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CHAPTER ONE

rNTRODUCTICN

Overview

Both economic and soil conservation concerns have lead to a growing

interest in reduced tillage practices for the production of soybeans and

grain sorghum in Northeastern Kansas. Various tillage methods are

currently in use, depending to same degree upon the type of equipment

that the farm operator has available for use. While the adoption of

same tillage techniques may require the purchase of little or no

additional equipment by the producer, others do. Therefore, these costs

must be considered in the adoption process.

This study provides an economic analysis of two conservation tillage

methods, ridge-till and no-till, and compares them with a typical

conventional tillage system. These systems are currently being used and

studied at the Cornbelt Experiment Field, located near Hiawatha, Kansas.

The no-till system studied allows planting to be achieved without

disturbance of the residues from the previous crop. Since no preplant

tillage is used, weed control must be achieved through use of

herbicides, both between crop years and during the crop growing season.

A weed-free environment is important to the growing crop in order for it

to make full usage of water, nutrients, sunlight, and other resources.

Cultivation is used to supplement herbicides for added weed control

during the cropping season, however it may not be used between the crop

years.

In the ridge-till system crops are planted on non-tilled ridges

formed by the previous year's cultivation. Complete weed control, prior
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to planting, is less critical in ridge-till systems as compared to

no-till because weeds in the seed furrow are physically eliminated

during planting. This feature reduces weed management variability

problems and allows reduced usage of herbicides. Cultivation and

ridging provide weed control between rows making ridge-till systems

suitable for banding of herbicides at planting. This helps to reduce

the costs of production (Janssen, 1986)

.

A wide number of crop rotation systems are currently employed in

Northeastern Kansas. This study will limit its consideration to three

cropping systems: continuous cropped grain sorghum, grain sorghum grown

after soybeans, and continuous cropped soybeans. Each of these cropping

systems is examined for each of the three previously mentioned tillage

systems, making a total of nine systems to be compared.

The risk effect of the selected tillage and rotational practices

will be measured by examining the net return variability and the average

annual net returns. First degree stochastic dominance (FSD) , second

degree stochastic dominance (SSD) and stochastic dominance with respect

to a function (SDWRF) will also be used for determination of preferred

systems of individual producers. FSD implies that an individual prefers

more income to less income. SSD further implies that the individual

receives more satisfaction from increases in low levels of income than

increases at high levels of income. SDWRF is more specific than either

FSD or SSD because it allows the researcher to examine the risk

preferences at any risk aversion interval.



Statement of the Problem

Conservation tillage practices offer tremendous potential for

reducing soil erosion. However, technical and economic questions

persist about yield potential, cropping sequences, and nitrogen

fertilizer rates as tillage is reduced. Conservation systems involve

management of surface residue to minimize soil erosion and water loss

while maintaining or improving yields. According to Lane (1976)

conservation systems feature: (1) reduced number of tillage operations

which offer many benefits to the producer including protection of the

soil from wind and water erosion, conservation of moisture from

rainfall, improvements in soil physical properties through less soil

compaction, reduction in energy use, and lower labor requirements; (2)

more flexibility in timing of field operations. (3) reduction of same

production costs.

The reduction of tillage is the key feature of conservation

production systems because disadvantages of tillage frequently exceed

benefits. Conservation tillage emphasizes the use of crop residues to

protect the soil from wind and water erosion. Crop residues are

maintained on the soil surface by reducing the number of tillage trips

across a field, and by selecting tillage implements that minimize

residue incorporation. To compensate for the reduction in tillage,

herbicides may be used for weed control.

Many studies have shown that the main benefit from tillage has been

weed control. In areas of surplus spring rainfall, farmers till the

soil to dry out the surface and permit more timely planting. Also

tillage is sometimes effective for breaking crusts to allow seedling



emergence. However research has found that tillage can destroy the

structure of some soils and may actually make these soils more likely to

crust. Therefore there may be tradeoffs which need to be correctly

evaluated with regard to tillage benefits.

Row crops that have high yields and adequate weed control can be

grown with limited tillage in Northeast Kansas. Grassy weed problems in

reduced tillage corn and grain sorghum may occur after several years but

they are most serious when those crops are grown continuously

(Lundquist, 1986)

.

Objective of Study

The major objective of this study is the evaluation of economic

potentials and associated risks of conventional and reduced tillage

systems for production of grain sorghum and soybeans in Northeastern

Kansas. The study will address the following questions: 1) Which

cropping system of grain sorghum and/or soybeans provides the highest

annual net returns in Northeastern Kansas? 2) How much risk is involved

with each system? 3) What effect does reduced tillage practices have

upon yield risk and annual returns?

Specific study objectives are:

1) Identify technically feasible reduced tillage cropping systems

which could potentially replace conventional tillage systems in North-

eastern Kansas.

2) With recommendations from agronomists and agricultural

experiment station personnel, establish typical cropping practices that

would be followed in each cropping system.



3) Collect yield data from agricultural experiment stations for

each cropping system.

4) Define a representative case farm for the study area using

Kansas State University Farm Management data.

5) Establish an equipment complement that is capable of meeting

tillage and planting requirements of the case farm within an optimum

time period.

6) Estimate the variable and fixed costs of each system based upon

characteristics of a typical Northeastern Kansas farm using an

enterprise budget framework.

7) Examine potential risk by variance of yields, prices, and net

returns for each system.

8) Use FSD, SSD, and SDWEF to provide a ranking of the cropping

systems with consideration of risk.

Study Area

Yield data used in this study were collected at the Cornbelt

Experiment Field, which is located near Hiawatha in Brown County,

Kansas. Conventional preplant tillage for weed control and seedbed

preparation has been compared to no-till planting since 1975 and

ridge-till planting since 1980. Prior to 1980 the ridge-till plots were

farmed using a till-plant system. This system differs from ridge-till

because it includes at least one pre-plant tillage operation (disc,

chisel, or both) each year. Statistical tests described in chapter 4

showed no significant difference between the till-plant yields generated

in years 1975 through 1979 and the ridge-till yields generated in years

1980 through 1984. Therefore, the study uses the data from the till-
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plant system to generate net returns for the years 1975 through 1979 for

the ridge-till system. Net returns to management were thus examined for

all three planting methods (conventional, no-till, and ridge-till) for

each of nine cropping rotations for the years 1975 through 1984.

The cropping systems considered in this study are: conventional

tillage continuous grain sorghum (CVGG) , conventional tillage soybeans

after grain sorghum (CVGS) , conventional tillage continuous soybeans

(CVSS) , ridge-till continuous grain sorghum (RTGG) , ridge-till soybeans

after grain sorghum (RIGS) , ridge-till continuous soybeans (KISS) , no-

till continuous grain sorghum (NTGG) , no-till soybeans after grain

sorghum (NTGS) , and no-till continuous soybeans (NTSS)

.

Soils of Study Area

Brown County is located in the northeastern corner of Kansas near

the Missouri River (Figure 1.1) . The soils of Brown county belong to

the soil group, Argiudolls. These soils are found in southeastern

Nebraska, eastern Kansas, northeastern Oklahoma, northeastern Missouri,

southeastern Iowa and northern Illinois (see Figure 1.2). The county's

soils can be divided into upland and lowland areas. The lowlands,

located along streams, range from one-quarter to three-quarters of a

mile in width and are generally level and fairly well drained. The

uplands are subdivided into smooth to gently sloping areas, strongly

sloping areas, and rough hilly areas.

The soils of Brown County cover a wide range of use suitabilities

and management requirements. Physical and chemical properties of a soil
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Figure 1.2 Areas where Hapludolls , Agriudolls, and Paleudolls are the
dominant soils. (Adapted from National Atlas, Sheet 86, Soils, U.S.
Geographic Survey, 1969.)



determine how plants grow and influence the types of management

required. These properties vary widely in Brown County. Soil texture

ranges from silty clay to gravelly loam. Some soils are rich in organic

matter; same are not. Some need artificial drainage if used for

cultivated crops. Most soils require lime and fertilizer, but in

varying amounts.

Examples of the extremes in use suitability are Marshall silt loam

and the Sogn soils. Marshall silt loam is a good soil for general farm

crops. It is easily penetrated by air, water, and roots. The root zone

is 5 to 6 feet deep. This soil responds to good management and can be

kept highly fertile. The Sogn soils are suitable only for grasses. In

a few places roots may find their way into cracks in the shattered

bedrock, but in general the root zone is no more than 15 inches deep

(Eikleberry and Templin, 1960)

.

The Experiment Field's soils are silty, windblown loess. Grundy

silty clay loam, the dominant soil, has a black silty clay loam surface,

usually more than 15 inches thick and a silty clay subsoil. It

typically occupies ridge crests and tablelands of western and

southeastern Brown county. The nearly level slopes have thick surface

soil, which thins rapidly as slopes increase. Gradient terraces are

usually needed to reduce sheet erosion, which is a serious hazard

because subsoil absorbs water slowly. But the soils produce excellent

yields of corn, grain sorghum and wheat under good management and

adequate moisture (Long, 1985)

.



Climate of Study Area

About 75 percent of the annual precipitation comes during the

normal growing season. Weather data is available from Horton, Kansas

located within 10 miles of the experiment field. Figure 1.3 provides

average monthly precipitation and Figure 1.4 gives the annual

precipitation from 1900 to present. In May and June, 3 to 5 inches of

rain may fall in 24 hours. This is the time when much of the cropland

is freshly cultivated. The heavy rains produce a lot of runoff and are

likely to cause floods and severe sheet and gully erosion. Average

yearly rainfall is 35.07 inches. The normal date of the last frost in

spring is April 25. The normal date for the first frost of fall is

October 15 providing a growing season of 172 days.

10
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CHAPTER TWO

REVIEW OF LITERATURE

Within the past decade, American farmers have begun to change the

way they till the soil, instead of an almost complete reliance on the

moldboard plow, conservation tillage practices that disturb the soil

less and leave more residue on the soil surface have become much more

popular.

The 1982 National Resources Inventory found 36 percent of U.S.

cropland treated with one or more practices designed to curtail soil

erosion. The predominant practice was conservation tillage. This

practice was used on 24 percent of all cropland — about 100 million

acres. The other major conservation practice, terracing, was used on 7

percent of the nation's cropland. All other practices, such as contour

farming and diversions, were found to be used on only a small fraction

of the cropland base (cited by Anderson and Bills, 1986)

.

Early Conservation Practices

The recognition of the soil erosion problem dates back two and one-

half centuries, when the United States was but a collection of British

colonies. At the time settlers first came to America, labor was scarce

and expensive, while land was plentiful and cheap. When soil eroded or

was thought to be worn out, the typical farmer would abandon his farm

and move west to new land or allow his land to lie fallow for several

years until it became more productive. Conservation and fertilization

of the soil cost more in labor usage than was returned to the farmer by

improved yields (Rasmussen, 1982)

.
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One of the first farm bulletins published by USDA found thousands

of acres of valuable but eroded cropland abandoned each year. This

bulletin, "Washed Soils: How to Prevent and Reclaim Them" was published

in 1894. It urged farmers to save and use the land they had. H.H.

Bennett's 1928 publication, "Soil Erosion — A National Menace,"

awakened much public concern about the soil conservation problem. He

has since been credited as "the Father of the Conservation Movement"

.

The weaknesses of conventional tillage practices were emphasized in 1943

by E.H. Faulkner in his famous book, "Plowman's Folly." However the

minimum tillage practices he advocated were not widely adopted because

of the accompanying weed problems.

Early conservation practices were implemented only when soil losses

were severe (Cosper, 1983) . These programs usually involved the

complete elimination of plowing. The reduction of soil losses, however

was accompanied with a decrease in yield and an increase in weed

associated problems.

Erosion

Rainfall related soil erosion on U.S. cropland acreage averages

only 4.4 ton per acre per year. As a general rule, soil can regenerate

itself if the annual erosion rate is less than 5 ton per acre. However,

there are currently 36 million acres (9 percent of all cropland) which

exceed 15 ton of soil erosion per year (Grano, 1985)

.

Continued erosion can cause two different types of damage: on-farm

losses to soil productivity and off-farm pollution of air and water. It

has been shown that erosion lowers yields on many soils through reduc-

tions in soil water holding capacity, rooting depth available for plant

14



use, and water infiltration rate. Even with the addition of fertili-

zers, yields nay not be completely restored. Erosion can also affect

the quality of air and water (Batie, 1986) . Agriculture is considered

the main source of non-point source water pollution. In 6 of the 10

Environmental Protection Agency regions non-point sources are the main

cause of water pollution (Myers, 1986) . Soil particles in water runoff

carry along fertilizer residues, pesticides, dissolved minerals, and

animal wastes with associated bacteria.

Troeh et al. (1980) states that water erosion is a three step

process. First, individual grains of soil are detached from the soil

mass. Some of these particles float into soil voids, sealing the soil

surface so water cannot readily infiltrate the soil. This in turn

increases the amount of runoff water. Second, the detached grains are

transported over the land surface and down slopes in the runoff water.

Third, as the water slows, the soil grains fall out of suspension and

are deposited as sediment.

With high erosive energy, water can detach and move larger soil

particles. It can also move more soil particles. Thus erosive energy

relates directly to the amount of soil carried off a field (Plaster,

1985) . Plaster also lists four soil characteristics which affect

erosive energy: (1) soil texture and structure, (2) slope, (3) soil

cover, and (4) roughness of soil surface.

Surface residue protects the soil from detachment by water and

wind. It minimizes surface crusting, allowing more water to infiltrate.

It also reduces runoff velocity, thus water's ability to transport sedi-

ment. Surface residues control wind erosion by reducing wind energy and

15



by protecting the soil surface (Mannering and Fenster, 1983) . Wilhelm

et al. (1986) find surface residues act as a mulch by reducing the rate

of soil water loss and they modify the soil temperature.

Mannering and Fenster also find soil surface roughness can reduce

erosion. The roughness increases water storage capacity in the plow

layer and reduces velocity of runoff and rate of surface sealing.

Surface roughness also lessens wind erosion by reducing wind energy.

Lane and Gaddis (1976) estimate soil losses per acre for three

types of tillage systems. Slot-plant (no-till) has the lowest loss per

acre of 0.5 ton per acre. Till-plant (similar to ridge-till) has an

estimated loss per acre of 3.1 ton, while maximum-till (includes

plowing) has a loss per acre of 10.7 ton.

Plaster (1985) sites two separate costs of soil erosion: the cost

to the farmer and consumer of production losses, and the cost to the

public of pollution and sedimentation.

The Soil Conservation Policy Task Force (1986) finds the produc-

tivity costs of erosion to be of four sorts: (1) the value of output

lost because of the decline in soil productivity, (2) the costs to

farmers of things done to offset the loss in productivity, (3) the cost

of erosion reduction measures to avoid losses, (4) the cost of damage to

growing crops.

The task force estimates the current value of prospective costs of

erosion-induced productivity losses (item 1) for land planted to corn

and soybeans to be about $40 million per year. Estimates of nutrient

loss (a component of item 2) range from $1 billion annually (Larson et

al., 1983) to roughly half as much, depending upon assumed fertilizer
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prices. Estimates for item 3 range from $800 million per year to $1.6

billion per year, depending upon the assumed rate of return to capital.

The Soil Conservation Policy Task Force identifies the off-site

costs of erosion to include costs to: (1) recreational services, (2)

water storage facilities, (3) navigational channels and harbors, (4)

property values of lands near streams and lakes, (5) flood control and

damage, (6) sedimentation of water conveyance facilities, (7) water

treatment facilities, and (8) steam electric power plants. The task

force provides a crude estimate of the costs to be $1.9 billion per year

in 1980.

Crosson (1984) estimates productivity losses to have a present

value of about $17 million. This is based upon the assumptions that

corn and soybean yields decline 10 percent over 100 years, that the

decline is in equal annual increments, that corn is priced at $3 per

bushel and soybeans at $7, that there are 70 million acres in each crop

each year, and the annual rate of discount is 10 percent. This estimate

does not include the costs of additional fertilizers and other inputs

farmers may use to compensate for the loss of soil productivity. Nor

does it include the costs of terracing and other similar practices.

Reasons for Tillage

Tillage is an expensive and time consuming undertaking, therefore,

tillage must provide significant benefit to farmers to warrant the

expense. Plaster (1985) sites four common reasons for tillage: (1)

weed control, (2) alterations of physical soil conditions, (3) crop

residue management, and (4) seedbed preparation.

17



One of the most common uses of tillage is weed control, both before

and after planting. Before planting, tillage prepares a weed-free

seedbed that greatly simplifies weed control during the growing season.

After planting, cultivation continues to destroy or bury emerging

seedlings. A weed-free environment is important to the growing crop in

order for it to make full usage of water, nutrients, sunlight, and other

resources.

Tillage can be used to improve physical soil properties, however

the improvement is often needed only to correct for problems caused by

past tillage. Tillage during seedbed preparation stirs and loosens the

soil, improves aeration, and creates a suitable environment for plant

growth. Tilled soils will usually warm earlier in the spring and dry

sooner, allowing earlier seeding and improved germination to occur.

However, tillage can cause a long-term decline in physical structure.

The decline in soil organic matter caused by tillage reduces the

productive capacity of soils. Also the formation of tillage pans by

soil compaction caused by wheel traffic, especially in wet soils, can

restrict plant root growth.

After crop harvest, plant residues remain in the field. The amount

of residue depends upon the type of crop, how well it grew, and how it

was harvested. Plowing is often used to bury crop residues, resulting

in a clean field that is easy to plant and cultivate. Present trends

are to maintain some residue on the soil surface to save moisture and

prevent erosion.

Seedbed preparation is perhaps the major reason for tillage. The

objective of preparing a seedbed is to ensure that the soil meets the

18



needs of the germinating seed. The seed needs a moist soil at the

proper temperature with sufficient air for seed respiration and germina-

tion. The soil should be loose enough for good aeration, but compact

enough around the seed for good soil/seed contact.

Johnson (1985) finds cultivation when combined with herbicides to

be the most cost effective weed control program. Even where weeds have

been controlled with chemicals, cultivation can increase yields. These

yield increases may be partially related to breaking crusts, thus

increasing water infiltration. Cultivation also often decreases soil

erosion due to increased surface roughness and water infiltration. He

adds that when cultivation is done the canopy is about to close over the

soil and protect it from rainfall, so rainfall is unlikely to cause

additional erosion problems.

Conventional Tillage

Christensen and Magleby (1983) define conventional tillage to

consist of tillage systems where 100 percent of the topsoil is mixed or

inverted by plowing, a power tiller, or multiple discings. Conventional

tillage involves two stages. First, primary tillage breaks up the soil

and buries crop residues. This is often done with a moldboard plow.

Secondary tillage is later used to produce a fine seedbed and kill weeds

by a series of operations that break up the soil into smaller and

smaller chunks. Secondary tillage involves mixing implements like disks

and harrows.

Conventional tillage leaves little residue remaining to protect the

soil from erosion. Troeh provides a table (Table 2-1) that shows the

proportion of original residue remaining on the surface after various
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tillage operations. The major technical problems with conventional

tillage are that soil particles are broken down into small particles

that erode more easily, and secondly, residue is removed from the soil

surface.

Conservation Tillage

Troeh, et al. (1980) defines conservation tillage as a program of

crop residue management aimed at increasing infiltration and reducing

erosion and runoff. Plaster (1985) states that a conservation tillage

field at planting time must have at least 30% of the soil surface

covered by crop residues to be effective. This practice will reduce

erosion by 40% to 50%.

Table 2.1 Effect of a Single Tillage Operation on Crop
Residue Remaining on the Soil Surface

Implement Percent
Residue

Remaining

Sweeps > 1.0 meter
Sweeps < 1.0 meter
Etockfoot cultivator
Rod weeder
Rod weeder with small shovels or
Skew treader
Chisel
One-way disk plow
Tandem disk
Mdldboard plow

90
85

75
90
85
90
75
50
50
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Conservation tillage is the lowest cost conservation method per ton

of soil saved and is rapidly becoming the most widely accepted method

for controlling soil losses.

Ihere are many benefits to conservation tillage. Successful

conservation tillage reduces soil and water losses by: (1) leaving

appreciable crop residue on the soil surface; (2) leaving the surface

rough, porous, cloddy, or ridged; or (3) a combination of the two

(Mannering and Fenster, 1983) . Brady (1984) lists several other

advantages to conservation tillage: (1) decrease in water evaporation;

(2) reduction of the time required for land preparation and planting;

(3) cost benefits from the decrease in the number of tillage operations.

Research involving conservation tillage systems and different soils

shows that these tillage techniques have certain limitations: (1) they

are not adaptable to all soils; (2) they provide varied crop response on

some soils but not on others, and (3) they require additional emphasis

on crop management not associated with conventional tillage (Cosper,

1983)

.

Among the disadvantages to conservation tillage is the cost of

herbicides to keep weeds under control. However this must be weighed

against the savings of fuel from the lower energy requirements of the

conservation tillage systems and other reductions in variable and fixed

costs associated with reductions in tillage operations (Brady, 1984)

.

Ritchie and Follett (1983) site these concerns with conservation

tillage. (1) Tillage has long been the primary method of weed control.

Even with conventional tillage, weeds reduce crop yields by competing

for the same water, nutrients, and other resources. Although herbicides
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can be substituted for tillage they are not available for all crops,

also herbicides react differently in different soils and under different

growing conditions. Environmental concerns can also be linked to

herbicide usage.

(2) Diseases, insects, and nematode problems have also been linked

to conservation tillage. Conventional tillage systems limit same of

these organisms by controlling their habitats. Once again environmental

concerns with chemical use exist.

(3) In general, surface-applied fertilizers will produce maximum

yields of most crops in conservation tillage systems. Nitrogen fertili-

zation is not a major problem with conservation tillage. Little

research is available on the effects of conservation tillage on the

availability of secondary nutrients and micronutrients.

(4) While same equipment for conventional tillage can be used for

conservation tillage, additional equipment may have to be purchased.

Hinkle (1983) sites three additional difficulties: (1) Herbicide

carry-over can reduce yields in sensitive crops. An example would be

atrazine. Atrazine is used to control weeds when corn and grain sorghum

are grown. When soybeans and small grains are planted the year fol-

lowing atrazine application injury can occur. (2) There can be unwanted

interactions among various chemicals applied. (3) Off-site problems

from pesticides found in runoff water. These chemicals can be found in

surface, ground, and well water. In Iowa, where atrazine is applied to

95 percent of corn, monitoring turned up detectable amounts of the

herbicide in all water examined (Hinkle, 1973)

.

22



Iindstram et al. (1984) examine simulated runoff rates on conven-

tional, reduced, and no-till cropping systems immediately after planting

during the first and tenth years of continuous com. Their trials

shewed that surface soil conditions under no-till systems were vulner-

able to runoff. They recommend caution in assuming that no-till farming

or crop residue by itself will solve water runoff problems.

Effects of Conservation Tillage upon Yield

Brady (1984) finds crop yields from conventional tillage and

conservation tillage to be about the same on well-drained soils.

However, Brady finds that certain soils — the flat, dark colored,

poorly drained soils of Indiana, Ohio and Illinois, for example —
produce lower crop yields under surface residue systems than under

conventional tillage. He links the decrease in yield to higher bulk

densities and reduced pore space attributable to the reduction of

tillage. Although reduced porosity of well-drained soils apparently has

no adverse effects on crop yields, this is not the case in poorly

drained areas.

In contrast a study in Western Kansas by Williams (1986) found

yields of both wheat and grain sorghum to be significantly higher from

the conservation tillage systems than from the conventional tillage

systems. He linked the yield increase to added soil moisture.

Unger and McCalla (1980) list a number of studies examining grain

yields. They found that as a general rule, grain yields were little

affected by tillage practices under conditions of adequate soil water,

favorable precipitation, and good drainage, provided other factors such

as soil fertility, weed control, and plant populations were equal.
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Under conditions of limited soil water and limited precipitation or

irrigation, crop yields were equal and often significantly higher with

reduced and no-tillage systems than with conventional tillage.

Crosson (1981) draws an important distinction between short-term

and long-term effects of conservation tillage upon crop yields. Over

the long term, the lower rates of erosion can give conservation tillage

a decisive yield advantage relative to conventional tillage. Whether

this occurs depends upon the differential advantage of conservation

tillage in reducing erosion and the amount of topsoil and nature of the

under lying parent material.

Keed and Erickson (1985) studied yield differentials in the Great

Plains. They found grain sorghum yields from conservation systems were

consistently greater than the yields conventional tillage systems in

western Kansas and Nebraska. Chemical conservation tillage, ecofallow,

and no-till systems all outyielded conventional tillage.

Cultivation of row crops has always been a major method of weed

control. Johnson (1985) cites studies in Illinois, Indiana, Mississip-

pi, and Louisiana that show cultivation can increase yields even when

there are not enough weeds to justify cultivation. Same yield increases

have averaged in excess of 20 bushels of corn and 7 bushels per acre of

soybeans.

Effects of Conservation Tillage Upon Yield in Eastern Kansas

A 7-year studies by Raney and Thierstein (1986a) in North Central

Kansas has shown no-till treatments to be significantly superior over

disk and undercut tillage treatments in grain sorghum following wheat by

14 bu/acre and 14 to 20 bu/acre respectively (LSD = 13.2bu /acre) . A 2-
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year study by Raney showed conventional (maximum) tillage to give a

significant 7 bu/acre increase over reduced tillage and no-till treat-

ments in continuous corn (Raney and Thierstein, 1986b)

.

No-till continuous soybeans yielded less than the conventional or

reduced till soybeans in 1985 in East Central Kansas. The same trend

was observed with corn in 1985, although there were no significant

differences (Maddux and Barnes, 1986) . In Southeast Kansas during the

dry growing years of 1983 and 1984, grain sorghum and soybean yields

were not affected by tillage systems. However in 1985, no rain for

three weeks after planting resulted in poor weed control in no-till

plots, thus lowering grain sorghum yields as compared to conventional

and reduced tillage (Sweeney, 1986)

.

Economic Implications of Conservation Tillage

Even though adoption of conservation tillage may result in the

reduction of yields, greater weed control problems, additional farm

machinery, and a change in farming practices; many U.S. farmers have

nonetheless modified their tillage strategies. This has been done for a

variety of reasons including: the reduction of labor, fuel and machin-

ery expenditures, increases in net returns, and decreases in the amount

of soil loss.

The effect of conservation tillage upon net returns has been

examined by several studies. Duffy and Hanthorn (1984) found returns to

conservation tillage strategies were not significantly different from

the returns of conventional tillage for U.S. corn farmers or for

Midsouth and Southeast soybean farmers in 1980. Midwest conventional
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till soybean farmers accrued significantly higher returns, however than

Midwest no-till soybean farmers, primarily as a result of higher yields.

Studies have shown that declines in production costs due to lower

fuel, repair, and capital costs may be largely offset by increases in

chemical costs for most crops including: corn, soybeans, grain sorghum,

and wheat. (Klemme, 1983; Duffy and Hanthom, 1984; Brady, 1984; Johnson

et al.
, 1986) . A common conclusion among these and other studies is

that farm-level economic feasibility of reduced tillage systems depends

in large part on managerial skills necessary to obtain yield levels

equal to those from established, conventional tillage systems (Klemme,

1985)

.

Eventually, continuation of present amounts of erosion will reduce

the productivity of the nation's cropland, in addition to imposing off-

farm costs. One estimate of off-farm costs, given earlier, was $1.9

billion annually at 1980 prices. For on-farm costs through losses to

soil productivity the annual cost was roughly $1.5 billion.

Klemme (1985) examines different tillage systems with com and

soybeans using experimental plot yield data from North Central Indiana.

These returns are compared under both risk-neutral and risk averse

scenarios using stochastic dominance. Under risk neutrality there was

no distinct advantage to any tillage system over another when soil loss

values were ignored. Risk averse farmers who place low values on soil

losses may select tillage-intensive systems since they are second degree

stochastically dominant over no-till in the production of corn and

soybeans, if costs of $10-$15 associated with annual soil losses are
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added to the analysis, conventional tillage is eliminated by second

degree stochastic dominance.

Williams (1986) examines different tillage systems with wheat and

grain sorghum using experimental plot yield data in Western Kansas.

These returns are compared for both risk-neutral and risk averse

decision makers using stochastic dominance with respect to a function.

The study found that managers classified as risk averse prefer conserva-

tion tillage systems for wheat and grain sorghum instead of the tradi-

tional conventional wheat-fallow cropping system. Higher yields in

association with reduced energy and labor costs offset increased

chemical costs of the conservation systems.
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CHAPTER THREE

CONCEFTTONAL CONSIDERATIONS

Economics of Conservation Tillage

The potential of conservation tillage to reduce crop production

costs is a major benefit. Particularly of importance are the reductions

in energy costs. As with most agricultural innovations the benefits

from the reduced costs will probably go largely to consumers. Only

farmers who are "early adopters" of conservation tillage are likely to

realize much gain for their efforts. late adopters will be in the

position of having to use the new system or risk being forced out of

business (Giere, etal., 1980).

A major economic benefit of conservation tillage is the value added

by the reduction of soil erosion. This study, however, does not

consider these external costs of conventional tillage. External costs

include both on-farm losses to soil productivity and off-farm pollution

of air and water. It has been shown that erosion lowers the productiv-

ity of many soils through reductions in water holding capacity, rooting

depth available for use, and water infiltration rates. Off site costs

include pollution by sedimentation, and runoff fertilizer residues,

pesticides, dissolved minerals, etc.

Enterprise Budgets

In the traditional theory of the firm, the goal of producers is

assumed to be profit maximization. In analyzing each cropping system,

this study does not solve for the profit maximization points, but

assumes that the input levels used by the experiment station agronomists
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are near the optimal amount of use (marginal factor cost equals marginal

value product) . The enterprise budgets represent only one point on the

production function facing the producer. This point is assumed to be at

or near the profit maximization level.

Decision Theory

Traditional analyses of decision making situations has been divided

into two classes: business risk and financial risk (Boehlje and Eidman,

1984)
. Business risk or uncertainty is defined as the inherent uncer-

tainty in the firm independent of the way it is financed. The major

sources of business risk in any production period are price and produc-

tion uncertainty. Financial risk or uncertainty is defined as the added

variability of net returns to owner's equity that result from the

financial obligation associated with debt financing. This risk results

from the concept of leverage. Leverage multiplies the potential

financial return or loss that will be generated. The major source of

financial risk is the cost and availability of credit. This study only

examines business risk and uncertainty.

Agricultural producers operate in an uncertain decision making

environment, therefore, agricultural economists have to incorporate

uncertainties into their decision analysis. The Expected Utility

Ifypothesls has provided the basis for much of the current theory of

decision making under uncertainty. The hypothesis states that choices

made under uncertainty are affected by the decision maker's preferences

and expectations, and that the decision rule used by decision makers is

maximization of expected utility. Stochastic Dominance techniques have

become a popular method for ranking alternative strategies of decision
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makers consistent with the Expected Utility Hypothesis. There are

several different stochastic dominance models commonly used. First

Degree Stochastic Dominance (FSD) , Second Degree Stochastic Dominance

(SSD) , and Stochastic Dominance With Respect to a Function (SDWRF) will

be discussed here.

Expected Utility Hypothesis

The Expected Utility Hypothesis dates back to Bernoulli's Principle

of rational choice which was formulated by Daniel Bernoulli some 200

years ago. It was not until the 1940s when the work of von Neumann and

Mbrgenstem showed Bernoulli's principle to be a logical deduction from

a number of axioms (Anderson, Dillion, and Hardaker, 1977) . The axioms

can be expressed as follows:

1. Transitivity: if there exist three lotteries, 'a', 'b', and 'c',
and if 'a' is preferred to 'b' and 'b' is preferred to
'c'; then 'a' is preferred to 'c'.

2. Continuity: if an individual has a preference for lottery 'a' over
•b' and 'b' over 'c'; then there exists same probability,
p, such that he is indifferent between receiving 'b' and
another lottery with probability '1-p' of receiving 'a'
and probability 'p' of receiving 'c'

.

3. Independence: if lottery 'a' is preferred to lottery 'b' and there
exists another lottery 'c'; then a lottery with 'a' and
'C is preferred to a lottery with 'b' and 'c' as long as
the probabilities of receiving 'a' and 'b' are equal.

Bernoulli provided the means for ranking risky prospects in order

of preference, the most preferred being the one with the highest

expected utility. One of the most serious difficulties with using the

Expected Utility Hypothesis is in accurately measuring a decision

maker's preferences. The most direct way is to estimate a decision

maker's utility function, which relates all of the possible outcomes of
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a choice to an exact representation of preferences. King and Robison

(1984) list several reasons for inaccuracy in formulating utility

functions: shortcomings in interview procedures, problems in

statistical estimation, and the lack of knowledge by individuals about

their own preferences.

Some of the problems with utility functions are overcame by using

an efficiency criterion to order choices. Given specified restrictions

on a decision maker's preferences, an efficiency criterion can provide a

partial ordering of choices. The efficiency criterion divides the

decision alternatives into two mutually exclusive sets. The efficient

set contains the decision alternatives that were not dominated by any

other alternative. The inefficient set contains the remaining

alternatives which are not preferred by any of the decision makers.

An efficiency criterion applies for a particular class of decision

makers, as defined by the set of restrictions placed upon their utility

functions, if the restrictions are rather general in nature, the

criterion can order alternatives, while requiring minimal information

about the decision maker's preferences. If enough alternatives are

eliminated, decision makers can make a final choice from the efficient

alternatives.

A major problem with efficiency criteria, however, is the trade-off

between the discriminatory power and the applicability of the criterion.

Efficiency criteria that place few restrictions on preferences, and thus

apply to most decision makers, may not eliminate many choices from

consideration, similarly, criteria that identify small efficient sets
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usually require more specific information about preferences of indivi-

duals.

First Degree Stochastic Dominance (FSD) is the most general effici-

ency criterion. The FSD criterion holds for decision makers who prefer

more to less. This is the case when the slope of the decision maker's

utility function is greater than zero (positive marginal utility) . This

criterion holds for most decision makers and thus tends to limit the

usefulness of FSD, since the criterion often eliminates few of the

choices under consideration. The FSD criterion can be formally stated

as:

Given two cumulative probability distributions, F(x) and
G(x)

, associated with alternative management strategies,
it can be shown that the expected utility of F is greater
than G, if and only if,

[F(x)-G(x)] < or = 0, for all x, and [F(x)-G(x)] < for some
x.

Second Degree Stochastic Dominance (SSD) is more discriminating

than FSD. SSD holds for all decision makers whose utility functions

have positive, nonincreasing slopes at all outcome levels. These

individuals are considered risk averse. SSD is a widely used efficiency

criterion. It has more discriminatory power than FSD, and the risk

averse assumption seems reasonable for many situations. However, the

risk aversion assumption does not always hold. King and Robison (1984)

list several studies indicating that risk preferring behavior may be

more prevalent than was earlier believed. Also, even though SSD is more

discriminating than FSD, it may still not effectively reduce the number

of alternatives. SSD can be formally expressed as:

Given two cumulative probability functions, F(x) , and
G(x) , associated with alternative management strategies,
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it can be shown that for all risk averse decision makers,
the expected utility of F is greater than G, if and only
if,

x

/ [F(y)-G(y)]dy < or = for all -» < x <
-= < for some x.

Stochastic Dominance With Respect to a Function (SDWRF) orders

choices for decision makers facing uncertainty by setting upper and

lower bounds to define an interval using the Rratt absolute risk

aversion function R(x) . The absolute risk aversion function is defined

by Pratt as:

R(X) = -U"(x)/U' (X)

R(x) is the ratio of the rate of change of the slope over the slope of

the decision maker's utility function U(x) . A particular value of R can

be interpreted as the percent reduction in marginal utility per unit of

If x is measured in dollars a value of R(x) = 0.0001 indicates that

marginal utility is dropping at the rate of 0.01% per dollar.

SDWRF allows the researcher to examine classes of utility functions

by defining a preference interval as desired. The preference interval

is bounded by a lower risk aversion coefficient R^x) and an upper risk

aversion coefficient R2 (x) . FSD and SSD are restrictive cases of the

SDWRF model. These cases include large preference intervals: FSD

requires a large interval with Rx (x) = -» and R2 (x) = +«,

SSD requires the interval defined by Rx (x) = o and R2 (x) = -w,

(Cochran, 1986) . Dominance by SDWRF can be expressed as:

Given two cumulative probability distributions, F(y) and
G (v) / associated with alternative management strategies,
it can be shown that the expected utility of F is greater
than the expected utility of G, if and only if, the
utility function, Uo(y) which minimizes
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S [G(y)-F(y)]u'(y)dy,

subject to

rx (y) < -u»(y)/u'(y) < r2 (y)

For F to dominate G, the integral must be positive, which implies that

expected utility of F(x) is always greater than the expected utility of

8(30.

Comparison of Stochastic Dominance to Mean Variance Efficiency

Mean variance (EV) efficiency is the most widely used efficiency

criterion. Like SSD, efficiency requires the decision makers to be

averse to risk. Further, EV efficiency requires the outcome distribu-

tions to be normal. If these conditions are met, EV analysis provides

the same efficient set as SSD.

King and Kobison (1984) list several reasons why EV efficiency is

widely used. EV efficiency is easy to use because means and variances

of probability distributions are easy to work with. Much of the

theoretical work on decision making under uncertainty has used the EV

criterion. Also the EV criterion is easy to use with quadratic program-

ming. By varying the expected value constraint parametrically, an EV

efficient set can be identified, in contrast stochastic dominance

requires pair-wise comparisons between alternatives which can not be

incorporated into mathematical programming models.

Many of the problems with EV are similar to those of SSD. The

decision maker is assumed to be risk averse. The EV efficient set often

does not effectively reduce the number of decision alternatives. An
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additional problem, however, is EV's normality assumption, since much

data considered by agricultural economists is skewed.

King and Pobison (1984) compared strategy rankings for FSD, SSD,

EV, MOTAD, and SEWRF. They found that FSD was ineffective in

discriminating between alternatives. The efficient sets of SSD, EV

analysis and M3IAD were identical even though the probability

distributions were skewed. SEWRF allowed the possibility of risk

preferring behavior at low return levels. Efficient sets of SDWRF were

found for two preference intervals — in one case the resulting

efficient set was much smaller than the SSD efficient set while in the

second case SEWRF reduced the set only slightly.
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CHAPTER TOUR

PROCEDURE AND ASSUMPTIONS

Outline of Procedures

Stochastic dominance techniques are used to compare the variations

of net returns to management of different cropping systems based upon a

representative case farm in Northeast Kansas. The case farm is charac-

terized according to data provided by the Northeast Kansas Farm Manage-

ment Association.

This study considers net return distributions from nine different

cropping systems based upon actual cropping practices for the years 1975

through 1984. The cropping systems involve two major Northeast Kansas

crops, grain sorghum and soybeans, grown continuously and in a rotation

with each other.

Enterprise budgets are used to determine the costs and returns of

each cropping system. To form the budgets these steps are followed: (1)

identification of the major operations which make up each cropping

system practice, (2) determination of the machinery requirement for each

system, and (3) formulation of an enterprise budget for each system

based upon technical requirements and economic values.

Identification of the Cropping System Practice* . A technically

feasible cropping system is determined by identifying the operating

inputs and the typical tillage techniques for each system. The oper-

ating inputs include the variable costs of production, such as seed,

fertilizer and herbicides.
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Determination of the Machinery Requirements . Using the timing and

technical requirements of each field operation it is possible to obtain

the machinery complement of the case farm for each cropping system.

Tractors and implements are selected for each cropping system based upon

the tillage requirements of each system. Schrock (1976) provides a work

sheet to help determine tractor and implement size based upon farm size,

planting and tillage constraints, and available field work days.

Formulation of Enterprise Budgets . To prepare the enterprise

budgets, costs for labor, fuel, oil and repairs are calculated for each

field operation in each of the crapping systems. The fixed costs of

insurance, interest and depreciation are then determined for each item

of machinery in all of the cropping systems. Finally the cost of the

operating inputs are summed with the fixed costs to arrive at the total

annual costs of production for each system.

Establishing Farm Size and Tenure .

Data from 230 predominantly cash crop dryland farms in the

Northeast Kansas Farm Management Association was used to establish the

size and tenure arrangements of the case farm (Figure 4.1) . The

average farm in the association was 785 acres. This figure was rounded

to 800 acres for calculation ease. The average farm had 164 acres of

wheat (20%) , 215 acres of corn (27%) , 189 acres of grain sorghum (24%)

and 217 acres of soybeans (28%) . Although wheat is a major component of

a typical Northeastern Kansas farm, data concerning cropping practices

was not available. Therefore this study ignored the wheat acreage in

the analysis, thereby reducing the farm size to 640 acres (800 total

acres less 164 acres of wheat then rounded to 640 acres)

.

37



CD

5 s

i
7 i

Ld

Z
o

S

*

• 1 !«

!

O
h> T a

- r
r

-

E
in

t

X
f-

K
o

-J

*

2:

O

l»

BB

C
?

1-
i/5

U

f-

c:

o

,
•

- u.

H i»
I i

s ; ui u
< P H

Is ^f 1 L« t
2 -1

3

\ i/>

o H
</) sS \ 1

•
f

. •
<
V)

<f)
S •< ^

j

h- H.
j

«*

z
11

| j

j

u

€ j2

5

i
4 |

A s

(A

<
z
<
5

£ |
: 5

-J^T
i

^T

OB
LU
H

|
!

!

f^«
•

;

<

a
2
£ |

1

i

S
1

I -
;

i

a
1/5 U

<
Ll

~^~
i *

i J

; t

? Z
fe 2

H
o

i
« I

;

w <
<
z I

4 5

o
toS

c | t

<
-

<
4

j
i f

i s i

1

33



Owned land in the Northeast Association was shown to be 31% of the

farmers' total acreage. The case farm's enterprise budgets assume 30%

of the land is owned (192 acres) and 70% rented (448 acres)

.

The Cropping Systems.

In 1975 a research project was established at the Combelt Experi-

ment Station in Northeastern Kansas near Powhattan to examine conserva-

tion tillage com, grain sorghum and soybeans cropping systems. The

cropping systems considered in this study are: conventional tillage

continuous grain sorghum (CVGG) , conventional tillage soybeans after

grain sorghum (CVGS) , conventional tillage continuous soybeans (CVSS)

,

ridge till continuous grain sorghum (RTGG) , ridge till soybeans after

grain sorghum (RIGS) , ridge till continuous soybeans (RTSS) , no till

continuous grain sorghum (NTGG) , no till soybeans after grain sorghum

(NTGS)
,
and no till continuous soybeans (NTSS) . Cropping systems

involving com are being considered by another study at the present

time.

Table 4.1 Cropping Systems

1. Conventional Tillage Continuous Grain Sorghum CVGG
2. Conventional Tillage Soybeans After Grain Sorghum CVGS
3. Conventional Tillage Continuous Soybeans cvss
4. Ridge Tillage Continuous Grain Sorghum rxgg
5. Ridge Tillage Soybeans After Grain Sorghum rigs
6. Ridge Tillage Continuous Soybeans HISS
7. No Till Continuous Grain Sorghum NTGG
8. No Till Soybeans After Grain Sorghum NTGS
9. No Till Continuous Soybeans NTSS
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Ridge till and no till cropping systems substitute the use of

herbicides for the spring tillage operations found in the conventional

tillage systems.

Conventional tillage is defined as any tillage system in which 100

percent of the topsoil is mixed or inverted by plowing, a power tiller,

or multiple discings. Conservation tillage will be defined as any

tillage system that has at least 30% of the soil surface covered by crop

residue at planting time.

Conventional Tillage. The conventional tillage system in this

study mates use of disk tillage. From 1975-1979 the preplant tillage

for the conventional till plots was to shred in the early spring if the

plot contained grain sorghum stubble, chisel if the plot contained grain

sorghum stubble, disc twice, and finally harrow 40% of the time. From

1980-1986 the preplant tillage for the conventional till plots was to

shred in the early spring 50% of the time if the plot contained grain

sorghum stubble, disc once, disc again 50% of the time, and finally

field cultivate.

Herbicides were broadcast prior to the planting operation for both

grain sorghum and soybeans. Grain sorghum was treated with 3.0 pound

propachlor (Ramrod), an annual grass herbicide, and 1.5 pound atrazine,

a broadleaf herbicide, in 83% of the years. 17% of years involved a

treatment of 2.0 pound metolachlor (Dual), an annual grass herbicide,

and 1.6 pound atrazine. Soybeans were treated with 3.0 pound Alachlor

(Lasso), an annual grass herbicide, and .375 pound Metribuzin (Sencor),

a broadleaf herbicide.
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Ridcre Tillage is a conservation tillage system adaptable to many

types of soils including the somewhat poorly drained Grundy silty clay

loam soils common to Northeast Kansas. A till planter with sweeps or

disk openers is used for planting. During the planting operation, the

top few inches of the ridge are removed, soil and residue are pushed

aside, and seeding occurs in a cleared, raised seedbed. The ridge is

maintained during the year with cultivations during the growing season.

Ridge planting is gaining interest in several areas of the state

and country. Crops grown in soils that have a high clay content subsoil

under a shallow topsoil may benefit from ridge planting not only because

of better drainage and/or warmer spring soil temperatures (as compared

with no till) but also from a deeper topsoil for rooting (Seeney and

Sisson, 1985)

.

From 1975-1979 the ridge-till plots were farmed using a till-plant

system. The preplant operations for the till-plant tillage was to shred

in the early spring if the plot contained grain sorghum stubble. Also

in four of the five years the plots planted to grain sorghum were

chiseled. From 1980-1986 the only pre-plant field operation was to

shred the grain sorghum stocks during one half of the years.

From 1975-1979, 2.7 pound of Bladex, a contact herbicide, was

applied in April to all the till plant (ridge-till) plots. From 1980-

1986 1.0 pound of Roundup, a contact herbicide, was applied in 83% for

grain sorghum plots and 67% for soybean plots; 17% of years .25 pound of

Paraguat, a contact herbicide, was applied to both grain sorghum and

soybean plots. Prior to the planting operation herbicides were again

broadcast for both grain sorghum and soybeans for all years. Grain
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sorghum was treated with 3.0 pound propachlor (Ramrod) and 1.5 pound

atrazine in 83% of the years. 17% of years involved a treatment of 2.0

pound metolachlor (Dual) and 1.6 pound atrazine. Soybeans were treated

with 3.0 pound Alachlor (Lasso) and .375 pound Metribuzin (Senear)

.

No-Till farming is another very popular type of conservation

tillage. In no-till farming the only soil manipulation required is the

opening of a slit or trench wide enough to receive a seed followed by

the covering of the seed with soil. No-till leaves almost all the

previous crop residue on the surface, and reduces wind and water erosion

to the minimum. This is the ultimate in reduced tillage systems and is

the most heavily dependent upon the use of herbicides (Giere, et al,

1980)

.

From 1975-1979 the preplant operations for the no-till plots was to

shred in the early spring if the plot contained grain sorghum stubble.

From 1980-1986 shredding of grain sorghum stocks occurred during one

half of the years. Herbicide treatment for the no-till plots was the

same as the treatment occurring to the ridge-till plots.

Tables 4.2 - 4.4 list the required tillage operations for the study

based upon the actual farming practices at the Cornbelt Experiment Field

occur from 1980-1986. The tables are divided by 5 day intervals. The

tables provide the field work hours per day, the percent of days

available for the 5 day interval, the confidence level of days avail-

able, operations provided by both tractors and the combine. The

confidence level is the percentage of years in which the study has this

many or more field workdays. All confidences are at the 85% level

except for the period May 16 through June 15 when the 85% level provided

42



Table 4.2 Timetable for Conventional^Till Farming Practice of Required
Tillage Operations For All Crops By Five Day Intervals

Field % Time Conf 131 HP 160 HP
)ate Hours Available Level Tractor Tractor Combine

Apr 1 10 3/15 85 Shred
Apr 6 10 3/15 85 Shred
Apr 11 10 3/15 85 Shred
Apr 16 10 4/15 85 Disk Shred
Apr 21 10 4/15 85 Disk Shred
Apr 26 10 4/15 85 Disk Disk

May 1 10 4/15 85 Disk Disk
May 6 12 4/15 85 Disk Disk
May 11 12 4/15 85 Disk Disk
May 16 12 3/15 77 Plant F Cult
May 21 12 3/15 77 Plant F Cult
May 26 12 3/15 77 Plant F Cult

Jun 1 12 4/15 72 Plant F Cult
Jun 6 12 4/15 72 Plant F Cult
Jun 11 12 4/15 72 Plant Cult
Jun 16 10 7/25 85 Plant Cult
Jun 21 10 7/25 85 Cult Cult
Jun 26 10 7/25 85 Cult Cult

Jul 1 10 7/25 85 Cult Cult
Jul 6 10 7/25 85 Cult Cult

Sep 16 7 3/10 Harv
Sep 21 7 3/10 Harv
Sep 26 7 3/10 Harv

Oct 1 7 3/10 Harv
Oct 6 7 3/10 Harv
Oct 11 7 3/10 Harv
Oct 16 7 3/10 Harv
Oct 21 7 3/10 Harv
Oct 26 7 3/10 Harv
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Table 4.3 Timetable for Ridge-Till Farming Practice of Required
Tillage Operations For All Crops By Five Day Intervals

Field % Time Conf 60 HP 170 HP
Date Hours Available Level Tractor Tractor Combine

Apr 1 10 3/15 85 Shred
Apr 6 10 3/15 85 Shred
Apr 11 10 3/15 85 Shred
Apr 16 10 4/15 85 Shred
Apr 21 10 4/15 85 Shred
Apr 26 10 4/15 85 Shred

May 1 10 4/15 85
May 6 12 4/15 85
May 11 12 4/15 85
May 16 12 3/15 77 Plant
May 21 12 3/15 77 Plant
May 26 12 3/15 77 Plant

Jun 1 12 4/15 72 Plant
Jun 6 12 4/15 72 Plant
Jun 11 12 4/15 72 Cult Plant
Jun 16 10 7/25 85 Cult Plant
Jun 21 10 7/25 85 Cult Cult
Jun 26 10 7/25 85 Cult Cult

Jul 1 10 7/25 85 Cult Cult
Jul 6 10 7/25 85 Cult Cult

Sep 16 7 3/10 Harv
Sep 21 7 3/10 Harv
Sep 26 7 3/10 Harv

Oct 1 7 3/10 Harv
Oct 6 7 3/10 Harv
Oct 11 7 3/10 Harv
Oct 16 7 3/10 Harv
Oct 21 7 3/10 Harv
Oct 26 7 3/10 Harv



Table 4.<1 Timetable for No-Till Farming Practice of Required Tillage
Operations For All Crops By Five Day Intervals

Field % Time Conf 60 HP 131 HP
Date Hours Available Level Tractor Tractor Combine

Apr 1 10 3/15 85 Shred
Apr 6 10 3/15 85 Shred
Apr 11 10 3/15 85 Shred
Apr 16 10 4/15 85 Shred
Apr 21 10 4/15 85 Shred
Apr 26 10 4/15 85 Shred

May 1 10 4/15 85
May 6 12 4/15 85
May 11 12 4/15 85
May 16 12 3/15 77 Plant
May 21 12 3/15 77 Plant
May 26 12 3/15 77 Plant

Jun 1 12 4/15 72 Plant
Jun 6 12 4/15 72 Plant
Jun 11 12 4/15 72 Cult Plant
Jun 16 10 7/25 85 Cult Plant
Jun 21 10 7/25 85 Cult Cult
Jun 26 10 7/25 85 Cult Cult

Jul 1 10 7/25 85 Cult Cult
Jul 6 10 7/25 85 Cult Cult

Sep 16 7 3/10 Harv
Sep 21 7 3/10 Harv
Sep 26 7 3/10 Harv

Oct 1 7 3/10 Harv
Oct 6 7 3/10 Harv
Oct 11 7 3/10 Harv
Oct 16 7 3/10 Harv
Oct 21 7 3/10 Harv
Oct 26 7 3/10 Harv
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only 3 field workdays for this 31 day period. Seven field workdays were

provided by allowing the confidence level to be at the 75% level for

this time period.

Machine Complement Selection

Each cropping system requires a unique machinery complement to

provide the required tillage operations. The machinery complement must

match the tractor size to the horsepower requirements of the implement

used for the tillage operation. This study develops a machinery

complement for each system based only upon the needs of the system.

This may overstate the costs of each system because rotations with fall

crops allow more efficient usage of machinery by spreading annual fixed

costs over more acres.

Schrock (1976) lists four steps in determining tractor size and

implement width needed: (1) identify the critical job, (2) estimate

the time available to do the job, (3) determine the size of machinery

needed and finally (4) estimate the power requirements of the tillage

implements.

Identify the Critical Job. Equipment should have sufficient

capacity to complete field operations within the optimum time period.

Tractor size can then be determined by the most limiting tillage

operation. The tractors must be large enough to allow both the required

tillage operations and planting to occur during the optimal time period.

The planting operation was the most limiting operation for all tillage

systems. Cptimum planting dates for grain sorghum in Northeastern

Kansas are May 10 through June 20 and soybeans is between May 15 until
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June 25 (Peterson, 1981 and 1984) . Herbicide equipment was sized to

match the planter in the equipment complement.

Timeliness in the completion of field operations can affect both

crop quantity and quality. To avoid introducing additional variability

into the analysis the equipment complement in this study may be slightly

oversized to reduce the timeliness problem. In the conventional tillage

systems a second disk was added to the equipment complement to make more

efficient usage of the tractors.

In addition to determining tractor size, combine size must also be

selected. When determining the combine size, capacity must be large

enough to allow harvesting of the desired acreage within the required

time period, he optimum time of harvest for soybeans and sorghum was

assumed to occur during the 46 day period beginning September 15 and

ending October 31.

Estimate the Time Available to do the Job. Determination of the

time available for completion of a field operation requires an estimate

to be made of the number of days weather will permit field work to

occur. Buller et al., (1976) compiled a list of field work days

available based upon the frequency of occurrence of suitable working

days in a given year for several different locations in Kansas. Field

work days refer to days when the soil moisture is at a level which is

satisfactory to perform field operations. Tables 4.2 - 4.4 give the

confidence levels used in this study. For harvesting 30% of the days

are assumed to be suitable for work.

The number of work hours per day must also be determined. This

study uses ten hour work days during the spring, 12 hour work days
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during the planting period, 10 hour work days during the summer, and 7

hours are available during the fall harvest. The total running time is

determined by multiplying the work hours per day by the field work days

available.

Finally it is necessary to schedule all of the desired tillage

operations into the total time available. This may require more and/or

larger equipment, also see the machinery selection worksheets in

Appendices a, B, and C.

Sizing of the Machinp.T-y. The field capacity in acres per hour is

determined by dividing the total acres covered by a particular field

operation by the total running time available. Implement width can then

be determined by this formula:

F X 8.25
(1) H =

S x E

where W is the implement swath width in feet, F is the field capacity in

acres per hour, S is the speed in miles per hour and E is the field

efficiency. Field efficiency estimates and speeds were found in the

1986 Ag Engineering Yearbook and are summarized in table 4.5.

Estimate Fower Reauiremp.nt . Once the size of the tillage

iirplements has been determined it is necessary to determine the size of

tractor(s) necessary to pull these implements. The Pro horsepower

requirement for tractors is calculated by taking the implement width

times the FTO horsepower requirement per foot of width (Schrock, 1976)

.

The engine horsepower is approximately equal to the FTO horsepower

divided by 86% (Bowers, 1977)

.
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Table 4.5 Approximate Speeds and Field Efficiencies

Speed Field
Field Operation (mph) Efficiency

Combine 4.0 70%
Conventional Till Planter 5.0 60%
w\ herbicide & insecticide application

Disk 5.5 85%
Field Cultivator 5.0 85%
No Till Planter w\ herb. & insect. 5.0 60%
Ridge Till Cultivator 4.5 70%
Ridge Till Planter w\ herb. & insect. 5.0 60%
Row Crop Cultivator 4.5 70%
Shredder 5.0 80%

In the conventional-till systems the planting operation required a

131 horsepower tractor. This tractor will pull a 15.0 foot disc. 18.0

foot of width was still needed to complete the discing operation,

requiring a 160 horsepower tractor. As shown in Table 4.6 all other

machinery is not limiting. See machinery selection worksheets in

Appendix A.

In the no-till systems the planting operation required a 131

horsepower tractor. This tractor is also used to shred and cultivate.

A second tractor (60 horsepower) was needed to pull an additional

cultivator (see Table 4.7 and Appendix B for machinery selection

sheets)

.

In the ridge-till systems the planting operation required a 170

horsepower tractor. This tractor is also used to shred and cultivate.

A second tractor (60 horsepower) was needed to pull an additional

cultivator (see Table 4.8 and Appendix C for machinery selection

worksheets)

.
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Table 4.6 Equipment Complement for Case Farm (Conventional Tillage)

.

FID HP Max Width Size Max Width Size
per for in for in

Implement Foot 131 HP Study 160 HP Study

Shredder 10.0 11.9 13.8 12
Disk 7.5 15.0 15 18.3 18
Field Cultivator 5.0 22.5 27.5 24
Conventional Planter 6.3 18.0 18 22.0
w\ herbicide & insecticide attachments

Cultivator 2 . 56.3 18 68.8 18
Combine & 20 ft header

Table 4.7 Equipment Complement for Case Farm (No Till)

,

Implement

PTO HP Max Width Size Max Width
per for in for
Foot 60 HP Study 131 HP

Shredder 10.0 5.4
No Till Planter 6.3 8.3
w\ herbicide & insecticide attachments

Cultivator
Combine & 20 ft header

2.0 25.8 18

11.9
18.0

56.3

Size
in

Study

12
18

18

Table 4.8 Equipment Complement for Case Farm (Ridge Till)

.

Implement

PTO HP Max Width Size Max Width Size
per for in for in
Foot 60 HP Study 170 HP Study

Shredder 10.0 11.3
Ridge Till Planter 7.5 15.0
w\ herbicide & insecticide attachments

Ridge Till Cultivator
Combine & 20 ft header

3.0 28.2 18

13.8
18.3

34.4

12

18

18
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One concern with the machinery complements selected for the no-till

and ridge-till systems was the necessity of a second tractor which is

used only for cultivation. Because the planter width is 18 feet (6

rows) it is necessary to make the cultivator (s) the same width. Using

the available time and this width made two cultivators a requirement.

Yields and Prices

Crop prices are the annual average from the northeastern district

of the Kansas Crop and Livestock Reporting Service (see Appendix D)

.

Yield data for grain sorghum and soybeans were obtained from the

Cornbelt Experiment Station for the 10-year period in which the tillage

system study was conducted. Analysis of variance procedure using

Duncan's multiple range test were used to determine if the mean yield of

each cropping system was significantly different at the a = 0.05 level.

No significant difference in yields was detected (see Table 5.12)

.

During the early years of the study, 1975 to 1979, field operations

were somewhat different for the conventional tillage systems than during

the later years, 1980 to 1984 (see Tables 4.9 to 4.10). Tillage

practices were changed in 1979 by the elimination of a chiselling

operation for both grain sorghum and soybeans. Also preplant herbicides

for no-till systems were changed from 2.7 lb of atrazine per acre prior

to 1980 to l.o lb of Roundup, statistical differences in yield between

the early years and the late years were not detected at a = 0.05 for any

of the cropping system in either grain sorghum or soybeans when analysis

of variance was conducted. T-values were computed to test each of the

individual systems and no significant differences were found. Even if

differences did occur this study makes comparisons only between differ-

51



Table 4.9 Occurrence of Field Operations for Cbnventional-Till Sorghum

Field Operation 1975-79 1980-85

CVGG CVGS CVGG CVGS
Stalk shredding 4/5 0/5 3/6 0/5
Discing (First) 5/5 5/5 6/6 6/6
Discing (Second) 4/5 4/5 3/6 3/6
Discing (Third) 0/5 0/5 1/6 1/6
Chisel 4/5 0/5 0/6 0/6
Harrow 2/5 2/5 0/6 0/6
Field Cultivate 0/5 0/5 6/6 6/6
Plant 5/5 5/5 6/6 6/6
Herbicide 5/5 5/5 6/6 6/6
Cultivate 5/5 5/5 6/6 6/6
Harvest 5/5 5/5 5/6 5/6

Table 4.10 Occurrence of Field Operations for Conventional-Till
Soybeans

Field Operation 1975--79 1980--85

CVGS cvss CVGS CVSS
Stalk shredding 4/5 0/5 3/6 0/5
Discing (First) 5/5 5/5 6/6 6/6
Discing (Second) 4/5 4/5 3/6 1/6
Discing (Third) 0/5 0/5 0/6 0/6
Chisel 4/5 0/5 0/6 0/6
Harrow 1/5 1/5 1/6 1/6
Field Cultivate 0/5 0/5 6/6 6/6
Plant 5/5 5/5 6/6 6/6
Replant 0/5 0/5 1/6 1/6
Herbicide 5/5 5/5 6/6 6/6
Cultivate 5/5 5/5 6/6 6/6
Cultivate (Second) 1/5 1/5 0/6 0/6
Harvest 5/5 5/5 5/6 5/6
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Table 4.11 Occurrence of Field Operations for No-Till Grain Sorghum

Field Operation 1975-79 1980-85

NTGG NTGS NTGG NTGS
Stalk shredding 4/5 0/5 3/6 0/5
Herbicide 5/5 5/5 6/6 6/6
Plant 5/5 5/5 6/6 6/6
Herbicide 5/5 5/5 6/6 6/6
Cultivate 5/5 5/5 6/6 6/6
Harvest 5/5 5/5 5/6 5/6

Table 4.12 Occurrence of Field Operations for No-JTill Soybeans

Field Operation 1975-79 1980--85

NTGS NTSS NIGS NTSS
Stalk shredding 4/5 0/5 3/6 0/5
Herbicide 5/5 5/5 6/6 6/6
Plant 5/5 5/5 6/6 6/6
Replant 0/5 0/5 1/6 l/e
Herbicide 5/5 5/5 6/6 6/6
Cultivate 5/5 5/5 6/6 6/6
Cultivate (Second) 1/5 1/5 0/6 0/6
Harvest 5/5 5/5 5/6 5/6
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Table 4.13 occurrence of Field Operations for Rioge-^Till Grain Sorghum

Field Operation 1975-79 1980-85

Stalk shredding
Discing
Chisel
Harrow
Herbicide
Plant
Herbicide
Cultivate
Harvest

RTGG RTGS RIGS RIGS
4/5 0/5 3/6 0/5
3/5 3/5 0/6 0/6
4/5 1/5 0/6 0/6
0/5 1/5 0/6 0/6
5/5 5/5 6/6 6/6
5/5 5/5 6/6 6/6
5/5 5/5 6/6 6/6
5/5 5/5 6/6 6/6
5/5 5/5 5/6 5/6

Table 4.14 Occurrence of Field Operations for Ridge-Till Soybeans

Field Operation 1975-79

Stalk shredding
Discing
Chisel
Harrow
Herbicide
Plant
Replant
Herbicide
Cultivate
Cultivate (Second)
Harvest
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1980-85

RIGS RTSS RIGS RTSS
4/5 0/5 3/6 0/5
2/5 0/5 0/6 0/6
1/5 0/5 0/6 0/6
1/5 0/5 0/6 0/6
5/5 5/5 6/6 6/6
5/5 5/5 6/6 6/6
0/5 0/5 1/6 1/6
5/5 5/5 6/6 6/6
5/5 5/5 6/6 6/6
1/5 1/5 0/6 0/6
5/5 5/5 5/6 5/6



ent cropping systems and not between different cropping years, therefore

differences in field operations will uniformly affect all the cropping

systems.

Actual field operation for no-till and ridge-till systems are found

in Tables 4.11 to 4.14.

Enterprise Budgets

Enterprise budgets are used to summarize all the annual operating

expenses and machinery costs of each system. Each budget has three

major sections. The first section of the budget determines the costs

per acre for labor, fuel, oil and repairs based upon field operations.

The second section of the budget determines the annual depreciation,

insurance and interest for the machinery complement. The last section

contains a summary of all costs associated with the farming system.

This section has a traditional enterprise budget format. The last line

of the budget contains an estimate of the net return to management to

the farm manger and landlord for the farming system. A sample worksheet

for constructing the enterprise budget is shown in Appendix G. Table

4.15 provides a sample of an enterprise budget.

labor Cost (1)1 per acre per field operation is equal to the wage

rate per hour multiplied by the percentage of years the operation occurs

divided by the field capacity (acres per hour) times the number of

acres covered by the operation divided by the total crop acres. The

summation of these costs for all tillage operations provides the labor

cost per acre. The example below calculates the cost per acre of

1 Numbers in parenthesis indicate the line on the enterprise budget
summary where this information is found.
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Table 4.15 Sample Enterprise Budget

COST AND RETURNS SORGHUM BEANS
TOTAL

VARIABLE COSTS PER ACRE
1. Labor 4.15 4.66 8.81
2. Seed 4.05 10.20 14.25
3. Herbicide 16.43 27.56 43.99
4. Insecticide 14.40 0.00 14.40
5. Fertilizer 30.17 13.86 44.03
6. Fuel 3.64 4.01 7.64
7. Oil 0.55 0.60 1.15
8. Equipment Repair 14.46 14.80 29.26
9. Custom Hire ($2.82 Fertilizer Appl

.

)

2.82 2.82 5.64
10. Interest (1/2 VC * rate) 6.35 5.50 11.84

Interest (Rented Land) 4.64 4.34 8.97

TOTAL VARIABLE COSTS (Owned Land) 97.00 84.01 181.01
TOTAL VARIABLE COSTS (Rented Land) 70.90 66.28 137.17

FIXED COSTS PER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 6 27
12. Interest on Land ($627*. 06) 7524
13. Share Rent SORG. (Gross * 40%) 91.45

Share Rent SOYB. (Gross * 40%) 73.12
14. Depreciation on Machinery
15. Interest on Machinery 41 87
16. Insurance and Housing 5

'

98

29.4
6.22

91.45
73.12
44.26

TOTAL FIXED COSTS (Owned Land) 173 63
TOTAL FIXED COSTS (Rented Land) 256*68

TOTAL COSTS PER ACRE (Owned Land)
TOTAL COSTS PER ACRE (Rented Land)

354.63
393.86

YIELD PER ACRE (Bu) g8 8
PRICE PER BUSHEL 2 .31

GROSS RETURN PER ACRE 228.62 182.81 411.42

RETURNS OVER VARIABLE COSTS (Avg) 261~~10
RETURNS OVER TOTAL COSTS (Owned Land) 56

'

79
RETURNS OVER TOTAL COSTS (Rented Land) 17

'

57
ANNUAL NET RETURNS PER ACRE (1 acre sorghum and 1 acre soybean) 29*33
NET RETURN TO MANAGEMENT (320 acre sorghum and 320 acre soybeans) 9,386

* Assumes landlord paying 2/5 of herbicide (17.60), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (17.61).
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soybeans to shred stalks in a conventional tillage soybeans after grain

sorghum rotation.

(2) Cost = $/hr * occur / acres/hr * acres covered / total acres

$0.52 = $6.00 * 50% / 5.8 * 320 / 320

Labor is valued at $6.00 per hour (Figurski and Beech, 1985) . In

this example the shredder covers 5.8 acres per hour (from machinery

selection worksheet) and shredding occurs only 50% of the time (actual

tillage practices at Powhattan) . There are 320 total acres of soybeans

and this shredder is used to shred all of the acreage. The convention-

al-till systems require discing to be done using two tractors and discs,

thus the number of acres covered by the field operation is not equal to

the total number of acres of the crop grown.

Seed Expense (2) is based upon actual seeding rates used on the

plots. The seeding rate for grain sorghum was 5.5 Lbs per acre and for

soybeans 60 pounds per acre were used. Seed cost for grain sorghum

averaged $0.90 per pound, while soybeans averaged $0.17 per pound

(Figurski and Beech, 1985)

.

Herbicide Cost (3) is based upon actual herbicide application rates

at the Corn Belt Experiment Station. Herbicides applied at planting are

applied by the operator, however, herbicides applied before or after

planting are assumed to be custom applied. The application rates and

costs are summarized in Table 4.16. Prices of herbicide were given by

Nilson, et al (1986)

.
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Table 4.16 Chemical Application Pates (Pounds Active Per Acre)

Ridge No Ridge No
Conv Till Till Conv Till Till

Type2 Sorghum Sorghum Sorghum Soybeans Soybeans Soybeans

Propachlor
(Ramrod) G 3.000 3.000 3.000

Atrazine 4L B 1.500 1.500 1.500
Metolachlor
(EUal 8E) G 2.000 2.000 2.000

Glyphosate
(Roundup) C 1.000 1.000 1.000 1.000

Paraquat C 0.250 0.250 0.250 0.250

2 '4_D B 0.500 0.500

Alachlor
(lasso EC) G 3.000 3.000 3.000

Metribuzm
(Sencor 4) B 0.375 0.375 0.375

FUridan I 9.000 9.000 9.000

2 Types of herbicides: (G - Grass, B - Broadleaf, C - Contact,
I - Insecticide)

Insecticide Cost (4) is also based upon the actual application

rates at the Corn Belt Experiment Station. The only insecticide applied

is Furidan, which is applied at 9 pounds per acre to the acres

containing grain sorghum.

Fertilizer Cost (5) per acre is based upon the actual fertilizer

application rates at the Corn Belt Experiment Station. Grain sorghum

acreages received 128 pounds of nitrogen and 40 pounds of P205. Only 40

pounds of P205 was applied to the soybeans acreages. All fertilizer is

assumed to be custom applied. Nitrogen rates used at the experiment
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field are approximately 40 pounds per acre higher than typically used by

farmers in this region.

Fuel Cost (6) per acre per field operation is equal to the price

of fuel ($0.96) times the occurrence percentage times the fuel use

(liters per hectare) converted to gallons per acre times the number of

acres covered by the operation divided by the total crop. By summing

these costs for all the tillage operations in the system the fuel cost

per acre is obtained. Oil and Lubricant cost (7) was assumed to be 15%

of the fuel cost (KLetke, 1979) . Below is an example showing the

calculations for the fuel cost per acre of soybeans to shred stalks in a

conventional tillage soybeans after grain sorghum rotation.

(3) Cost = $/Gal * %-age * fuel / 9.353 * acres covered / total
acres

$0.37 = $0.96 * 50% * 7.3 / 9.353 * 320 / 320

The fuel price used is the average price in cents per gallon for

No. 2 diesel fuel, excluding tax for Kansas in 1985 (USDA, 1986) . Fuel

consumption in gallons per acre was obtained from a survey of Kansas

agricultural producers (Schrock, 1985) . In the above example the

shredder is used 50% of the years over the entire soybean acreage. The

tractor consumes 7.3 liters of fuel per hectare which converts to 0.78

gallon per acre.

Repair Cost (8) per acre is estimated based upon the number of

hours the tractor and tillage implement are used in each field

operation. Rotz (1985) shows the total accumulated repair cost for each

piece of equipment is equal to the list price multiplied by the a repair
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coefficient (RC1) times accumulated use (thousands of hours) raised the

power of a second repair coefficient (RC2)

.

Repair costs for some machines tend to be more uniform over their

life than those of other machines. Repair costs tend to increase with

the machine age, however not at the same rate for all machines. Rotz's

assigns a coefficient (RC2) to each type of machine to allow for the

differences between machines. Since the cost changes with the machine

age it is necessary to determine each machine's age. This study assumes

all existing machinery to be at an age equal to one half of its depreci-

able life. Previously non-existing machinery includes the openers for

the planter in the ridge-till and no-till systems and the ridge-till

cultivator.

For convenience, this study uses the average repair cost per hour

of use for computing repair costs per acre. The example below computes

the total repair cost of shredding prior to planting soybeans in the

conventional soybeans after grain sorghum rotation. Equation 4 computes

the repair cost per hour associated with the implement and equation 5

computes the repair cost per hour associated with the tractor. Equation

6 computes the total repair cost per hour and finally equation 7

computes the total repair cost associated with the field operation.

(4) Implement Repair Per Hour = (List * RC1 * (Life/1000) ARC2)/Life

= ($4488 * 0.23 * (2000/1000)^1. 4) /2000
= $1.36 per hour

(5) Tractor Repair Per Hour = (List * RC1 * (Life/1000) ARC2)/Life

= ($64137 * 0.01 * (10000/1000) A2)/10000
= $6.41 per hour
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(6) Total Repair / Hour = Implement Repair / Hr + Tractor Repair / Hr

= $1.36 + $6.41
= $7.77 per hour

(7) Total Repair = Repair / Hr * Hours Use / Acres Covered * Occur

= $7.77 * 27.5 / 320 * 50%
= $0.33 per acre

where List is the 1985 list price of the machine, Life is the estimated

life of the machine, Acres Covered are the number of acres covered by

this field operation, and Occur is the percentage of the years that the

field operation was needed.

Custom Hire (9) includes the cost associated with the application

of fertilizer in all the systems and herbicides applications that occur

before or after planting. Herbicides applied at planting are applied by

the operator. This study assumes that the tenant pays all custom

application expenses. All fertilizer is assumed to be custom applied as

is all herbicide applications which are not done with the planting

operation. Fertilizer custom rates for application of liquid fertilizer

in Northeast Kansas averaged $2.82 per acre. Rates for herbicide

application averaged $3.04 per acre (Kansas Custom Rates, 1985).

Interest Expense (10) is assumed to be equal to one half the sum of

the variable cost items times the interest rate (Figurski and Beech,

1985)

.

Total Variable Cost of rented land is less than the costs of owned

land because the landlord is assumed to pay 2/5 of the cost of all yield

increasing inputs. This includes fertilizer, herbicide and insecticide.
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Real Estate Taxes (11) on owned land are $0.50 per $100.00 of land

value. Land value is assumed to be $627.00 per acre. Langemeier (1986)

gives the 1984 weighted average land value for the Northeastern Farm

Management Association to be $777.00 per acre. The Federal Reserve Bank

of Kansas City estimated that farm land in the Kansas and surrounding

states decreased in value 19.3% during 1984 (Kansas City Reserve Bank,

1986) . Discounting the land value accordingly farm land in Northeastern

Kansas can be estimated at $627.00.

Interest on Land (12) is calculated using a 6% opportunity cost.

Share Rent (13) is equal to the yield multiplied by the landlord's

share multiplied by the price. The landlord's sharerent of the harvest-

ed crop is 40% which is typical in northeast Kansas. The yield is the

average yield from 1975 to 1984 obtained from the Corn Belt Experiment

Station.

The Annual Depreciation for Machinery (14) requires a number of

assumptions to be made regarding the machinery complement. The case

farm is assumed to already have all of the equipment necessary for

conventional tillage. Unless the equipment would have to be purchased

it was assumed to be aged one half of its depreciable life, all pur-

chased equipment was assumed to be new. Depreciable life was assumed to

be 10 years for tractors and combines, 12 years for planting equipment,

and 14 years for all other equipment.

The depreciable value for each machinery item was the 1986 list

price adjusted for the age of the equipment. The depreciable value is

equal to the purchase price (85% of the list price) discounted by a

ratio of price indexes for tractors and implements for the appropriate
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year (Agricultural Outlook, 1975-1986) . The salvage value was assumed

to be a percentage of the depreciable value (Mohasci 1982) . Annual

depreciation is calculated using the straight line method. Table 4.17

shows the annual depreciation for the conventional soybeans after grain

sorghum equipment complement. The example below calculates the annual

depreciation for a 12 foot shredder found in the conventional tillage

soybeans after grain sorghum rotation.

(8) Depr Value = List * ( l - Discount ) * Beg Index / End Index

$2,467.40 = 4464 * ( 1 - 15.0% ) * 119 / 183

(9) Salv Value = Depr Value * Remain Value Percentage

$266.48 = 2467.40 * 10.8%

(10) An Depr = (Depr Value - Salv Value) / Life

$157.21 = ( 2467.40 - 266.48
) / 14

Annual Interest on Machinery (15) is based upon the average value

of machinery (one half the depreciable value of the equipment) . The

interest rate used is assumed to be 14%. Insurance and Housing (16) is

assumed to be 1% of the depreciable value. Table 4.17 shows the annual

interest and insurance and housing costs associated with the conven-

tional soybeans after grain sorghum rotation. Costs for other tillage

systems are discussed in Chapter 5.
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Table 4.17 Equipment List Price, Depreciation, Insurance, Interest
Conventional Tillage Systems

IMPLEMENT, SIZE LIST DEPREC SALVAGE ANNUAL ANNUAL ANNUAL
PRICE VMJJE VALDE DEPREC INSURE INTEREST

2WD Tractor, 131 HP $52,576 $38,611 $11,390 $2,722 $386 $2,703
2WD Tractor, 160 HP 64,137 47,101 13,895 3,321 471 3,297
Shredder, 12 Foot 4,464 2,496 270 159 25 175
Disc, 15 Foot 6,498 3,634 392 232 36 254
Disc, 18 Foot 10,736 6,004 648 383 60 420
Field Cult. , 24 Foot 9,513 5,320 575 339 53 372
Planter, 18 Foot 14,904 9,245 1,285 663 92 647
Cultivator, 18 Foot 3,924 2,194 237 140 22 154
Cultivator, 18 Foot 3,924 2,194 237 140 22 154
Combine 104,695 76,860 14,526 6,233 769 5,380

Total Annual Cost $14,331 $1,937 $13,556

Total Fixed Cost on owned land is equal to the sum of lines 11, 12,

14, 15 and 16 on the enterprise budget (see table 4-17) . Rented land

combines lines 13 through 16. Total Costs per Acre are equal to Fixed

Costs added to Variable Costs. Gross Return per Acre are calculated by

multiplying yield times the average price. Returns Over Variable Costs

are equal to Gross Returns minus Total Variable Costs. Returns Over

Total Costs are equal to Gross Return minus Total Costs. Annual Net

Returns Per Acre is the weighted average Return Over Total Cost, with

30% of the land owned and 70% rented. Therefore, 2/5 of the crop goes

to the landlord on 70% of the land. Net Return to Management is found

by multiplying the Annual Net Returns Per Acre by the number of crop

acres. Net returns to management reflect net returns after the deduc-

tion of all labor costs, interest expenses, and a return to owned land.
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CHAPTER FIVE

ANALYSIS

Using 1985 cost of production estimates from the enterprise budgets

developed for the case farm, net return to management is calculated for

each of the nine cropping systems using ten year average prices and

yields. Comparisons are first made of the input requirements for each

cropping system, then yield, price and income variability are examined,

and finally stochastic dominance techniques are used to examine the risk

associated with each crapping system.

ANNUAL FIELD OPERATIONS

Table 5.1 summarizes annual crop acres and field operations

required by each cropping system. Fertilizer application is custom

applied for all cropping systems, chemical applications occurring on

the day of planting are applied by the operator, however all other

chemical applications occurring before or after planting are assumed to

be custom applied.

As a general rule, required tillage operations are the same regard-

less of the crop combinations grown for cropping systems with the same

tillage method. For example, conventional-till continuous grain sorghum

(CVGG) , conventional-till grain sorghum after soybeans (CVGS) and

conventional-till continuous soybeans (CVSS) all require the same

tillage operations. There is one exception to the above: during one

half of the years fields containing sorghum stubble were shredded prior

to planting for all tillage systems. Thus continuous grain sorghum

65



Table 5.1 Annual Field Operations By Cropping System.

CROPPING SYSTEM

CVGG NTGG RTGG CVGS NTGS RTGS CVSS NTSS RTSS

Annual Acres
Sorg 640 640 640 320 320 320
Beans

640

320

640

320

640

320

640

640

640

640

640

640

CROP ACRES 640 640 640

OPERATION
Pre-plant Tillage
Sorg 3.0 0.5 0.5 2.5 0.0 0.0 0.0 0.0 0.0
Beans 0.0 0.0 0.0 3.0 0.5 0.5 2.5 0.0 0.0

Chemical
Sorg 0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0
Beans 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0

Planting/Chemical
Sorg 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
Beans 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0

Cultivation
Sorg 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
Beans 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0

SUB-TOTAL 5.0 3.5 3.5 9.5 6.5 6.5 4.5 3.0 3.0

Fertilizer
Sorg 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
Beans 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0

Harvest
Sorg 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
Beans 0.0 0.0 0.0 1.0 1.0 1.0

10.5

1.0

6.5

1.0 1.0

TOTAL 7.0 5.5 5.5 13.5 10.5 5.0 5.0

ACRES
COVERED 4480 3520 3520 4320 3360 3360 4160 3200 3200
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and the soybean acres of the soybean/grain sorghum systems have an

additional 0.5 tillage operations more than continuous soybean systems

and the grain sorghum acres of the soybean/grain sorghum systems.

Cropping systems grown using the no-till tillage method and ridge-

till method require the same number of operations for a given cropping

sequence. For example, no-till continuous grain sorghum requires the

same number of tillage operations and chemical applications as ridge-

till continuous grain sorghum.

Cropping systems farmed with conventional tillage require 2.5

preplant tillage operations (conventional systems with grain sorghum

stubble require 3.0) as compared with conservation tillage (no-till and

ridge-till) systems which require no preplant tillage (except for

shredding of grain sorghum stubble) . However, conservation tillage

systems do require an additional application of a contact herbicide

prior to planting. Thus the net savings in field operations by the

conservation tillage systems is 2.5 field operations or 1600 acres.

ENTERPRISE BUDGETS

The enterprise budgets from the nine cropping systems are listed in

Tables 5.2-5.10. Ten year average yields from the Cornbelt Experiment

Station, and annual average prices from the Northeast crop reporting

district of the Kansas Crop and Livestock Reporting Service are combined

with 1985 cost of production estimates to generate the net return to

management for each cropping system. Gross income, selected costs, and

net returns from the enterprise budgets are summarized in Table 5.11.

Specific yield and price data can be found later in this chapter on page

84 and in Appendix D.
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Table 5.2 Conventional Continuous Grain Sorghum Enterprise Budget

COSTS AND RETURNS

VARIABLE COSTS PER ACRE
1. Labor
2. Seed
3. Herbicide
4. Insecticide
5. Fertilizer
6. Fuel
7. Oil
8. Equipment Repair
9. Custom Hire ($2.82 Fertilizer Application)

10. Interest (1/2 VC * 14%)
Interest (Rented Land)

TOTAL VARIABLE COSTS (Owned Land)
TOTAL VARIABLE COSTS (Rented Land)

FIXED COSTS PER ACRE
11. Real Estate Taxes
12. Interest on Land
13. Share Rent SORG.

Share Rent SOYB.
14. Depreciation on Machinery
15. Interest on Machinery
16. Insurance and Housing

TOTAL FIXED COSTS (Owned Land)
TOTAL FIXED COSTS (Rented Land)

($0.50/$100 Land Value)
($627*. 06)
(Gross Return * 40%)

TOTAL COSTS PER ACRE (Owned Land)
TOTAL COSTS PER ACRE (Rented Land)

YIELD PER ACRE (Bu)

PRICE PER BUSHEL

GROSS RETURN PER ACRE

SORGHUM

4.66
4.05

16.43
14.40
30.17
4.01
0.60

14.80
2.82
6.44
4.73

98.37
72.26

3.14
37.62
92.69
0.00

22.13
20.94
2.99

86.81
138.74

185.18
211.01

100.2
2.31

231.72

RETURNS OVER VARIABLE COSTS (Avg)
REIURNS OVER TOTAL COSTS (Owned Land)
RETURNS OVER TOTAL COSTS (Rented Land)
ANNUAL NET RETURNS PER ACRE (Average for 1 acre of sorghum)
NET RETURN TO MANAGEMENT (640 acres of grain sorghum)

* Assumes landlord paying 2/5 of herbicide (6.57), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (12.07).

151.62
46.53
20.71
28.46

18,213
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Table 5.3 No-JTill Continuous Grain Sorghum Enterprise Budget

COST AND RETURNS SORGHUM

VARIABLE COSTS PER ACRE
1. Labor 3.11
2. Seed 4.05
3. Herbicide 36.06
4. Insecticide 14.40
5. Fertilizer 30.17
6. Fuel 2.24
7. Oil 0.34
8. Equipment Repair 11.23
9. Custom Hire ($2.82 fertilizer and $3.04 herbicide) 5.86

10. Interest (1/2 VC * 14%) 7.52
Interest (Rented Land) 5.26

TOTAL VARIABLE COSTS (Owned Land) 114.98
TOTAL VARIABLE COSTS (Rented Land) 80.47

FIXED COSTS PER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 3.14
12. Interest on Land ($627 * .06) 37.62
13. Share Rent SORG. (Gross * <10%) 93.30

Share Rent SOYB. 0.00
14. Depreciation on Machinery 17.48
15. Interest on Machinery 16.16
16. Insurance and Housing 2.31

TOTAL FIXED COSTS (Owned Land) 76.70
TOTAL FIXED COSTS (Rented Land) 129.24

TOTAL COSTS PER ACRE (Owned Land) 191.68
TOTAL COSTS PER ACRE (Rented Land) 209.71

YIELD PER ACRE (Bu) 100.8
PRICE PER BUSHEL 2.31

GROSS RETURN PER ACRE 233.24

RETURNS OVER VARIABLE COSTS (Avg) 142.42
RETURNS OVER TOTAL COSTS (Owned Land) 41.56
RETURNS OVER TOTAL COSTS (Rented Land) 23.53
ANNUAL NET RETURNS PER ACRE (Average for 1 acre grain sorghum) 28.94
NET RETURN TO MANAGEMENT (640 acres grain sorghum) 18,522

* Assumes landlord paying 2/5 of herbicide (14.42), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (12.07).
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Table 5.4 Ridge-Till Continuous Grain Sorghum Enterprise Budget

COST AND RETURNS SORGHUM

VARIABLE COSTS PER ACRE
1. Labor 3 H
2. Seed 4 ; 05
3. Herbicide 35.82
4. Insecticide 14*40
5. Fertilizer 30* 17
6. Fuel 2 ; 24

V 2
11

. t 0.34
8. Equipment Repair 12.69
9. Custom Hire ($2.82 fertilizer and $3.04 herbicide) 5 86

10. Interest (1/2 VC * 14%) 7 61
Interest (Rented Land) 5 36

16. Insurance and Housing

TOTAL VARIABLE COSTS (Owned Land) 116 29
TOTAL VARIABLE COSTS (Rented Land) 81 [ 88

FIXED COSTS FER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 3 14
12. Interest on Land ($627 * .06) 3762
13. Share Rent SORG. (Gross * 40%) 90

"

6g
Share Rent SOYB.

'

00
14. Depreciation on Machinery 19 '90
15. Interest on Machinery 18.65

2.66

TOTAL FIXED COSTS (Owned Land) 81 97
TOTAL FIXED COSTS (Rented Land) 131." 79

TOTAL COSTS FER ACRE (Owned Land) 198.27
TOTAL COSTS PER ACRE (Rented Land) 213*79

YIELD PER ACRE (Bu) 98 Q
PRICE PER BUSHEL

2 Ji

GROSS RETURN PER ACRE 226.72

RETURNS OVER VARIABLE COSTS (Avg) 134 51
RETURNS OVER TOTAL COSTS (Owned Land) 28

'

45
RETURNS OVER TOTAL COSTS (Rented Land) 12*93
ANNUAL NET RETURNS PER ACRE (Average for 1 acre sorghum) 17*59
NET RETURN TO MANAGEMENT (640 acres grain sorghum) 11,256

* Assumes landlord paying 2/5 of herbicide (14.33)

,

2/5 of insecticide
(5.76), and 2/5 of fertilizer (12.07).
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Table 5.5 Conventional Grain Sorghum - Soybean Enterprise Budget

COST AND RETURNS
TOTAL

SORGHUM BEANS

VARIABLE COSTS PER ACRE
1. Labor
2. Seed
3

.

Herbicide
4. Insecticide
5. Fertilizer
6. Fuel
7. oil
8. Equipment Repair
9. Custom Hire ($2.82 Fertilizer Appl.)

10. Interest (1/2 VC * 14%)
Interest (Rented Land)

4.15
4.05
16.43
14.40
30.17
3.64
0.55

14.46
2.82
6.35
4.64

TOTAL VARIABLE COSTS (Owned Land)
TOTAL VARIABLE COSTS (Rented Land)

FIXED COSTS PER ACRE

97.00
70.90

11.

12.

13.

14.

15.

16.

Real Estate Taxes
Interest on Land
Share Rent SORG.
Share Rent SOYB.
Depreciation on Machinery
Interest on Machinery
Insurance and Housing

($0.50/$100 Land Value)
($627*. 06)
(Gross * 40%) 91.45
(Gross * 40%)

TOTAL FIXED COSTS (Owned Land)
TOTAL FIXED COSTS (Rented Land)

TOTAL COSTS PER ACRE (Owned Land)
TOTAL COSTS PER ACRE (Rented Land)

YTRTn PER ACRE (Bu)
PRICE PER BUSHEL

98.8
2.31

GROSS RETURN PER ACRE

4.66
10.20
27.56
0.00

13.86
4.01
0.60

14.80
2.82

5.50
4.34

84.01
66.28

73.12

29.4
6.22

8.81
14.25
43.99
14.40
44.03
7.64
1.15

29.26
5.64

11.84
8.97

181.01
137.17

6.27
75.24
91.45
73.12
44.26
41.87
5.98

173.63
256.68

354.63
393.86

228.62 182.81 411.42

RETURNS OVER VARIABLE COSTS (Avg) 261 10
RETURNS OVER TOTAL COSTS (Owned Land) 56

'

79
RETURNS OVER TOTAL COSTS (Rented Land) 17

'

57
ANNUAL NET RETURNS PER ACRE (1 acre sorghum and 1 acre soybean) 29*33
NET RETURN TO MANAGEMENT (320 acre sorghum and 320 acre soybeans) 9,386

* Assumes landlord paying 2/5 of herbicide (17.60), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (17.61).
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Table 5.6 No-Till Grain Sorghum - Soybean Enterprise Budget

OOST AND RETURNS SORGHUM SOYBEAN TOTAL

VARIABLE COSTS PER ACRE
1. Labor 2.67 3.11 5.79
2. Seed 4.05 10.20 14.25
3. Herbicide 36.06 47.20 83.26
4. Insecticide 14.40 0.00 14.40
5. Fertilizer 30.17 13.86 44.03
6. Fuel 1.87 2.24 4.11
7. Oil 0.28 0.34 0.62
8. Equipment Repair 10.98 11.23 22.21
9. Custom Hire ($2.82 fert & $3. 04 herb) 5.86 5.86 11.72

10. Interest (1/2 VC i* 14%) 7.44 6.58 14.03
Interest (Rented Land) 5.19 4.87 10.06

TOTAL VARIABLE COSTS (Owned Land) 113.79 100.62 214.41
TOTAL VARIABLE COSTS (Rented Land) 79.28 74.49 153.77

FIXED COSTS PER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 6.27
12. Interest on Land ($627 * 0.06) 75.24
13. Share Rent SORG. (Gross * 40%) 94.40 94.40

Share Rent SOYB. (Gross * 40%) 72.77 72.77
14. Depreciation on Machinery 34.96
15. Interest on Machinery 32.31
16. Insurance and Housing 4.62

TOTAL FIXED COSTS (Owned Land) 153.39
TOTAL FIXED OOSTS (Rented Land) 239.06

TOTAL OOSTS PER ACRE (Owned Land) 367.81
TOTAL OOSTS PER ACRE (Rented Land) 392.83

YIELD PER ACRE (Bu) 102.0 29.3
PRICE PER BUSHEL 2.31 6.22

GROSS RETURN PER ACRE 236.00 181.94 417.93

RETURNS OVER VARIABLE OOSTS (Avg) 328.29
RETURNS OVER TOTAL OOSTS (Owned Land) 50.12
RETURNS OVER TOTAL COSTS (Rented Land) 25.10
ANNUAL NET RETURNS PER ACRE (Avg) 32 . 61
NET RETURN TO MANAGEMENT (320 acre sorghum and 320 acre soybeans) 10,435

* Assumes landlord paying 2/5 of herbicide (33.30), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (17.61).
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Table 5.7 Ridge-Till Grain Sorghum - Soybean Enterprise Budget

COST AND RETURNS SORGHUM SOYBEAN TOTAL

VARIABLE COSTS PER ACRE
1. Labor
2. Seed
3. Herbicide
4. Insecticide
5. Fertilizer
6. Fuel
7. Oil
8. Equipment Repair
9. Custom Hire ($2.82 fert & $3.04 herb)

10. Interest (1/2 VC * 14%)
Interest (Rented Land)

2.67 3.11 5.79
4.05 10.20 14.25

35.82 46.96 82.78
14.40 0.00 14.40
30.17 13.86 44.03
1.87 2.24 4.11
0.28 0.34 0.62

12.39 12.69 25.08
5.86 5.86 11.72

7.53 6.67 14.19
5.28 4.97 10.24

TOTAL VARIABLE COSTS (Owned Land)
TOTAL VARIABLE COSTS (Rented Land)

FIXED COSTS PER ACRE

115.05
80.64

11.

12.

13.

14.

15.

16.

Real Estate Taxes
Interest on Land
Share Rent SORG.
Share Rent SOYB.
Depreciation on Machinery
Interest on Machinery
Insurance and Housing

($0.50/$100 Land Value)
($627 * .06)

(Gross * 40%) 95.32
(Gross * 40%)

TOTAL FIXED COSTS (Owned Land)
TOTAL FIXED COSTS (Rented Land)

TOTAL COSTS PER ACRE (Owned Land)
TOTAL COSTS PER ACRE (Rented Land)

YIELD PER ACRE (Bu)
PRICE PER BUSHEL

GROSS RETURN PER ACRE

103.0
2.31

101.93
75.90

75.29

30.3
6.22

216.98
156.54

6.27
75.24
95.32
75.29
39.80
37.31
5.33

163.95
253.05

380.92
409.58

238.31 188.22 426.53

RETURNS OVER VARIABLE COSTS (Avg)
RETURNS OVER TOTAL COSTS (Owned Land)
RETURNS OVER TOTAL COSTS (Rented Land)
ANNUAL NET RETURNS PER ACRE (Avg)
NET RETURN TO MANAGEMENT (320 acre sorghum and 320 acre soybeans)

335.56
45.60
16.94
25.54
8,173

Assumes landlord paying 2/5 of herbicide (33.11), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (17.61).
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Table 5.8 Conventional Continuous Soybeans Enterprise Budget

COST AND RETURNS BEANS

VARIABLE COSTS PER ACRE
1. labor 4.15
2. Seed 10.20
3. Herbicide 27.56
4. Insecticide 0.00
5. Fertilizer 13.86
6. Fuel 3.64
7. Oil 0.55
8. Equipment Repair 14.46
9. Custom Hire ($2.82 Fertilizer Application) 2.82

10. Interest (1/2 VC * 14%) 5.41
Interest (Rented Land) 4.25

TOTAL VARIABLE COSTS (Owned Land) 82.64
TOTAL VARIABLE COSTS (Rented Land) 64.91

FIXED COSTS PER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 3.14
12. Interest on Land ($626 * .06) 37.62
13. Share Rent SORG. 0.00

Share Rent SOYB. (Gross Return * 40%) 71.73
14. Depreciation on Machinery 22.13
15. Interest on Machinery 20.94
16. Insurance and Housing 2.99

TOTAL FIXED COSTS (Owned Land) 86.81
TOTAL FIXED COSTS (Rented Land) 117.79

TOTAL COSTS PER ACRE (Owned Land) 169.45
TOTAL COSTS PER ACRE (Rented Land) 182.70

YIELD PER ACRE (Bu) 28.8
PRICE PER BUSHEL 6.22

GROSS RETURN PER ACRE 179.32

RETURNS OVER VARIABLE COSTS (Avg) 109.09
RETURNS OVER TOTAL COSTS (Owned Land) 9.87
RETURNS OVER TOTAL COSTS (Rented Land) -3.37
ANNUAL NET RETURNS PER ACRE (Average cost for 1 acre soybeans) 0.60
NET RETURN TO MANAGEMENT (640 acres soybeans) 383

* Assumes landlord paying 2/5 of herbicide (11.03), 2/5 of insecticide
(0.00), and 2/5 of fertilizer (5.55)
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Table 5.9 No-Till Continuous Soybeans Enterprise Budget

COST AND RETURNS SOYBEANS

2.67
10.20

VARIABLE COSTS PER ACRE
1. Labor
2. Seed
3. Herbicide 47! 20
4. Insecticide !oo
5. Fertilizer 13! 86
6. Fuel -j^'gy

7
- oil 0^28

8. Equipment Repair 10.98
9. Custom Hire ($2.82 fertilizer and $3.04 herbicide) 5*86

10. Interest (1/2 VC * 14%) 6 . 50
Interest (Rented Land) 4. 80

TOTAL VARIABLE COSTS (Owned Land) 99 43
TOTAL VARIABLE COSTS (Rented Land) 73

.'

30

FIXED COSTS PER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value)
12. Interest on Land ($627 * 0.06)
13. Share Rent SORG.

Share Rent SOYB. (Gross * 40%)
14. Depreciation on Machinery
15. Interest on Machinery
16. Insurance and Housing

3 .14

37..62

0,.00

72 ,53

17,.48

16. 16

2. 31

TOTAL FIXED COSTS (Owned Land) 76 70
TOTAL FIXED COSTS (Rented Land) 108! 47

TOTAL COSTS PER ACRE (Owned Land) 176 13
TOTAL COSTS PER ACRE (Rented Land) 18l!76

YIELD PER ACRE (Bu) 29
PRICE PER BUSHEL

2

6.22

GROSS RETURN PER ACRE 181.31

RETURNS OVER VARIABLE COSTS (Avg) 100 18
RETURNS OVER TOTAL COSTS (Owned Land) 5

'

19
RETURNS OVER TOTAL COSTS (Rented Land) _o' 45
ANNUAL NET RETURNS PER ACRE (Average for 1 acre soybeans) 1*24
NET RETURN TO MANAGEMENT (640 acres soybeans) 793

* Assumes landlord paying 2/5 of herbicide (18.88), 2/5 of insecticide
(0.00), and 2/5 of fertilizer (5.55).
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Table 5.10 Ridge-Till Continuous Soybeans Enterprise Budget

COST AND RETURNS SOYBEANS

VARIABLE COSTS EER ACRE
1. labor 2.67
2. Seed 10.20
3. Herbicide 46.96
4. Insecticide 0.00
5. Fertilizer 13.86
6. Fuel 1.87
7. Oil 0.28
8. Equipment Repair 12.39
9. Custom Hire ($2.82 fertilizer and $3.04 herbicide) 5.86

10. Interest (1/2 VC * 14%) 6.59
Interest (Rented Land) 4.88

TOTAL VARIABLE COSTS (Owned Land) 100.68
TOTAL VARIABLE COSTS (Rented Land) 74.65

FIXED COSTS FER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 3.14
12. Interest on Land ($627 * .06) 37.62
13. Share Rent SORG. 0.00

Share Rent SOYB. (Gross * 10%) 71.06
14. Depreciation on Machinery 19.90
15. Interest on Machinery 18.65
16. Insurance and Housing 2.66

TOTAL FIXED COSTS (Owned Land) 81.97
TOTAL FIXED COSTS (Rented Land) 112.28

TOTAL COSTS PER ACRE (Owned Land) 182.66
TOTAL COSTS FER ACRE (Rented Land) 186.93

YIELD PER ACRE (Bu) 28.6
PRICE PER BUSHEL 6.22

GROSS RETURN PER ACRE 177.64

RETURNS OVER VARIABLE COSTS (Avg) 95.18
RETURNS OVER TOTAL COSTS (Owned Land) -5.02
RETURNS OVER TOTAL COSTS (Rented Land) -9.29
ANNUAL NET RETURNS PER ACRE (Average for 1 acre of soybeans) -8.01
NET RETURN TO MANAGEMENT (640 acres of soybeans) (5,123)

* Assumes landlord paying 2/5 of herbicide (18.78), 2/5 of insecticide
(0.00), and 2/5 of fertilizer (5.55).
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Table 5.11 Income, Returns, and Selected Costs by Cropping System.

CROPPING SYSTEM
CVGG NTGG RTCG CVGS NIGS RIGS CVSS NTSS RTSS

Gross
Income 148298 149275 145101 131655 133738 136488 114766 116040 113692

Variable Costs
(Owned) 18887 22077 22328 17377 20584 20830 15867 19091 19331
(Rented) 32373 36051 36683 30726 34444 35064 29080 32837 33445

Fixed Costs
(Owned) 16668 14726 15739 16668 14726 15739 16668 14726 15739
(Rented) 62157 57899 59094 57497 53549 56683 52768 48593 50300

Total
Costs 130085 130753 133845 122269 123303 128316 114383 115247 118815

NET
RETURN 18213 18522 11256 9386 10435 8173 383 793 -5123

labor 2983
Fuel/Oil 2949
Chemical 14205

SUBTOTAL 20137

Fertilizer 13903

SUBTOTAL 34041

Repair 9469
Deprec 14164
Interest 13399

1993 1993 2818 1852 1852 2653 1711 1711
1648 1648 2813 1512 1512 2676 1376 1376

23252 23143

26785

13453 22500 22391 12701 21748

24834

21638

26894 19084 25864 25755 18030 24725

13903 13903 10146 10146 10146 6388 6388 6388

40797 40688 29229 36010 35900 24418 31223 31113

7186 8121 9362 7108 8026 9255 7030 7932
11186 12736 14164 11186 12736 14164 11186 12736
10340 11939 13399 10340 11939 13399 10340 11939

TOTAL 71073 69509 73483 66155 64644 68601 61237 59778 63720
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RESUIiTS BY CROPPING SYSTEM

No-till continuous grain sorghum (NIGG) generated the highest

average net return to management of $18,522 followed by conventional

continuous grain sorghum (CVGG) which generated a net return of $18,213

(see Table 5.11) . NIGG also produced the highest gross return per acre

($149,275) . since the yields of CVGG and ridge-till continuous grain

sorghum (RTGG) are not statistically different (Table 5.12), the gross

returns of these systems (yield times price) are not statistically

different either. NIGG lowered labor and fuel costs when compared to

CVGG by $2,291. Repair costs, depreciation and interest were also

lowered by $8,320. However these savings were offset $9,047 because of

higher chemical costs associated with the preplant herbicide application

of the NIGG.

Ridge-till continuous grain sorghum (RTGG) had the third highest

net return of $11,256. This system provided the same savings of labor

and fuel costs as NIGG, since the same field operations occurred. RIGG

required higher repair, depreciation and interest costs due to the

special machinery needed for ridge tillage. When compared to CVGG these

costs were reduced by $4,236, however when compared to NIGG costs were

increased by $4,084. The higher chemical costs of preplant herbicide

application increased the cost by $8,938 when compared to CVGG.

No-till grain sorghum after soybeans (NIGS) generated the fourth

highest net return of $10,435 and Conventional till grain sorghum after

soybeans (CVGS) generated the fifth highest net return of $9,386. NIGS

lowered labor and fuel costs $2,267 when compared to CVGS. Repair cost,
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depreciation and interest were also lowered by $8,291. Ihe higher

chemical costs of NIGS offset this savings by $9,047.

Ridge-till grain sorghum after soybeans (RTGS) had the six highest

net return of $8,173. This system provided the same savings of labor

and fuel costs as NIGS, however higher repair, depreciation and interest

costs of the ridge-till equipment increased the cost when compared to

NIGS by $4,067. The higher chemical costs of preplant herbicide

application increased the cost of RTGS by $8,938 when compared to the

conventional-till system.

The continuous soybean cropping systems consistently achieved the

lowest net return to management. The only year these systems outper-

formed the continuous grain sorghum cropping systems was 1976. This

result was unexpected, because typical farm practices include soybean

acreages. Yields for sorghum are on average approximately 20 bushel per

acre greater than farm yields in the area. Examination of experiment

field practices found a 40 lbs/acre higher application rate of nitrogen

fertilizer to occur on the experiment station plots as compared with

typical farm practices. There are also intangible benefits to the

planting of soybeans most notably through benefits in plant available

nitrogen.

Cost savings for the conservation continuous soybean systems were

similar to those described above, with net return rankings in this

order: no-till continuous soybeans (NISS) , conventional continuous

soybeans (CVSS) , followed by ridge-till continuous soybeans (RTSS)

.

Figure 5.1 provides a summary of gross returns, total variable,

total fixed, and net return to management for all cropping systems.
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Total fixed costs for owned land range from $16,668 in the conven-

tional-till systems to $14,725 in the no-till systems. Total fixed

costs for owned land include land costs and machinery costs. Land costs

are constant for all tillage system considered, thus the only differ-

ences in fixed costs arise from the costs of depreciation, interest,

insurance and housing for the machinery complements. Fixed costs for

rented land include the crop share that goes to landlord instead of land

costs. Since this varies with gross returns it is difficult to compare

these costs.

Figure 5.2 compares the total costs of selected inputs. Costs are

shown in bar graphs for the inputs: labor/fuel/chemicals, fertilizer,

and repairs/depreciation/interest. Total labor, fuel, and chemical

costs are less for conventional-till cropping systems than for the no-

till and ridge-till crapping systems. Total fertilizer costs remain

unchanged regardless of the tillage system used. However, total repair,

depreciation, and interest costs when ranked by tillage practice from

lowest to highest are: no-till, ridge-till, conventional-till.

RISK ANALYSIS

Traditional analyses of decision making situations has been divided

into two classes: business risk and financial risk (Boehlje and Eidman,

1984) . This study will examine only business risk and uncertainty.

Business risk and uncertainty is the inherent uncertainty in the firm

independent of the way it is financed. The major sources of business

risk in any production period are price and yield uncertainty. Prices

of farm products are achieved by supply and demand factors, thus

fluctuations in this factor is beyond the control of the farm manager.
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Yield variability is due in part to crop management practices as well as

exogenous factors, such as, weather cycles and insect/disease problems.

When comparing the risk associated with each of the cropping

systems, examination of yield, price, and net return variability

associated with each system is done to estimate the differences in risk.

This paper compares yield and price variability with use of the standard

deviation and coefficient of variation statistics.

It is difficult to compare standard deviations when the probability

distributions have different expected values. However, the coefficient

of variation can be used to measure the variability relative to the

expected value of the probability distribution. Ihis measure is found

by dividing the standard deviation by the mean. Small coefficients of

variation show that the distribution has less variability in relation to

its expected value, thus having a lower risk per dollar of expected

return.

YIELD AND PRICE VARIABILITY ANALYSIS

Table 5.12 contains the results of the yield and price variability

analysis. Average grain sorghum yields ranged from 98.0 to 103.0

bushels per acre, while soybean yields ranged from 28.6 to 30.3 bushels.

Analysis of variance procedures found no significant difference in

yields at the a = 0.05 level when comparing the nine cropping

systems. Similarly Fischer's LSD finds no significant differences for

both grain sorghum and soybean yields at the a = 0.05 level.

Fischer's LSD provides the least significant difference between any two

pair of means in a given experiment with significance of (1-a) %. The

least significant difference for grain sorghum yield was 6.6 bushels per
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Table 5.12 Yield, Price, and Net Return Variability by Cropping System
from 1975 to 1984.

CROPPING SYSTEM

CVGG NTGG RTGG CVGS NIGS RTGS CVSS NTSS KISS

YIELDS (bu/acre)

Sorghum
Mean 100.2 100.3 98.0 98.8 102.0 103.0
Std Dev 22.2 24.6 17.0 26.2 23.6 21.4
Cof Var 0.222 0.245 0.173 0.265 0.231 0.208
LSD 6.6

Soybean
Mean 29.4 29.3 30.3 28.8 29.2 28.6
Std Dev 10.2 9.4 9.5 10.2 10.1 9.2
Cof Var 0.347 0.321 0.314 0.354 0.346 0.322
1SD 3.1

PRICES (Dollars)

Sorghum
Mean $2.31 2.31 2.31 2.31 2.31 2.31
Std Dev $0.38 0.38 0.38 0.38 0.38 0.38
Cof Var 0.16 0.16 0.16 0.16 0.16 0.16

Soybean
Mean $6.22 6.22 6.22 6.22 6.22 6.22
Std Dev $0.91 0.91 0.91 0.91 0.91 0.91
Cof Var 0.15 0.15 0.15 0.15 0.15 0.15

NET RETURNS (1985 Dollars)

Mean $16182 16918 10114 7170 8709 6345 -2092 -1870 -7393
Std Dev $21120 26285 19578 23391 23585 21348 26141 24866 23404
Cof Var 1.31 1.55 1.94 3.26 2.71 3.36
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acre, thus the grain sorghum yields for any two cropping systems must

differ by more than 6.6 bushels per acre to indicate a statistical

difference. Soybeans had an LSD of 3.1 bushels per acre.

Grain sorghum yield coefficients of variation range from .173 to .265

while for soybean coefficients range from .314 to .354. Thus indicating

grain sorghum yields to be less variable relative to soybean yields.

Prices for grain sorghum averaged $2.31 while prices for soybeans

averaged $6.22 for the same time period. A comparison of these prices

reveals that the grain sorghum price has a slightly higher variability

as measured by the coefficient of variation. The coefficient of

variation for grain sorghum prices is .165 versus .146 for soybeans.

NET RETURN VARIABILITY ANALYSIS

The ridge-till continuous grain sorghum system (KDGG) has the lowest

standard deviation of net returns, but only the third highest average

net return (Table 5.12). No-till continuous grain sorghum system (NTGG)

has the highest average net return, however it also has the highest

standard deviation.

The coefficient of variation provides a simple comparison of the mean

and standard deviation for each system. Conventional-till continuous

grain sorghum (CVGG) has the lowest coefficient of variation, 1.31,

followed by NTGG and RIGG, which have coefficients of 1.15 and 1.94

respectively.

Table 5.13 lists the annual net returns by cropping system over the

years 1975 to 1985. Conventional-till continuous grain sorghum (CVGG)

had only 2 years of 10 with negative returns totaling $8,658 in losses.
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Table 5.13 Yearly Net Returns By Cropping System

YEAR CVGG NTGG RTGG CVGS NIGS RTGS CVSS NTSS RTSS

1975 -6345 -4333 -10581 -16640 -16358 -14877 -16557 -15074 -19078
1976 5497 4406 -3077 -12959 -12799 -16563 -17658 -16657 -26013
1977 2677 -6152 -11143 15938 13627 9858 27680 28743 19283
1978 3033 8993 -2167 -2560 -4463 -5711 -17995 -15442 -17832
1979 48621 58708 38211 42370 36611 33274 16455 16770 8432
1980 -2313 33757 19943 -3034 16423 15055 11810 2942 10561
1981 46869 49926 25070 37352 41885 30978 30314 28464 19403
1982 40084 36207 39286 34400 37033 35289 19422 21237 9529
1983 5043 -21296 -6606 -17965 -18868 -17197 -41942 -39930 -43435
1984 18650 8970 12201 -5203 -5996 -6658 -32443 -29754 -34778

MEAN 16182 16918 10114 7170 8709 6345 -2092 -1870 -7393

STD. DEV. 21120 26285 19578 23391 23585 21348 26141 24866 23404

OOEFF VAR 1.31 1.55 1.94 3.26 2.71 3.36

MEN -6345 -21296 -11143 -17965 -18868 -17197 -41942 -39930 -43435

MAX 48621 58708 39286 42370 41885 35289 30314 28743 19403

TOT. NEG. 8658 31781 33574 58360 58484 61006 126595 116856 141136

YRS. NEG. 235655555
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Conventional-till grain sorghum after soybeans (CVGS) had the most years

negative, 6, with a total of $59,360 in losses. The continuous soybean

systems all provided negative average returns ranging from an average

loss of $2,092 to $7,393. The largest loss to occur in a single year

was $43,435 by the ridge-till continuous soybean system (RTSS) . The

highest return in a single year was $58,708 provided by the NTGG system.

The bar graph in figure 5.3 provides a graphical view of the results

of each cropping system during the study period. Cropping systems from

left to right in each year are: CVGG, NTGG, RTGG, CVGS, NTGS, rigs,

CVSS, and NTSS.

STOCHASTIC DOMINANCE ANALYSTS

Stochastic dominance analysis is a popular method of selecting

efficient strategies by researchers through comparisons of cumulative

probability distributions of possible incomes for each strategy.

Stochastic dominance is particularly useful since it does not require

the underlying distribution to have a normal distribution and, there-

fore, is more flexible that E-V analysis, in this study, stochastic

dominance with respect to a function (SDWRF) is used in addition to

first degree stochastic dominance (ESD) and second degree stochastic

dominance (SSD) criterium because it is more flexible and has greater

discriminating power than both ESD and SSD. Further SDWRF does not

require the specification of the decision maker's utility function.
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SDWRF orders choices for decision makers facing uncertainty by setting

upper and lower bounds to define an interval using the Pratt absolute

risk aversion function, R(x) . R(x) is defined by Pratt as

R(x) = -U"(x)/U'(x)

which is the ratio of the derivatives of the decision maker's utility

function U(x) . The SDWRF classes of utility functions can be esta-

blished by using risk preference intervals bounded by a lower risk

aversion coefficient R^(x) and an upper risk aversion coefficient R2M

.

Seven risk aversion coefficient intervals were used for the SDWRF

analysis (Table 5.14). These intervals were arbitrarily assumed. King

and Robison (1981) suggested that most intervals should be established

between the range of -0.0001 to 0.001. Risk neutral behavior would

generally be exhibited within the range of -0.00001 and 0.00001. Those

above this range would exhibit more risk-averse behavior, whereas those

below would exhibit more risk-seeking behavior. The solutions to the

risk aversion intervals are found using an optimal control algorithm

developed by Raskin, Goh, and Cochran (1986)

.

Stochastic dominance analysis was used to find the first degree (FSD)

,

second degree (SSD) , and stochastic dominance with respect to a function

(SDWRF) efficient sets (Table 5.14) . No system dominated all

others by first degree criteria. The conventional-till and no-till

continuous grain sorghum systems were second degree efficient. Further

analysis using SDWRF determined that no-till continuous grain sorghum

(NTGG) would be preferred by risk seeking managers, whereas risk averse

individuals would prefer the conventional-till continuous grain sorghum

(CVGG).
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Table 5.14 Stochastic Dominance Analysis Results1

R^x) R2 (X) CVGG NTGG RTGG CVGS NTGS RTGS CVSS NTSS RTSS

X XFSD —-xi +« X X
SSD 0.0 +« X X
SDWRF

-0.00005 -0.00001 X
-0.00001 0.0 X
0.0 0.00001 X X

-0.00001 0.00001 X X

0.00001 0.00005 X
0.00005 0.0001 X
0.0001 0.001 X

1 Systems denoted by X are in the efficient set.

SENSITIVITY ANALYSIS .

Sensitivity analysis was used to identify the magnitude of the

parallel shift of the dominant distribution (CVGG) that is necessary to

eliminate its dominance and produce an efficient set which would contain

both the previously dominant distribution and the specified alternative.

In the interval, (0.00001,0.00005), which applies to individuals with

moderate risk aversion, the results are particularly sensitive to

production costs or yield difference between the conventional-till and

no-till continuous grain sorghum systems. If the cumulative probability

distribution for the CVGG is lowered by a parallel shift of $375 it no

longer dominates NTGG. Dividing by 640 acres results in an equivalent

$0.59 per acre. Dividing again by the average price for grain sorghum,

$2.31, results in .25 bushel per acre decrease in the yield of CVGG for

NTGG to be in the efficient set. RTGG is also particularly sensitive to
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increases in net returns or reductions of cost. For the more strongly

risk averse interval (0.00005,0.0001) the CVGG distribution must be

shifted by $4,400 for NTGG and by $5,500 for KIGG to be in the efficient

set. Other systems are compared in Tables 5.15 and 5.16.

Table 5. 15 Sensitivit;! Analysis for the Interval <0 00001,0.0000

Dominant Compared Decrease In Cost Bushels
System System Net Return Of Per Per

Dominant System Acre Acre

CVGG <—> NTGG 375 0.59 0.25
CVGG <—> KIGG 5,200 8.13 3.52
CVGG <—> NIGS 8,000 12.50 5.41
CVGG <—> CVGS 9,500 14.84 6.43
CVGG <—> RIGS 9,700 15.16 6.56
CVGG <—> NTSS 19,000 29.69 12.85
CVGG <—> CVSS 19,500 30.47 13.19
CVGG <—> RTSS 23,800 37.19 16.10

Table 5.16 Sensitivity Analysis for the Interval <0. 00005, 0.0001>

Dominant Compared
System System

CVGG <—> NTGG
CVGG <—> KIGG
CVGG <—> NIGS
CVGG <—> KEGS
CVGG <—> CVGS
CVGG <—> NTSS
CVGG <—> CVSS
CVGG <—> KISS

Decrease In Cost
Net Return Of Per
Dominant System Acre

4,400 6.88
5,500 8.59
10,100 15.78
10,800 16.88
10,900 17.03
23,100 36.09
24,700 38.59

Bushels
Per

Acre

2.98
3.72
6.83
7.31
7.37
15.63
16.71

27,700 43.28 18.74
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Banding of Herbicides in Ridoe^Iill Systems .

The results of this study are sensitive to herbicide combinations.

Herbicide were all applied using a broadcast method. Many farmers in

eastern Kansas employing ridge-till systems use band application of

herbicides. In banding herbicides are applied only to the ridge where

the plants are grown. This practice greatly reduces the cost of

herbicides (13% for PTGG, 18% for RTGS, and 23% for KISS for the case

farm) . Cultivation during the growing season provides weed control

between the rows. Since this cultivation is included in the ridge-till

systems of this study there are no additional costs. Provided weed

control is maintained by the cultivation operation there should also be

no difference in yields from systems using band application of herbi-

cides and systems using broadcast application.

Simulated net returns using band application of herbicides are shown

in parentheses in Table 5.17 (assumes herbicides are applied in a 22

inch band) . Banding reduces costs $2,944 in the RTGG system, $3,942 in

the RIGS system, and $4,939 in the KISS system. There were no

differences in the stochastic dominance analysis when comparing band

application of herbicides to broadcast application.

Results of a 2-year study by Janssen and Regehr (1986) found that when

no herbicides are applied prior to planting, yields were reduced an

average of 13 bushel per acre in grain sorghum and 3 bushel per acre in

soybeans.

Simulated net returns using band application of herbicides and no-

preplant herbicide application are shown in parentheses in Table 5.18.
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Table 5.17 Effects upon Returns and Selected Costs of Band Application
of Herbicides to Ridge-Till Systems.2

CROPPING SYSTEM

(BANDED) (BANDED) (BANDED)

CVGG NTGG RTGG CVGS NTGS RTGS CVSS NTSS RTSS

Gross
Income 148298 149275 145101 131655 133738 136488 114766 116040 113692

Variable Costs (21016) (19073) (17129)
(Owned) 18887 22077 22328 17377 20535 20830 15867 19091 19331

(34846) (32604) (30362)
(Rented) 32373 36051 36683 30726 34376 35064 29080 32837 33445

Fixed Costs
(Owned) 16668 14726 15739 16668 14726 15739 16668 14726 15739
(Rented) 62157 57899 59094 57497 53549 56683 52768 48593 50300

Total (130695) (124098) (113530)
Costs 130085 130753 133845 122269 123185 128316 114383 115247 118815

NET (14406) (12390) (162)
RETURN 18213 18522 11256 9386 10552 8173 383 793 -5123

Chemical Cost

Banded 14205 23252 20199 13453 22391 18449 12701 21748 16699
Broadcast 14205 23252 23143 13453 22391 22391 12701 21748 21638

Savings 2944 3942 4939

2 Numbers in parentheses are for systems with band application of
herbicides.
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Table 5.18 Effects upon Returns and Selected Costs of No Preplant
Herbicides on Ridge-Till Systems. 3

CROPPING SYSTEM

(BANDED) (BANDED) (BANDED)
CVGG NTGG RIGG CVGS NIGS RTGS CVSS NTSS RTSS

Gross (125857) (120895) (101749)
Income 148298 149275 145101 131655 133738 136488 114766 116040 113692

Variable Costs (16406) (14463) (12520)
(Owned) 18887 22077 22328 17377 20535 20830 15867 19091 19331

(27810) (25568) (23326)
(Rented) 32373 36051 36683 30726 34376 35064 29080 32837 33445

Fixed Costs
(Owned) 16668 14726 15739 16668 14726 15739 16668 14726 15739

(53706) (52317) (46956)
(Rented) 62157 57899 59094 57497 53549 56683 52768 48593 50300

Total (113662) (108087) (98541)
Costs 130085 130753 133845 122269 123185 128316 114383 115247 118815

NET (12195) (12808) (3208)
RETURN 18213 18522 11256 9386 10552 8173 383 793 -5123

Chemical Cost

Banded No
Preplant 11261 9511 7762
Banded
Preplant 20199 18449 16699

Broadcast 14205 23252 23143 13453 22391 22391 12701 21748 21638

Savings Compared to
Broadcast 12152 12880 13876

3 Numbers in parentheses are for systems using no preplant herbicides.
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No preplant herbicide application reduced the cost of herbicides by

$12,152 in the KIGG system, $12,880 in the RIGS system, and $13,876 in

the KISS system. This savings was offset, however by a reduction in

average gross returns. Gross returns for the RIGG system was lowered by

$19,244, RIGS was lowered by $15,593, and KISS system was lowered by

$11,943. There were no changes in the rankings of the stochastic

dominance analysis.

IMPLICATIONS OF GOVERNMENT PROGRAMS .

There are two major facets of the current farm programs that need to

be considered with this analysis. The effect of income subsidies upon

net returns and the pending requirement of a whole farm conservation

plan.

Income Subsidies . The 1985 farm law set minimum target prices and

loan rates through the 1990 crop year. The law has given the Secretary

of Agriculture authority to reduce loan rates from the high levels

typical of the past few years. The law practically eliminates the

government's traditional role of furnishing a floor to the market price

through commodity loan programs if it is the Secretary's desire.

Because of less market price support, the new law provides for higher

government payments to compensate farmers participating in the commodity

programs for the loss of revenue.

The effects of the farm programs upon the two commodities studied here

varies greatly. Soybeans are a nan program crop, since there is no

target price nor cash payment made to the producer. Grain sorghum,

however, is a program crop. For the 1987 production year the target

price for grain sorghum is $2.88 per bushel while the announced loan

95



rate is $1.74 per bushel. The deficiency payment made to the producer

is the difference between the target price and the market price for the

coinciding marketing year. The estimated deficiency payment for the

1987 production year is $1.14 per bushel. To receive the deficiency

payment the farmer must comply with the provisions of the current farm

law. To comply only 80% of the feed grain base acreage (based upon past

years crops) may be planted to grain sorghum and/or corn. The remaining

20% of the feed grain base acreage must be retired from the production

of any agricultural products and meet conservation requirements

established by the USDA.

The features of this program give considerable advantage to grain

sorghum production. When the cash payments are considered, participa-

tion in the government program is the best alternative. For the

remaining farm acres (acres not designated as feed grain or wheat base

acreages) non program crops such as soybeans can be grown.

Conservation Compliance . Also under the provisions of current farm

law, all farms must have a conservation plan developed by January 1,

1990. The conservation plan must be applied before January 1, 1995.

Conservation compliance will be required on all highly erodible land in

production of agricultural commodities. The USDA defines highly

erodible land as soil which has potential to erode at eight times its

tolerable erosion rate, of the 400 million acres of cropland, 118

million acres are classed as highly erodible. The Soil Conservation

Office is the only place that can tell farmers whether their land fits

this category. This office and local soil conservation districts will

be involved in the approval of the conservation plans.
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Failure to meet the requirements of conservation compliance can result

in denial of farm program participation, federal crop insurance

benefits, FmHA loans, and storage payments. This applies to all land in

the farming operation not just the erodible land.

Adjusting Grain Sorghum Yields.

In the discussion of grain sorghum yields on page 79 it was noted that

the experimental plot yields for grain sorghum were on average, 20

bushel per acre greater than typical farm yields in the area. This was

linked to a 40 lbs/acre higher application rate of nitrogen fertilizer

on the grain sorghum acres than is typically used by farmers. After

adjusting the net return distributions of the cropping systems

containing grain sorghum to include a 20 bushel per acre decrease in

grain sorghum yield and a 40 lbs/acre decrease in the application rate

of nitrogen fertilizer the efficient sets from the stochastic dominance

analysis were modified greatly. Table 5.19 shows the simulated returns

and costs in parentheses after adjustments for fertilizer application

and yields. Note that due to changes in landlord income there are also

changes to the fixed costs associated with the rented land. Table 5.20

contains the adjusted net return distributions and their associated

means, standard deviations, and coefficients of variation.

Table 5.21 contains the results of the stochastic dominance analysis.

The FSD efficient set includes all of the cropping systems, but KDGG and

RTSS. SSD reduces the efficient set to include: CVGG, CVGS, NTGS, and

KTGS. In the moderate risk aversion interval <0. 00001, 0.00005> both

CVGG and NTGS are efficient. In the more risk averse interval

<0. 00005, 0.0001> only CVGG is efficient.
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Table 5.19 Effect upon Returns and Costs After Yield Adjustment4

CROPPING SYSTEM

CVGG NTCG RTGG CVGS NTGS RTGS CVSS NTSS RTSS

Gross (118730 119707 115533 116871 118954 121704)
Income 148298 149275 145101 131655 133738 136488 114766 116040 113692

Variable Costs
(18001) (21191) (21442) (16934) (20092) (20387)

(Owned) 18887 22077 22328 17377 20535 20830 15867 19091 19331
(31133) (34811) (35443) (30106) (33756) (34444)

(Rented) 32373 36051 36683 30726 34376 35064 29080 32837 33445

Fixed Costs
(Owned) 16668 14726 15739 16668 14726 15739 16668 14726 15739

(49738) (45480) (41287) (51288) (47340) (46108)
(Rented) 62157 57899 53706 57497 53549 52317 52768 48593 46956

Total (115541 116209 119301 114997 115913 121044)
Costs 130085 130753 133845 122269 123185 128316 114383 115247 118815

NET (3189) (3498) (-3768) (1874) (3040) (661)
RETURN 18213 18522 11256 9386 10552 8173 383 793 -5123

Numbers in parentheses are for systems after yield adjustments.
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Table 5.20 Yearly Net Returns By Cropping System With Yield Adjustment

YEAR CVGG NTGG RTGG CVGS NTGS RTGS CVSS NTSS KISS

1975 -25139 -23128 -29376 -26037 -25755 -24275 -16557 -15074 -19078
1976 -9796 -10887 -18370 -20605 -20445 -24209 -17658 -16657 -26013
1977 -11418 -20246 -25237 8890 6580 2811 27680 28743 19283
1978 -12997 -7037 -18196 -10575 -12478 -13726 -17995 -15442 -17832
1979 30195 40282 19786 33157 27398 24061 16455 16770 8432
1980 -27098 8972 -4842 -15426 4031 2662 11810 2942 10561
1981 27430 30486 5630 27632 32165 21259 30314 28464 19403
1982 17327 13449 16529 23022 25654 23911 19422 21237 9529
1983 -18267 -44606 -29917 -29620 -30523 -28852 -41942 -39930 -43435
1984 -329 -10009 -6778 -14692 -15485 -16147 -32443 -29754 -34778

MEAN -3009 -2272 -9077 -2425 -886 -3251 -2092 -1870 -7393

STD. DEV. 21000 25743 18273 23473 23342 20999 26141 24866 23404

OOEFF VAR

MIN -27098 -44606 -29917 -29620 -30523 -28852 -41942 -39930 -43435

MAX 30195 40282 19786 33157 32165 24061 30314 28743 19403

TOT. NEG. 105044 115912 132715 116955 104687 107209 126595 116856 141136

YRS. NEG. 767655555
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Sensitivity analysis finds the efficient sets much more sensitive to

small changes in net returns. In the moderate risk aversion interval

<0. 00001, 0.00005> RIGS will be in the efficient set if the NTGS

distribution is shifted down by $700. In the more risk averse interval

<0. 00005, 0.00001> a reduction of the CVGG distribution by $1,300 is all

that is required to place all the grain sorghum after soybean rotations

in the efficient set. Tables 5.22 and 5.23 contain some of the results

of the sensitivity analysis.

As was noted earlier current government programs give significant

advantages to the production of grain sorghum over soybeans. When

commodity programs are considered in the analysis grain sorghum cropping

sequences are still preferred.

Table 5.21 Stochastic Dominance Analysis Results With Adjusted Yields5

RX (X) R2 (X) CVGG NTGG RTGG CVGS NIGS RIGS CVSS NTSS RTSS

ESD -n +m X X X X X
SSD 0.0 +m X X X X
SDWRF

-0.00005 -0.00001 X X
-0.00001 0.0 X
0.0 0.00001 X

-0.00001 0.00001 X
0.00001 0.00005 X X
0.00005 0.0001 X
0.0001 0.001 X

5 Systems denoted by X are in the efficient set.
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Table 5. 22 Sensitivity Analysis for the Interval <0

Dominant Compared Decrease In Cost
System System Net Return Of

Dominant System
Per

Acre

NTGS <—

>

CVGG 0.00
NTGS <—

>

KEGS 700 1.09
NTGS <—

>

CVGS 1,000 1.56
NTGS <—

>

NTSS 1,400 2.19
NTGS <—

>

NTGG 1,900 2.97
NTGS <—

>

CVSS 1,900 2.97
NTGS <—

>

RTGG 4,500 7.03
NTGS <—

>

RTSS 6,200 9.69

Table 5. 23 Sensitivity Analysis for the Interval <0

Dominant Compared Decrease In Cost
System System Net Return Of Per

Dominant System Acre

CVGG <—

>

NTGS 300 0.47
CVGG <—

>

RIGS 900 1.41
CVGG <—

>

CVGS 1,300 2.03
CVGG <—

>

NTSS 3,700 5.78
CVGG <—

>

RTGG 4,300 6.72
CVGG <—

>

NTGG 4,600 7.19
CVGG <—

>

CVSS 5,300 8.28
CVGG <—

>

RTSS 8,200 12.81
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

Conservation tillage offers tremendous potential for reducing soil

erosion. Technical and economic question persist about yield potential,

cropping sequences, and other production decisions. This study eval-

uated the economic potential and associated risk of conventional and

conservation systems for the production of grain sorghum and soybeans

in Northeastern Kansas.

A representative 640 acre case farm was established to provide

comparisons of income potentials and variability of contentional-till,

no-till, and ridge-till in Northeastern Kansas. The study assumed that

farmers could duplicate the yields achieved for similar cropping systems

currently studied at the Cornbelt Experiment Station. Input levels were

identified by agronomists and Experiment Station Personnel.

An equipment complement was selected to meet the optimal tillage

and planting requirements of the conventional-till grain sorghum after

soybean rotation. When adopting alternative cropping systems, addition-

al equipment is added as needed to meet the requirements of the system.

Variable and fixed costs were then estimated in an enterprise

budget format. Yield and price data was used to calculate net returns

to management for each system. Analysis of variance of yield and price

provided estimates of the differences between cropping systems. Finally

stochastic dominance with respect to a function was used in discrim-

inating between the net returns of the cropping systems.
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RESULTS AND CCNCDUSIONS

Enterprise budget analysis found no-till systems for grain sorghum

and soybeans to have slightly higher average net returns when compared

to conventional tillage practices. However, the standard deviation were

also higher for the no-till systems in the continuous grain sorghum and

grain sorghum after soybeans rotation.

Stochastic dominance with respect to a function analysis found

conventional tillage continuous grain sorghum to be preferred by highly

risk averse individuals, while risk seeking individuals would prefer no-

tillage continuous grain sorghum. For risk neutral individuals SDHRF

did not distinguish significantly between the two systems. Sensitivity

analysis, however found differences between the tow systems to be very

sensitive to yield variation.

Costs were slightly lower for the conventional-till system, and

yields for the no-till and ridge-till systems were not significantly

higher. Because of higher production costs ridge-till systems performed

consistently worse than the conventional-till and no-till counterparts.

Sensitivity analysis of the effects of band application of herbi-

cides found no differences in the rankings of the systems. When

net return distributions for cropping systems containing grain sorghum

were adjusted to represent the county average grain sorghum yields

conservation till grain sorghum after soybean and no-till continuous

soybean systems were preferred. However, when current government

commodity programs were considered in the analysis the grain sorghum

systems were preferred.
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LIMITATIONS OF STUDY

A major limitation of this study is the dependence upon the case

farm which relies heavily upon assumptions about farm size and the

machinery complement. It is difficult to obtain realistic tillage and

planting constraints, which are a major factor in determining the

machinery complement.

This study does not consider the management ability of the opera-

tor. It is assumed that the operator can replecate the yields achieved

at the experiment station. The yields of the conservation tillage

systems are particularly sensitive to one farming operation — planting.

With conventional tillage systems if soils structure is damaged by a

tillage operation another tillage operation can be used to correct the

mistake. A common example is soil compaction caused by working soils

that are too wet. An additional disk operation can be added to help

restore the soil properties. With conservation tillage if the farmer

lacks the skills needed to consistently obtain the necessary yields then

this system will not preform well for him.
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FUTURE RESEARCH NERDS

The results and limitation of this study provide for further

research needs. Better knowledge of planting and tillage constraints

could lead to the selection of more realistic equipment complements.

Examination of the effects of band application of herbicides could add

ridge-till systems to the efficient set. Further examination of the

consequences and value of long-term erosion could make the adoption of

conservation tillage practices appear more economical. What cost would

need to be assigned to soil loss for conservation tillage systems to

dominate the conventional till continuous grain sorghum system? An

examination of crop insurance levels could also provide new ordering by

the stochastic dominance procedure.
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Appendix A

Appendix A oontains the machinery selection worksheets for the

conventional tillage systems (Schrock, 1976) . In the conventional-till

systems the planting operation was the critical operation for determin-

ing the size of the 131 horsepower tractor. This tractor must also be

used to disc and will pull upto a 15.0 foot disc leaving 18.0 foot of

width for the remaining tractor to do in order to complete the discing

operation. This operation was also limiting and required a 160

horsepower tractor. Tables A-l to A-9 give the worksheets containing

the calculations for the implement sizes.
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Table A-l Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description
Amount

Estimate the Time Available
Desired Period Apr 1 - Apr 24
Percentage of Time Available for Work
Available Working Days
Hours per Day

Total Running Time

Size the Machinery to do the Job
Field Capacity Needed
Speed
Field Efficiency

Required Width

Estimate the Power Requirements
Required Width
PTO HP Per Ft. of Width

PTO Horsepower . .

Engine Horsepower

12 Foot Shreader
160 HP Tractor

Shreading
320 Acres

24 Days
23.3%
5.6 Days
10 Hrs.

56.0 Hrs.

5.7 A/Hr
5.0 MPH

80.0%

11.8 Feet

12.0 Feet
10 HP/FT

120 HP
140 HP
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Table A-2 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description 1st Discing
Amount 405 Acres

Estimate the Time Available
Desired Period Apr 16 - May 3 18 Days
Percentage of Time Available for Work 26.7%
Available Working Days 4.8 Days
Hours per Day 10 Hrs.

Total Running Time 48. o Hrs.

Size the Machinery to do the Job
Field Capacity Needed 8.4 A/Hr
sPeed 5.5 MPH
Field Efficiency 85.0%

Required Width 14.9 Feet

Estimate the Power Requirements
Required Width 14 .g Feet
PTO Horsepower per Ft. of Width . . . 7^5 h.P.

Required PTO Horsepower 112 HP
Required Engine Horsepower 130 HP

15 Foot Disc
131 HP Tractor
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Table A-3 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description 1st Discing
Annunt 235 Acres

Estimate the Time Available
Desired Period Apr 25 - May 3 9 Days
Percentage of Time Available for Work 26.7%
Available Working Days 2 4 Days
Hours per Day 10 Hrs.

Total Running Time 24.0 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 9 8 a/hj.SP^ •

; sis MPH
Field Efficiency 85.0%

Required Width 17-3 Feet

Estimate the Power Requirements
Required Width 18 Feet
PTD Horsepower per Ft. of Width ... 7.5 h.P.

Required PTO Horsepower 135 HP
Required Engine Horsepower 157 HP

18 Foot Disc
160 HP Tractor

110



Table A-4 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description 2nd Discing
Amount 325 Acres

Estimate the Time Available
Desired Period May 4 - May 15 12 Days
Percentage of Time Available for Work 26.7%
Available Working Days 3.2 Days
Hours per Day 12 Hrs.

Total Running Time 38.4 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 8.5 A/Hr
Speed 5.5 MPH
Field Efficiency 85.0%

Required Width 14.9 Feet

Estimate the Power Requirements
Required Width 15 Feet
PTO Horsepower per Ft. of Width . . . 7.5 H.P.

Required PTO Horsepower 112 HP
Required Engine Horsepower 130 HP

15 Foot Disc
131 HP Tractor
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Table A-5 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description 2nd Discing
Amount 315 Acres

Estimate the Time Available
Desired Period May 4 - May 14 11 Days
Percentage of Time Available for Work 26.7%
Available Working Days 2.9 Days
Hours per Day 12 Hrs.

Total Running Time 35.2 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 8.9 A/Hr
Speed 5.5 MPH
Field Efficiency 85.0%

Required Width 15.8 Feet

Estimate the Power Requirements
Required Width 18 Feet
PTO Horsepower per Ft. of Width . . . 7.5 H.P.

Required PTO Horsepower 135 HP
Required Engine Horsepower 157 HP

18 Foot Disc
160 HP Tractor
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Table A-6 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description Field Cultivate
Amount 640 Acres

Estimate the Time Available
Desired Period May 15 - Jun 9 26 Days
Percentage of Time Available for Work 16.7%
Available Working Days 4.3 Days
Hours per Day 12 Hrs.

Total Running Time 52 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 12.3 A^Hr
Speed 5.0 MPH
Field Efficiency 85.0%

Required Width 23.9 Feet

Estimate the Power Requirements
Required Width 24 Feet
PTO Horsepower per Ft. of Width ... 5 HP/Ft.

Required PTO Horsepower 119 HP
Required Engine Horsepower 139 HP

24 Foot Field Cultivator
160 HP Tractor
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Table A-7 Machinery Selection Worksheet For Conventional-JTill Systems

Identify the Critical Job
Description
Amount

Planting
640 Acres

Estimate the Time Available
Desired Period May 16 - June 20
Percentage of Time Available for Work
Available Working Days
Hours per Day

Total Running Time

Size the Machinery to do the Job
Field Capacity Needed
Speed
Field Efficiency

Required Width

Estimate the Power Requirements
Required Width
Draft Per Ft. of Width
Speed

Required Drawbar Horsepower
Engine Horsepower

36 Days
22.6%
8.1 Days
12 Hrs.

97.5 Hrs.

6.6 A/Hr
5.0 MPH
60.0%

18.0 Feet

8.0 Feel

350 lb
5 MPH

84 HP
131 HP

18 Foot Planter
131 HP Tractor
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Table A-8 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description
Amount

Estimate the Time Available
Desired Period Jun 16 - Jul 10
Percentage of Time Available for Work
Available Working Days
Hours per Day

Total Running Time

Size the Machinery to do the Job
Field Capacity Needed
Speed
Field Efficiency

. !

Required Width

Estimate the Power Requirements
Required Width
Draft Per Ft. of Width .

Speed '.'.'.

Required Drawbar Horsepower
Engine Horsepower

Cultivate
640 Acres

25 Days
20.0%
5.0 Days
10 Hrs.

50.0 Hrs.

12.8 A/Hr
4.5 MPH

70.0%

33.5 Feet

18.0 Feet
120 lb
4.5 MPH

26 HP
41 HP

(2) 18 Foot Cultivators
160 HP Tractor
131 HP Tractor
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Table A-9 Machinery Selection Worksheet For Conventional-Till Systems

Identify the Critical Job
Description Harvesting
Amount 640 Acres

Estimate the Time Available
Desired Period Sep 16 - Oct 31 46 Days
Percentage of Time Available for Work 30.0%
Available Working Days 13.8 Days
Hours per Day 7 jjrs.

Total Running Time 96.6 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 6.6 A/Hr
sPeed 4.0 MPH
Field Efficiency 70.0%

Required Width ig.5 peet

Estimate the Power Requirements
Required Width 20.0 Feet

20 Foot Header
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Appendix B

Appendix B contains the machinery selection worksheets for the

conventional tillage systems (Schrock, 1976) . In the no-till systems

the planting operation was also the limiting operation for the selection

of the 131 horsepower tractor. This tractor is also used to shred and

cultivate. A second tractor is needed to pull an additional cultivator.

Tables B-l to B-4 give the worksheets containing the calculations for

the implement sizes.
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Table B-l Machinery Selection Worksheet For No-Till Systems

Identify the Critical Job
Description Shreading
Amount 320 Acres

Estimate the Time Available
Desired Period Apr 1 - Apr 30 30 Days
Percentage of Time Available for Work 23.3%
Available Working Days 7.0 Days
Hours per Day 10 Hrs.

Total Running Time 70 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 4.6 A/Hr
Speed 5.5 MPH
Field Efficiency 85.0%

Required Width 8.1 Feet

Estimate the Power Requirements
Required Width 12.0 Feet
FTO HP Per Ft. of Width 10 HP/FT

PTO Horsepower 120 HP
Engine Horsepower 140 HP

12 Foot Shreader
131 HP Tractor
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Table B-2 Machinery Selection Worksheet For NcHTill Systems

Identify the Critical Job
Description
Amount

Planting
640 Acres

Estimate the Time Available
Desired Period May 16 - June 20
Percentage of Time Available for Work
Available Working Days
Hours per Day

Total Running Time

Size the Machinery to do the Job
Field Capacity Needed
Speed
Field Efficiency

Required Width

Estimate the Power Requirements
Required Width
Draft Per Ft. of Width
Speed

Required Drawbar Horsepower
Engine Horsepower

97.5 Hrs.

6.6 A/Hr
5.0 MPH
60.0%

18.0 Feet

18.0 Feet
350 lb/Ft

5 MPH

84 HP
131 HP

18 Foot Planter
131 HP Tractor
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Table E-3 Machinery Selection Worksheet For No-Till Systems

Identify the Critical Job
Description Cultivate
Amount 640 Acres

Estimate the Time Available
Desired Period Jun 16 - Jul 10 25 Days
Percentage of Time Available for Work 20.0%
Available Working Days 5.0 Days
Hours per Day 10 Hrs.

(2) 18 Foot Cultivators
60 HP Tractor

131 HP Tractor

Total Running Time 50.0 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 12.8 A/Hr
Speed 4.5 MPH
Field Efficiency 70.0%

Required Width 33.5 Feet

Estimate the Power Requirements
Required Width
Draft Per Ft. of Width
Speed

Required Drawbar Horsepower
Engine Horsepower

.8.0 Feet
120 lb
4.5 MPH

26 HP
39 HP
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Table B-4 Machinery Selection Worksheet For No-Till Systems

Identify the Critical Job
Description
Amount

Estimate the Time Available
Desired Period Sep 16 - Oct 31
Percentage of Time Available for Work
Available Working Days
Hours per Day

Total Running Time

Size the Machinery to do the Job
Field Capacity Needed
Speed
Field Efficiency

Required Width

Estimate the Power Requirements
Required Width

Harvesting
640 Acres

46 Days
30.0%
13.8 Days

7 Hrs.

96.6 Hrs.

6.6 A/Hr
4.0 MPH

70.0%

19.5 Feet

24.0 Feet

20 Foot Header
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Appendix C

Appendix C contains the machinery selection worksheets for the

ridge-till systems (Schrock) . In the ridge-till systems the planting

operation was the limiting operation in the determination of the size of

the 170 horsepower tractor. This tractor is also used to shred and

cultivate. A second tractor tractor was needed to pull an additional

cultivator. Tables C-l to C-4 give the worksheets containing the

calculations for the implement sizes.
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Table C-l Machinery Selection Worksheet For Ridge-Till Systems

Identify the Critical Job
Description Shreading
Amount 320 Acres

Estimate the Time Available
Desired Period Apr 1 - Apr 30 30 Days
Percentage of Time Available for Work 23.3%
Available Working Days 7.0 Days
Hours per Day 10 Hrs.

Total Running Time 70 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 4.6 A/Hr
Speed 5.5 MPH
Field Efficiency 85.0%

Required Width 8.1 Feet

Estimate the Power Requirements
Required Width 12.0 Feet
Draft Per Ft. of Width 10 lb

FTO Horsepower 120 HP
Engine Horsepower 140 HP

12 Foot Shreader
170 HP Tractor
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Table C-2 Machinery Selection Worksheet For Ridge-Till Systems

Identify the Critical Job
Description Planting
Amount 640 Acres

Estimate the Time Available
Desired Period May 16 - June 20 36 Days
Percentage of Time Available for Work 22.6%
Available Working Days 8.1 Days
Hours per Day 12 Hrs.

Total Running Time 97.5 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 6.6 A/Hr
Speed 5.0 MPH
Field Efficiency 60.0%

Required Width 18.0 Feet

Estimate the Power Requirements
Required Width 18.0 Feet
Draft Per Ft. of Width 450 lb
Speed 5 MPH

Required Drawbar Horsepower 108 HP
Engine Horsepower 169 HP

18 Foot Planter
170 HP Tractor
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Table C-3 Machinery Selection Worksheet For Ridge-Till Systems

Identify the Critical Job
Description Cultivate
Amount 640 Acres

Estimate the Time Available
Desired Period Jun 16 - Jul 10 25 Days
Percentage of Time Available for Work 20.0%
Available Working Days 5.0 Days
Hours per Day 10 Hrs.

Total Running Time 50.0 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 12.8 A/Hr
Speed 4.5 MPH
Field Efficiency 70.0%

Required Width 33.5 Feet

Estimate the Power Requirements
Required Width 18.0 Feet
Draft Per Ft. of Width 120 lb
Speed 4.5 MPH

Required Drawbar Horsepower 26 HP
Engine Horsepower 39 HP

(2) 18 Foot Cultivators
170 HP Tractor
60 HP Tractor
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Table C-4 Machinery Selection Worksheet For Ridge-Till Systems

Identify the Critical Job
Description Harvesting
ftmount 640 Acres

Estimate the Time Available
Desired Period Sep 16 - Oct 31 46 Days
Percentage of Time Available for Work 30.0%
Available Working Days 13.8 Days
Hours per Day 7 Hrs.

Total Running Time 96.6 Hrs.

Size the Machinery to do the Job
Field Capacity Needed 6.6 A/Hr
Speed 4.0 MPH
Field Efficiency 70.0%

Required Width 19.5 Feet

Estimate the Power Requirements
Required Width 20.0 Feet

20 Foot Header
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Appendix D

List prices for tractors and implements were the average of prices

obtained from area dealers for several major brands. Input prices were

obtained from local suppliers and USDA. Crop prices are the average

annual prices for the north central crop reporting district of Kansas.

Table D.l Equipment Prices

Equipment

2WD Tractor, 170 H.P.

2WD Tractor, 160 H.P.

2WD Tractor, 131 H.P.

2WD Tractor, 60 H.P.

Shredder, 12 Ft.

Disc, 15 Ft.

Disc, 18 Ft.

Field Cultivator, 24 Ft.

Planter, 18 Ft. (6 row)
w/ herbicide attachment

No-Till Openers

Ridge^Till Attachment

Cultivator, 18 Ft. (6 row)

Ridge-Till Cultivator,
18 Ft. (6 row)

Combine, 20 Ft. Header

Conv. Ridge NcHTill Price

X $66,659

X 64,137

X X 52,576

X X 22,215

X X X 4,464

X 6,498

X 10,736

X 9,513

X X X 14,904

X 1,783

X 5,432

X X 3,924

X 8,167

104,659
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Table D.2 Input Costs

Product Average Cost

NH3
Liquid 10-34-0
Propachlor (Ramrod FL)

Atrazine 4L

Metolachlor (Dual 8E)

Roundup
Paraquat
2,4-D (LVE)

Alachlor (Lasso EC)
Metribuzin (Sencor 4)

$230.67/ton
235.67/ton
17.00/gal
9.45/gal

54.20/gal
87.60/gal
55.00/gal
11.40/gal

23.00/gal
110.00/gal

Table D.3 Season Average Prices, Kansas Northeast District

Year Grain Sorghum Soybeans

1975 2.27 4.80
1976 1.89 6.55
1977 1.76 5.68
1978 1.97 6.64
1979 2.23 5.95
1980 2.92 7.56
1981 2.34 5.83
1982 2.70 5.60
1983 2.76 7.81
1984 2.29 5.78
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Appendix E

Ihis appendix contains estimated life and repair factors for farm

machinery as given by Rotz (1985) . These values are used to calculate

the repair costs in Chapter 4.
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Table E.l Estimated Life and Repair Factors for Machinery (Rotz)

Estimated Repair Factors
Machine Life RC1 RC2

Tractors
2 wheel drive 10000 .010 2.0
4 wheel drive 10000 .010 2.0

Tillage
moldboard plow 2000 .43 1.8
disk harrow 2000 .18 1.7
chisel plow 2000 .38 1.4
field cultivator 2000 .30 1.4
rotary hoe 2000 .23 1.4
row crop cultivator 2000 .22 2.2

Planting
row crop planter 1200 .54 2.1

2.1
grain drill 1200 .54

Harvesting
com picker 2000 .14 2.3

2.1
combine 2000 .12
mower 2000 .46 1.7

Miscellaneous
fertilizer spreader 1200 .95 1.3
boom type sprayer 1500 .41 1.3
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Appendix F

Table F.l gives the remaining value percentages of machinery by

Mohaski (1982) used in Chapter 4 to calculate the salvage values. Table

F.2 gives the index values used in calculating the depreciable values of

farm machinery in Chapter 4.
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Table F.l Remaining Value of Machinery in Percent (Mohaski et al.)

Life Tractor Combine

8 34.9 24.1
9 32.1 21.3

10 29.5 18.9
11 27.2 16.7
12 25.0 14.8
13 23.0 13.1
14 21.2 11.6
15 19.5 10.2

Other

22.6
20.0
17.7
15.7
13.9
12.3
10.8
9.6

Table F.2 Index Values for Farm Machinery (Ag Outlook)

Year Tractor Other

1979 122
1980 136
1981 152
1982 165
1983 174
1984 181
1985 178
1986 (est.) 175

119
132

146

160
171
180
183
184
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Appendix G

This appendix contains an example of the worksheets used to calcu-

late an enterprise budget. Table G.l calculates the herbicide costs per

acre, Table G.2 calculates the insecticide costs, and Table G.3 calcu-

lates the fertilizer costs. Table G.4 calculates the labor, fuel, oil,

and repair costs per acre by field operation. Table G.5 calculates the

depreciable value for each piece of machinery. Table G.6 calculates the

depreciation, interest and insurance for each machinery item. Table G.7

provides the enterprise budget summary.

133



Table G.l Herbicide Costs for Conventional^Till Systems

$ Per lb sorg Bean Sorg Bean
Input unit Unit Active Occur Quan Quan Cost Cost

Propachlor 17.00 Gal 4.0 83.3% 3.0 "ioTm 0~00
Atrazine^L ^9,45 q,j 40 100-0% 1>5 354 Q0Q

26 0.00
0.00 17.25
0.00 10.31

16.43 27.56

Metolachlor 54.20 Gal 8.0 16.7% 2 2
Alachlor 23.00 Gal 4.0 100.0% 3.0 O.uv.
Metribuzin 110.00 Gal 4.0 100.0% 3/8 0.00 10.'31

Total

Table G.2 Insecticide Costs for Conventional^Till Systems

5 Per Lb sorg Bean Sorg Bean^input unit Unit Active Occur Quan Quan Cost Cost

Furidan 15G 1.60 Lb 1.0 100.0% 9.0 0.0 14.40 0.00

Ibtal
14.40

~0
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Table G.3 Fertilizer Costs for Conventional-Till Systems

^ ?f
c Sorg Bean Sorg Bean

Input Unit Unit % N % P205 Quan Quan Cost Cost

NH3 230.67 Ton 82.2% 0.0% 0.0707 0.0000 16.31 0.00
10-34-0 235.67 Ton 10.0% 34.0% 0.0588 0.0588 13.86 13.86

Total Fertilizer Cost 30-17 13-86

Nitrogen Rate for Grain Sorghum 128 Pounds N Per Acre
P205 Rate for Grain Sorghum 40 Pounds P205 Per Acre
Nitrogen Rate for Soybeans Pounds N Per Acre
P205 Rate for Soybeans 40 Pounds P205 Per Acre
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Table G.4 Example Worksheet for Calculation of Labor, Fuel, Oil, and
Repair Costs for Conventional-rill Grain Sorghum

Oper. Occur Sorg. Field Sorg impl Trac Rep Labr Fuel Oil Rep
(%) Acres Cap Hr No No S/Hr Cost Cost Cost Cost

Shred 50% 0.0
1st Disc 100% 202.5
1st Disc 100% 117.5
2nd Disc 50% 162.5
2nd Disc 50% 157.5
Fert 100% 320.0
Fid Cult 100% 320.0
Planting 100% 320.0
Herb 100% 320.0
Insect 100% 320.0

Cult 100% 160.0
Cult 100% 160.0
Harvest 100% 320.0

4.15 3.64 0.55 14.46

5.8 0.0 11 T2 7.77 0.00 0.00 0.00 0.00
8.5 23.8 12 Tl 7.16 0.45 0.51 0.08 0.84

10.2 11.5 13 T2 9.55 0.22 0.30 0.04 0.94
8.5 9.6 12 Tl 7.16 0.18 0.21 0.03 0.21

10.2 7.7 13 T2 9.55 0.14 0.20 0.03 0.23

12.4 25.9 14 T2 10.18 0.49 0.55 0.08 0.82
6.5 48.9 15 Tl 15.09 0.92 0.48 0.07 2.31

6.9 23.3 16 Tl 7.24 0.44 0.20 0.03 1.05
6.9 23.3 17 T2 8.40 0.44 0.20 0.03 1.22
6.8 47.1 CI 46.39 0.88 1.00 0.15 6.83
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Table G-5 Equipment List Price, Depreciable Base, and Purchase Year
for Conventional^Till Grain Sorghum

NO IMPLEMENT LIST LIFE LIFE YEAR BEGIN END REMAI DEPREC

PRICE (YR) (HR) PURC IDX IDX VALUE VALUE

Tl 2WD Tractor $51,690 10 10000 1981 152 178 29.5% $38,162

T2 2WD Tractor 63,057 10 10000 1981 152 178 29.5% 46,554

11 Shredder 4,488 14 2000 1979 119 183 10.8% 2,467

12 Disc 6,534 14 2000 1979 119 183 10.8% 3,592

13 Disc 10,795 14 2000 1979 119 183 10.8% 5,934
14 Field Cultivator 9,565 14 2000 1979 119 183 10.8% 5,258
15 Planter 14,985 12 1200 1980 132 183 13.9% 9,138
16 Cultivator 3,945 14 2000 1979 119 183 10.8% 2,169
17 Cultivator 3,945 14 2000 1979 119 183 10.8% 2,169
CI Combine 102,895 10 2000 1981 152 178 18.9% 75,966

Table G-6 Equipment Annual Depreciation, Insurance, and Interest
for Conventional-Till Grain Sorghum

IMPLEMENT DEPREC SALVAGE ANNUAL ANNUAL ANNUAL
VALUE VALUE DEPREC INSURE INTEREST

2WD Tractor $38,162 $11,258 $2 ,690 $382 $2,671
2WD Tractor 46,554 13,733 3 ,282 466 3,259
Shredder 2,467 266 157 25 173
Disc 3,592 388 229 36 251
Disc 5,934 641 378 59 415
Field Cultivator 5,258 568 335 53 368
Planter 9,138 1,270 656 91 640
Cultivator 2,169 234 138 22 152

Cultivator 2,169 234 138 22 152

Combine 75,966 14,358 6 ,161 760 5,318

$14,164 $1,914 $13,399
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Table G.7 Conventional Grain Sorghum - Soybean Enterprise Budget

COST AND RETURNS SORGHUM BEANS TOTAL

VARIABLE COSTS PER ACRE
1. Labor 4.15 4.66 8.81
2. Seed 4.05 10.20 14.25
3 . Herbicide 16.43 27.56 43.99
4. Insecticide 14.40 0.00 14.40
5. Fertilizer 30.17 13.86 44.03

6. Fuel 3.64 4.01 7.64

7. Oil 0.55 0.60 1.15
8. Equipment Repair 14.46 14.80 29.26
9. Custom Hire ($2.82 Fertilizer Appl. ) 2.82 2.82 5.64

10. Interest (1/2 VC * rate) 6.35 5.50 11.84
Interest (Rented Land) 4.64 4.34 8.97

TOTAL VARIABLE COSTS (Owned Land) 97.00 84.01 181.01
TOTAL VARIABLE COSTS (Rented Land) 70.90 66.28 137.17

FIXED COSTS PER ACRE
11. Real Estate Taxes ($0.50/$100 Land Value) 6.27
12. Interest on Land ($627*. 06) 75.24
13. Share Rent SORG. (Gross * 40%) 91.45 91.45

Share Rent SOYB. (Gross * 40%) 73.12 73.12
14. Depreciation on Machinery 44.26
15. Interest on Machinery 41.87
16. Insurance and Housing 5.98

TOTAL FIXED COSTS (Owned Land) 173.63
TOTAL FIXED COSTS (Rented Land) 256.68

TOTAL COSTS PER ACRE (Owned Land) 354.63
TOTAL COSTS PER ACRE (Rented Land) 393.86

YIELD PER ACRE (Bu) 98.8 29.4
PRICE PER BUSHEL 2.31 6.22

GROSS RETURN PER ACRE 228.62 182.81 411.42

RETURNS OVER VARIABLE COSTS (Avg) 261.10
RETURNS OVER TOTAL COSTS (Owned Land) 56.79
RETURNS OVER TOTAL COSTS (Rented Land) 17.57
ANNUAL NET RETURNS PER ACRE (1 acre sorghum and 1 acre soybean) 29.33
NET RETURN TO MANAGEMENT (320 acre sorghum and 320 acre soybeans) 9,386

* Assumes landlord paying 2/5 of herbicide (17.60), 2/5 of insecticide
(5.76), and 2/5 of fertilizer (17.61).
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Conservation tillage offers tremendous potential for reducing soil

erosion. Technical and economic question persist about yield potential,

cropping sequences, and other production decisions. This study eval-

uates the economic potential and associated risk of conventional and

reduced tillage systems for the production of grain sorghum and soybeans

in Northeastern Kansas.

A representative 640 acre case farm is established to provide

comparisons of income potential and variability of contentional-till

,

no-till, and ridge-till in Northeastern Kansas. The study assumed that

farmers could duplicate the yields achieved for similar cropping systems

currently studied at the Cornbelt Experiment Station. Input levels were

identified by agronomists and Experiment Station Personnel.

An equipment complement was selected to meet the optimal tillage and

planting requirements of the conventional-till grain sorghum after

soybean rotation. When adopting alternative cropping systems, addition-

al equipment is added as needed to meet the requirements of the system.

Variable and fixed costs were then estimated in an enterprise budget

format. Yield and price data was then used to calculate net returns to

management for each system. Analysis of variance of yield and price

provided estimates of the differences between cropping systems. Finally

stochastic dominance with respect to a function was used in discrim-

inating between the net returns of the cropping systems.

Enterprise budget analysis found no-till systems for grain sorghum

and soybeans to have slightly higher average net returns when compared

to conventional tillage practices. However, the standard deviation were

also higher for the no-till systems in the continuous grain sorghum and

grain sorghum after soybeans rotation.



Stochastic dominance with respect to a function analysis found

conventional tillage continuous grain sorghum to be preferred by highly

risk averse individuals, while risk seeking individuals would prefer no-

tillage continuous grain sorghum. For risk neutral individuals SDWRF

did not distinguish significantly between the two systems. Sensitivity

analysis, however found differences between the tow systems to be very

sensitive to yield variation.

Costs were slightly lower for the conventional-till system, and

yields for the no-till and ridge-till systems were not significantly

higher. Because of higher production costs ridge-till systems performed

consistently worse than the conventional-till and no-till counterparts.

Sensitivity analysis of the effects of band application of

herbicides found no differences in the rankings of the systems. When

net return distributions for cropping systems containing grain sorghum

were adjusted to represent the county average grain sorghum yields

conservation till grain sorghum after soybean and no-till continuous

soybean systems were preferred. However, when current government

commodity programs were considered in the analysis the grain sorghum

systems were preferred.


