic viologene-units chemically attached to their “rim”-regions have been synthesized.  

Depending on the choices of pendent groups (feet) and the numbers of positive charges on the 

“rim” (four or eight), moderate to very good solubilities in water were obtained.  A fluorescent 

coumarin tag designed for the purpose of photophysical studies was chemically linked to the feet 

of some of the synthesized resorcin[4]arenes. 

These compounds were designed to act as guests in mycobacterial channel proteins 

(channel blockers).  The proven host-guest interaction between resorcin[4]arenes and the 

mycobacterial porin MspA suggests potential application of my research in TB treatment. Both, 

hydrophilic nutrients and metabolites have to diffuse through the porin channels of mycobacteria 

because of the lack of an active transport mechanism. If these channels are successfully blocked, 

the mycobacteria have either to synthesize new channels, which make their outer membrane 

more susceptible to conventional antibiotics, or they become dormant. 

(3,3’-dimethyl)-4,4’-bipyridinium units are very suitable electron relays.  They can be 

reduced stepwise to viologen monoradical cations and then to uncharged viologen diradicals 

which possess highly negative redox potentials, allowing them to reduce C-Cl bonds.  Therefore, 

the deep cavitand viologen resorcin[4]arenas, are expected to bind and detoxify chlorinated 

hydrocarbons by reductive dechlorination.  In this work, the step wise reduction process of 

viologen- resorcin[4]arenes and the formation of negative redox potentials of double-reduced 

viologen resorcin[4]arenes are demonstrated by electrochemistry studies.  These results 

encourage future studies toward an efficient electrocatalytic system for the reductive 

dehalogenation of organic compounds. 

Besides highly charged resorcin[4]arene cavitands, the synthesis of a thiol-footed 

resorcin[4]arene was also attempted.  The product was used for gold nanoparticle binding studies.  

The results of the photochemistry measurements provided a proof-of-concept for using the 

emission of gold nanoparticles in chemical sensors after covering their surfaces with thiol-footed 

resorcin[4]arenes. 

Two heterocylic resorcin[4]arene cavitands were synthesized for DNA-intercalation 

studies.  The results of the photochemical measurements suggested binding between DNA and 

the heterocyclic resorcin[4]arenes and provided proof-of-principle for potential drug applications 

of this type of macrocycle. 
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CHAPTER 1 - Introduction 

Introduction 

 

    In 1980, the first resorcin[4]arene was synthesized by Sherman and coworkers by 

means of a condensation reaction between resorcinol and an aldehyde.  The introduction of 

resorcin[4]arenes into the chemistry world spawned a whole new field of host-guest chemistry.  

Resorcin[4]arenes are “bowl shaped molecules” and have been used as molecular containers to 

bind small molecules via van-der-waals forces.  Linking the phenol groups on neighboring 

aromatic rings with carbon bridges provides a more rigid cavitand.  Subsequent bromination of 

the benzene ring between the phenol groups gives tetrabromo- cavitands that can have more 

possibilities of upper rim functioning.  Besides upper rims, cavitands can also be modified at the 

feet.  In Linda M. Tunstad’s early work in 1988i, resorcinarenes were condensed with 13 

different feet functional groups ( R ) and 4 different rim functional groups ( A ) (Scheme 1.1).  

 

 
No. 1 2 3 4 5 6 7 8 9 

R CH3 CH3CH2 CH3(CH2)2 CH3(CH2)3 CH3(CH2)4 CH3(CH2)10 
(CH3)2CH 

-CH2 
HO(CH2)4 Cl(CH2)5 

A H H H H H H H H H 

No. 10 11 12 13 14 15 16 17 18 

R C6H5CH2 
C6H5CH2 

-CH2 

4-O2N- 

C6H4(CH2)2 

4-Br- 

C6H4(CH2)2 
CH3 CH3(CH2)4 CH3 CH3 CH3 

A H H H H CH3 CH3 COOH Br NO2 

Scheme 1.1 Resorcinarenes Produced from Aliphatic Aldehydes and Resorcinol or 2-Substituded Resocinols1 
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    In 1998, Sherman published various modification of the upper rim and feet of 2-methyl 

resorcin[4]areneii. The purpose of this research was to work toward water-soluble cavitands. This 

aim was achieved by introducing phosphate feet (Scheme 1.2).   

 

Scheme 1.2: Synthesis of Sherman’s Water Soluble Phosphate Feet Cavitands2 

 

In a later publication, Sherman and coworkers achieved enhanced solubility of cavitands 

in water and used them for thermodynamic studies of the binding of simple guest molecules, 

such as ethyl acetateiii.  Making cavitands water soluble remains a very important aim. It is 

anticipated that water soluble resorcin[4]arenes and hemicarcerands and carcerands that are 

based on these systems, will permit the targeted delivery of encapsulated drugs  (e.g. to cancer 

cells or M. tuberculosis cells) and many other applications in areas of medicinal chemistry, 

bioengineering and   for future bio-mimetic physical organic chemistryiv.  

    Besides rims and feet, the bridge of cavitands can also be modified.  In 1998, Rebek 

and coworkers synthesized a resorcin[4]arene with pyrazine-2,3, dicarboxylic acid imide bridge 

instead of the conventional carbon bridgev.  This cavitand is known to be deeper and capable of 

forming dimers via hydrogen bonds.  The dimer is a capsule that is large enough to contain more 

A 

A 

A 
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than one guest molecules. This kind of encapsulation allows synthetic reactions of two molecules 

that are both bound to the inner cavity (“bowl”) of the resorcin[4]arene. Interestingly, when an 

aromatic alkyne and an aromatic azide are encapsulated together, the constrictions of the 

container promotes their 1,3 dipolar addition with complete regiochemistry controlvi (Scheme 

1.3). 

     

 

 

a 

 

 

b 

Scheme 1.3: Rebek’s a) Assembly of Capsule and b) Encapsulated Rigioselective Cycloaddition 

There are numerous examples for synthesis within cavitands/capsules where the transition state energies 

of desired products are lowered while these of undesired products are raisedvii.  Another type of deep cavitand 

resorcin[4]arenes is bridged by dihalidesviii (Scheme 1.4). 

 

 



 4 

 

Scheme 1.4: A Resorcin[4]arene Cavitand Bridged by Naphthal Bromide8 

 

    There is another deeper cavitand, which has not only taller bridges than carbon 

bridges, also the upper ends of the bridges form hydrogen bonding with each other so the 

cavitand is locked in its vase conformationix (Scheme 1.5).   

 

Scheme 1.5: Rebek’s Tall Bridge Cavitand with Top Hydrogen Bonding Cyclic Seam9 

 

    When one potential guest is linked to one foot of each cavitand, the cavitands are able 

to form a self-folding, self-complementary polymer with the guest linked to the foot of one 

cavitand trapped in another cavitand9 (Scheme 1.6). 
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Scheme 1.6: Self-assembly Cavitand and a Cartoon Representation of Non-covalent Polymer 

Formation9 

    

 Rebek and coworkers published a series of cavitands with carboxymethylphosphonate-

group functioned rims.  The cyclic seam of hydrogen bonds between the rims helps to stabilize 

the vase conformation of this particular cavitand.  Interestingly, Ln2+ titration alters the “vase” 

conformation into the “kite” conformation, since the lanthanide-cations’ coordination with the 

C=O and P=O group disrupts the cyclic array of hydrogen bondsx. An example of the opposite 

direction change of a cavitand from the “kite” to the “vase”-conformation was also reported by 

Rebekxi (Scheme 1.7).  In the starting material (left), the repulsion among the nitro groups on the 

top of the cavitand keeps it in a “kite” conformation while in the product (right), the hydrogen 

bonding around the seam of the upper rim holds the cavitand in the “vase” conformation.  

 

 

 

Scheme 1.7: Rebek’s Kite and Vase Conformation Change of Cavitands11   

a) Raney-Ni, H2, toluene, 12h b) R’C(O)Cl, K2CO3, AcOEt/H2O 1:1, r.t. 2h 
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R= (CH2)10CH3, R’= (CH2)6CH3 

     An up to date summary of deep cavitands and water soluble cavitands was published 

by Shannon, Biro and Rebek in 2007xii.   

    In 1985, Cram for the first time created a closed surface with two cavitands. The 

resulting organic structure is called a carcerandxiii.  As already stated, the carcerand is able to 

encapsulate small organic molecules to from a carceplex, whose interior is a new phase of 

matterxiv (Scheme 1.8).  

 

 

 

Scheme 1.8: A Carcerplex14 

 

    Carceplexes are often extremely stable and, therefore, they don’t release their cargo 

that easily. However, the release of guest molecules from a carcerand will be required for any 

successful application of drug-delivery.  In 1991, Cram published the synthesis of a similar 

molecular container, which is called hemicarcerand, that allows guest exchange and/or the 

release of bound organic moleculesxv.  To date, various derivatives of hemicarcerands that 

consist of two linked resorcin[4]arene cavitands have been synthesized. Linking of two 

resorcin[4]arenes can be achieved by covalent or non-covalent linking, either by suitably 

derivatized feet or bowl structuresxvi (Scheme 1.9) 
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                                      a                                                                     b               

       Scheme 1.9: Examples of Hemicarcerands16 a) R=CH2CH2Ph b) R=CH2CH2C6H5 A=H 

 

Different sizes of hemicarceplexes have been synthesized and numerous host-guest 

studies have been successfully carried out, such as hemicarceplex self-assembly studies, reactive 

intermediates studiesxvii and studies of reaction kinetics occurring within the hemicarcerandsxviii.  

    A noteworthy example of a study of an otherwise very reactive intermediate is the 

incarceration of fluorophenoxy carbene in a hemicarcerandxix (Scheme 1.10).  The incarceration 

prevents the carbenes’ dimerization reaction and its reaction with water molecules that belong to 

the bulk phase and, therefore, cannot enter the hemicarcerand.  Therefore, incarcerated 

fluorophenoxy carbenes can persist at room temperature for days.  A suitable hemicarcerand for 

“ bottling” a singlet carbene has to provide a good fit for the guest carbene and it needs to be 

unlikely to promote C=C addition between itself and the guest carbene.   
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Scheme 1.10: A Hemicarcerand Bottling a Singlet Carbenen19 R=(CH2)4CH3 X=(CH2)4 

 

    Besides the binding and stabilization of carbene, other reactive intermediates can be 

bonded and stabilized inside a hemicarcerand as well. Warmuth and coworkers published the 

NMR characterization of the strained intermediate 1-azacyclohepta-1,2,4,6 tetraene, which was 

formed by the photolysis of benzyl azide, in the inner phase of a hemicarcerandxx (Scheme 11). 

 

 

N3 N
N NH

O

hv

1-azacyclohepta
-1,2,4,6 tetraene  

Scheme 1.11: Warmuth’s Hemicarcerand that Stabilizes 1-azacyclohepta-1,2,4,6 tetraene20 

R=(CH2)4CH3 A=(CH2)4 

 

    The first water-soluble hemicarcerand was reported by Cram and Yoon in 1997xxi 

(Scheme 1.12).  However, it is only soluble in basic aqueous media.  Since the major parts of 

cavitands and hemicarcerands are hydrophobic, the limited water solubility of these molecules is 

still impeding many bio-mimic and (micro) biological applications and studies of complete 

structure-solvent relationship between these molecules and water. 
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Scheme 1.12: First Water-soluble Hemicarcerand21 

    It is noteworthy that resorcin[4]arene capsules can also be formed by more than two 

cavitands.  In 1997, MacGillivray and Atwood reported the self-assembly of six bowls via 

hydrogen bondingxxii (Scheme 1.13), capable of enclosing 8 water molecules.   

 

Scheme 1.13: MacGillivray’s Spherical Molecular Assembly of six Cavitands Held Together by 

Hydrogen Bonds22 

This study was followed by a thorough kinetic and thermodynamic study of similar 

hexameric capsules with different alkyl feet encapsulating one tetraalkylammonium salt in 

solution by Rebek and coworkersxxiii.  



 10

   To study the encapsulation process and dynamic behavior of the resorcin[4]arene, 

Rebek and coworkers linked fluorescent tags to the feet of resorcin[4]arene monomers. Pyrene 

donor tags and perylene acceptor tags were separately linked to the feet of different cavitands.  

When two cavitands with different tags are in the same hexameric capsule, fluorescence 

resonance energy transfer (FRET) is observed (Scheme 1.14).  This team of authors also studied 

the FRET between a guest donor inside the hexameric capsule and a receptor tag linked to the 

surface of the capsulexxiv. 

 

 

Scheme 1.14: Representation of a D and A Labeled Resorcinarene Brought within FRET Distance in a 

Hexameric Assembly.  Pyrene and Perylene are the Donor and Acceptor Fluorophores, Respectively24. 

Motivation for my thesis work and synthetic aims 

1) As I have pointed out above, the synthesis of water-soluble resorcin[4]arenes, which 

can be easily derivatized to bind a suitable guest, is one of the major challenges in the field. 

Hydroxy-footed resorcin[4]arenes, which contain several charges, should have superior 

solubility properties in water, compared to these resorcin[4]arenes, which only feature hydroxyl 

pendant groups. Therefore, I have explored new synthetic routes to prepare water-soluble 

resorcin[4]arenes. 

2) Another major synthetic challenge is the introduction of a suitable chemical function 

for the binding of gold and other inorganic nanoparticles. Numerous strategies for the synthesis 

of water-soluble nanoparticles by using hydrophilic ligands that bind to the surface of the 

nanoparticles during synthesis (e.g. reduction in microheterogeneous media, Solvated Metal 

Atom Dispersion (SMAD) or digestive ripening, are known In many of these procedures, the 
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size of the resulting inorganic nanoparticles is usually not independent of the chemical nature of 

the stabilizing ligand. Therefore, the exchange of a stabilizing mono-dentate ligand by a tetra-

dentate resorcin[4]arene at room temperature (or slightly above) may preserve the size of the 

nanoparticles after their synthesis had been tailored according to the needs of future applications. 

Furthermore, the pendant group (“feet”) and the rim-regions of resorcin[4]arenes can be 

derivatized independently of each other, resulting in bifunctional octa-dentate molecules. One 

region of the resorcin[4]arene  (feet or rim) can be bound to the inorganic nanoparticle, whereas 

the other can achieve the chemical linkage of the nanoparticle@resorcine[4]arene-assembly to a 

protein or another biological structure of interest. 

3) There are numerous examples known from the literature (see above), where 

resorcine[4]arenes, hemicarcerands and carcerands act as hosts for reactive organic molecules. In 

the course of my thesis, I wanted to explore possible reactions between a suitable 

resorcine[4]arene and guest. Since my synthetic efforts to enhance the water-solubility of 

resorcin[4]arenes led to 4,4’-bipyridinium-derivatized macrocycles, it was straightforward to use 

the electron-relay capability of these “viologen-units” for electron-transfer reactions. This work 

has been guided by the mechanistic paradigm that the binding of chlorinated hydrocarbons 

within the resorcin[4]arene cavity will lead to their enhanced reactivity in thermal reduction 

reactions. The electrons will be taken up by the viologen-units, which are a part of the 

resorcin[4]arenes’ rim.  From there, outer-sphere electron transfer reactions to the guests will 

occur, depending on the electrochemical reduction potentials of the bound guests and the 

viologene-units. 

4) The use of resorcin[4]arenes as drug-containers has been studied extensively. 

However, their use as drugs had not been attempted at the beginning of our studies. It was my 

strategy to modify water-soluble resorcine[4]arenes with DNA-intercalating heterocyclic units. 

Binding of these macrocycles at DNA will impede the activity of DNA-binding enzymes, such 

as DNA-polymerase, DNA-ligase and the topoisomerases I and II. 

5) Although the use of resorcin[4]arenes as host systems was reported numerous times 

(indeed this system had be designed as a host!), their use as guest has not been reported to date to 

the best of our knowledge! One interesting application of cationic resorcin[4]arenes is their use 
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as mycobacterial channel blockers. I have used viologen-derivatized resorcin[4]arenes 

possessing propanol feet for binding studies within the mycobacterial model porin MspA from 

Mycobacterium smegmatis. The concept of channel blocking can be regarded as a novel strategy 

for treating mycobacterial infections. For studying the binding characteristics within the 

mycobacterial protein channel, a coumarin-fluorophore was chemically attached to one of the 

resorcin[4]arene’s feet.  
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CHAPTER 2 - Resorcin[4]arenes as Mycobacterial Channel 

Blockers 

Introduction 

In resorcin[4]arene cavitands host-guest chemistry, the cavitands have always been used 

as the host, but never as the guest.  The tunable vase-kite conformations can actually make it 

possible to use these cavitands as flexible guests in bigger cavities, and the charged upper rim of 

resorcin[4]arene cavitands can bring potential selectivity toward hosts that bears opposite 

charges. 

Tuberculosis and the Mycobacterial Cell Envelope 

Mycobacterium tuberculosis, which lives in humans since at least 5,000 B.C., causes 

more deaths than any other single bacterial infectionxxv. Approximately one third of the world’s 

population is already infected. More than 2,000,000 deaths have to be accounted for each year.25 

During the last two decades, multi-resistant strains have appeared due to the discontinuing 

treatment of tuberculosis in many countries, threatening all countries which experience 

immigration.25 A successful treatment of a multi-resistant case of tuberculosis (MDR-TB) 

requires up to 6 different antibiotics and 18-24 months of continuing care. In the United States, 

the typical costs per patient with MDR-TB are approximately $200,000. Since no new TB drug 

has been developed in the past 40 years using classical methods, it is believed that new strategies 

are required for TB drug discovery.xxvi Our approach aims to understand the fundamental basis of 

drug transport which often limits the efficiency of existing drugs against M. tuberculosis. To this 

end, we describe here the biophysical characterization of the cell surface of M. tuberculosis. It is 

envisioned that current and new TB treatment strategies will profit from these results. 

Mycobacteria are known to possess an extremely stable and unique outer membrane that has an 

extremely low permeability and plays a crucial role in the intrinsic drug resistance and in 

survival of mycobacteria under harsh conditions.29 Therefore, the aim of this study was to 

analyze the outer membrane of M. tuberculosis by AFM. 
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Biological background: Mycobacteria form a Unique Outer Membrane 

Mycobacteria produce mycolic acids that are -branched -hydroxy fatty acids 

consisting of up to 90 carbon atoms and are the longest fatty acids known in nature.xxvii Minnikin 

originally proposed that the mycolic acids, which are covalently bound to the arabinogalactan-

peptidoglycan co-polymer, form the inner layer of a unique outer membrane (OM) (Figure 

2.1A).xxviii In addition, the mycobacterial cell envelope contains a fascinating diversity of other 

lipids, many of which are unique to mycobacteria.xxix Some of these extractable lipids were 

shown to be an important part of the OM and are assumed to form the outer leaflet of this unique 

OM (e.g. TDM, Figure 2.1B).26 Thus the mycobacterial OM resembles a supported asymmetric 

lipid bilayer and provides an extraordinarily efficient permeability barrier, which is 100 to 1000-

fold less permeable than that of E. coli.xxx The existence of an additional lipid bilayer requires a 

set of dedicated OM proteins. E. coli uses more than 60 proteins to functionalize its OMxxxi, 

many of which are channel proteins to permeabilize the membrane for nutrient transport. The 

observation31, discoveryxxxii and structural analysis of mycobacterial porinsxxxiii provided the first 

conclusive example that functionally similar, but structurally completely different OM proteins 

also exist in mycobacteria. Whereas the porins determine the permeability of the mycobacterial 

OM for hydrophilic substances, the extremely hydrophobic and covalently bound mycolic acids 

form the so-called cell-wall-skeleton. Mycobacteria are able to synthesize a fascinating variety of 

mycolic acids, more than 500 different structures are known to date. 27 Together they form an 

almost impenetrable cell wall. 
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Figure 2.1: A (top):  Schematic representation of the mycobacterial cell envelope, based on the model proposed 

by Minnikin.27 The inner leaflet of the outer membrane (OM) is composed of mycolic acids (MA), which are covalently 

linked to the arabinogalactan (AG) – peptidoglycan (PG) copolymer. B (bottom): A variety of extractable lipids 

presumably form the outer leaflet of the OM exists. Left is general structure of AG, right  is trehalose dimycolate (TDM), 

a typical extractable lipid from the OM of mycobacteria.xxxiv 

 

As shown in Figure 2.1A, the outer layer of the mycobacterial cell envelope is 

approximately 10nm in diameter. It consists of mycolic acids (see Figure 2.1A), which are 

covalently attached to an arabinogalactan-peptidoglycan copolymer (AG-PG). A fraction of 

these mycolic acids, as well as a variety of other lipids, is extractable as well (see Figure 2.1B). 

Mycobacterial channel porins permit the exchange of hydrophilic molecules between the exterior 

of the mycobacterium and the periplasm. MspA from M. smegmatis was the first channel protein, 

which was isolated by the group of Dr. Michael Niederweis in 1999.32 MspA has a goblet shaped 

inner channel and consists of 8 protein monomers with 184 amino acid residues each.  It is 

extremely stable and approximately 10nm in length and 9 nm in diameter. Its inner diameter is 

approximately 1nm at the constriction zone and 4.8nm at the broadest region. The MspA porin 

can be regarded as a prototype for all mycobacterial channels. It is very important for the 

understanding of the slow metabolism of mycobacteria in general that the mycobacterial porins 
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allow the exchange of small molecules and hydrophilic solutes between the exterior of the 

periplasm by diffusion controlled processes only! There is no active transport mechanism 

discernible and the porins are water-filled at all times! MspA is the only mycobacterial porin that 

can be purified in milligram quantities and using microscopic buffer droplets, it can easily 

deposit on surfaces.xxxv 
  

 

Figure 2.2:  Crystal Structure of MspA of M. smegmatis. A. Surface representation (side view). green: 

hydrophilic amino acids; yellow: hydrophobic amino acids; dimensions given in Å. B. Secondary structure (side view). 

Arrows depict the constriction zone. C. Constriction zone formed by aspartates 90 and 91 (top view)33b 

 

I have developed a series of partially and fully water soluble resorcin[4]arene cavitands.  

These cavitands are soluble in neutral water and their solubility is caused by 4 or 8 positive 

charges of the bipyridinium units that are connected to the upper rim of the cavitand.  Among 

these charged cavitands, two possessing hydroxyl feet are completely water-soluble 

(solubilities> 50g L-1).  The charge repulsion between the bipyridine units locks the cavitand in a 

kite conformation.  This kind of charged kite cavitands can potentially be used as channel 

blocker for porins by fitting into their hydrophilic and negatively charged inside walls.  This 

appears to be a viable strategy to kill mycobacteria, especially M. tuberculosis, by starvation or 

metabolic poisoning.  Also, after all the existing porins in the cell membrane are blocked, the 

bacteria might open up more pores to compensate the blockage, which might make the cell wall 

structure fragile and more liable to the attack of antibiotics.xxxvi In order to investigate the 

binding of the charged cavitand within the porin, I have attached a fluorescent coumarin tag to 

one of the hydroxyl feet of the cavitand. 
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Synthetic Work: 

Part of the synthetic work described in this chapter is based on an article by J. C. 

Sherman published in 1998 in the Journal of Organic Chemistry.2  

The goal of this project was to synthesis a series of water soluble new resorcin[4[arene 

cavitands that bear positive charges on the rim and hydroxyl groups on the feet for fluorescent 

tags addition.  For this purpose, a feet protected cavitand was synthesized and the 2-methyl rim 

was brominated for future SN2 functionalization.  The unbridged cavitand 1 condensed, 

according to Sherman’s procedure2, except that, the 2,3-dihydrofuran was added over 3 minutes 

period into the methanol-HCl solution of 2-methyl resorcinol while the solution was cooled in 

ice bath and vigorously stirred at the same time.  When the reaction was ran under air, the yield 

was not different from when it was ran under nitrogen, so this step is not air sensitive.  The 

driving force for the equilibrium to shift right is the precipitation of the product. Since non-water 

soluble byproducts are dissolved in the methanol solution after the reaction is done, it is essential 

to filter out precipitate in a dry state before water and THF wash.   

OHHO

O

HCl

OHHO

OH

4
MeOH

1
55%

 

Scheme 2.1 

    The next step is to connect the upper part of the cavitand 1 with methylene bridges via 

SN2 reaction to give cavitand 2.  Bromochloromethane was chosen as bridging reagent and 

potassium carbonate as the base to deprotonate the phenols.  In this reaction, bridging reagent 

need to be added gradually to avoid formation of “over functionalized open top product”.  Also it 

is preferred to add bridge reagent when the reaction mixture is cooled to room temperature.  The 

reaction is air sensitive because the phenol can be easily oxidized under basic conditions.  

Although water molecules would destroy some bridging reagents, it wouldn’t result in any 

supramolecular byproducts, so ACS grade solvent can be used instead of anhydrous solvent. 
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Scheme 2.2 

After adding methylene bridges, acetyl or TBDPS protection groups were installed onto 

the hydroxyl feet of cavitand 2 to give cavitand 3 and 5.  TBDPS group is very non polar and can 

greatly drop the polarity of the cavitand and increase its solublility in not so polar solvents. 

    The bromination of cavitand 3 and 5, which give cavitand 4 and 6 were carried out via 

free radical reaction with benzoyl peroxide or AIBN as initiator.  Bromination of cavitand 5 is 

harder than bromination of cavitand 3 possibly due to steric hindrance of TBDPS group.  To 

succeed in bromination of cavitand 5, solvent carbon tetrachloride needs to be distilled before 

using to exclude radical scavenger species, the reaction mixture need to be strictly water and air 

free and it is preferred to bring the reaction mixture to reflux as quickly as possible. 
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Scheme 2.3 
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    After finishing synthesis of literature reported compounds, I started installing positive 

charges on the rim of the cavitands by SN2 reaction between bipyridine molecules and the 

brominated rims.  Four charged cavitands 7 and 11 can be obtained by heating cavitand 4 and 6 

with 8-10 fold of 4-4’ bipyridine in DMF for 3-5 days.  The charged cavitands with increased 

depth are more likely to bind with small solvent molecules like water, acetone and DMF.  And 

due to their high polarity it is impossible to purify the product by column chromatography.   
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Scheme 2.4 
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Scheme 2.5 

        Because of the charge repulsion among the four bipyridine units, the rim of the 

charged cavitands adopts the kite conformation which has a biggest diameter of 2.5nm.  The 

diameter is suitable for binding in MspA channel right above its constriction zone with the 
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hydrophilic bipyridine units pointing down at the hydrophilic inside wall of the bottom part of 

MspA and the hydrophobic cavitand skeleton upward at the hydrophobic inside wall of the upper 

part of MspA.  The hydrophilic inside wall of MspA also contains negative charges from Asp 

under neutral pH conditions, which is another reason for the affinity between MspA channel and 

the positively charged cavitands.  After addition of a coumarin tag on one foot, a 4-charged 

cavitand is proposed to bind inside MspA as Figure 2.3 indicates. 

 

 

 

 

 

 

 

 

Figure 2.3: Proposed binding Geometry of a 4-charged Fluorescent-tagged Cavitand in MspA 

Channel 

    In order to get higher cavitand-MspA affinity, eight charged cavitands 8 and 10 were also 

synthesized. 
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Scheme 2.6 

For acetyl protected cavitands, eight-charged derivative can be obtained by either 

reacting four-charged cavitand 7 with access amount of methyl iodide, or reacting cavitand 4 

with four folds of  (N-methyl 4, 4’ bipyridine) for longer time or in pressure reactor.   N-methyl 

4, 4’ bipyridine was made from 4,4’-bipyridine and methyl iodide and purified by ethanol 

extraction. 

N N

MeI

DMF

N N I

 

Scheme 2.7 

Cavitand 7 can be easily deprotected by sodium hydroxide water solution pH=10.  

Cavitand 11 can be deprotonated by 10% HBr water solution.  In this reaction, if methanol is 

added to the solution to increase the solubility of the cavitand 11, polymer is recovered as 

product.  Eight charged hydroxyl feet cavitand 10 was synthesized by treating cavitand 9 with 

dimethyl sulfate.  Synthesis for eight charged TBDPS protected cavitand has been attempted by 

reacting cavitand 11 with methyl iodide and resulted in (N,N dimethyl 4, 4’-bipyridine) as the 

only charged organic compound after acetone wash.  The cavitand moiety was not isolated.  In 
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order to shine some light on what might have happened to the TBDPS protection group after 

methyl iodide treatment, a test reaction was conducted. 
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Scheme 2.8 

Cavitand 5 was mixed with excess of methyl iodide in DMF and gently heated.  Methyl 

feet cavitand 12 was isolated as one of the products.  The proposed mechanism is as follows. 

Si O R

H3C II

Si O R II H3C+ +

 

Scheme 2.9 

Since this reaction results in a mixture of multiple compounds that are difficult to 

separate even after proceeding for a long time, it is not recommended to use this reaction for 

methylation synthesis. 

    Besides 4,4’-bipyridine, (3,3’-dimethyl)-4,4-bipyridine was also used to introduce 

charges onto cavitand rims.  The charged (3,3’-dimethyl)-4,4-bipyridinium cavitands are a little 

less polar and more hydrophobic. (3,3’-dimethyl)-4,4-bipyridine was synthesized through slow 

air oxidation of 3-picoline and sodium mixture.  Sodium metal was first put into distilled neat 3-

picoline, the mixture was heated gently till all sodium dissolved, and slow air oxidation was 

conducted for a week. 

N N

N
Na/O2
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Scheme 2.10 

Synthesis of  (3,3’-dimethyl)-4,4-bipyridinium cavitands is similar to 4,4-bipyridinium 

cavitands, but to synthesize 8-charged cavitand 15, only dimethyl sulfate method was used.  

Methyl iodide is not suitable because the I- resulted from SN2 reaction could serve as an electron 

source to reduce the bypyridine unit. 
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Scheme 2.11 

    The hydroxyl feet charged cavitands are fully water soluble (solubility >50g/L) in 

neutral pH pure water.  And this is an important property for future biology or biomimic 

applications. 

    In order to study the binding of charged cavitands and MspA, a fluorescent coumarin 

tag was attached to one of the four hydroyl feet of either cavitand 9 and cavitand 10.  The 

attachment was made through Mitsunobu reaction between one hydroxyl foot and one coumarin 

molecule 17. 
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Scheme 2.12 

Due to poor solubility of eight charged cavitands in non-aqueous solvent, four charged 

cavitands were first selected for the attachment of coumarin.  During the synthesis of four 

charged hydroxyl feet cavitands, the work up includes neutralization of NaOH or HBr, which 

results in a mixture of product and inorganic salts.  The salts can’t be completely removed by 

recrystalization due to the solubility similarity and the product can’t be purified by column 

chromatography.  So, for the Mitsunobu reaction, when intend to weigh out 1:1 molar ratio of 

four charged hydroxyl feet cavitands and coumarin 17, the coumarin would be in a little excess 

in reality.  After 4-charged coumarin tagged cavitands were obtained, another four charges can 

be added to the bipyridinium unit using dimethyl sulfate.  This step could be completed under 

room temperature and product would precipitate out from solvent DMF. 
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Scheme 2.13 

    The coumarin compound 17 used in the Mitsunobu reaction was synthesized from 3-

aminophenol.  First, the amine is protected by (methyl carbonyl) group, followed by ring closure 

with ethyl acetoacetate, deprotection of amine group and addition of acid chain with succinic 

anhydride.   
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Scheme 2.14 

During the design of this procedure, it is important to make sure that final step is not done 

in concentrated sulfuric acid, because there is difficulty precipitating compoud 17 out from 

strongly acidic water and neutralizing the sulfuric acid would result in a lot of salt.  
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Binding Investigation 

Investigation of the Binding Behavior of Eight -times Charged Resorcin[4]arenes 

within the MspA Channel by Atomic-Force-Studies of MspA and Resorcin[4]arene@MspA 

Assemblies on MICA Surfaces 

 

A direct proof for the binding of resorcin[4]arene 20 inside MspA was obtained by using 

AFM by my fellow graduate student Matthew T. Basel. MspA was deposited on Mica from 

(H2O/MeOH)-phosphate buffer solutions (pH=6.8), dried in high vacuum and then imaged. Our 

AFM (Pico SPM 2000) has been operating in the Magnetic A/C mode (MACModeTM), which 

uses a magnetically driven oscillating probe with an oscillation amplitude significantly smaller 

than that of the so-called tapping mode.xxxvii The result is a superior resolution and less distortion 

of the sample by AFM-imaging. Typical results are shown in Figure 2.4. From Figure 2.4A it 

becomes apparent that single MspA pores can be successfully imaged on Mica if their deposition 

took place from a methanol-containing buffer (MeOH > 40 percent by weight). Apparently, 

methanol serves as a blocker for the formation of hydrogen bonds and hydrophobic interactions 

between individual MspA-octamers. However, the strength of the interaction between the MspA-

monomers is sufficient (at MeOH < 60 percent) for MspA to remain (mostly) an octamer. This is 

true for the octamer possessing the characteristic homopore. Furthermore, it must be noted that 

approximately 98 percent of the MspA-“goblets” are standing upright on Mica. Their large pore 

openings are directed outwards, whereas the loop-region and also the constriction zone are 

directed towards the Mica support. MspA has been found to be stable on Mica. When in the 

MACMode (oscillation frequency: 75kHz (air), the oscillating AFM-probe conveys a force of 

approximately 20-100 pN. MspA is able to withstand that force for up to five consecutive 

imaging procedures. 
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Figure 2.4 A: MspA on Mica 2.4 B: Resorcin[4]arene 20 on Mica 2.4 C: Resorcin[4]arene 20, bound 

to MspA on Mica 

 

As it becomes apparent from the comparison of the three AFM-images shown in Figure 

2.4, the resorcinarene 20 is able to block the inner pore of MspA. In Figure 2.4A, the pore 

opening of the MspA-homopore on Mica is clearly discernible. This opening cannot be detected 

anymore in the presence of the resorcin[4]arene, shown in Figure 2.4B, which acts as a channel 

blocker. The molar ratio of resorcin[4]arene to MspA is 10:1.  Note that according to Equation 

2.1xxxviii, the apparent diameter of objects that were imaged by using AFM varies in dependence 

on the tip diameter. This is the main reason for the deviations of the MspA-diameters in Figure 

2.4A and 2.4C. The second reason is that different parameter files were used for the imaging 

process due to an update in the AFM firmware and software. 

W = d + 2 h 2R h( )[ ]  
(2.1) 

d: lateral size 
h: height 
R: radius of curvature of the tip apex 
W: observed width of the feature 

 

Photophysical Studies: UV/Vis-Measurements 

The first step of the photophysical measurements of the resorcin[4]arene macrocycle 20 

featuring four chemically attached 4,4´-bipyridinium units consisted in the recording of its 

UV/Vis-absorption spectra in dependence on its concentration. These studies were performed in 
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methanol in order to permit a direct comparison between the coumarin-luminophore and the 

macrocycle featuring one chemically attached coumarin-luminophore. Without chemical 

attachment to the eight-fold charged macrocycle, the coumarin-derivative is not sufficiently 

water-soluble. 

 

Figure 2.5: UV/Vis-Absorption spectrum of 

resorcin[4]arene 20  as a function of its concentration in 

MeOH, c=1x10-6 M, 2x10-6 M, 5x10-6 M, 2x10-5 M. 

 

 

 

Table 2.1: Absorption Maxima and Absorption Coefficients of Resorcin[4]arene  as a 

Function of Concentration. 

C [M] max1 (nm)  [M
-1

 cm
-1

] max2  [M
-1

 cm
-1

] 

1x10-6 241 124,000 274 (sh) 82,000 

2x10-6 243 126,000 275 (sh) 85,000 

5x10-6 247 118,000 275 (sh) 84,000 

2x10-5 253 88,000 285 (sh) 86,000 

5x10-5   309 94,000 
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For reasons of comparison, the same concentration-sequence has been measured using 

the coumarin-luminophore without the chemically attached macrocycle. In agreement with 

literature39,40, methylaminocoumarin has a strong tendency towards the following photophysical 

processes: 

1) Excimer and Excited Multiplex Formationxxxix and 2) Fluorescence Resonance Energy 

Transfer (FRET)xl. Whereas the second process strongly influences the fluorescence spectra and 

intensity of the strongly fluorescent coumarins, the first process has a strong effect on the 

absorption spectra as a function of concentration as well, as Figure 2.5 and Figure 2.6 indicate. 

Excimer Formation
xli

 

The formation of exciplexes proceed according to Scheme 2.15: The first step consists of 

the absorption of a photon of suitable energy by an isolated coumarin chromophore. The energy 

of the absorbed photon causes the transition of an electron from the HOMO (highest occupied 

molecular orbital) into the LUMO (lowest unoccupied molecular orbital) generating the excited 

singlet state (S1) of the organic molecule. This excited molecule can, depending on the 

concentration of ground state coumarins, react with a second (ground state) coumarin to form an 

“excited dimer” excimer. For methylcoumarinamide, there are, principally, three excimers 

possible, depending on the relative orientation of the two coumarin-molecules with respect to 

each other in the excimers as it is shown in Scheme 2.15. 
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Scheme 2.15: Formation of asymmetric and symmetric coumarin-excimers. 
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Scheme 2.16 explains the energetic driving force that leads to the formation of excimers.  

Note that two coumarins in the ground state are repulsive and do not form any aggregate 

with each other. The first step consists of the absorption of a photon and the formation of the 

electronically excited singlet state (S1). In the presence of a second, fully occupied HOMO, the 

two HOMO’s undergo splitting. In this process, one HOMO becomes lower in energy and the 

other increases by the same energy, respectively. The energy gain is the driving force for the 

formation of the excimer occurs.  When two singlet electrons occupy the lowest orbital, only one 

electron can be found in the higher orbital of the two former HOMO’s. Note that during the 

lifetime of an excimer, the LUMO stays occupied. Once the electron returns from the LUMO to 

the homo (deactivation), there is no electronic advantage for the splitting anymore and the two 

ground-state coumarins are no longer bound to each other. 

It is of great importance for the observed changes in the UV/Vis-absorption spectra of the 

coumarins that excimers can be created via photoexcitation of two neighboring coumarins by one 

photon, if the two coumarins are close enough. This phenomenon is called “preformed 

excimers”. Therefore, the spectra of many coumarins and coumarin-derivatives change 

remarkably with increasing concentration. Furthermore, at even higher concentration, two or 

several ground-state coumarins can form a complex with one excited coumarin. This causes an 

even bigger redshift of the UV/Vis-absorption spectrum. 
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Scheme 2.16: Singlet Excimer formation explained by simple MO-theory (MO: molecular orbital) 
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2) Fluorescence resonance energy transfer (FRET)41 describes a nonradiative energy 

transfer mechanism between two chromophores. The mechanism of transfer is usually a long-

range dipole-dipole coupling between a chromophore and an acceptor chromophore in close 

proximity (typically <10nm). When both molecules are fluorescent, the term "fluorescence 

resonance energy transfer" is often used. This can be misleading, because the energy is not 

actually transferred by fluorescence. 

 

The FRET efficiency E depends on many parameters. The most important parameters are:  

• The distance between the donor and the acceptor chromophores 

• The spectral overlap of the donor’s emission spectrum and the acceptor’s absorption 

spectrum. 

• The orientation of the donor emission dipole moment and the acceptor absorption dipole 

moment with respect to each other. 

 

According to Theodor Förster41, E depends on the donor-to-acceptor separation distance 

with an inverse 6th power law (dipole-dipole coupling mechanism) 

 

E =
1

1+ (r /R0)
6  

(2.2) 

 

R0, the Förster distance, is defined as the distance between fluorescence donor and 

acceptor, where the FRET efficiency is exactly 50%. The Förster distance is usually calculated 

by means of the Equation 2.3: 

 

R0
6

= 8.8x10 23 2n 4
0J  

(2.3) 

 

where 2 is the dipole orientation factor, n is the refractive index of the medium, 0 is 

the fluorescence quantum yield of the donor in the absence of the acceptor, and J is the spectral 

overlap integral calculated as 
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J = fD ( ) A ( )
4d  

(2.4) 

 

where fD is the normalized donor emission spectrum, and A is the acceptor molar 

extinction coefficient.  

 

Figure 2.6: UV/Vis-Absorption spectrum of  3-(4-methyl-2-oxo-2H-chromen-7-ylcarbamoyl)propanoic 
acid (methylcoumarinamide) 17 as a function of its concentration in MeOH, c=1x10-6 M, 2x10-6 M,   1x10-5 M, 

1x10-4 M and 1x10-3 M (intensities from low to high). 
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Fluorescence Spectra of Resorcin[4]arene Bound Coumarin in Comparison to the 

free Coumarin Dye. 

It is known that the literature that most coumarin-dyes show very strong luminescence. 

For methylcoumarinamide the quantum yield of luminescence, which comprises the short-lived 

fluorescence and the much longer-lived phosphorescence, is approximately 0.5. This means that 

for every two photons absorbed at the excitation wavelength =284nm, one photon is emitted. 

Fluorescence is found at shorter wavelengths, whereas phosphorescence occurs at longer 

wavelengths (in the absence of oxygen). The principal photophysical processes of an organic 

molecule are summarized in the Jablonski-diagram shown in Scheme 2.17. 
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Scheme 2.17: Jablonski-Diagram 

(1) electronic excitation by absorption of a photon (  ~ 10-16 - 10-15 s) 

(2) internal conversion (  ~ 10-12 s) 

(3) fluorescence (  ~ 10-10 - 10-8 s) 

(4) intersystem crossing (  ~ 10-12 - 10-10 s) 

(5) phosphorescence (  ~ 10-7 -10-3 s) 

Sn: singlet states  

Tn: triplet states 
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According to the literaturexlii, methylcoumarinamide possesses a fluorescence lifetime of 

200 to 500 picoseconds (2 x 10-10 s - 5 x 10-10 s) in protic media. In the absence of oxygen 

(degassed by three consecutive freeze-pump and thaw cycles), its phosphorescence has a lifetime 

of approximately 500 nanoseconds (5 x 10-7 s). A typical emission spectrum of 

methylcoumarinamide (in MeOH) is shown in Figure 2.7.  It indicates that monomers and 

excimers exist not only in the singlet state, but in the triplet state as well. Scheme 2.4 illustrates 

the energy advantage for a triplet excimer. Furthermore, the low viscosity of MeOHxliii enhanced 

the probability for diffusional encounters between excited (triplet) coumarins and ground-state 

coumarins. 

I, rel.

nm

fluorescence phosphorescence

monomer

monomer

excimer

excimer

0

2 10
5

4 10
5

6 10
5

8 10
5

1 10
6

1.2 10
6

1.4 10
6

300 400 500 600 700 800

1E-5
1E-6

(1)
(2)

 
Figure 2.7: Emission spectrum of methylcoumarinamide 17 

( exc = 284 nm) in MeOH. Note that both, fluorescence and phosphorescence form monomers and excimers. 

(1): c = 1.0 x 10-5 M 

(2): c = 1.0 x 10-6 M 
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Scheme 2.18: Singlet Excimer formation explained by simple MO-theory. 

 

 

As it becomes a apparent from the comparison of Figure 2.7 and Figure 2.8, the 

luminescence spectra of methylcoumarinamide and of the resorcin[4]arene featuring one 

chemically linked methylcoumarinamide unit in methanol are nearly identical. Both show 

monomer and excimer formation. 

Before the binding of the resorcin[4]arene featuring the chemically linked coumarin 

fluorophore to the mycobacterial porin MspA has been investigated, the photophysical properties 

of the macrocycle itself, in comparison to methylcoumarinamide, were studied. Of special 

interest were the observed fluorescence and phosphorescence intensities as a function of 

concentration. 
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Figure 2.8: Emission spectrum of the resorcin[4]arene possessing a chemically linked coumarin 20 

( exc = 284 nm) in MeOH (c = 1.0 x 10-6 M). 

Note that both, fluorescence and phosphorescence form monomers and excimers. 

 



 36

It was our intention to distinguish FRET between two electronically excited and ground-

state coumarin luminophors and the luminescence quenching of the coumarin luminophore by 

the four viologen units that are chemically attached to the rim of the resorcin[4]arene. Therefore, 

we have measured the concentration dependence of the coumarin-resorcin[4]arene and 

methylcoumarinamide. 
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Figure 2.9: Integrated luminescence intensity of the 

resorcin[4]arene featuring one chemically attached 

methylcoumarinamide  20 as a function of concentration in 

MeOH 

(1) integrated luminescence from 300-700 nm 

(2) integrated luminescence from 300-500 nm 

(3) integrated luminescence from 500-700 nm 
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Figure 2.10: Normalized luminescence intensity of the 

resorcin[4]arene featuring one chemically attached 

methylcoumarin-amide 20  as a function of concentration 

in MeOH 

(1) integrated luminescence from 300-700 nm 

(2) integrated luminescence from 300-500 nm 

(3) integrated luminescence from 500-700 nm 

 

Coumarin-resorcin[4]arene shows a strong decrease of its luminescence intensity 

( exc=284nm) with increasing concentration (Figure 2.9). It is noteworthy that the four 

chemically attached viologen units quench the coumarin luminescence with a very low 

efficiency, otherwise strong luminescence would not occur when the concentration of the 

coumarin-linked macrocycle is increased. Since the charge of coumarin-resorcin[4]arene 20 is 

plus eight and at least a partial dissociation of the chloride salts that have been used can be 

expected in methanol, we can assume a certain degree of charge repulsion. Therefore, we can 

assume that the luminescence quenching occurs via a diffusional pathway and NOT within the 

macrocycle itself. Furthermore, it is of interest that the fluorescence part of the luminescence 

spectrum (300-500 nm) decreases faster than the phosphorescence part (Figure 2.10). This 
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behavior is surprising, because viologen is known to quench both singlet and triplet states and 

the much longer lifetime of the electronically excited triplet state of the attached coumarin 

should increase the probability of diffusional quenching by the viologen.  A comparison of the 

phosphorescence behavior of methylcoumarinamide and coumarin-resorcin[4]arene 20 indicates 

that the former shows an increase of phosphorescence with increasing concentration, whereas the 

overall decrease of luminescence is certainly decreased. This finding can be regarded as 

mechanistic proof for a) the diffusional quenching of the coumarin-luminescence by the viologen 

units and b) the remarkably increased efficiency of intersystem crossing of resorcin[4]arene-

linked and free methylcoumarinamide at higher concentrations. In the absence of a quencher, we 

attribute the observed decrease in luminescence to the occurrence of FRET between the 

coumarin-chromophors. 

I, rel.

0

2 10
7

4 10
7

6 10
7

8 10
7

1 10
8

1.2 10
8

1.4 10
8

1.6 10
8

0 1 10
-6

2 10
-6

3 10
-6

4 10
-6

5 10
-6

300-700
300-500
500-700

(1)
(2)
(3)

M 
Figure 2.11: Integrated luminescence intensity of 

methylcoumarinamide as a function of concentration in 

MeOH 

(1) integrated luminescence from 300-700 nm 

(2) integrated luminescence from 300-500 nm 

(3) integrated luminescence from 500-700 nm 
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Figure 2.12: Normalized luminescence intensity of 

methylcoumarinamide as a function of concentration in 

MeOH 

(1) integrated luminescence from 300-700 nm 

(2) integrated luminescence from 300-500 nm 

(3) integrated luminescence from 500-700 nm 

Channel Blocking of MspA: Coumarin-resorcin[4]arene as Guest 
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In Figure 2.13 and 2.14, the luminescence spectra of coumarin-resorcin[4]arene 20 in the 

presence of MspA in aqueous phosphate buffer and the reference spectra of coumarin-

resorcin[4]arene 20 in the absence of MspA are shown. It is noteworthy that the intensity of both, 

fluorescence and phosphorescence, is enhanced in the presence of MspA. However, the 

mechanistic reason for this finding remains to be determined.  
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Figure 2.13: Luminescence spectra of coumarin-resorcin[4]arene 20 (variable concentrations) and MspA (2.2 x 

10-8 M) in 0.05M phosphate buffer (pH=6.8) 

(1) 1.0 x 10-6 M 

(2) 2.0 x 10-6 M 

(3) 3.0 x 10-6 M 

(4) 5.0 x 10-6 M 
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Figure 2.14: Luminescence spectra of coumarin-resorcin[4]arene 20 (variable concentrations) in 0.05M 

phosphate buffer (pH=6.8) 

(1) 1.0 x 10-6 M 

(2) 2.0 x 10-6 M 

(3) 3.0 x 10-6 M 

(4) 5.0 x 10-6 M 

 

In order to show that coumarin-resorcin[4]arene 20 is indeed bound within MspA, as 

AFM-results have indicated (see above), the (singlet) monomer/excimer ratios in the presence 

and absence of MspA have been determined and then compared to each other. The results are 

shown in Figures 2.15 to 2.16. 
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Figure 2.15: Monomer/excimer-ratios of the fluorescence from coumarin-resorcin[4]arene20  in variable 

concentrations in 0.05M aqueous phosphate buffer (pH=6.8), lexc=284nm. 

(1) coumarin-resorcin[4]arene in the absence of MspA 

(2) coumarin-resorcin[4]arene in the presence of MspA (2.2 x 10-8 M). 

 

It is apparent that the amount of excimer increases in both systems with increasing 

concentration, as this is to be expected. However, the increase proceeds differently in the 

presence and absence of MspA. This can be used to determine the concentration when the 

binding inside and at the outside of MspA is saturated. We are aware that we cannot determine a 

binding constant by using this method, because we are unable to determine the amount of free 

MspA as a function of concentration. Another “unknown” is the stoichiometry of binding. It can 

be expected that coumarin-resorcin[4]arene will be bound in the inside of MspA, because MspA 

features up to 72 negative charges in its interior channel, whereas the channel blocker is eight-

fold positive. However, more than one channel blocker can fit into the MspA-funnel. 

Furthermore, coumarin-resorcin[4]arene may also be bound to the outside of MspA. This might 

be a reason for the observed increase of excimer formation in the presence of MspA. The 
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determination of the saturation concentration for the binding of coumarin-resorcin[4]arene to 

MspA provides a first indication, whether this organic channel blocker could be used. 2.75x10-6 

M, about 100 times higher than the protein concentration can be considered relatively low. 

Therefore, we regard this finding as a proof of principle that organic channel blockers for 

mycobacterial porins can indeed be developed! 
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Figure 2.16: Quotient of the monomer/excimer-ratios as shown in Figure 2.15. 

 

 

Experimental Section   

General methods: 

Solvents (ACS-grade) and inorganic chemicals were purchased from Aldrich and Acros 

Organics. DMF was further purified by azeotropic distillation of DMF/toluene/H2O (85:10:5 

v/v/v), anhydrous and amine-free DMF has been collected when reaching 152oC at the top of a 

20 cm Vigreux-column. All other chemicals and chromatography materials were either 

purchased from Aldrich or Acros Organics and used without further purification. H2O was of 

bidistilled quality. 
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All distillations in vacuum were performed using a Büchi-rotavap equipped with a solvent 

recovery system and pressure control. 

All high-pressure reactions were performed in a PARR-reactor (V=50mL). 

Further instrumentation: 200 and 400 MHz NMR (Varian Gemini 2000 and Unit INOVA 400), 

FT-IR (Nicolet 870), MS: Bruker Esquire 3000, Melting point apparatus ((Fisher) All melting 

points are uncorrected), Carlo Erba Strumentatione (CHN). 

2-Methyl-dodecol 1 was prepared by following a published procedure2. The maximal yield was 

80% (published 78%). 

TBDPS-protected 2-methyl cavitand 5 was prepared by following a published procedure as 

well.2  My maximal yield was 85% (published 87%). 

Compounds 8-12 melted partially under decomposition in the temperature interval between 140-

150oC 

Compounds 1,14-20 underwent decomposition when heated above 300oC without melting. 

 

2-Methyl-dodecol 1 

FT-IR (KBr) (cm-1): 3237, 2950, 2873, 1475, 1347, 1306, 1214, 1107, 1066 
1H NMR (200 MHz, DMSO-d6): 8.62 (8H, s), 7.27 (4H, s), 4.19 (4H, t, J=7.8Hz), 4.1 (4H, s), 

3.44 (8H, t, J=6.7Hz), 2.24 (8H, m), 1.94 (12H, s), 1.35 (8H, m) 
13C NMR (200 MHz, DMSO-d6): 149.11, 124.82, 121.31, 111.61, 60.71, 34.02, 31.31, 30.69, 

29.34, 10.05 

Yield: 55%  

 

2-Methyl Cavitand 2 

46.0g (0.333 mol) of anhydrous potassium carbonate (pre-dried for 24 h at 100oC) was added 

under a nitrogen atmosphere to a solution of 2-methyl-dodecol 1 (20.0 g, 0.0258 mol) in 800ml 

of anhydrous DMSO.  Bromochloromethane (7.5 ml, 0.0113 mol) was added dropwise under a 

nitrogen atmosphere. It is of great importance to stir the mixture rigorously during addition.  The 

reaction mixture was stirred over night and then heated to 50oC in 1h and then kept at that 

temperature for additional 8 h.  Then the mixture was removed from the heating bath. Another 

1.0 mL (0.0015 mol) of bromochloromethane was added after the mixture had cooled to room 

temperature.  After stirring for additional 5 h at room temperature, the mixture was poured into 
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2.4 L of saturated aqueous ammonium chloride and the precipitation was collected by filtration. 

The whitish solid obtained was washed three times with 200 mL of water and then dried under 

normal pressure.  The product was further purified by descending column chromatography using 

silica as stationary phase. After the impurities have been eluted with chloroform/methanol 12:1 

(v/v), the product was obtained employing CHCl3/MeOH 10:1 (v/v). After removal of the 

solvent mixture at reduced pressure the product was obtained as a white powder, yield 17.0 g 

(80%) mp 227oC (dec.). 

FT-IR (KBr) (cm-1): 3406, 2940, 1470, 1306, 1245, 973 
1H NMR (200 MHz, DMSO-d6): 7.43 (4H, s), 5.86 (4H, d, J=7.4Hz), 4.59 (4H, t, J=6.1Hz), 4.43 

(4H, t, J=5.1Hz), 4.19 (4H, d, J=7.4Hz), 3.48 (8H, m), 2.35 (8H, m), 1.88 (12H, s), 1.42 (8H, m) 
13C NMR (200 MHz, DMSO-d6): 152.50, 137.72, 123.65, 119.30, 98.08, 60.51, 40.41, 36.63, 

30.98, 25.57, 10.01 

 

Acetylated 2-methyl cavitand 3 

2-Methyl cavitand 2 (0.72 g, 0.00087 mol) was slowly dissolved in a mixture of 1.0 ml 

anhydrous pyridine and 16 ml acetic anhydride. The reaction mixture was stirred for 5 h and then 

heated to 60oC for additional 12 h. The solvent mixture was removed in high vacuum and the 

crude product purified by descending column chromatography using silica as stationary phase 

and CHCl3/MeOH 96:4 (v/v) as eluent, yield 0.82 g (95%) mp 211oC. 

FT-IR (KBr) (cm-1): 2942, 1726, 1480, 1240, 973 
1H NMR (200 MHz, CDCl3): 6.93 (4H, s), 5.86 (4H, d, J=6.9Hz), 4.82 (4H, t, J=9.1Hz), 4.23 

(4H, d, J= 6.9Hz), 4.15 (8H, t, J=6.5Hz), 2.26 (8H, m), 2.03 (12H, s), 1.95 (12H, s), 1.69 (8H, m) 
13C NMR (200 MHz, CDCl3): 171.29, 153.62, 137.63, 124.42, 117.14, 98.60, 64.32, 36.60, 

27.12, 26.65, 21.01, 10.48 

 

Acetylated 2-bromomethyl cavitand 4 

Acetylated 2-methyl cavitand 3 (0.74 g, 0.00075 mol), NBS (0.58 g, 0.0033 mol) and AIBN 

(20mg) were dissolved in CCl4 and then refluxed under argon for 24h. The reaction mixture was 

stirred for another 12h at room temperature, cooled to 10oC and filtered. The solvent was 

removed in vacuum and the reddish-brown residue was subjected to descending column 

chromatography using silica as stationary phase and EtOAc/n-hexane 1:1 (v/v) as eluent. After 
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removing the solvent in vacuum, the product was obtained as a slightly yellow powder, yield 

1.0g (88%) mp 186oC (dec.). 

FT-IR (KBr) (cm-1): 2942, 1726, 1480, 1240, 973 
1H NMR (200 MHz, CDCl3): 7.09 (4H, s), 6.01 (4H, d, J=6.1Hz), 4.82 (8H, t, J=8.1Hz), 4.55 

(4H, d, J=6.7Hz), 4.39 (8H, s), 4.15 (8H, t, J=6.5Hz), 2.28 (8H, m), 2.05 (12H, s), 1.67 (8H, m) 
13C NMR (200 MHz, CDCl3): 185.25, 153.38, 138.10, 123.67, 118.81, 98.75, 63.03, 41.19, 

37.20, 26.76, 21.79, 10.52 

 

TBDPS-protected 2-methyl cavitand 5 

FT-IR (KBr) (cm-1): 2937, 2863, 1475, 1112, 973, 702, 513 
1H NMR (200 MHz, CDCl3): 7.60 (16H, m), 7.28 (24H, m), 6.91 (4H, s), 5.85 (4H, d, J=6.9Hz), 

4.77 (4H, t, J=8.2Hz), 4.23 (4H, d, J=6.9Hz), 3.66 (8H, t, J=6.4Hz), 2.22 (8H, m), 1.95 (12H, s), 

1.59 (8H, m), 0.99 (36H, s) 
13C NMR (200 MHz, CDCl3): 153.50, 137.94, 135.72, 134.10, 129.72, 127.82, 123.95, 117.61, 

98.65, 63.63, 36.58, 30.80, 27.11, 26.23, 19.43, 10.56 

 

TBDPS-protected 2-bromomethyl cavitand 6 

TBDPS-protected 2-methyl cavitand 5 (6.83 g, 0.00374 mol), NBS (2.93 g, 0.0041 mol) and 

AIBN (20 mg) were dissolved in CCl4 (20 mL) and then refluxed under argon for 24 h. The 

reaction mixture was stirred for another 12h at room temperature, cooled to 10oC and filtered. 

The solvent was removed in vacuum and the reddish-brown residue was purified by descending 

column chromatography using silica as stationary phase and n-hexane/EtOAc 96:4 (v/v) as 

eluent. After removing the solvent in vacuum, the product was obtained as a slightly yellow 

powder, yield 3.30 g (74%) mp 134oC (dec.). 

FT-IR (KBr) (cm-1): 2935, 2858, 1475, 1434, 1265, 1117, 979, 707, 507 
1H NMR (200 MHz, CDCl3): 7.59 (16H, m), 7.30 (24H, m), 7.06 (4H, s), 6.00 (4H, d, J=6.2Hz), 

4.78 (4H, t, J=7.9Hz), 4.54 (4H, d, J=6.2Hz), 4.39 (8H, s), 3.65 (8H, t, J=6.3Hz), 2.22 (8H, m), 

1.56 (8H, m), 0.99 (36H, s) 
13C NMR (200 MHz, CDCl3): 153.78, 138.00, 135.65, 133.88, 129.76, 127.82, 124.84, 120.96, 

99.22, 63.38, 36.37, 30.53, 27.08, 26.73, 26.19, 23.14, 19.38 
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Acetylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand 7 

Acetylated 2-bromomethyl cavitand 4 (0.40 g, 0.00040 mol) and 4,4’-bipyridine (0.376 g, 0.0024 

mol) was dissolved in DMF (6 mL) and kept at 60oC for 3 d. The solvent was removed at normal 

pressure by purging with N2 and collection in a liquid N2 cooled trap. The residue was washed 3 

times with 5 ml of acetone each, then recrystallized from acetone and dried at reduced pressure. 

The product was obtained as a yellow brown powder, yield 0.50 g (85.3%). 

FT-IR (KBr) (cm-1): 3053, 2945, 1736, 1644, 1465, 1250, 958, 978, 815 
1H NMR (200 MHz, DMSO-d6): 9.16 (8H, d, J=6.4Hz), 8.93 (8H, d, J=6.4Hz), 8.62 (8H, d, 

J=6.4Hz), 8.03 (8H, d, J=6.4Hz), 8.00(4H, s), 6.64 (4H, d, J=5Hz), 5.85 (8H, d, J=4Hz), 4.52 

(12H, m), 4.05 (12H, m), 1.93 (12H, s), 1.54 (8H, m) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

Acetylated 2-(4-(4-methylpyridinium)-4-pyridinium)-methyl cavitand 8 

Acetylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand 7 (0.50 g, 0.00026 mol) was 

dissolved in DMF (6 mL), then iodomethane (0.13 ml, 0.00208 mol) was added to the solution.  

The mixture was heated to 40oC under nitrogen for 3 d.  0.10 mL of water was added to the 

mixture before the solvent was removed at normal pressure by purging with N2 and then 

collected in a liquid N2 cooled trap. The residue was washed 3 times with 5 ml of water each and 

recrystallized from 3ml of acetone. It was then dried in vacuum. The product was obtained as a 

dark brown powder, yield 0.61 g (95%). 

FT-IR (KBr) (cm-1): 3052, 2945, 2863, 1726, 1639, 1460, 1245, 979, 830 
1H NMR (200 MHz, DMSO-d6): 9.25 (16H, m), 8.73 (16H, m), 7.94 (4H, s), 6.44 (4H, d, 

J=5Hz), 5.87 (8H, s), 4.60 (8H, m), 4.42 (12H, s), 4.03 (8H, m), 2.60 (8H, m), 1.90 (12H, s), 

1.48 (8H, m) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

Hydroxylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand 9 

Acetylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl ca-vitand 7 (0.30 g, 0.000153 mol) was 

dissolved in 10ml of aqueous NaOH solution (pH=10) and then stirred at 25oC for 5 h.  The 

solution was then neutralized (final pH=7.0) using 4N HCl. The solvent was removed at normal 

pressure by purging with N2 and the residue was washed 3 times with 5ml of acetone each and 
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dried in high vacuum.  Finally, 5 ml of methanol was added to the residue and the mixture was 

stirred for 5 minutes and then filtered. The filtrate was collected and the solvent was removed 

under reduced pressure. The product was obtained as a light brown powder, yield 0.25g (91%). 

FT-IR (KBr) (cm-1): 3272-3626 (br), 1639, 1250, 1153, 1020, 989, 953, 553 
1H NMR (200 MHz, DMSO-d6): d6 9.19 (8H, d, J=7.7Hz), 8.88 (8H, d, J=7.7Hz), 8.65 (8H, d, 

J=7.7Hz), 8.04 (8H, d, J=7.7Hz), 7.46 (4H, m), 7.32 (4H, s), 6.47 (4H, m), 5.90 (4H, m), 4.62 

(8H, m), 4.47 (8H, m), 3.40 (12H, m), 1.38 (8H, m)  

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

Hydroxylated 2-(4-(4-methylpyridinium)-4-pyridinium)-methyl cavitand 10 

Hydroxylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand 9 (0.10 g, 0.000066 mol) was 

dissolved in MeOH (10 mL). Then dimethyl sulfate (41.7 mg, 0.00033 mol) was added and the 

reaction mixture was refluxed for 1d. 0.10 mL of water was added to the mixture before the 

solvent was removed at normal pressure by purging with N2 and the collected in a liquid N2 

cooled trap. The residue was washed 3 times with 5ml of water each and recrystallized from 3ml 

of acetone. It was then dried in vacuum. The product was obtained as a light brown powder, 

yield 0.14g (92%). 

FT-IR (KBr) (cm-1): 3426, 1644, 1112,620 
1H NMR (200 MHz, DMSO-d6): 9.34 (16H, m), 8.83 (16H, m), 8.04 (4H, s), 6.50 (4H, d, 

J=5Hz), 6.00 (8H, d, J=4Hz), 4.63 (12H, m), 4.47 (12H, m), 1.37 (8H, m) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

TBDPS-protected 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand 11 

TBDPS-protected 2-bromomethyl cavitand 6 (1.22 g, 0.00058 mol) and 4,4’bipyridine (0.73 g, 

0.00467 mol) was dissolved in DMF (10 ml) and heated to 60oC under a nitrogen atmosphere for 

5 d. The solvent was removed at normal pressure by purging with N2 and then collected in a 

liquid N2 cooled trap. The residue was washed 3 times with 5ml of acetone each, then 

recrystallized from acetone and dried at reduced pressure. The product was obtained as a red 

brown powder, yield 1.30 g (82.0%). 

FT-IR (KBr) (cm-1): 2923, 2853, 1634, 1460, 1404, 1240, 1148, 1102, 1020, 979, 953, 815, 702, 

610, 502 
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1H NMR (200 MHz, DMSO-d6): 9.14 (8H, d, J=7.7Hz), 8.90 (8H, d, J=7.7Hz), 8.76 (8H, d, 

J=7.7Hz), 8.60 (8H, d, J=7.7Hz), 7.97 (12H, m), 7.87 (4H, d, J=7.4Hz), 7.48 (16H, m), 7.34 

(16H, m), 6.47 (4H, d, J=5Hz), 5.83 (8H, d, J=4Hz), 4.60 (12H, m), 3.66 (8H, m), 1.46 (8H, m), 

0.80 (36H, s) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

Methoxylated 2-Methyl Cavitand 12  

TBDPS-protected 2-methyl cavitand 5 (0.10 g, 0.000055 mol) and methyl iodide (19.5 mg, 

0.000138 mmol) was dissolved in DMF (5 mL) and heated to 50oC under nitrogen atmosphere 

for 2 d.  The excess of methyl iodide was quenched by MeOH. The solvent was removed at 

normal pressure by purging with N2 and then collected in a liquid N2 cooled trap.  The crude 

product was purified by column chromatography (10:1 hexanes:ethyl acetate) to yield cavitand 

12 as a white solid,  yield 11.4 mg (11%).   

FT-IR (KBr) (cm-1): 2950, 2873, 1649, 1475, 1306, 1240, 1157, 1096, 973, 671, 589, 502 
1H NMR (400 MHz, CDCl3): 6.90 (4H, s), 5.87 (4H, d, J=5.7Hz), 4.76 (4H, t, J=4.6Hz), 4.24 

(4H, d, J=4.6Hz), 3.47 (8H, t, J=6.2Hz), 3.34 (12H, s), 2.28 (8H, m), 1.96 (12H, s), 1.63 (8H, m) 
13C NMR (400 MHz, CDCl3): 153.48, 137.93, 124.09, 120.76, 98.65, 76.91, 72.62, 58.60, 36.79, 

28.07, 26.81, 10.46 

 

Acetylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-methyl)pyridinium)-methyl cavitand 13 

A: Sodium metal (20 g, 0.87 mol) was added to freshly distilled 3-picoline (150 ml, 1.54 mol), 

the mixture was heated to 70oC while stirring until sodium completely dissolved.  A gentle air 

stream was directed to the surface of the resulted solution for a week.  The reaction mixture was 

then washed twice with 100 ml hexane and the hexane layer was decanted.  The crude product 

was purified by column chromatography (1:1 hexane : ethylacetate followed by 100% 

ethylacetate) yield 8.5 g (11.6%).  mp 116oC 
1H NMR (200 MHz, CDCl3): 8.56 (2H, s), 8.51 (2H, d, J=7.7Hz), 7.02 (2H, d, J=8.3Hz), 2.07 

(6H, s) 

B: Acetylated 2-bromomethyl cavitand 4 (0.70 g, 0.000535 mol) and 3,3’-dimethyl-4,4’-

bipyridine (0.80 g, 0.00434 mol) was dissolved in DMF (6 mL) and kept at 60oC for 4 d. The 

solvent was removed at normal pressure by purging with N2 and collected in a liquid N2 cooled 
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trap. The residue was washed 3 times with 5ml of acetone each, then recrystallized from acetone 

and dried at reduced pressure. The product was obtained as a darkbrown powder, yield 0.75 g 

(68.2%) mp 98oC. 

FT-IR (KBr) (cm-1): 2935, 1726, 1460, 1465, 1245, 958, 989 
1H NMR (200 MHz, DMSO-d6): 9.15 (4H, s), 8.90 (4H, d, J=6.4Hz), 8.64 (4H, s), 8.56 (4H, d, 

J=8Hz), 8.03 (8H, m), 7.98 (4H, s), 7.28 (4H, d, 8Hz), 6.46 (4H, d, J=6Hz), 5.75 (8H, s), 4.61 

(12H, m), 4.03 (4H, m), 3.43 (4H, m), 2.46 (12H, s), 2.45 (12H, s), 2.14 (12H, s), 1.46 (8H, m) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

Hydroxylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-methyl)pyridinium)-methyl cavitand 14 

Acetylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-methyl)pyridinium)-methyl cavitand 13 (0.20 g, 

0.000098mol) was dissolved in 10ml of aqueous NaOH solution (pH=10) and then stirred at 

25oC for 5 h. The solution was then neutralized (final pH=7.0) using 4N HCl. The solvent was 

removed at normal pressure by purging with N2 and the residue was washed 3 times with 5 ml of 

acetone each and dried in high vacuum. Finally, 5 ml of methanol was added to the residue and 

the mixture was stirred for 5 minutes and then filtered. The filtrate was collected and the solvent 

was removed under reduced pressure. The product was obtained as a light brown powder, yield 

0.15g (98%). 

FT-IR (KBr) (cm-1): 3391, 2976, 2899, 2853, 1614, 1578, 1527, 1501, 1445, 1424, 1337, 1276, 

1204, 1168, 1122, 1035, 1004, 979, 871, 804 
1H NMR (400 MHz, DMSO-d6): 9.28 (4H, m), 8.97 (4H, m), 8.67 (4H, m), 8.58 (4H, m), 8.04 

(4H, m), 7.95 (4H, m), 7.33 (4H, m), 6.45 (4H, m), 5.81 (8H, m), 4.64 (12H, m), 3.49 (12H, m), 

3.42 (12H, m), 2.08 (12H, m), 2.26 (12H, m), 1.42 (8H, m) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

Hydroxylated 2-(4-((4-methyl-(3-methyl)pyridinium)-4-(3-methyl(-pyridinium))))-methyl 

cavitand 15 

Hydroxylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-me-thyl)pyridinium)-methyl cavitand 15 (0.10 

g, 0.000049 mol) was dissolved in MeOH (10 mL). Then dimethyl sulfate (74.7 mg, 0.00024 

mol) was added and the reaction mixture was refluxed for 1d. 0.10 mL of water was added to the 

mixture before the solvent was removed at normal pressure by purging with N2 and collected in a 
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liquid N2 cooled trap. The residue was washed 3 times with 5ml of water each and recrystallized 

from 3 ml of acetone. It was then dried in vacuum. The product was obtained as a light brown 

powder, yield 0.103g (100%). 

FT-IR (KBr) (cm-1): 3406, 3104, 2981, 2909, 1695, 1537, 1419,1342, 1163, 1122, 1035, 994, 

973, 881, 830, 717, 676, 605 
1H NMR (200 MHz, DMSO-d6): 9.36 (4H, s), 9.27 (4H, d), 9.07 (4H, s), 8.92 (4H, d), 8.14 

(8H,m), 7.95 (4H, s), 6.44 (4H, d), 5.75 (8H, d), 4.68 (8H, m), 4.42 (12H, s), 4.16 (16H, m), 3.50 

(12H, s), 2.82 (12H, s), 1.42 (8H, m) 

Concentration in DMSO-d6 too low to record a 13C- NMR within 1d. 

 

7-Aminocoumarin (7-amino-4-methyl-2H-chromen-2-one) 16 

m-Aminophenol (5.0 g, 0.0459 mol) was dissolved in 200 ml of anhydrous THF.  Acetic 

anhydride (4.4 ml, 0.0459 mol) was added to the solution.  The mixture was stirred at room 

temperature for 2 h.  The solvent was then removed at reduced pressure and the residue was 

recrystalized in toluene. N-acetyl-aminophenol was obtained as white needles, yield 6.90 g 

(100%). 

N-acetyl-aminophenol (3.63 g, 0.024 mol) and ethyl acetoacetate (3.74 g, 0.029 mol) were mixed 

with 70% sulfuric acid (58 ml) and the mixture was stirred at room temperature for 6 h. The 

mixture was then poured into 250 ml ice water, allowed to remain at 4oC overnight and filtered. 

The white crystals recovered are the first fraction of the product N-(4-methyl-2-oxo-2H-

chromen-7-yl)acetamide. A second fraction was obtained by extracting the mother liquor 3 times 

with diethyl ether (30 ml each). The diethyl ether layers were combined and the solvent removed 

under reduced pressure. The white solid obtained was combined with the other batch of product, 

yield 2.42 g (45.8%).  N-(4-methyl-2-oxo-2H-chromen-7-yl)acetamide (1.40 g, 0.00645 mol) 

was refluxed in  90% sulfuric acid (10 mL) for 5h. The mixture was then poured into 250 ml ice 

water and allowed to remain at 4oC overnight. The solution was then carefully neutralized using 

50% NaOH.  The white precipitate was filtered and washed with 3ml of ice water and dried at 

normal pressure using N2, yield 1.0 g (88.5%) of the hydrogen sulfate salt of the protonated 

product! 

The latter was dissolved in as little DMF as possible (usually 4 mL). Anhydrous K2CO3 (0.90g) 

was added, which resulted in a suspension. After stirring for 2 h at room temperature, the 
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mixture was cooled to 0oC and then filtered. The solvent of the filtrate was removed at room 

temperature in high vacuum, yield 0.35 g (98%).  

 

3-(4-methyl-2-oxo-2H-chromen-7-yl carbamoyl) propanoic acid 17 

7-amino-4-methyl-2H-chromen-2-one 16 (0.35 g, 0.0020mol) and succinic anhydride (0.20 g, 

0.0020 mol) were dissolved in DMF (5 ml) and stirred at room temperature overnight.  The 

solvent was removed at normal pressure by purging with N2 and collected in a liquid N2 cooled 

trap. The residue was sonicated in ethanol (100%, 20 mL) for 1min and then filtered. A white 

powder was obtained, yield 0.47 g (85.4%) mp 170oC. 

FT-IR (KBr) (cm-1): 3493, 3421, 3308, 2930, 1742, 1711, 1670, 1624, 1583, 1537, 1398, 1363, 

1229, 1178, 871, 815, 717 
1H NMR (200 MHz, DMSO-d6): 10.35 (1H, s), 7.64 (2H, m), 7.40 (1H, d, J=5.9Hz), 6.18 (1H, 

s), 2.49 (4H, m), 2.33 (3H, s) 
13CNMR (200 MHz, DMSO-d6): 173.05, 170.23, 159.37, 153.04, 152.45, 141.89, 125.26, 

114.27, 111.43, 104.63, 30.53, 27.88, 17.29 

 

Hydroxylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand (3-(4-methyl-2-oxo-2H-

chromen-7-yl carba-moyl)propanoic acid)monoester 18 

Hydroxylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand 9 (0.16 g, 0.00011 mol), 3-(4-

methyl-2-oxo-2H-chromen-7-ylcarbamoyl) propanoic acid 17 (0.030 g, 0.11 mmol) and TPP 

(0.0058 g, 0.00022 mol) was dissolved in DMF (5 mL) under a nitrogen atmosphere. DEAD (38 

ul, 0.00022 mmol) was added and the mixture was kept at 60oC for 12 h. The solvent was 

removed at normal pressure by purging with N2 and collected in a liquid N2 cooled trap.  The 

residue was washed 3 times with 5ml of acetone and the recrystallized from acetone. A light 

brown powder was obtained, yield  0.15 g (79.9%). 

FT-IR (KBr) (cm-1): 3631-3308 (br),1745, 1710,  1639, 1460, 1250, 1163, 1112, 984, 958, 820, 

723, 538 
1H NMR (400 MHz, DMSO-d6):  9.17 (8H, m), 8.89 (8H, m), 8.04 (8H, m), 7.90 (8H, m), 7.79 

(3H, m), 7.38 (1H, m), 6.46 (4H, m), 5.88 (8H, m), 4.64 (4H, m), 4.08 (2H, m), 3.62 (6H, m), 

2.40-2.45 (16H, m ), 2.30 (4H, m), 1.4-1.75 (11H, m) 

Concentration in DMSO-d6 too low to record a 1 D 13C- NMR. 
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Hydroxylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-me-thyl)pyridinium)-methyl cavitand (3-(4-

methyl-2-oxo-2H-chromen-7-ylcarba-moyl)propanoic acid)monoester 19 

Hydroxylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-me-thyl)pyridinium)-methyl cavitand 15 (0.18 

g, 0.00011mol), 3-(4-methyl-2-oxo-2H-chromen-7-yl carbamoyl) propanoic acid 17 (0.03 g, 

0.11mmol) and TPP (0.0058 g, 0.00022 mol) were dissolved in DMF (5 mL) under a nitrogen 

atmosphere. DEAD (38 ul, 0.00022 mmol) was added and the mixture was kept at 60oC for 12h. 

The solvent was removed at normal pressure by purging with N2 and collected in a liquid N2 

cooled trap.  The residue was washed 3 times with 5ml of acetone and then recrystallized from 

acetone. A light brown powder was obtained, yield  0.164 g (81%). 

FT-IR (KBr) (cm-1): 3401, 2991, 2899, 1608, 1537, 1501, 1429, 1347, 1286, 1204, 1173, 1127, 

1030, 1000, 979, 886, 804 
1H NMR (400 MHz, DMSO-d6):  9.32 (4H, m), 8.96 (4H, m), 8.65 (4H, m), 8.56 (4H, m), 8.03 

(8H, m), 7.77 (1H, m), 7.64 (1H, m), 7.46 (1H, m), 7.33 (4H, m), 6.53 (4H, m), 6.21 (1H, m), 

5.84 (8H, m), 4.66 (8H, m), 4.39 (4H, m), 4.08 (4H, m), 2.56 (4H, m), 2.38 (3H, m), 2.26 (8H, 

m), 2.07 (24H, m), 1.41 (8H, m) 

Concentration in DMSO-d6 too low to record a 1 D 13C- NMR. 

 

Quaternization procedure with dimethyl sulfate 20 

Hydroxylated 2-(4-(pyridin-4-yl)-4-pyridinium)-methyl cavitand (3-(4-methyl-2-oxo-2H-

chromen-7-yl carba-moyl) propanoic acid)monoester 18 (0.080g, 0.000045mol) and dimethyl 

sulfate (0.028 g, 0.000225 mol) was dissolved in DMF (4 mL) under nitrogen atmosphere and 

heated to 50oC for 1 d. The precipitation was collected, washed with 3ml of acetone for 3 times 

and dried under reduced pressure. A light brown powder was obtained, yield  0.075 g (78%). 

FT-IR (KBr) (cm-1): 3442, 1639, 1189, 1122, 620 
1H NMR (200 MHz, DMSO-d6):  9.26 (16H, m), 8.72 (20H, m), 8.20-7.62 (3H, m), 6.42 (4H, m), 

5.86 (8H, m), 4.60 (12H, m), 4.42 (16H, m), 3.73 (3H, m), 3.31 (4H, m), 2.45-2.48 (11H, m), 

1.44 (8H, m) 

Concentration in DMSO-d6 too low to record a 1 D 13C- NMR. 

 

Quaternization procedure with dimethyl sulfate 21 
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Hydroxylated 2-(4-((3-methyl)-pyridin-4-yl)-4-(3-me-thyl)pyridinium)-methyl cavitand (3-(4-

methyl-2-oxo-2H-chromen-7-ylcarba-moyl)propanoic acid)monoester 19 (0.08 g, 0.00004 mol) 

and dimethyl sulfate (0.025 g, 0.00020 mol) was dissolved in DMF (4 mL) under nitrogen 

atmosphere and heated to 50oC for 1 d. The precipitation was collected, washed with 3ml of 

acetone for 3 times and dried under reduced pressure. A light brown powder was obtained, yield  

0.071 g (75%). 

FT-IR (KBr) (cm-1): 3404, 3063, 2905, 1639, 1475, 1250, 1152, 1060, 1014, 989, 769, 620, 589 
1H NMR (400 MHz, DMSO-d6): 9.28 (4H, m), 9.19 (4H, m), 9.02 (4H, m), 8.90 (4H, m), 8.13 

(8H, m), 8.10 (4H, m), 7.86 (4H, m), 7.51 (4H, m), 6.41 (4H, m), 5.71 (8H, m), 4.64 (8H, m), 

4.51 (4H, m), 4.37 (12H, m), 3.45 (3H, m), 2.73 (12H, m), 2.46 (19H, m), 2.20 (8H, m), 2.12 

(4H, m), 1.99 (4H, m) 

Concentration in DMSO-d6 too low to record a 1D 13C- NMR. 
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CHAPTER 3 - Gold Nanoparticle-binding Resorcin[4]arene 

Cavitand 

Introduction 
 
Expression of MspA Porin Mutants in M. smegmatis 

The discovery of the porin MspA and of three very similar proteins of M. smegmatis has 

been described.xliv,xlv All four msp genes partially or fully complement the permeability defects 

of porin mutants, demonstrating that they encode porins of M. smegmatis.xlvi To achieve a 

preparation of pure MspA protein, all four msp porin genes of M. smegmatis were consecutively 

deleted by the Bossmann group. The strains ML16 ( mspA mspC mspD) and ML59 ( mspA 

mspB mspC mspD, attB:loxP-pimyc-mspA-loxP) allow our group to express mutant MspA 

proteins with little or no background expression of endogeneous porins of M. smegmatis.  

Expression of functional porin genes will be achieved by replacing wild-type mspA by a mutated 

mspA gene by temporarily expressing the L5 recombinase as demonstrated for other genes 

according to a published method.xlvii These strains have been used for extraction and purification 

of over 100 MspA mutants so far.xlviii Expression of correctly folded and fully functional MspA 

pores has been achieved in E. coli and may be used as an alternative expression system.48 

 

Figure 3.1: Expression of MspA mutants in the mutant M. smegmatis ML10. 

A 10% polyacrylamide gel was used to separate proteins in detergent extracts of the following M. smegmatis 

strains: lane 1: ML10/pMN016 (wt MspA), lane 2: ML10/pMS2 (no MspA), lane 3: ML10/pMN016-mspAG44C. 

The plasmids pMN016 and pMS2 are an mspA expression vector and an empty vector, respectively. 
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Purification of MspA from M. smegmatis 

The aforementioned procedure exploits the extreme thermal stability of MspA by heating 

M. smegmatis cells to 100 °C in the presence of 0.5% of the non-ionic detergent n-

octylpolyoxyethylene and yields mainly Msp porins with very little contamination by other 

proteins. Using the ML59 strain or E. coli as a host system can eliminate the presence of a small 

number of other Msp porins. Expression of the mspA gene using the plasmid pMN016 yields 

wild-type levels of MspA in the ML10 strain demonstrating that more than 95% of all 

extractable porin is made from the mspA gene on pMN016 (Figure 3.1, lane 1). The purity of 

MspA, with respect to other proteins, in these detergent extracts is already greater than 85% as 

determined by quantitative image analysis (not shown). MspA mutants are expressed on the 

same level as wild-type MspA as shown for the cysteine mutant MspAG44C (Figure 3.1, lane 3) 

or on lower levels as shown for other cysteine mutants.xlix To remove contaminating minor 

proteins and small molecules, a purification method based on subsequent anion exchange and gel 

filtration chromatography has been developed.l The group of Prof. Dr. Michael Niederweis at the 

University of Alabama at Birmingham, with whom we collaborate, has used the ML10 and 

ML16 strains of M. smegmatis for the isolation of 48 MspA cysteine mutants in detergent 

extracts and for the chromatographic purification of 30 MspA constriction zone mutants with 

yields of up to 750 μg MspA per liter culture of M. smegmatis.44 Their results have shown that 

they have developed an efficient expression and purification system for MspA mutants in 

M. smegmatis. 
 
 
MspA is a Very Stable Pore Protein with a Unique Structure 
 

MspA is an extremely stable membrane protein, which withstands organic solvents, 

heating to 100 °C for 30 min in the presence of detergents or 1 M HCl or NaOH.33a This 

extraordinary stability has many advantages including a long-term durability of the protein (fully 

functional MspA pores have been stored for longer than three years) and the possibility to use 

organic solvents, which is often helpful in technical processes. The unique protein architecture is 

probably one reason for the stability of MspA. The crystal structure of MspA reveals a new all 

beta-fold: eight monomers span the membrane twice and have a very large interaction area to 
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form a central channel.33b The constriction zone has a diameter of 1.0 nm and is defined by two 

rings of aspartates D90 and D91 (Figure 3.2).  

  

 

Figure 3.2: Dimensions of the MspA-homopore33b: yellow (medium gray): hydrophobic aminoacids, green (dark 

gray): hydrophilic aminoacids. The hydrophilic vestibule of MspA is funnel-shaped and has a water-accessible 

volume of approximately 96 nm3 33b
 

 

Preliminary SPR-Measurement of MspA on Gold 

Conventional SPR-measurements monitor the changes in thickness and/or refractive 

index of ultrathin films on noble metal surfaces.50 When an incident beam of p-polarized light (p: 

in plane) of a defined wavelength strikes the surface at a given angle through a prism, photon-

plasmon surface electromagnetic waves (surface plasmon polaritrons) are created at the 

metal(usually Au or Ag)/dielectric interface. The typical film thickness of the metal surface on 

glass is 50nm. These waves propagate parallel to the metal/dielectric interface. Typically, they 

decay exponentially exhibiting a typical decay length (1/e) of approximately 200nm. The 

measurable consequence of the occurrence of surface plasmon polaritrons is a reduced intensity 

of the reflected light under the incident angle . The reflectance R of the incident light is usually 

calculated by using a three-layer Fresnel equation relating p-polarization.li The reflectance varies 

as a function of the dielectric constant ( ) of the sensing layer, which is the square of the 

refractive index n. A typical model for the quantitative interpretation of SPR-data takes into 
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account N absorption oscillators per unit of volume that depend on the concentration of the 

proteins on the metal/dielectric interface. Conventional SPR-biosensors (e.g. the BiaCore 

instrument that will be used in this study) use monochromatic light and vary the distribution of 

the incident angles. The corresponding reflected beams with reduced intensity are detected and 

the SPR angles of reflected light continuously calculated. The change in SPR angle  of 

reflected light at a given incident wavelength can be calculated according to Equation (3.1)50: 

 

( ) = c1 n + c2 d  (3.

1) 

           c1,c2: constants, n: refractive index, d: thickness of the layer 

According to the Lorentz-Lorenz relation, any change in the thickness of the adsorbed protein-layer 

( d) will result in a refractive index change ( n). 

n =
1

6n
(n2 + 2)2

n2 1

n2 + 2

n2w 1

n2w + 2

Vp

V

 

 
 

 

 
 
d

d
 

(3.

2) 

nw: refractive index of water (nw=1.333) 

Vp: volume of the adsorbed protein 

Vw: volume of water in the adsorbed layer 

V=Vp+Vw): volume of the protein layer 

         SPR angles are reported in resonance units (RU). A response of 103 RU corresponds to an 

angle change of 0.1 degree, the typical value for binding 1ng/mm2 of protein. According to 

Equation (3.1), the SPR-angle of the reflected light should vary linearly with increasing thickness 

of the protein layer on the surface if the changes in the refractive index occurring during adsorption 

remain small. We have adsorbed the myco-bacterial porin MspA on a gold-chip (dAu=50 nm) and 

observed the changes in the SPR angles  of reflected light and the corresponding RU-units. It 

becomes immediately clear that the change of  is not monotonous when adsorbing MspA. The 

main reason for this deviation is easily found in the geometric shape of MspA, which is approxi-

mately 9.6 nm in height and 8.6 nm in diameter. However, once a monolayer of MspA on gold is 

formed, the theoretical and the measured angles  intercept, indicating that indeed a monolayer of 

MspA is formed. Corroborating AFM (Atomic-Force-Microscopy) results were obtained in the PI’s 

group, indicating that MspA can act as stable “stand-alone” porin on mica and gold. 
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Figure 3.3: Adsorption of MspA (wt) on gold, measured by SPR (BiaCore 3000). In each step, a tenth of the required 

amount of the cysteine-containing MspA-P97C-mutant to form a monolayer was added. The measurement was 

performed by Dr. Stefan Bossmann at the University of Kansas 

 

(1) Theoretical straight line of the dependence of the SPR reflected angle ( ) on the diameter of the adsorbed 

protein layer, (2) experimentally obtained curve for MspA adsorption 

 
 

 

Localized Surface Plasmon Resonance with Gold Nanoparticles in Solution 

          Despite their high popularity and abundance in laboratories, SPR-based detection methods 

have a major drawback in that their detection limit is approximately 1 nM of a 200kDa protein.52 

Other drawbacks are the relatively high costs of the SPR-chips and that these measurements are 

relatively slow, not allowing their use in clinical high-throughput facilities. 

          Based on the earlier work of P. Englebienne and coworkerslii the Bossmann group has 

revisited the use of gold nanoparticles in SPR-experiments. The PI’s spectral simulations (see 

Figure 3.4) indicate that a higher sensitivity could indeed be achieved when the phenomenon of 

localized surface plasmon resonance (LSPR) is applied.52 The optical extinction E( ) of 

nanoparticles being smaller than the wavelength of the exciting light source, is given by Equation 

(3.3). 

E( )Lt = S( ) + A( )Lt  (3.3) : wavelength, S: scattering, A: absorbance, Lt: optical 

path length 

The particle polarizability ( ) is a function of the effective complex dielectric constants of the 



 58

metal nanoparticle m and the medium 0. The optical extinction cross-section CE( ) for a single 

( ) = fm
m 0

m + 0

 

 
 

 

 
  

(3.4) fm: volume fraction of the metal in the mixture, : 

geometric factor (  =2 for spheres) 

nanoparticle is related to the particle polarizability ( ) via its absorbance and scattering cross 

sections, as expressed in Equation (3.5). 

CE( ) = ki ( ) +
k 4

6
( )

2
 

(3.5) 
k =

2 r 0
, r: particle radius 

Finally, the transmittance T follows from the extinction cross section CE( ) by means of Equation 

(3.6).  

T = e
NCE( )Lt

 
(3.6) N: number density of particles 

Noble metal nanoparticles are especially attractive for SPR-measurements in solution because the 

real part m
'  of the complex dielectric constant m  decreases monotonically with  in the visible 

range of the spectrum, whereas the imaginary part m
''  is small and first-order independent on . 

Hence, CE( ) will become very large when the sum of m  and K 0 approaches zero when the LSPR 

of the metal nanoparticles is approached.  

m = m
p
2

( + i )
= m

'
+ i m

''
 

(3.7) m : contribution from bound electrons 

p : plasmon frequency 

: damping frequency 

:  angular frequency of the incident light 

By solving Equation 3.3-3.7, we were able to simulate the wavelength changes of the LSPR of 

50nm gold nanoparticles in dependence to the refractive index at the metal/dielectric interface. As it 

becomes apparent from Figure 3.4, any minuscule change in the dielectric constant/refractive index 

( n0 = 0 ) results in a discernible shift of the LSPR! According to this model, a red-shift of 

approximately 0.5nm occurs for every 0.01 unit increment in n. 
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Figure 3.4: Simulated absorption spectra of 50nm spherical gold nanoparticles in aqueous solution, simulated 

according to eqn. (3.3) - (3.7). The two arrows mark the regions of the spectrum where pseudo-linear dependencies 

of the optical absorption (A) from the refractive index of the metal/dielectric interface can be discerned. These 

wavelengths (  = 516nm and 523 nm) are especially suitable for a simple detection setup by monitoring the 

absorption of one wavelength. This simulation was performed by Dr. Stefan Bossmann. 

 

It is noteworthy that LSPR-detection does not only work by using gold nanoparticles of 50nm in 

diameter, but with virtually any size between 20 nm and 100 nm. Since the LSPR-maxima are a 

linear function of the diameters of gold nanoparticlesliii, several measurements can be performed in 

the same cuvette/vial by attaching one specific antibody or antibody-fragment to one particular size 

of nanogold. The major drawback of using monoclonal antibodies or antibody-fragments 

chemically linked to gold- nanoparticles is their lack in long-term stability.liv This effect causes 

relatively fast changes of n at the metal-/dielectric(antibody) – interface, which can be the source of 

many artifacts. We anticipate that the solution to this problem will be the use of MspA-scFv-

fragment fusion proteins at the metal/dielectric - interface. Due to the stability of MspA, we expect 

the chemisorbed layer of fusion proteins to be very long-term stable. 
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Synthesis of Resorcin[4]arenes Designed for the Binding on Gold 
 

OO

OH

CH3

4

HS
OH

O OO

O

CH3

4

SH

O

-

DCC

4

4

DCU4

CHCl3

2 22  

Scheme 3.1 

The product of this reaction is very air sensitive.  After work up procedure and one quick 

column chromatography, most of the product was lost.  The remaining material couldn’t afford 

further purification in air.  Therefore, only impure cavitand products mixed with DCC and DCU 

was obtained.  The 1HNMR of the product possess typical pattern of resorcin[4]arene cavitands 

and it’s featured peaks have different chemical shifts from starting material 2.  Also, the 

product’s room temperature solubility in CDCl3 is very different from the starting material 2.  

Combining the information from the NMR spectra and the result of gold nanoparticle binding 

studies, I propose that 22 was one of the products, possibly mixed with some tris-functionalized 

cavitand. 

Binding of the Tetra-thiol-substituted Resorcin[4]arene to the Surface of Gold-Nanoparticles. 
 
A) Plasmon Absorption 
 
I have attempted to verify the photophysical behavior of gold nanoparticles that is 

described by equations 3.1-3.7 with the following sequence of experiments: Gold nanoparticles 

(a precious gift from NanoScale Materials Inc.) possessing a spherical shape and a diameter of 

47+/-5 nm underwent ligand exchange in toluene. This process is thermodynamically favored 

due to the formation of four thiol-gold bonds per resorcin[4]arene. The binding enthalpy of 4 x -

5 to -6 kcal mol-1, which is typical for the binding of alkanethiols to goldlv, is sufficient to 

displace the organic coating used (undisclosed information) for the stabilization of the gold 

nanoparticles. As it becomes clear from Figure 3.5, the process of ligand exchange did not lead 

to a significant change in the diameter of the gold nanoparticles, otherwise the observed 

plasmon-absorption spectrum would have indicated that. The maximum of the plasmon 

absorption of the gold nanoparticle in the absence of the tetra-thiol-substituted resorcin[4]arene 
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is 508 nm. It then moves stepwise to approximately 510, 512, 513 and 515 nm upon addition of 

four aliquots of thiol-footed resorcin[4]arene. It is noteworthy that the concentration of gold 

nanoparticles in toluene is 3.85 x 10-10 M ( =7.8 x 109 at 508nm, according to NanoScale) and 

the concentrations of thiol-footed resorcin[4]arene are 0.5 x 10-7 M, 1.0 x 10-7 M. 1.5 x 10-7 M 

and 2.0 x 10-7 M. The spherical gold nanoparticles feature a surface of approximately 6940 nm2, 

whereas the effective surface of the thiol-footed resorcin[4]arene is approximately 3.25 nm2, 

according to molecular modeling (MM2, PM3). According to these approximations, the 

maximum number of bonded thiol-footed resorcin[4]arene macrocycles at the surface of one 

gold nanoparticle is 2125. These measurements show that the measurement concept relying on 

the surface plasmon of a nanoparticle instead of an ultraflat surface, as discussed in this chapter 

is valid. We have found at least a qualitative agreement of the measurements reported here and 

the predicted absorption behavior of the surface-plasmon of a gold nanoparticle. Note that 

increasing the resorcinarene’s concentration to 2.5 x 10-7 M did not lead to a discernible change 

of the UV/Vis-spectrum. Therefore, we have concluded that at that concentration no further 

surface coating occurs. However, our measurements did not allow us to conclude, whether the 

surface coverage was complete or not. TEM (Transmission electron microscopy) imaging did not 

lead to a conclusive result either because of problems with the sample preparation. Our TEM 

samples indicated that clustering and/or coagulation of the samples. However, from the 

comparison of the maximal number of resorcinarenes at the surface of the gold nanoparticles and 

the concentration added in this experiment, it appears that the number of surface-bound organic 

ligands is approximately 4 times less than a perfect surface coverage. 

Note that addition of thiol-footed resorcin[4]arene beyond c = 2.5 x 10-7 M led to the 

precipitation of the coated gold nanoparticles.  
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Figure 3.5: Absorption spectra of gold nanoparticles (d=47+/-5 nm, c=3.85 x 10-10 M) in toluene (black curve) and 

upon addition of thiol-footed resorcin[4] arene. The concentration of the macrocycle were 0.5 x 10-7 M (red 

curve), 1.0 x 10-7 M (light blue curve), 1.5 x 10-7 M (blue curve), 2.0 x 10-7 M (dark blue curve) and 2.5 x 10-7 M 

(grey curve). 

 

 
B) Plasmon Emission 
 
After a qualitative agreement of the light absorption and scattering theory and my 

experiments had been achieved, we have investigated the emission behavior of the assemblies of 

the gold nanoparticles and the thiol-footed resorcin[4]arene in toluene.  

I would like to thank Mrs. Thilani N. Samarakoon for her help concerning the 

fluorescence measurements. The emission of the thiol-footed resorcin[4]arene has a maximum of 

320±3nm and is most likely an monomer-peak occurring from one of the four neighboring and 

chemically linked benzene units of the macrocycle.lvi 
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Figure 3.6: Emission spectra of gold nanoparticles (d=47+/-5 nm, c=3.85 x 10-10 M) in toluene (black curve) and upon 

addition of thiol-footed resorcin[4] arene. The concentration of the macrocycle were 0.5 x 10-7 M (red curve), 1.0 x 10-7 

M (light blue curve), 1.5 x 10-7 M (blue curve), 2.0 x 10-7 M and (dark blue curve). 

Note that the strong peak at 560 nm is an artifact due to excitation at  =280 nm. 
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Figure 3.7: Emission spectra of gold nanoparticles (d=47+/-5 nm, c=3.85 x 10-10 M) in toluene (black curve) and upon 

addition of thiol-footed resorcin[4] arene. The concentration of the macrocycle were 0.5 x 10-7 M (red curve), 1.0 x 10-7 

M (light blue curve), 1.5 x 10-7 M (blue curve) and 2.0 x 10-7 M (dark blue curve). 

Note that the strong peak at 560 nm is an artifact due to excitation at  =280 nm. 

 

 
It is most interesting that the fluorescence occurring from the surface plasmon of the gold 

nanoparticle is enhanced with increasing concentration of the thiol-footed resorcin[4]arene. 

Since the excitation wavelength is  =280 nm, it is our mechanistic hypothesis that the 

photoexcited resorcin[4]arene is able to transfer its electronic excitation to the chemically 

attached gold nanoparticle. The higher the surface coverage, the higher the resulting emission 

from the surface plasmon. The increase of the fluorescence is leveling off at a resorcinareme-

concentration of 2.0 x 10-7 M. This is the same threshold that was observed in the Vis-absorption 

experiment. Apparently, this method is more sensitive than studying the VIS-absorption of the 

surface plasmon! 

Addition of Hexachlorobenzene 

Further proof for this measurement concept has been obtained by adding defined amounts 

of hexachlorobenzene to the toluene-solution containing 3.85 x 10-10 M mol gold nanoparticles 

and  2.0 x 10-7 M of thiol-footed resorcin[4|arene. As Figure 3.8 indicates, the thiol-footed 

resorcin[4]arene is able to bind one hexachlorobenzene-molecule per macrocycle when in the 

vase conformation. The latter is ensured by the simultaneous binding of the four thiol-units to the 

gold surface. Note that the surface of the gold-nanoparticle (d = 47 +/-5 nm) appears quite flat 

with respect to the resorcin[4]arene (d=1.18 nm). 
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Figure 3.8: Supramolecular complex between the thio-footed resorcin[4]arene and hexachlorobenzene. I constrained the 

macrocycle  in the “vase”-conformation to simulate the binding of the four “thiol-feet” on a gold surface. 

 

 

 
 
Figure 3.9 and 3.10 indicate that again a characteristic red-shift of the emission occurring 

from the surface plasmon is observed. It is our hypothesis that the toluene solvent molecule that 

is usually bound within the cavity of the resorcinarene-macrocycle is replaced by the more 

hydrophobic and electron-poor hexachlorobenzene. This causes a change in the refractive index 

of the resorcinarene-layer that is chemically attached to the surface of the gold nanoparticle. 

Consequently, the emission maximum shifts from 618 to 632 nm. Once a hexachlorobenzene-

concentration of 4 x 10-7 M is reached, no more changes of the emission maximum can be 

observed. However, the emission peak decreases due to parasitic absorption of the incident light 

at the excitation wavelength by hexachlorobenzene. 
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Figure 3.9: Plasmon-emission occurring from thiol-feet-resorcin[4]arene-covered gold nanoparticles. 

exc=280 nm 

[Au-nanoparticles]: 

3.85 x 10-10 M 

[resorcinarene]: 

2.0 x 10-7 M 

the HCB (hexachlorobenzene) concentration was varied from 1 x 10-7 M to 1 x 10-6 M 
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Figure 3.10: Enlargement of Figure 3.5. 

 

 
I would like to emphasize again that we regard these measurements as a proof of concept 

for utilizing the emission of gold nanoparticles in chemical sensors after covering their surface 

with thiol-footed resorcin[4]arenes. 

 

Experimental Session: 

Synthesis of 2,20:3,19-Dimetheno-1H,21H,23H,25H-bis[1,3]dioxocino[5,4-i:5',4'-

i']benzo[1,2-d:5,4-d']bis[1,3]benzodioxocin-1,21,23,25-tetra(propyl 2-mercaptoacetate), 

7,11,15,28-tetramethyl 22 

A: Sodium-2-mercaptoacetate (1.0 g, 0.0087 mol) was suspended in 50 ml of diethyl 

ether. Then, 10 mL of 1N HCl was added and the two-phase mixture shaken for one minute. The 

diethyl ether phase was dried by using molecular sieves and then the ether was removed in 

medium vacuum using a rotavap. 2-mercaptoacetic acid (0.66 g, 82%) was obtained as product. 

B: 2,20:3,19-Dimetheno-1H,21H,23H,25H-bis[1,3]dioxocino[5,4-i:5',4'-i']benzo[1,2-

d:5,4-d']bis[1,3]benzodioxocin-1,21,23,25-tetrapropanol, 7,11,15,28-tetramethyl (1.0 g, 1.21 

mmol) and 2-mercaptoacetic acid (0.56 g, 6.06 mmol) were dissolved in 100ml anhydrous 
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chloroform at 60oC.  Solid DCC (dicyclohexyl-carbodiimide) (1.25 g, 6.05 mmol) was added to 

the mixture.  The mixture was refluxed under nitrogen over night. A white solid was formed on 

top of the CHCl3. The solution was allowed to cool to room temperature and the white solid 

(dicyclohexylurea, DCU) was filtered off.  The solvent was removed under reduced pressure and 

the brownish residue was washed in 10ml of hexane for 3 times.  Column chromatography with 

CH2Cl2 yielded a yellow powder as product.  Yield:  (0.01g, <0.92%) 
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CHAPTER 4 - Towards an Organic Reduction Catalyst Based on a 

Resorcin[4]arene Featuring Four Viologene Units 

Introduction 

Resorcinarenes have been very successfully used to bind small moleculeslvii,lviii to create 

capsuleslix, hemicarcerands16,lx and carcerands14,60,78 in order to entrap and deliver larger 

molecules (e.g. drugs)lxi,lxii, and to study organic reactions in confined space and a very 

controlled reaction environment.14 The work described here is directed towards the design of an 

organic reduction catalyst for chlorinated aliphatic and aromatic hydrocarbons. It is well known 

that oligochlorinated hydrocarbons, such as the insecticide DDTlxiii and hexachlorobenzene 

(HCB)lxiv and oligochlorinated dibenzodioxins and dibenzofuranslxv, which are formed during 

from pyrolysis or incomplete incineration of chlorine-containing wastelxvi, are a major 

environmental problem. This is also true for chlorinated warfare agents, such as “Agent Orange”, 

which was used in the Vietnam War as deleafing agent and contains very high amounts of 

polychlorinated biphenyls (approx. 10%) and traces of chlorinated dibenzodioxins.lxvii Their 

reduction to “simple” aliphatic and aromatic hydrocarbons or at least the partial removal of the 

organically bound chlorine atoms would greatly diminish their environmental impact. On a 

technical scale, this is achieved by their reaction with elementary (molten) sodium.lxviii However, 

this technology cannot be regarded as safe due to the great fire and explosion risks of liquid 

sodium. Therefore, organic reduction catalysts, which can be coupled with reductive redox-

processes, would be of an enormous advantage. They would operate much safer (due to the 

absence of chemical reduction reagents) and would rely on electrodes to supply the electrons 

needed for the reduction processes. A major challenge is to design organic reduction catalysts 

that are capable of multi-electron reduction processes. Another challenge is to realize sufficiently 

negative standard-reaction potentials in order to reductively attack the stable carbon-chlorine 

bonds. Depending on the chlorinated molecule, standard-reaction potentials lower than -2.0 V 

(vs. SHE) (standard hydrogen electrode) should be accomplished.lxix 

Results and Discussion 

I have already described the synthesis of methylene-bridged resorcin[4]arenes featuring 

4,4’-bipyridinium or 3,3’-dimethyl-4,4’-bipyridinium units, chemically linked to the “rim” of the 

cavitand.lxx Both cavitands have been employed in the studies described in this chapter as well. 
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As it is apparent from Figure 4.1, the charge-repulsion between the four bipyridinium 

units, which are connected to methylene-groups permitting them relatively unhindered rotation, 

causes a flower-like opening of the resorcin[4]arenes’ rims (kite-conformation57). When reduced, 

it can be expected that the electrostatic repulsion first diminishes (+8 -> +4) and the disappears 

(+4 -> 0), causing the macrocycle to adopt different conformations. Doubly reduced viologens 

are not charged and, therefore, hydrophobic in nature. They can form supramolecular aggregates 

by hydrophobic interaction. For example, Willner and coworkers have shown that they can be 

bound in the hydrophobic interior of beta-cyclodextrines.lxxi,lxxii Therefore, we have anticipated 

before starting this work that the doubly-reduced bipyridinium-modified methylene-bridged 

resorcin[4]arenes will form deep cavitands57 for uncharged halogenated componds. Furthermore, 

we expect that electron-transfer from the singly- or doubly-reduced viologens to the chlorinated 

compoundslxxiii will take place inside such a deep cavitand. 

The (3,3’-dimethyl)-4,4’-bipyridinium units are very suitable electron-relays, which can 

be reduced stepwise to viologen-monoradical cations and then to the uncharged viologen 

diradicals.lxxiv Their highly negative redox potentials allow them to reduce and detoxify 

chlorinated toxic hydrocarbons, such as tetrachlorocarbon, tetrachloroethylenelxxv and 

hexachlorobenzene.69 Viologens are widely used as electron relays in artificial photolysis, 

because they are very stable in the absence of metal catalysts.74 

In Figure 4.1 to 4.4, the two resorcin[4]arenes used in this study and their main-

conformations in the unreduced (+8)-state are shown. It is apparent that the charge-repulsion 

between the bipyridinium (viologen) groups is causing the macrocycle to adopt the kite 

formation, in which the four viologen-petals open like a flower. 
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Figure 4.1: Redox-active viologen-resorcin[4]arene (left) and dimethylviologen-resorcin[4]arene (right). 

 

The electrochemical properties of the viologen-resorcin[4]arene and dimethyl-viologen-

resorcin[4]arene have been investigated by using the electrochemical method of Differential-

Pulse-Voltammetry (DPV). 

 

Differential pulse voltammetry is working as followslxxvi: A series of voltage pulses 

(duration: 1-500 milliseconds) is superimposed on a potential linear sweep or “stair steps”’ in 

which the potential is raised in (many) steps. The current is measured before each potential 

change (at the end of the plateau/just before the potential is raised), and the current difference is 

plotted as a function of the applied potential. This strategy has the enormous advantage that the 
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effect of the charging current can be decreased and the measurements are not clouded by this 

effect! Another advantage is that also non-reversible redox transitions can be discerned. The 

results obtained with the viologen-resorcin[4]arene in anhydrous acetonitrile (electrolyte: LiF) 

are shown in Figure 4.2:  
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Figure 4.2: DPV of viologen-resorcin[4]arene (1.0 x 10-6M) in anhydrous acetonitrile (0.50M of LiF) 

under argon. (scan time: 2 min, step-width: 50 microseconds, working electrode: Pt). Shown are two 

consecutive scans. Ferrocene (E0=0.51) vs. SCE (saturated calomel electrode) has been used as internal 

redox standard. 

 

At standard conditions, the potential of the saturated calomel electrode is +0.241 V 

versus the SHE. At our concentrations, and using ferrocene as standard we have determined the 

electrochemical potential of the reference electrode to +0.058V. All electrochemical potentials 

are given vs. SHE. 

As Figure 4.2 shows, there are two major reduction waves when studying viologen-

resorcin[4]arene. We have attributed the two big reductive peaks (4 electrons each) to the first 

and second reduction wave of the four viologen-units that are covalently attached to the 
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resorcin[4]arene. In the first wave, occurring at - 0.16 V, the monoradical-cation of each 

viologen is created. The observed reduction potential less negative than that of methylviologen (-

0.45 V).74 This shift could be caused by the presence of four viologens that are chemically 

attached to the resorcin[4]arene, which leads to a tremendous increase of the local concentration. 

According to the classic Nernst equation, we observe a shift towards a higher electrochemical 

potential, if the concentration of the electron acceptor (Ox) is enhanced. 

 

E = E 0
RT

nF
ln

cRed
cOx  

(4.1) 

 

E0: Standard electrode potential; R: universal gas constant (8.314510 J K-1 mol-1); 

T: absolute temperature. (TK = 273.15 + T°C.), c(): concentrations of the reduced (Red) 

and the oxidized (Ox) species that form the redox couple (Ox/Red); F: Faraday constant (9.6485 

 104 C mol-1); n: number of electrons transferred in the electrochemical reaction. 

 

In the second wave, the viologen-diradical, which is neutral, is formed at -1.71 V. The 

difference of approximately 1.55 V between the monocation-radical and the double-reduced 

viologen is typical for many viologen systems that originate from 4,4´-bipyridinium.74 At 

approximately -1.24 V and  -1.41 V, two one-electron transitions could be detected, which we 

attribute to reductive events in the resorcin[4]arene’s ring structure. 
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Figure 4.3: DPV of dimethyl-viologen-resorcin[4]arene (1.0 x 10-6M) in anhydrous acetonitrile (0.50M 

of LiF) under argon. (scan time: 2 min, step-width: 50 microseconds), shown are two consecutive. 

Ferrocene (E0=0.51) vs. SCE (saturated calomel electrode) has been used as internal redox standard. 

 

As Figure 4.3 summarizes, we have found two major reduction waves of 

dimethylviologen-resorcin[4]arene as well (4 electrons for the first wave, 1 plus 3 electrons for 

the second wave). They arise from the first and second reduction wave of the four 

dimethylviologen-units that are covalently attached to the resorcin[4]arene. In the first wave, 

occurring at - 0.40 V, the monoradical-cation of each dimethylviologen is created. Also in this 

case, the observed reduction potential is less negative than that of 3,3’-dimethylmethylviologen 

(-0.79 V).74 

 

The second peak splits in two peaks at  -1.75 (1 electron) and at -1.97 (3 electrons). From 

semiempirical calculations (PM3), we have obtained some evidence for the most stable 

conformation (see below) which would corroborate this result. Again, the potential difference 

between the monocation radical and the double-reduced viologen is approximately 1.5V, as it is 

typical for viologens. 
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The newly synthesized (dimethyl)viologen-resorcin[4]arenes possess very suitable 

electrochemical reduction potential, which should enable them to reduce a variety of halogenated 

aliphatic and aromatic hydrocarbons. 

Unfortunately, a fraction of the (dimethyl)viologen-resorcin[4]arenas decomposed or 

polymerized on the platinum working electrode. Therefore, I could not perform long-term 

electrolyses in combination with the GC- or HPLC-analysis of the products formed. The 

optimization of the redox electrode is a major challenge and a task for one of the new graduate 

students coming to the research group of my advisor. 

 

Semiempirical Calculations (PM3) 

I have used the semi-empirical method PM3lxxvii to visualize the change in conformation, 

which is expected to occur during the stepwise reduction of the resorcin[4]arene. The results are 

summarized in Figure 4.4.  

In the first row, the resorcinarenes possessing four chemically linked mono-radical cation 

viologens (total charge: +4) are shown, in the second row the completely reduced macrocycles. 

A stepwise folding from the kite-conformation (see Figure 4.4) to a “semi-kite/semi-vase”-

conformation can be discerned: the mono-reduced viologen-units are alternating “in” and “out”. 

Interestingly, both completely reduced macrocycles do not form a “vase” as most stable 

conformer. Furthermore, three completely reduced viologens are oriented “inside”, whereas one 

group remains to be directed to the “outside”. This finding is somewhat surprising, because one 

would have expected57 that a completely reduced macrocycle would form an undistorted “vase”-

conformer. Obviously, these calculations were performed at zero K and not with the most 

sophisticated software, However, PM3 calculations are known to get the principal structures 

right.77 That’s why they are used as a relatively fast calculation method in our laboratories. For 

the case of the completely reduced dimethyl-viologen-resorcin[4[arene, our findings from PM3 

are supported by the electrochemical results. A one to three integration of the last reduction step 

is observed. This electrochemical behavior that I have observed could originate from a main 

conformer that is not symmetrical. However, further calculations and experiments will have to be 

done before a) the electrochemical behavior of these systems is completely understood and b) an 

efficient electrocatalytic system for the reductive dehalogenation of organic compounds is 

available. 
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Figure 4.4: PM3-calculations of the most stable conformations of viologen-resorcin[4]arene (left) and 

dimethyl-viologen-resorcin[4]arene (right). 

first row: macrocycles possessing a total charge of plus four 

second row: macrocycles possessing a total charge of zero 
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CHAPTER 5 - DNA-intercalating Heterocyclic Resorcin[4]arene 

Cavitands 

Introduction 

The use of resorcin[4]areness57,58, hemicarcerands16,60 and carcerands14,lxxviii as drug-

containers59 and drug-release systems61,62 has been studied extensively. The resulting 

supramolecular complexes of proven drugs and other small molecular weight components with 

these macrocyclic structures, as well as co-crystals of resorcin[4]arenes and these molecules are 

under intense investigation. Carcerplexes (the complexes of small molecules within carcerands) 

are often extremely stable and, therefore, their release is extremely slow.lxxix It is noteworthy that 

the use of resorcin[4]arenes as anticancer drugs has not been attempted to date, to my best 

knowledge. At a first glance, this might not be surprising, since most of the resorcin[4]arenes are 

symmetric (when neglecting their various conformations)57 and do not possess specific sites for 

binding to metabolic enzymeslxxx, transmembrane channelslxxxi, or  specific DNA-sequences.lxxxii 

When looking at DNA-binding drugs, there are numerous examples that bind to DNA and block 

the activity of various enzymes, such as DNA-polymerase, DNA-ligase and the topoisomerases I 

and II.lxxxiii,lxxxiv For instance, doxorubicin, that is prescribed against numerous cancers including 

lymphoma and breast cancerlxxxv, binds to the DNA and blocks the DNA function by DNA drug 

binding interactions. DNA topoisomerase II is the primary target of Doxorubicin molecules. 

Topoisomerase II is an enzyme in human cells, which unwinds DNA for transcription. 

According to the generally accepted mechanism, doxorubicin forms a DNA-enzyme-drug 

complex which restrains the enzyme and, therefore, the unwinding process of DNA.lxxxvi The 

cell-division cycle (CDC), in eukaryotic cells consists of four distinct phaseslxxxvii: G1 phase, S 

phase, G2 phase (collectively known as interphase) and M phase. During G1 (growth phase 1) 

the cell creates organelles and begins its metabolism, during the S-phase, DNA-synthesis and 

copying of the chromosomes is completed and during G2 (growth phase 2) the cell grows in 

preparation for cell division). The M phase is itself composed of two tightly coupled processes: 

mitosis, in which the cell's chromosomes are divided between the two daughter cells, and 

cytokinesis, in which the cell's cytoplasm physically divides. Stopping the DNA replication leads 
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to apoptosislxxxviii (programmed cell death), because the cell cannot leave the S-phase of the cell 

division cycle and, therefore, enters a cascade of termination events (e.g. caspase activaton96). 

 It was my approach to modify water-soluble resorcin[4]arenes with DNA-

intercalating heterocyclic units and probe their DNA-binding properties. Starting from three-fold 

bridged resorcinarenes, I have selected two DNA-intercalating aromatic heterocycles (pyrazine 

and quinoxaline) as forth bridge. Quinoxaline-antibiotics are known to bind to DNA via 

intercalation of the electron-poor heterocycle between two DNA-base pairs.lxxxix,xc,xci It is our 

hypothesis that intercalation or surface binding of the heterocycles will sterically impede the 

attack of DNA-maintaining enzymes due to the presence of the attached resorcinarenes. The aim 

of our research was to provide the proof-of-principle. The first steps of this endeavor consists in 

establishing evidence that the unsymmetrical resorcin[4]arenes are indeed capable of binding to 

B-DNA via intercalation.  I do not claim that the macrocyles reported here are suitable for any 

animal testing in the near future. However, we regard this finding as a stepping-stone towards 

new drug developments.  

Results and Discussion 

Calf-Thymus (CT) DNA has been used in our binding experiments, because it is a model 

for B-DNA, because of its almost statistical distribution of AT- and CG-base pairs. Most of the 

natural DNA (in the absence of protein or RNA-binding) has the structure of B-DNA, which 

possesses a more elongated double-helix than A-DNA, well accessible major groove and a rather 

narrow, but hydrated minor groove. In fact, hydration of the DNA’s minor groove appears to be 

a major factor in thermodynamically stabilizing B-DNA.  Its desoxyribose-sugars pucker C2’-

endo, the AT- and CG-base pairs are almost perpendicular to the helix axis.xcii Therefore, 

intercalative binding, which consists of a complete or partial insertion of a usually aromatic 

molecule between two DNA-base pairs, is favored to B-DNA, compared to A- and Z-DNA. 
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Table 5.1: Structural Features of A-, B-, and Z-DNA102 (quoted from ref. 93) 

 A B Z 

Helix sense Right 

handed 

Right-

handed 

Left handed 

Repeating 

unit 

1 bp 1bp 2 bp 

 

Rotation/bp 
33.6° 35.9° 60°/2 

 

Mean 

bp/turn 

10.7 10.0 12 

Inclination of 

bp to axis 
+19° -1.2° -9° 

Rise/bp 

along axis 
2.3Å 3.32Å 3.8Å 

Pitch/turn of 

helix 
24.6Å 33.2Å 45.6Å 

Mean 

propeller twist 
+18° +16° 0° 

Glycosyl 

angle 
anti anti C: anti, G: 

syn 

Sugar 

pucker 
C3'-endo C2'-endo C: C2'-endo, 

G: C2'-exo 

Diameter 
26Å 20Å 18Å 
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Figure 5.1: Occurrence of Major and Minor Grooves in the structure of B-DNA: Both base pairs feature 

three potential hydrogen binding sites in the Major Groove areas, whereas only two hydrogen binding sites are 

available in the Minor Groove. 

 

 

Figure 5.2: Major and Minor Groove in B-DNA. The model was generously provided by the Prof. Dr. 

Jacqueline K. Barton, California Institute of Technology. 

 

DNA-Binding 

Intercalation requires that the DNA open the space required between two base-pairs by 

partial unwinding. This opening is a dynamical process, which has to occur within the time-

frame of the DNA-motion. Depolarized dynamic light scattering measurements of DNA [CG]6-
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dodecamcers have shown that the time constant for the rotational motion of such oligomers is in 

the nanosecond range.xciii Extrapolation of these measurements to B-DNA, possessing a length of 

approximately 10,000 bpxciv, leads to a window region between 50 ns and 100 ns for the expected 

time constant for the rotational motion of this bigger macromolecule, depending on the chemical 

composition (AT vs. CG) and the temperature. The degree of unwinding is typically a function 

of the intercalator. Unwinding creates a maximum extra space of approximately 0.34 nm 3.4 (Å).  

The mechanism of intercalation was first proposed by L. Lerman in 1961.xcv,xcvi 

Besides intercalation, surface binding is the second mode of binding to DNA. It is 

comparable to the binding of many molecules to other microstructures, which do not permit 

binding via intercalation. In many cases, binding to microstructures involves electrostatic 

attractions, since DNA is a negatively charged polyelectrolyte (two negative charges per base 

pairs). Since the resorcin[4]arenes do not possess any charges, hydrophobic and dipole-dipole 

interactions, as well as hydrogen-bonding to the resorcin[4]arene’s pendant groups (feet), which 

possess hydroxy-functions, are most likely the driving forces of the binding of the 

resorcin[4]arenes to B-DNA surface. 

    

Synthesis 

The synthesis of a tetrabridged symmetrical resorcin[4]arene featuring methyl-, ethyl- 

and pyridine-dicarboxylic ester-bridged pendent groups have been described in the 

literature.xcvii,xcviii,xcix The presence of hydroxy- groups at the “feet” must be regarded as a 

complication, because it can be deprotonated as well and react as nucleophile, which is able to 

attack the electron-deficient cis-dichloro-pyrazine and – quinoxaline. I was able to optimize the 

amount of base (potassium carbonate) added. Under optimized conditions, the phenolic groups, 

which are far more acidic than the aliphatic hydroxyl groupsc, react preferentially. 
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Scheme 5.1 

UV/Vis-Absorption of 25 and 26  

In Figure 5.3, the absorption spectra of 25 and 26 (c= 4.76 x 10-5 M) are shown. One can 

discern the presence of one n- *-transition for each electron-poor aromatic heterocycle. 

According to the literature, these n- *-transitions are of a special importance, because they 

facilitate a very rapid intersystem crossing from the excited singlet to the lowest triplet state.ci 

Therefore, the major fraction of the luminescence occurring from pyrazine and quinoxaline is 

phosphorescence. Whereas the fluorescence lifetime for both compounds is in the 100-200 ps  

range, the spin-forbidden phosphorescence has much higher lifetimes (pyrazine: isc  (quantum 

yield of intersystem crossing) = 0.87, P (phosphorescence lifetime) = 4.5 x 10-6 s (in acetonitrile 

at 298K); quinoxaline: isc = 0.99, P = 0.294 s (in acetonitrile at 298K).cii  
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Figure 5.3: Absorption spectra of 25 (blue) and 26 (red) in MeOH/buffer (see below) 

(c = 4.76 x 10-5 M) 

Table 5.2: Absorption coefficients of 25 and 26 

25 - * 

max=224 

 (M
-1

 

cm
-1

) 

- * 

max=246 

(sh) 

 (M
-1

 

cm
-1

) 

n- * 

max=284 

 (M
-1

 cm
-1

) 

 63,100 27,600 11,000 

26 - * 

max=212 

 (M
-1

 

cm
-1

) 

- * 

max=246 

 (M
-1

 

cm
-1

) 

n- * 

max=328 

 (M
-1

 cm
-1

) 

 42,000 16,400 6350 
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Fluorescence Studies 

There are two complications regarding the phosphorescence lifetimes of 25 and 26: a) 

Since our resorcin[4]arenes are new compounds, there is no photophysical characterization 

available as of yet. Obviously, the photophysical behavior of pyrazine and quinoxaline is only 

able to approximate the photophysical behavior of the macrocycles 25 and 26 possessing 

pyrazine- and quinoxaline-brigdes. b) The phosphorescence occurring from pyrazine- and 

quinoxaline is quenched by dissolved triplet oxygen.ciii According to the experience of Dr. Stefan 

Bossmann with B-DNA, attempts to remove the oxygen by purging with N2 or Ar, as well as 

freeze-pump-thaw cycles lead to unpredictable and not reproducible structural changes. 

Therefore, it is advantageous to allow the oxygen to remain in the system. We have found a 

concentration range, in which meaningful fluorescence measurements are possible (see below). 

The fluorescence studies were conducted in the following manner: stock solutions of  

a) dialyzed DNA in aqueous buffer (0.050 phosphate buffer,  pH=7.0)  

b) solutions of 25 and 26 in MeOH/(0.050 phosphate buffer,  pH=7.0) (30/70 v/v), due to 

the inferior solubility of the resorcin[4]arenes in water. 

2 mL of the aqueous DNA stock solution was mixed with aliquots of 0.10 mL of the 

resorcinarenes’ stock solutions. The fluorescence measurements were taken after 20min. 

equilibration after each addition. 

a) Concentration Dependence of 25 

In Figure 5.4, the concentration dependence of the phosphorescence of 25 in 

MeOH/buffer is shown. Apparently, strong self-quenching is observed. In Figure 5.5, a Stern-

Volmer-plot of the self-quenching process is shown. According to Stern and Volmerciv, the 

quotient of I0 (fluorescence or phosphorescence intensity in the absence of a quencher) and I 

(fluorescence or phosphorescence intensity in the presence of a quencher) is equal to the product 

of the quenching constant kq (M
-1 s-1), the fluorescence or phosphorescence lifetime  in the 

absence of the quencher (s) and the concentration of the quencher (M), plus one. 

I0

I
=1+ kq c(q)  

(5.1) 
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Figure 5.4: Concentration-dependence of 

the phosphorescence of 25 in MeoH/buffer, exc= 

320 nm. 
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Figure 5.5: Stern-Volmer plot of the self-quenching 

of 25 in MeOH/buffer, exc= 320 nm. I0 has been obtained 

by interpolation to c=0 M. 

As it appears from Figure 5.5, the slope of the Stern-Volmer-plot is downwards curving 

and two regions of quenching can be discerned. In the lower concentration range (0 - 1.5 x 10-4 

M) a slope of 6473 was obtained, which is equal to the product of the phosphorescence lifetime 

 and the quenching constant kq. Assuming a typical value for kq = 5 x 109 M-1 s-1 (calculated 

from Equation 5.1 and P= 4.5 x 10-6 s), we obtain an (estimated) value for  =1.3 x 10-6 s, 

which would be a typical triplet lifetime of an azine in an aerated solution. Assuming the same 

lifetime , the second quenching process would then have a quenching constant of kq = 2.95 x 

109 M-1 s-1. Since we do not have any knowledge about the possible aggregation of the 

asymmetric  pyrazine-brigded resorcin[4]arenes with increasing concentration in solution or on 

the influence of these possible aggregation on the rate of intersystem crossing, we cannot assign 

the observed quenching behavior to two distinct quenching processes. Only a detailed time-

resolved laser absorption and emission study will be able to shed some light into this 

complicated system. 

 

 



 86

 

b) Concentration Dependence of 26 

The influence of the concentration of the asymmetric quinoxaline-bridged 

resorcin[4]arene on its steady-state phosphorescence is quite different from the behavior of the 

asymmetric  pyrazine-bridged resorcin[4]arene, as the comparison of Figure 5.6 and 5.7 and 

Figure 5.4 and 5.5 indicates. The most distinct difference is that - after a plateau region has been 

passed - a linear increase (and not a decrease) of the phosphorescence intensity can be found. 
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Figure 5.6: Concentration-dependence of 

the phosphorescence of 26 in MeOH/buffer, exc= 

310 nm. 
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Figure 5.7: Phosphorescence intensity of 26 in 

MeOH/buffer, exc= 310 nm. 

Assuming that the quinoxaline-bridged resorcin[4]arene is forming clusters or micelle-

analog aggregates, we can estimate a cmc (critical micelle concentrationcv), defined as the 

concentration of surfactants above which micelles spontaneously form, to 1.75 x 10-4 M. 

DNA Intercalation Studies 

Figure 5.8 and 5.9 shows that in the presence of CT-DNA, the phosphorescence from 25 

steadily increases upon addition, until a maximum at 3.3 x 10-4 M is reached. We attribute the 
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observed phosphorescence increase to the binding of the pyrazine-bridged resorcin[4]arene to 

CT-DNA (c = 6.25x 10-8 M in base pairs) via either intercalation or surface binding. Both 

processes are known to lead to luminescence increase, most likely due to the (partial) shielding 

from the surrounding water-molecules. Water, or in general, protic solvents cause the 

deactivation of the diazine’s excited triplet-states by photodriven protonation-deprotonation 

processes (proton quenching). 
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Figure 5.8: Phosphorescence increase of 

25 in the presence of DNA(c = 6.25x 10-8 M in base 

pairs) in MeOH/buffer, exc= 320nm. 
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Figure 5.9: Intensity in the phosphorescence 

maxima, the data are taken from Figure 5.8: (left) 

Before we could attempt to estimate the binding constant of 25 and 26 to CT-DNA via 

Scatchard-plots, computer-modeling of the resorcin[4]arenes by using the semiempirical method 

PM3 was performed (Figure 5.10 and 5.11). The rationale for this approach is that both 

macrocycles cover four base-pairs due to their geometric extensions when binding via 

intercalation or surface binding. Therefore, the concentration of DNA must be divided by the 

factor four when doing Scatchard plots in order to compensate for the real size of the 

macrocycles. 
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Figure 5.10: PM3 of the asymmetric 

pyrene-bridged resorcin[4]arene: geometric 

dimensions: 1.29nm x 1.08nm x 1.64 nm 

 

Figure 5.11: PM3 of the asymmetric quinoxaline-

bridged resorcin[4]arene: geometric dimensions: 1.43nm x 

1.08nm x 1.64 nm 

Scatchard-Plots 

Scatchard plots are a standard method to determine the binding constant(s) of organic 

ligands to DNA.cvi In the case of fluorescent ligands, Equation 5.2 is used.  

 

(5.2) 

 

[M]total: DNA concentration (in base pairs and M) over the course of titration 

[L]total: ligand (resorcinarene) concentration (M) over the course of titration 

N = total number of binding sites 

kf: binding constant determined by a fluorescence (or phosphorescence) titration 
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f =
Fobserved FL
Fmax FL

 

(5.3) 

f: fraction of the ligand bound to DNA 

FL: fluorescence of the free ligand 

Fobserved: fluorescence observed after the addition of DNA 

Fmax: maximum fluorescence (occurring when all possible ligands are bound to DNA) 

The plot of ([M]total/f) vs. (1/(1-f)) provides information about the quotient of [L]total and 

N, which serves as a correction factor and yields kf . 
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Figure 5.12: Scatchard-plot generated from data shown in Figure 5.8. 

 

Calculations 

A) Interval from 0 to 9.09 x 10-5M of 25; 6.25x 10-8 M in base pairs of CT-DNA 

[L]total/N =3.2x10-5 M 
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N=2.84 

kf = 1.25 x 10
4
 M

-1
 

B) Interval from 9.09 x 10-5M to 4.0 x 10-4 M of 25; 6.25x 10-8 M in base pairs of CT-

DNA 

[L]total/N =3.2x10-5 M 

N=11.72 

kf = 1.87 x 10
7
 M

-1
 

 

The occurrence of two binding constants can be interpreted as follows: 

There could be two kinds of binding of 25 to DNA, for instance intercalation, possessing 

the bigger binding constant and surface binding, possessing the smaller binding constant. 

Without further measurements, such as time-resolved luminescence and the use of spin-labeled 

macrocycles, there is no possibility to positively identify the mode of interactions between the 

resorcin[4]arene and DNA. However, it could be positively proven that a positive interaction 

(binding) of the resorcinarene and DNA occurs. 

In Figure 5.13, the phosphorescence spectra obtained with 26 as binding ligand and 

otherwise unchanged experimental conditions are shown. The phosphorescence increases with 

increasing concentration of 26, until a maximum at 2.8 x 10-4 M is reached. 
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Figure 5.13: Phosphorescence increase of 26 in the 

presence of  DNA(c = 6.25x 10-8 M in base pairs) in 

MeOH/buffer, exc= 310nm. 

Figure 5.14: Intensity in the phosphorescence 
maxima, the data are taken from Figure 5.13: 

(left) 

 

 

In this case a Scatchard-plot was prepared as well. The result is shown in Figure 5.15. 
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Figure 5.15: Scatchard-plot generated from data shown in Figure 5.13. 

 

 

Calculations 

A) Interval from 0 to 1.3 x 10-4M of 26; 6.25x 10-8 M in base pairs of CT-DNA 

[L]total/N =3.2x10-5 M 

N=41.28 

kf = 1.1 x 10
4
 M

-1
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B) Interval from 1.3 x 10-4M to 4.0 x 10-4 M of 26; 6.25x 10-8 M in base pairs of CT-                      

DNA 

[L]total/N =3.2x10-5 M 

N=1185.75 

kf = 386.5 

 

Two binding constants were found in this system as well. Again, without without further 

measurements, it is impossible to determine the real mode of binding. Surprisingly, the binding 

constants for the quinoxaline-bridged resorcin[4]arene were smaller than for the pyrene-bridged 

resorcin[4]arene. This could be indicative of two different modes of surface binding.  

 

Experimental Session:  

General methods: 

Solvents (ACS-grade) and inorganic chemicals were purchased from Aldrich and Acros 

Organics. All chemicals and chromatography materials were either purchased from Aldrich or 

Acros Organics and used without further purification. H2O was of bidistilled quality. 

All distillations in vacuum were performed using a Büchi-rotavap equipped with a 

solvent recovery system and pressure control. 

Further instrumentation: 200 and 400 MHz NMR (Varian), FT-IR (Nicolet 870), MS: 

Bruker Esquire 3000, Melting point apparatus ((Fisher) All melting points are uncorrected), 

Carlo Erba Strumentatione (CHN). 

Tris bridged 2-Methyl Cavitand 23 2,18-Methano-20H,22H,24H-

dibenzo[d,d'][1,3]dioxocino[5,4-i:7,8-i']bis[1,3]benzodioxocin-3,17-diol, 1,21,23,25-

tetrapropanol, 7,11,15,28-tetramethyl- 

Anhydrous potassium carbonate (3.75g, 24.97mmol) was added under nitrogen 

atmosphere  to a solution of 2-Methyl-dodecol 1 

 (Pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-

1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-4,6,10,12,16,18,22,24-octol, 

2,8,14,20-tetrakis(3-hydroxypropyl)-5,11,17,23-tetramethyl-) (2.0g, 2.58mmol) in 80ml DMSO.  

Bromochloromethane (0.375ml, 5.65mmol) was added to the mixture while stirring under 

nitrogen. The reaction mixture was stirred overnight at RT, then heated to 50oC for 4 hours.  
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Another 0.139ml (2.09mmol) of bromochloromethane was added after the mixture had cooled to 

room temperature.  The reaction mixture was heated to 50oC again and stirred for another 4h. 

After cooling to RT again, the mixture was poured into 180ml of saturated ammonium chloride 

solution in water and the precipitation was collected by filtration. The solid obtained was washed 

with 15ml water for 3 times and dried under air at normal pressure.  Column chromatography 

using silica as stationary phase and CHCl3/MeOH (12:1 v/v, then 10:1 v/v) as eluent yielded a 

white powder. Yield: 1.46g, (70%) mp 224oC 

FT-IR (KBr) (cm-1): 3406, 2940, 1470, 1306, 1245, 973 
1H NMR (200 MHz, CDCl3): 7.08 (2H, s), 6.95 (2H, s), 5.88 (3H, m), 4.77 (4H, m), 4.40 (2H, d, 

J=7.4Hz), 4.28 (5H, m), 3.77 (12H, m), 1.96 (6H, s), 1.94 (6H, s), 1.62 (12H, m) 

2,3-dichloroquinoxaline 24 

1,2-diaminobenzene (2.75g, 25.4mmol) and oxalic acid (3.25g, 36.1mmol) were mixed 

with 15ml of 4N HCl. The mixture was refluxed for 15 min., then needle like crystals formed.  

After cooling down to RT, the crystals were filtered and washed 3 times with 5ml of water and 

dried under air at normal pressure.  The dried solid was then suspended in 25ml of POCl3 and the 

suspension was refluxed for 6h until all solid was dissolved and the solution became light brown 

in color.  The mixture was then poured onto 60ml of ice water and was allowed to react until the 

POCl3 was completely consumed.  After filtration and vigorously washing with water, a white 

solid was obtained. Yield: 2.63 g (52%) mp 120oC 

FT-IR (KBr) (cm-1): 3045, 2920, 2860, 1560, 1535, 1460, 1380, 1280, 1190, 1120, 995, 965, 

770, 600 
1H NMR (200 MHz, CDCl3): 7.06 (2H, m), 7.04 (2H, m) 

13C NMR (400 MHz, CDCl3): 131.45, 128.43 

 

2,25:3,24-Dimetheno-1H,26H,28H,30H-

[1,3]benzodioxocino[9'',8'':4',5'][1,3]benzodioxocino[9',8':5,6][1,3]dioxocino[5',4':9,10][1,4]benz

odioxonino[2,3-b]pyrazine, 1,26,28,30-1,21,23,25-tetrapropanol, 7,11,15,28-tetramethyl- 25 

2,18-Methano-20H,22H,24H-dibenzo[d,d'][1,3]dioxocino[5,4-i:7,8-

i']bis[1,3]benzodioxocin-3,17-diol, 1,21,23,25-tetrapropanol, 7,11,15,28-tetramethyl- 23) (0.20 

g, 0.246mmol) and 2,3 dichloropyrazine (40mg, 0.268mmol) were dissolved in 5ml of anhydrous 

DMSO under an argon atmosphere. After both starting materials were completely dissolved, 
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anhydrous potassium carbonate (0.10g, 0.724mmol) was added to the solution.  The mixture was 

heated to 80oC under argon for 2 d while stirring.  After cooling to RT, the reaction mixture was 

poured into 15ml saturated ammonium chloride solution in water. Slowly, a white solid 

precipitated, which was filtered after 1h.  The solid obtained from filtration was three times 

washed with water, dried under air at normal pressure, and then recrystallized from toluene.  A 

white powder was obtained.  Yield:  0.21g (96%) mp>300oC 

FT-IR (KBr) (cm-1): 3401, 2940, 2873, 1475, 1414, 1071, 979 
1H NMR (400 MHz, CDCl3): 8.00 (4H, m), 7.05 (4H, m), 5.90 (2H, m), 5.84 (1H, d, J=6Hz), 

4.84 (4H, m), 4.60-4.20 (7H, m), 3.77 (8H, m), 2.39 (8H, m), 1.95-2.06 (12H, m), 1.30 (8H, m) 

13C NMR (400 MHz, CDCl3): 153.60, 138.19, 124.15, 120.22, 117.64, 62.92, 37.49, 31.35, 

26.81, 11.73, 11.34, 10.40 

 

2,25:3,24-Dimetheno-1H,26H,28H,30H-

[1,3]benzodioxocino[9'',8'':4',5'][1,3]benzodioxocino[9',8':5,6][1,3]dioxocino[5',4':9,10][1,4]benz

odioxonino[2,3-b]quinoxaline, 1,26,28,30-1,21,23,25-tetrapropanol, 7,11,15,28-tetramethyl 26 

2,18-Methano-20H,22H,24H-dibenzo[d,d'][1,3]dioxocino[5,4-i:7,8-

i']bis[1,3]benzodioxocin-3,17-diol, 1,21,23,25-tetrapropanol, 7,11,15,28-tetramethyl-  

, 23) (0.30 g, 0.369mmol) and 2,3-dichloroquinoxaline (80mg, 0.40 mmol) were 

dissolved in 7ml of anhydrous DMSO under an argon atmosphere. After both starting materials 

were completely dissolved, anhydrous potassium carbonate (0.15g, 1.086mmol) was added to the 

solution.  The mixture was heated to 80oC under argon for 3 d while stirring.  After cooling to 

RT, the reaction mixture was poured into 20ml saturated ammonium chloride solution in water. 

Slowly, a white solid precipitated, which was filtered after 1h.  The solid obtained from filtration 

was three times washed with water, dried under air at normal pressure, and then dissolved in 

CH2Cl2. The product was further purified by column chromatography using silica as stationary 

phase and CH2Cl2/MeOH 20:1 v/v as mobile phase. A white powder was obtained.  Yield:  0.25g 

(72.2%) mp 175oC 

FT-IR (KBr) (cm-1): 3324, 2940, 2873, 1726, 1480, 1414, 1373, 1332, 1240, 1076, 973 
1H NMR (200 MHz, CDCl3): 7.83 (4H, m), 7.60 (4H, m), 7.30 (2H, m), 7.22 (2H, m), 5.91 (3H, 

m), 4.80 (4H, m), 4.42 (1H, d, J=5.7Hz), 4.31 (2H, d, J=5.7Hz), 3.70 (16H, m), 2.44 (12H, m), 

2.03(4H, m), 1.60 (8H, m) 
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13C NMR (200 MHz, CDCl3): 154.14, 153.62, 153.29, 151.66, 149.93, 139.21, 131.07, 129.72, 

128.98, 127.66, 124.13, 122.99, 120.13, 118.13, 98.61, 68.33, 62.86, 38.90, 37.56, 31.36, 30.53, 

29.88, 29.10, 26.96, 23.91, 11.52, 11.14, 10.40 
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Appendix B – 
1
H-NMR Spectra, 

13
C-NMR Spectra and  

Elemental Analysis Data 
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Elemental Analysis Table 

Compound    # Ccalc Cfound Hcalc Hfound Ncalc Nfound 

3       67.73       67.71      6.50        6.54   

4       51.10       51.21      4.62        4.58   

7       59.64       59.57      4.80        4.87       5.80       5.83 

8       48.02       47.98      4.19        4.22       4.48       4.46 

10       58.46       58.53      5.12        5.10       5.93       6.01 

15       59.99       60.10      5.64        5.71       5.60       5.60 

21       60.60       60.48      5.49        5.53       5.58       5.54 

25       68.90       68.82      6.35        6.31       3.15       3.05 

26       70.35       70.17      6.23        6.22       2.98       3.01 

 


