TWO MODIFICATIONS TO THE SOFTWARE INTERFACE PACKAGE
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

by

RICHARD LEE MORSE

B.S., Kansas State University, 1971

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1974

Approved by:

iajor Profe r

LD

246F%

Ry

1974

MGT

€.y ’

Docuw et TABLE OF CONTENTS

Chapter

1o INTRODUCTION & & ¢ s % 4 ¢ oo 9 % s 4 w a & ¢ & & 4 5 &

2, MODIFICATION OF PDEONE AND ADDITION OF USER SUPPLIED

AMATRX ROUTINE TO HANDLE COUPLED SYSTEMS OF-PARTIAL
DIFFERENTIAL EQUATIONS . . & & & v v o ¢ o o o o o o = »
2.1, Definition of Problem . « v « « 4 5 2 ¢ « « = . "o
2.2. Difference Approximations + . ¢ ..
2.3. Use of the PDE Interface Package« . .
2.4. Numerical Tests for AMATRX « + « « « o ¢

3. SUBROUTINE PDEJAC TO EFFICIENTLY GENERATE THE JACOBIAN
MATRIX NEEDED FOR STIFF ODE METHODS

3.1. Definition of Problem i GmE R BB

3.2. Use of PDEJAC With Stiff ODE Integrators

3.3. Numerical Tests Using PDEJAC « « + ¢« & &

B, CONCLUSION & « 5 s o 5 = « 5 » » w » M S HY RN
REFERENCES . . « +« v &« v v o « « & R IR AP v
APPENDIX A e T E R Y . owow
BERENDIR B « & . 5 2w o 4 o B & & R B 6 ¥ B8 § % b B ¥ ¥ ¥ &
ACKNOUWLEDBMENTS o w % « o s o « n s wim s m o s 5 » o 0 « o »

TABLE OF FIGURES

Figure Page

1. Block Tridiagonal Jacobian Matrix for PDE's and Its
Storage in the PW Vector « « ¢ ¢« ¢ ¢ ¢« 4 ¢ ¢« o & 11

Chapter 1
INTRODUCTION

-PDEONE is a software interface for nonlinear partial differential
equations jointly developed by Dr. Richard F. Sincovec, Kansas State
University and Dr. Niel K. Madsen, Lawrence Livermore Laboratory (1).

It is a piece of computer software which can serve as an interface which
will allow many of the recent significant developments in the field of
ODE's to be applied directly to the numerical solution of PDE's.

The method being implemented by this software package is the
so-called numerical method of lines (2). Roughly speaking, the method
of lines can be described as follows; if cne has a time dependent PDE
and discretizes the spatial variables, an approximating system of
ordinary differential equationé results. To solve the resulting
equations one uses ODE methods and obtains numerical approximations of
the original PDE.

The software package is designed with user convenience as a goal.
To use this package the user simply defines his system of PDE's and
supplies a spatial mesh to be used for the discretization of the problem
in PDEONE. Then an ODE integrator with its built-in error and stability
controls may be used (3, 4, 5).

This report will discuss two recent changes to the PDE interface

package developed by Sincovec and Madsen (1). The first change being

the modification of the routine PDEONE to handle systems of PDE's that
are coupled in the time derivative terms. Next is the addition of the
routine PDEJAC to efficiently generate the Jacobian matrix needed when

stiff methods are used to solve ordinary differential equations.

Chapter 2

MODIFICATION OF PDEONE AND ADDITION OF USER SUPPLIED AMATRX
ROUTINE TO HANDLE COUPLED SYSTEMS OF NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS

2.1. Definition of Problem

Partial differential equations may have an unlimited number of
mathematical structures. Following is the structure chosen by
Dr. Richard Sincovec and Dr. Niel Madsen to solve a wide class of
realistic problems (1):

Let NPDE denote the number of PDE's on the interval [a, §] and

let
NPDE -a—ul
(2.1.1) s ak,j Tk fk t,x,u],uz,.. ’uNPDE,
ox ' ox "t ox °? «C X k,1 ax J°
10 [e, M2 13 feg 8UnpDE
«C oX k,2 9x sy «C 83X k,NPDE dx >

a<x<b, t>t , k =1,2,...,NPDE ,

denote the coupled systems of PDE's with boundary conditions,

du
(2.1.2) akuk+8ka—xk-=yk at x=aandb, t>t , k=1,2,..,NDE,

and initial conditions,

(2.1.3) u, (to,x) = 4y (x), a<x>b, k=1,2,...,NPDE.

If g, # 0 then e, 8, and y, may be functions of t, x, and VRE
(UI’UZ""’UNPDE)‘ but only functions of x and t otherwise; Dk,j and
ak'j (k,j = 1,2,...,NPDE) are functions of x, t, and U; and ¢ is 0, 1,
or 2 deben&ing on whether the problem is in Cartesian, cylindrical, or
spherical coordinates, respectively.

By assuming that all the coefficient functions, aps Bys Yy Dk,j’
LD fk’ and dy» are at least piecewise continuous functions of all their
respective variables; problems with physical discontinuities can be
defined using the software interface.

Boundary conditions for PDE's are often classified into three
types: Dirichlet (Bk = 0), Neumann (ak = 0), or mixed (ak #0, By # 0).
The boundary condition may change with respect to time, as well as from
equation to equation. Also thg initial condition is not required to
satisfy the boundary conditions as x approaches either a or b.

The (ak,j) (kyj = 1,2,...,NPDE) matrix allows for a coupling of
the time derivative of systems of parabolic PDE's and/or hyperbolic PDE's.
The coupling may be nonlinear as each ak,j may be a function of U.

Note that problem (2.1.1) - (2.1.3) is completely defined if one
specifies the interval, [a, b] 3 the initial time, to; the vector
functions f = (fk), o = (ak), g = (sk), ¥y = (yk) (k = 1,2,...,NPDE); the
matrix functions D = (Dk,j)’ A= (ak,j) (ksj = 1,2,...,NPDE); and the
initial conditions ¢k(x), k =1,2,...,NPDE. With the software interface

developed here, the user will be required to write four basic sub-
programs to define: the matrix D, the matrix A, the vector f, and the
boundary conditions (i.e., the vectors a, B, and y); plus a main program
to specify the spatial mesh and initial conditions, to set a flag to
signal the presence of an A matrix, to call the 1n£egrator, and to

print the results.

To prevent PDEONE from continually decomposing the A matrix

1

and solving for the A™ fk’ k =1,2,...,NPDE on the right-hand side the

user has the option of setting the value of MATRIX either to 0 or 1. If

MATRIX = 1, the routine will perform a LU decomposition of the A matrix
3u it
If MATRIX = O, PDEONE will solve _k = f , k = 1,2,...,NPDE and there
ot
will be no coupling of the PDE systems. The user will not have to write

and solve for the right-hand side where fk' k = 1,2,...,NPDE.

the identity matrix for A and continually have it decomposed.

2.2. Difference Approximations

Once the user has defined an appropriate PDE system and the
corresponding spatial mesh, the software interface uses consistent
centered difference approximations to convert the PDE system into an

approximating initial value system of ordinary differential equations (1).

2.3. Use of the PDE Interface Package

To use the PDE interface the user should have both a stiff and
nonstiff integrator. Unless a problem is known a priori to be stiff,
the problem should be used with a nonstiff integrator first. Because
the integrators developed by Gear (3) and Hindmarsh (4, 5) have both

stiff and nonstiff methods built into the same program they should be

considered in implementing the PDE interface. Refer to Madsen and
Sincovec (2) for a more complete discussion of the use of ODE integrators
for solving PDE's.

To use the PDE interface (given in appendix A) the user is
required to write four subroutines defining his system of PDE's in order
for the interface to discretize the PDE's and convert them into a system
of approximating ODE's. These subroutines are: D(T, X, U, DVAL, NPDE)

defining the D (ksj = 1,2,...,NPDE) of equation (2.1.1), F(T, X, U,

ksd
UX, DUXX, FVAL, ;PDE) defining the right-hand side of (2.1.1), BNDRY

(T, X, U, ALPHA, BETA, GAMMA, NPDE) defining the boundary conditions
(2.1.2), and AMATRX(NPDE, T, X, U) defining the coupling of the PDE's.
Refer to Sincovec and Madsen (1) for specific details on subroutines D,
F, and BNDRY., Specific details for subroutine AMATRX will be presented
in this paper.

In subroutine AMATRX, T and X are scalar quantities representing
respectively the current time and spatial variable, while U is a vector
quantity with entries Uk (k = 1,2,...,NPDE). Approximate values of the
preceding variables are passed to the user's routines by the PDE inter-
face. The user must be careful to neither divide by zero nor perform
other noncomputable operations. The user is cauticned to make sure the

A matrix is neither singular nor apt to become singular at any point

during the integration.

a. Subroutine AMATRX is constructed as follows:

SUBROUTINE AMATRX(NPDE, T, X, U)

COMMON/AMAT/ A(NPDE, NPDE), IP(NPDE), MATRIX

DIMENSION U(NPDE)

‘Here A(k,j) (k,j =1,2,...,NPDE) are defined. These are the
values of the coupling equations ak,j’ appearing in (2.1.1).
A11 the matrix entries A(k,j) must be defined by the user
(even if zero) unless the value of MATRIX = 0 is set in the

main calling program, signifying no A matrix is needed. Should

WMTRIX = 0 the values of A(k,j) need not be defined.
RETURN
END
The COMMOM/AMAT/ card must be replaced entirely while the
actual value of NPDE (number of partial differential equations) needs to
replace NPDE at each occurrence.
At the present time, the user must include the following card
in the main program, PDEONE, PDEJAC, and AMATRX.
COMMON/AMAT /A(NPDE, NPDE),
IP(NPDE) , MATRIX

The remainder of this paper will assume the usage of GEARB (4)
with the driver, DRIVEB, and its modifications as used by Sincovec and
Madsen (1). GEARB will be further modified to calculate the block
tridiagonal Jacobian matrix by calling the subroutine PDEJAC once as
opposed to the usual method of repeated calls to PDEONE. Refer to

Chapter 3 of this paper for a discussion of the change.

2.4.

Numerical tests for AMATRX

If AMATRX is a linear combination of systems of equations (i.e.,

constants, T, and X are the only quantities allowed in the values of

(ak j) (ksj = 1,2,...,NPDE) it is relatively simple to show that AMATRX
3

is working. One combines the FVAL terms of subroutine F in the same

order as AMATRX. The PDE's solved are g%—= A'lAf = f. This holds true

for all the numerical examples given by Sincovec and ﬁadsen (1).

Given the following problem:

au au au
1 2 & LA pa . L
81,13 ¢ 41,23t X 3x (x X
au 3u
1 2 .
BPast Y o O

This problem was solved with

al’1 = U, al’2 = 0.

a = 0.

2’1 = 1-

with boundary conditions

3U1

3)-(— (t, 0) = 0.

ally 4
s (6 1) = L736-9(6.256010-[u(t, 1)])

u, (t, 0) = u, (t, 1) = 2.

and initial conditions given by

uy (0, x) = 600. Uy (0, x) = 2.

Chapter 3

SUBROUTINE PDEJAC TO EFFICIENTLY GENERATE THE JACOBIAN
MATRIX NEEDED FOR STIFF ODE METHODS

3.1. Définition of Problem

An ODE system is said to be stiff if it involves both very
rapidly changing and very slowly changing terms all of a decaying nature.
When the problems are stiff they must be solved implicitly with the
following system of nonlinear equations being solved at each step (3, 5).

Most of the methods used in solving stiff problems are based

on the Tinear multistep formula.
K] K

= . .+ Y.
(3.1.1) ¥ :E:; o Y h ' 83 Yoo
J= J

N

n
o

For Gear's method of order q K1 = q and K2 = 0, aj and Bj are constants
associated with the method, h is the stepsize, Yi is an approximation
to y(tk), and &k js an approximation to &(tk) = f(yk,tk). Equation

(3.1.1) can be written in the following form.

&y Ky
(3.1.2) g(y,) =y, - h8 fly,t) - Z a5 Y3 = h Z By Yp-j = O
] 1

One can then solve the nonlinear system g(yn) by Newton's method.

-1
(3:-13) Yn(me1) = Ynm) = P n(m) IWn(m))»

P = .ag. = I - hB .a_f.
n(m) ~ a3y | Yn(m) 0 ay Yo(m)

9

10

In practice, it is much less costly to replace the matrix Pn(m) by

(3.1.4) P =1-hgyd ,J = _g_;_

Yn(0)
at a slight loss of the rate of convergence. One can also use a "chord
method" by utilizing Pn for some n' < n instead of‘bn at step n.

ODE integrators approximate the Jacobian matrix, Jn’ by
successive calls to a routine that computes DY/DT for a given T and Y.
This is accomplished by Sincovec and Madsen (1) by MPDE*NPTS calls to
PDEONE with each call calculating NPDE*NPTS values. Since the Jaccbian
matrix of equation (3.1.4) is block tridiagonal for partial differential
equations of the structure (2.1.1), one need only calculate (3*NPTS)-2
blocks of NPDE*NPDE values of the Jacobian with NPDE being the number of
partial differential equations and NPTS being the number of spatial
grid points (Figure 1).

Because h and g, are known, one can calculate the values for
-hBDJrI in one subroutine call, thus reducing the number of times the
program will set up Tinkage to the subroutine.

Subroutine PDEJAC is written to calculate -h8J, in one call.

It calculates only the partial derivative needed for the block tridiagonal

matrix of Figure 1.

3.2. Use of PDEJAC with Stiff ODE Integrators

PDEJAC is an interface subroutine which generates the block

tridiagonal matrix used in solving partial differential equations. It

generates values for -hBDJn. J_ = %f- and stores them in a vector

v In(0)

NPDE
NPTS

s F

4
i
v

= NPDE * NPDE Block

= PW Vector

Figure 1: Block Tridiagonal Jacobian Matrix for PDE's
and Its Storage in the PW Vector

1

12

called PW. This routine will not calculate any partials outside the
block tridiagonal form of Figure 1.

The PW vector is stored from the lowermost band upward (Figure
1). PDEJAC uses the four subroutines referred to in Chapter 2 (D, F,
BNDRY, and AMATRX) while calculating and storing the - hg,J,, matrix in
the PW vector.

Since the Jacobian matrix is calculated in oné call, the user
must be certain to pass the appropriate values to subroutine PDEJAC
from the stiff ODE integrator. The call for PDEJAC is of the form:

PDEJAC(N, NO, NPDE, NPTS, ML, T, U, UDOT, EL, FSAVE, YMAX, PW, H)

with the arguments described in Appendix B.

3.3. Numerical Tests Using PDEJAC

This writer has found if one used PDEJAC with the stiff ODE
integrator, GEARB modified slightly to call PDEJAC only once, one can use
the PDE interface developed by Sincovec and Madsen (1) much more
efficiently.

Using the examples given by Sincovec and Madsen (1), this writer
has realized a forty percent decre&se in computer time to solve their
example E (Cylindrical Problem) with twenty-one grid points. Five of the
remaining six problems were solved with even more significant savings as
the number of grid points increased. |

To verify the correctness of PDEJAC, the user need only check
to see if the answers using PDEJAC are identical to the answers not using
PDEJAC. The user may also see if the PW vectors are the same in both

cases.

Chapter 4
CONCLUSION

.The author of this paper believes that the PDE interface
presented by Sincovec and Madsen (1) is a significant beginning for
robust software for reasonably broad classes of partial differential
equations. With the additions and modifications presented in this
paper, the PDE interface package will mcre efficiently solve more
general types of equations.

With the addition of AMATRX the user may now solve systems of
coupled parabolic and hyperbolic equations. If the user does not have a
system of coupled equations, essentially no efficiency will be Tost in the
original PDE interface (1) when MATRIX is set to zero.

One of the largest areas of concern with the PDE interface is
the generation of the Jacobian matrix for stiff equations. Most ODE
integrators are capable of automatically generating the Jacobian matrix
of equation 3.1.4. It is a convenient but frequently expensive feature
if either NPDE*NPTS or the number of Jacobian generations are large.

Since a stiff integrator is absolutely essential for Sincovec
and Madsen's approach to solving PDE's to be robust, the author feels
his subroutine PDEJAC may create a significant change in the computer
time used in solving partial differential equations. By using PDEJAC
the user can save forty percent of his computer time and have the ODE
integrator generate the Jacohian matrix needed for stiff equations.

13

14

REFERENCES

Sincovec, R. F. and N. K. Madsen, "Software for Nonlinear Partial
Differential Equations", UCRL-75658, Lawrence Livermore Laboratory,
May 1974.

Madsen, N. K. and R. F. Sincovec, "The Numerical Method of Lines for
the Solution of Nonlinear Partial Differential Equations", UCRL-
75142, Lawrence Livermore Laboratory, September 1973; also to appear
in S.I.A.M. Journal on Numerical Analysis.

Gear, C. W., Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-Hall, Englewood Ciiffs, M. J. 1971.

Hindmarsh, A. C., "GEARB: Solution of Ordinary Differential Equations
Having Banded Jacobian", UCID-30059, Lawrence Livermore Laboratory,
May 1973.

Hindmarsh, A. C., “GEAR: Ordinary Differential Equation System
Solver", UCID-30001 Rev. 2, Lawrence Livermore Laboratory, August
1972.

a2 aNalal s el e Ra o el al e RaN e N e Na N o N el o o e N ez Ko ¥ el o kakalsiakala ksl ini e inlinln]

[aNalal

APPENDIX A

SUBROUTINE PDECNEINPCE NPTS,T,U,UCCT])
IMPLICIT REAL*=A{A-H,Q-21} '
DIMENSICN U(NPDELNPTS) 4UCCT INPDENPTS)

PDEMINE IS AN INTERFACE SURRCUTINE WHICH CONVERYS COUPLED ONE
DIMENSIONAL SYSTLMS UF PARTIAL DIFFERENTIAL EQUATIUNS

INTOD A-SYSTE™ OF URDINARY DIFFERENTIAL ECUATICNS, UDOT

= FITeX U)y, BY CENTERED DIFFERENCE APPRCXIMATICNS.

THIS ROUTINE 1S INTENDED TG BE USEC WITH A RDBUST

CDE INTEGRATOR.

INPUT. .
NPDE = NUMBER OF PARTIAL GCIFFERENTIAL EQUATIONS.
NPTS = NUMBER OF SPATIAL GRID PDINTS-
T = CURRENT VALUE OF TIME.
U = AN KPDE BY NPTS ARRAY CONTAINING THE COMPUTED
SOLUTION AT TIME T.
QUTPUT..

UDOT = AN NPDE BY NPTS ARRAY CONTAINING THE RIGHT HAND
SIDE OF THE RESULTING SYSTEM 0OF ODE'S, FlT1,X%,U}
OBTAINEC BY DISCRETIZING THE GIVEN PDE'S.

THE USER MUST INSERT A NIMENSION STATEMENT ANC A COMMON
STATEMENT OF THE FOLLOWING FORMSH

DIMENSICN DVAL {®x%, **,2)yUXI**l.UAVGI*‘),ALPHA{**]-
* BETAL{*%) ,GAMA(*%)

COMMON ZAMAT/ Af{=%,%%) ,IP{**) MATRIX

THE SYMBOLS #*% DENOTE THE ACTUAL. NUMERICAL VALUE OF NPDE
FOR THE PROBLEM REING SOLVED.

CNMMON BLOCK AMAT CCNTAINS THE (A) MATRIX, THE TRANSFORMATION
VECTOR USED IY DECOMPOSING THE MATRIX, AND THE FLAG
SIGNIFYING THE MATRIX IS PPESENT.

COMMCON BLOCK CO0DRD CONTAINS O,1y OF 2 DEPENDING ON WHETHER
THE PROBLEM IS IN CARTESTAN,CYLINCRICAL, OR SPHERICAL
COORDINATES, RESPECTIVELY.

COMMON BLGCK MESH CCNTAINS THE USER SPECIFIED SPATIAL
GRID POINTS.

COMMON /MESH/ X(11}
COVMON /CCCRD/ ICORD
ICORDL1 = ICORD + 1

UPDATE BDUNDARY VALUES AT THE LFEFT BCUNDARY

CALL BNDRY(ToX{1)+U+ALPHA,BETA, GAMMA NPDE }
ITEST = 0

15

PNENOOLO
PNEOQO20
PNENOO30
PNEJOO4N
PDEOOOSO
PDEJ0J6G
PDFOOOTO
PNEOOOBO
PDEOONSQ
PDENOLOO
PDEOOL1O
PDEDOO120
PNEOO130
PDEQOLAO
PDENOLS50
POEQOLE0
PDEOOLTO
PNENCLAD
PDEJC190
PDEDGZ00
PDEJD210
PDEDO220
PRE0O0230
PDEGD240
PNEQO250
PLEQG26C
POECOZTO
PDEDQ2AG
PNEOG290
PLEOC300
POEDD310
PDE0O320
PDEOO330
PDEDQ340
PDEDO350
PDEQD360
PDEOO370
PDEQO380
PPFO03S0
PRPEOC400
PDEOO410O
PDE0D420
PDEOQO&30
PDEOQ440
PDECC450
PNENQ46LC
PDEDO4TQ
PDEQO48C
PDEJQ490
PPEQO5GO
PNEJQCS1O
PDEIDS20
PDEJO53C
PDEQC540

oM OO

[aEnla]

[aXaNal 2 NaXel

O0A0 OO0

DO 10 K=1,NPDE
IF [BFTA{K).NF.0.0) GC 70 10
UlKy1) = GAMMA(K}/ALPHALK)
ITEST = ITEST + 1
10 CONTINUE
CXI = 1./7(X(2)-X(1))
IF {(ITEST.E£Q.0) GO TC 20
IF [ITEST.EQ.NPNE) GN TO 45
CALL BNDRYI{T,X{1)14U,ALPHA,BETA, GAMMA,NPDE}

EVALUATE.'DIFFUSION COEFFICIENTS®y, Dy, AT THE LEFT BCUMDARY

20 CALL D(T,%x{1),U,DVAL (NPDE)
FORM APPRCXIMATICN 7O DU/DX AT THE LEFT BCUNDARY

DO 40 K=1,NPDE
IF(BETA(K).NE.0.0) GO TO 30
UXIK) = DXI *{U{K,2) = U{K,1)]
GO TO 40 .
30 UX{K) = (GAMMALK) — ALPHA(K}=U(K,1))/BETA(K)
40 CONTINUE

EVALUATE U-AVERAGE IN THE FIRST INTERVAL

45 0D 50 K=1,NPDE
UAVGIK]) = .5%{UIK,2) + UlK,1))
50 CONTINUE

EVALUATE *DIFFUSION COEFFICIENTS', D, IN THE FIRST INTERVAL

XAVGR = .5 * { Xx(2) + X(1))

CALL D(T,XAVGR,UAVG,CVAL{1,1,2),NPDE]
DXIR = DX1

DXIL = 1.

IF (1CORB.EQ.0} GO TC S5

DXIL = X(1)*+ICORD
CXIR = XAVGR**ICORD #* CXI
55 DXIC = FLOAT(ICCRD1) / (XAVGR**[CCRD1 - X([1)**ICORD1}

EVALUATE CUXX AT THE LEFT BOUNDARY

CO 60 K=1,NPDE
DO 610 L=1,NPDE
DVAL(K,L,1)=DXTIC*(DVAL{K,L,2)%{U(L,2)-UlL,y1}}*DXIR~
* OVAL(K,L,1)*UX{L)®DXIL)
60 CONTINUE
1F [ITEST.EQ.NPDE} GO 71O 65

EVALUATE RIGHT HAND SIDE QF PDE®'S AT THE LEFT BOUNDARY
CALL F(T4X{(1),U,UXCVAL,UDCT,NPDE)

CECOMPOSE THE (A} MATRIX AND SOLVE FOR THE RIGHT HAND
SIDE IF NECESSARY.

IF (MATRIX.EQ.0) GO TO 65

16

PNENOS50
PNEDOS60
PUIEOOSTO
PDEQOSBO
PNEDNOS90
PUEJQ6O0
PNEOD61C
PDEDOG20
PDEOO63C
PDEQOG&4D
PRDEDO6SO
PDED0V66D
PDEQOGTC
PDEOO6BO
PNECOGSC
PDEJOT OO
PDEQQOTIC
PDEQOT2Q
PNEQOT30
PNEQQOT40
PDEOOT50
PDEQQ760
PDEDOTTA
PDEQO780
PDEOOTS0
PDEQQOSOOQ
PDEOO3LO
PDEOOB20
PDEQ0S30
PNEDOASGT
PDEQOQO3SC
PLCEQOSHO
PDEOO8BTO
PDEQOSBO
PDEDO8SO
PDEOQGS0Q
PDEJ0910
PDEDO920
PDEDOS30
PDEQOYS4D
PDE 00950
PDEDO9560
PDEDOQTO
PDEQO9BO
PDEOD990
PDEOL100O
PDEOLO1O
PDEQ1020
PPE01030
PDEOLD4O
PDEDOL1050
PNEO106C
PDEQLOTO
PNEO10BG
PNENLO90
PDEO1100
PDEOLL1O

[aNalal

[aXaNal

(s Ealal

[aNal g

OO0 OO0

CALL A
caLL €
CALL §

MATRX{NPDE, T, X{1},Ul
ECCYPINPDE (NPDE, A, IP)
CLVE(NPUE yNPDE,A,UCOT(141)4IP)

SET UDOT = 0 FCR KNCWN LEFT BOUNDARY VALUES

65 C0 70
IF 1

K=1 |NPDE
PETA(K).EQC.D.0) UDCTIK,1)=0.0

70 CONTINUE

UPDATE BCUNDARY VALUES AT THE RIGHT BCUNDARY

CALL B

ITEST

Co 75
IF(B
UK,
ITES

NDRY(ToXINPTS) yU{1+NPTS) ALPHA,BETA,GAMNMA,NPDE)
=0

K=1,NPDE

ETA(K) .NE.0.0) GO TO 75

NPTS) = GAMMALK) Z/ALPHA(K)

T = ITEST + 1

75 CONTINUE

MAIN LGOP

I8CK
IFWD
ILIM
DO 100
ITEN
IBCK
1FWD
XAVG
XAVG
nxi
DXIL
DXIR
IF (
CXIR
DX1C

nonn

EVALUATE D
DO B

ux

ua

80 CONT
EVALUATE ?
catL D
EVALUATE D

Da 9
Do

*
*
90 CONT

TO FCRM QCE'S AT THE INTFRIDR GRID POINTS
1

2
NPTS-1
1=2,1LIM
P = I8CK
= [FWD
= [TEMP
L = XAVGR
2 = ,5 = (X{I+1) # X(1))
= 1/ IX(I+L)=%X(I=1})
= DXIR
£ Ja
ICORD-NE.Q) DXIR =XAVGR*#[CORD
= DXIR /7 (X(1#1l)=-X{I))
= FLCATU{ICORDL) / (XAVGR**ICORD1l — XAVGL**ICORDL)

U/DX AND U-AVERAGE AT THE I-TH GRID POINT

0 K=1,NPDE

(K} = DXI*{U(K,1+1) - UK, I-1))
VGIK) = S5*(U{K,I+1) + UIK,I))
INUE

DIFFUSION COEFFICTIENTS'y D, IN THE [-TH INTERVAL
(T XAVGRyUAVGCVAL{L,14IFWD),NPDE)
UXX AT THE I-TF GRID POINT

C K=1,NPDE
S0 L=1.NPDE
DVALIK,L ,IBCK}=DXIC=(DVALIK,L, IFWD)*(UIL,1+1)~
UL, 1))*DXIR = DVALIK,L,I8CKI={U(L,I)
=U(L,1-1))=DXIL)
INUE

17

PDEOL12Q
PDEOI130
PDEO1140
PNEJL150
PREOL116C
PDEOLLTO
PNEQL180
PREQ119C
PDEOQ1200
PNEO1210
PDEVL220
PCEO1230
PDEO1240
PDEQ1250
PPEOL260
PREOQLI2TC
PDEO1280
PDEO1290
PDEQ1300
PDEO1310
PDEQL32C
PDEOL1330
PNED1 340
PNEO1350
PDEC1360
PDEO1370
PNEDL 380
PDEO1390
PDEQ1400
PDEO1410
PNEO1420
PNEQOL1430
PDED1440
PDEOQOL1450
PNEO1460
PDEO14T70
PDEO1480
PDEQ1490
POEOL500
PDEO1510
PDED1520
PDEQ1520
PPEO154C
PDEO1550
PDEO1560
PDEOL15T0
PDEQ1580
PDEO1590C
PDEOL1 600
PREDLGLO
PDEOLS20
PNEO01630
PNEOQl640
PDEOL1650
PDEOl&6C
PDEO1670
PDEO1680

aEnlalel amo

aNa Nl

o0 o0

(aNaNal

[z XaXal

[alaNale!

EVALUATE RIGHY HAND SIDE OF PDE®S AT THEVI-TH GRID POINT
CALL FIUTX(I),UlLl,I),UX,DVAL(L414IBCK}UNCT(1,1)4+NPDE]

CECOMPOSE THE (A) “ATRIX ANC SOLVE FOR THE RIGHT HAND
SIDE IF NECESSARY,

IF {MATRIX.FQ.0) GO TO 100

CALL AMATRXINPDE,T,X{I),UlL,I})

CALL CECCMPINPOS ,NPOE, A, IP)

CALL SCLVE(NPNE NPCE A, UCOTI(1,1),IP)
100 CONTINUE

FINISH UPDATING THE RIGHT BOUNDARY IF NECESSARY

IF {ITEST.EQ.O) GO TC 120
IF{ITEST.EQ.NPDE) GO TJ 155
CALL BNDRY(T,XU{KPTS),UlL,NPTS),ALPHA,BETA,GAMMA,NPDE)

EVALUATE 'CIFFUSION COEFFICIENTS', D, AT THE RIGHT BOUNCARY
120 CALL DUTX{NPTS),U{L4NFTS),DVAL(L,1,IBCK)+NPDE)}
FORM APPROXIMATICNS TO OU/CX AT THE RIGHT BCUANDARY

DXI = 1. / (X{NPTS) = X{ILIMI}
DO 143 K=1,NPDE _
IFIRETAIKILNEL0.0) GO TQ 130
UX{K) = GXI ={ULK,APTS) = U(K,ILIK))
GD TJ L4G
130 UX{K) = (GAMMAIK) - ALPHA(K)=*UIK,NPT3))/BETA(K)
140 CONTINUE
DXIL = CXIR
DXIR = 1
IF (ICORD.NE.OJ DXIR = X(NPTS)*+[CORD
DXIC=FLOAT{ICORDL} /(XUNPTS)*xICORD1-XAVGR**ICORDL]

EVALUATE DUXX AT THE RIGHT BOUNDARY

DO 150 K=1,NPDE
DO 150 L=1,NPDE
DVAL{K, Ly IRCK)=0XTC*(DVAL{K,L, [BCK}I*UXIL)*DXIR
* ~DVALIK, Ly [FWD) = (UL NPTS)-ULL,ILIM}}*DXIL]
150 CONTINUE

EVALUATE RIGHT HAND SIDE OF PDE'S AT THE RIGHT BOUNDARY

CALL FIT,X{NPTS) ,Ull NPTS),UX,DVAL(L1,1,IBCK)},
* UDOT(L1,NPTS),NPDE}

CECOMPOSE THE (A} MATRIX AND SOLVE FOR THE RIGHT HAND
SIDE 1F NECESSARY.

IF (MATRIX.EQ.Q) GO TO 155
CALL AMATRX(NPDE T4 X{NPTS)sU{1,NPTS))
CALL DECUMPINPDE,NPDE,A,IP)

18

PDEN16S0
PDEQL1700
PNEOLITLO
PDECLT20
PDEOLT730
POEGL1740
PDEO1T50
PNEO1760
PDEOL1T7T70
POEQLTBO
PDEO1790
PDEOL18BOO
PDEDL81C
PREC1R20
PDEO1830
PDEO1R40D
PNEQL1BSC
POEQL360
POECOLBTC
PDEQ1B8O
PDEDLIB9C
PNDEO1900
PDEOL91G
PDEQL920
PDEC1S3C
PDEO1940
PDEC1S56
PNEDL960
PDETLS7Q
PNEC1SBG
PREDL9SC
PCES200C
PNDEOZOLD
PDED2020
PNEGZ2030
PDEOZ204C
PDEQ2050
POEQ20€&Q
PDEQ2070
PDEQ20BO
PNEO20S0
PDEO2100
PDEODZ2110
PDEGZ2120
PDEQ2130
PNEDZ2140
PDEDZ2150C
PDEDZ16C
PDEO2170
PDEO2180
POED2150
PDED2200
PDEO2214Q
PNEQ2220
POED2230
PDED2240
PDE02250

C

CALL SCLVE(NPDE,NPDZ,A,UDCCTILNPTS),IP)

C SET UDOT = O FOR KNCWN RIGHT BOUNDARY VALUES

c

155 D0 160 ¥=1,APDE
IF (BETA{K).EQ.0.0) UDOT{K,NPTS}=C.
160 CCKTINUE
RETURN
END

19

PDF0O2260
PDE0OZ2270
PDED2280
PNDEC2290
PDEDZ230C
PDEOZ23L0
PDEN2320
PDEDZ2330
PDEOQZ340

alslslsEala s ial s e oY e oo s N oo o e ol e NalalaNeXalaNalaNa el kakakakninin il ialaisinlalsialn

APPENDIX B

SUBROUT INE PDFJACIN, D, NPPE,NPTS,ML,T,U,UNOT ,EL,FSAVE,

YMAX o PWeH)

IMPLICIT REAL*8(A-H,Q-2)
DIMENSION UINPDL NPTS) ,UOOT (NPDE 4NPTS), FSAVE(NO),

¥

YMAX(NO)} PR{l) e

PDEJAC IS AN INTERFACE SUBRAUTIME WHICH GENERATES THE

BLICK TRIDIAGOMAL JACABY AN MATRIX NEEDER FOR STIFF METHOOS
WHEN SOLVING PARTTAL DIFFFRENTIAL EQUATIUNS. THIS

ROUTINE WAS WPITTEN TD AE COMBINEDR WITH STIFF INTEGRATORS
AND CALCULATE THE JACDBIAN MATRIX IN CNE CALL.

THE VALUES OF -LI(N)}=H=JACOHEIAN NEEDED FCR STIFF METHODS ARE
CALCULATED IN THIS RCUTINE AND STORED IN PW IN THE
APPROPRIATF PLACES. PW IS STOKED FROM THE LOWERMOST

BAND UPWARD WITH N LOCATIONS FOR EACH BAND.

-
=
-
[~
Z -
.
.

[T L | L T 1 |

NO
NPDE
NPTS

"ML
T
u

(Hpled)

EL
FSAVE
YMAX
H

QUTPUT..

PH

NUMBER COF DODE'S, -IS EQUAL TO NPDE*NPTS

NUMBER OF DIFFERENTIAL EQUATICNS INITIALLY.
NUMBER MNF PARTIAL CIFFERENTIAL EQUATIONS.
NUMBER OF SPATIAL GRID POINTS.

BAND WISTH CF THE LCWER 8AND.

CURRENT VALUE OF TIME.

AN NPDL RY NPTS AMKAY CONTAINIMG THE COMPUTED
SCLUTICN AT TIME T.

AN NPDE PY KRPTS ARRLY CONTAINING THE RIGHT HAND
SIUE GF THE RESULTING SYSTES OF Che'Se F7XsU)
NDATAINZG 8Y DISCRETIZING THE GIVEN PDE'S.
METHQRD COEFFICTENT.

VECTNR CONTAINING ORIGINAL VALUE OF THE DERIVATIVE.
VECTCR CONTAINING MAXIMUYM VALUE OF EACH Y SEEN.
THE STEP SIZE TO BE ATTEMPTED 8BY THE INTEGRATOR.

A VECTOR CONTAINING THE PARTIAL DERIVATIVES FOR THE
JACORIAN MATRIX.

THE USER MUST INSERT A DIMENSIGN STATEMENT AND A COMMON
STATEMENT OF THE FCOLLCWING FCRM3#

DIMENSION DVAL{#*%,%%,2),UX[2%),UAVG (%%}, ALPHA({*%],

%

BETA(*%) yGAMMA(*%)

COMMON FAMAT/ A(*% %%}, 1P(%¥),MATRIX

THE SYMANLS #* DENOTE THE ACTUAL NUMERICAL VALUE QF NPDE
FOR THE PROGLEM BEING SOLVED.

COMMQON BLOCK AMAT CONTAINS THE (A) MATRIX,

VECTOR USED IN GECOMPCSING THE MATRIX, AND THE FLAG
SIGNIFYING THE MATRIX IS PRESENT.

COMMDN BLOCK COJRD CONTAINS O.ly OR 2 DEPENDING ON WHETHER
THE PROSLEM IS IN CARTESTAN,CYLINDRICAL, OR SPHERICAL

THE TRANSFORMATION

20

PDJO0OL0
PDJOCO20
PDJO0030
PNJ10040
PDJD00OS0
PNJ00060
PDJQ0OOTO
PNJ2008O
PDJOO090
pNJool10a0
PNJOO110
PDJCO120D
PDJOOL30
PDJINOL 40
PDJI01S0
PDJI0160
PDJOOLTO
PDJOOL1EO
PDJOOLSO
PDJ0OO200
PBJO0Z210
PDJD0220
PDJN0230
P0DJO024C
FDJYI0250
PNJN0260
PDJO0270
PRJNG2RO
PNJO0250
PLJOO3GO
PDJI0310
PDEJO320
P3J00330
PDJQ0340
PDJO03S0O
PG J0N03560
PDJ0O037Q
PNJN0O380
PNJID03ST
PDJO0Q4CO
PNJ20410
PNJIG0420
PNJO0430
PDJN0440
PDJOO4S50
PDJN0460
PDJO0O4TO
PDJOO4BO
PNJO0490
PNJICOS00
PNJI0510
P J00520
PDJ2O520
PDJ00S5%0

) ' 21

C COORDINATES, RESPECTIVELY. PDJI0550
C PDJJ0S60
C COMMCN BLOCK MESH CONTAINS THE USER SPECIFIED SPATIAL PDJOOST0
C GRID POINTS. PNDIIOS80
c PNJ0OO590
COMMON/CCCRD/ICORD PNINO6ON
COMMON /MESH/Z X(1) . PDJD0610

C PPID0620
ANOISE = 2,22044605D-16 PDJD0630Q

EPSJ = DSQRTULANUISE) PDJNO640

Nl =0 PDJO0OGS0

NOHL = NO * ML PNJD0660

NML = NO - 1 PNJICO6LTO

Dl= O. PDJOOSGEO

CO 5 I=1,N PNJD0620

5 Dl= D1+ FSAVE([]}#%2 PDJOOTOO

RO = DABS(H)I*DSQRT(D1)*1.D0O3*ANDISE) PDJOOT1O0

J1 = NOML PDJOOT72C

c : PNJOOT30
C CALCULATE THE NEEDED PARTIALS WITH RESPECT TO EACH Y. PDJO0T40
c . ’ PNJOOTS0
DO 290 J=1,N PDJODT60

NL = N1 + 1 PDJDOTT0

Jl1 = J1 + KO PDJOOTE0

¥ = UlJd,l) PDJOOT90

R = EPSJ*YMAX{J) PDJIO0BOO

R = DMAXL1{R,ROI] PNJOOS10
UlJs1) = UlJs1l) +# R PDJD0B20
Dl=-EL*H/R POJNOB30

INORK = [WORK + 1 PDJD0B4O

c PRJNOSS0
C CALCULATE WHICKH BLOCK THE PARTIAL IS NEEDED 1IN. PNJ0D360
c PDJO0BT0
JEQ = {((J - 1) /7 NPDE) + 1 PDJOOBBC

ILIM™ = NPTS-1 PDJ 20890
ICORD1 = ICORD + 1 ’ PDJ00900

IF (JEQ.GE.ILIM) GO TO 72 . PDJOOI10

c PNJ0O0920
C CALCULATE UDDT WITHOUT ANY BOUNDARY CCNDITIONS. PNJO0930
c PN J0O0940
IF [JEQ.GT.2.AND.JEQ.LT.ILIM}) GO TO 83 PDJ00950

c PDJI00960
C UPDATE BOUNCARY VALUES AT THE LEFT BCUNCARY PNDJQOSTO
c PDJOO980
CALL BNORY[TX(L)yU,ALPHA,BETA,GAMMA,NPDE) PDJO0Q990

ITEST = 0 PNJO1000

CO 10 K=1,NPDE POJOLO10

IF (BETA(K).NF.0.0) GO 7O 10 PDJ21020

U{Kyl) = GAMNA(K]/ALPHA(K) PNJO103C

ITEST = ITEST + 1 PDJ01040

10 CONTINUE PDJO1050
OXT = l./(X(2)-Xi1)) PNJO1060

IF (ITEST.FQ.0) GO TC 20 PDJIL0T0

IF (ITEST.EQ.NPDE} GO TO 45 PDJOLOEO

CALL BNDRY(T.X(1),UsALPHA,BETA,GAMMA,NPDE) PDJO1090

c PDJQL100

C EVALUATE 'DIFFUSION COEFFICIENTS'y, D, AT THE LEFT BCUNDARY PDJIOLLLO

oo O

ano

oA OO0 o (2 Xz

[aEaNal

[aNalgl

20 CALL D(T,X(1),U,DVAL(NPDE}
FORM APPROXIMATICH TO DU/DX AT THE LFFT BOUNDARY

NO 40 K=1,NPDE
IFIRETA(K).NE.O.Q) GO TO 30
UX(KE = DXI *(U(K,2} - UlK,1))
GO TO 40
30 UXIK) = (GAMMA{K) = ALPHA[K)I*UIK,1))/BETA(K)
40 COANTINUE

EVALUATE U-AVERAGE [N THE FIRST INTERVAL
45 DO 50 K=1,NPDE

UAVGIK) = 5%(U(K4+2) + U{K41))
50 CONTINUE

EVALUATE 'DIFFUSION COEFFICIENTS*, D, IN THE FIRST INTERVAL

XAVGR = .5 % (x(2) + Xx(1} 1
CALL D(T,XAVGR,UAVG,CVAL(l,1,2),NPDE)
DXIR = DXI
DXIL = 1.
«+ IF (ICORN.EQ.0) GO TC 55

DXIL = X(1)}==[CORD
CXIR = XAVGR*=ICORD * DXI
55 DXIC = FLCAT(ICCRDL) / (XAVGR=2ICORD]1 - X{L1)*+ICORD1)

EVALUATE CUXX AT THE LEFT BOUNDAKRY

D0 60 K=1,HPDE
DO 60 L=1,NPCE

DVALI{K Lo L)=DXIC*(OVALIK,L,2)*(UlL,2)-U{L,1))*DXIR~

* DVALIK, L, 1) =UX(L)=DX[L)
60 CONTINUE
IF [ITEST.EQ.NPDE) GO TO &5
EVALUATE RIGHT HAND SIDE OF PDE*S AT THE LEFT BOUNDARY
CALL F(T,X{1),UsUX,DVAL,UDCT,NPDE)
CECOMPOSE THE (A) MATRIX IF NECESSARY
IF {MATRIX.EQ.0) GO TO 65
CALL AMATRX{NPDE,T4X(1]),U)
CALL DECOMPINPDENPNE A+IP)
CALL SOLVE{NPDENPDE,A,UDCT(Ll,1),IP)}
SET UDNDT = 0 FOR KNCWN LEFT BOUNDARY VALUES
65 DO TO K=1,NPDE
IF (BFTA(K).EQ.0.0) UDOTI(K,1)=0.0
70 CONTINUE

UPDATE BOUNCARY VALUES AT THE RIGHT BCUNDARY

22

PNI01120
PNJILL30
PNJOLL40
PNJO1150
PNDJILLGO
PNJoOLLTO
PDJO1180O
PDIVLILGO
PDJO1200
PDJO1210
PDIGL220
PNJO1230
PDJOL240
PDJOL250
PDJOL1260
PDJOL270
PNJO1280
PDJO1290Q
PNJ0130C
PDJOL310O
PCJOL320
PDJOL330
PDJO1340
PDJO1350
PDJOL360
PNJN1370
PNJ0O1380
PNJOL1390
PNJIL400
PNJOL4l10
PNJO1420
PDJOL1430
PDJ01440
PDJO145C
PDJOLl46C
PDJOl47C
PDJOL4BO
PDJO1490
PDJOL50C
pPDJOLS10
PNJOL520
PDJOL530
PDJOLS540
PNJNL1550
PCJO1560
PDJO1570
PDJOL580
PNJIL590
PNJ01600
PDJNLELO
PDJIN1620
PDJN1630
PDJOL 640
PNJ01650
PDJCO1660
PDUDLETO
PDJQ1680

(s Xalgl (aNa¥nl aco [aEaX o (3N algl

onn

[aXnl

T2 CALL ANDRY(T, XINPTS),UlL,NPTS)4ALPHA,BETA,GAMNMA,NPDE)

1TEST = 0
DO 75 K=],NPDE
IFLAETA(K)NELOL.O) GO TO T5
UIK,NPTS) = GAMMA(K)/ALPHA(K)
ITEST = ITEST + 1
75 COMRTINUE
77 IF (JEQ.EQ.1) GO TO 79
IF [(JEQ.FJ.2) GO TO 80
IF (JEQ.EQ.ILIM) GC TN 81

CALCULATE ONE BLOCK BEFQORE THE RIGHT BOUNDARY.

IBEG = ILINM
IEND = ILIM
Il = IBEG - 1
GO TO 87

CALCULATE ONE BLOCK AFTER THE LEFT BOUNDARY.

79 18EG = 2
IEND = 2
1 =1
GO TO 84

CALCULATE TWO BLOCKS AFTER THE LEFT BOUNDARY.

890 IBEG = 2
[ENG = 3
11 =1
GO TO 84

CALCULATE T#C BLCCKS BEFORE THE RIGHT sSCUNDARY.

81 IBEG = NPTVS - 2
1END = ILIM
I1 = IBEG-1
GO 1O 87

CALCULATE THREE BLOCKS WITHOUT BOUNDARY CONDITIONS.

83 IBEG = JEQ - 1
JEND = JEQ + 1
I1 = IBEG-1

MAIN LOOP TO FORM ODE'S AT THE INTERICR GRID PGINTS

87 XAVGR = .5 * (X(IBEG) + X{IBEG-1))

DXIR = 1.

IF (ICCRD.NE.O) DXIP = XAVGR**|CORD

DXIR = DXIR / (X(IBFG) = X(IBEG-1))

00 88 K=1,NPDE

UAVGIK) = .5 * {(U(K,IBEG) + UIK,IBEG-1))

88 CONTINUE

CALL DIT,XAVGR,UAVG,CVAL(1,1,2),NPDE)

SET ZEROES ONE BLOCK BEFQORE.

23

PDJO1690
PNJILTOO
PRJNLTIC
PDJOLT20
PNJO1730
PDJOLT40
PRJNL1TS50
PDJOLTGO
PDJOLTTO
rPDJOLTBO
PNJOLTSC
PDJYO1800Q
PDJOL1B10O
PDJOLB20O
PRJOLAR3O
PDJ0O1840O
PpJOLBSO
PDJOL1B6O
PDJol8s7C
PNJII1880
PDJQL189Q
PDJO19GO
PDJOL1910Q
PDJOL192C
PLJO1930
PNJO1940
PDJO1950
PNJO1969
PDJAO1STO
PDJOL9BO
PDJO19SO
PRJ 02000
PLCJO2010Q
PNJ02020
PDJ0203C
PDJO2040
PNJ02050
PDJD2060
PDJO2070Q
PDJD2080O
PDJD2090
PDJJ2100
PDJO2110
pDJ0O2120
PNJ02130
PDJO2140
PDJO2150
PNJ02160
pDJ0O2170
PNJ02180
PDJO2190
PNJD2200
PNJ02210
PDJD2220
PDJ02230
PNIN2240
PDJO2250

aNnlal

a0t 00n OO0

OO0 OO0

DO 93 I=1,NPDE
93 uncTttiI,18EG-1] = 0.

84 IBCK =1
IFWD = 2
12 = 1END+#1

IF {(JEQ.GE.ILIM) GO TO 97
SET ZERGES ONE BLOCK AFTER.

00 95 1=1,NPDE
95 UDOTLI,1END+L) = 0.
97 0D 10C T1=1IBEG, IEND
ITEMP = [8CK
IBCK = IFWD
IFWD = ITEMP
XAVGL = XAVGR
XAVGR = .5 = (X(I+1) + X(I})
DXI = 1./(X(I+1)-X(I-1))
DXIL = DXIR
DXIR = 1. .)
IF (ICORC.NE.O) DXIR =XAVGR**][CORD
DXIR = DXIR /7 (X{I+1)-X(1))
CXIC = FLCAT{ICORDL1) / (XAVGR**ICORD1l - XAVGL*#*[CORD1)

EVALUATE DU/DX AND U-AVERAGE AT THE I1-TH GRID POINT

DC 85 K=1,NPDE
UX(K) = NDXT={UIK,T+1) - U(K,I-1))
UAVGIR) = 53 (UK, I+1) + ULK,T1))
85 CONTINUE

EVALUATE *DIFFUSICN COEFFICIENTS', D, IN THE I-TH INTERVAL
CALL D{T,XAVGR,UAVG,DVAL(1l,1, IFWD)},NPDE)
EVALUATE DUXX AT THE I-Tk GRID POINT

DO S0 K=1,NPDE
D0 90 L=1,NPDE
DVALIKyL o IBCKI=DXICEIDVALIK, Ly IFAD}*(U(L,TI+1)~
* UL I))=DXIR = DVALIK,L,IBCK)={U(L,])
* =UlL,I-1})*DXIL}
90 CONTINUE

EVALUATE RIGHT HAND SIDE OF PDE'S AT THE I-TH GRID POINT
CALL FUT X(I)eU(L,1),UX,DVAL(L,1,IBCKI,UDOTI{1,1I)4NPDE)
DECOMPQOSE THE (A) MATRIX IF NECESSARY
IF (MATRIX.FQ.0) GO 70 100
CALL AMATRX(NPDTZ T+ X{1)oUl1l,1))
CALL CECODMP(NPDESNPDE,A,IP)

CALL SULVE{NPDE,NPDE A,UDQT(Ll,1),IP)
100 CONTINUE

24

PLJ02260
PCJI2270
PDJ02280
PDJO2290
PNID2Z300
PNPJI2310
PDJD2320
PPJ02330
PNJI02340
PDJI2350
PNJJ236C
PDJO2370
PNJO2380
PNJ02390
PDJ02400
PDJO241C
PNJ02420
PDJ02430
PDJN2440
PLJ02450
PDJI2460
PNDJC2470
PDJD2480
PDJ02490
PDJ02500
PCJO2510
PDJ02520
PDJO253C
PDJD2540
PN J02550
PRJ22560
PNJ02570
PDJO2580
PDJDI2590
PDJO2600
PDJDZ2610
PDJ02620
PDJ02630
PLJd264C
PLJ02650
PDJOZ660
PDJO2670
PDJ02680
PDJO2690
PNJN2T700
PNJC2T710
PDJO2720
PCJO2730
PNJIO2T40
PLJO2T50
PDJN2T60
PDJO2TTC
PDJO2780
PDJO279C
PDJO2800
PNJI2810
PDJ0O2820

(g X ol

OO0 A0

aEalal

s Nalal

[aNaNal

[alaXa

FINISH UPDATING THE RIGHT BOUNDARY [F NECESSARY

IF (JEQ.LT.ILIM) GO TO 165
110 IF (ITEST.EC.D) GO TO 120
IFCITEST.EC.NPDE) GO TO 155
CALL BNDRY [T XINPTS) U{1,NPTS),ALPHA,BETA,GAMMA,NPDE)

EVALUATE *DIFFUSION COEFFICIENTS®y Dy AT THE RIGHT BOUNCARY
120 CALL N(ToX{NPTS),U(1NPTS),DVAL{L,1,IRCK]},NPDE)
FORM APPRCXIMATICONS TO DU/JDX AT THE RIGHT BOUNDARY

DXI = 1o /7 (XINPTS) - X(ILIM))
DO 140 K=1,KPDE
IF(BETA{K).NE.O.O0) GO TO 130
UX(K} = DXI *{UIK,NPTS) - UIK,ILIM))
GO T0 140
130 UX{K} = (GAMMAIK) ~ ALPHALKI*U(K,NPTS})/BETA(K)
140 CONTINUE
DXIL = DXIR
DXIR = 1
IF (TICCRD.NF.Q) OXIR = X{NPTS)**1CQORD
DXIC=FLOAT{ICORDL) Z(X(NPTS)*=]CORDL-XAVGR**ICORDL)

EVALUATE DUXX AT THE RIGHT BCUNDARY
0O 150 K=1,NPDE

DO 150 L=1,NPDE
DVAL (KoL IBCK)=DXIC*(OVALIK,L,IRCK)=UX{L)*DXIR

® —OVALIK,L, [TWD)= (UL NPTS)=ULLy ILIVI)*CXIL)
150 CONTINUE
12 = NPTS o il

EVALUATE RIGHT HAND SIDE OF PDE*®*S AT THE RIGHT BOUNDARY

CALL F{T.XINPTS),U{1,NPTS) UX,DVAL({Ls1,TBCK},
* UDCT(1,NPTS),NPDE)

CECOMPOSE THE (A} MATRIX IF NECESSARY

IF (MATRIX.EQ.0) GO 7O 155

CALL AMATRX{NPDE,T,XINPTS),Ul1,NPTS])
CALL CECOMP(NPDE,NPDE,A,IP)

CALL SOLVE(NPOE JNPDE yA,UDCT(1,NPTS}IP)

SET UDOT = 0 FOR KNCWN RIGHT BOUNCARY VALUES

155 DO 160 K=1,NPDE
IF (BFTA{K).EQ.0.0) UNCOT{K,NPTS)=0.
160 CONTINUE
165 CONTINUE
bn 285 1 = 11,12
IBEG =1
IEND = NPDE

CALCULATE THE NEEDED PW'S FOR BANDS.

25

PNJ02830
PNJ0O2840
PDJ0O2850
PNJ02860
PDJO2ATO
PDJO2EBO
PNJO2R90
PDJ22900
PDJD2910
PDJ02920
PDID2930
PNJ0294C
PNJ02950
PNI02960
PNJO29170
PNJ0O298C
PNJ02990
PDJO3D00
PDJO3010
PNJ0O3020
PDJO303C
PDJ33040
PDJC3050
PDJO3060
PDJO30T0
PNJD3080
PDJ23090
PNJO3100
PDJO311C
PDJII3120
FPNJO3130
PDJI3140
PNJ03150
PDJO3160
PDJO3LTO
PDJO3180
PDJO319C
PDJD3200
PNJO3210
PDJO3220
PDJ0O3230
PDJD324C
PNJD3250
PNJ03260
PDJO3270
PDJQ3280
PDJO3290
PDJ03300
PNJO331¢C
PDJ0O3320
PNJO3330
PNJIN3II40
PNJ0O3350
PNJO3360C
PNJO33TO
PDJD33BO
PDJO33SC

280
285

250

IF(T EQaI2.ANDN1.FQR.1.ANDLJEQ.LTLILIM) GO TG 285
IF(I.FQ.I1.ANTD.NTILEQ.NPLELANNLIUFQL.GTL2) GD TD 285
IF (1COI aANDJEQLGT2) IBEG = NI + 1

IF (1.EQ.I2.ANDJJEDLLT,ILIM) TIEMD = N1 - 1

D0 28C L=IBEG,I1END

K = ([-1)*KNPDE+L

JSAVE = J1-AM1%K

PW(JSAVE) = (UNOTIL,I) - FSAVE(K))=*D1

1F ‘UDCT(L,['-EU-Oc' pH(JSAVE] = Do

CONTINUE

CONTINUE

IF (NL.EQ.NPDE] N1 = 0O

uUtJ,1) = YJ

RETURN

END

26

PNJ03400
PRJO3410
PDJ03420
PDJ03430
PDJ03440
PDJ0OY&SC
PNJO3460
PNJO34TC
PNJ0O3480
PDJ034S0
PNJ0O350D
PDJO3510
PNJO3520C
PDJO3530
PDJD3540
PNJO3550

27

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks and appreciation
to his advisory committee: Dr. Richard F. Sincovec, Associate Professor
of Computer Science at Kansas State University; Dr. Npsir Ahmed,
Associate Professor of Computer Science at Kansas State University;
and Dr. Paul S. Fisher, Head of the Department of Computer Science at
Kansas State University. A special note of appreciation is given to
Dr. Sincovec for providing the basis of this report and for giving
freely of his time. Finally special thanks to Teresa Morse, for her

many hours of help in preparing and editing this paper.

TWO MODIFICATIONS TO THE SOFTWARE INTERFACE PACKAGE
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIGNS

by

RICHARD LEE MORSE
B.S., Kansas State University, 1971

AN ABSTRACT OF A MASTER'S REPORT
submittgd in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KAMSAS STATE UMIVERSITY
Manhattan, Kansas

1974

ABSTRACT

This paper presents two modifications to a software interface
package for nonlinear partial differential equations being jointly
devé]oped by Dr. Richard F. Sincovec, Kansas State University and
Dr. Niel K. Madsen, Lawrence Livermore Laboratory. The first change
discussed is a modification of the PDEONE routine so that the péckage
can handle coupled sets of partial differential equations. The second
modification is the addition of the PDEJAC routine that will generate

the Jacobian matrix in an efficient manner.

